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AbstractÐIn the last several years, large multidimensional databases have become common in a variety of applications such as data

warehousing and scientific computing. Analysis and exploration tasks place significant demands on the interfaces to these databases.

Because of the size of the data sets, dense graphical representations are more effective for exploration than spreadsheets and charts.

Furthermore, because of the exploratory nature of the analysis, it must be possible for the analysts to change visualizations rapidly as

they pursue a cycle involving first hypothesis and then experimentation. In this paper, we present Polaris, an interface for exploring

large multidimensional databases that extends the well-known Pivot Table interface. The novel features of Polaris include an interface

for constructing visual specifications of table-based graphical displays and the ability to generate a precise set of relational queries

from the visual specifications. The visual specifications can be rapidly and incrementally developed, giving the analyst visual feedback

as they construct complex queries and visualizations.

Index TermsÐDatabase visualization, database analysis, visualization formalism, multidimensional databases.
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1 INTRODUCTION

IN the last several years, large databases have become
common in a variety of applications. Corporations are

creating large data warehouses of historical data on key
aspects of their operations. International research pro-
jects such as the Human Genome Project [20] and
Digital Sky Survey [31] are generating massive data-
bases of scientific data.

A major challenge with these databases is to extract
meaning from the data they contain: to discover structure,
find patterns, and derive causal relationships. The analysis
and exploration necessary to uncover this hidden informa-
tion places significant demands on the human-computer
interfaces to these databases. The exploratory analysis
process is one of hypothesis, experiment, and discovery.
The path of exploration is unpredictable and the analysts
need to be able to rapidly change both what data they are
viewing and how they are viewing that data.

The current trend is to treat multidimensional databases
as n-dimensional data cubes [16]. Each dimension in these
data cubes corresponds to one dimension in the relational
schema. Perhaps the most popular interface to multi-
dimensional databases is the Pivot Table [15]. Pivot Tables
allow the data cube to be rotated, or pivoted, so that
different dimensions of the dataset may be encoded as rows
or columns of the table. The remaining dimensions are
aggregated and displayed as numbers in the cells of the
table. Cross-tabulations and summaries are then added to
the resulting table of numbers. Finally, graphs may be

generated from the resulting tables. Visual Insights recently
released a new interface for visually exploring projections
of data cubes using linked views of bar charts, scatterplots,
and parallel coordinate displays [14].

In this paper, we present Polaris, an interface for the
exploration of multidimensional databases that extends the
Pivot Table interface to directly generate a rich, expressive
set of graphical displays. Polaris builds tables using an
algebraic formalism involving the fields of the database.
Each table consists of layers and panes and each pane may
contain a different graphic. The use of tables to organize
multiple graphs on a display is a technique often used by
statisticians in their analysis of data [5], [11], [38].

The Polaris interface is simple and expressive because
it is built upon a formalism for constructing graphs and
building data transformations. We interpret the state of
the interface as a visual specification of the analysis task
and automatically compile it into data and graphical
transformations. This allows us to combine statistical
analysis and visualization. Furthermore, all intermediate
specifications that can be created in the visual language
are valid and can be interpreted to create visualizations.
Therefore, analysts can incrementally construct complex
queries, receiving visual feedback as they assemble and
alter the specifications.

2 RELATED WORK

The related work to Polaris can be divided into three
categories: formal graphical specifications, table-based data
displays, and database exploration tools.

2.1 Formal Graphical Specifications

Bertin's Semiology of Graphics [6] is one of the earliest
attempts at formalizing graphing techniques. Bertin
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developed a vocabulary for describing data and the techni-
ques for encoding data in a graphic. One of his important
contributions is the identification of the retinal variables
(position, color, size, etc.) in which data can be encoded.
Cleveland [11], [12] used theoretical and experimental results
to determine how well people can use these different retinal
properties to compare quantitative variations.

Mackinlay's APT system [26] is one of the first applica-
tions of formal graphical specifications to computer-
generated displays. APT uses a set of graphical languages
and composition rules to automatically generate 2D dis-
plays of relational data. The Sage system [29] extends the
concepts of APT, providing a richer set of data character-
izations and generating a wider range of displays.

Livny et al. [25] describe a visualization model that
provides a foundation for database-style processing of
visual queries. Within this model, the relational queries
and graphical mappings necessary to generate visualiza-
tions are defined by a set of relational operators. The Rivet
visualization environment [9] applies similar concepts to
provide a flexible database visualization tool.

Wilkinson [41] recently developed a comprehensive
language for describing traditional statistical graphs and
proposed a simple interface for generating a subset of the
specifications expressible within his language. We have
extended Wilkinson's ideas to develop a specification that
can be directly mapped to an interactive interface and that
is tightly integrated with the relational data model. The
differences between our work and Wilkinson's will be
further discussed in Section 8.

2.2 Table-Based Displays

Another area of related work is visualization systems that
use table-based displays. Static table displays, such as
scatterplot matrices [18] and Trellis [3] displays, have been
used extensively in statistical data analysis. Recently,
several interactive table displays have been developed.
Pivot Tables [15] allow analysts to explore different
projections of large multidimensional datasets by interac-
tively specifying assignments of fields to the table axes, but
are limited to text-based displays. Systems such as the Table
Lens [27] and FOCUS [32] visualization systems provide
table displays that present data in a relational table view,
using simple graphics in the cells to communicate quanti-
tative values.

2.3 Database Exploration Tools

The final area of related work is visual query and database
exploration tools. Projects such as VQE [13], Visage [30],
DEVise [25], and Tioga-2 [2] have focused on developing
visualization environments that directly support interactive
database exploration through visual queries. Users can
construct queries and visualizations directly through their
interactions with the visualization system interface. These
systems have flexible mechanisms for mapping query
results to graphs and all of the systems support mapping
database records to retinal properties of the marks in the
graphs. However, none of these systems leverages table-
based organizations of their visualizations.

