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The Generalized Tonnetz

Dmitri Tymoczko

Abstract This article relates two categories of music-theoretical graphs, in which points represent notes 
and chords, respectively. It unifies previous work by Brower, Callender, Cohn, Douthett, Gollin, O’Connell, 
Quinn, Steinbach, and myself, while also introducing new models of voice-leading structure—including a 
three-note octahedral Tonnetz and tetrahedral models of four-note diatonic and chromatic chords.

music theorists typically represent voice leading using two different 

kinds of diagram. In note-based graphs, points represent notes, and chords cor-

respond to extended shapes of some kind; the prototypical example is the 

Tonnetz, where major and minor triads are triangles, and where parsimoni-

ous voice leadings are reflections (“flips”) preserving a triangle’s edge. In 

chord-based graphs, by contrast, each point represents an entire sonority, and 

efficient voice leading corresponds to short-distance motion in the space, 

typically along an edge of a lattice. This difference is illustrated in Figure 1, 

which offers two perspectives on the same set of musical possibilities: on the 

top, we have the traditional note-based Tonnetz, while on the bottom we have 

Jack Douthett and Peter Steinbach’s (1998) chord-based “chicken-wire torus.”1 

These figures both represent single-step (or “parsimonious”) voice leading 

among major and minor triads and are “dual” to each other in a sense that 

will be discussed shortly.

In A Geometry of Music (Tymoczko 2011), I provide a general recipe for 

constructing chord-based graphs, beginning with the continuous geometri-

cal spaces representing all n-note chords and showing how different scales 

determine different kinds of cubic lattices within them. I also showed that 

nearly even chords (such as those prevalent in Western tonal music) are rep-

resented by three main families of lattices. Two of these are particularly use-

ful in analysis: the first consists of a circle of n-dimensional cubes linked by 

Thanks to Richard Cohn and Gilles Baroin for helpful comments.

1 The chicken-wire torus was introduced in Douthett and 
Steinbach 1998. There are many different orthographical 
variants of the traditional Tonnetz, depending on how one 
orients the axes; for a survey, see Cohn 2011a. For present 
purposes, these are all equivalent.
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2 J O U R N A L  o f  M U S I C  T H E O R Y

Figure 1. Two versions of the Tonnetz. (a) The note-based version, in which points 

represent notes and triangles represent chords. (b) Its geometrical dual, called the 

“chicken-wire torus” by Douthett and Steinbach (1998). Here, points represent chords 

and edges represent single-step voice leading.

(a )

( b )
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2 This type of graph occurs only when the number of 
notes in the chord is less than half the size of the scale, and 
shares a common factor with it, but does not divide the 
size of the scale exactly. The only time we would encoun-

ter these graphs, for scales smaller than fourteen notes, is 
when exploring four-note chords in a ten-note scale, hardly 
an everyday occurrence.

shared vertices; the second consists of a circle of n-dimensional cubes linked 

by shared facets (the third does not often appear in practical contexts, and 

can be safely ignored).2 What results is a systematic perspective on the full 

family of chord-based graphs.

The question immediately arises whether we can provide a similarly 

systematic description of the note-based graphs. What note-based construc-

tion represents efficient voice leading among nearly even four-note chords in 

the chromatic scale? What about nearly even four-note chords in the diatonic 

scale? How can we generalize the familiar Tonnetz to arbitrary chords within 

arbitrary scales? Is there a note-based graph for every chord-based graph? Is 

one or the other type of graph more useful for particular applications?

The purpose of this article is to answer these questions by providing a 

recipe for constructing generalized note-based graphs, or Tonnetze. Along 

the way we will encounter some surprising facts:

• The Tonnetz, while apparently a two-dimensional structure, can also 

be understood as a three-dimensional circle of octahedra linked by 

shared faces. The shared faces represent augmented triads, which do 

not appear on the traditional Tonnetz. The two versions of the Ton-

netz are graph-theoretically identical but geometrically (and topo-

logically) distinct.

• The seventh-chord analogue to the traditional Tonnetz can be 

depicted as a series of nested tetrahedra, each containing the notes 

of a diminished-seventh chord. This figure represents efficient voice 

leading among diminished, half-diminished, dominant seventh, 

minor-seventh, and French sixth chords.

• The traditional Tonnetz is often described as a torus, or a “circle 

times a circle.” However, the more general description is the “twisted 

product of an (n – 2)-dimensional sphere with a circle.” It just so hap-

pens that in the three-note case, the one-dimensional sphere is itself 

a circle, potentially misleading theorists into thinking that higher-

dimensional Tonnetze are also toroidal.

