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Abstract 

The processing of images to extract regions, 
boundaries, and objects creates a spatial data­
base which contains large quantities of informa­
tion consisting of objects, their attributes, 
their locations, and spatial relationships. In 
this paper we deal with the problem of represent­
ing such spatial data in a uniform structure from 
which queries may be answered, commands may be 
carried out, and matching may be performed. We 
define a spatial data structure and illustrate its 
use in representing map data. We discuss the 
kinds of manipulations required in a spatial data 
base to answer queries about spatial data. We 
then show that matching of spatial data structures 
is a mathematical problem of finding homomorphisms 
from one spatial data structure to another. 

I. Introduction 

Digital map data, line drawings, and region 
adjacency graphs are all instances of spatial data 
that is usually organized in a discrete structural 
form as opposed to the iconic form of the gray 
tone or color image. Such structural organiza­
tions can be derived by partially or completely 
segmenting an image, associating attributes with 
the image segments, and determining relationships 
between segments. In this paper we are not con­
cerned with how any of this processing takes 
place. We are concerned with the representation 
of the spatial information once it is created and 
the kinds of interactions we may wish to have with 
it. We pose our interaction as a sequence of 
questions and commands. We may wish to know whe­
ther a railroad yard is in the image that the 
spatial information was extracted from. We might 
ask where the industrial areas are or whether 
there is any evidence that a brush area between a 
forest and an urban area has been camouflaged. We 
may wish to find the biggest body of water within 
twenty miles of a particular city. We may ask the 
system to construct a region consisting of all the 
irrigated cropland in a certain state or to con­
struct a road network including all the roads that 
go through a given city. 

Whether the form of interaction is a question 
or a command, finding the answer or returning the 
required structure involves searching the spatial 
data structure for one or more objects or dis­
tances that satisfy the conditions of the query. 
We will focus attention on those interactions that 
require the execution of procedures that rely 
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heavily on the structural representation of the 
spatial information. We will not concern our­
selves at this-time with the problem of efficient 
geometric and distance algorithms. 

In this paper we discuss map data and a for­
mal representation structure which we call a 
spatial data structure. The structure is rich, 
flexible, and efficient enough to logically store 
any of the spatial information in maps, line draw­
ings, region adjacency graphs, etc., that we might 
desire to represent. 

In Section I I we define the spatial data 
structure and give some specific examples which 
illustrate the use of the structure to represent 
spatial information. In Section Ill we discuss 
the manipulation of a spatial data base for 
answering queries. In Section IV we discuss the 
mathematical nature of spatial data matching 
problems. 

II. Maps and the Spatial Data Structure 

There is a variety of information that can 
appear on a map, and our discussion here is inten­
ded to be representative but not inclusive. First 
we will give definitions of some frequently used 
concepts, and then we will define the spatial data 
structure and illustrate the use of this structure 
to represent these concepts. The following defi­
nitions are our data structure definitions for 
basic concepts relevant to spatial data. They are 
not necessarily the same definitions a cartogra-

pher would use. See Robinson 13. 

A point is an ordered pair (x,y) where x re­
presents the longitude and y the latitude of a 
physical point on a map. A node is a point to­
gether with an attribute-value table. Thus a node 
is a point that carries more information than just 
its coordinates. A city or road junction can be 
a node. A chain is an ordered set of points where 
the first and last points are nodes called the 
start node and the end node. A chain represents a 
directed curve line segment from its start node to 
its end node passing through each of the given 
points. Hence the chain must implicitly contain 
information about the intended interpolation func­
tion that will be used to fill in points between 
adjacent pairs of the given points. A line is an 
ordered set of chains such that the last point of 
each chain is the first point of the next chain. 
Figure 1 illustrates these concepts. 
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Figure illustrates the concepts of point, node, 
chain, and line. 

A simple boundary is a line where the start 
node of the first chain coincides with the end 
node of the last chain. A boundary is either a 
simple boundary or a simple boundary inside of 
which is a set of boundaries. This recursive 
definition allows us to have boundaries within 
boundaries within boundaries, and so on. Figure 2 
gives some examples of boundaries. A boundary set 
is a set of boundaries. Generally the boundaries 
of a boundary set will be independent of each 
other (one boundary in the set will not be a part 
of another boundary of the set). The three 
boundaries of Figure 2 constitute a boundary set. 

Figure 2 illustrates the concepts of boundary and 
boundary set. 

A region is an entity having a boundary and 
usually containing other entities of interest such 
as nodes or chains of various sorts. A region 
adjacency relation is a binary relation associat­
ing each region with every other region which 
neighbors it. A chain region adjacency relation 
is a ternary relation which associates with every 
chain the region to its left and the region to its 
right as one travels along the chain from its 
start node to its end node. 

As can be seen from these examples, there are 
many different types of information in maps: 
points, sequences of points, sequences of chains, 
tables, binary relations, ternary relations, and 
so on. In order to facilitate the discussion of 
the ways in which these different kinds of infor­
mation relate to one another, we wish to adopt a 
unified representation. We will call our repre­
sentation structure a spatial data structure. In 
order to define the spatial data structure, we 
first define an atom and an attribute-value table. 
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An atom is a unit of data that is not to be 
broken down further. For example, integers and 
character strings are commonly used atoms. 

