
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

Maximum Entropy Summary Trees

Howard Karloff1 and Kenneth E. Shirley1

1AT&T Labs Research, Florham Park, NJ, USA

Abstract

Given a very large, node-weighted, rooted tree on, say, n nodes, if one has only enough space to display a k-
node summary of the tree, what is the most informative way to draw the tree? We define a type of weighted tree
that we call a summary tree of the original tree that results from aggregating nodes of the original tree subject
to certain constraints. We suggest that the best choice of which summary tree to use (among those with a fixed
number of nodes) is the one that maximizes the information-theoretic entropy of a natural probability distribution
associated with the summary tree, and we provide a (pseudopolynomial-time) dynamic-programming algorithm
to compute this maximum entropy summary tree, when the weights are integral. The result is an automated way
to summarize large trees and retain as much information about them as possible, while using (and displaying)
only a fraction of the original node set. We illustrate the computation and use of maximum entropy summary trees
on five real data sets whose weighted tree representations vary widely in structure. We also provide an additive
approximation algorithm and a greedy heuristic that are faster than the optimal algorithm, and generalize to trees
with real-valued weights.

Categories and Subject Descriptors (according to ACM CCS): I.2.8 [Problem Solving, Control Methods, and
Search]: Dynamic Programming—G.2.2 [Graph Theory]: Trees—I.4.10 [Image Representation]: Hierarchical—
G.2.1 [Combinatorics]: Combinatorial Algorithms—

1. Introduction

Many data sets can be represented by a rooted, node-
weighted tree, including employee organizational charts,
web traffic logs, hard disk file structures, and phylogenetic
trees, for example. The node weights can correspond to some
node attribute of interest, or, in the absence of attributes, all
the node weights can be set to one. Modern data sets repre-
sented by such trees can contain hundreds of thousands, or
even millions, of nodes, so that visualizing them is challeng-
ing, and has received a great deal of interest in the research
community (see [vLKS∗11] for a thorough recent survey).

A natural goal of visualizing node-weighted trees is to
be able to compare node weights across different nodes and
branches of the tree while preserving a sense of the hierar-
chy, or structure, of the tree. Treemaps [Shn92] succeed in
making comparisons of node weights easy, and they have
been used for trees with as many as a million nodes [FP02],
but they generally do a poor job of representing the visual
hierarchy of the tree. On the other hand, traditional lay-
ered layouts succeed in displaying the tree’s hierarchy, but

require some additional visual encoding of node attributes
(such as color, shape, or size) to allow for attribute compar-
isons. Most importantly, they are not scalable, and typically
become impossible to fit onto a single page or screen if the
tree of interest has more than a few hundred nodes.

In this paper we propose a method for visualizing large,
node-weighted (unordered) rooted trees that allows compar-
isons of node attributes and preserves the visual hierarchy of
the tree. We do this in three steps:

1. Aggregation: First, we define a novel way to aggregate
nodes of a node-weighted tree that results in a new,
smaller node-weighted tree that we call a summary tree of
the original tree, whose number of nodes can be chosen
to be any integer between one and the number of nodes
in the original tree.

2. Optimization: Second, we provide an algorithm to com-
pute the optimal summary tree out of all possible sum-
mary trees with a given number of nodes, where optimal-
ity is defined in terms of maximizing the information-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

C Gauß

J Encke

C Gudermann

C Gerling

K Weierstraß

J Plücker

C Bruhns

C Klein

F Frobenius

M Bôcher

C Lindemann

A Sommerfeld

D Hilbert

E Hecke

R Courant

E Schmidt

L Königsberger
(578)

F Schottky
(618)

N Bugaev
(3642)

P Harzer
(668)

H Seeliger
(1595)

I Schur
(1346)

E Kasner
(452)

O Bolza
(670)

F Cole
(1375)

P Furtwängler
(1436)

A Loewy
(459)

H Minkowski
(736)

J Walsh
(1133)

R König
(349)

T Takagi
(396)

M Dehn
(464)

H Kneser
(788)

H Weyl
(1297)

W Steinhaus
(1405)

G Wentzel
(603)

E Guillemin
(1798)

S Bochner
(1726)

H Hopf
(2005)

W Feller
(478)

K Friedrichs
(597)

F Rellich
(869)

W Maak
(462)

H Behnke
(851)

other
(5023)

other
(1502)

other
(911)

other
(1288)

other
(927)

other
(604)

other
(792)

other
(803)

other
(870)

other
(378)

other
(981)

other
(636)

Figure 1: The maximum entropy 56-node summary tree of the math genealogy tree rooted at Carl Friedrich Gauss, which
has 43,527 equal-weighted nodes (where the original advisor-student graph was forced to be a tree by choosing the primary
advisor for each student who had multiple advisors). Node colors are determined by their depth-1 ancestor, and node areas are
proportional to their weights in the summary tree. This tree is best viewed on a computer screen.

theoretic entropy of a natural distribution associated with
the tree.

3. Layout: Last, we recommend that the optimal summary
tree with a given number of nodes be visualized using a
layered layout, where the node sizes are drawn in propor-
tion to their weights. This type of layout is not required,
but we feel it maximizes the utility of our methodology.

The resulting visualization is a maximum entropy summary
tree of any order (i.e., number of nodes) between one and a
user-specified bound K ≤ n that automatically provides the
most informative summary of the original n-node tree among
all summary trees of the chosen order. From our experiments
on real-world data, we find that we can often compute a sum-
mary tree that is nearly as informative as the original tree (in
terms of entropy) and which contains only a small fraction of
the number of nodes of the original tree (often less than 100),
thus easily fitting onto a single screen or page using a layered
layout. In other words, our algorithm to compute maximum
entropy summary trees is essentially a data reduction method
that yields good visualizations, from both an aesthetic point
of view and an information-theoretic point of view. See Fig-
ure 1 for an example applied to a mathematical genealogy
tree [Mat], which is discussed in more detail later.

2. Background and contributions

The recent survey on techniques for drawing large graphs by
von Landesberger et al. [vLKS∗11] notes that the two ba-
sic types of tree visualization methods are space-filling lay-
outs and node-link layouts. It is well-known that treemaps
[Shn92], which are space-filling layouts, allow users to vi-

sually compare attribute values across nodes, and are scal-
able to trees with at least approximately one million nodes
[FP02]. In the absence of attribute values, treemaps still al-
low users to compare the sizes of different branches of a tree
by setting all node weights to one. The main weakness of
treemaps, though, as pointed out by multiple authors, is that
they do a poor job of showing the hierarchy, or structure, of
a tree [vWvdW99, HMM00, BMH05, ZMC05].

Node-link diagrams, on the other hand, typically do a bet-
ter job of displaying a tree’s hierarchy, but are not necessarily
scalable to trees with hundreds or thousands of nodes. Lay-
ered layouts, in which nodes on the same level of a tree are
drawn along parallel lines, are especially conducive to show-
ing the hierarchy of a tree, and are, unfortunately, especially
difficult to scale to large trees, because the number of nodes
at a given depth increases exponentially with the depth of
most real-world trees [ZMC05].

A solution to the lack of scalability of node-link diagrams
that many researchers have built on is the Focus+Context
paradigm, in which a user interactively selects a region of
a visualization to focus on, and the rest of the visualiza-
tion is transformed, but still pictured, to provide context to
the focus region. Hyperbolic browsers [LRP95] apply this
paradigm to trees using hyperbolic geometry and a circular
layout. A layered approach is the accordion drawing tech-
nique [MGT∗03, BMH05], which uses “stretch-and-squish"
navigation to allow users to browse large trees.

Another way to interactively apply Focus+Context tech-
niques to large trees is to aggregate nodes. SpaceTree
[GPB02], and Degree-of-Interest trees [CN02, HC04] com-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

bine node aggregation with a layered layout, where a degree-
of-interest function determines which nodes are displayed or
aggregated based on how “interesting" they are relative to
the focal node. TreeWiz [RBB02] and Expand-Ahead meth-
ods [MDB04] also use aggregation and interaction to sum-
marize and visualize large trees. Finally, elastic hierarchies
[ZMC05] use a Focus+Context approach to allow users to
manipulate hybrid visualizations that combine node-link di-
agrams and treemaps.

Our position is that (1) data reduction is an important first
step in visualizing large trees and (2) theoretical principles
should dictate which nodes are chosen for display. This sec-
ond principle differs from much previous work, in which
users interactively influence which nodes are displayed.

