
l

A GENERAL SPATIAL DATA STRUCTURE

Linda G. Shapiro
Department of Computer ·science, Kansas State University

Manhattan, Kansas 66506

Robert M. Haralick
Departments of Electrical Engineering and Computer Science, University of Kansas

Lawrence, Kansas 66045

Abstract

The processing of images to extract regions,
boundaries, and objects creates a spatial data­
base which contains large quantities of informa­
tion consisting of objects, their attributes,
their locations, and spatial relationships. In
this paper we deal with the problem of represent­
ing such spatial data in a uniform structure from
which queries may be answered, commands may be
carried out, and matching may be performed. We
define a spatial data structure and illustrate its
use in representing map data. We discuss the
kinds of manipulations required in a spatial data
base to answer queries about spatial data. We
then show that matching of spatial data structures
is a mathematical problem of finding homomorphisms
from one spatial data structure to another.

I. Introduction

Digital map data, line drawings, and region
adjacency graphs are all instances of spatial data
that is usually organized in a discrete structural
form as opposed to the iconic form of the gray
tone or color image. Such structural organiza­
tions can be derived by partially or completely
segmenting an image, associating attributes with
the image segments, and determining relationships
between segments. In this paper we are not con­
cerned with how any of this processing takes
place. We are concerned with the representation
of the spatial information once it is created and
the kinds of interactions we may wish to have with
it. We pose our interaction as a sequence of
questions and commands. We may wish to know whe­
ther a railroad yard is in the image that the
spatial information was extracted from. We might
ask where the industrial areas are or whether
there is any evidence that a brush area between a
forest and an urban area has been camouflaged. We
may wish to find the biggest body of water within
twenty miles of a particular city. We may ask the
system to construct a region consisting of all the
irrigated cropland in a certain state or to con­
struct a road network including all the roads that
go through a given city.

Whether the form of interaction is a question
or a command, finding the answer or returning the
required structure involves searching the spatial
data structure for one or more objects or dis­
tances that satisfy the conditions of the query.
We will focus attention on those interactions that
require the execution of procedures that rely

CH1318-5/78/0000-0238SOO. 75 «;) 1978 IEEE

238

heavily on the structural representation of the
spatial information. We will not concern our­
selves at this-time with the problem of efficient
geometric and distance algorithms.

In this paper we discuss map data and a for­
mal representation structure which we call a
spatial data structure. The structure is rich,
flexible, and efficient enough to logically store
any of the spatial information in maps, line draw­
ings, region adjacency graphs, etc., that we might
desire to represent.

In Section I I we define the spatial data
structure and give some specific examples which
illustrate the use of the structure to represent
spatial information. In Section Ill we discuss
the manipulation of a spatial data base for
answering queries. In Section IV we discuss the
mathematical nature of spatial data matching
problems.

II. Maps and the Spatial Data Structure

There is a variety of information that can
appear on a map, and our discussion here is inten­
ded to be representative but not inclusive. First
we will give definitions of some frequently used
concepts, and then we will define the spatial data
structure and illustrate the use of this structure
to represent these concepts. The following defi­
nitions are our data structure definitions for
basic concepts relevant to spatial data. They are
not necessarily the same definitions a cartogra-

pher would use. See Robinson 13.

A point is an ordered pair (x,y) where x re­
presents the longitude and y the latitude of a
physical point on a map. A node is a point to­
gether with an attribute-value table. Thus a node
is a point that carries more information than just
its coordinates. A city or road junction can be
a node. A chain is an ordered set of points where
the first and last points are nodes called the
start node and the end node. A chain represents a
directed curve line segment from its start node to
its end node passing through each of the given
points. Hence the chain must implicitly contain
information about the intended interpolation func­
tion that will be used to fill in points between
adjacent pairs of the given points. A line is an
ordered set of chains such that the last point of
each chain is the first point of the next chain.
Figure 1 illustrates these concepts.

• .. ,.,.

•

CHAIN

[!}-----+---0
CHAIN

Figure illustrates the concepts of point, node,
chain, and line.

A simple boundary is a line where the start
node of the first chain coincides with the end
node of the last chain. A boundary is either a
simple boundary or a simple boundary inside of
which is a set of boundaries. This recursive
definition allows us to have boundaries within
boundaries within boundaries, and so on. Figure 2
gives some examples of boundaries. A boundary set
is a set of boundaries. Generally the boundaries
of a boundary set will be independent of each
other (one boundary in the set will not be a part
of another boundary of the set). The three
boundaries of Figure 2 constitute a boundary set.

Figure 2 illustrates the concepts of boundary and
boundary set.

A region is an entity having a boundary and
usually containing other entities of interest such
as nodes or chains of various sorts. A region
adjacency relation is a binary relation associat­
ing each region with every other region which
neighbors it. A chain region adjacency relation
is a ternary relation which associates with every
chain the region to its left and the region to its
right as one travels along the chain from its
start node to its end node.

As can be seen from these examples, there are
many different types of information in maps:
points, sequences of points, sequences of chains,
tables, binary relations, ternary relations, and
so on. In order to facilitate the discussion of
the ways in which these different kinds of infor­
mation relate to one another, we wish to adopt a
unified representation. We will call our repre­
sentation structure a spatial data structure. In
order to define the spatial data structure, we
first define an atom and an attribute-value table.

239

An atom is a unit of data that is not to be
broken down further. For example, integers and
character strings are commonly used atoms.

An attribute-value table is a set of pairs of
the form (a,v) where-a-is-an-attribute and v is
its value. Both a and v may be atoms or more com­
plex structures. For example, in an attribute­
value table associated with a structure represent­
ing a person, the attribute AGE would have a
numeric value, and the attribute MOTHER might have
as its value a structure representing another
person.