An attribute-value table is a set of pairs of 
the form (a,v) where-a-is-an-attribute and v is 
its value. Both a and v may be atoms or more com­
plex structures. For example, in an attribute­
value table associated with a structure represent­
ing a person, the attribute AGE would have a 
numeric value, and the attribute MOTHER might have 
as its value a structure representing another 
person. 

A statial data structure is an ordered pair 
S = (A,R . A is-;n attribute-value table and R is 
a set R = {R1, ..• ,RK} where for each k = I, ... ,K, 

there exists a positive integer Nk such that Rk is 

an Nk-ary relation on a set Sk. 

of labels Lk which is associated 

If there is a set 

Nk 
Rk S \ x Lk. 

w i th Rk, then 

Nk 
Otherwise Rk S Sk . Both the 

elements of sk and the labels of Lk may be atoms 

or spatial data structures. 

Notice that if we wish a spatial data struc­
ture to contain a set, then we can set Rk E R to 

be equal to Sk and not have any associated label 

set Lk. If we wish a spatial data structure to 

contain an ordered set or sequence, then we can 
set Rk E R to be Rk; Sk x Lk where Lk is a subset 

of the integers and Rk assigns to each integer in 

Lk an element of Sk. 

A node N can be represented by the spatial 
data structure N = (A,S) where the attribute-value 
table A contains information about the node such 
as its coordinates. A chain C can be represented 
by the spatial data structure C = (A,R) where A 
contains attributes such as leng'th, start node, 
and end node, and R consists of the labeled rela­
tion R which is.~he ordered set of points in the 
chain. A line ~can be represented by the spa­
tial data structure ~ = (A,R) where the attri­
bute-value table A contains global attributes of 
the line such as length or number of chains, and 
the set of relations R contains the singleton 
relation R which indicates the linear ordering of 
the chains that compose the line. A boundary B 
can be represented by the spatial data structure 
B = (A,R) where the attribute-value table A con­
tains the global attributes of the boundary such 
as the name of the region it surrounds, perhaps 
the smallest rectangle enclosing the boundary, and 
a name or designation of the outermost simple 
boundary that contains all the inner boundaries. 
The set of relations R contains the singleton re­
lation R which is just the set of boundaries 
interior to the outermost boundary. 

An area containing many regions can be repre­
sented by a spatial data structure whose 
attribute-value table contains information such as 



population, smallest enclosing rectangle, and a 
designation of the spatial data structure repre­
senting the boundary. The relation set R could 
contain the region adjacency relation, the chain 
region adjacency relation, and perhaps the set of 
cities in the area. If one of the purposes for 
the spatial data structure were automated carto­
graphy, then the sequence of chains that consti­
tute all boundaries for the area would be a 
labeled unary relation in R. 

In the remainder of this section we will 
illustrate the use of the spatial data structure 
in representing the typical combination of items 
that can appear in a map. For this purpose we use 
diagrams which show the logical connection between 
the data items which are stored. We do not ad­
dress the problems of physical implementation such 
as organization of tables or lists and format of 
scalar data. Figure 3 shows the logical storage 
organization for the spatial data structure. 
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figure 3 illustrates the logical storage organiza­
tion for the spatial data structure. 

Every spatial data structure has a header 
which has ftelds for name and type and perhaps 
other important identifying information. Below 
the header is a table having two columns. The 
first column is for names of relations which are 
the parts of the spatial data structure and the 
second column is for the pointers to them. The_ 
attribute-value tabTe is considered to be a speci­
ally designated binary relation. Because of itlS, 
importance, the first row in the table has the 
information about the attribute-value table. The 
attribute-value table and· any of the relations 
associated with a spatial structure can have 
entries which are atoms or other spatial data 
structures. 

As an example of the use of the spatial data 
structure, consider a map.· o:f Kansas containing 
cities, roads, rivers, and county boundaries. 
Figure 4 shows a portion of such a map. To repre­
sent this map, we need to represent the cities, 
important road junctions, road segments between 
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cities or junctions, roads, county boundary seg­
ments, river segments, and rivers. 
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Figure 4 shows a portion of a road map of Kansas 
containing cities, roads, rivers, and county 
boundaries. 

A city can be viewed as a node or as a bound­
ed area. In this example we will use the first 
view and represent both cities and road junctions 
as spatial data structures of type NODE. Road 
segments, county boundary segments, and river seg­
ments will be represented by spatial data struc­
tures of type CHAIN, roads and rivers will be 
represented by spatial data structures of type 
LINE, and counties will be represented by spatial 
data structures of type REGION. 

Figure 5 illustrates the spatial data struc­
tures representing cities, road junctions, and 
road segments for a portion of the map of Figure 
4. The spatial data structure for each city is of 
type NODE and has an attribute-value table con­
taining values for the attributes KIND, COORDI­
NATES, POPULATION, and COUNTY. The value of the 
attribute COORDINATES is a point. The value of 
the attribute COUNTY is a pointer to the spatial 
data structure representing the county that the 
city lies in. The spatial data structure for a 
road junction is also of type NODE. The value of 
its KIND attribute specifies that it is a road 
junction and otherwise its attribute-value table 
is a subset of the city attribute-value table. 
The NODE spatial data structure contains a rela­
tion called ROAD SEGMENTS THROUGH. As shown in 
Figure 5, it is a unary, unordered relation (a 
set) whose elements are pointers to the spatial 
data structures representing road segments that 
pass through the city or junction represented by 
the node. 
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Figure 5 illustrates the spatial data structures representing cities, road junctions, 
and road segments for a portion of the map of Figure 4. 

