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Abstract—Conveying a narrative with visualizations often requires choosing an order in which to present visualizations. While 
evidence exists that narrative sequencing in traditional stories can affect comprehension and memory, little is known about how 
sequencing choices affect narrative visualization. We consider the forms and reactions to sequencing in narrative visualization 
presentations to provide a deeper understanding with a focus on linear, “slideshow-style” presentations. We conduct a qualitative 
analysis of 42 professional narrative visualizations to gain empirical knowledge on the forms that structure and sequence take. 
Based on the results of this study we propose a graph-driven approach for automatically identifying effective sequences in a set of 
visualizations to be presented linearly. Our approach identifies possible transitions in a visualization set and prioritizes local 
(visualization-to-visualization) transitions based on an objective function that minimizes the cost of transitions from the audience 
perspective. We conduct two studies to validate this function. We also expand the approach with additional knowledge of user 
preferences for different types of local transitions and the effects of global sequencing strategies on memory, preference, and 
comprehension. Our results include a relative ranking of types of visualization transitions by the audience perspective and support 
for memory and subjective rating benefits of visualization sequences that use parallelism as a structural device. We discuss how 
these insights can guide the design of narrative visualization and systems that support optimization of visualization sequence.  

Index Terms—Data storytelling, narrative visualization, narrative structure. 

 

1 INTRODUCTION 

Storytelling is now a focus in visualization research and practice, as 
the study of narrative visualizations (e.g., [13][26]), development of 
automated data storytelling tools (e.g., [21]), and proliferation of 
narrative visualizations in news media attest. Supporting data story 
creation among those who may lack training in visualization design 
is particularly valuable, as these users may have domain expertise 
that allows them to produce useful insights into public data. 

Story creation involves sequential processes of context definition, 
information selection, modality selection, and choosing an order to 
effectively convey the intended narrative. In using visualizations to 
tell a story, the events of interest are patterns in data sets represented 
in visualizations. A typical creation process involves using a tool like 
Tableau [31] or Microsoft Excel [19] to visually analyze data, and to 
generate visualizations via vector graphics or images for presenta-
tion. The story creator then must decide how to thread the represen-
tations into a compelling yet understandable sequence.  

This structuring of evidence, combined with the choice of appro-
priate rhetorical strategies, is referred to as “the art of storytelling” 
among literary scholars. Evidence from cognitive psychology sug-
gests that structural aspects, including the sequence in which infor-
mation is delivered, play an important role in effective storytelling. 
Whether trial evidence or fictional narratives, the sequencing and 
forms of grouping used in a narrative affect the meaning that is con-
structed, the judgments that are consequently made by the audience 
[22], and the ability to recall the information later [32]. 

Research in narrative visualization points to visualization features 
that afford storytelling including guided emphasis (e.g., spatial order-
ing or partial animation [13][27] and structures for reader-driven 
storytelling (e.g., the Drill-down story [27]). Yet much is still to be 

learned about the principles that govern effective structuring of tran-
sitions between consecutive visualizations in narrative presentations, 
and how different tactics for sequencing visualizations are combined 
into global strategies in formats like slideshow presentations. A gap 
also exists in current understanding around how end-users’ percep-
tions are affected by sequencing choices in narrative visualization. 
What characteristics make a sequence of visualizations successful in 
the eyes of users, as well as the designer? With the popularity of 
narrative visualization among individuals who may lack design or 
statistical expertise yet have important domain knowledge to con-
tribute, a deeper understanding of sequence could pave the way for 
tools and systems that support more effective story structuring. We 
focus in particular on how linear, slideshow-style presentations can 
benefit from knowledge on the effects of sequencing styles on user 
perceptions and message communication. These may include 
slideshows based on series of data representations for live presenta-
tion as well as interactive visualization slideshows presented online.  

A central contribution of our work is an outline of how automatic 
sequencing could be approached in designing systems to help non-
designers navigate structuring decisions in creating narrative visuali-
zations, such as by semi-automatically identifying and presenting 
more “effective” visualization sequences during a design session. 
First, to gain empirical knowledge on the forms that structure and 
sequence take in narrative visualization, we conducted a qualitative 
analysis of 42 professional narrative visualizations. Our results in-
form a graph-driven approach that identifies possible transitions in a 
visualization set (represented as nodes in a graph) and prioritizes 
visualization-to-visualization transitions (represented as weighted 
links) based on an objective function that minimizes the cost of tran-
sitions from the audience perspective. We conducted two large stud-
ies to validate this function as well as to expand our approach with 
additional knowledge of user preferences for different types of local 
transitions and the effects of global sequencing strategies on 
memory, preference, and comprehension. Our results demonstrate 
insights for guiding the design of narrative visualizations and for 
informing systems to support visualization sequencing. These in-
clude a relative ranking of types of visualization transitions by the 
audience perspective and support for memory and subjective rating 
benefits of visualization sequences that use parallelism as a structural 
device. We conclude by discussing the implications of our findings 

 
 

 Jessica Hullman and Eytan Adar are with the University of Michigan. E-
mail: {jhullman, eadar}@umich.edu. 

 Steven Drucker, Nathalie Henry Riche, Bongshin Lee, and Danyel Fisher
are with Microsoft Research. E-mail: {sdrucker, nathalie.henry, bongshin,
danyelf}@microsoft.com. 

 
Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013. 
For information on obtaining reprints of this article, please send  
e-mail to: tvcg@computer.org. 



for the design of linear-style narrative visualization presentations and 
tools to support non-designers in creating narrative visualizations. 

2 RELATED WORK 

2.1 Narrative Sequencing and Styling 

Our work is motivated by the systematic analysis of narrative in 
cognitive psychology. Researchers have empirically demonstrated 
that stories are perceived as being made of conceptually-separable 
episodes or sub-goals in a chain of actions that form the story’s plot 
[2]. Stories are thought to contain microstructure via the particular 
details of an event and macro-structure via the relationship of those 
events to one another in the plot (e.g., [32]). We make an analogy 
between story episodes and visualization states in narrative visualiza-
tions, which must also be sequenced to form a larger presentation.  

Many psychological theories of narrative are grounded in exper-
iments showing the importance of structure and sequence to story 
reception. Studies have shown that subjects are sensitive to suprasen-
tential, or between-sentence, structure in a narrative, and use it to 
guide comprehension and recall. Such experiments typically test 
subjects understanding and recall for “scrambled” or randomly se-
quenced stories in comparison to those presented in “normal” order 
(e.g., temporal sequencing or groupings by causal implications [32]). 
Our global sequencing patterns study (Sect. 5.2) takes motivation 
from this approach. Pennington and Hastie [22] show that grouping 
court evidence by sub-stories leads to more confident and unanimous 
decisions among jurors over evidence that is presented haphazardly 
(e.g., with grouping based on motives rather than temporal proximi-
ty). These results may be due to story understanding being a con-
structive process in which audience members summon up explana-
tions so as to choose between decision alternatives (see also [36]). 
While these authors assume a “correct” story, our approach takes a 
more conservative stance by assuming that more than one compel-
ling sequence may be effective to narrate a set of visualizations. Yet 
just as jurors in a trial must learn and choose among decision alterna-
tives in order to generate the most likely story, creators of narrative 
visualizations must infer viable transitions between visualizations 
and make judgments about which are most persuasive to use in a 
story. By inquiring into transition principles and how end-users react 
to them, we intend to support this aspect of the story creation.  