A statial data structure is an ordered pair
S = (A,R . A is-;n attribute-value table and R is
a set R = {R1, ..• ,RK} where for each k = I, ... ,K,

there exists a positive integer Nk such that Rk is

an Nk-ary relation on a set Sk.

of labels Lk which is associated

If there is a set

Nk
Rk S \ x Lk.

w i th Rk, then

Nk
Otherwise Rk S Sk . Both the

elements of sk and the labels of Lk may be atoms

or spatial data structures.

Notice that if we wish a spatial data struc­
ture to contain a set, then we can set Rk E R to

be equal to Sk and not have any associated label

set Lk. If we wish a spatial data structure to

contain an ordered set or sequence, then we can
set Rk E R to be Rk; Sk x Lk where Lk is a subset

of the integers and Rk assigns to each integer in

Lk an element of Sk.

A node N can be represented by the spatial
data structure N = (A,S) where the attribute-value
table A contains information about the node such
as its coordinates. A chain C can be represented
by the spatial data structure C = (A,R) where A
contains attributes such as leng'th, start node,
and end node, and R consists of the labeled rela­
tion R which is.~he ordered set of points in the
chain. A line ~can be represented by the spa­
tial data structure ~ = (A,R) where the attri­
bute-value table A contains global attributes of
the line such as length or number of chains, and
the set of relations R contains the singleton
relation R which indicates the linear ordering of
the chains that compose the line. A boundary B
can be represented by the spatial data structure
B = (A,R) where the attribute-value table A con­
tains the global attributes of the boundary such
as the name of the region it surrounds, perhaps
the smallest rectangle enclosing the boundary, and
a name or designation of the outermost simple
boundary that contains all the inner boundaries.
The set of relations R contains the singleton re­
lation R which is just the set of boundaries
interior to the outermost boundary.

An area containing many regions can be repre­
sented by a spatial data structure whose
attribute-value table contains information such as

population, smallest enclosing rectangle, and a
designation of the spatial data structure repre­
senting the boundary. The relation set R could
contain the region adjacency relation, the chain
region adjacency relation, and perhaps the set of
cities in the area. If one of the purposes for
the spatial data structure were automated carto­
graphy, then the sequence of chains that consti­
tute all boundaries for the area would be a
labeled unary relation in R.

In the remainder of this section we will
illustrate the use of the spatial data structure
in representing the typical combination of items
that can appear in a map. For this purpose we use
diagrams which show the logical connection between
the data items which are stored. We do not ad­
dress the problems of physical implementation such
as organization of tables or lists and format of
scalar data. Figure 3 shows the logical storage
organization for the spatial data structure.

IIAI1E

TYPE

ATIRIBUTE·YALUE TABLE
, MTWII!IIJEf-VALUE

RELATION I I
TMIL~

i I !
i

RELATION K :.
I;

l "

EJ·EJ
figure 3 illustrates the logical storage organiza­
tion for the spatial data structure.

Every spatial data structure has a header
which has ftelds for name and type and perhaps
other important identifying information. Below
the header is a table having two columns. The
first column is for names of relations which are
the parts of the spatial data structure and the
second column is for the pointers to them. The_
attribute-value tabTe is considered to be a speci­
ally designated binary relation. Because of itlS,
importance, the first row in the table has the
information about the attribute-value table. The
attribute-value table and· any of the relations
associated with a spatial structure can have
entries which are atoms or other spatial data
structures.

As an example of the use of the spatial data
structure, consider a map.· o:f Kansas containing
cities, roads, rivers, and county boundaries.
Figure 4 shows a portion of such a map. To repre­
sent this map, we need to represent the cities,
important road junctions, road segments between

240

cities or junctions, roads, county boundary seg­
ments, river segments, and rivers.

I

I

- -- - -;r --- - - -- - - - --I
,' POTTAWATOMI E I

I
I

I

·-------·-----1 WABAUNSEE
I

I
I
I

I , __ --
1

I I
·----- ---- ---~

Figure 4 shows a portion of a road map of Kansas
containing cities, roads, rivers, and county
boundaries.

A city can be viewed as a node or as a bound­
ed area. In this example we will use the first
view and represent both cities and road junctions
as spatial data structures of type NODE. Road
segments, county boundary segments, and river seg­
ments will be represented by spatial data struc­
tures of type CHAIN, roads and rivers will be
represented by spatial data structures of type
LINE, and counties will be represented by spatial
data structures of type REGION.

Figure 5 illustrates the spatial data struc­
tures representing cities, road junctions, and
road segments for a portion of the map of Figure
4. The spatial data structure for each city is of
type NODE and has an attribute-value table con­
taining values for the attributes KIND, COORDI­
NATES, POPULATION, and COUNTY. The value of the
attribute COORDINATES is a point. The value of
the attribute COUNTY is a pointer to the spatial
data structure representing the county that the
city lies in. The spatial data structure for a
road junction is also of type NODE. The value of
its KIND attribute specifies that it is a road
junction and otherwise its attribute-value table
is a subset of the city attribute-value table.
The NODE spatial data structure contains a rela­
tion called ROAD SEGMENTS THROUGH. As shown in
Figure 5, it is a unary, unordered relation (a
set) whose elements are pointers to the spatial
data structures representing road segments that
pass through the city or junction represented by
the node.

City

Road
Segment

Road
Junction

Figure 5 illustrates the spatial data structures representing cities, road junctions,
and road segments for a portion of the map of Figure 4.