The spatial data structure for each road seq­
ment is of type CHAIN. The attribute-value table 
of this structure contains values for the attribute 
KIND (road segment), CLASS, LENGTH, START, and END 
(pointers to the start and end nodes of the chain). 
The relation POINTS ON is a binary, ordered rela­
tion consistinq of the sequence of (x,y) coordi­
nates of the points of the chain. 

fiqure 6 illustrates the spatial data struc• 
tures for roads and counties. Roads are represen­
ted by structures of type LINE. Their attribute­
value tables contain values for the attributes KIND 
(ROAD) and CLASS. The relation SEGMENTS OF is an 
ordered list of the road segments comprising the 
road. The county is represented by a spatial data 
structure of type REGION. Its attribute-value 
table contains values for the attributes KIND 
(COUNTY) and BOUNDARY. The value of BOUNDARY is a 
pointer to a structure of type SIMPLE BOUNDARY. 
This structure contains a relation SEGMENTS OF 
which is an ordered list of the boundary segments 
of the county. The segments are chains which can 
represent road segments, river segments, or just 
plain boundary segments. The CITIES IN relation in 
the region structure is an unordered list of cities 
in the county. 

241 

Rood 

County 

~-~==t-~To first road seg•nt 

• • 
L-~=::J-~To last r011d segt~~ent 

~--!:=::t-l~o Manhattan • • • 
To 

Fl rst legJ~tent 

• • 

Figure 6 illustrates the spatial data structures 
representing roads and counties. 



Ill. Manipulating the Spatial Data Base 

The spatial data structure essentially allows 
certain kinds of information to be found quickly 
by following the pointers and traveling through 
the structure. For simple spatial data base mani­
pulations, such pointer following may lead direct­
ly to the exact information desired. For more 
complex spatial data base manipulations, the 
pointer following in the data structure might only 
be able to specify a set which might have to be 
searched exhaustively or with some special proce­
dure to select exactly the desired information. 
Hence, spatial data base manipulations may have 
two components: one concerned with the best way to 
travel through the structure and the other con­
cerned with how to exhaustively search the set 
found by traveling through the structure. 

In this section we discuss general methods 
for determining the different paths through the 
structure. We begin with an example query. Sup­
pose we would like to find all the cities in 
Douglas County. Since Douglas County is a named 
region, we could look up Douglas County in a 
directory and see if there is a unary relation 
called "cities in" which is in the relation list 
for Douglas County. If so, then we follow the 
pointers to the cities in the list, copy the in­
formation and we are done. This would be an exam­
ple of satisfying a query Jn a simple way. 

If the unary relation called "cities in" is 
not in the relation list for Douglas County, then 
the information desired is either more difficult 
to obtain or perhaps not even obtainable. Suppose 
that the region Douglas County does have a rela­
tion which is called "river segments in" and 
suppose each river segment chain has a relation 
which is called "cities on." By the meaning of 
the words "in" and "on", if a city is on a river 
segment and the river segment is in a county, then 
the city is in the county. We will assume that 
this sort of knowledge about word meanings and 
relationships is available to the control process­
or that manipulates the spatial data system. For 
examples of the use of knowledge in intelligent 

systems, see Winograd 16 and Hewitt 10
• Thus by 

following the pointers through the structure, the 
set of all cities situated on river segments in 
Douglas County can be determined. This set is, 
of course, only a subset of the cities in Douglas 
County. However, if we also know as part of our 
global knowledge that all cities in Douglas County 
lie on river segments in Douglas County, then the 
control processor could determine that the subset 
of cities is, in fact, the entire set of cities in 
Douglas County. To be able to do this requires 
that the control processor be able to perform a 
limited amount of deductive reasoning. We illus­
trate this in the remainder of the section. 

Suppose the control processor is given a 
query to the spatial data system and that the 
query has been suitably broken down and processed 
by a parser. For example, the query 

FIND ALL CITIES IN DOUGLAS COUNTY 
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might be broken down as 

OBJECT TO BE FOUND: CITY 
NUMBER: ALL 
CONSTRAINTS: IN DOUGLAS COUNTY 

We would like the control processor to determine a 
path through the data structure resulting in the 
answer to the query. In fact, the control proces­
sor should be able to determine all such paths and 
then decide, possibly with some user interaction, 
on the best path to follow. 

If the control processor is to determine one 
or more paths through the data structure, it needs 
some knowledge of the structure and of the spatial 
relationships stored in the structure. One kind of 
knowledge we can provide is a prototype of each 
kind of spatial data structure. (This is similar 
to a "schema" in database management termi.1ology). 
A prototype of a spatial data structure includes 
the type of the structure, a prototype of the 
attribute-value table for that structure, and a 
prototype of each relation in the structure. 

Figure 7 shows sample prototypes for the NODE 
and REGION structures that were used in Section I I 
to represent cities and counties. The attribute­
value table prototype of the NODE prototype tells 
the system that the attribute-value table of each 
NODE will contain a KIND attribute whose value is 
CITY or ROAD JUNCTION, a COORDINATES attribute 
whose value is a point, a POPULATION attribute 
whose value is an integer, and a COUNTY attribute 
whose value is a pointer to a spatial data struc­
ture of type REGION. The relation ROAD SEGMENTS 
THROUGH also found in the NODE prototype is indi­
cated as a unary, unordered relation with a proto­
type element containing a pointer to a CHAIN 
structure. 

