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Abstract

In this paper the capability of using self-organising neu-
ral maps (SOM) as music style classifiers from symbolic
specifications of musical fragments is studied. From MIDI
file sources, the monophonic melody track is extracted and
cut into fragments of equal length. From these sequences,
melodic, harmonic, and rhythmic numerical descriptors are
computed and presented to the SOM. Their performance is
analysed in terms of separability in different music classes
from the activations of the map, obtaining different degrees
of success for classical and jazz music. This scheme has
a number of applications like indexing and selecting musi-
cal databases or the evaluation of style-specific automatic
composition systems.

1 Introduction

There are a number of applications in computer music to
the possibility of melodic fragment comparison. Two main
representations of music can be found: sounds (recorded
from human or computer interpretation of a music score)
and symbols (representation codes independent of the sonic
outcome of an interpretation). The automatic machine
learning and pattern recognition techniques available, suc-
cessfully employed in other fields, can be also applied in
music analysis. Immediate applications are the classifica-
tion, indexation and content-based search of digital mu-
sic libraries, where digitised (MP3), sequenced (MIDI) or
structurally represented (XML) music can be found.

One of the tasks that can be posed is the modelization
of the music style, providing the computer with the capabil-
ity of discrimination between musical styles or sub-styles,
or even between different composers. Even more, the com-
puter could be trained in a given user musical taste in order
to look for that kind of music over large musical databases.
Such a model could be used in cooperation with automatic
composition procedures to guide this latter process accord-
ing to some stylistic profile provided by the user.

The aim of this work is to develop a system able to dis-
tinguish among a set of musical styles from a symbolic rep-
resentation of a melody. We have chosen random, jazz and
classical melodies for our experiments. Simultaneously we
will investigate whether such a representation by itself has
enough information to achieve this goal or, on the contrary,
there is also timbric information that has to be included for
that purpose.

The key point of this work is to test the ability of self-
organising maps (SOM) [2], to automatically perform this
task. SOM are neural methods able to obtain approximate
projections of high-dimensional data distributions in low-
dimensional spaces, usually bidimensional. With the map,
different clusters in the input data can be located. These
clusters can be semantically labelled to characterise the
training data and also hopefully future new inputs.

1.1 Related work

In a very recent paper, Rauber and Frühwirth [4] pose
the problem of organising music digital libraries accord-
ing to the sound features of each musical theme, in such
a way that similar themes are clustered. This would allow
the user to locate sections within the library according to
stylistic similarities. The authors utilise a system with two
SOMs hierarchically organised in order to create a map of
the digital library, where similar music themes can be found
in zones close to one another in the bidimensional SOM. Af-
ter finding a given music in the map, others related can be
found with an exploration of the surroundings of that point
in the map, permitting an intuitive exploration of the library.
This is, therefore, a content-based classification of the data
(sounds in that case).

Other related work is that of Whitman and Flake [7] in
which they present a system named Minnowmatch, based
on neuronal nets and support vector machines, able to clas-
sify a sound musical fragment into a given source or artist.
The system achieves a success rate of 91% with 5 different
artists or sources, of 70% with 10 artists and of 46% with
21 artists.



In a similar work to the latter [5], the authors describe
a system to recognise music types using an explicit-time
modelling (ETM) neural net that codes an abstraction of
acoustic events in the hidden layer of the net representing
temporal structures of the musical parts. This abstractions
are then used to discriminate among different types of mu-
sic. The experiments show that the system improves the
recognition rate of other methods like recurrent neural nets
or hidden Markov models.

In [1] the authors present a hierarchical SOM able to
analyse time series of musical events. The model can recog-
nise instances of a reference sequence (a fugue by J.S.
Bach) in presence of noise, and even discriminate those
instances in a different musical context. In this work, the
SOM is used as sequence recognisers, using a time integra-
tion mechanism in the input layer of two SOM, arranged
one on top of the other, to represent the reference mono-
phonic melodic sequence in order to provide the SOM with
the ability of processing time sequences.