The spatial data structure for each road seq­
ment is of type CHAIN. The attribute-value table
of this structure contains values for the attribute
KIND (road segment), CLASS, LENGTH, START, and END
(pointers to the start and end nodes of the chain).
The relation POINTS ON is a binary, ordered rela­
tion consistinq of the sequence of (x,y) coordi­
nates of the points of the chain.

fiqure 6 illustrates the spatial data struc•
tures for roads and counties. Roads are represen­
ted by structures of type LINE. Their attribute­
value tables contain values for the attributes KIND
(ROAD) and CLASS. The relation SEGMENTS OF is an
ordered list of the road segments comprising the
road. The county is represented by a spatial data
structure of type REGION. Its attribute-value
table contains values for the attributes KIND
(COUNTY) and BOUNDARY. The value of BOUNDARY is a
pointer to a structure of type SIMPLE BOUNDARY.
This structure contains a relation SEGMENTS OF
which is an ordered list of the boundary segments
of the county. The segments are chains which can
represent road segments, river segments, or just
plain boundary segments. The CITIES IN relation in
the region structure is an unordered list of cities
in the county.

241

Rood

County

~-~==t-~To first road seg•nt

• •
L-~=::J-~To last r011d segt~~ent

~--!:=::t-l~o Manhattan • • •
To

Fl rst legJ~tent

• •

Figure 6 illustrates the spatial data structures
representing roads and counties.

Ill. Manipulating the Spatial Data Base

The spatial data structure essentially allows
certain kinds of information to be found quickly
by following the pointers and traveling through
the structure. For simple spatial data base mani­
pulations, such pointer following may lead direct­
ly to the exact information desired. For more
complex spatial data base manipulations, the
pointer following in the data structure might only
be able to specify a set which might have to be
searched exhaustively or with some special proce­
dure to select exactly the desired information.
Hence, spatial data base manipulations may have
two components: one concerned with the best way to
travel through the structure and the other con­
cerned with how to exhaustively search the set
found by traveling through the structure.

In this section we discuss general methods
for determining the different paths through the
structure. We begin with an example query. Sup­
pose we would like to find all the cities in
Douglas County. Since Douglas County is a named
region, we could look up Douglas County in a
directory and see if there is a unary relation
called "cities in" which is in the relation list
for Douglas County. If so, then we follow the
pointers to the cities in the list, copy the in­
formation and we are done. This would be an exam­
ple of satisfying a query Jn a simple way.

If the unary relation called "cities in" is
not in the relation list for Douglas County, then
the information desired is either more difficult
to obtain or perhaps not even obtainable. Suppose
that the region Douglas County does have a rela­
tion which is called "river segments in" and
suppose each river segment chain has a relation
which is called "cities on." By the meaning of
the words "in" and "on", if a city is on a river
segment and the river segment is in a county, then
the city is in the county. We will assume that
this sort of knowledge about word meanings and
relationships is available to the control process­
or that manipulates the spatial data system. For
examples of the use of knowledge in intelligent

systems, see Winograd 16 and Hewitt 10
• Thus by

following the pointers through the structure, the
set of all cities situated on river segments in
Douglas County can be determined. This set is,
of course, only a subset of the cities in Douglas
County. However, if we also know as part of our
global knowledge that all cities in Douglas County
lie on river segments in Douglas County, then the
control processor could determine that the subset
of cities is, in fact, the entire set of cities in
Douglas County. To be able to do this requires
that the control processor be able to perform a
limited amount of deductive reasoning. We illus­
trate this in the remainder of the section.

Suppose the control processor is given a
query to the spatial data system and that the
query has been suitably broken down and processed
by a parser. For example, the query

FIND ALL CITIES IN DOUGLAS COUNTY

242

might be broken down as

OBJECT TO BE FOUND: CITY
NUMBER: ALL
CONSTRAINTS: IN DOUGLAS COUNTY

We would like the control processor to determine a
path through the data structure resulting in the
answer to the query. In fact, the control proces­
sor should be able to determine all such paths and
then decide, possibly with some user interaction,
on the best path to follow.

If the control processor is to determine one
or more paths through the data structure, it needs
some knowledge of the structure and of the spatial
relationships stored in the structure. One kind of
knowledge we can provide is a prototype of each
kind of spatial data structure. (This is similar
to a "schema" in database management termi.1ology).
A prototype of a spatial data structure includes
the type of the structure, a prototype of the
attribute-value table for that structure, and a
prototype of each relation in the structure.

Figure 7 shows sample prototypes for the NODE
and REGION structures that were used in Section I I
to represent cities and counties. The attribute­
value table prototype of the NODE prototype tells
the system that the attribute-value table of each
NODE will contain a KIND attribute whose value is
CITY or ROAD JUNCTION, a COORDINATES attribute
whose value is a point, a POPULATION attribute
whose value is an integer, and a COUNTY attribute
whose value is a pointer to a spatial data struc­
ture of type REGION. The relation ROAD SEGMENTS
THROUGH also found in the NODE prototype is indi­
cated as a unary, unordered relation with a proto­
type element containing a pointer to a CHAIN
structure.

The REGION attribute-value prototype tells the
system that the KIND attribute will have the value
COUNTY (until we add some more kinds of regions to
our system) and the value of the BOUNDARY attribute
will point to a spatial data structure of type
SIMPLE BOUNDARY. The CITIES IN relation will be
unary, unordered, and each element will contain a
pointer to a NODE structure.