Other existing systems, such as XmdvTool [40], Spotfire
[33], and XGobi [10], have taken the approach of providing

a set of predefined visualizations, such as scatterplots and
parallel coordinates, for exploring multidimensional data
sets. These views are augmented with extensive interaction
techniques, such as brushing and zooming, that can be used
to refine the queries. We feel that this approach is much
more limiting than providing the user with a set of building
blocks that can be used to interactively construct and refine
a wide range of displays to suit an analysis task.

Another significant database visualization system is
VisDB [22], which focuses on displaying as many data
items as possible to provide feedback as users refine their
queries. This system even displays tuples that do not meet
the query and indicates their ªdistanceº from the query
criteria using spatial encodings and color. This approach
helps the user avoid missing important data points just
outside of the selected query parameters. In contrast,
Polaris provides extensive ability to drill-down and roll-
up data, allowing the analyst to get a complete overview of
the data set before focusing on detailed portions of the
database.

3 OVERVIEW

Polaris has been designed to support the interactive
exploration of large multidimensional relational databases.
Relational databases organize data into tables where each
row in a table corresponds to a basic entity or fact and each
column represents a property of that entity [36]. We refer to
a row in a relational table as a tuple or record and a column
in the table as a field. A single relational database will
contain many heterogeneous but interrelated tables.

We can characterize fields in a database as nominal,
ordinal, quantitative, or interval [6], [34]. Polaris reduces
this categorization to ordinal and quantitative by treating
intervals as quantitative and assigning an ordering to the
nominal fields and subsequently treating them as ordinal.

The fields within a relational table can also be partitioned
into two types: dimensions and measures. Dimensions and
measures are similar to independent and dependent
variables in traditional analysis. For example, a product
name or type would be a dimension of a product and the
product price or size would be a measure. The current
implementation of Polaris treats all ordinal fields as
dimensions and all quantitative and interval fields as
measures.

In many important business and scientific databases,
there are often many dimensions identifying a single entity.
For example, a transaction within a store may be identified
by the time of the sale, the location of the store, the type of
product, and the customer. In most data warehouses, these
multidimensional databases are structured as n-dimen-
sional data cubes [36]. Each dimension in the data cube
corresponds to one dimension in the relational schema.

To effectively support the analysis process in large
multidimensional databases, an analysis tool must meet
several demands:

. Data-dense displays: The databases typically con-
tain a large number of records and dimensions.
Analysts need to be able to create visualizations that
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will simultaneously display many dimensions of
large subsets of the data.

. Multiple display types: Analysis consists of many
different tasks such as discovering correlations
between variables, finding patterns in the data,
locating outliers, and uncovering structure. An
analysis tool must be able to generate displays
suited to each of these tasks.

. Exploratory interface: The analysis process is often
an unpredictable exploration of the data. Analysts
must be able to rapidly change what data they are
viewing and how they are viewing that data.

Polaris addresses these demands by providing an inter-
face for rapidly and incrementally generating table-based
displays. In Polaris, a table consists of a number of rows,
columns, and layers. Each table axis may contain multiple
nested dimensions. Each table entry, or pane, contains a set
of records that are visually encoded as a set of marks to
create a graphic.

Several characteristics of tables make them particularly
effective for displaying multidimensional data:

. Multivariate: Multiple dimensions of the data can be
explicitly encoded in the structure of the table,
enabling the display of high-dimensional data.

. Comparative: Tables generate small-multiple displays
of information, which, as Tufte [38] explains, are
easily compared, exposing patterns and trends
across dimensions of the data.

. Familiar: Table-based displays have an extensive
history. Statisticians are accustomed to using tabular
displays of graphs, such as scatterplot matrices and
Trellis displays, for analysis. Pivot Tables are a
common interface to large data warehouses.

Fig. 1 shows the user interface presented by Polaris. In
this example, the analyst has constructed a matrix of
scatterplots showing sales versus profit for different
product types in different quarters. The primary interaction
technique is to drag-and-drop fields from the database
schema onto shelves throughout the display. We call a
given configuration of fields on shelves a visual specification.
The specification determines the analysis and visualization
operations to be performed by the system, defining:

. The mapping of data sources to layers. Multiple data
sources may be combined in a single Polaris
visualization. Each data source maps to a separate
layer or set of layers.

. The number of rows, columns, and layers in the
table and their relative orders (left to right as well as
back to front). The database dimensions assigned to
rows are specified by the fields on the y shelf,
columns by fields on the x shelf, and layers by fields
on the layer (z) shelf. Multiple fields may be dragged
onto each shelf to show categorical relationships.

. The selection of records from the database and the
partitioning of records into different layers and
panes.
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Fig. 1. The Polaris user interface. Analysts construct table-based displays of relational data by dragging fields from the database schema onto

shelves throughout the display. A given configuration of fields on shelves is called a visual specification. The specification unambiguously defines the

analysis and visualization operations to be performed by the system to generate the display.



. The grouping of data within a pane and the
computation of statistical properties, aggregates,
and other derived fields. Records may also be sorted
into a given drawing order.

. The type of graphic displayed in each pane of the
table. Each graphic consists of a set of marks, one
mark per record in that pane.

. The mapping of data fields to retinal properties of
the marks in the graphics. The mappings used for
any given visualization are shown in a set of
automatically generated legends.

Analysts can interact with the resulting visualizations in
several ways. Selecting a single mark in a graphic by
clicking on it pops up a detail window that displays user-
specified field values for the tuples corresponding to that
mark. Analysts can draw rubberbands around a set of
marks to brush records. Brushing, discussed in more detail
in Section 5.3, can be performed within a single table or
between multiple Polaris displays.