• Any sufficiently large note-based graph will inevitably contain either 

“flip restrictions” or “redundancies”—that is, the graph will either 

contain “flips” that represent nonstepwise voice leadings or multiple 

representations of the same chord. The traditional Tonnetz is unusual 

in that it lacks both features. 

• Chord-based voice-leading graphs are associated with note-based 

Tonnetze by the geometrical property of duality. However, the duality 
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3 It was Richard Cohn (1997) who pioneered the use of 
geometrical graphs, and in particular the note-based Ton-
netz, to represent chordal voice leading. Some earlier work, 
such as Roeder 1984 and 1987, used geometry to repre-
sent voice leading among set-classes. For a brief history of 
the development of geometrical models of voice leading, 
see Tymoczko forthcoming.

4 Readers who pine for mathematical rigor will likely be able 
to generate proofs from the following informal exposition.

5 A substantial number of blind mathematicians are geom-
eters (Jackson 2002). One hypothesis is that blindness can 
be helpful, insofar as it reduces the reliance on quasi-visual 
pictures.

relation obtains not between graphs considered as unified wholes, 

but rather between their cubic and octahedral components.

From a theoretical point of view, the last point is the crucial one. The most 

natural route to the generalized Tonnetz begins with the chord-based lat-

tices described in A Geometry of Music. These are typically arrangements of 

n-dimensional cubes. We can replace each n-cube with its geometrical dual, 
producing a collection of “generalized octahedra.” These generalized octa-

hedra then need to be rotated or reflected before they can be glued together 

to form the note-based analogue to the original chord-based graph.

Geometrical investigations of chordal voice leading began with the 

note-based Tonnetz, a structure that was originally devised to represent 

purely acoustical relationships among notes.3 But as the geometrical approach 

matured, it gradually moved toward chord-based graphs, which are more eas-

ily generalized to a broader range of musical circumstances. Having under-

stood these chord-based structures, we can now complete the circle, return-

ing to the note-based graphs that started the investigation. Thus, more than 

two decades after the beginnings of neo-Riemannian theory, we are poised 

to understand the Tonnetz in a deeper and more principled way.

1. Mathematical Background

This section reviews some basic mathematical material, beginning with ele-

mentary geometrical terminology and proceeding to describe the duality of 

the hypercube and the cross-polytope. I will try to be informal and intuitive, 

in keeping with my goal of remaining comprehensible to readers who are 

musicians first and foremost. This is consistent with my philosophy that music 

theory is an applied discipline in which mathematics is a tool rather than an 

end in itself.4

One word of warning: when doing higher-dimensional geometry, it is 

often necessary to prioritize algebra over direct visualization. In large part, 

geometry is a matter of grasping patterns that repeat themselves in increas-

ing dimensions, with algebraic relations providing our best guide as to which 

properties do, in fact, generalize. Thus, rather than struggling to construct a 

vivid picture of the seven-dimensional cross-polytope, one should instead 

concentrate on the generic properties shared by all cross-polytopes, content-

ing oneself with visualizing only the lower-dimensional examples.5 That said, 

music can sometimes be a useful tool for picturing higher-dimensional rela-
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6 Counterclockwise is the opposite of clockwise and does 
not count as a separate (perpendicular) direction.

tionships; for example, readers who have finished this article will have no 

trouble imagining the seven-dimensional cross-polytope as a certain collec-

tion of relations between two completely even seven-note scales.

Basic terminology

In plane Euclidean geometry, a polygon is a two-dimensional plane figure 

bounded by a closed sequence of line segments. A vertex is a point belonging 

to two adjacent line segments. A polygon is said to be convex if its interior 

contains every line segment between any two points of the polygon. (Convex 

polygons have internal angles less than or equal to 180°.) These definitions 

can be generalized to higher dimensions: the three-dimensional analogue of 

a polygon is a polyhedron, while the n-dimensional analogue is a polytope. A 

polyhedron is bounded by polygonal faces (dimension 2) that intersect at lin-

ear edges (dimension 1), which in turn intersect at points called vertices (dimen-

sion 0). An n-dimensional polytope is bounded by facets that are all (n – 1)-

dimensional polytopes, themselves intersecting to form (n – 2)-dimensional 

polytopes (ridges) that intersect to form (n – 3)-dimensional polytopes (peaks) . . . 

all the way down to two-dimensional faces, one-dimensional edges, and zero-

dimensional vertices. The term codimension is sometimes useful: if W  is a sub-

space of V, then the codimension of W in V is the dimension of V minus the 

dimension of W (that is, the number of “extra” dimensions in V not taken up 

by W). A facet always has codimension 1, a ridge has codimension 2, and so on. 