2.2 Narrative Visualization  

Existing research around narrative visualization creation includes 
systems for visualizing and sharing public and personally relevant 
data (e.g., [33]); supporting new interaction styles from rich media 
artifacts (e.g., [20]); and design space taxonomies to describe tech-
niques used in exemplar professional artifacts [13][27]. The latter 
studies provide generalized advice for designing narrative visualiza-
tions. In addition to noting narrative formats that appear in interac-
tive narrative visualizations such as the interactive slideshow [27], 
these studies describe how prioritization and sequencing of infor-
mation can occur through spatial ordering, animation, and suggestive 
default views, among others [13] [27]. Yet, despite giving examples 
of successful structuring techniques, there is a lack of clearly out-
lined measures that creators can use to find the best sequence for 
visualizations among multiple possible sequences. We extend work 
in narrative visualization via an understanding of sequence informed 
by empirical analysis of professional visualizations as well as user 
validated measures and transition characterizations.   

Prior work on visualization transitions includes Heer and Robert-
son’s [10] study of animated transitions in statistical graphics. 
Though they focused primarily on the effect of animation and stag-
ing of transitions taken as given, we note parallels between our prin-
ciple of maintaining consistency and the guidelines they propose. 
The taxonomy of transition types we identify in professional narra-
tive visualizations offer an end-user perspective of conceptually-

based transitions (i.e., changes to the data being shown), providing a 
counterpoint to the types that Heer and Robertson define from a sys-
tem representation of schematic and syntactic operations applied to 
data. We expand on their observations of transitions based in 
timesteps, filtering, and data schema changes, elaborating how users 
perceive these and other conceptual changes that occur in transitions. 

2.3 The Role of Alternatives in Design 

Our intention to inform the design of tools for supporting narrative 
visualization creation is motivated by design research demonstrating 
the importance of exploration of alternative designs among creators. 
Researchers like Duncker [8] have shown that individuals often fix-
ate on a single or narrow range of potential solutions early in a de-
sign process. Studies of successful design processes, however, indi-
cate that generating and considering alternatives supports better un-
derstanding of the design specification: constraints and guidelines 
that are not in the initial specification but which help dictate what 
makes for a desirable design [16]. These insights have been applied 
most recently in ad design studies that find that parallel prototyping 
techniques that involve early generation of diverse examples produce 
better quality designs than techniques based in iteration and refining 
of a single design [7]. We note that the time constraints operating on 
creators of narrative visualization presentations like data slideshows 
make it unlikely that all possible sequencings for telling a given story 
from a visualization set will be explored. The risk is that the creator 
uses a less compelling sequence than they might. Having a better 
understanding what drives sequencing choices in narrative visualiza-
tion, and a user-validated approach for algorithmically identify and 
prioritizing possible sequences is one way to work towards support-
ing exploration in the narrative visualization design process.  

3 PATTERNS IN NARRATIVE VISUALIZATION SEQUENCE 

3.1 Motivating Scenario  

Many narrative visualizations that researchers point to are created by 
professional designers who draw on advanced training in journalism, 
graphic design, statistics, and other relevant fields to create compel-
ling presentations (e.g., [13][27]). Yet in numerous scenarios, non-
designers create presentations from visualized data for the purpose of 
communicating a narrative of interest to a stakeholder or group. A 
marketing analyst or other data consultant may present clients with 
data presentations that describe the state of the market for a product, 
or the results of a change made to the client business strategy, prod-
uct, or website. In many such cases, these individuals must first 
make sense of data themselves to distil important points for a presen-
tation, capture these points in data representations like visualizations, 
and then sequence these representations in a linear presentation. In 
this paper, we consider the latter stage in this process, namely the act 
of sequencing selected visualizations. When the creator lacks design 
training, this can be a time-consuming trial-and-error process. 

We argue that analysts using narrated data presentations could be 
helped by tools for identifying effective sequences for visualizations. 
Considering alternative paths through a set of visualizations is likely 
to enable a more compelling final artifact based on the importance of 
design alternatives in creation [16]. We next describe an analysis of 
professional narrative visualizations that we used in order to identify 
what makes a good sequence. Our observations inform an algorith-
mic approach to identifying sequences introduced in Sect. 4. 

3.2 Qualitative Analysis  

To inform the design of a tool that suggests good story structures 
with insights on the strategies of professional designers, we conduct-
ed a qualitative analysis of the structural aspects of 42 examples of 
explicitly-guided (i.e., unambiguously linearly ordered) professional 
narrative visualizations. The study poses several questions about 
sequencing in professional narrative visualization presentations:  



 What types of changes (transition types) drive between-
visualization transitions in linear narrative visualizations? 

 Are there general characteristics that are shared among the 
common types of transitions?  

 How do strategies for local (visualization-to-visualization) 
transitions compare to global transitions (patterns involving 
multiple local transitions)?    

3.2.1 Study Design 

42 narrative visualizations created between 2006 and 2012 were 
compiled (full list in supplementary file). We seeded the set with 
visualizations in an independently-curated sample of New York 
Times (NYT) and Guardian interactives [23]. Additional examples 
came from visualization blogs and repositories (e.g., visualizing.org) 
and well-known news sources (e.g., BBC).  We included only visual-
izations with non-ambiguous sequencing cues like numbered slides 
or steps across linked views, a “Next,” “→,” or “Continue” button, or 
a “Play” button for a self-running video or slideshow. These features 
had to occur without additional navigational choices. Interactive 
slideshows formed the largest format in our sample (23/42), with 
other presentations including animated data videos (7/42) and inter-
active timelines (6/42), live narrated visualization presentations 
(1/42), and static slideshows archived online but originally intended 
for live presentation (5/42).  