In the next section, we describe how the visual
specification is used to generate graphics. In Section 5, we
describe the support Polaris provides for visually querying
and transforming the data through filters, sorting, and data
transformations. Then, in Section 6, we discuss how the
visual specification is used to generate the database queries
and statistical analysis.

4 GENERATING GRAPHICS

The visual specification consists of three components: 1) the
specification of the different table configurations, 2) the type
of graphic inside each pane, and 3) the details of the visual
encodings. We discuss each of these in turn.

4.1 Table Algebra

We need a formal mechanism to specify table configura-
tions and we have defined an algebra for this purpose.
When the analysts place fields on the axis shelves, as shown
in Fig. 1, they are implicitly creating expressions in this
algebra.

A complete table configuration consists of three separate
expressions in this table algebra. Two of the expressions
define the configuration of the x and y axes of the table,
partitioning the table into rows and columns. The third
expression defines the z axis of the table, which partitions
the display into layers.

The operands in this table algebra are the names of the
ordinal and quantitative fields of the database. We will use
A, B, and C to represent ordinal fields and P, Q, and R to
represent quantitative fields. We assign ordered sets to each
field symbol in the following manner: To ordinal fields, we
assign the members of the ordered domain of the field and,
to quantitative fields, we assign the single element set
containing the field name.

A � domain�A� � fa1; . . . ; ang
P � fPg:

This assignment of sets to symbols reflects the difference
in how the two types of fields will be encoded in the
structure of the tables. Ordinal fields will partition the table

into rows and columns, whereas quantitative fields will be
spatially encoded as axes within the panes.

A valid expression in our algebra is an ordered sequence
of one or more symbols with operators between each pair of
adjacent symbols and with parentheses used to alter the
precedence of the operators. The operators in the algebra
are cross (�), nest (/), and concatenation (+), listed in order
of precedence. The precise semantics of each operator is
defined in terms of its effects on the operand sets.

4.1.1 Concatenation

The concatenation operator performs an ordered union of
the sets of the two symbols:

A� B � fa1; . . . ; ang � fb1; . . . ; bmg
� fa1; . . . ; an; b1; . . . ; bmg

A� P � fa1; . . . ; ang � fPg
� fa1; . . . ; an; Pg

P� Q � fPg � fQg
� fP; Qg:

4.1.2 Cross

The cross operator performs a Cartesian product of the sets
of the two symbols:

A� B � fa1; . . . ; ang � fb1; . . . ; bmg
� fa1b1; . . . ; a1bm;

a2b1; . . . ; a2bn; . . . ;

anb1; . . . ; anbmg
A� P � fa1; . . . ; ang � P

� fa1P; . . . ; anPg:

4.1.3 Nest

The nest operator is similar to the cross operator, but it only
creates set entries for which there exist records with those
domain values. If we define R to be the dataset being
analyzed, r to be a record, and A(r) to be the value of the
field A for the record r, then we can define the nest operator
as follows:

A=B � faibj j 9r 2 R st

A�r� � ai & B�r� � bjg:
The intuitive interpretation of the nest operator is

ªB within A.º For example, given the fields quarter and
month, the expression quarter/month would be interpreted as
those months within each quarter, resulting in three entries
for each quarter. In contrast, quarter � month would result in
12 entries for each quarter.

Using the above set semantics for each operator, every
expression in the algebra can be reduced to a single set,
with each entry in the set being an ordered concatenation of
zero or more ordinal values with zero or more quantitative
field names. We call this set evaluation of an expression the
normalized set form. The normalized set form of an
expression determines one axis of the table: The table axis
is partitioned into columns (or rows or layers) so that there
is a one-to-one correspondence between set entries in the

STOLTE ET AL.: POLARIS: A SYSTEM FOR QUERY, ANALYSIS, AND VISUALIZATION OF MULTIDIMENSIONAL RELATIONAL DATABASES 55



normalized set and columns. Fig. 2 illustrates the config-

urations resulting from a number of expressions.
Analysts can also combine multiple data sources in a

single Polaris visualization. When multiple data sources are

imported, each data source is mapped to a distinct layer (or

set of layers). While all data sources and all layers share the

same configuration for the x and y axes of the table, each

data source can have a different expression for partitioning

its data into layers. Fig. 3b and Fig. 3c illustrate the use of

layers to compose multiple distinct data sources into a

single visualization.

4.2 Types of Graphics

After the table configuration is specified, the next step is

to specify the type of graphic in each pane. One option,

typical of most charting and reporting tools, is to have

the user select a chart type from a predefined set of

charts. Polaris allows analysts to flexibly construct

graphics by specifying the individual components of the

graphics. However, for this approach to be effective, the

specification must balance flexibility with succinctness.

We have developed a taxonomy of graphics that results in

an intuitive and concise specification of graphic types.
When specifying the table configuration, the user also

implicitly specifies the axes associated with each pane. We

have structured the space of graphics into three families by

the type of fields assigned to their axes:

. ordinal-ordinal,

. ordinal-quantitative,

. quantitative-quantitative.

Each family contains a number of variants depending on

how records are mapped to marks. For example, selecting a

bar in an ordinal-quantitative pane will result in a bar chart,

whereas selecting a line mark results in a line chart. The

mark set currently supported in Polaris includes the

rectangle, circle, glyph, text, Gantt bar, line, polygon, and

image.
Following Cleveland [12], we further structure the space

of graphics by the number of independent and dependent

variables. For example, a graphic where both axes encode

independent variables is different than a graphic where one

axis encodes an independent variable and the other encodes
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a dependent variable (y � f�x�). By default, dimensions of

the database are interpreted as independent variables and

measures as dependent variables.
Finally, the precise form of the data transformations, in

particular, how records are grouped and whether aggre-

gates are formed, can affect the type of graphic. Some

graphic types best encode a single record, whereas others

can encode an arbitrary number of records.
We briefly discuss the defining characteristics of the

three families within our categorization.