A hyperplane is an infinite flat space of codimension 1. In (n � 1)- 

dimensional Euclidean space, the n-dimensional sphere (n-sphere) is the set 

of points equidistant from the origin; the n-dimensional ball consists of all 

points less than or equal to a certain distance from the origin. (It is a “filled-

in” sphere, the union of a sphere and its interior.) Topological equivalence can 

be understood as “equivalence to within stretching”: two shapes are topo-

logically equivalent if one can be smoothly deformed into the other without 

tearing or gluing. (Imagine the shapes being made out of infinitely flexible 

rubber.) All convex n-dimensional polytopes are topologically equivalent to 

the n-dimensional ball.

It is important to distinguish a space’s intrinsic and extrinsic dimension-

ality. Intuitively, the former refers to the number of perpendicular direc-

tions in which one can move, at any point in the space; the latter refers to the 

way the space is embedded in some other, higher-dimensional space. For 

example, a circle is intrinsically one-dimensional, since at any point one can 

move only clockwise or counterclockwise.6 Intrinsically, then, the circle has 

one dimension; we typically conceive of it extrinsically as being embedded in 

a two-dimensional space (in much the same way the surface of a globe is 
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7 Note that if we were to “zoom in” to a very small region 
of a circle (or sphere), the curvature would gradually disap-
pear, and the space would seem more and more like a line 
(or plane).

8 Lewinian “node/arrow systems,” though more structured 
than graphs, are similarly abstract (Lewin 1987).

intrinsically two-dimensional, though often represented in three dimen-

sions).7 Mathematicians are typically concerned with the intrinsic rather than 

extrinsic dimension of a space. In this article, however, the issue of dimen-

sionality will be rather subtle, since we will be considering graphs that are 

embedded within larger geometrical spaces. Thus, we will find ourselves 

wondering whether it is better to model the augmented triad on the familiar 

Tonnetz as a circle of intrinsic dimension 1, or as a triangle embedded in a 

three-dimensional space, having extrinsic dimension 2.

Related to this is the contrast between graph theory and geometry. 

From a formal point of view, a graph is a very abstract structure—a collection 

of points (or vertices) along with a series of connections between them (edges), 
not necessarily embedded in any larger space. Graphs do not have straight 

lines, angles, or any determinate topology.8 In what follows, however, I will 

sometimes use the term graph to refer to a series of vertices connected by line 

segments and contained within some continuous geometrical space. This is because 

chord-based graphs are typically embedded within the continuous spaces 

representing all possible n-note chords. As we will see, it is sometimes useful 

to take this point of view with respect to the note-based graphs as well.

The dual polytope

A convex polytope (polyhedron, polygon) can be associated with another 

polytope known as its geometrical dual. For every facet of the original polytope 

(� region of codimension 1), the dual has a vertex. (In many contexts, we can 

imagine this vertex to be situated in the center of the original facet.) Two 

vertices in the dual are linked by an edge if they are associated with facets that 

intersect in a ridge (� region of codimension 2). (Thus, for every ridge in the 

original space, the dual has an edge.) Figure 2 shows that the dual of a square 

is another square, while the dual of a cube is an octahedron. The dual of the 

octahedron is a cube, illustrating the general principle that every polytope is 

its dual’s dual. The square is “self-dual” since its dual is another square. The 

triangle and tetrahedron are also self-dual.

Hypercubes, cross-polytopes, duality, and simplexes

The duality relation between cubes and octahedra can be extended to arbi-

trary dimensions, with an n-dimensional cube being known as the “hyper-

cube,” the n-dimensional octahedron being the “cross-polytope,” and the two 

structures being dual to each other. Mindful of my earlier warnings against 
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9 That is, all possible combinations of the values �1 and 
 –1.

10 If we fix any one coordinate, then we are left with an 
(n – 1)-dimensional figure whose vertices are (�1, �1, 
�1, . . . , �1). This is the equation for an (n – 1)-dimensional 
hypercube.

11 In n -dimensional space, there is an important (n – 1)-
dimensional simplex whose vertices are the permutations 
of (1, 0, 0, . . . , 0). (This is in fact one of the facets of the 
cross-polytope described in the main text.) All points on 
this simplex have coordinates that sum to the value 1. The 
simplex can therefore be taken to represent the different 

visualization, we will investigate the relationship by introducing algebraic 

coordinates that can be interpreted musically.