In order to answer a query concerning spatial
relationships, the system must have some built-in
understanding of those relationships. Some of the
common spatial relationships that we might expect
the system to know are IN, ON, CONTAINS, SURROUNDS,
IS SURROUNDED BY, THROUGH, ADJACENT TO, and PART OF.
One kind of knowledge of these spatial relation­
ships is how they can be put together. Suppose, as
in the example at the beginning of this section,
that the REGION structure representing counties had
a relation called RIVER SEGMENTS IN instead of the
relation CITIES IN, and each CHAIN structure had a
relation called CITIES ON. The system needs to
know that "city on river segment" and "river seg­
ment in county" implies "city in county." More
generally, we can state a spatial axiom concerning
the relationships IN and ON:

a ON b and b IN c +a IN c

This axiom represents a kind of transitivity stated
more generally by

on o in + in

This transitivity knowledge might be stored as a
table T where the rows and columns represent rela­
tions and T(R1,R2) = R

3
if for every a, b, and c,

aR 1b and bR2c imply aR
3
c. Figure 8 illustrates

such a table for the relations IN, ON, THROUGH, and
ADJACENT TO. The table form of storing such know­
ledge is compact for binary relations. More gen-

eral methods include production rules, Shortcl ife 14

and procedural knowledge, Hewitt 10 and Winograd 16 .

Node prototype

r----+ I NOD£ ~
IND lwTY onon ,,.,

I AY < >

ROA~~':NTs I < >

.IMOITY

lln•rv

lklordered

' Prototype ele.ent

~
To chaIn prototype

Region prototype

REGION KIND I COUNTY I
AY I BOUNDARY I ' I
CITIES IN I ' To sllle

boundary
prototype

..... ,..,
t.nordered

' Prototype element

Figure 7 illustrates samp I e prototypes for the
NODE and REGIO~ structures.

T

IN ON THROUGH ADJACENT TO

IN IN ON ------- ADJACENT TO

ON IN ON ------- ADJACENT TO

THROUGH IN ADJACENT TO THROUGH ADJACENT TO

ADJACENT TO ADJACENT TO ADJACENT TO ------- -----------

Figure 8 illustrates a transitivity tableT where
T(R1 ,R2) = R

3
if aR1b and bR2c implies aR

3
c.

243

Now suppose that the system is given the modi­
fied prototypes shown in Figure 9, the transitivity
knowledge shown in Figure 8, the specific knowledge
that all cities in Douglas County lie on river seg­
ments in Douglas County, and the query

FIND ALL CITIES IN DOUGLAS COUNTY

The system can generate two paths to the solution.
To generate the first path, it first determines
(by table look-up) that a CITY is represented by a
spatial data structure of type NODE. Examining the
NODE prototype, it finds the COUNTY attribute which
points to a REGION structure representing a county.
The system needs to know that the REGION structure,
like all spatial data structures, contains a char­
acter string name which can be compared to the name
DOUGLAS and must be able to deduce that the COUNTY
attribute refers to the county that the city is in.
Then the system can generate a procedure for answer­
ing the query. A high-level version of such a
procedure is given below •

lbllfled node prototype

IUID (CITY. AQM JIIICTICII

COOUIIIATU <poln~

POP\I.ATIDII clnt.,.r>

"""lflod ...,,.., P'"totypo LCOIIIT'I _____ L__-+ _ ___J

Prototype
......... t

hd~-~~r--~ ,..I:t:!"::Otoa
typo

Figure 9 shows a modified set of prototypes to be
used in answering the query "Find all cities in
Douglas County."

procedure CITIES IN DOUGLAS COUNTY 1;
ANSWER LIST = the empty I is t; -
do for-each spatial data structure D of type
-- NODE

if the KIND attribute of D is CITY
tnen if the name of the REGION pointed to
---by the COUNTY attribute is DOUGLAS

then add D to ANSWER LIST
else continue;

end CITIES_IN_DOUGLAS_COUNTY_I;

This procedure represents the first path to the
solution. To generate the second path, the system
first determines that a COUNTY is represented by a
REGION structure. The REGION prototype has no
attribute or relation whose name contains the word
CITY. On searching further, the system finds that
the relation RIVER SEGMENTS IN contains elements
which point to chains representing river segments
and that the CHAIN prototype contains the relation
CITIES ON whose elements point to NODE structures.
Now the deductive portion of the system uses the
transitivity tableT to determine that RIVER SEG­
MENTS IN a county and CITIES ON a river segment
together can provide a I ist of CITIES IN a county.
It then uses the further knowledge that all cities
in Douglas County. I ie on river segments in Douglas
County to determine that the above list is equiva­
lent to the list of all cities in Douglas County.
This gives us the second path to the solution
represented by the following procedure.

procedure CITIES IN DOUGLAS COUNTY 2;
DOUG - the spatial data structure of type

REGION and KIND COUNTY representing
DOUGLAS COUNTY;

ANSWER LIST= empty list;
do for-each river segment S in the RIVER
-----SEGMENTS IN relation of DOUG;

add all the elements of the CITIES ON
relation of S to ANSWER LIST;

end CITIES_IN_DOUGLAS_COUNTY_2;

After the system has generated the two (or
more) paths to the answer, it must evaluate these
paths using a cost function and basing its evalua­
tion on certain properties of the data base. For
instance, in procedure CITIES IN DOUGLAS COUNTY I,
the cost of executing the nested-if-then~else -
statement must be multiplied by the number of nodes
in the database. In procedure CITIES IN DOUGLAS
COUNTY 2, the cost of finding the structures repre­
senting Douglas County must be added to the product
of the number of river segments in Douglas County
and the cost of accessing and copying the CITIES ON
relation of each river segment. With most map data
we would expect the second procedure to be the less
costly.