4.2.1 Ordinal-Ordinal Graphics

The characteristic member of this family is the table, either

of numbers or of marks encoding attributes of the source

records.
In ordinal-ordinal graphics, the axis variables are

typically independent of each other and the task is focused

on understanding patterns and trends in some function

f�Ox;Oy� ! R, where R represents the fields encoded in the

retinal properties of the marks. This can be seen in Fig. 3a,

where the analyst is studying sales and margin as a function
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Fig. 3. (a) A standard Pivot Table except with graphical marks rather than textual numbers in each cell, showing the total sales in each state
organized by product type and month. By using a graphical mark with the total sales encoded as the size of the circle, trends may be easier to spot
than by scanning a table of numbers. (b) Gantt charts showing the correspondence between wars and major scientists, organized by country. Note
that this display is using two different data sources, one for the wars and one for the scientists, each corresponding to a different layer. Because both
data sources have the country and time dimensions, Polaris can be used to visually join the two data sets into a single display with common x and y
table axes. (c) Maps showing flights across the United States. This display has multiple data sources corresponding to different layers. The ªUSAº
data source contains data corresponding to the underlying state outlines. The ªAirportº data source contains the coordinates of numerous airports in
the US. Finally, the ªFlightsº data source describes flights in the continental United States, including data about the region in which the flight
originated. When a field that only appears in a single data set (flights) is used to partition a layered display, the data from the other data sources
(airports and states) is replicated into each pane formed by the partitioning. Thus, each pane displays all states and airports, but only a subset of the
flights. (d) A small-multiple display of line charts overlaying dot plots. Each chart displays the profit and sales over time for a hypothetical coffee
chain, orgainized by state. The display is constructed using two layers, where each layer contains a copy of the same data set. The layers share the
same table structure, but use different marks and data transformations. As a result, the line chart and dot plot can be at different levels of detail. In
this case, each line chart shows average profit across all products per month, whereas the dot plot has an additional grouping transform specified
that results in separate dots displaying average profit per product per month.



of product type, month, and state for the items sold by a

hypothetical coffee chain. Fig. 7a presents another example

of an ordinal-ordinal graphic. In this figure, the analyst is

investigating the performance of a graphics rendering

library. The number of cache misses attributable to each

line of source code has been encoded in the color of the line.
The cardinality of the record set in each pane has little

effect on the overall structure of the table. When there is

more than one record per pane, multiple marks are

shown in each display, with a one-to-one correspondence

of mark to record. The marks are stacked in a specified

drawing order and the spatial placement of the marks

within the pane conveys no additional information about

the record's data.

4.2.2 Ordinal-Quantitative Graphics

Well-known representatives of this family of graphics are

the bar chart, possibly clustered or stacked, the dot plot, and

the Gantt chart.
In an ordinal-quantitative graphic, the quantitative

variable is often dependent on the ordinal variable and

the analyst is trying to understand or compare the proper-

ties of some set of functions f�O� ! Q. Fig. 6c illustrates a

case where a matrix of bar charts is used to study several

functions of the independent variables product and month.

The cardinality of the record set does affect the structure of

the graphics in this family. When the cardinality of the

record set is one, the graphics are simple bar charts or dot

plots. When the cardinality is greater than one, additional

structure may be introduced to accommodate the additional

records (e.g., a stacked bar chart).
The ordinal and quantitative values may be independent

variables, such as in a Gantt chart. Here, each pane

represents all the events in a category; each event has a

type as well as a begin and end time. In Fig. 3b, major wars

over the last 500 years are displayed as Gantt charts,

categorized by country. An additional layer in that figure

displays pictures of major scientists plotted as a function of

the independent variables country of birth and date of birth.

Fig. 7c shows a table of Gantt charts, with each chart

displaying the thread scheduling and locking activity on a

CPU within a multiprocessor computer. To support Gantt

charts, we need to support intervals as an additional type of

field that exists in the meta-data only, allowing one field

name to map to a pair of columns in the database.

4.2.3 Quantitative-Quantitative Graphics

Graphics of this type are used to understand the distribu-
tion of data as a function of one or both quantitative
variables and to discover causal relationships between the
two quantitative variables. Fig. 6a illustrates a matrix of
scatterplot graphics used to understand the relationships
between a number of attributes of different products sold
by a coffee chain.

Fig. 3c illustrates another example of a quantitative-
quantitative graphic: the map. In this figure, the analyst is
studying how flight scheduling varies with the region of the
country in which the flight originated. Data about a number
of flights between major airports has been plotted as a
function of latitude and longitude; this data has been
composed with two other layers that plot the location of
airports and display the geography of each state as a
polygon.

It is extremely rare to use this type of graph with a
cardinality of one, not because it is not meaningful, but
because the density of information in such a graphic is
very low.

4.3 Visual Mappings

Each record in a pane is mapped to a mark. There are two
components to the visual mapping. The first component,
described in the previous section, determines the type of
graphic and mark. The second component encodes fields of
the records into visual or retinal properties of the selected
mark. The visual properties in Polaris are based on Bertin's
retinal variables [6]: shape, size, orientation, color (value
and hue), and texture (not supported in the current version
of Polaris).

Allowing analysts to explicitly encode different fields of
the data to retinal properties of the display greatly enhances
the data density and the variety of displays that can be
generated. However, in order to keep the specification
succinct, analysts should not be required to construct the
mappings. Instead, they should be able to simply specify
that a field be encoded as a visual property. The system
should then generate an effective mapping from the domain
of the field to the range of the visual property. These
mappings are generated in a manner similar to other
visualization systems. We discuss how this is done for the
purpose of completeness. The default mappings are illu-
strated in Fig. 4.