Regarding data reduction, we follow Herman et al., who
write [HMM00] “... beyond a certain limit, no algorithm will
guarantee a proper layout of large graphs. There is simply
not enough space on the screen. In fact, from a cognitive
perspective, it does not even make sense to display a very
large amount of data. Consequently, a first step in the visu-
alization process is often to reduce the size of the graph to
display. As a result, classical layout algorithms remain us-
able tools for visualization, but only when combined with
these techniques." We view summary trees as precisely this
kind of data reduction technique. Our first main contribu-
tion is the definition of a summary tree, which is a novel
way to aggregate nodes so that a very large node-weighted
tree can be summarized by a potentially much smaller node-
weighted tree of any order that the user chooses. The free-
dom to choose the order of a summary tree is an important
property, because it is analogous to flexible zooming, and is
a consequence of the specific constraints we impose on the
node aggregation process.

Our second main contribution is introducing the notion of
entropy to node-weighted trees. We define the entropy of a
node-weighted tree as the information-theoretic entropy of a
discrete probability distribution whose probabilities are de-
fined by the normalized node weights. This is a natural way
to think about the information contained in a node-weighted
tree. Given a constraint on the number of nodes to display in
a summary tree, we propose that the optimal choice of which
fixed-order summary tree to display, among many possible
choices, is the one with maximum entropy, because it is the-
oretically the most informative. We provide an exact algo-
rithm to compute this summary tree for trees with nonnega-
tive integral weights, and an approximation algorithm and a
heuristic for the more general case of trees with nonnegative
real weights. We recommend (but our algorithm does not re-
quire) that the nodes of a maximum entropy summary tree
be drawn in a layered node-link diagram (preserving the vi-
sual hierarchy), with their sizes proportional to their weights
(as in the case of treemaps, allowing for visual comparisons
of attributes and tree substructure).

3. Summary trees

Given a rooted, node-weighted tree T with n nodes, we
introduce the concept of a “summary tree" T ′ of T , which is
a rooted, node-weighted tree with k nodes, where 1≤ k≤ n.
Denote the weight of node i by wi, where wi is a nonnegative
real number. One property of a summary tree is that each
node of the summary tree T ′ is a nonempty subset of the
node set V (T) of T , the collection of nodes in T ′ being a
partition of V (T). The weight of a subset of nodes is defined
to be the sum of the weights of the nodes in the subset. Also,
given a node v of T , let Tv denote the subtree of T rooted at v.

Definition 1. Given a rooted, node-weighted n-node tree T ,
a k-node summary tree T ′ of T is a rooted, weighted, k-
node tree in which each node is a subset of V (T), defined
recursively as follows:

1. If T has exactly one node, v, then the unique summary
tree of T is a 1-node tree whose one node is {v} (and
hence k must equal 1).

2. Suppose T has root v and children v1,v2, ...,vd , d ≥ 1.
Then a summary tree T ′ of T is either

a. one node V (T), or
b. i. a root {v},

ii. a subset Sv of v’s children, where if Sv 6= ∅, T ′

contains one node labeled “other," which equals
∪x∈SvV (Tx), and

iii. separate summary trees for Tvi for all vi 6∈ Sv.

In case 2.b., the root {v} is the parent in T ′ of the node la-
beled “other,” if it exists, and of the roots of the summary
trees for the Tvi ’s for vi 6∈ Sv.

It is easy to see that the collection of sets represented by
all nodes of T ′ is a partition of V (T). It follows that the total
weight of a summary tree T ′ of T is the same as the total
weight of T . Note that the sets Sv are part of the definition
of the tree. Hence if T is a 3-node tree on {a,b,c} rooted
at a (i.e., with edges {a,b} and {a,c}), then there are three
distinct 3-node summary trees of T . All three are isomor-
phic, but one tree has Sa = ∅, one has Sa = {b}, and one has
Sa = {c}. This situation is caused only by the existence of
an Su of size one for some u.

The intuition behind summary trees is that they allow
nodes to be aggregated in two useful ways, described by
parts 2.a. and 2.(b.)ii. of Definition 1. One way (part 2.a.
of Definition 1) is for a node of a summary tree to rep-
resent a whole subtree of the original tree. This is a com-
mon method of node aggregation for trees used by others
[RBB02, CN02, GPB02, HC04].

The other way to aggregate nodes (part 2.(b.)ii. of Defi-
nition 1) is slightly more subtle—an “other" node in a sum-
mary tree represents a set of siblings from the original tree
and all the descendants of those siblings—but a parent in
the summary tree can have at most one such node among its

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

children. There are two important motivating principles be-
hind this type of aggregation. First, when a node has many
children whose weights have a skewed distribution, it can
be very useful to view the children with large weights in-
dividually (and possibly some of their descendants, too),
while aggregating all the remaining children and their de-
scendants into one node called “other" to save space. Sec-
ond, we choose to restrict a node from having two or more
“other" children. We argue that if multiple “other" nodes
were desired under a single parent, then the attribute that dis-
tinguishes them from each other should be encoded into the
hierarchy of the tree, defining a new split along the branch.
If no such attribute exists, then only one “other" node is re-
quired. This restriction may simply be a matter of taste, but
we feel it is consistent with the node aggregation theories
described in [EF10]. DOITrees [HC04] include the notion
of an “other" node, but it is not formally defined, and to our
knowledge, it has not been discussed elsewhere.

One useful consequence of allowing “other" nodes in
summary trees is that doing so guarantees the existence
of a k-node summary tree of an n-node tree for each k =
1,2, ...,n, which can be easily proven by induction on k. This
property provides an analogue to flexible zooming, in which
a user can view a sequence of k-node summary trees from
k = 1 to a user-determined K ≤ n. We in fact recommend
this procedure as a way to explore the structure of a large
node-weighted tree.

Last, Figure 2 illustrates the definition of a summary tree
by showing a 9-node weighted tree and two 6-node summary
trees of it. These trees, and all other trees we visualize in
this paper, were drawn using the DOT algorithm in Graphviz
[GKNpV93]. We draw them with a layered layout, in which
the nodes are rectangular, with constant height and width
proportional to their weight, or vice versa, so that their areas
are proportional to their weights.

4. The entropy of a tree

Here we formally define the entropy of a sequence and of
a node-weighted tree, and we introduce an important equa-
tion and a new definition that are used in our algorithm for
computing maximum entropy summary trees.

We define the entropy of a sequence of nonnegative reals:

H(w1,w2, ...,wn) =−
n

∑
i=1

(wi

W

)
log2

(wi

W

)
, (1)

where W denotes the sum of the reals, if W > 0, and 0 oth-
erwise. We take 0 log2(0) to be 0 in this computation. (Also,
from here onward, we denote “log2” by “lg.”) We define
the entropy of a node-weighted, n-node tree T with node
weights w1,w2, ...,wn, to be H(w1,w2, ...,wn). We will also
use the shorthand notation H(T) to denote H(w1, ...,wn).

The justification for maximizing entropy is simple: given

6-node summary tree; entropy = 0.998	
6-node summary tree; entropy = 1.201	

9-node original tree; entropy = 1.381	

Figure 2: In the upper panel, a 9-node tree (with node
weights in parentheses), and below it, two different 6-node
summary trees of the original 9-node tree, with their en-
tropies (to be defined in Section 5) included.

a fixed number of nodes to display, we wish to display the set
of nodes that provides the most information about the distri-
bution of node weights to the viewer. It would not be very
informative, for example, to summarize a 10,000-node tree
with a 50-node summary tree in which 99% of the weight
of the tree is aggregated into one supernode, and the other
49 nodes only share 1% of the original tree’s weight, if an-
other more balanced aggregation were possible. Given such
a “lopsided" summary, a user would naturally want to disag-
gregate the large supernode to learn its substructure, at the
expense of aggregating some of the 49 small nodes. This
intuition agrees with maximizing entropy, since entropy is
maximized when all the weights are identical. Maximizing
other objective functions besides entropy (e.g., −∑ p2

i) is a
potential direction for future work.

Next, we need to establish a fact about entropy. Suppose
we have two discrete probability distributions (on nonover-
lapping sets), with associated probabilities p1, ..., pk1 and
p′1, ..., p′k2

, and entropies h1 and h2. If we randomly choose
an outcome from the first distribution with probability q or
an outcome from the second distribution with probability
1−q, then the resulting probability distribution (with k1+k2
possible discrete outcomes) has entropy

h = qh1 +(1−q)h2−q lg(q)− (1−q) lg(1−q). (2)

The important part of this result related to the dynamic-
programming algorithm is that to compute entropy of
the “combined" distribution, one does not need to know
the specific probabilities associated with the two original
distributions—one only needs the entropies of those two dis-
tributions, and the probability of choosing from one distribu-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

tion versus the other. We use this result to define a function,
combine(), that we will use in the algorithm.
Definition 2. Where w1,w2 are nonnegative reals, not
both zero, and h1,h2 ≥ 0, let q = w1/(w1 + w2), and
combine(h1,w1;h2,w2) = qh1 +(1− q)h2− q lg(q)− (1−
q) lg(1−q). Define combine(h1,0;h2,0) = 0.