In n-dimensional Cartesian space, we can form an n-dimensional 

hypercube by considering the figure whose vertices are (�1, �1, �1, . . . , �1).9 

Its dual n-dimensional cross-polytope has vertices whose coordinates are the 

permutations (reorderings) of (�1, 0, 0, . . . , 0). These coordinates are con-

venient insofar as each facet of the hypercube will be bounded by vertices 

that share a single number in some particular order position (Figures 3 and 

4). As is clear from the illustrations, any cubic facet’s shared coordinate is the 

nonzero coordinate of the associated vertex in the dual cross-polytope.

It is easy to see that the facets of an n-dimensional hypercube are (n – 

1)-dimensional hypercubes.10 The facets of an n-dimensional cross-polytope 

are neither cubes nor cross-polytopes, but are instead (n – 1)-dimensional 

simplexes. A simplex is a generalized triangle or tetrahedron: an n-dimensional 

simplex is bounded by n � 1 vertices, not all in the same hyperplane, with edges 

connecting all vertices. It is called a “simplex” because it is the n-dimensional 

polytope with the fewest vertices; in that sense, it can be said to be as simple 

as possible.11 The cross-polytope whose vertices are permutations of (�1, 0, 

Figure 2. The dual of a convex polytope is another polytope that has a vertex for every 

face of the original. The dual of a square is another square, while the dual of a cube is 

an octahedron.
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Figure 3. If the square has vertices whose coordinates are (�1, 

�1), then the dual has vertices whose coordinates are (�1, 0) 

and (0, �1).

Figure 4. If the cube has vertices whose coordinates are (�1, �1, �1), 

then the dual has vertices whose coordinates are (�1, 0, 0), (0, �1, 0), and 

(0, 0, �1). Each of the octahedron’s vertices is therefore situated in the 

middle of one of the square’s faces.
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ways of dividing a fixed quantity of stuff into n different 
piles; for instance, the line segment from (1, 0) to (0, 1) is a 
one-dimensional simplex that can represent the results of 
a two-party election, while the triangle whose vertices are 
(1, 0, 0), (0, 1, 0), and (0, 0, 1) is a two-dimensional simplex 
that can represent the results of a three-party election—or 
the relative size of the three intervals in a three-note trans-
positional set-class, or a three-pulse rhythm in a measure 
of fixed size.

12 For instance, the facets of the octahedron in Figure 3 
are bounded by sets such as (1, 0, 0), (0, 1, 0), and (0, 0, 1). 
There are no facets that contain pairs such as (1, 0, 0) and 
(–1, 0, 0), as these correspond to opposite faces of the 
associated cube.

0, . . . , 0) has facets that are bounded by a collection of n vertices no two of 

which are nonzero in the same coordinate: thus each facet is determined by 

choosing signs for the collection (�1, 0, 0, . . . , 0), (0, �1, 0, . . . , 0), . . . , (0, 

0, 0, . . . , �1).12 This cross-polytope can be thought of as having a simplicial 

“top facet” whose coordinates are the reorderings of (�1, 0, 0, . . . , 0) and a 

simplicial “bottom facet” whose coordinates are the reorderings of (–1, 0, 

0, . . . , 0). (Note that on Figure 3 the “top facet” is on the upper right, while 

on Figure 4 it is on the upper right rear. It would be possible to rotate the 

coordinate axes so that this face did indeed appear to be the “top” of the 

figure.) The remaining facets combine vertices from the top and bottom fac-

ets in an appropriate way. Edges connect every vertex on the top facet to all 

the vertices on the bottom facet except the one that is nonzero in the same 

coordinate.

Musically, we will interpret the hypercube (�1, �1, �1, . . . , �1) as rep-

resenting a chord-based graph that records all possible sequences of lower-

ings that take an ordered n-note chord to the chord a step below it. Let any 

�1 coordinate refer to one of the chord’s original notes, and –1 refer to the 

note a step below. Figure 3 shows that we can move from (�1, �1) to (–1, –1) 

by passing through either (�1, –1) or (–1, �1); similarly, Figure 4 shows that 

we can move from (�1, �1, �1) to (–1, –1, –1) by passing through intermedi-

ate vertices such as (�1, �1, –1) and (�1, –1, –1). The “dual” cross-polytope, 

whose vertices are the permutations of (�1, 0, 0, . . . , 0), can be interpreted 

as a note-based graph recording the same information. We begin with the orig-

inal chord at the top facet (that is, the facet whose vertex coordinates are all 

�1, corresponding to the original, “unlowered” form of each note). Each 

single-step lowering is represented by a “simplex flip” that replaces a top-facet 

vertex with its bottom-facet analogue (that is, the vertex with –1 in the same 

order position). For example, on Figure 3 we can flip the upper-right edge 

onto the upper left around the top vertex, lowering the first coordinate in the 

process; on Figure 4, we can flip the upper-right-rear triangle onto the upper-

right front, lowering the third coordinate. We can continue to flip, replacing 

�1 vertices with their –1 counterparts, until we have reached the bottom 

facet, where no more lowerings are available.