While the individual states that comprise a visualization sequence 
are fairly unambiguous in a slideshow-style presentation, the constit-
uent states of smooth animated narrative visualizations are more 
difficult to identify. A visualization state has been defined as a set of 
parameters applied to data [14], or the settings of interface widgets in 
a visualization environment along with the application content [11]. 
We define a narrative visualization state as an informationally-
distinct visual representation and transitions as state changes after 
[10]. Our definition of a state does not consider different portions of 
a single static visualization to be unique states. Though static visuali-
zations are likely to be processed sequentially (such as if labels sug-
gest that users examine data in a particular order), coding these 
would require more arbitrary judgments on how to divide static 
graphs. While a slideshow composed of unique static slides often 
divides into one state per slide, a single slide can represent multiple 
states if it contains animation within single numbered slides. Rather 
than counting the states in smooth animations, we focus on noting 
changes from one transition form to another. For instance, we are 
interested in when a series of chronological transitions showing pop-
ulation estimates for different time slices (possibly spanning many 
states) changes to another transition form. The time-based transition 
sequence might give way to a transition where the measure or meas-

ure changes to GDP per capita while time stays constant.  
Coding proceeded as follows: two coders first informally ana-

lyzed visualizations in the set with a focus on those aspects of the 
presentations that suggested how consecutive states in a data story 
are prioritized or ordered. Over several iterations, various categories 
of state-to-state order emerged. A coding protocol that captured these 
aspects was created and discussed by both coders. Visual interaction 
strategies that appeared relevant to sequencing, such as animated 
transitions between states, were also noted. Ten visualizations were 
randomly drawn from the set and coded independently by both cod-
ers, and the protocol updated upon reconciliation of disagreements. 
The remaining visualizations were then coded independently. 

Additionally, we analyzed global structuring tactics spanning 
longer sequences of visualizations in a presentation. Coding first at 
the local level of visualization-to-visualization transitions allowed us 
to work up to observations at a global presentational level in a final 
collaborative coding. This entailed reviewing the combinations of 
transitions that occurred in each presentation to note patterns indicat-
ing global sequencing strategies.   

3.2.2 Design Implications 

Several insights that emerged from our analysis inform the design of 
an algorithmic approach that we describe below for identifying se-
quencing possibilities in narrative visualization. The first implication 
consists of a set of transition types characterizing the difference be-
tween the data shown in one visualization and another that directly 
follows it (see Table 1). A key aspect of the types we observed is that 
each represents a single change in one dimension of a data represen-
tation from one slide (visualization) to the next. As such, the types 
imply a data-dependent intention behind sequencing choices. Five 
primary categories of transition types that share this characteristic 
emerged from coding. In Dialogue transitions, a question asked in 
one state is followed by a visualization that answers that question. 
Temporal transitions involve orderings of visualization states based 
on a time variable associated with the data in each (see Fig. 2). These 
include standard chronology as well as moving from back in time 
from one visualization to the next (reverse chronological) or forward 
in time to a visualization that shows a future projection (e.g., future 
chronological). In Causal transitions, one visualization state follows 
another to explicitly hypothesize a causal relationship. For example, 
a bar chart of voting likelihood by region could be followed by a bar 
chart of voting likelihood by income along with explicit mention that 
income influences voting. Granularity transitions order visualization 
states based on the level of detail or degree of filtering of data they 
involve, such as from an overview plot of industry stock perfor-
mances to a plot focused on stocks in a single industry (see also Fig. 
1, 2). Finally, in Comparison transitions, either the independent vari-
able (i.e., dimension) or the dependent variable (i.e., measure) is held 

Table 1. Transition types with sample prevalence.  

Category Transition Types Sample 
Frequency 

Total  

Dialogue Question & Answer (4/42) 16.7% 
Who, What, When, 
Where, Why, How 

(3/42) 

Temporal Simple chronological (29/42) 88.1% 
Reverse chronological (11/42) 
Future chronological (12/42) 

Causal Explicit Cause (7/42) 23.8% 
Alternative Reality (3/42) 

Granularity General to Specific (28/42) 71.4% 
Specific to General (16/42)  

Comparison Dimension Walk (20/42) 64.3% 
Measure Walk (19/42) 

Spatial Spatial Proximity (10/42) 23.8% 

 

    Fig. 1. Parallelism in sequencing in the NYT’s “Copenhagen: Emis-
sions, Treaties, and Impacts: Possible Impacts” interactive [3]. Three
general-to-specific transitions detail three possible climate outcomes
(drought, flooding, crop shortage), which at a higher level comprise a
measure walk sequence. 



constant while the other is changed. This can show how populations 
differ for a given outcome, or provide multiple perspectives on a 
single population or dimension, respectively (see Fig. 2). Spatial 
transitions are a subset of comparison transitions where the same 
dependent variable is shown for different spatial areas in sequence. 
Table 1 lists transition types and the sample frequency.  

These transition types can be distinguished based on whether they 
require an explicit interpretation of the data applied by the creator 
(which we refer to as explicit transition types), or are inferable from 
the data attributes themselves using conventions based on data types 
or graphical formats (which we refer to as implicit transition types). 
For example, Question & Answer transitions require that a creator 
has a priori classified visualization states by what question(s) each 
answers, and Causal transitions similarly require creator input on 
what variables or patterns are causal within and across visualizations 
in the set. Chronological transitions, on the other hand, could be 
labelled automatically given simple matching of data variables 
against common temporal formats and sorting. Similarly, visualiza-
tions of data with hierarchical variables or spatial coordinates could 
be labelled automatically for Granularity and Spatial transitions, 
respectively. Comparison transitions can be inferred either by relying 
on conventions in existing systems for distinguishing dimensions 
from measures (e.g., [30]) or by using conventions of the graphical 
format to infer which variable is the independent dimension and 
which is the dependent measures, such as by looking at the axes 
mappings in a scatterplot, where the x-axis is typically reserved for a 
independent measure. We focus on implicit types in the sequencing 
approach that we outline as these types can be inferred more easily.  

Another finding describes higher-level or global strategies for se-
quencing visualizations. We noted that designers occasionally re-
peated a pattern comprised of two or more transition types, as if to 
lend consistency to the presentation’s structure as well as to equate 
different parts of a presentation. We refer to this occurrence as tran-
sition parallelism based on its resemblance to linguistic parallelism, 
in which a syntactic structure is repeated in a text, often to equate the 
importance of two concepts or statements [5]. An example transition 
parallelism occurs in the NYT interactive “Copenhagen: Emissions, 
Treaties, and Impacts,” in which three possible climate futures of 
water stress, flooding, and crop reduction are each investigated. The 
three possible effects are combined via a measure walk. At a local 
level, the slides for each climate effect include a general-to-specific 
transition from a global color-coded map to a specific affected re-
gion, followed by a reverse-chronological transition to an image that 
represents a past symptom of the region’s vulnerability along with a 
comment on likely future effects for the region (Figure 1). We ex-
plore the impact of parallelism on user ratings and comprehension of 
visualization narratives in a study presented in Sect. 5.2. 