Last, we introduce the idea of a “summary forest." Sup-
pose a node v of T has children v1,v2, ...,vd , where d ≥ 1.
Define a k-node summary forest for Tv1 ∪Tv2 ∪ ·· · ∪Tvl , for
1≤ l ≤ d, as the forest that remains after removing {v} from
a (k+1)-node summary tree for the subtree of T consisting
of v, its first l children, and their descendants. This collection
of k nodes that we define as a summary forest is, in fact, a
summary tree according to Definition 1 if l = 1, and is not a
summary tree (because it’s not connected) if l > 1. Further,
if the (k+1)-node summary tree for the subtree of T consist-
ing of v, its first l children, and their descendants contains an
“other" child of v (i.e. Sv 6= ∅ from Definition 2.(b.)ii.), then
we still refer to this node as an “other" child of v in the sum-
mary forest. Last, if the weights of the nodes in the k-node
summary forest are denoted w1, ...,wk, define the entropy of
the summary forest as H(w1, ...,wk).

5. An algorithm for finding maximum entropy
summary trees

Given an n-node tree T and a target K ≤ n, we introduce
a pseudopolynomial-time dynamic-programming algorithm
that computes the maximum entropy k-node summary trees
for k = 1,2, ...,K, provided that the node weights are inte-
gral. In Sections 6 and 8 we describe an approximation algo-
rithm and a greedy heuristic that work for nonnegative real
weights. The exact algorithm of this section runs in (truly)
polynomial time when the sum W of the weights is small,
e.g., when all node weights are 1, but not when W is large.
(The fact that there are 2d − 1 possibilities for an “other”
child of a parent with d children makes finding a polynomial-
time algorithm difficult. Indeed, we leave existence of a truly
polynomial-time algorithm for large W as an open problem.)

5.1. The recurrence

Our algorithm depends on one main idea. For a node v with d
children v1,v2, ...,vd , if we have the entropies of the k-node
maximum entropy summary trees for the tree rooted at each
child, for k = 1, ...,K, then we will compute the maximum
entropy k-node summary tree for Tv for all k. To compute
this via a recurrence, though, we must parameterize by the
weight w of the “other" child of v.
Definition 3. Let v be a node of T . We define fv(k,w) for
1≤ k ≤ K, −1≤ w≤W and Fv(k) for 1≤ k ≤ K.

1. For w = 0,1,2, ...,W, for 1≤ k ≤ K, fv(k,w) is the max-
imum entropy of a k-node summary tree for Tv in which
there is an “other” child of the node {v} with weight w.

2. For 1≤ k≤K, fv(k,−1) denotes the maximum entropy of
a k-node summary tree for Tv in which there is no “other”
child of the node {v}.

3. For 1 ≤ k ≤ K, let Fv(k) = maxW
w=−1 fv(k,w), the maxi-

mum entropy of any k-node summary tree for Tv.
Definition 4. Fix 1≤ l ≤ d, 1≤ k ≤ K−1, and −1≤ w≤
W. Let gv(l,k,w) be the maximum entropy of a k-node sum-
mary forest for Tv1∪Tv2∪·· ·∪Tvl which contains an “other”
child of v of weight w, if w≥ 0, or has no “other” child of v,
if w =−1.

To illustrate this definition, we compute gv(l,k,w) for the
tree drawn in Figure 3 for l = 4, k = 5, and w = 36 (and
d = 6). The only way to get an “other” child of v of weight
36 in the summary forest for Tv1 ∪ Tv2 ∪ Tv3 ∪ Tv4 is for the
set Sv of children forming the “other” child to equal {1,3}
or {2,3}.
• If the “other” child consists of Sv = {1,3}: We need k = 5

nodes from the proper descendants of v, one of which is
the “other” child, so we need four non-“other” nodes. We
can get four nodes from V (Tv2) and V (Tv4) by getting:

– one from V (Tv2) and three from V (Tv4): entropy is
H(15+21,3+5+7,5,10,11) = 2.012198; or

– two from V (Tv2) and two from V (Tv4): entropy is
H(15+21,3,5+7,5,10+11) = 1.880552; or

– three from V (Tv2) and one from V (Tv4): entropy is
H(15+21,3,5,7,5+10+11) = 1.794777.

• If the “other” child consists of Sv = {2,3}: Again we
need four non-“other” nodes. We can get four nodes from
V (Tv1) and V (Tv4) by getting:

– one from V (Tv1) and three from V (Tv4): entropy is
H(15+21,2+6+7,5,10,11) = 2.012198;

– two from V (Tv1) and two from V (Tv4): entropy is
H(15+21,2,6+7,5,10+11) = 1.850276; or

– three from V (Tv1) and one from V (Tv4): entropy is
H(15+21,2,6,7,5+10+11) = 1.77990.

Hence gv(4,5,36) is the maximum of these six quantities
and is equal to 2.012198, achieved in two ways.

Let the size sv of v denote the sum of the weights of all the
descendants of node v.
Lemma 1. (Basis) Let v1 denote the first child in an arbi-
trary ordering of v’s children.

1. gv(1,1,−1) = 0 (i.e., there is a 1-node summary forest,
having entropy 0 and having no “other” child of v, for
the subtree rooted at the first child of v).

2. If w ≥ 0, then gv(1,1,w) = −∞, except that
gv(1,1,sv1) = 0 (i.e., the only 1-node summary for-
est for the subtree rooted at v1 which has an “other”
child of v consists solely of an “other” child representing
v1 and all its descendants).

3. If k > 1, then gv(1,k,−1) = Fv1(k) (i.e., the entropy of
the maximum entropy summary forest for Tv1 with k > 1
nodes which has no “other” child of v has entropy Fv1(k),
by definition of Fv1(k)).

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

v
(6)

v1
(2)

v2
(3)

v3
(4)

v4
(5)

A
(6)

B
(7)

C
(5)

D
(7)

E
(8)

F
(9)

G
(10)

H
(11)

v5
(4)

v6
(8)

v
(6)

Tv1 U Tv3
(36)

Tv2
(15)

v4
(5)

G
(10)

H
(11)

v5
(4)

v6
(8)

Figure 3: The subtree, Tv, for which we illustrate the defini-
tion of gv(l,k,w), for l = 4, k = 5, w = 36 (and d = 6). Node
weights are listed in parentheses. The upper figure is Tv, and
the lower figure shows the maximum entropy summary forest
for Tv1 ∪·· ·∪Tv4 for k = 5 with an “other" child of v of size
w = 36 within the dashed box (where we chose the “other"
child Sv = {1,3}).

4. If k > 1 and w≥ 0, then gv(1,k,w) =−∞ (i.e., any sum-
mary forest of Tv1 with two or more nodes cannot be part
of an “other” child of v).

Now we induct on l. The following lemma shows how to
compute the gv(l,k,w) values from the gv(l−1,k,w) values.
The inductive step applies this recurrence for l = 2,3,4, ...,d.
Lemma 2. (Inductive Step)

1. For l ≥ 2, gv(l,1,sv1 + sv2 + · · · + svl) = 0, and
gv(l,1,w) = −∞ for all w 6= sv1 + · · ·+ svl . (Here, the
first l children form an “other" child of v).

2. For l ≥ 2, for all k ≥ 2, gv(l,k,−1) =

maxk−1
k1=1 combine(gv(l − 1,k1,−1),sv1 + sv2 + · · · +

svl−1 ;Fvl (k − k1),svl). (There is no “other" child of
v, and we combine a k1-node summary forest for
Tv1 ∪ ·· · ∪ Tvl−1 containing no “other" child of v with a
(k− k1)-node summary tree for Tvl).

3. For l ≥ 2, for all k≥ 2, and w≥ 0, gv(l,k,w) is the max-
imum of the following three quantities:

a. maxk−1
k1=1 combine(gv(l − 1,k1,w),sv1 + · · · +

svl−1 ;Fvl (k− k1),svl), if w ≤ sv1 + sv2 + · · ·+ svl−1 ,
and −∞ otherwise.

b. combine(gv(l−1,k−1,−1),sv1 + · · ·+svl−1 ;0,svl), if
svl = w (and is −∞ otherwise).

c. −1
M+svl

[
(−MH + M lgM − (w − svl) lg(w − svl))

−(M + svl) lg(M + svl) + w lgw
]
, where

M = sv1 + · · ·+ svl−1 , and H = gv(l− 1,k,w− svl), if
w− svl ≥ 0 (and −∞ otherwise).

For lack of space, the proof appears in the appendix. We
mention here only that case 3(c) is interesting because we
“merge" Tvl into an existing “other" child of v in the sum-
mary forest for Tv1 ∪ ·· · ∪Tvl−1 . The entropy calculation in

equation (2) does not apply; hence there is a need for a new
formula.