The REGION attribute-value prototype tells the 
system that the KIND attribute will have the value 
COUNTY (until we add some more kinds of regions to 
our system) and the value of the BOUNDARY attribute 
will point to a spatial data structure of type 
SIMPLE BOUNDARY. The CITIES IN relation will be 
unary, unordered, and each element will contain a 
pointer to a NODE structure. 

In order to answer a query concerning spatial 
relationships, the system must have some built-in 
understanding of those relationships. Some of the 
common spatial relationships that we might expect 
the system to know are IN, ON, CONTAINS, SURROUNDS, 
IS SURROUNDED BY, THROUGH, ADJACENT TO, and PART OF. 
One kind of knowledge of these spatial relation­
ships is how they can be put together. Suppose, as 
in the example at the beginning of this section, 
that the REGION structure representing counties had 
a relation called RIVER SEGMENTS IN instead of the 
relation CITIES IN, and each CHAIN structure had a 
relation called CITIES ON. The system needs to 
know that "city on river segment" and "river seg­
ment in county" implies "city in county." More 
generally, we can state a spatial axiom concerning 
the relationships IN and ON: 

a ON b and b IN c +a IN c 



This axiom represents a kind of transitivity stated 
more generally by 

on o in + in 

This transitivity knowledge might be stored as a 
table T where the rows and columns represent rela­
tions and T(R1,R2) = R

3 
if for every a, b, and c, 

aR 1b and bR2c imply aR
3
c. Figure 8 illustrates 

such a table for the relations IN, ON, THROUGH, and 
ADJACENT TO. The table form of storing such know­
ledge is compact for binary relations. More gen-

eral methods include production rules, Shortcl ife 14 

and procedural knowledge, Hewitt 10 and Winograd 16 . 
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Figure 7 illustrates samp I e prototypes for the 
NODE and REGIO~ structures. 

T 

IN ON THROUGH ADJACENT TO 

IN IN ON ------- ADJACENT TO 

ON IN ON ------- ADJACENT TO 

THROUGH IN ADJACENT TO THROUGH ADJACENT TO 

ADJACENT TO ADJACENT TO ADJACENT TO ------- -----------

Figure 8 illustrates a transitivity tableT where 
T(R1 ,R2) = R

3 
if aR1b and bR2c implies aR

3
c. 
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Now suppose that the system is given the modi­
fied prototypes shown in Figure 9, the transitivity 
knowledge shown in Figure 8, the specific knowledge 
that all cities in Douglas County lie on river seg­
ments in Douglas County, and the query 

FIND ALL CITIES IN DOUGLAS COUNTY 

The system can generate two paths to the solution. 
To generate the first path, it first determines 
(by table look-up) that a CITY is represented by a 
spatial data structure of type NODE. Examining the 
NODE prototype, it finds the COUNTY attribute which 
points to a REGION structure representing a county. 
The system needs to know that the REGION structure, 
like all spatial data structures, contains a char­
acter string name which can be compared to the name 
DOUGLAS and must be able to deduce that the COUNTY 
attribute refers to the county that the city is in. 
Then the system can generate a procedure for answer­
ing the query. A high-level version of such a 
procedure is given below • 

lbllfled node prototype 

IUID (CITY. AQM JIIICTICII 

COOUIIIATU <poln~ 

POP\I.ATIDII clnt.,.r> 

"""lflod ...,,.., P'"totypo LCOIIIT'I _____ L__-+ _ ___J 

Prototype 
......... t 

hd~-~~r--~ ,..I:t:!"::Otoa 
typo 

Figure 9 shows a modified set of prototypes to be 
used in answering the query "Find all cities in 
Douglas County." 

procedure CITIES IN DOUGLAS COUNTY 1; 
ANSWER LIST = the empty I is t; -
do for-each spatial data structure D of type 
-- NODE 

if the KIND attribute of D is CITY 
tnen if the name of the REGION pointed to 
---by the COUNTY attribute is DOUGLAS 

then add D to ANSWER LIST 
else continue; 

end CITIES_IN_DOUGLAS_COUNTY_I; 



This procedure represents the first path to the 
solution. To generate the second path, the system 
first determines that a COUNTY is represented by a 
REGION structure. The REGION prototype has no 
attribute or relation whose name contains the word 
CITY. On searching further, the system finds that 
the relation RIVER SEGMENTS IN contains elements 
which point to chains representing river segments 
and that the CHAIN prototype contains the relation 
CITIES ON whose elements point to NODE structures. 
Now the deductive portion of the system uses the 
transitivity tableT to determine that RIVER SEG­
MENTS IN a county and CITIES ON a river segment 
together can provide a I ist of CITIES IN a county. 
It then uses the further knowledge that all cities 
in Douglas County. I ie on river segments in Douglas 
County to determine that the above list is equiva­
lent to the list of all cities in Douglas County. 
This gives us the second path to the solution 
represented by the following procedure. 

procedure CITIES IN DOUGLAS COUNTY 2; 
DOUG - the spatial data structure of type 

REGION and KIND COUNTY representing 
DOUGLAS COUNTY; 

ANSWER LIST= empty list; 
do for-each river segment S in the RIVER 
-----SEGMENTS IN relation of DOUG; 

add all the elements of the CITIES ON 
relation of S to ANSWER LIST; 

end CITIES_IN_DOUGLAS_COUNTY_2; 

After the system has generated the two (or 
more) paths to the answer, it must evaluate these 
paths using a cost function and basing its evalua­
tion on certain properties of the data base. For 
instance, in procedure CITIES IN DOUGLAS COUNTY I, 
the cost of executing the nested-if-then~else -
statement must be multiplied by the number of nodes 
in the database. In procedure CITIES IN DOUGLAS 
COUNTY 2, the cost of finding the structures repre­
senting Douglas County must be added to the product 
of the number of river segments in Douglas County 
and the cost of accessing and copying the CITIES ON 
relation of each river segment. With most map data 
we would expect the second procedure to be the less 
costly. 