IV. Homomorphisms on Spatial Data Structures

A different kind of question that can be asked
about map data is whether two entities have similar
structures. For example, it might be interesting
to compare the road network structures around two
cities. A function that preserves structure is
called a homomorphism. (For graph hO!OOI1¥lrphisms,

see Harary9). If there is a homomorphism from one
structure to a part of another structure, then we
have a basis for considering the two structures
similar and comparing them further. Since the
spatial data structure is a recursive structure, we
will define a homomorphism for this structure with
a recursive definition. First we define the compo­
sition of a function with a relation.

N N Let R1 ~ s 1 and R2 ~ s2 be two N-ary rela-

tions and let h be a function from s 1 to s2 . The

244

composition of R1 with h, denoted by R1°h, is

defined by

R1 oh = { (s l , ... , sN)

(s;, ... ,sN)

h(sp=si'

E s2N I there exists

N
E s

1
such that

= I, ..• ,N}.

Thus the composition of an N-ary relation with a
function is another N-ary relation. If R

1
°h R2 ,

then R1 and R2 have the same structure. If

R1°h s R2 , then R1 has the same structure as a

subset of R2.

are two labeled N-ary relations, h is a function
from s 1 to s2 , and hL is a function from L1 to L2 ,

the composition of R1 with the pair (h,hL) denoted

by R1°(h,hL) is defined similarly by

R1°(h,hL) = {(sl' ... ,sN,t) E s2N X L2 I there

N
exists <s;, ... ,sN,t') E sl X Ll

such that h(sl) = si'

and hL (t') = t}.

= I, ... ,N

A spatial data structure contains an attri­
bute-value table and a set of relations. Two
spatial data structures can be considered similar
if

(I) Each of
similar

and
(2) Each of

similar

However , we may
with respect to
and relations.
definition.

their common attributes have
values

their common relations have
structures

wish to compare two structures
a subset of-their common attributes
This motivates the following

Let D1 = (A1,R1) and D2 = (A2 ,R2) be two

spatial data structures. Let A
1

be the set of

attributes of A1, A2 be the set of attributes of

A2 , and !l c; A1• For each R E R1 U R2 , assume

there is a set SR and an integer NR such that

NR
R s=, SR Let p s=, R1.

A homomorphism from D1 to D2 with respect to

(ll,p) is a It-tuple (f ,F ,h,H) where

(I) f is a function from !l to A2 satisfying

that if the value va of attribute a is a

spatial data structure, then so is the
value vf(a) of f(a).

!

(2) F is a set {f I a E a} satisfy that if a
the value va of a is a spatial data

structure, then fa is a homomorphism from

va to vf(a).

(3) h is a function from p to R2 satisfying

for every REp, NR = Nh(R)"

(4) H = { (hR,HR) I R E p} where

(i) hR is a function from SR to Sh(R)

satisfying:

(a) if s E SR is a spatial data

structure, so is hR(s)
and
(b) RohR 5 h(R)

(ii) HR is a set {gs I s E SR} satisfying

that if s is a spatial data struc­
ture, gs is a homomorphism from s to

hR(s).

Intuitively, if o1 and o2 are two spatial data

structures and a is a subset of the attributes of
o1, then each attribute in a must map to an attri-

bute of o2 . If the value of an attribute is a

spatial data structure, then the value of the
attribute it maps to must be a spatial data struc­
ture and there must be a homomorphism between
these two structures. If p is a subset of the
relations, there must be P function that maps each
relation in p to a relation of o2 of the same

order. For each such pair of relations (R1 ,R2),

there must be a function that maps elements of the
set SR to elements of the set SR . This function

1 2

must map spatial data structures to spatial data
structures and its composition with R1 must be a

subset of R2 . Furthermore, if this function maps a

spatial data structure to another, there must be a
homomorphism from the first structure to the sec­
ond.

The definition can be easily extended to
labeled relations using the extended definition of
composition defined earlier in this section. We
will illustrate the concept of a homomorphism with
an example.

Consider the two spatial data structures NAME!
and NAME2 shown in Figure 10. Let a be the set of
attributes {al,a2} and let f(al) = a5 and f(a2) =
a4. Since the value of a2 is an atom "at2", we do
not have to make any further checks on a2. Since
the value of al is a spatial data structure, we
must check that the value of a5 is also a spatial
data structure. Since this condition is met, the
function f satisfies condition (I) of the homomor­
phism definition.

245

To
L~~:::j1NAME2

To NAME)

To NNt£3

To
NAHE2

To
NAIIE4

To
NAHE4

To
NAHEI
To

NAKEli
To

NAHE3

Figure 10 illustrates two spatial data structures
NAME! and NAME2 where there is a homomorphism from
NAME! to NAME2 with respect to ({al,a2},{R2}).

Now let F = {fal'fa2}. fa 2 can be 0 since

the value of a2 is not a spatial data structure
and we are not concerned with fa 2 . fal must be a

homomorphism from the spatial data structure NAME3
to the spatial data structure NAME4. In this case
if we choose a'= 0, p' = 0, and fal = (0,0,0,0),
fal is trivially a homomorphism from NAME3 to

NAME4 with respect to (0,~). Thus F satisfies
condition (2) of the homomorphism definition.

Next, let p = {R2} and let h(R2) = R3. Since
both R2 and R3 are binary, unordered relations,
this satisfies condition (3) of the homomorphism
definition. It remains to define H = {(hR2 'HR2)}

where hR2 is a function from sR2 to sR3 and HR2
is a set {gs s E sR2} of homomorphisms.

{NAME3, NAME4} and SR3 =
{NAME 1 , NAME2, NAME3, NAME4}.

Let hR2 (NAME3) = NAME4 and hR2 (NAME4) = NAME3.