Recall that v has d children. When we finish with this in-
duction on l, we have all gv(d,k,w) values. Given that the
gv(d,k,w)’s are defined for the summary forest for Tv1∪·· ·∪
Tvd , the only node missing from the subtree rooted at v is v
itself, so to get the fv(k,w)’s, we simply have to “attach the
root." This is easy. The proof is omitted.
Lemma 3. (“Attaching the root”)

1. fv(1,−1) = 0 and fv(1,w) =−∞ for all w≥ 0.
2. If k ≥ 2, −1 ≤ w ≤ sv1 + sv2 + · · ·+ svd , then fv(k,w) =

combine(0,wv;gv(d,k−1,w),sv1 + · · ·+ svd).

5.2. The algorithm

Given the recurrence of the previous section, creating an al-
gorithm for the case of nonnegative integral weights is easy.
One can process the nodes in nonincreasing order by depth,
computing Fu(k) for all k for all children u of a node v be-
fore computing Fv(k) for any k. To compute Fv(k) for a node
v and all k’s, one computes fv(k,w) for all k and w. One does
this by computing gv(l,k,w) for all k and w, for l = 1,2, ...,d
(where v has d children), in that order, via Lemma 1 for the
basis and Lemma 2 for the recurrence.

Here is pseudocode for computing the optimal entropies.
(How to generate the trees is easy and is omitted.)

• For v ∈ {1, ...,n} in nonincreasing order by depth(v), do:

– If v is a leaf, set Fv(1) = 0 and Fv(k) = −∞ for k =
2,3, ...,K.

– Else do

◦ Where v has d ≥ 1 children, use Lemma 1 to define
gv(1,k,w) for all k,w.

◦ For l = 2,3, ...,d, do:

� Use Lemma 2 to compute gv(l,k,w) for all k,w.

◦ (Attach v:) Use Lemma 3 to compute fv(k,w) for
all k,w.

◦ Set Fv(k) = maxW
w=−1 fv(k,w) for all k.

• Output F1(k) for all k.

The time needed by the algorithm is O(K2nW), which is
pseudopolynomial in the input size. (A polynomial-time al-
gorithm would run in time polynomial in n and lgW , since W
can be represented in binary in approximately lgW bits.) Un-
fortunately we do not know if the problem is NP-Complete.

To illustrate the result, Figure 4 displays the maximum
entropy 60-node summary tree for a company organizational
chart with 43,134 employees. The structure of the organiza-
tion is clear: there are five main branches, where the blue-
and green-colored branches are the largest. Some employ-
ees at depth 3 (such as employee 265, the second-rightmost
blue node) have many more employees under them than em-
ployees at depth 2. The summary tree pictured has maximum

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

1

13 11 9 5

32 37 33

3

18 16 23
79
(575)

78
(823)

63
(534)

61
(665)

67
(995)

60
(1758)

48
(659)

44
(709)

45
(809)

46
(957)

43
(1150)

49
(1417)

29
(1280)

36
(1773)

233
(776)

234
(912)

396
(583)

401
(635)

394
(644)

395
(695)

266
(586)

261
(646)

264
(954)

267
(1120)

265
(1552)

20
(496)

17
(830)

28
(981)

25
(1369)

150
(1252)

105
(422)

106
(801)

99
(1645)

313
(1549)

318
(1581)

316
(1960)

other
(31)

other
(898)

other
(482)

other
(496)

other
(455)

other
(495)

other
(856)

other
(400)

other
(573)

other
(781)

other
(765)

other
(797)

Figure 4: The maximum entropy 60-node summary tree of a company organizational chart that has 43,134 equal-weighted
nodes. Nodes are labeled 1 through n = 43,134, node colors are determined by their depth-1 ancestor, and node areas are
proportional to their weights in the summary tree, which are labeled in parentheses, except summary tree nodes with weight 1,
where the node is drawn transparently with a dotted outline.

entropy, and therefore theoretically provides the viewer the
most information about the distribution of node weights
among all 60-node summary trees.

6. A polynomial-time additive approximation algorithm

What can one do if the weights are reals, which are forbidden
by the dynamic-programming algorithm which computes an
optimal summary tree? Even if the weights are all integral,
what can one do if their sum W is huge? To address these
two concerns, we give an additive approximation algorithm,
which takes a tree T weighted with nonnegative real weights
(wi), a positive integer K, and an ε > 0, and produces, for
each k≤K, a k-node summary tree whose entropy is at most
ε less than that of the optimal k-node summary tree.

However, for lack of space the full writeup of the algo-
rithm appears in the appendix in Section 9. Here we only
give a cursory summary.

The idea underlying the algorithm is simple: (1) scale
the weights uniformly so that they sum to an integer W ,
whose value will be determined later; (2) carefully round
real weight wi to w′i ∈ {bwic,1 + bwic}; and (3) run the
dynamic-programming algorithm of the previous section on
the scaled, rounded weights. Doing so, however, in such
a way as to guarantee small enough error relative to the
maximum entropy of the original weights while simultane-
ously keeping the running time down is quite nontrivial. The
rounding method uses elements of mathematical discrep-
ancy theory [Spe94, Cha00]. Specifically, we round the wi’s
to w′i’s such that for all nodes v in T , the sum of wi over de-
scendants i of v differs from the sum of w′i over descendants
i of v by at most 1 in absolute value. (Naively rounding each
wi up or down instead of minimizing the discrepancy on sub-
trees gives an algorithm approximately 1000 times slower
on some of our data sets.) In addition, showing that such

a rounding suffices to give entropy within ε of the optimal
entropy for a suitable W (Lemma 5) is one of the more inter-
esting results in this paper.

Here is the algorithm. Let us denote by T w an n-node tree
on {1,2, ...,n} whose ith node has real weight wi.

1. Choose the least integer W ≥ 3 such that
(2/ln2)(3K/W)(1 + lnK − ln(3K/W)) ≤ ε and scale
〈w1,w2, ...,wn〉 to have sum W .

2. Using our rounding algorithm (Lemma 4 in the ap-
pendix), produce a sequence 〈w′1,w′2, ...,w′n〉 with w′i ∈
{bwic,1+ bwic} such that for any node v in T , the sums
of wi over descendants i of v and of w′i over descendants
i of v differ by at most 1 in absolute value.

3. Run the exact dynamic-programming algorithm of Sec-
tion 5.2 on tree T w′ , to get an optimal k-node summary
tree T ′ for T w′ .

4. Output tree Z, which is T ′ except with weight wi on node
i instead.

It is not hard to see that the least W is
O((K/ε) log(max{K,1/ε})) and independent of n.
Definition 5. Let OPTk(T

w) denote the entropy of a maxi-
mum entropy k-node summary tree of T w.

Now we give the main theorem of this section.
Theorem 1. The tree Z produced by the algorithm is a
k-node summary tree for T w having (binary) entropy at
least OPTk(T

w)− ε. The running time of the algorithm is
O((K3/ε)n log(max{K,1/ε})).

Please see Section 9 in the appendix for details.

7. Examples

We illustrate the computation and visualization of maximum
entropy summary trees on five real-world data sets that can
be represented by large, rooted, node-weighted trees.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

First, we consider a set of aggregated webpage visits
to a large Internet portal by a sample of a million users
on one day in March, 2012. The nodes of this tree are
webpages that are organized hierarchically into categories
(such as “/home/news/international/russia," for example, or
“/home/sports/baseball"), and the weights are the number of
clicks per webpage aggregated across all users. There are
19,335 nodes in this tree, with a depth of 17 levels, a range
of zero to 365 children per node, and total weight of over
260 million. The distribution of weights per node is highly
skewed, with one webpage receiving over 20% of all clicks,
and a long tail in which 45% of webpages received 3 or fewer
clicks.

Since the sum of the weights was very large (260 mil-
lion), the exact algorithm of Section 5 was infeasible. In-
stead we use the approximate algorithm of Section 6, with
ε = 0.05, to compute summary trees that are nearly opti-
mal. We computed nearly optimal k-node summary trees for
k = 1, ...,100, and we view them in sequence to learn about
the distribution of clicks across the taxonomy of the web
portal. Figure 5 compares a summary tree computed using a
naive aggregation of weights to the maximum entropy sum-
mary tree of the same order, and to a larger maximum en-
tropy summary tree. The maximum entropy summary trees
naturally aggregate nodes in a way that spreads out their
weights as evenly as possible, resulting in informative vi-
sualizations.

The other data sets we investigated are:

1. One co-author’s hard drive, which contains 15,671 files
and directories, with node weights set to file sizes in kilo-
bytes. This drive has a total of 143,990,819 kilobytes of
disk space, where the tree has a depth of 6 levels, and the
number of children per node ranges from zero to 5,342.