In the work by Thom [6] pitch histograms (measured in
semitones relative to the central pitch of the tonality and
independent of the octave) are used to describe blues frag-
ments of the saxophonist Charlie Parker. The pitch frequen-
cies are used to train a SOM.

All these works attack the same problem that we face
here, and most of them use digital sound files as an in-
put. Only the last two ones use symbolic representations
for recognising musical parts, not styles. The approach
we propose here is to use the symbolic representation of
music as the input to the self-organising maps for classifi-
cation of musical fragments into a initially reduced set of
styles. The success of this approach would permit to extend
it to other styles and to apply this methodology to the huge
amount of symbolic data stored in music databases all over
the Internet. We use standard MIDI files as the source of
monophonic melodies that will be preprocessed to provide
melodic, harmonic and rhythmic descriptors to the SOM.

2 Methodology

The monophonic melodies are isolated for the experi-
ments from the rest of the musical content in the MIDI files.
This way we have a sequence of musical events that can be
either notes or silences. Other kind of MIDI events are fil-
tered out. Each note can take a value from 0 to 127 (the
pitch) and the duration is the distance from the event that
onsets the sound of a note to the event that finishes it (there
is no limit to this in theory). Note that this symbolic repre-
sentation implies the lack of timbre information. The situa-
tion is much like an expert trying to classify tunes from an
overview of the scores, rather than hearing an interpretation
from an instrument playing the score.

Even dealing with monophonic melodies the search

space is very vast. Nevertheless, we can think that melodies
from a same musical genre may share some common fea-
tures that make possible that a experienced listener is able
to assign a musical style to them.

Each melody has a number of events that is a function
of some features like the time signature and the number of
bars of total duration, among others. Here we will deal
only with melodies written in 4/4. In order to have more
restricted data, fragments of 8 bars are taken (enough to get
a good sense of the melodic phrase in the context of a 4/4
signature). For this, each melody sequence has been cut into
fragments of such duration.

We have chosen a vector of musical descriptors of the
melodies as the input for the SOM, rather than the explicit
representation of the melodies. Thus, a description model
is needed. This model is composed of three groups of fea-
tures: melodic, harmonic and rhythmic properties. From
each melody, a record is generated containing all the de-
scriptors needed for training and testing the SOM.

For the experiments we have considered, along with real
melodies, other randomly generated melodies in order to
test the ability to separate well constructed melodies from
other non sense musical constructions. For generating this
kind of melodies each bar was divided intoQ pulses (quan-
tisation) and the melody was considered as formed by three
kinds of events that can appear at each pulse: note onsets,
silences and continuation of the previous event.

Onset events can take values in [0,127] (indicating which
note to play in the range of MIDInote onevents), but this
possibility generates totally unnatural sequences. The notes
have been restricted to a more natural range of two octaves
and a half (30 possible pitches) in the range [45,82], heuris-
tically determined after an analysis of a large number of
real melodies. In 8 bars we will have8 × Q events. Each
melody was generated with a proportion of notes / silences
/ continuations among this possibilities:

1-1-1 1-1-2 1-2-1
1-2-3 2-1-1 2-1-3
2-3-1 3-1-2 3-2-1

whereN -S-C indicates the probability of generating a note
onset (N ), a silence (S) or a continuation event (C), ac-
cording to the expressionX/(N + S + C) whereX can be
N,S or C. Therefore a melody generated according to the
pattern 2-3-1 will have nearly a 33% of note onset events, a
50% of silence events and a 17% of continuation events.

In the next experiments we will initially consider the next
list of descriptors:

• Overall descriptors:

– Number of notes in the windowed melody.

– Number of silences.
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Figure 1. Structure of the system: musical
descriptors are computed from a window 8-
bar wide and provided to the SOM.

• Pitch descriptors:

– Lowest, highest (this with the previous one pro-
vide information about the pitch range of the
melody), average, standard deviation (this and
the former one provide information about how
the notes are distributed in the score).

• Note duration descriptors (these descriptors are mea-
sured in pulses):

– Minimum, maximum, average, and standard de-
viation.