IV. Homomorphisms on Spatial Data Structures 

A different kind of question that can be asked 
about map data is whether two entities have similar 
structures. For example, it might be interesting 
to compare the road network structures around two 
cities. A function that preserves structure is 
called a homomorphism. (For graph hO!OOI1¥lrphisms, 

see Harary9). If there is a homomorphism from one 
structure to a part of another structure, then we 
have a basis for considering the two structures 
similar and comparing them further. Since the 
spatial data structure is a recursive structure, we 
will define a homomorphism for this structure with 
a recursive definition. First we define the compo­
sition of a function with a relation. 

N N Let R1 ~ s 1 and R2 ~ s2 be two N-ary rela-

tions and let h be a function from s 1 to s2 . The 
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composition of R1 with h, denoted by R1°h, is 

defined by 

R1 oh = { ( s l , ... , sN) 

(s;, ... ,sN) 

h(sp=si' 

E s2N I there exists 

N 
E s

1 
such that 

= I, ..• ,N}. 

Thus the composition of an N-ary relation with a 
function is another N-ary relation. If R

1
°h R2 , 

then R1 and R2 have the same structure. If 

R1°h s R2 , then R1 has the same structure as a 

subset of R2. 

are two labeled N-ary relations, h is a function 
from s 1 to s2 , and hL is a function from L1 to L2 , 

the composition of R1 with the pair (h,hL) denoted 

by R1°(h,hL) is defined similarly by 

R1°(h,hL) = {(sl' ... ,sN,t) E s2N X L2 I there 

N 
exists <s;, ... ,sN,t') E sl X Ll 

such that h(sl) = si' 

and hL (t') = t}. 

= I, ... ,N 

A spatial data structure contains an attri­
bute-value table and a set of relations. Two 
spatial data structures can be considered similar 
if 

(I) Each of 
similar 

and 
(2) Each of 

similar 

However , we may 
with respect to 
and relations. 
definition. 

their common attributes have 
values 

their common relations have 
structures 

wish to compare two structures 
a subset of-their common attributes 
This motivates the following 

Let D1 = (A1,R1) and D2 = (A2 ,R2) be two 

spatial data structures. Let A
1 

be the set of 

attributes of A1, A2 be the set of attributes of 

A2 , and !l c; A1• For each R E R1 U R2 , assume 

there is a set SR and an integer NR such that 

NR 
R s=, SR Let p s=, R1. 

A homomorphism from D1 to D2 with respect to 

(ll,p) is a It-tuple (f ,F ,h,H) where 

(I) f is a function from !l to A2 satisfying 

that if the value va of attribute a is a 

spatial data structure, then so is the 
value vf(a) of f(a). 



! 

(2) F is a set {f I a E a} satisfy that if a 
the value va of a is a spatial data 

structure, then fa is a homomorphism from 

va to vf(a). 

(3) h is a function from p to R2 satisfying 

for every REp, NR = Nh(R)" 

(4) H = { (hR,HR) I R E p} where 

(i) hR is a function from SR to Sh(R) 

satisfying: 

(a) if s E SR is a spatial data 

structure, so is hR(s) 
and 
(b) RohR 5 h(R) 

(ii) HR is a set {gs I s E SR} satisfying 

that if s is a spatial data struc­
ture, gs is a homomorphism from s to 

hR(s). 

Intuitively, if o1 and o2 are two spatial data 

structures and a is a subset of the attributes of 
o1, then each attribute in a must map to an attri-

bute of o2 . If the value of an attribute is a 

spatial data structure, then the value of the 
attribute it maps to must be a spatial data struc­
ture and there must be a homomorphism between 
these two structures. If p is a subset of the 
relations, there must be P function that maps each 
relation in p to a relation of o2 of the same 

order. For each such pair of relations (R1 ,R2), 

there must be a function that maps elements of the 
set SR to elements of the set SR . This function 

1 2 

must map spatial data structures to spatial data 
structures and its composition with R1 must be a 

subset of R2 . Furthermore, if this function maps a 

spatial data structure to another, there must be a 
homomorphism from the first structure to the sec­
ond. 

The definition can be easily extended to 
labeled relations using the extended definition of 
composition defined earlier in this section. We 
will illustrate the concept of a homomorphism with 
an example. 

Consider the two spatial data structures NAME! 
and NAME2 shown in Figure 10. Let a be the set of 
attributes {al,a2} and let f(al) = a5 and f(a2) = 
a4. Since the value of a2 is an atom "at2", we do 
not have to make any further checks on a2. Since 
the value of al is a spatial data structure, we 
must check that the value of a5 is also a spatial 
data structure. Since this condition is met, the 
function f satisfies condition (I) of the homomor­
phism definition. 
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To 
L~~:::j1NAME2 

To NAME) 

To NNt£3 

To 
NAHE2 

To 
NAIIE4 

To 
NAHE4 

To 
NAHEI 
To 

NAKEli 
To 

NAHE3 

Figure 10 illustrates two spatial data structures 
NAME! and NAME2 where there is a homomorphism from 
NAME! to NAME2 with respect to ({al,a2},{R2}). 