The insights that 1) local transitions are frequently based on a 
small number of changes to data dimensions and 2) parallelism of 
sequence patterns can be observed at the global level leads to a gen-
eral observation that maintaining consistency across transitions ap-
pears to be an important principle in structuring visualization story-
telling. In many of the transitions we observed, multiple dimensions 

of a visualization (including both data dimensions like independent 
or dependent variables, as well as chart format) were held constant 
across two or more multiple states, such that a limited amount of 
information changed at a time in transition from one visualization to 
the next. For example, rather than transitioning to a bubble chart of 
the GDP of North African countries in 2000 to a bubble chart of the 
GDP per capita of the same countries in 2010, designers tended to 
choose one dimension (such as time) and maintain the others (inde-
pendent variable, dependent variable, etc.). When multiple aspects of 
a representation did occur between consecutive states, slide shows 
that included animation often used partial animation, a technique for 
easing the comprehensibility of transitions [10]. Maintaining con-
sistency through gradual changes between consecutive visualizations 
in narrative presentations enables comparisons between slides, help-
ing to balance the necessary juxtapositions that must occur in order 
for the story to proceed not unlike animating a transition can support 
understanding (e.g., [10]). A series of nearly identical visualizations 
may be perceived as boring, but the introduction of new unknowns 
must proceed slowly enough that the user can comprehend the se-
quence and does not become cognitively overloaded. Considering 
psychological theories of narrative understanding, maintaining a 
certain amount of consistency between states is likely to make it 
easier for users to generate the explanations that tie the patterns rep-
resented by visualizations into a coherent story.  

4 AN ALGORITHMIC APPROACH TO VISUALIZATION SE-

QUENCE SUPPORT  

We propose a graph-driven approach to finding effective sequences 
for narrative visualizations informed by our analysis. The approach 
specifies a format for representing different visualization states as 
nodes in a graph so as to allow an algorithm to compare nodes and 
label potential transitions using the types outlined in Sect. 3. Inputs 
and stages are shown in Fig. 2. An objective function based on the 
principle of maintaining consistency is then used to apply weights to 
edges (transitions) in the graph to allow assessment of the quality of 
transitions at the local level. We consider the potential for incorpo-
rating further prioritization of some sequence types over others, then 
validate the approach using user evaluation and explore additional 
optimizations in Sect. 5.  

4.1 Defining Data Attributes for Transition Labelling 

We observed that many explicit transition types surfaced in our study 
were based on single changes to one of the data attributes used to 
generate a visualization. This led us to believe that if we were to 
identify the set of important data-based attributes along which 
change tends to occur in visualization-to-visualization transitions, we 
could infer transitions by comparing pairs of visualizations based on 
how their attribute values differ. This aspect of our approach resem-
bles models for visual exploration that describe transformations that 
occur in pipelines (functions used in visualization reaction) [14] 
including as directed graphs that can be compared to semi-
automatically create new visualizations [26]. Yet our focus on narra-

    Fig. 2. Diagram of graph-based approach in which visualizations represent nodes. Edges (possible transitions) are labeled by type and
weighted using a cost function and type weightings (denoted by * symbols) corresponding to user preferences. 



tive visualizations differs from a focus on visualizations generated 
through user-controlled transforms in an analysis setting. While prior 
work has modelled the conceptual flow of data between pipeline 
actions from a system perspective, our interest is primarily in user 
reactions to conceptual change over transitions. 

We begin by considering each visualization state as a node in the 
graph that is represented using four attributes. These include a de-
pendent (or outcome) variable, an independent variable, a time vari-
able, and a set of hierarchical relations. Attribute values are defined 
using data characteristics such as variable types or system-defined 
labels and information on the data-to-visualization mapping. Hierar-
chical relations can be encoded through common hierarchies implied 
in a data type, such as the Roman calendar system; in hierarchical 
dependencies between several nominal variables such as a variable 
for car maker (e.g., Ford) and a related variable for car model (e.g., 
Focus); or by applying filters applied to a given variable to create 
subsets. Filtering can also occur by applying operations to the visual 
view only (e.g., zooming) so that only a subset of data is visible. 
Time variables are often recognizable independent of the representa-
tion, such as through date-time formatting applied to given variables 
in a data set. Additionally, for some plots, dependent and independ-
ent variable attributes can be inferred through their mappings to par-
ticular positional and retinal visual variables in a given visualization 
type. In common 2D visualizations like bar charts and scatterplots, 
the vertical positioning of a data point often corresponds to the de-
pendent variable and the horizontal to the independent variable.  

By characterizing each graph node (visualization state) using the 
four attributes (independent variable, dependent variable, time, and 
hierarchical level), it becomes possible for a graph-based algorithm 
to label potential edges (transitions) between nodes as Temporal, 
Comparative, or Granularity transitions (as well as subsets of these 
types) by looking for simple relationships between pairs of states. 
The specific comparison transitions of a measure walk and a dimen-
sion walk represent changes in a dependent (or outcome) variable 
and an independent variable, respectively. Temporal transitions in-
volve changes in a time dimension of data, while granularity changes 
involve steps between different levels in a data-defined hierarchy, or 
can be achieved by filtering. 

Table 2 relates this schema to common interactive dynamics in 
visual analytics as defined by [12]. For example, a measure walk 
could be realized in two states where the second represents a sorting 
or derivation of the first, such as going from a standard birth rate to a 
normalized rate, or the second is achieved through a distortion navi-
gation or view coordination (faceting to create small multiples dis-
playing related dependent variables for a data group). Table 2 also 
describes the schema using a standardized data representation - that 
of the R package ggplot2 [35], which is based on Wilkinson’s 
Grammar of Graphics system for visualization characterization [37]. 

4.2 Objective Function: Maintaining Consistency 

Taking a graph-based approach in which links (transitions) between 
visualization states (nodes) are inferred by comparing relevant data 
attributes between the nodes makes it possible to identify possible 
local (visualization-to-visualization) sequences in a set of visualiza-
tion states. Yet, without a means of prioritizing transitions, the ap-
proach is likely to identify a very large number of transitions even 
for a relatively small set of visualizations. For example, labelling 
possible transitions in a set of just 10 visualization states with up the 
4 data inferable transition types results in up to 360 labels for 90 
transitions. We thus sought a means of filtering the set of possible 
transitions between visualization sets by relying on edge weighting 
via an objective cost function.  

4.2.1 Maintaining Consistency 

Based on our observation of maintaining consistency as an apparent 
principle used by professional designs, we define an objective 
function of transformation cost that assigns a cost to each possible 
link (transition) between two nodes (visualizations states) in the 
graph. The cost function captures the amount of difference between 
the attribute values of each visualization node, where difference is 
measured by the number of changes required to transform the second 
vsiualization node into the first visualization node. The more 
transformations it takes to convert a first visualization to a second, 
the harder we expect it to be for users to infer a connection between 
them. This could make comparing the visualizations in a meaningful 
way more difficult, consistent with research in preserving mental 
models across transitions [10]. We examine this assumption about 
transformation cost through user studies in Sect. 5.1.  