This interpretations will be central to the rest of this article, so readers 

are encouraged to study Figures 3 and 4 carefully. Alternatively, you may 
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13 See Cohn 1997, which categorizes progressions by the 
number of parsimonious voice-leading moves (“binary,” 
“ternary,” etc.).

14 Tymoczko 2006, 2008b, and 2011, appendix C. See 
also Hall and Tymoczko 2012. 

prefer to return to these ideas after the following section, which clarifies the 

musical relevance of the points just discussed.

2. Music-Theoretical Background

Now we need to review some basic theoretical material from chapter 3 of A 
Geometry of Music. We will start with a general discussion of the standard Ton-

netz, then turn to the role of hypercubes in the continuous chord spaces, and 

end with the two main families of chord-based voice-leading lattices.

The multivalent Tonnetz

Since the Tonnetz is our central example of a note-based graph, it pays to 

consider it carefully. In particular, it is important to realize that the Tonnetz 

has a triply ambiguous status as a representation of acoustic, voice-leading, and 

common-tone relationships. From a historical point of view, the acoustic aspect 

is primary: Leonhard Euler originally designed the structure so that maxi-

mally consonant intervals—the perfect fifth and major third—corresponded 

to the graph’s edges. The Tonnetz’s second role, as a representation of single-
step voice-leading relationships among major and minor triads, became important 

in Richard Cohn’s early papers (see esp. Cohn 1996, 1997). It is this second 

aspect that will concern us here: we will be trying to generalize the Tonnetz 

considered as a graph of efficient voice-leading possibilities rather than as a repre-

sentation of acoustical relationships.

There is, however, one complication. Cohn’s early work, like neo- 

Riemannian theory more generally, often conflated voice-leading efficiency 

and common-tone retention. This can be seen in Cohn’s practice of measur-

ing voice-leading distance in terms of “Tonnetz flips” or “parsimonious voice-

leading moves.”13 While it might seem that this strategy would produce an 

effective measure of voice-leading size, this is not the case: the voice leading 

(C, E, G) → (C, F, A) is smaller by this measure than the voice leading (C, E, 

G) → (C, F, A ♭), whereas from the voice-leading perspective the opposite is 

true. Moreover, common-tone retention does not necessarily produce the 

most efficient voice leading between chords: the common tone–preserving 

(E4, F4, G4) → (E4, F4, D4) has a voice crossing and is, for almost every stan-

dard measure of voice-leading size, less efficient than (E4, F4, G4) → (D4, E4, 

F4), which has no crossings and preserves no common tones.14

The crucial point is that the three conceptions of the Tonnetz general-

ize in different ways. The most natural generalization of the acoustic Tonnetz 

is a structure in which additional axes represent additional consonant inter-

vals such as the octave (in the work of Longuet Higgins) or the just minor 
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seventh (in the work of some contemporary tuning theorists) (Tymoczko 

2009a). The most natural generalization of the common-tone Tonnetz is the 

one that Cohn constructed in his influential 1997 article “Neo-Riemannian 

Operations, Parsimonious Trichords, and Their ‘Tonnetz’ Representations,” 

shown here as Figure 5. (Note that this generalization cannot be extended to 

chords of arbitrary size.) By contrast, the “voice-leading Tonnetz” is one of a 

large family of note-based graphs that will be explored below.

Cubic geometry in chord spaces

Chapter 3 of A Geometry of Music provides a detailed, user-friendly introduc-

tion to the continuous geometrical spaces representing all possible chords. 

Here I very briefly review the essentials, trusting that readers will consult the 

book in the event of any confusion. Chords live in quotient spaces or orbi-

folds, arising when we “glue together” ordered pitch sequences that represent 

the same set of pitch classes. We start with n-dimensional Cartesian space, Rn, 

which can be pictured as an infinite space with n linear axes, all at right 

angles to one another. Points in this space are represented by n-tuples of real 

numbers, one for each axis or voice, with each coordinate representing the 

pitch sounded by that particular voice. To form a space of musical chords, we 

need to ignore octave and order. We ignore octave by considering the coor-

dinates modulo 12, or in other words, gluing together the points (. . . , x, . . .) 

and (. . . , x � 12, . . .). This transforms our space into the n-dimensional torus 

Figure 5. Cohn’s generalized Tonnetz describes a chord (0, x, x � 

y). Each trichord shares an edge (and hence two common tones) 

with three of its inversions.
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15 This space has one facet; the Möbius strip has one 
edge; three-note chord space, a twisted triangular donut, 
has one face, and so on. Points represent chords, while 
line segments represent voice leadings or ways of moving 
from one chord to another. 