2. The phylogenetic tree data from the Tree of Life Web
Project [MS07]. This tree has 94,080 nodes, 54,121 of
which represent a species or subspecies (and were given
a weight of 1), and the other 39,959 of which represent
a taxonomic categorization (such as “animal" or “plant,"
and thus were given a weight of zero).

3. The Mathematics Genealogy Project [Mat] subtree
rooted at Carl Friedrich Gauss, which has 43,527 nodes,
all given a weight of 1. For students with multiple advi-
sors, we forced the graph to be a tree by assigning the
primary advisor as the parent.

4. A section of an employee organizational chart, from a
large company, which contains 43,134 employees, all
given a weight of one.

For all five data sets (these four plus the web traffic
data), we computed four sets of k-node summary trees (for
k = 1, ...,100): (1) maximum entropy summary trees (when
feasible), (2) and (3), approximately maximum entropy sum-
mary trees using ε = 0.05 and ε = 0.1, respectively, and (4)
a greedy heuristic (which we describe in Section 8). Table 1
contains the running times for all four procedures for each

Figure 5: Three summary trees of the 19,335-node web traf-
fic tree. The upper figure is a naive aggregation to depth 2,
where the node weights are heavily skewed. The middle fig-
ure is the maximum entropy 32-node summary tree, which
displays much more information given the same number of
nodes. The bottom figure is the maximum entropy 60-node
summary tree, which provides an even finer-grained view of
the structure of clicks across the taxonomy of the web portal.
We color the nodes according to their depth-2 ancestor, and
we draw their sizes proportional to their weights.

data set, except the optimal algorithm for the web traffic and
hard drive data sets, whose weights were too large for this al-
gorithm to be feasible. Running times were longer for the ap-
proximation algorithm than the optimal algorithm for three
data sets because the sum of the scaled weights, which de-
pends only on K and ε, was higher than the sum of the orig-
inal weights. In these cases, running the optimal algorithm
is obviously preferable. We strongly encourage the reader to
view the visualizations of these sets of summary trees in the
supplementary materials, or on the author’s website [Shi].
For each data set, it is very instructive to view the summary
trees in sequence on a computer screen, from k = 1, ..,100,
to see the structure of the tree in increasing detail.

Another way to view the effectiveness of maximum en-
tropy summary trees is to plot their entropies for successive
values of k and compare them to the entropy of the origi-
nal tree. Figure 6 illustrates this curve for each of the five
examples.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

Table 1: Running times (on a 2.67 GHz machine with 48 GB
of memory) in minutes and seconds for different algorithms
on five real-world data sets, where columns labeled “ε ="
refer to the approximation algorithm with the given values of
ε, and K = 100 for each run. A hyphen indicates an instance
which did not terminate.

Data Set n W Opt. ε = 0.05 ε = 0.1 Greedy
Web Traffic 19335 260M — 4:44 2:17 0:01
Hard Drive 15671 143M — 3:49 2:13 0:01
Tree of Life 94080 54121 8:31 33:38 16:16 0:06
Math Gen. 43527 43527 2:23 10:47 5:24 0:02
Org Chart 43134 43134 2:39 11:45 6:12 0:03

We call this curve the entropy profile for a given weighted,
rooted tree. In the case of the web traffic data (Figure 6(a),
black line), the entropy profile shows that we can draw a
summary tree with about 92.2% as much entropy as the orig-
inal 19,335-node tree using only 100 nodes, which repre-
sents a great reduction in the size of the display for a small
cost in terms of information loss. For the hard drive data,
we achieve 91.1% of the entropy of the 15,671-node origi-
nal tree with only 100 nodes. The other three data sets have
much higher entropy in their original form, since all their
weights are one (or zero, in the case of some of the Tree
of Life nodes), and they naturally have high entropies. In
these cases, it is instructive to compare the entropy profiles
to the entropy of a uniform distribution with k categories,
for k = 1, ...,100. This curve is illustrated by the green line
in Figure 6(a) and (b). Even though the k-node maximum en-
tropy summary trees for k≤ 100 aren’t obtaining a high frac-
tion of the entropy of the original tree, they are—especially
in the case of the organizational chart—achieving nearly as
high an entropy (namely, lgk) as possible for a discrete dis-
tribution with k ≤ 100 possible outcomes.

0 20 40 60 80 100

0

1

2

3

4

5

Nodes in Summary Tree

E
nt

ro
py

(a) Web Traffic & Hard Drive

Summary Tree Entropy
Entropy of Original Tree

Web Traffic
Hard Disk
Uniform Distribution

0 20 40 60 80 100

0

5

10

15

Nodes in Summary Tree

E
nt

ro
py

(b) Org Chart, Phyl. Tree, & Math Genealogy

Summary Tree Entropy
Entropy of Original Tree

Org Chart
Tree of Life
Math Genealogy
Uniform Distribution

Figure 6: Entropy profiles for k = 1, ...,100 for all 5 data
sets. For the web traffic and hard drive data sets, the (ap-
proximate) maximum entropy summary trees have nearly as
high entropy as the original trees using many fewer nodes.

8. A (faster) heuristic

In this section we give a fast greedy heuristic allowing one
to compute K-node summary trees in time O(K2n), inde-

pendently of W . While these summary trees are not optimal,
in all real data sets we have tested, the heuristic always re-
turned at least 94% of the optimal entropy, and never took
more than six seconds.

Our greedy heuristic is motivated by a fact about depth-
1 trees: if a maximum entropy summary tree of a depth-1
tree has an “other" node with, say, m leaves in it, then this
“other" node must be comprised of the m leaves with least
weight. Replacing one of the smallest m leaves in the “other"
node with a larger leaf always yields a lower-entropy sum-
mary tree. This means for a depth-1 tree where the root has d
children, the maximum entropy k-node summary tree will al-
ways have an “other" node comprised of the d−k+2 small-
est leaves, for 2≤ k ≤ d.

Our greedy heuristic extends this idea to the whole tree by
considering only those “other" nodes comprised of the least-
size children among siblings. (If a different set of “other"
nodes uniquely produces the optimal summary tree, the
greedy heuristic will return a suboptimal summary tree.) The
greedy heuristic processes the nodes of a tree so that a node
is processed after all its children and so that the children of a
node are processed in nondecreasing order by size. We main-
tain an entropylist or elist for each node v. The elist for v is
a sequence of K reals, the kth being the entropy of some
k-node summary tree (ideally an optimal one, but not neces-
sarily) of Tv (or −∞ to correspond to no summary tree).

To explain the greedy algorithm, first we define a function
combine_lists(vec,α;vec′,α′), which takes two K-vectors
vec,vec′ and their respective weights α,α′ ≥ 0 and returns
one K-vector vec_out:

1. vec_out1 = 0.
2. For k = 2 to K, vec_outk =

maxk−1
k1=1 combine(veck1 ,α;vec′k−k1

,α′).

Let z be a K-dimensional vector which is all−∞’s, except
with z1 = 0. To process v:

1. If v is a leaf, set elistv = z and return.
2. Let v have children v1,v2, ...,vd , sorted into nondecreas-

ing order by size.
3. Generate a sequence 〈L1

v ,L
2
v , ...,L

d
v 〉 of vectors in RK ,

as follows: L1
v = elistv1 , and for l = 2,3, ...,d, Ll

v =
combine_lists(Ll−1

v ,sv1 + sv2 + · · ·+ svl−1 ;elistvl ,svl).
4. (Now attach v:) elistv = combine_lists(Ld

v ,sv1 + sv2 +
· · ·+ svd ;z,wv).