Formally, transformation cost is the total number of changes to 
the independent variable, dependent variable, time, and level of 
granularity required to transform a first visualization to a second 
visualization in a state-to-state transition irrespective of the type of 
transition. For example, if we consider two bar charts shown in Fig-
ure 2, one depicting male SAT scores by test in 2010 and one show-
ing female SAT scores by test in 2009, we assign a transformation 
cost of 2 representing a transformation of the male independent vari-
able to the female and a transformation of the temporal variable from 
2010 to 2009 (a reverse chronological transition). If the female bar 
chart instead showed TOEFL scores, a cost of 3 would results based 
on the additional measure transition. To standardize the unit of 
change that equates to a transformation cost of “1” along any single 
dimension, we suggest that transformation cost should be calculated 
relative to the full set of parameters describing each visualization 
rather than in absolutes. For example, the time stamps associated 
with data for some visualizations might differ in 10 year increments. 
If the earliest time point is 30 years before the latest time point, but 
other data sets are only 10 years apart in time, then one might map a 
transformation cost of “1” to a 10 year difference in time, and higher 
cost to a 30 year difference. We control for such within-dimension 
differences in cost unit in our studies below, and discuss possible 

Table 2: Data representation, transition types, and relation to common visualization interactions as described in [12] and realization in ggplot2 [35]. 
The way in which a given transition is realized in these frameworks can vary depending on the properties of the input data set. 

Representation Relevant Transition 
Types 

Relevant Interactions  ggplot2 Realization 

Dependent variable Comparative  
– Measure walk 

Sort, Derive, Navigate (Distortion), Coor-
dinate (small multiples) 

Data variable, Stat (e.g., logarithm), Facet 
(e.g., small multiples showing related 
measures) 

Independent variable Comparative  
– Dimension walk 

Filter (independent variable, such as with 
query widget), Navigate (scroll, pan), Co-
ordinate (small multiples) 

Data variable, Data filter (e.g., one group at a 
time), Facet (e.g., small multiples by group 
variable) 

Time Temporal  Filter (direct selection, slider), Coordinate 
(small multiples) 

Data variable, Data filter (e.g., filter data 
frame by subset of year variable), Facet (e.g., 
small multiples by year) 

Hierarchical relation Granularity Filter (direct selection, query widget, slid-
er), Navigate (overview & detail, zoom, 
semantic zoom), Derive (aggregate) 

Data variable, Data filter (e.g., show aggregate 
then filter to one group), Stat (e.g., expand 
width of histogram bins), Scale (e.g., show 
smaller scale) 



elaborations in the Discussion section. 
Assigning a cost function after labelling all possible state-to-state 

transitions enables filtering to a smaller set of potentially simpler 
transitions. This filtered set might be presented to a user in an inter-
face for supporting end-user sequencing of narrative visualizations.  

4.2.2 Prioritizing Transition Types 

In identifying possible transitions, the transformation cost function 
treats transition types as equally effective. But do audiences of narra-
tive visualizations regard two visualization states representing a 
measure walk transition as equally different to two visualizations 
representing a temporal transition? The visual information analysis 
mantra [29] “overview, zoom & filter, detail on demand” suggests 
that general-to-specific transitions are preferable, but this has not 
been empirically evaluated, and other questions remain. How do both 
of these types compare to a granularity-based transition such as a 
general-to-specific transition, or a change in the dimension being 
shown? Systematic preferences for some transitions over others 
could be incorporated into the above approach using type weight-
ings. We examine perceptions of local transitions types in Sect. 5.1. 

4.3 Automatic Global Sequencing  

A final question is how particularly effective global sequences can 
be inferred. For example, how might a tool identify sequences that 
make use of parallelism, and what information should be used to 
determine whether a particular form of parallelism is appropriate? A 
user study in Sect. 5.2 addresses this remaining question. 

5 EVALUATING USER PERCEPTIONS OF SEQUENCES  

How do end-users of linear narrative visualization presentations 
perceive the types and “costs” of transitions? We examine user per-
ceptions of local transitions types, then consider global strategies.  

5.1 Local Transitions: Transformation Cost and Transi-
tion Type Weighting 

We use a large two-part study on Amazon’s Mechanical Turk 
(MTurk) to ask two questions about local transitions: 

1. How do users react to the level of consistency between two 
consecutive visualizations in a presentation?  

2. Do users show systematic preferences for temporal, compara-
tive and granularity transitions when multiple possible transitions are 
possible from the same initial visualization? 

With regard to 1, we specifically examine how users respond to 
the transition cost of a visualization transition independent of its 
type. We vary transformation cost between two candidate transitions 
to examine how users’ choices are affected by cost (referred to below 
as Cost Varying trials). To answer question 2, we control cost in the 
second half of our study, and examine how choices are affected by 
type (referred to as Cost Constant trials).    

Our hypotheses are as follows: 
H1: Users will consistently prefer lower cost transitions to higher 

cost transitions, regardless of transition type. 
H2: Users will consistently prefer dimension, temporal, and 

granularity transitions over measure transitions, based on the greater 
conceptual distance between visualizations showing two different 
dependent variables. 

5.1.1 Data and Stimuli 

A data set describing characteristics of 3109 U.S. counties across 48 
contiguous states was obtained by combining 2010 Census Bureau 
data with 2012 presidential election data made available by the 
Guardian Data Blog [9]. This set was supplemented by historical 
census data dating back to 1790, election-themed data from polls 
conducted earlier in 2012, and election results from 2008. A set of 74 
visualizations was created using the R ggplot2 package, across 

common chart types like bar charts, line charts, density histograms, 
country (U.S.) and state maps, scatterplots, and bubble charts.  

Our goal was to create sets of three visualization stimuli of the 
same type (e.g., map), where two visualizations represent two possi-
ble transitions relative to an initial visualization. We use these stimu-
li in a Mechanical Turk human intelligence task (HIT) that presents 
users with the initial visualization (labelled Graph 1) and asks that 
they choose between the other two visualizations (labelled Graph 2a 
and Graph 2b) as possible following states in a data presentation: 
“Which of the two graphs is better to appear directly after Graph 1 in 
the presentation?” The two visualizations to be chosen within each 
set of three included either 1) alternatives of two different costs when 
considered with respect to the first visualization (“Cost Varying” 
HITs), or 2) alternatives of two different types but with cost held 
constant (Cost Constant HITs).  