16 The coordinate system is only “locally” valid since the 
space has a “nontrivial holonomy,” which means that a cir-
cular path can rotate or reflect the axes.

17 Actually, this is true only when we are considering 
n -dimensional lattices in n -dimensional space. There are 
some cases when the lattice will have lower dimension 
than the ambient space, and the faces will fix multiple pitch 
classes. We will return to this point below.

Tn, or ordered pitch-class space. (A torus can be thought of as an n-dimensional 

space with circular axes, all at right angles to one another.) To ignore order, 

we glue together all points whose coordinates are related by permutation. 

This produces a twisted n-dimensional donut, known to mathematicians as 

Tn/Sn.15 This space contains singular points that act like mirrors, with line seg-

ments appearing to “bounce off” these singularities like billiard balls reflect-

ing off the edges of a pool table.

The global structure of these spaces is not important in what follows. 

For us, the crucial fact is that the spaces admit “locally valid” coordinate sys-

tems in which the orthogonal axes correspond to motion in the individual 

musical voices.16 (Mathematical readers will note that this follows from their 

construction: we began with Rn, in which each coordinate represented a dif-

ferent voice; our various “gluings” changed the space only at a few singular 

points, with the bulk of the space remaining locally isomorphic to regions of 

the original.) Discrete chord-based voice-leading lattices are typically con-

structed from hypercubes in which the various spatial dimensions represent 

single-step motion in each of a chord’s various voices.17 A single hypercube 

will represent the different ways of lowering (or raising) the notes of one 

particular chord by step. This is illustrated in Figures 6 and 7, which show the 

two- and three-note diatonic and chromatic cases. Note that the basic struc-

ture of the diatonic and chromatic graphs is identical, with the only differ-

ence being the location of the transpositional relationships; for instance, in 

Figure 6. A square represents all the ways in which one can lower the 

notes of a two-note chord, eventually producing the chord a scale-

step below. This is true whether we are working in the chromatic scale 

(left), diatonic scale (right), or any other scale.
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Figure 6, the chromatic graph has two tritones and two perfect fifths, whereas 

the diatonic graph has three fourths (all related by diatonic transposition) 

and one third. Likewise, in Figure 7, the chromatic cube has two augmented 

triads, three major triads, and three minor triads; the diatonic case has four 

triads, two fourth chords, and two incomplete sevenths. Nevertheless, all the 

graphs show the various ways of stepwise lowering the notes of the chord on 

the upper right (or upper-right rear) of the figure.

Figure 8 shows that there is another way of conceiving the coordinate 

systems in our space: instead of understanding the various directions as mov-

Figure 7. A cube represents all the ways in which one can 

lower the notes of a three-note chord, eventually producing 

the chord a scale step below. This is again true no matter 

what scale we are working in.

Journal of Music Theory

Published by Duke University Press



14 J O U R N A L  o f  M U S I C  T H E O R Y

ing one voice, we can conceive of them as holding fixed all but one voice. It follows 

that, at any point in the space, the hyperplane defined by all but one of our 

axes will be associated with a single fixed pitch class. This in turn means that 

the facets of our voice-leading cubes will each fix some particular pitch class, 

common to all the chords on its vertices. (This is also true of the hyperplane 

containing that facet.) When we transform such a cube into its geometrical 

dual, each facet in the original cube becomes a point in the dual cross-poly-

tope. It follows that the vertices of the dual polytope represent particular pitch 
classes. Chords in the dual are now represented by the cross-polytope’s simpli-

cial facets. (Since every polytope is the dual of its dual, these facets in turn 

correspond to vertices in our original, cubic, chord-based graph, so every-

thing works out as expected.) In the dual graph, single-step voice leading is 

represented by a “simplex flip” that reflects one simplex into another through 

a common ridge.18

Thus, if we start with an n-dimensional cube in n-note chord space, 

representing single-step voice-leading in each voice, we can use duality to 

form a Tonnetz analogue, a “generalized octahedron” (cross-polytope) in 

which vertices represent pitch classes and facets (“generalized triangles” or 

simplexes) represent chords. Efficient voice leading is now represented by 

Figure 8. In n-dimensional chord space, we can 

find a coordinate system such that each direction 

corresponds to motion in a particular voice. 

Alternatively, we can think of each direction as 

holding all but one voice constant. It follows that 

n – 1 of these axes define a hyperplane holding a 

single note constant.