Now let F = {fal'fa2}. fa 2 can be 0 since 

the value of a2 is not a spatial data structure 
and we are not concerned with fa 2 . fal must be a 

homomorphism from the spatial data structure NAME3 
to the spatial data structure NAME4. In this case 
if we choose a'= 0, p' = 0, and fal = (0,0,0,0), 
fal is trivially a homomorphism from NAME3 to 

NAME4 with respect to (0,~). Thus F satisfies 
condition (2) of the homomorphism definition. 

Next, let p = {R2} and let h(R2) = R3. Since 
both R2 and R3 are binary, unordered relations, 
this satisfies condition (3) of the homomorphism 
definition. It remains to define H = {(hR2 'HR2)} 

where hR2 is a function from sR2 to sR3 and HR2 
is a set {gs s E sR2} of homomorphisms. 

{NAME3, NAME4} and SR3 = 
{NAME 1 , NAME2, NAME3, NAME4}. 

Let hR2 (NAME3) = NAME4 and hR2 (NAME4) = NAME3. 

Then R2ohR2 = {(NAME4, NAME4), (NAME4, NAME3)} ~ 

R3 = h(R2). With this and the fact that hR2 maps 

spatial data structures to spatial data structures, 
condition (4) (i) is satisfied. 

Finally, let HR2 = gNAME 3 , gNAME4 where 

gNAME 3 = (~,0,0,0) and gNAME4 = (0,0,~,0). Again, 

gNAME 3 is trivially a homomorphism from NAME3 to 

hR2 (NAME3) = NAME4 with respect to (0,0), and simi­

larily gNAME4 is a homomorphism from NAME4 to 

hR2 (NAME4) = NAME3 with respect to (0,~). Thus the 



condition (4) (i i) is satisfied and (f,F,h,H) is a 
homomorphism from spatial data structure NAMEl to 
spatial data structure NAME2 with respect to 
({al ,a2},{R2}). Figure 11 illustrates the homomor­
phism pictorially. 

NAME I 

TYPE I 

A/Vl 

Rl 

Bina 

' 
' \ I 

'-----~------' 

hR2 ------

I 
I 

Bina 

Unordered 

- ----.,. 
---=--~----+ 

Figure 11 pictorially illustrates the homomorphism 
(f, F = {fal'~}, h, (hR2'HR2 = {gNAME3,gNAME4})) 
from spatial data structure NAMEl to spatial data 
structure NAME2. 

Some discussion of the construction of this 
homomorphism is important. The function f was de­
fined on the set a= {al,a2} which contains all of 
the at-tributes of A/Vl. The function could also 
have been defined on {al}, {a2}, or 0. Of course, 
the more attributes there are in a, the stronger 
is the homomorphism. The homomorphisms fal and 

gNAMEJ from NAME3 to NAME4 and the homomorphism 

gNAME4 from NAME4 to NAME3 were defined as the null 

homomorphism (0,0,0,0) with respect to (0,~). 
Clearly, the null homomorphism maps any spatial 
data structure to any other spatial data structure. 
In this case, the null homomorphism was the only 
homomorphism possible from NAME3 to NAME4 or from 
NAME4 to NAME3, since A/V4, R3, and R4 are all 
empty. 

The function h was defined on the set 
p = {R2}. It was not possible to make p any larger 
since Rl is a binary relation and the spatial data 
structure NAME2 contains no corresponding binary 
relation. The function hR2 was the only possible 

function from SR2 to SRJ that satisfied 

R2ohR2 : R3. Finally, the relations R2 and R3 are 

both unlabeled binary relations. If R2 were a 
labeled relation, then R3 would also be a labeled 
relation and the function hR2 would be an ordered 

pair (hR2 ,hl) where hl would map labels of L2 to 
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labels of L3 and the extended definition of compo­
sition would be used. 

For example, consider the labeled relations 
R4 and R5 of Figure 12. R4 and R5 are both labeled 
ternary relations where the labels specify an 
ordering on the triples. If hR4 and hl are de-

fined as shown in Figure 12, then 
R4o(hR4 ,hl) S R5. In fact, R4°(hR4 ,hl) = R5. 

Rlt I I 

Ternary 

Ordered 

s1 s2 s3 1 

s1 s2 s2 2 

s1 s2 sit 3 

hRit(s1) • t1 

hRit(s2) • t2 

hRit (s3) • t2 

hRit (sit) • t3 

hl (1) • 1 

hl (2) • 1 

hl (3) • 2 

t1 

t1 

R5 T l 

Ternary 

Ordered 

t2 t2 

t2 t3 

1 

2 

Figure 12 illustrates two labeled ternary relations 
R4 and R5 and a function (hR4 ,hl) such that 

R4o(hR4'hL) S R5. 

A spatial data structure is a recursive struc­
ture since both its attribute-value table and its 
relations may contain spatial data structures. A 
homomorphism from one spatial data structure to 
another is also recursive since if the data struc­
ture has several levels, so may the homomorphism. 
It may be that we are only interested in the homo­
morphism at the top level and can define all lower 
homomorphisms as the null homomorphism, or it may 
be that we want to compare the structure all the 
way to the bottom level. 