Then R2ohR2 = {(NAME4, NAME4), (NAME4, NAME3)} ~

R3 = h(R2). With this and the fact that hR2 maps

spatial data structures to spatial data structures,
condition (4) (i) is satisfied.

Finally, let HR2 = gNAME 3 , gNAME4 where

gNAME 3 = (~,0,0,0) and gNAME4 = (0,0,~,0). Again,

gNAME 3 is trivially a homomorphism from NAME3 to

hR2 (NAME3) = NAME4 with respect to (0,0), and simi­

larily gNAME4 is a homomorphism from NAME4 to

hR2 (NAME4) = NAME3 with respect to (0,~). Thus the

condition (4) (i i) is satisfied and (f,F,h,H) is a
homomorphism from spatial data structure NAMEl to
spatial data structure NAME2 with respect to
({al ,a2},{R2}). Figure 11 illustrates the homomor­
phism pictorially.

NAME I

TYPE I

A/Vl

Rl

Bina

'
' \ I

'-----~------'

hR2 ------

I
I

Bina

Unordered

- ----.,.
---=--~----+

Figure 11 pictorially illustrates the homomorphism
(f, F = {fal'~}, h, (hR2'HR2 = {gNAME3,gNAME4}))
from spatial data structure NAMEl to spatial data
structure NAME2.

Some discussion of the construction of this
homomorphism is important. The function f was de­
fined on the set a= {al,a2} which contains all of
the at-tributes of A/Vl. The function could also
have been defined on {al}, {a2}, or 0. Of course,
the more attributes there are in a, the stronger
is the homomorphism. The homomorphisms fal and

gNAMEJ from NAME3 to NAME4 and the homomorphism

gNAME4 from NAME4 to NAME3 were defined as the null

homomorphism (0,0,0,0) with respect to (0,~).
Clearly, the null homomorphism maps any spatial
data structure to any other spatial data structure.
In this case, the null homomorphism was the only
homomorphism possible from NAME3 to NAME4 or from
NAME4 to NAME3, since A/V4, R3, and R4 are all
empty.

The function h was defined on the set
p = {R2}. It was not possible to make p any larger
since Rl is a binary relation and the spatial data
structure NAME2 contains no corresponding binary
relation. The function hR2 was the only possible

function from SR2 to SRJ that satisfied

R2ohR2 : R3. Finally, the relations R2 and R3 are

both unlabeled binary relations. If R2 were a
labeled relation, then R3 would also be a labeled
relation and the function hR2 would be an ordered

pair (hR2 ,hl) where hl would map labels of L2 to

246

labels of L3 and the extended definition of compo­
sition would be used.

For example, consider the labeled relations
R4 and R5 of Figure 12. R4 and R5 are both labeled
ternary relations where the labels specify an
ordering on the triples. If hR4 and hl are de-

fined as shown in Figure 12, then
R4o(hR4 ,hl) S R5. In fact, R4°(hR4 ,hl) = R5.

Rlt I I

Ternary

Ordered

s1 s2 s3 1

s1 s2 s2 2

s1 s2 sit 3

hRit(s1) • t1

hRit(s2) • t2

hRit (s3) • t2

hRit (sit) • t3

hl (1) • 1

hl (2) • 1

hl (3) • 2

t1

t1

R5 T l

Ternary

Ordered

t2 t2

t2 t3

1

2

Figure 12 illustrates two labeled ternary relations
R4 and R5 and a function (hR4 ,hl) such that

R4o(hR4'hL) S R5.

A spatial data structure is a recursive struc­
ture since both its attribute-value table and its
relations may contain spatial data structures. A
homomorphism from one spatial data structure to
another is also recursive since if the data struc­
ture has several levels, so may the homomorphism.
It may be that we are only interested in the homo­
morphism at the top level and can define all lower
homomorphisms as the null homomorphism, or it may
be that we want to compare the structure all the
way to the bottom level.

Consider the two structures of Figure 13.
ARRANGEMENT! consists of a bridge, a city, a rail­
road, and a highway in a specified geometric rela­
tionship. ARRANGEMENT2 consists of a bridge, a
city, a river, and a highway in a similar relation­
ship. At the top level, the 4-tuple (f,F,h,H)
where

f(COUNTY) = COUNTY

F = {the null homomorphism}

h (R) = R

hR(BRIDGEl) = BRIDGE2

hR(CITYl) = CITY2

hR(HWYl) = HWY2

hR(RRl) = RIVER2

hL (entrance-to) entrance-to

hL (routed-over) routed-over

hL(crosses, 90°) =(crosses, 45°)

H = {gBRIDGEl' gHWYl' gCITYl' gRRl}

gBRIDGEl = gHWYl = gCITYl = gRRl =the null
homomorphism

is a homomorphism from ARRANGEMENT! to ARRANGEMENT2
with respect to ({COUNTY},{R}). If we want the
homomorphism to -extend to another 1 eve 1 , we must
define non-null homomorphisms from the value of
COUNTY in ARRANGEMENT! to the value of COUNTY in
ARRANGEMENT2 and from BRIDGE! to BRIDGE2, CITY! to
CITY2, HWYl to HWY2, and RRl to RIVER2. At each
level the homomorphisms defined may be weak or
strong, depending on how many attributes and rela­
tions are compared and how much collapsing takes
place. For instance, BRIDGE! and BRIDGE2 have
different physical attributes, but in some ways are
still similar.

t i
ARIWIG£MENTI trCO~TY~
STRUCTUO£

A/Y 1-

ARIWIG£MENT2

u
_Jco~f •l

STRUCTURE

A/Y I -
R I ' • I '

1 1
Blnarv Blnarv

labeled labeled

BRIDGE I CITY! Entr.ance•to BRIOG£2 CITY2 Entrance-to

HWYI BRIDGE I Routed-over HWY2 BRIDGE2 Routed-over

BRIDI'£1 RRI I !Crosses '10°) 8RIDGE2 RIVER2 (Crosses ~5°)

Figure 13 illustrates two geographic spatial data
structures which are similar at least at the top
level.