• Silence duration descriptors (in pulses):

– Minimum, maximum, average, and standard de-
viation.

• Interval descriptors (distance in pitch between two
consecutive notes, measured in semitones):

– Minimum, maximum, average, and standard de-
viation.

These 18 features are melodic descriptors. We have con-
sidered durations as melodic rather than rhythmic descrip-
tors. The number of features will be increased in further ex-
periments in order to better evaluate harmonic and rhythmic
aspects of the melodies. In Fig. 1 an example of the sys-
tem is presented. This example is based on the jazz piece
”Dexterity”. The features are computed using a quantisa-
tion Q = 48 pulses per bar.

3 Experiments and results

The experiments are divided into two phases: first, a set
of random melodies with different proportions of notes, si-
lences and continuation events are generated, and a set of
real melodies, extracted from jazz standards, is built. We
put the capability of SOM for this task to a test with an,
a priori, easy task: to separate random musical sequences
from melodies with real musical feeling. The jazz samples
were taken from a book of jazz standards and the melodies
were sequenced in real time. Authors included Charly
Parker, Wayne Shorter, John Coltrane, George Shearing,
Miles Davies, Duke Ellington, Dexter Gordon, Herbie Han-
cock, Thelonio Monk, Dizzie Gilespie, Bill Evans, Antonio
Carlos Jovim, Vernon Duke, Oliver Nelson, Richard Rogers
and Lorenz Hart, amnog others. These tunes are from dif-
ferent jazz styles like be-bop, hard-bop, big-band swing,
etc.

The second phase consists of substituting music of other
type different from jazz for the random melodies in or-
der to test the ability for style discrimination. Classical
music was chosen and melodic samples were taken from
works by Mozart, Bach, Schubert, Chopin, Grieg, Vivaldi,
Schumann, Brahms, Beethoven, Dvorak, Haendel, Pagan-
nini and Mendhelson. All of them were downloaded from
the Internet and selected using a criterion of monophony
for the melodic track. Styles included baroque, romantic,
renaissance, impressionism, etc.

For SOM implementation and graphic representations
the SOMPAK software [3] has been used. For the exper-
iments a hexagonal geometry for unit connections and a
bubble neighbourhood for training have been selected. The
value for this neighbourhood is constant for all the units in
it and decreases as a function of time.

In this paper, two main kinds of map representations are
shown: the Sammon projection, as a way to display in 2D
the organisation of the weight vectors in the weight space,
and the U-map representation, where the units are repre-
sented by hexagons with a dot or label in their centre. The
grey level of unlabelled hexagons represents the distance
between neighbour units (the clearer the closer they are).
The grey level of labelled units is an average of those dis-
tances. This way, clear zones are clusters of units in the
SOM, sharing similar weight vectors. The labels are a re-



Figure 2. Sammon projection of the 16×8 map
of figure 3: random versus real melodies.

Figure 3. SOM map for the same weights as
in figure 2.

sult of calibrating the map with a series of test samples and
indicate the class of the sample that activates that unit more
times.

3.1 Random versus jazz melodies

400 random samples have been generated and 430 jazz
samples have been extracted from 54 MIDI sequences of
jazz standards, all of them made up of 8 bars with a quan-
tisation ofQ = 8 pulses per bar (64 events per melody).
From them, the 20 descriptors listed above were computed.
Using these sets a SOM of 16 neurons for theOX axis and
8 for theOY axis was trained. The training consisted of
two stages: a coarse one of 1000 iterations with wide neigh-
bourhoods (12 units) and a high learning rate (0.1) and then
a fine one of 10,000 iterations with smaller neighbourhood
ratio (4 units) and learning rate (0.05). These training pa-
rameters can be applied to the rest of experiments with little
variations.