Cost Varying trials: The Cost Varying HITs varied the cost of the 
two visualizations presented as options to follow Graph 1. Fifteen of 
the 18 Cost Varying HITs included one visualization with a transi-
tion of cost “1” (for example, a change in the region shown only) and 
the other visualization with a cost of “2” relative to the first visuali-
zation (for example, a change in the region and the measure shown). 
Three HITs included a visualization of cost “1” and a visualization of 
cost “3” relative to the first visualization (for example, a change in 
the region, the measure, and the time period). We included these 
higher cost alternatives to include cases where one visualization was 
markedly different from the first and might represent a surprising 
transition. All alternatives were balanced over the 4 transition types 
of temporal, dimension walk, measure walk, and granularity.  

Cost Constant trials: In 17 Cost Constant HITs, we tested four 
transition types: temporal (chronological, reverse chronological), 
comparative dimension walk, comparative measure walk, and granu-
larity transitions (general-to-specific or specific-to-general). These 
transitions have a transition cost of 1 for the single dimension along 
which the change occurs. We chose these four types because they are 
implicitly conveyed by data characteristics, rather than requiring 
creator input. To reduce the number of factors in this initial study, 
we do not distinguish subtypes of temporal and granularity transi-
tions (e.g., reverse chronology), nor are Spatial transitions distin-
guished as a subset of Dimension transitions. However, we main-
tained separate variables for the comparative types of dimension and 
measure walks. Both of these types compare one view of data to 
another that is equal in the time period and the level of granularity or 
resolution (e.g., country- level data), but may display a large concep-
tual difference based on the strong human tendency to distinguish 
between causal and outcome components of phenomena [6].  

 

Fig. 3. Experimental task presenting participants with an initial visualiza-
tion (left) and asking that they choose the better visualization to follow the
first in a data presentation out of the two visualizations to the right. 



     Table 3 (left): Two multinomial logits regressing “chosen” transition on transition costs (1, 2, 3) and order indicator, allowing comparison of all 
three costs. Table 4 (right): Results of three logits regressing “chosen” transition on transition types (spanning all possible comparisons).  

In both Cost Varying and Cost Constant HITs we used the same 
syntax and chart format with a set of visualizations of a given type 
(e.g., same color and shape) unless changes were necessitated by the 
chart format (e.g., shape changes for different countries in a map). 

5.1.2 Experimental Procedure  

The Cost Varying and Cost Constant HITs were launched as a com-
bined series of 35 HITs with a $0.10 reward. Each began with an 
intro page describing that the worker would be presented with a data 
visualization and asked to decide which of two additional visualiza-
tions should follow the first in a data presentation (slideshow). It was 
stressed in the initial description and on the later “choice” page that 
the participant should not consider the quality of the individual visu-
alizations in her choice. Additionally, it was explained that she 
would start the task with an additional bonus reward of $0.15. If the 
participant’s choice of visualization matched the visualization chosen 
by the majority of other workers who saw the same stimuli set, she 
would retain the full $0.15; otherwise, they would lose the $0.15 
bonus. This “punishment agreement” incentivization technique has 
been shown to produce higher quality responses on MTurk [28].  

After consenting, a participant had to correctly answer a question 
about the task goal. She was then presented with three graphs la-
belled “1,” “2a,” and “2b” (see Fig. 3). After answering two “infor-
mation extraction” questions that verified that the participant paid 
attention, she answered a multiple choice question, “Which of the 
two graphs is better to appear directly after Graph 1 in the presenta-
tion?” where “Graph 2a” and “Graph 2b” were the only choices. 

5.1.3 Results 

143 total participants completed the 875 HITs (trials) in the study, 
taking an average of 118 seconds per trial. We omitted 179 (20.4%) 
of the 875 trials where particpants answered at least one of the in-
formation extraction questions incorrectly, leaving 696 observations. 
We insured 1) that randomization of HIT order in the sequence and 
presentation order of the 2a and 2b visualizations in any single HIT 
was successful; and 2) that there were no significant differences in 
the time taken to complete the task based on whether transformation 
cost varied or not (M: 114.6s vs. 121.3s, t=-1.56, p=0.12). 

Effects of transition consistency (transformation cost): We first 
examined whether a lower transformation cost between the two visu-
alizations in a sequence resulted in a preference for that sequence 
over higher cost alternatives. Table 3 displays the results of two mul-
tinomial logit models run with the R package mlogit, which enabled 
us to compare the costs to one another while accounting for the fact 
that a participant could complete multiple trials. “Transition choice” 
(a binary variable indicating whether a visualization transition repre-
sented by Graph 2a or 2b was chosen) is regressed on transformation 
cost of “1,” “2,” and “3” to distinguish whether effects differ by cost 
levels. Omitted from the results is a dummy variable called “present” 

included to account for the constrained set of cost alternatives avail-
able in a trial. The reported models in Table 3 differ only in which 
cost is set to the baseline category. Results indicate that while par-
ticpants are much less likely to choose a higher cost transition rela-
tive to a transition with a cost of “1,” there is no observable differ-
ence in a participant’s likelihood to prefer a transition with a cost of 
“2” to one with a cost of “3.” The order in which the visualization 
appeared in the choice (#1 or #2) is included as a predictor. 

Effects of transition types: We next considered whether partici-
pants displayed equivalent levels of preference for temporal, com-
parative, or granularity-based transitions when cost was held con-
stant. Table 4 reports the results of three multinomial logit models 
run on Cost-Constant trials. These models were run identically to the 
Cost-Varying models, except that the covariate of interest was transi-
tion type rather than cost, and again only the baseline category to be 
compared against differs across the three models.  

Our interest is in whether preferences for one type over another 
can be observed, as this would be useful in a sequence support tool 
for suggesting transitions. Interpreting the results for each type with 
reference to the baseline transition comparison allows us to assess 
relative preferences for transition types. We find that a temporal 
transition is preferred over granularity, dimension, or measure transi-
tions (all p<0.01). Both dimension and measure transitions are pre-
ferred over granularity transitions as well (both p<0.01). No prefer-
ences exist between a dimension and measure transition. Results can 
be summarized as follows (“>” indicates that the type to the left was 
preferred over the type to the right, and “|” represents no preference):  

              Temporal > (Dimension | Measure) > Granularity 
Additionally, we see a significant order effect of whether a visu-

alization was in the first or second position from the left in the layout 
(the order indicator). Hence, other contextual factor (such as bias 
toward more recently seen visualizations) may influence interactions 
with narrative visualizations.  

5.2 Sequencing: Impacts of Parallelism 

Our qualitative study suggested the global strategy of parallelism, or 
repetition of certain local level transition sequences within a visuali-
zation presentation. Here, we use a between-subjects study to ask: 
Does using parallelism in a global sequence benefit presentation 
audience members, in the types of patterns that are understood and/or 
ability to remember a visualization story? This provides information 
with which we can evaluate whether global strategy effectiveness 
can be modelled simply by summing local transition costs, or wheth-
er additional objective functions for global sequencing are required.  