Shape: Polaris uses the set of shapes recommended by
Cleveland for encoding ordinal data [11]. We have extended
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this set of shapes to include several additional shapes to
allow a larger domain of values to be encoded.

Size: Analysts can use size to encode either an ordinal or
quantitative field. When encoding a quantitative domain as
size, a linear map from the field domain to the area of the
mark is created. The minimum size is chosen so that all
visual properties of a mark with the minimum size can be
perceived [23]. If an ordinal field is encoded as size, the
domain needs to be small, at most four or five values, so
that the analyst can discriminate between different cate-
gories [6].

Orientation: A key principle in generating mappings of
ordinal fields to orientation is that the orientation needs to
vary by at least 30� between categories [23], thus constrain-
ing the automatically generated mapping to a domain of at
most six categories. For quantitative fields, the orientation
varies linearly with the domain of the field.

Color: When encoding an ordinal domain, we use a
predefined palette to select the color for each domain entry.
The colors in the palette are well separated in the color
spectrum, predominantly on hue [37]. We have ordered the
colors to avoid adjacent colors with different brightness or
substantially different wavelengths in an attempt to include
harmonious sets of colors in each palette [6], [23], [37]. We
additionally reserve a saturated red for highlighting items
that have been selected or brushed.

When encoding a quantitative variable, it is important to
vary only one psychophysical variable, such as hue or
value. The default palette we use for encoding quantitative
data is the isomorphic colormap developed by Rogowitz
and Treinish [28].

5 DATA TRANSFORMATIONS AND VISUAL QUERIES

The ability to rapidly change the table configuration, type of
graphic, and visual encodings used to visualize a data set is
necessary for interactive exploration. However, it is not
sufficient; additional interactivity is needed. The resulting
display must be manipulable. The analysts must be able to
sort, filter, and transform the data to uncover useful
relationships and information and then they must be able
to form ad hoc groupings and partitions that reflect this
newly uncovered information [5].

In this section, we describe four interaction techniques
Polaris provides to support analysis within the resulting
visualizations: deriving additional fields, sorting and
filtering, brushing and tooltips, and undo and redo.

5.1 Deriving Additional Fields

While analyzing data, one of the most important interac-
tions needed is the ability to derive additional fields from
the original data. Typically, these generated fields are
aggregates or statistical summaries. Polaris currently
provides five methods for deriving additional fields: simple
aggregation of quantitative measures, counting of distinct
values in ordinal dimensions, discrete partitioning of
quantitative measures, ad hoc grouping within ordinal
dimensions, and threshold aggregation.

Simple Aggregation refers to basic aggregation opera-
tions, such as summation, average, minimum, and max-
imum, that are applied to a single quantitative field. A

default aggregation operation is applied to a quantitative
measure when it is dragged to a shelf and aggregation is
enabled. The user can change which aggregation function is
applied by right-clicking on the field and choosing a
different aggregation function from the popup context
menu. Polaris can be easily extended to provide any
statistical aggregate that can be generated from relational
data.

Counting of Ordinal Dimensions refers to the counting
of distinct values for an ordinal field within the data set.
This aggregation function can be applied to an ordinal field
by right-clicking on the field and choosing the CNT (count)
aggregation function. Unlike simple aggregation, applying
the count operator will change the field type (to quantita-
tive) and thus change the table configuration and graph
type in each pane.

Discrete Partitioning is used to discretize a continuous
domain. Polaris provides two discretization methods:
binning and partitioning. Binning allows the analyst to
specify a regular bin size in which to aggregate the data;
binning will not change the graph type since the resulting
derived field is also quantitative, just at the specified
granularity. Partitioning allows the user to individually
specify the size and name of each bin. Partitioning of a
quantitative field will result in an ordinal field, thus
changing the graph types and table configuration. Binning
is useful for creating graphs, such as histograms, in which
there are many regularly sized bins, while partitioning is
useful for encoding additional categorizations into the data,
either ad hoc or derived from known domain information.
Both can be applied by right-clicking on the field name and
choosing either the ªBin by...º or ªPartition...º option.

Ad hoc Grouping is the ordinal version of quantitative
partitioning, where the user can choose to group together
different ordinal values for the purpose of display and data
transformations. For example, a user may choose to group
California and Florida together into an ªOrange providerº
partition. This type of arbitrary grouping and aggregation is
powerful since it allows the analyst to add his own domain
knowledge to the analysis and to change the groupings as
the exploration uncovers additional patterns. The user can
apply ad hoc grouping by right-clicking on the field name
and choosing the ªPartition...º option. This transformation
derives an ordinal field from an ordinal field and, thus, the
graph type does not change.

Threshold Aggregation is the last type of derived field
we support and it differs from the rest since it is derived
from two source fields: an ordinal field and a quantitative
field. If the quantitative field is less than a certain
threshold value for any value of an ordinal field, those
values are aggregated together to form an ªOtherº
category. This allows the user to specify threshold values
below which the data is considered uninteresting. One
challenge in supporting threshold aggregation is that it
can require two aggregation passes if the quantitative
field desired is itself a derived field (e.g., the average of
the quantitative profit field).

Adding derived fields on the fly is necessary as part of
the exploration and analysis process. As the analyst
explores the data, relationships within the data are
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discovered and groupings can be used to encode and reflect

this discovered information. Furthermore, aggregations and

statistics can be used to hide uninteresting data and to

reduce large data sets in size so that they are tractable for

understanding and analysis.

5.2 Sorting and Filtering

Sorting and filtering data play a key role in analysis. It is

often only by reordering rows and columns and filtering

out unimportant information that patterns and trends in the

data emerge. Polaris provides extensive support for both of

these analysis techniques.
Filtering allows the user to choose which values to

display so that he can focus on and devote more screen

space and attention to the areas of interest. For all fields, the

user can right-click on the field name to bring up a menu

and choose the ªFilter...º option.
For ordinal fields, a listbox with all possible values is

shown and the user can check or uncheck each value to

display it or not. For quantitative fields, a dynamic query

slider [1] allows the user to choose a new domain.