In figures 2 and 3 the Sammon projection and the SOM
map are displayed after training for that experiment. Note

Figure 4. Contributions to discrimination:
(left) plane of the weight space for average in-
tervals correlate with map areas; (right) plane
for minimum silence durations does not.

that there exists a clear gap between two zones in the map.
The small cluster on the right in the Sammon projection cor-
responds to the real melodies and that of the left to the ran-
dom melodies. In the map the same can be observed for the
two areas clearly separated: random samples on the right
and real samples in the left. The dark strip represents the
separation between both zones. The SOM has been labelled
using the training samples. The “REAL” cluster has less
extension than that of random samples (labelled according
to the event proportions), because the latter have more vari-
ability. There was an almost total lack of overlapping (units
labelled with both styles) between the zones.

It is clear that the distinction between both zones in the
map corresponds to real differences between the random
and jazz melodies, and the SOM has been able to capture
those differences.

The descriptors that contribute more to that separation
are those having a higher correlation among the samples
in each of the zones. The planes in the weight space (see
Fig. 4) corresponding to each descriptor provide informa-
tion about this. An analysis of the most contributive features
is an indication about how the discrimination has been car-
ried out:

• Maximum and minimum pitches. In the random
melodies, extremal note pitches appear more often
than in real melodies.

• Standard deviation of the pitches. Is clearly larger for
random melodies, due to the lack of a ’tonal centre’
that acts like an attractor for the melodic line.

• Maximum and average interval. Much higher in ran-
dom samples. Intervals higher than an octave are sel-
dom present in real melodies. The average interval is
usually between 2 and 3 for real melodies and higher
than 10 for random ones.

3.2 Jazz versus classical music

We have seen that, when the melodies are clearly differ-
ent, the use of adequate descriptors makes the discrimina-
tion problem an easy task using SOM (and probably with



Figure 5. SOM map trained with jazz and clas-
sical melodies.

other statistical classifiers). Once tested the ability of SOM
we will substitute other real melodies for the random sam-
ples. The new set is composed of monophonic fragments of
classical music. In order to have more resolution in the se-
quences a higher quantisation of 48 pulses by bar has been
used.

522 classical music melody fragments of eight bars of
length were extracted from MIDI files for the training set
along with the previous 430 jazz samples, now quantised to
Q = 48 pulses by bar.

After training and labelling the SOM it can be observed
in Fig. 5 that the “JAZZ” labels are denser on the left side of
the map and becomes sparser on the right, and the contrary
happens with the labels of the classical composers. Note
that some units are labelled for both music styles because
they were activated by samples from both styles. In these
cases there is always a winner label (we call it thefirst la-
bel according to the number of activations and a loser (sec-
ond) label. The proportion of units with both labels is the
overlapping degree, that in this experiment is rather high, a
39.0% of the units were labelled for both styles. This fact
suggests that differences were detected between both styles
but maybe there is a lack of information to take decisions.
For this, harmonic features were added to the set of 18 de-
scriptors already considered.

3.2.1 Addition of harmonic descriptors

Most of western music is based in a number of scales (sets
of notes ordered by pitch) and melodies can be formed tak-
ing notes from those sets. Adiatonic melody is made up
with the natural notes of a scale, without sharp or flat notes
(namedaccidentals). In western music most of the melodies
belong to one of two main scale types: major or minor

scales, and people usually know how they sound in an intu-
itive way. The first note of a scale determines its ‘tonality’
or ‘key’ and in any melody diatonic and accidental notes
can appear.

If the overall key and kind of scale (major or minor) of a
melody are known, the set of diatonic pitches is also known
and any note event can be classified into diatonic or acci-
dental, and some harmonic information can be evaluated,
like the proportion of diatonic notes with respect to the to-
tal. If the proportion is high then it is an indication of small
key changes or modulations, if any. On the other hand, a
low proportion indicates that there are a lot of key changes.

The detection of the key and the definition of the diatonic
scale utilised is based on musicological criteria and their
description is outside the scope of this paper.

We number the accidental notes of a given scale from 1
to 5 according to their distance in pitch from the key note of
the scale. We will call this theaccidental degree. According
to this criterion, three harmonic descriptors are defined:

• Number of accidental notes.An indication of frequent
excursions outside tonality or modulations.