It is not hard to see that elistv[k], if nonnegative, is the en-
tropy of a k-node summary tree for Tv. It is easy to prove that
for binary trees, the greedy algorithm is optimal, since it can
never miss an “other” node. The reader can find an instance
for which the greedy algorithm generates a 4-node summary
tree with only 2/3 of the optimal entropy in Section 9.3 in
the appendix. An interesting open question is whether there
is a c > 0 such that the entropy returned by the greedy algo-
rithm is always at least c times optimal.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

References
[BMH05] BEERMANN D., MUNZNER T., HUMPHREYS G.:

Scalable, robust visualization of very large trees. Proc. EuroVis
(2005), 37–44. 2

[Cha00] CHAZELLE B.: The Discrepancy Method: Randomness
and Complexity. Cambridge University Press, New York, NY,
USA, 2000. 7, 11

[CN02] CARD S. K., NATION D.: Degree-of-interest trees: a
component of an attention-reactive user interface. Proceedings
of the Working Conference on Advanced Visual Interfaces (2002),
231–245. 2, 3

[Doe04] DOERR B.: Linear discrepancy of totally unimodular
matrices. Combinatorica 24, 1 (January 2004), 117–125. 12

[EF10] ELMQVIST N., FEKETE J.: Hierarchical aggregation
for information visualization: Overview, techniques and design
guidelines. IEEE Transactions on Visualization and Computer
Graphics 16, 3 (2010), 439–454. 4

[FP02] FEKETE J.-D., PLAISANT C.: Interactive information vi-
sualization of a million items. Proceedings of IEEE Symposium
on Information Visualization (2002), 117–124. 1, 2

[GKNpV93] GANSNER E., KOUTSOFIOS E., NORTH S. C.,
PHONG VO K.: A technique for drawing directed graphs. IEEE
Transactions on Software Engineering 19 (1993), 214–230. 4

[GPB02] GROSJEAN J., PLAISANT C., BEDERSON B.: Space-
tree: Supporting exploration in large node link tree, design evo-
lution and empirical evaluation. Procedings of IEEE Symposium
on Information Visualization (2002), 57–64. 2, 3

[HC04] HEER J., CARD S. K.: Doitrees revisited: Scalable,
space-constrained visualization of hierarchical data. In Advanced
Visual Interfaces (2004), pp. 421–424. URL: http://vis.
stanford.edu/papers/doitrees-revisited. 2, 3, 4

[HMM00] HERMAN I., MELANCON G., MARSHALL M. S.:
Graph visualization and navigation in information visualization:
A survey. IEEE Transactions on Visualization and Computer
Graphics 6, 1 (2000), 24–43. 2, 3

[LRP95] LAMPING J., RAO R., PIROLLI P.: A focus+context
technique based on hyperbolic geometry for visualizing large hi-
erarchies. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (New York, NY, USA, 1995),
CHI ’95, ACM Press/Addison-Wesley Publishing Co., pp. 401–
408. URL: http://dx.doi.org/10.1145/223904.
223956, doi:10.1145/223904.223956. 2

[Mat] The mathematics genealogy project [online]. URL: http:
//www.genealogy.ams.org/ [cited June 7, 2012]. 2, 8

[MDB04] MCGUFFIN M. J., DAVISON G., BALAKRISHNAN
R.: Expand ahead: a space-filling strategy for browsing trees.
Proceedings of IEEE Symposium on Information Visualization
(2004), 119–126. 3

[MGT∗03] MUNZNER T., GUIMBRETIERE R., TASIRAN S.,
ZHANG L., ZHOU Y.: Treejuxtaposer: Scalable tree comparison
using focus+context with guaranteed visibility. ACM Transac-
tions on Graphics 22, 3 (2003), 453–462. 2

[MS07] MADDISON D. R., SCHULZ K. S.: The tree of life
web project, 2007. URL: http://tolweb.org [cited May
3, 2012]. 8

[Nau04] NAUDTS J.: Continuity of a class of entropies and rel-
ative entropies. Reviews in Mathematical Physics 16, 6 (2004),
809–822. 11, 12, 13

[RBB02] ROST U., BORNBERG-BAUER E.: Treewiz: interactive
exploration of huge trees. Bioinformatics 18, 1 (2002), 109–114.
3

[Shi] SHIRLEY K. E.: [online]. URL: www.research.att.
com/~kshirley/summarytrees [cited April 10, 2013]. 8

[Shn92] SHNEIDERMAN B.: Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on Graphics 11, 1
(1992), 92–99. 1, 2

[Spe94] SPENCER J.: Ten Lectures on the Probabilistic Method,
2 ed. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1994. 7, 11

[vLKS∗11] VON LANDESBERGER T., KUIJPER A., SCHRECK
T., KOHLHAMMER J., VAN WIJK J. J., FEKETE J.-D., FELL-
NER D. W.: Visual analysis of large graphs: State-of-the-art
and future research challenges. Computer Graphics Forum 30,
6 (2011), 1719–1749. 1, 2

[vWvdW99] VAN WIJK J. J., VAN DE WETERING H.: Cushion
treemaps. Proceedings of IEEE Symposium on Information Visu-
alization (1999), 73–78. 2

[ZMC05] ZHAO S., MCGUFFIN M. J., CHIGNELL M. H.: Elas-
tic hierarchies: Combining treemaps and node-link diagrams.
Proceedings of IEEE Symposium on Information Visualization
(2005), 57–64. 2, 3

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://vis.stanford.edu/papers/doitrees-revisited
http://vis.stanford.edu/papers/doitrees-revisited
http://dx.doi.org/10.1145/223904.223956
http://dx.doi.org/10.1145/223904.223956
http://dx.doi.org/10.1145/223904.223956
http://www.genealogy.ams.org/
http://www.genealogy.ams.org/
http://tolweb.org
www.research.att.com/~kshirley/summarytrees
www.research.att.com/~kshirley/summarytrees

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

9. Appendix: Supplementary Material

9.1. A polynomial-time additive approximation
algorithm

9.1.1. High-level description

What can one do if the weights are reals, which are forbidden
by the dynamic-programming algorithm which computes an
optimal summary tree? Even if the weights are all integral,
what can one do if their sum W is huge? To address these two
concerns, in this section we give an additive approximation
algorithm, which takes a tree T weighted with nonnegative
real weights (wi), a positive integer K, and an ε > 0, and pro-
duces, for each k≤K, a k-node summary tree whose entropy
is at most ε less than that of the optimal k-node summary
tree.

The idea underlying the algorithm is simple—(1) scale
the weights uniformly so that they sum to an integer W ,
whose value will be determined later; (2) carefully round
real weight wi to w′i ∈ {bwic,1 + bwic}; and (3) run the
dynamic-programming algorithm of the previous section on
the results—but doing so in such a way as to guarantee small
enough error relative to the optimum for 〈w1,w2, ...,wn〉
while simultaneously keeping the running time down is quite
nontrivial. Larger W gives better accuracy at the cost of a
larger running time. (We will always ensure that ∑w′i =
∑wi = W to keep the normalization simple.) Specifically,
we have to address two questions: (1) how does the entropy
of a maximum entropy summary tree change if weights are
rounded, and (2) how should one round the weights?

Our two-part answer to question (1) is given in Lemmas 5
and 6. Any k-node summary tree corresponds to a partition
of the vertex set V =V (T) into k parts. For a single fixed but
unknown partition 〈S1,S2, ...,Sk〉, we are interested in two
probability distributions. One, with W j denoting ∑i∈S j

wi,
is the probability distribution 〈W1/W,W2/W, ...,Wk/W 〉. The
second is the same with w′i in place of wi; specifically, it is
〈W ′1/W,W ′2/W, ...,W ′k/W 〉/W , with W ′j = ∑i∈S j

w′i . We are
interested in how much the entropies of the distributions
〈W ′1 ,W ′2 , ...,W ′k 〉/W and 〈W ′1 ,W ′2 , ...,W ′k 〉/W differ. Fortu-
nately Lemma 6 [Nau04] bounds the entropy difference in
terms of the L1 distance between the distributions. There-
fore, we ask, how can we round the weights to keep the
L1 distance (∑k

j=1 |W j−W ′j |)/W small, without knowing the
partition 〈S1,S2, ...,Sk〉 in advance?

The surprising result is that if one ensures that for any
node v in the known input tree T , the sums of wi/W and
w′i/W over descendants of v are almost the same, then for
any unknown partition 〈S1,S2, ...,Sk〉 derivable from a k-
node summary tree, the two induced probability distributions
will have small L1 distance ∑

k
i=1 |(W

′
i −Wi)/W |. This fact

is proven in Lemma 5. The beauty here is that T is known
in advance, whereas 〈S1,S2, ...,Sk〉 is not. We define subtree
absolute discrepancy M to be the maximum, over nodes v, of

the absolute difference between the sums of wi and w′i over
descendants i of v.

This argument motivates the answer to (2): we should
round the weights so that the subtree absolute discrepancy
is small. How to do so is an interesting question in itself.
There is much work on discrepancy theory for general set
systems [Spe94, Cha00]. The surprising fact, known before
but rediscovered together with an associated algorithm by
the authors, is that one can round the wi’s while giving sub-
tree discrepancy M bounded by 1, for any T .

Having said all that, the real argument is more compli-
cated. There is no single partition 〈S1,S2, ...,Sk〉 with which
one works. One has to argue that rounding weights from wi
to w′i gives a new solution which is neither too large nor
too small. To do this properly, one has to start the argu-
ment from the optimal partitions for both weights (wi) and
weights (w′i). This argument is given in Lemma 7.

9.1.2. Details

Recall that we denote by T w an n-node tree on {1,2, ...,n}
whose ith node has real weight wi.