5.2.1 Data and Stimuli 

The primary difference between the prior study and this one is that 
participants in this experiment are shown an entire presentation, 

Multinomial Logits on “Cost Varying” Trials(N=357) 
IV | Baseline Cost=1 Cost=2 
Order Indicator 0.348  

(0.249) 
0.348   
(0.249) 

Cost=1 Baseline  2.85 
(0.262)*** 

Cost=2 -2.85     
(0.262)*** 

Baseline 

Cost=3 -3.56       
(0.725)*** 

-0.711    
(0.766) 

L.R. Test (X2=15.4)*** (X2=15.4)*** 
McFadden R2 0.10 0.10 

Notes: Logit: standard errors are in parentheses. Signif-
icant at: * 10 %, ** 5 %, *** 1 % level. 

                Multinomial Logits on “Cost Constant” Trials (N=338) 
IV | Baseline Measure Dimension Granularity 
Order Indicator 0.327 

(0.116)*** 
0.327 
(0.116)*** 

0.327 
(0.116)*** 

Measure Baseline 0.006 
(0.177) 

0.599 
(0.195)*** 

Dimension -0.006 
(0.177) 

Baseline 0.593     
(0.206)*** 

Temporal 0.550 
(0.220)*** 

0.556 
(0.200)*** 

1.15 
(0.232)*** 

Granularity -0.599 
(0.195)*** 

-0.593       
(0.206)*** 

Baseline 

L.R. Test  (X2=483.0)*** (X2=483.0)*** (X2=483.0)*** 
McFadden R2 0.53  0.53  0.53 

 



rather than only one transition (e.g., two visualizations) at a time. We 
begin with a set of visualizations that displays the following charac-
teristics, which we expect to be common in many presentations: the 
set includes data on two (or more) high level concepts or “group-
ings,” with each grouping being associated with multiple visualiza-
tions in the set, and each visualization in one grouping having a 
counterpart visualization in the other grouping which differs only 
based on the grouping dimension. In our study the grouping dimen-
sions is time period (1900 and 2010), but other examples might be 
presidential candidates (e.g., Obama election results by region versus 
Romney election results by region), or even two levels within a hier-
archal dataset (e.g., various labor statistics by continent and by city). 
We kept format the same across all visualizations (using bubble 
charts) to allow us to examine sequence effects in a controlled set-
ting. The visualizations we use are all bubble chart visualizations that 
display fertilizer usage by state for three spatial regions: the full 
U.S., the Eastern U.S., and the Western U.S. time periods. The visu-
alizations are alike except that the 1900 charts display 1900 popula-
tion data from our Census data set (relabelled as Fertilizer Usage to 
prevent strong effects of prior knowledge in the task) using blue 
circles and the 2010 charts display 2010 population data using green 
circles. In each chart, the size of the bubble and the position along 
the y-axis (the only labelled axis) are both set to a scaled version of 
the population statistic for that state in either 1900 or 2010. 

We examine two main forms of parallelism described in Sect. 3.2 
and depicted through examples in Fig. 3: a measure walk and a di-
mension walk strategy, plus several variants derived from these 
which deviate from the perfect repetition of local transition patterns 
of the first two. The measure walk strategy, which we refer to as a 
between-group sequence, interleaves visualizations from the two 
groups such that a measure for one group always appears directly 
before the same measure for the other group. A dimension walk 
strategy, which we refer to as a within-group sequence, keeps the 
visualizations corresponding to each high-level group in consecutive 
sequence (e.g., three 1900 visualizations followed by three 2010 
visualizations). Our expectation is that the between-group sequence 
will support comparisons between the two groups for each measure. 
On the other hand, the within-group visualizations will support com-
parisons between measures within each higher level group. Noting 
that both of these sequence types include one or more transitions 
with costs greater than one, we also include several variants of the 
between- and within-group strategies, but where the sequences were 
revised to potentially enable additional comparisons and reduce the 
overall costs associated with the sequence. However, this requires 
breaking the “perfect” parallelism of the first two sequences (Fig. 3). 

Our hypotheses are as follows: 
H1: Non-reverse treatments (between and within-group sequenc-

es) will be rated as more understandable and less difficult to explain 
than reverse treatments. 

H2: Performance on between- and within-group comparison 
questions will differ by treatment. 

H2a: Participants who see between-group sequences will 
perform better on average on between-group questions. 
H2b: Participants who see within-group sequences will 

perform better on average on within-group questions. 
H3: No differences for treatment will be found for accuracy on 

the null comparison questions. 
H4: Memory will be better for non-reversed sequence treatments. 
We note that confirming H1 and H4 would suggest that compu-

ting global cost by summing local transition costs is not optimal. 
This is because the within-reverse and between-reverse treatments 
have lower costs than the non-reverse treatments when global cost is 
computed as the sum of local costs. Instead, another objective func-
tions to capture global sequence preferences may be needed. 

5.2.2 Experimental Procedure 

82 Master’s students from a large university were recruited and giv-
en an $8 Amazon gift card for participating. An initial screen de-
scribed that participants would view a presentation of data visualiza-
tions that was designed to communicate a story about the data, and 
would be asked several questions about the content. After answering 
a multiple-choice question that ensured understanding of the task 
goal, the participant viewed a self-advancing presentation of the six 
visualizations corresponding to one of the four treatments. Each 
visualization was shown for 8 seconds before the page advanced. 
Hints that remained visible during the presentation explained the 
presentation format and prompted participants to pay attention to 
how the data in each visualization changed from state to state.  

After viewing the presentation, the participant answered a ques-
tion to verify he or she paid attention to graph labels, and provided a 
free-text explanation of why he or she thought the visualizations 
appeared in the order they did. The participant provided 7 point Lik-
ert ratings in response two questions: “How easy was it to come up 
with a reason for why the visualizations were put in the order they 
appeared in?” and “Assuming the presentation is designed to com-
municate a story about the data, how easy is it to understand the 
presentation?” The participant was then given a second, unan-
nounced opportunity to watch the timed presentation, followed by a 
page that presented eight True/False questions. Each question asked 
about a trend that was apparent only in comparing two of the 6 visu-
alizations to one another, which may or may not have appeared con-
secutively in the sequence. While 15 total visualization-to-
visualization comparisons were possible within the group of six vis-
ualizations, we focused on a set of eight comparisons that included 
three within-group comparisons (e.g., Eastern U.S. vs. Western U.S. 
in 1900), three between-group comparisons (e.g., Eastern U.S. 1900 
vs. Western U.S. in 2010), and two “null” comparisons, which asked 
about a trend between two visualizations that did not appear in con-
secutive order in any of the treatment sequences.  

Lastly, the participant saw the set of original visualization laid 
out in random order. She was asked to input the original order of 
visualizations in the presentation in numbered boxes, in order to test 
for memory differences based on sequence type. 