Additionally, there are textboxes showing the chosen

minimum and maximum values that the user can use to

directly enter a new domain. In using Polaris, we

discovered that we needed to provide a slightly larger

domain than the actual data domain for the user to select

from since the user may want some buffer space in the

graphs.
Note that applying a filter changes the interpretation of

the field in the algebra. For ordinal fields, it reduces the

domain to just the filtered values, rather than all values. It

does not change how a quantitative field is interpreted in

the table algebra.
Sorting allows the user to to uncover hidden patterns

and trends and to group together interesting values by

changing the order of values within a field's domain or the

ordering of tuples in the data. Changes to the ordering of

values within a field's domain can affect the ordering of the

panes within a table, the ordering of values along an axis

(such as in a bar chart), and the composite ordering of

layers. The ordering of tuples affects the drawing order of

marks within a pane. The drawing order is most relevant in

graphs where a single primitive encodes multiple tuples,

such as a line or polygon primitive, or where marks overlap

and the drawing order thus determines the front-to-back

ordering and occlusion of marks.
Polaris provides three ways for a user to sort the domain.

First, the user can bring up the filter window and drag-and-

drop the values within that window to reorder the domain.

Second, if the field has been used to partition the table into

rows or columns, the user can drag-and-drop the table row

or column headers to reorder the domain values. Finally,

Polaris provides programmatic sorting, allowing the user to

sort one field based on the value in another field. For

example, the user may want to sort the State field by the

Profit field. The ordering of tuples within a pane is

determined by which fields the analyst has placed in the

Sort shelf.

5.3 Brushing and Tooltips

Many times, when exploring the data, analysts want to
directly interact with the data, visually querying the data to
highlight correlated marks or getting more details on
demand. Polaris provides both brushing and tooltips for
this purpose.

Brushing allows the user to choose a set of interesting
data points by drawing a rubberband around them. The
user selects a single field whose values are then used to
identify related marks and tuples. All marks corresponding
to tuples sharing selected field values with the selected
tuples are subsequently highlighted in all other panes or
linked Polaris views. Brushing allows the analyst to choose
data in one display and highlight it in other displays,
allowing correlation between different projections of the
same data set or relationships between distinct data sets.

Tooltips allow the user to get more details on demand. If
the user hovers over a data point or pane, additional details,
such as specific field values for the tuple corresponding to
the selected mark, are shown. Analysts can use tooltips to
understand the relationship between the graphical marks
and the underlying data.

5.4 Undo and Redo

The final interaction technique we provide in Polaris is
unlimited undo and redo within an analysis session. Users
can use the ªBackº and ªForwardº buttons on the top
toolbar to either return to a previous visual specification or
to move forward again. This functionality is critical for
interactive exploration since it allows the user to quickly
back out of changes (or redo them if he goes too far back)
and try a different exploration path without having to
rebuild the desired starting point from scratch. Support for
undo also promotes more experimentation and exploration
as there is no fear of losing work done thus far. If the user
does want a clean canvas, Polaris also provides a ªClearº
button.

By using the formalism and visual specification, im-
plementing Undo and Redo is trivial. We simply need to
save the visual specification at each stage and moving
backward or forward is done by simply updating the
display to reflect the saved visual specification.

6 GENERATING DATABASE QUERIES

In addition to determining the appearance of the visualiza-
tion, the visual specification also generates queries to the
database that 1) select subsets of the data for analysis, then
2) filter, sort, and group the results into panes, and then,
finally, 3) group, sort, and aggregate the data before passing
it to the graphics encoding process.

Fig. 5 shows the overall data flow in Polaris. We can
precisely describe the transformations in each of the three
phases using SQL queries.

6.1 Step 1: Selecting the Records

The first phase of the data flow retrieves records from the
database, applying user-defined filters to select subsets of
the database.

For an ordinal field A, the user may specify a subset of the
domain of the field as valid. If filter(A) is the user-selected
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subset, then a relational predicate expressing the filter for

A is:

A in filter �A�:
For a quantitative field P, the user may define a subset of

the field's domain as valid. If min(P) and max(P) are the

user-defined extents of this subset, then a relational

predicate expressing the filter for P is:

�P � min �P� and P � max �P��:
We can define the relational predicate filters as the

conjunction of all of the individual field filters. Then, the

first stage of the data transformation network is equivalent

to the SQL statement:

SELECT �
WHERE ffiltersg:

6.2 Step 2: Partitioning the Records into Panes

The second phase of the data flow partitions the retrieved

records into groups corresponding to each pane in the table.

As we discussed in Section 4.1, the normalized set form of the

table axis expressions determines the table configuration.

The table is partitioned into rows, columns, and layers

corresponding to the entries in these sets.
The ordinal values in each set entry define the criteria by

which records will be sorted into each row, column, and

layer. Let Row(i) be the predicate that represents the

selection criteria for the ith row, Column(j) be the predicate

for the jth column, and Layer(k) the predicate for the kth

layer. For example, if the y-axis of the table is defined by the

normalized set:

fa1b1P; a1b2P; a2b1P; a2b2Pg;
then there are four rows in the table, each defined by an

entry in this set, and Row would be defined as:

Row�1� � �A � a1 and B � b1�
Row�2� � �A � a1 and B � b2�
Row�3� � �A � a2 and B � b1�
Row�4� � �A � a2 and B � b2�:

Given these definitions, the records to be partitioned into
the pane at the intersection of the ith row, the jth column,
and the kth layer can be retrieved with the following query:

SELECT �
WHERE fRow�i� and Column�j� and

Layer�k�g:
To generate the groups of records corresponding to each of
the panes, we must iterate over the table, executing this
SELECT statement for each pane. There is no standard SQL
statement that enables us to perform this partitioning in a
single query. We note that this same problem motivated the
CUBE [16] operator; we will revisit this issue in the
discussion section.