Consider the two structures of Figure 13. 
ARRANGEMENT! consists of a bridge, a city, a rail­
road, and a highway in a specified geometric rela­
tionship. ARRANGEMENT2 consists of a bridge, a 
city, a river, and a highway in a similar relation­
ship. At the top level, the 4-tuple (f,F,h,H) 
where 

f(COUNTY) = COUNTY 

F = {the null homomorphism} 

h (R) = R 



hR(BRIDGEl) = BRIDGE2 

hR(CITYl) = CITY2 

hR(HWYl) = HWY2 

hR(RRl) = RIVER2 

hL (entrance-to) entrance-to 

hL (routed-over) routed-over 

hL(crosses, 90°) =(crosses, 45°) 

H = {gBRIDGEl' gHWYl' gCITYl' gRRl} 

gBRIDGEl = gHWYl = gCITYl = gRRl =the null 
homomorphism 

is a homomorphism from ARRANGEMENT! to ARRANGEMENT2 
with respect to ({COUNTY},{R}). If we want the 
homomorphism to -extend to another 1 eve 1 , we must 
define non-null homomorphisms from the value of 
COUNTY in ARRANGEMENT! to the value of COUNTY in 
ARRANGEMENT2 and from BRIDGE! to BRIDGE2, CITY! to 
CITY2, HWYl to HWY2, and RRl to RIVER2. At each 
level the homomorphisms defined may be weak or 
strong, depending on how many attributes and rela­
tions are compared and how much collapsing takes 
place. For instance, BRIDGE! and BRIDGE2 have 
different physical attributes, but in some ways are 
still similar. 

t i 
ARIWIG£MENTI trCO~TY~ 
STRUCTUO£ 

A/Y 1-

ARIWIG£MENT2 

u 
_Jco~f •l 

STRUCTURE 

A/Y I -
R I ' • I ' 

1 1 
Blnarv Blnarv 

labeled labeled 

BRIDGE I CITY! Entr.ance•to BRIOG£2 CITY2 Entrance-to 

HWYI BRIDGE I Routed-over HWY2 BRIDGE2 Routed-over 

BRIDI'£1 RRI I !Crosses '10°) 8RIDGE2 RIVER2 (Crosses ~5°) 

Figure 13 illustrates two geographic spatial data 
structures which are similar at least at the top 
level. 

Finding homomorphisms in map data can provide 
interesting information about the structure of the 
data. However, finding even one-level homomor­
phisms has been shown to be an NP-complete problem, 
although look-ahead operators have been proposed 
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to speed up the search. Finding these multi-level 
homomorphisms is an interesting problem that we 
will be investigating in the near future. 

V. Related Literature 

Computerized spatial data representation is a 
requirement for all scene analysis systems, auto­
mated cartographic systems, and geographic infor­
mation systems. Because in this paper our examples 
have been in terms of map data, we will briefly 
review related ideas mostly in the geographic in­
formation system literature. We will show that 
each of the data structures used by previous re­
searchers can be accommodated by the spatial data 
structure defined in this paper. 

One of the earlier and successful geographic 
information systems is Tomlinson's Canadian Geo-

graphic Information System15. The basic spatial 
data structure used in this system consists of a 
directed boundary chain which points to its left 
and right regions. Each boundary chain also 
points to the two next boundary chains which con­
tinue bounding the region on the left and on the 
right. This structure is basically the simple 
boundary data structure described in this paper 
implemented as a linked list of boundary chains. 

It is important for any spatial data structure 
to allow the representation of areas which are 
nested or which have holes. Those systems, like 
Tomlinson's which emphasize boundary connections to 
the next continuing boundary chain, usually detour 
a traversal of the exterior boundary of a region to 
the interior boundary of the region. When the tra­
versal of the interior boundary is finished, 
another virtual chain detours the traversal back to 
the exterior boundary. Although such a system per­
mits retrieving boundaries and keeping track of 
whether the current boundary includes or excludes 
areas in it, the mechanism is not elegant and per­
haps even inefficient algorithmically. 

The U,S, Census DIME files 3 has a basic struc­
ture consisting of straight line boundary chains 
wh(ch point to their left and right regions and 
which point to their beginning and ending nodes. 
This structure is the first fully topological 8 structure and is the one which Hanson and Riseman 
use in their VISIONS system. It is a structure 
efficient to represent all topological spatial re­
lations between regions. Beginning with any 
directed boundary chain for a specified region on 
its left, the next boundary chain can be located by 
searching the DIME file for any boundary chain 
having the specified region to its left and having 
its starting node be the ending node of the given 
boundary chain. To find all regions adjacent to a 
given region, we need to search the DIME file for 
all boundary chains having for either their left 
region or right region the specified region. If 
the specified region is found on the right, an 
adjacent region will be found on the left and vice­
versa. To find all the holes in a region, we need 
to begin with any boundary chain on the exterior of 
the region. We traverse this boundary until the 
entire exterior boundary has been found. Then we 
locate any boundary chain within this region having 



one of its region pointers pointing to the ini­
tially specified region. A traversal using each 
such boundary chain will generate a hole in the 
region. Although the DIME file representation is 
sufficient to permit the finding of holes, it is 
not algorithmically efficient. In terms of the 
spatial data structure suggested in this paper, 
the basic DIME file structure for any region can 
be implemented as a quintary relation associated 
with the spatial data structure for that region. 