5.2.3 Results 

82 participants completed the task in an average of 711s. Removing 
those who incorrectly answered the verification question left 73 par-
ticipants. We first checked whether ratings on the difficulty in ex-

 
Fig. 4. Global sequences to support different hypothesized comparisons between consecutive visualizations (depicted with dotted lines). 



plaining a visualization and how understandable the presentation was 
differed based on whether the sequence exhibited “perfect” parallel-
ism (e.g., was not a reverse sequence treatment). Regarding H1, rat-
ings for the difficulty of explaining the presentation higher for re-
verse treatments (M: reverse=4.79, non-reverse=4.03), yet this dif-
ference was only marginally significant (t=-1.85, p=0.06). Ratings 
for the understandability of the presentation did not significantly 
differ (M: reverse=4.12, non-reverse=4.56; df=67, t=-1.25, p=0.21).  

We next examined whether accuracy on the between, within, and 
null comparison questions differed based on sequence type. While 
accuracy on the between-group questions was better among partici-
pants who saw a between-group sequence (including reversed) (M: 
0.92 vs. 0.86) and accuracy on within-group questions was higher for 
participants who saw a within group sequence (including reverse) 
(M: 0.87 vs. 0.84), t-tests for between and within question accuracy 
indicated no significant differences by treatment (df=69, t=1.58, 
p=0.12 for accuracy on between-group questions, df=70, t=-0.57, 
p=0.57 for accuracy on within-group questions). As H3 expects, no 
treatment-based differences existed for accuracy on null comparisons 
(comparing pooled between-group treatments with pooled within-
group treatments; df=70, t=-0.26, p=0.80 comparing pooled between 
and pooled within treatments).  

Finally, we calculated total error for the memory task by sum-
ming the number of visualizations (out of six) that were incorrectly 
sequenced in the memory task. H4 predicts that memory for the orig-
inal presentation sequence will be better if the sequence uses “per-
fect” (non-reverse) parallelism. Results confirmed the difference. An 
ANOVA indicated significant differences between individual treat-
ments (F(3,69)=5.59, p=0.002). TukeyHSD tests comparing the four 
individual treatments identified significantly better memory for the 
original sequence in the between-group treatment compared to either 
the between-group reverse or within-group reverse treatments (ad-
justed p=0.04 and p=0.007, respectively), as well as significantly 
better memory for the original sequence in the within-group treat-
ment compared to the within-group reverse treatment (adjusted 
p=0.02) and marginally better memory for within-group compared to 
the between-group reverse treatment (adjusted p=0.09). 

6 DISCUSSION 

We summarize the sequence approach above, addressing how our 
studies’ insights can be integrated and key implications of our work.  

6.1.1 Algorithmically Identifying Effective Sequences 

The graph-driven approach we propose includes an objective func-
tion for minimizing local (visualization-to-visualization) costs of 
transitions. Each visualization state becomes a node represented by 
several attributes (independent and dependent variables, time, and 
level of hierarchy), and a graph including possible type-labelled 
edges (types of local transitions) is constructed by comparing the 
attribute values for each pair of nodes. Graph edges are weighted 
with the transformation cost calculated for those two nodes, and an 
additional weighting based on type applied to choose between se-
quences of the same cost. Our first study’s finding of a strong prefer-
ence for lower cost transitions at a local level supports the im-
portance of first weighting by cost, such as to filter a large set of 
possible transitions in a sequence support system. The additional 
systematic differences in preferences based on type that were uncov-
ered supports also weighting edges by type to identify sequences.  

The results of our global sequencing study suggest a need for 
more sophisticated global constraints than simply summing local 
transition costs to determine the best path through a graph of 
weighted visualization transitions. While our results regarding how 
comparisons are affected by sequence were inconclusive, if further 
study confirms a link between consecutive sequence and comparison, 
then a sequence support system could take the comparisons that the 
visualization designer wants to make as input, and use these as con-

straints in identifying the best sequence. Finally, the improved se-
quence memorability for sequences with “perfect” parallelism, rather 
than those that reverse local transition patterns, suggests benefits to 
also automatically identifying and prioritizing sequences that use 
parallelism. In the context of approaching automatic sequencing as a 
graph search, a promising approach would be to infer graph motifs 
(patterns in local transition type) (e.g., [34]) and then search the 
space of global sequences for those that repeat particular motifs.  

6.1.2 Limitations 

We evaluated temporal and granularity transitions as singular types 
without distinguishing subtypes like chronological and reverse 
chronological transitions. Yet differences in perceptions and prefer-
ences may exist between subtypes (e.g., a preference for going for-
ward in time rather than backward). We also did not distinguish spa-
tial transitions from other independent variable changes but it is pos-
sible that participants’ reactions to the spatial subtypes are somewhat 
distinct from other forms of independent variable transitions.  

Future studies should determine the extent to which explicit guid-
ance about the reasoning behind a transition can overcome sequence 
effects. For example, can annotations added to visualizations in an 
interactive slideshow, or a presenter’s statements in a live presenta-
tion, overcome the effects on the audience of a complex transition?   

As noted in Sect. 4, there may be ambiguity in the particular deci-
sion rules used in transition labelling under a given grammar. Facto-
rial crowdsourced user studies in which transition labels are removed 
is one avenue for distinguishing the conceptual differences between 
visualizations to resolve discrepancies in rankings transitions in im-
plementing automatic sequence support for narrative visualization.  

6.1.3 Implications and Future Work  

Our work details narrative sequencing can be systematically ap-
proached in visualization systems. Future work should evaluate how 
to best combine local transition costs, type weightings, and global 
constraints like parallelism. A related question is whether animation 
(e.g., [10]) can overcome the effects of costly transitions.  

Relating our approach to the grammar of graphics [37] and stand-
ard visualization interactions [12] helps to show how decision rules 
for labelling transitions can be defined. Thhe results of our qualita-
tive approach on observed transitions could also be compared to 
interactions that we did not observe, such as sorting transitions. Do-
ing so supports deeper understanding of the differences between 
communicative and exploratory visualization, and may suggest 
forms of transitions that could be used in interactive narrative visual-
izations designed to guide a user through analysis step by step.  

An important avenue for future work is to explore how sequence 
optimization can interface with optimizations that suggest the most 
effective single visualization (e.g., [17][18]), including how conflicts 
between single visualization vs. sequence models can be resolved.  

Our work also has implications for designers of narrative visuali-
zations. Our global sequencing results provide partial support for 
how sequential order can support comparisons between visualiza-
tions. The common interactive slideshow format could be adapted to 
enable additional comparisons where relevant. Navigational choices 
beyond “Previous” and “Next” buttons (such as “Up” and “Down”) 
could support comparisons with visualizations that do not appear 
consecutively with the visualization of focus, increasing the amount 
that is learned from visualized data while still guiding interaction.   
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