• Average degree of accidental notes.Describes the kind
of excursions.

• Standard deviation of degrees of accidental notes.In-
dicates a higher variety in the modulations. If this
value is close to 0 the accidentals are probably caused
by chromatic approximations or adorns rather than real
harmonic modulations or key changes.

From the MIDI file the key is extracted and the diatonic
notes determined. Then, the harmonic descriptors are com-
puted.

A new experiment is designed using the 21 descriptors
already defined. 522 samples of 8 bars of classical music
have been utilised, 430 for training and the rest for test, and
also 428 samples of the same length as jazz.

The size of the map has been also increased according to
the higher dimensionality of the input vectors. The number
of neurons is now30 × 12. The neighbourhood radius has
also been adapted to the new dimensions, having a radius
of 20 units for the first training phase (coarse) and 6 units
for the second (fine). Also, the duration of these phases is
now ten times longer than where the SOM where smaller.
After training and labelling, the maps in figure 6 have been
obtained. It is observed how the labelling process has lo-
cated the “JAZZ” labels mainly in the right and upper zone,
and those corresponding to classical composers mainly in
the lower left zone. The percentage of overlapping in this
experiment was in this case very low: 11.1%. Now a clear
distinction of styles has been achieved.



Figure 6. SOM map after being labeled with
jazz (top) and classical (down) melodies.

3.2.2 Addition of rhythmic descriptors

One of the features of certain styles (like jazz) is the abun-
dance of syncopation: notes not beginning in the rhythm
beats but in some places between them (usually in the mid-
dle). Beats are the main pulses of a bar and the syncopation
provides a very particular feeling to music. On the other
hand, most of classical styles do not make an extensive use
of this feature. Therefore the quantification of these features
are a priori interesting for melody description.

In this experiment the number of syncopations is added
as a rhythmic descriptor to those already defined, having
therefore 22 descriptors. Syncopation detection is not a triv-
ial task if quantisations overQ = 16 are utilised. For that, a
syncopation rangeqsync, measured in pulses and dependent
on Q, is defined. If a note starts within that range around
the middle of a beat, then it is considered as a syncopation.
This descriptor is a measurement of thedegree of syncopa-
tion rather than a re-count of the number of such events.

Again, the same map is trained with the same training
set. And similar maps and label distributions are obtained,
as seen in Fig. 7.

When analysing the labelled map in Fig. 7 it is observed
that the left side is more “jazzy” and the right one is more
classical, corresponding to both sides with respect to the
knot, but there are a lot of mixed labels, making it harder
to determine zones that could be assigned clearly to each
genre. This is probably due to the fact that there are some
jazz melodies that seem classical music at times and vice
versa. In spite of that, less overlapping has been found
(7,22%).

In the Sammon projection of figure 8 a knot separates
two zones in the map. The zone at the left of the knot has
a majority presence of units labelled with the jazz label and
the zone at the right is mainly classical. With our data, con-

Figure 7. SOM after training using also rhyth-
mic descriptors: (top) units labelled with
“JAZZ” and (bottom) units labelled with
“CLAS”.

Figure 8. Sammon projection of the SOM map
in figure 7.

sistently, a higher number of classical units appear in the
“jazz zone” than jazz units among the classical ones.

3.3 Classification

The results of classifying new melodic fragments, not
contained in the training sets, using the different SOM de-
scribed above are presented in table 1. We have focused in
the classification achieved using melodic and harmonic de-
scriptors. The results in the table are those obtained in the
next experiments:

• Classification results with the small (16× 8) SOM us-
ing melodic and harmonic descriptors.

• Classification results with the large SOM (30 × 12)
using melodic and harmonic descriptors.