6.3 Step 3: Transforming Records within the Panes

The last phase of the data flow is the transformation of the
records in each pane. If the visual specification includes
aggregation, then each measure in the database schema
must be assigned an aggregation operator. If the user has
not selected an aggregation operator for a measure, that
measure is assigned the default aggregation operator
(SUM). We define the term aggregates as the list of the
aggregations that need to be computed. For example, if the
database contains the quantitative fields Profit, Sales, and
Payroll and the user has explicitly specified that the average
of Sales should be computed, then aggregates is defined as:

aggregates �
SUM�Profit�; AVG�Sales�; SUM�Payroll�:

Aggregate field filters (for example, SUM(Profit) > 500)
could not be evaluated in Step 1 with all of the other filters
because the aggregates had not yet been computed. Thus,
those filters must be applied in this phase. We define the
relational predicate filters as in Step 1 for unaggregated
fields.

Additionally, we define the following lists:

G: the field names in the grouping shelf,
S: the field names in the sorting shelf, and
dim: the dimensions in the database.

The necessary transformation can then be expressed by the
SQL statement:
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SELECT fdimg; faggregatesg
GROUP BY fGg
HAVING ffiltersg
ORDER BY fSg:

If no aggregate fields are included in the visual specifica-
tion, then the remaining transformation simply sorts the
records into drawing order:

SELECT �
ORDER BY fSg:

7 RESULTS

Polaris is useful for performing the type of exploratory data
analysis advocated by statisticians such as Bertin [5] and
Cleveland [12]. We demonstrate the capabilities of Polaris
as an exploratory interface to multidimensional databases
by considering the following two scenarios, performed
using a Polaris prototype implemented in the Rivet
visualization environment [9].

7.1 Scenario 1: Commercial Database Analysis

The chief financial officer (CFO) of a national coffee store
chain has just been told to cut expenses. To get an initial
understanding of the situation, the CFO creates a table of
scatterplots showing the relationship between marketing
costs and profit categorized by product type and market
(Fig. 6a). After studying the graphics, the CFO notices an
interesting trend: Certain products have high marketing
costs with little or no return in the form of profit.

To further investigate, the CFO creates two linked
displays: a table of scatterplots showing profit and market-
ing costs for each state and a text table itemizing profit by
product and state (Fig. 6b). The two views are linked by the
state field: If records are selected in either display, then all
records with the same state value as the selected records are
highlighted. The CFO is able to use these linked views to
determine that, in New York, several products are offering
very little return despite high expenditures.

The CFO then creates a third display (Fig. 6c): a set of bar
charts showing profit, sales, and marketing for each
product sold in New York, broken down by month. In this
view, the CFO can clearly see that CaffeÂ Mocha's profit
margin does not justify its marketing expenses. With this
data, the CFO can change the company's marketing and
sales strategies in this state.

7.2 Scenario 2: Computer Systems Analysis

At Stanford, researchers developing Argus [21], a parallel
graphics library, found that its performance had linear
speedup when using up to 31 processors, after which its
performance diminished rapidly. Using Polaris, we
recreate the analysis they performed using a custom-built
visualization tool [8].

Initially, the developers hypothesized that the dimin-
ishing performance was a result of too many remote
memory accesses, a common performance problem in
parallel programs. They collected and visualized detailed
memory statistics to test this hypothesis. Fig. 7a shows a

visualization constructed to display this data. The visua-
lization is composed of two linked Polaris instances. One
displays a histogram of cache misses by virtual address,
the other displays source-code, with each line's hue
encoding the number of cache misses suffered by that
line. Upon seeing these displays, they could tell that
memory was not in fact the problem.

The developers next hypothesized that lock contention
might be a problem, so they reran Argus and collected
detailed lock and scheduling information. The data is
shown in Fig. 7b using two instances of Polaris to create a
composite visualization with two linked projections of the
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same data. One projection shows a scatterplot of the start

cycle versus cycle duration for the lock events (requests and

holds). The second shows a histogram over time of initiated

lock events. The scatterplot shows that toward the end of

the run, the duration of lock events (both holds and

requests) were taking an unexpectedly long time. That

observation correlated with the histogram showing that the

number of lock requests peaked and then tailed off toward

the end of the run, indicating that this might be a fruitful

area for further investigation.
A third visualization, shown in Fig. 7c, shows the same

data using Gantt charts to display both lock events and

process scheduling events. This display shows that the long

lock requests correspond to descheduled periods for most
processes. One process, however, has a descheduled period
corresponding to a period during which the lock was held.
This behavior, which was due to a bug in the operating
system, was the source of the performance issues.

7.3 Summary

These two examples illustrate several important points
about the exploratory process. Throughout the analyses,
both what data users want to see and how they want to
see it change continually. Analysts first form hypotheses
about the data and then create new views to perform
tests and experiments to validate or disprove those
hypotheses. Certain displays enable an understanding of
overall trends, whereas others show causal relationships.
As the analysts better understand the data, they may
want to drill-down in the visible dimensions or display
entirely different dimensions.

Polaris supports this exploratory process through its
visual interface. By formally categorizing the types of
graphics, Polaris is able to provide a simple interface for
rapidly generating a wide range of displays. This allows
analysts to focus on the analysis task rather than the steps
needed to retrieve and display the data.

8 DISCUSSION

In this section, we focus on three points of discussion. First,
we discuss how our work compares to that of Wilkinson
[41], second, the interpretation of our visual specifications
as database queries, and, finally, the interactivity and
performance of Polaris.