The chain structure of POLYVRT 11 and LUDAS 
are logically similar to the chain spatial struc­
ture discussed in this paper. We have, however, 
not suggested that the points in a chain be stored 
sequentially as (x,y)-coordinates. We have left 
the physical storage mechanism open. In some ap­
plications storing differences or using a Freeman 

chain code6 might be appropriate. In other appli­
cations storing the chain in more of a parametric 
functional form might be appropriate. Regardless 
of the physical form of the storage, the struc­
tural aspect of the representation is the same. 

The hierarchical polygonal data structure of 

Edwards, Durfee, and Coleman4 allows the same 
efficient retrieval of a region's interior bound­
aries (or nested zones) as the boundary data 
structure defined in this paper. However, the 
logical convention employed in the implementation 
differs from the ones suggested here. 

Because of its computational efficiency, 

Brassel 1 suggests a hierarchically organized spa­
tial data base of Thiessen polygons for determin­
ing the node which is closest to a given spatial 
position. The implementation of this structural 
organization easily fits into the spatial data 
structure we have defined in this paper. At each 
level of the hierarchy, the node defining each 
Thiessen polygon points to the nodes of neighbor­
ing Thiessen polygons. The distance between a 
given point and a starting Thiessen polygon node 
may be computed. Then using this connectedness 
structure, the neighboring Thiessen polygon nodes 
can be found, the distances between the given 
point to these nodes can be computed, and the 
closest of these nodes located. The node network 
can be traversed in this manner locating that 
Thiessen polygon node closest to the given spatial 
point. Then using the pointers from the closest 
node at the current level to the neighboring 
Thiessen polygon nodes at the next level the 
searching can be continued until the closest node 
at the lowest level has been found. A pointer to 
the set of Thiessen polygon nodes at the current 
level of the hierarchy as well as a pointer to the 
set of Thiessen polygon nodes at the next level of 
the hierarchy are easily stored in a unary rela­
tion (a set) of a node in the spatial data struc­
ture defined in this paper. 

A spatial data structure sometimes used for 
representing surfaces on the basis of sampled 
points is the triangular data structure. Here a 
two-dimensional area is divided into a set of 
mutually exclusive triangles. The triangular 

248 

partition is constrained in the following manner: 
if any non-zero length of one side of a triangle 
is adjacent to any other triangle, then the entire 
side of the one triangle must be an er.tire side of 
the adjacent triangle. The vertices of the tri­
angles are nodes. For digital terrain models such 
nodes would contain elevation, slope, or other 
important samples surface information. To obtain 
the elevation or slope information at any place in 
a triangle, an interpolation may be used with a 
homogeneous coordinate system based on the three 

7 12 nodes sampled values ' . 

In the triangular data structure, each tri­
angle points to its adjacent triangle and to its 
vertices. Thus, for the spatial data structure 
defined in this paper to represent a triangulation 
we need only add a node list and an adjacent tri­
angle list to the unary relations in each tri­
angular region. The information of these lists 
can be easily obtained by traversing the boundary 
of a triangular region and picking up the required 
information from the nodes associated with each 
boundary chain. 

Burton's polygonal representation2 allows 
quick solution of point in a polygon and polygon 
intersection problems. It is based on breaking up 
a polygon into basic sections which are maximal 
length chains, monotonic In both x and y coordi­
nates. The maximal length is not a requirement 
for the algorithm, although It will speed up the 
search. Burton's polygonal representation is 
easily put in the spatial data structure defined 
here: just make the chains used in the spatial 
data structure monotonic in both x andy coordi­
nates. Hence, all that is required is either an 
explicit representation of the minimum and maximum 
x-y coordinates of each chain or a way to obtain 
the minimum and maximum from the beginning and 
ending nodes of each chain. 

VI. Summary 

We have defined a spatial data structure that 
can be used to represent spatial objects. The 
structure consists of an attribute-value table and 
a set of relations. The entries in the table and 
the objects on which the relations are defined may 
also be spatial data structures. Thus the spatial 
data structure is a recursive structure. 

The use of the spatial data structure was 
illustrated by a representation of a portion of a 
map of Kansas including cities, road junctions, 
road segments, roads, county boundary segments, 
counties, river segments, and rivers. A discus­
sion of the manipulations required to answer 
queries about such a structure suggested that the 
database system should contain a control processor 
which when given a query would determine all pos­
sible paths through the structure to answer the 
query and select the best path with the use of a 
cost function. The control processor would need a 
prototype of each kind of spatial data structure 
In the system and must have some knowledge of the 
semantics of the relations In the spatial data 
structures. The control processor might also 



possess some special purpose knowledge about par­
ticular objects in the system. An example of 
finding all cities in a county illustrated some of 
manipulations necessary to answer queries concern­
ing spatial data structures. 

One operation of interest in a system of spa­
tial data structures is the matching of two struc­
tures. Since the spatial data structure is a 
recursive structure, the function mapping one spa­
tial data structure to another can also be defined 
recursively. The definition of a spatial data 
structure homomorphism allows us to measure the 
similarity of two spatial data structures at one 
or more levels of the structures. The problem of 
finding these multi-level homomorphisms is the 
subject of our future work in this area. 
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