Table 1. Classification results (percentages)
using melodic and harmonic descriptors

JAZZ CLASSICAL

Map dimensions =16× 8
Class success 76.9 77.5
Class error 23.1 22.3
Unclassified 0.0 0.2
One label 24.9 52.0
First label 52.0 25.5
Second label 14.1 18.6
Error 9.0 3.7

Map dimensions =30× 12
Class success 69.8 69.4
Class error 23.2 18.3
Unclassified 6.9 12.3
One label 51.2 61.4
First label 18.6 8.0
Second label 6.3 12.5
Error 16.9 5.8

For obtaining reliable results a scheme based onleave-k-
out has been carried out. In our casek = 10% of the size
of the whole database. This way, 10 sub-experiments were
performed for each experiment and the results have been
averaged. In each experiment the training set was made of
a different 90% of the total database and the other 10% was
kept for testing.

The data presented in the table are as follows:One label
successindicates the proportion of melodies to which the
map has assigned a unit containing just one label and it was
the right one. First label success percentage is related to
melodies assigned to units with two labels but being the first
the right one. Therefore, we are considering as favourable
decisions these two criteria: just one correct label or two
labels but the first is the correct one (the sum of these two
quantities gives theclass successrow).

Second labelindicates the proportion of times that a
melodic fragment has been asigned to a unit that had the
correct label as the second one. This fact is considered as a
misclassification.Error means that the map has assigned a
unit containing just one but wrong label. These two answers
define theclass error. Finally, Unclassifiedmelodies were
those assigned to a unit not containing any label.

The best overall performance was obtained with the
smaller map, with a success classification rate of 76.9%
for jazz melodies and of 77.5% for classical melodies. On
the other hand the error rates are lower for the second map,
and the difference is due to the higherunclassifiedrates for
this second map. These results are probably due to the fact

that in the second map the class clusters were more defined,
leaving more space to unlabelled units. If we devise a way
to assign this unlabelled units a class (based, for example, in
taking into account the distances in the weight space for the
trained map for assigning a label also to unlabelled units),
probably the results would improve.

Note also that the rates forone labelclassification are
higher for the larger map. This is due to the lower overlap-
ping rate for this map reported above.

4 Conclusions and future works

We have shown the ability of SOM to map symbolic rep-
resentations of melodies into a set of musical styles using
their description in terms of melodic, harmonic and rhyth-
mic features. The best recognition rate has been found with
21 descriptors (the basic set of 18 and 3 about harmony).
Rhythmic features like syncopation descriptors have not in-
creased the performance of the system. The best recognition
rate has not been achieved when the overlap was minimum,
so the overlap ratio does not seem to be a key point when
assessing the quality of a map.

Some of the misclassifications can be caused by the lack
of a smart method for melody segmentation. The music
samples have been arbitrarily restricted to 8 bars, getting
just fragments with no relation to musical motives. This
fact can introduce artifacts in the descriptors leading to less
quality mappings. The main goal was to test the feasibility
of the approach, dealing even with incomplete data. Nev-
ertheless a best total recognition rate of 82,9% has been
achieved, that is very encouraging keeping in mind these
limitations and others like the lack of valuable information
for this task like timbre.

A number of possibilities are yet to be explored, like
the development and study of new descriptors. A statisti-
cal multifactorial study of the whole set of descriptors and
other feature selection schemes can aid in the selection of a
model that can achieve better results with a minimum subset
of them. It is very likely that this subsets is highly depen-
dent to the styles to be discriminated.

To achieve this goal a large music database has to be
compiled and tested using our system. Different styles and
more melodies are needed to draw significative conclusions.
We are working now in a database based on XML repre-
sentations and descriptions of music, providing more musi-
cally meaning information than MIDI files, in a higher level
of abstraction, such as hierarchical information about note
grouping, note modifiers that modify pitch, duration or dy-
namics.

Other future lines are based in the integration of time in
the description process to capture the evolution of the whole
melody. The map activations for a series of fragments of the
same melody could be the input to other recognition algo-



rithms in order to increase the classification power of the
system, even with a higher number of music styles at the
same time. We are working now in the compilation of a
large multistyle database for further experimentation.

The activations of the map can be the input to a recog-
nition neural layer that under a supervised learning can be
utilised in cooperation to melody generation system to build
an automatic composition system specialised in certain mu-
sical styles. Works in that direction are currently being de-
veloped.
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