We give an algorithm which takes a tree T w on
{1,2, ...,n}, whose node i has nonnegative real weight wi,
positive integer K, and a positive real ε, and returns, for
each k ≤ K, a k-node summary tree whose entropy is at
least OPTk(T

w)− ε, where ε > 0 is a parameter. The run-
ning time of the algorithm (to generate all K trees) is
O((K3/ε)n log(max{K,1/ε})), though this is just a tree-
independent worst-case upper bound.

In a rooted tree T , x ∈ V (T), let Tx denote the subtree of
T rooted at x.
Definition 6. Suppose (wi), (w′i) are both real-valued
weight functions defined on {1,2, ...,n}.

1. The (signed) discrepancy disc(S) of a set S⊆ {1,2, ...,n}
is disc(S) = ∑i∈S(w

′
i−wi).

2. The absolute discrepancy of a set S ⊆ {1,2, ...,n} is
|disc(S)|.

3. Relative to tree T , the subtree absolute discrepancy M is
maxi |disc(V (Ti))|.

4. Given an ordered partition P = 〈S1,S2, ...,Sk〉
of {1,2, ...,n}, the absolute discrepancy of P is
∑

k
i=1 |disc(Si)|.

Definition 7. Say the pair (w,w′) of weight functions is
nearby if |w′i−wi| ≤ 1 for all i.

We start with our discrepancy lemma.
Lemma 4. There is a O(n)-time algorithm that takes n and
an n-node rooted tree T on {1,2, ...,n} rooted at node 1, and
a sequence 〈w1,w2,,wn〉 of nonnegative reals, and pro-
duces a sequence w′1,w

′
2, ...,w

′
n with w′i ∈ {bwic,1+ bwic}

such that the subtree absolute discrepancy M is at most 1.
Furthermore, if the wi’s sum to an integer, the w′i’s will have
the same sum.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

The existence of a rounding with subtree absolute discrep-
ancy strictly less than 1 follows from a much more general
result [Doe04], which itself follows on similar earlier results.
The existence of the algorithm also probably follows from
earlier results and will not be included here for lack of space.

Here is the algorithm.

1. Choose an integer W , as described later, and scale
〈w1,w2, ...,wn〉 to have sum W .

2. Using Lemma 4, produce a sequence 〈w′1,w′2, ...,w′n〉
with w′i ∈ {bwic,1+ bwic} having subtree absolute dis-
crepancy M ≤ 1 and with ∑w′i =W .

3. Run the exact dynamic-programming algorithm of Sec-
tion 5.2 on tree Tw′ , to get an optimal k-node summary
tree T ′ for Tw′ .

4. Output tree Z, which is T ′ except with weights (wi) in-
stead. (In other words, output the same summary tree,
but with the weight of a cluster containing nodes S ⊆
{1,2, ...,n} being ∑i∈S wi, instead of ∑i∈S w′i .)

Definition 8. Say a node v in a summary tree T ′ is a single-
ton node if its cluster has size 1, is a tree node if its cluster
has size exceeding 1 and it represents V (Tx) for some node
x, and otherwise is an “other” node.

Note that any “other” cluster which corresponds to the de-
scendants of exactly one child of a node v is being renamed
a tree node or a singleton node for the purpose of this defini-
tion. Also note that every node in a summary tree is exactly
one of singleton, tree, and “other.”
Definition 9. Say a node in a summary tree T ′ is active if it
is not an “other” node. Let Av be the set of active children
of v in the summary tree T ′ and let av = |Av|.

It is obvious that ∑v∈V (T ′) a(v) ≤ k if T ′ is a k-node
summary tree, since Au ∩ Av = ∅ for u 6= v implies that
∑v |Av| ≤ k.

Now we show that keeping small the subtree absolute dis-
crepancy relative to T ensures that the absolute discrepancy
of the partition associated with every k-node summary tree
of T will be small.
Lemma 5. Let T be a rooted tree on V = {1,2, ...,n} and
let (w,w′) be a nearby pair of weight functions on V . Let
M be the subtree absolute discrepancy (relative to tree T)
of that pair. Let D = k+2kM. Let P = 〈S1,S2, ...,Sk〉 be the
partition of V defined by any k-node summary tree T ′ for T .
Then the absolute discrepancy of P is at most D.

It is important for this lemma that P be derived from a k-
node summary tree for T (and not be an arbitrary partition
into k parts).

Proof. We need to prove that ∑
k
i=1 |disc(Si)| ≤ k + 2kM,

where M = maxv∈V (T) |disc(V (Tv))|. Each set Si corre-
sponds to either a singleton node in T ′, a tree node in T ′,
or an “other” node in T ′.

If Si corresponds to a singleton node in T ′, then |Si| = 1

and, say, Si = {u}. Then |disc(Si)|= |wu−w′u| ≤ 1, because
(w,w′) is nearby.

If Si corresponds to a tree node in T ′, then there is
a node x ∈ V (T) such that Si = V (Tx) and |disc(Si)| =
|∑y∈V (Tx)(w

′
y−wy)| ≤M.

Now if u is an “other” node in T ′, which is clus-
ter C in T , whose parent in T ′ is v, then disc(V (Tv)) =
(w′v − wv) + ∑a∈Av

disc(V (Ta)) + disc(C), and therefore
disc(C) = disc(V (Tv)) − (w′v − wv) − ∑a∈Av

disc(V (Ta)).
Hence |disc(C)| ≤ |disc(V (Tv))|+ 1+∑a∈Av

|disc(V (Ta))|
≤ M + 1+ avM. Clearly this can be bounded by 1+ (k +
1)M, proving that ∑i |disc(Si)| ≤ k(1+ (k + 1)M), but we
can do better.

Let ks be the number of singleton nodes in T ′, let kt be
the number of tree nodes in T ′, and let ko be the number of
“other” nodes in T ′. Clearly ks + kt + ko = k.

Any “other” cluster S has a parent node u in the summary
tree. Let parent(S) denote the parent of S, which is a sin-
gleton node. Hence aparent(S) denotes the number of active
children of the parent of S in the original n-node tree.

We now have ∑i:Si is an “other” cluster |disc(Si)| ≤
koM + ko +M ∑i:Si is an “other” cluster aparent(Si) ≤ koM +
ko +Mk, since ∑v av ≤ k and no node has two “other” chil-
dren. Now ∑all i |disc(Si)| ≤ (ks ·1)+(ktM)+(koM+ ko +
Mk) ≤ k+2kM.

Note. Via Lemma 4, we can guarantee that M = 1 and
hence, by Lemma 5, that D = 3K.
Definition 10. Let W0 = d10D ln(max{K,1/ε,10})/εe.

In the rest of this section we will prove the following the-
orem.
Theorem 2. The tree Z produced by the algorithm is a k-
node summary tree for T w having (binary) entropy at least
OPTk(T

w)− ε, provided that W is chosen large enough that
W ≥ D/K and that for η = D/W,(

2
ln2

)
η(1+ lnK− lnη)≤ ε.

The least such W is at most W0.

Let us first analyze the running time.
Theorem 3. The running time of the algorithm is
O((K3/ε)n log(max{K,1/ε})).

Proof. ∑
n
i=1 w′i =W ≤W0. The running time of the exact al-

gorithm is O(K2nW) and W0 is O((K/ε) log(max{K,1/ε})).

Definition 11. For sequences 〈p1, p2, ..., pk〉 and
〈q1,q2, ...,qk〉 of the same length, k, of nonnegative
reals summing to 1, let He(p) = −∑

k
i=1 pi ln pi, where

“0ln0” is taken to be 0, and let ||p−q||1 = ∑
k
i=1 |pi−qi|.

To prove Theorem 2, we need a lemma, equation (55) in
[Nau04], which is a quantitative version of the statement that

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

almost identical probability distributions on {1,2, ...,k} have
almost identical entropy.
Lemma 6. [Nau04, equation (55)] For 2 ≤ k ≤ K, se-
quences 〈p1, p2, ..., pk〉, 〈q1,q2, ...,qk〉 of the same length
of nonnegative reals summing to 1, and γ ≤ k such that
||p−q||1 ≤ γ,

|He(p)−He(q)| ≤ γ(1+ lnK− lnγ).

We need a simple lemma whose proof uses Lemma 6.
First we need a few definitions, which deal with two dif-
ferent k-node summary trees. (We will apply this lemma
to the optimal k-node summary trees for 〈w1,w2, ...,wn〉
and 〈w′1,w′2, ...,w′n〉.) Definition 12 and Lemma 7 essentially
state that for a fixed partition of {1,2, ...,n} into k parts, the
associated probability distributions defined by w and w′ will
have almost the same entropy, provided that η = D/W is
small. Quantitatively the lemma tells us how large W must
be, in order to guarantee error less than ε.
Definition 12.