Finding homomorphisms in map data can provide
interesting information about the structure of the
data. However, finding even one-level homomor­
phisms has been shown to be an NP-complete problem,
although look-ahead operators have been proposed

247

to speed up the search. Finding these multi-level
homomorphisms is an interesting problem that we
will be investigating in the near future.

V. Related Literature

Computerized spatial data representation is a
requirement for all scene analysis systems, auto­
mated cartographic systems, and geographic infor­
mation systems. Because in this paper our examples
have been in terms of map data, we will briefly
review related ideas mostly in the geographic in­
formation system literature. We will show that
each of the data structures used by previous re­
searchers can be accommodated by the spatial data
structure defined in this paper.

One of the earlier and successful geographic
information systems is Tomlinson's Canadian Geo-

graphic Information System15. The basic spatial
data structure used in this system consists of a
directed boundary chain which points to its left
and right regions. Each boundary chain also
points to the two next boundary chains which con­
tinue bounding the region on the left and on the
right. This structure is basically the simple
boundary data structure described in this paper
implemented as a linked list of boundary chains.

It is important for any spatial data structure
to allow the representation of areas which are
nested or which have holes. Those systems, like
Tomlinson's which emphasize boundary connections to
the next continuing boundary chain, usually detour
a traversal of the exterior boundary of a region to
the interior boundary of the region. When the tra­
versal of the interior boundary is finished,
another virtual chain detours the traversal back to
the exterior boundary. Although such a system per­
mits retrieving boundaries and keeping track of
whether the current boundary includes or excludes
areas in it, the mechanism is not elegant and per­
haps even inefficient algorithmically.

The U,S, Census DIME files 3 has a basic struc­
ture consisting of straight line boundary chains
wh(ch point to their left and right regions and
which point to their beginning and ending nodes.
This structure is the first fully topological 8 structure and is the one which Hanson and Riseman
use in their VISIONS system. It is a structure
efficient to represent all topological spatial re­
lations between regions. Beginning with any
directed boundary chain for a specified region on
its left, the next boundary chain can be located by
searching the DIME file for any boundary chain
having the specified region to its left and having
its starting node be the ending node of the given
boundary chain. To find all regions adjacent to a
given region, we need to search the DIME file for
all boundary chains having for either their left
region or right region the specified region. If
the specified region is found on the right, an
adjacent region will be found on the left and vice­
versa. To find all the holes in a region, we need
to begin with any boundary chain on the exterior of
the region. We traverse this boundary until the
entire exterior boundary has been found. Then we
locate any boundary chain within this region having

one of its region pointers pointing to the ini­
tially specified region. A traversal using each
such boundary chain will generate a hole in the
region. Although the DIME file representation is
sufficient to permit the finding of holes, it is
not algorithmically efficient. In terms of the
spatial data structure suggested in this paper,
the basic DIME file structure for any region can
be implemented as a quintary relation associated
with the spatial data structure for that region.

The chain structure of POLYVRT 11 and LUDAS
are logically similar to the chain spatial struc­
ture discussed in this paper. We have, however,
not suggested that the points in a chain be stored
sequentially as (x,y)-coordinates. We have left
the physical storage mechanism open. In some ap­
plications storing differences or using a Freeman

chain code6 might be appropriate. In other appli­
cations storing the chain in more of a parametric
functional form might be appropriate. Regardless
of the physical form of the storage, the struc­
tural aspect of the representation is the same.

The hierarchical polygonal data structure of

Edwards, Durfee, and Coleman4 allows the same
efficient retrieval of a region's interior bound­
aries (or nested zones) as the boundary data
structure defined in this paper. However, the
logical convention employed in the implementation
differs from the ones suggested here.

Because of its computational efficiency,

Brassel 1 suggests a hierarchically organized spa­
tial data base of Thiessen polygons for determin­
ing the node which is closest to a given spatial
position. The implementation of this structural
organization easily fits into the spatial data
structure we have defined in this paper. At each
level of the hierarchy, the node defining each
Thiessen polygon points to the nodes of neighbor­
ing Thiessen polygons. The distance between a
given point and a starting Thiessen polygon node
may be computed. Then using this connectedness
structure, the neighboring Thiessen polygon nodes
can be found, the distances between the given
point to these nodes can be computed, and the
closest of these nodes located. The node network
can be traversed in this manner locating that
Thiessen polygon node closest to the given spatial
point. Then using the pointers from the closest
node at the current level to the neighboring
Thiessen polygon nodes at the next level the
searching can be continued until the closest node
at the lowest level has been found. A pointer to
the set of Thiessen polygon nodes at the current
level of the hierarchy as well as a pointer to the
set of Thiessen polygon nodes at the next level of
the hierarchy are easily stored in a unary rela­
tion (a set) of a node in the spatial data struc­
ture defined in this paper.

A spatial data structure sometimes used for
representing surfaces on the basis of sampled
points is the triangular data structure. Here a
two-dimensional area is divided into a set of
mutually exclusive triangles. The triangular

248

partition is constrained in the following manner:
if any non-zero length of one side of a triangle
is adjacent to any other triangle, then the entire
side of the one triangle must be an er.tire side of
the adjacent triangle. The vertices of the tri­
angles are nodes. For digital terrain models such
nodes would contain elevation, slope, or other
important samples surface information. To obtain
the elevation or slope information at any place in
a triangle, an interpolation may be used with a
homogeneous coordinate system based on the three

7 12 nodes sampled values ' .