18 That is, reflections preserving a common ridge of the 
original cross-polytope, which is to say a facet of the sim-
plical facet.
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19 A hypercube represents all the ways of systematically 
lowering the notes of a chord by step; if the size of the 
chord divides the size of the scale, then the scale contains 
a perfectly even chord that divides the octave into n equal 
parts. This chord is located at the cubes’ shared vertices; 
the remaining vertices are generated by all the different 
ways of successively lowering its notes by step. Clearly, 
no two perfectly even chords will have common tones.

20 Clough and Myerson (1985) use the term “generalized 
circle of fifths” to refer to what I have just called a “near 
interval cycle,” represented as a circular note-based graph. 
By contrast, I am using the term to refer to a circular chord-
based graph in which transpositionally related chords are 
linked by single-step voice leading.

“simplex flips” that transform one facet of the octahedron into another that 

shares a common ridge. The only difficulties are (1) determining how these 

various “generalized octahedra” are to be glued together and (2) describing 

the resulting structures.

The two families of lattices

In §3.11 of A Geometry of Music, I showed that just three families of lattices 

represent the most nearly even n-note chords in any scale. Only two of these 

play a major role in analysis. In the first family, the size of the chord evenly 

divides the size of the scale, and we have a circle of n-dimensional cubes 

linked by shared vertices (Figure 9).19 In the second family, the size of the 

chord is relatively prime to the size of the scale, and we have a circle of cubes 

linked by shared facets. The most interesting difference between the two 

families is that in the first, the dimension of the lattice is determined by the 

size of the chords we wish to represent (to represent two-, three-, and four-

note chords, we need two-, three-, and four-dimensional lattices, respectively); 

whereas in the second family, the dimension is controlled by the number of 
chord types we wish to represent. Thus, we can use a one-dimensional graph to 

represent the voice-leading relationships among maximally even chords (no 

matter how many notes they have!), a two-dimensional graph to represent 

voice leading among the two most even types of chord, a three-dimensional 

graph to represent the three most even types of chord, and so on.

The basic principles here are relatively simple. If the size of a chord is 

relatively prime to the size of a scale, the maximally even chord is a “near inter-

val cycle” all but one of whose intervals are the same, with the unusual inter-

val being just a scale step different from the others (see Clough and Myerson 

1985; Clough and Douthett 1991). It follows that we can use this chord to cre-

ate a “generalized circle of fifths”—a circle of transpositionally related chords, 

each connected by single-step voice leading to its neighbors (Figure 10).20 To 

include the second most even type of chord, we reverse the order of every pair of 
adjacent voice leadings in the “generalized circle of fifths.” Figure 11 represents this 

geometrically, arranging the generalized circle of fifths in a zigzag. (In this 

arrangement, reordering a northeast-then-southeast move involves moving 

southeast-then-northeast, and so on.) To represent the third most even type of 

chords, we begin with a zigzag through three dimensions, reordering every 

triple of adjacent voice leadings in the circle of fifths (Figure 12). Remark-
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ably, this procedure suffices to generate our second family of lattice. Thus, 

the abstract graph in Figure 11 can be filled in by fifths, triads, or seventh 

chords in the diatonic scale, and pentatonic or diatonic collections in the 

chromatic scale, while that in Figure 12 can be filled in by diatonic triads, 

octatonic triads, or familiar seven-note scales.

Readers who want further information are directed to §3.11 of A Geom-
etry of Music. Here the important point is that both families of lattice are 

constructed from (hyper)cubes joined together in some way, either by shared 

vertices (Figure 9) or by shared facets (Figures 11 and 12). We have already 

seen that we can convert chord-based graphs into note-based graphs by replac-

ing hypercubes with their dual cross-polytopes. Thus, we simply need to 

determine how the cross-polytopes fit together.

3. Constructing the Note-Based Lattices

We will now convert familiar chord-based graphs into note-based structures 

analogous to the Tonnetz. Again, the basic strategy will be to replace each of 

Figure 9. When the size of the chord divides the size of the scale, the most 

nearly even chords are represented by a circle of n-dimensional cubes 

linked to their neighbors by a shared vertex. Here are the one- and two-

dimensional cases.
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the (hyper)cubes in a chord-based graph with its geometrical dual, connecting 

adjacent cross-polytopes as required. For clarity, we will treat each family of 

graph separately, beginning with the two- and three-dimensional cases before 

turning to higher dimensions.