Several of the ideas in our specification are extensions of
Wilkinson's [41] efforts to develop a grammar for statistical
graphics. His grammar encapsulates both the statistical
transformation of datasets and their mapping to graphic
representations.

The primary distinctions between Wilkinson's system
and ours arise because of differences in the data models. We
chose to focus on developing a tool for multidimensional
relational databases and we decided to build as much of the
system as possible using relational algebra. All of the data
transformations required by our visual specifications can be
precisely interpreted as standard SQL queries to OLAP
servers. Wilkinson instead intentionally uses a data model
that is not relational, citing shortcomings in the relational
model's support for statistical analysis. Consequently, his
specification defines operations and function in terms of his
own data model, consisting of variable sets and indexed
variables.

The differences in design are most apparent in the table
algebra. As in our system, Wilkinson's table algebra
performs two functions: it provides database services such
as set operations and it specifies the layout of the tables and
graphs. Since we use relational algebra for all our database
services, our algebra is different. For example, his blend
operator performs both set union and may partition the
axes of a table; our concatenation operation is different since
it just performs partitioning. Another difference is in his
cross and nest operators: cross generates a 2D graphic and
nest only a 1D graphic. We use a different mechanism
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(shelves) to specify axes of the graphic. Overall, whether
our system is better than Wilkinson's is hard to judge
completely, and will require more experience using the
systems to solve practical problems. One major advantage
of our approach is that it leverages existing database
systems and as a result was very easy to implement.

Another interesting issue is the interpretation of our
visual specifications as database queries. When database
queries are generated from the visual specifications in
Polaris, it is necessary to generate a SQL query per table
pane. This problem is similar to the one that motivated Gray
et al. to develop the CUBE operator [16]. The CUBE
operator generalizes the queries necessary to develop
cross-tab and Pivot Table displays of relational data into a
single, more efficient operator. However, the CUBE
operator cannot be applied in our situation because it
assumes that the sets of relations partitioned into each table
pane do not overlap. In several possible Polaris table
configurations, such as scatterplot matrices, there can be
considerable overlap between the relations partitioned into
each pane. One can imagine generalizing the CUBE
operator to handle these overlapping partitions.

Another major limitation of the CUBE operator is its
method for computing aggregates. Usually, only aggregates
based on sums are allowed. More complex aggregation
operators requiring ranking, such as computation of
medians and modes, are not part of the current specifica-
tion, although they are available in some commercial
systems. These operators are very useful for data mining
applications.

A final point of discussion is the interactivity and
performance of Polaris. Although Polaris is designed to be
an interactive and exploratory interface to large data ware-
houses, our research has focused on the techniques, seman-
tics, and formalism needed to provide an effective
exploratory interface rather than on attaining interactive
query times. While we would like the system to be reasonably
responsive as the user modifies the visual specification, our
experience has been that the query response time does not
need to be real-time in order to maintain a feeling of
exploration: The query can even take several tens of seconds.
Within this constraint, Polaris can currently be used with
many large databases, especially if a large subset of the views
can be materialized a priori [39]. Furthermore, it is important
to note that many queries on data warehouses, such as those
generated with existing Pivot Table tools, will be returning a
small number of tuples and, thus, the most relevant constraint
on performance is server-side query time and not client-side
drawing or data manipulation.

We have used Polaris with two reasonably large data
sets: 1) a subset of a packet trace of a mobile network over a
13 week period [35] that has over 6 million tuples and 2) a
subset of the data collected from the Sloan Digital Sky
Survey (approx. 650 MB), both stored in Microsoft's
SQLServer. With both data sets, we are able to get
reasonably responsive performance and maintain a sense
of exploration for the queries we ran. We intend to pursue
database performance issues in order to scale to much
larger data sets as part of our future research. There are
many techniques that can be used to improve the

performance of the queries, including existing techniques
such as materialized views [39], progressively refined
queries that provide intermediate feedback [19], and
sampled queries [17], [24]. We also think that substantial
performance benefits can be gained by leveraging the
coherence between successive queries generated by visua-
lization systems using both caching and prefetching.

9 CONCLUSIONS AND FUTURE WORK

We have presented Polaris, an interface for the exploration
and analysis of large multidimensional databases. Polaris
extends the well-known Pivot Table interface to display
relational query results using a rich, expressive set of
graphical displays. A second contribution of this system is a
succinct visual specification for describing table-based
graphical displays of relational data and the interpretation
of these visual specifications as a precise sequence of
relational database operations.

We have many plans for future work in extending this
system. As stated above, one area of future work is
exploring database performance issues. A related area is
expanding Polaris to expose the hierarchical structure of
data cubes. Each level of the hierarchy can be thought of as
a different level of detail. One idea, a la Pad++ [4], is to
change the visual representation as we change the level of
detail; the visual representation will be determined in part
by the available screen space. In order to make this type of
system interactive, especially given the large quantities of
data involved, we are also exploring prefetching and
caching strategies to achieve real-time interactivity.

Another area of future work is to leverage the direct
correspondance of graphical marks in Polaris to tuples in
the relational databases in order to generate database tables
from a selected set of graphical marks. This technique can
be used to develop lenses, similar to the Magic Lens [7], that
can perform much more complex transformations because
they operate in data space rather than image space. This
technique can also be used to compose Polaris displays,
using a selected mark set in one display as the data input to
another. We are exploring these techniques and believe it is
possible to develop a relational spreadsheet by composing
Polaris displays in this manner.

Extending the x, y, and layer shelves to include an
animation shelf would enable analysts to partition the
data on those fields and create animated displays that
sequence through the data. For example, in the coffee
chain data set, dropping the Month field on the
animation shelf would create an animation showing
how the data changes over time.
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