In the triangular data structure, each tri­
angle points to its adjacent triangle and to its
vertices. Thus, for the spatial data structure
defined in this paper to represent a triangulation
we need only add a node list and an adjacent tri­
angle list to the unary relations in each tri­
angular region. The information of these lists
can be easily obtained by traversing the boundary
of a triangular region and picking up the required
information from the nodes associated with each
boundary chain.

Burton's polygonal representation2 allows
quick solution of point in a polygon and polygon
intersection problems. It is based on breaking up
a polygon into basic sections which are maximal
length chains, monotonic In both x and y coordi­
nates. The maximal length is not a requirement
for the algorithm, although It will speed up the
search. Burton's polygonal representation is
easily put in the spatial data structure defined
here: just make the chains used in the spatial
data structure monotonic in both x andy coordi­
nates. Hence, all that is required is either an
explicit representation of the minimum and maximum
x-y coordinates of each chain or a way to obtain
the minimum and maximum from the beginning and
ending nodes of each chain.

VI. Summary

We have defined a spatial data structure that
can be used to represent spatial objects. The
structure consists of an attribute-value table and
a set of relations. The entries in the table and
the objects on which the relations are defined may
also be spatial data structures. Thus the spatial
data structure is a recursive structure.

The use of the spatial data structure was
illustrated by a representation of a portion of a
map of Kansas including cities, road junctions,
road segments, roads, county boundary segments,
counties, river segments, and rivers. A discus­
sion of the manipulations required to answer
queries about such a structure suggested that the
database system should contain a control processor
which when given a query would determine all pos­
sible paths through the structure to answer the
query and select the best path with the use of a
cost function. The control processor would need a
prototype of each kind of spatial data structure
In the system and must have some knowledge of the
semantics of the relations In the spatial data
structures. The control processor might also

possess some special purpose knowledge about par­
ticular objects in the system. An example of
finding all cities in a county illustrated some of
manipulations necessary to answer queries concern­
ing spatial data structures.

One operation of interest in a system of spa­
tial data structures is the matching of two struc­
tures. Since the spatial data structure is a
recursive structure, the function mapping one spa­
tial data structure to another can also be defined
recursively. The definition of a spatial data
structure homomorphism allows us to measure the
similarity of two spatial data structures at one
or more levels of the structures. The problem of
finding these multi-level homomorphisms is the
subject of our future work in this area.

References

1. Brassel, K., "A Topological Data Structure for
Multi-Element Map Processing," An Advanced
Study Symposium on Topological Data Structure
for Geographic Information Systems, Harvard
University, Cambridge, Massachusetts, October
1977.

2. Burton, W., "Representation of Many-Sided
Polygons and Polygonal Lines for Rapid Pro­
cessing," Communications of the ACM, Vol. 20,
No. 3, March 1977, pp. 166-170.

3. Cook, D. and W. Maxfield, "The Development of
a Geographic Base File and Its Uses for
Mapping," Proceedings of URISA, Garden City,
Long Island, September 1967.

4. Edwards, R.L., R. Durfee, and P. Coleman,
"Definition of a Hierarchical Polygonal Data
Structure and the Associated Conversion of a
Geographic Base File from Boundary Segment
Format," An Advanced Study Symposium on Topo­
logical Data Structure for Geographic Infor­
mation Systems, Harvard University, Cambridge,
Massachusetts,. October 1977.

5. Fegaes, R., "The Graphic Input Procedure- An
Operational Line Segment (Polygon Graphic to
Digital Conversion)," An Advanced Study Sym­
posium on Topological Data Structure for Geo­
graphic Information Systems, Harvard University
Cambridge, Massachusetts, October 1977.

6. Freeman, H., "Computer Processing of Line
Drawing Images," Computing Surveys, Vol. 6,
No. 1, March 1974, pp. 57-97.

7. Gold, C., "Triangular Element Data Structures,"
Users Applications Symposium Proceedings, The
University of Alberta Computing Services,
Edmonton, Alberta, Canada, 1976.

8. Hanson, A. and E. Riseman, A Progress Report on
Vision: Representation and Control in the
Construction of Visual Models, COINS TR 76-9,
niversity of Massachusetts, Amherst, Massa­
chusetts, July 1976.

249

9. Harary, F., Graph Theory, Addison-Wesley Pub­
lishers, Reading, Massachusetts, 1969.

10. Hewitt, C., Descri tion and Theoretical
Analyses (Using Schemata o PLANNER: A
Language for Proving Theorems and Manipula­
ting Models on a Robot, Ph.D. Thesis, M.I.T.,
Apri 1 1972.

11. Laboratory for Computer Graphics, "POLYVRT:
A Program to Convert Geographic Base Files,"
Harvard University, Cambridge, Massachusetts,
1974.

12. Males, R., "ADAPT- A Spatial Data Structure
for Use with Planning and Design Models,"
An Advanced Study Symposium on Topological
Data Structures for Geographic Information
Systems, Harvard University, Cambridge,
Massachusetts, October 1977.

13. Robinson, Arthur and Randall Sale, Elements
of Cartography, John Wiley and Sons, Inc.,
New York, 1969.

14. Shortclife, Edward H., Computer-Based Medical
Consultations, MYCIN, Elsevier, New York,
1976.

15. Tomlinson, R., "A Geographic Information
System for Regional Planning," Land Evalua­
tion (Stewart, ed.), McMillian of Australia,
Sydney, Australia, 1968.

16. Winograd, T., Understanding Natural Languages,
Academic Press, 1972.