1. Let 〈S′1,S′2, ...,S′k〉 be a partition of {1,2, ...,n} given by
a k-node summary tree. Let ŝ j = ∑i∈S′j wi and let p̂ j =

ŝ j/W. Analogously, for the w′’s, let s′j = ∑i∈S′j w′i and

p′j = s′j/W.
2. Let 〈S1,S2, ...,Sk〉 be a second partition of {1,2, ...,n}

given by a k-node summary tree. Just as above, let s j =

∑i∈S j
wi and let p j = s j/W, and analogously let s̄ j =

∑i∈S j
w′i and p̄ j = s̄ j/W.

3. Last, let ∆ = η(1+ lnK− lnη), where recall from Theo-
rem 2 that η = D/W.

Now we are ready for our lemma.
Lemma 7. 1.

|He(p̂)−He(p′)| ≤ ∆ (3)

and
2.

|He(p)−He(p̄)| ≤ ∆. (4)

Proof. We have

||p̂− p′||1 =
k

∑
j=1
|p̂ j− p′j||

=
1

W

k

∑
j=1

∣∣∣∣∣∣
∑

i∈S′j

wi

−
∑

i∈S′j

w′i

∣∣∣∣∣∣
=

1
W
|disc(〈S′1,S′2, ...,S′k〉)| ≤

D
W

= η.

By Lemma 6,

|He(p̂)−He(p′)| ≤ η(1+ lnK− lnη) = ∆.

Similarly,

||p− p̄||1 =
k

∑
j=1
|p j− p̄ j||

=
1

W

k

∑
j=1

∣∣∣∣∣
(

∑
i∈S j

wi

)
−

(
∑

i∈S j

w′i

)∣∣∣∣∣
≤ 1

W
|disc(〈S1,S2, ...,Sk〉)| ≤

D
W

= η.

By Lemma 6,

|He(p)−He(p̄)| ≤ η(1+ lnK− lnη) = ∆.

Here is the proof of Theorem 2.

Proof. Let 〈S′1,S′2, ...,S′k〉 be the partition of {1,2, ...,n} de-
fined by a k-node summary tree of maximum entropy for
weights 〈w′1,w′2, ...,w′n〉. Similarly, let 〈S1,S2, ...,Sk〉 be the
partition of {1,2, ...,n} defined by a k-node summary tree
of maximum entropy for weights 〈w1,w2, ...,wn〉. Equation
(4) shows that there is a k-node summary tree for T w′ (us-
ing 〈S1,S2, ...,Sk〉) of entropy at least He(p̄)≥He(p)−∆ =
OPT e

k (T
w)−∆, where OPT e

k (T
w) = (ln2)OPTk(T

w) is the
optimal value of He over k-node summary trees of T w.
Therefore

OPT e
k (T

w′)≥ He(p̄)≥ OPT e
k (T

w)−∆. (5)

It follows that the entropy He(T ′) of the output tree
(which has weights derived from w, not w′) satisfies
He(T) = He(p̂) ≥ He(p′) − ∆ (by (3)), which equals
OPT e

k (T
w′)− ∆ ≥ (OPT e

k (T
w)− ∆)− ∆ (by (5)), which

equals OPT e
k (T

w)−2∆. Converting now from natural to bi-

nary entropy, we have Hw(T ′)≥OPTk(T
w)−

(
2

ln 2

)
∆. Now

it is a simple matter to choose W to be the least positive in-
teger at least D/k (so that η = D/W ≤ k) such that(

2
ln2

)
D
W

(
1+ lnK + ln

W
D

)
≤ ε.

The reader can verify that the optimal W satisfies W ≤W0.

Since g(x) = (D/x)(1+ lnK + ln(x/D)) is decreasing on
(D/K,∞), one can use binary search on [dD/Ke,W0] to find
the smallest integer W in that interval with g(W)≤ ε.

9.2. Proof of lemma 2

Proof. It is clear that for l ≥ 2, gv(l,1,sv1 + sv2 + · · ·+ svl) =
0 and gv(l,1,w) =−∞ for all other w, −1≤ w≤W .

Now suppose l,k≥ 2. For part 2., an optimal k-node sum-
mary tree for the union of the first l subtrees and having no
“other” node must consist of an optimal summary tree for the
first l− 1 children, which has no “other” node, and having

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Howard Karloff & Kenneth E. Shirley / Maximum Entropy Summary Trees

some number k1 of nodes, together with an optimal (k−k1)-
node summary tree for the subtree rooted at the lth child.
(The two summary trees must be optimal by equation (2),
since otherwise the final tree would not be optimal.)

For part 3., consider an optimal summary tree for the
union of the subtrees rooted at the first l children, having an
“other” node of weight w ≥ 0. Let Z be the set represented
by the “other” node. By the definition of a summary tree, ei-
ther Z∩V (Tvl) = ∅ (which is case (a)), or Z =V (Tvl) (which
is case (b)), or Z ⊃

6=
V (Tvl) (which is the most complicated

case, (c)).

In case (a), we must have a summary tree for the first l−1
nodes having some number k1, 1≤ k1 ≤ k−1, of nodes (all
such possible values for k1 being valid), together with a sum-
mary tree on k−k1 nodes having no “other” node for Tvl . (If
k−k1 = 1, the summary tree for Tvl may or may not contain
an “other” node; it doesn’t matter.) Both summary trees must
be of maximum entropy, as otherwise, by equation (2), the fi-
nal tree would not have maximum entropy. That the formula
given in part (a) is correct follows from the computation of
the entropy of the resulting tree.

In case (b), we must have a summary tree for the first l−1
children, which has no “other” node, which is combined with
a 1-node summary tree for Tvl which has an “other” node of
weight w = svl . The formula is correct since it simply gives
the entropy of the resulting summary tree.

Case (c) is tricky. We had a summary tree of the union
of the subtrees rooted at the first l− 1 children, one clus-
ter of which was “other,” plus one tree, all of whose nodes
are together in one “other” cluster. We have to “merge” the
“other” node of the summary tree for the first l−1 children
with the set V (Tvl), to get an enlarged “other” node (and a
k-node summary tree). It follows that the summary tree of
the first l−1 nodes must have had k nodes.

Computing the entropy of the new tree is not trivial.
Specifically, let M = sv1 + · · ·+ svl−1 be the sum of the
weights of all nodes in the k-node summary tree, including
the one cluster labeled “other.” Let wL = w− svl ≥ 0 be the
sum of the weights of all nodes in the “other” cluster in the
k-node summary tree. Let wR = svl . Let H be the entropy of
that collection of k trees.

The surprising lemma that makes dynamic programming
feasible is that the entropy of the collection of k sets in which
the set V (Tvl) is merged with the “other” cluster of the first
l−1 children, to get an enlarged “other” cluster, is given by
a function of H, M, wL and wR alone (and doesn’t depend,
for example, on the numbers of nodes in individual clusters,
or their weights). However, we omit the detailed calculation
justifying the value of H′.

9.3. A bad example for greedy

An interesting question is, how much smaller than the op-
timal entropy can the entropy obtained from the greedy
heuristic be? Here we give an example for which the heuris-
tic returns a 4-node summary tree of entropy only 2/3 that
of the optimal 4-node summary tree.

Let T be a tree on {1,2, ...,7}, with node 1 as the root,
having edges {1,2}, {1,3}, {1,4}, {2,5}, {3,6}, and {4,7}.
Nodes 1, 2, 4, and 5 have weight 0. Nodes 3 and 6 have
weight 1, and node 7 has weight 2. Sorting the children of
node 1 into nondecreasing order by size gives 〈2,3,4〉. How-
ever, there is a 4-node summary tree of entropy 1.5 which
has clusters {1}, {3}, {6}, {2,4,5,7}. The entropy asso-
ciated with this tree is H(1/4,1/4,2/4) = 2 · (1/4) lg4 +
(1/2) lg2 = 1.5. The greedy algorithm produces the follow-
ing vectors for K = 4:

1. elist2 = 〈0,0,−∞,−∞〉.
2. elist3 = 〈0,1,−∞,−∞〉.
3. L3 = 〈0,0,1,1〉.
4. elist4 = 〈0,0,−∞,−∞〉.
5. L4 = 〈0,1,1,1.5〉.
6. Final output entropy vector, after attaching the root:
〈0,0,1,1〉.

Hence, for k = 4, the optimal algorithm obtains 1.5 bits of
entropy, as contrasted with the 1 bit obtained by the heuristic,
thereby obtaining 2/3 of the available entropy.

However, we have no example for which greedy obtains
only 2/3 of the optimal entropy, when the optimal entropy
goes to infinity. Nor do we know if there is any fixed positive
lower bound on the ratio between the entropy obtained by
greedy and the optimal entropy, the so-called performance
ratio.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