Note that while the discussion focuses on chords contained within chro-

matic and diatonic scales, the underlying ideas are inherently more general 

than that. What is important is not the particular structure of any particular 

scale, but simply the relation between the size of the chord and the size of the 

Figure 10. When the size of the chord is relatively prime to the size 

of the scale, the most nearly even chord is a “near interval cycle”—

a circle of n intervals, all but one the same size, with the outlier 

being just a scale step larger or smaller. Given any such chord, we 

can construct a “generalized circle of fifths,” or circle of single-

step voice leadings connecting transpositionally related chords. 

The circle is formed by moving the position of the unusual inter-

val. Note that this is a note-based graph, in contrast to the 

surrounding figures.

Figure 11. Given a “generalized circle of fifths” (1 � 2 � 3 � . . .), 

we can graph single-semitone voice leadings among the two 

most even chord types by scrambling every pair of adjacent 

voice leadings along the circle of fifths. This schematic chord-

based graph can therefore represent voice-leading relations 

among diatonic triads and fourth chords, diatonic and acoustic 

scales, diatonic fourths and thirds, and so forth.
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scale—in particular, whether one number divides the other, or whether the 

two numbers are relatively prime. Thus, the graph of nearly even four-note 

octatonic chords has the same basic structure as the graph of nearly even 

four-note chromatic chords, since 4 divides both 8 and 12. In much the same 

way, the graph of nearly even five-note diatonic chords is structurally similar 

to the graph of nearly even five-note chromatic chords, since 5 is relatively 

prime to both 7 and 12. Readers interested in more exotic cases should there-

fore be able to generate the relevant graphs from the following examples.

First family, two dimensions

Figure 13a shows single-semitone voice leading between perfect fourths (� 

fifths) and tritones in the chromatic scale; it is a circle of squares, each linked 

to its neighbors by a shared vertex. Tritones are on the shared vertex with 

fourths on the top and bottom vertices. The two 45° axes (northwest/south-

east and northeast/southwest) represent motion in the individual voices. For 

example, at {B ♭, E}, motion along one diagonal moves B ♭ up and down by a 

semitone, keeping E fixed, while the other diagonal moves E up and down, 

Figure 12. Given a “generalized circle of fifths” (1 � 2 � 3 � . . . ), we can 

graph single-semitone voice leadings among the three most even chord 

types by scrambling every three adjacent voice leadings along the circle 

of fifths.
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keeping B ♭ fixed. Figure 13, b and c, constructs the dual graph, replacing 

each edge of the original with a point and connecting these new points by 

edges whenever the original edges met at a vertex. As discussed above, verti-

ces in the new graph can be associated with pitch classes: each edge in the 

original graph is replaced by a point in the dual representing the note that is 
not affected by motion along that edge. What results is a series of disconnected 

squares in which horizontal edges represent perfect fourths while vertical 

edges represent tritones.

Note that the leftmost square in Figure 13b has B ♭ above E, while the 

leftmost edge of the next square has E above B ♭. Looking at Figure 13a, we 

can see why this is so: since every 45° line of the original space preserves a 

particular pitch class, B ♭ is fixed by both the upper-right edge of the leftmost 

diamond and the lower-left edge of the diamond to its right; thus, in the dual 

Figure 13. To form the note-based graph of nearly even two-note chromatic chords, we 

start with the chord-based graph at the center of two-note chromatic chord space (a) and 

then replace each cube with its dual (b). This produces a note-based graph (c) where line 

segments represent chords, and vertex-preserving “flips” represent single-semitone 

voice leading. Note that the rightmost square in panel c is linked to the leftmost square 

with a “twist,” just as in panel a.
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21 If we consider the horizontal path from C–G to D–A to 
have length 2, then D ♭–A ♭ and D–A are equidistant from 
C–G. From a voice-leading perspective this is not true: 
D–A can pass through D ♭–A ♭ when it moves efficiently to 
C–G, but D ♭–A ♭ cannot pass through D–A when it moves 
efficiently to C–G. We lose the ability to model this when 
we consider horizontal flips to have unit length.

22 I will use the term “Cube Dance” in what follows, 
though I will typically use the term to refer to this graph-
theoretical construction as it is embedded in three-note 
chord space. This embedding endows the lattice with more 
geometrical structure, allowing us to speak about “straight 

lines” that pass through the augmented triad. See Tym-
oczko 2011, chapter 3 and appendix C.

23 Douthett 2008 depicts one of these octahedra, dual to 
the individual cubes on “Cube Dance,” and identified as 
the “hexatonic Tonnetz.”

24 As noted above, allowing direct moves between these 
triads will have the consequence that “flip distance” no 
longer reflects voice-leading distance: F major will be just 
two flips from C major, whereas F minor will be three flips 
away. See Tymoczko 2010 and 2011, appendix C.

squares, the pitch class B ♭ is below E on one square, while the reverse is true 

on the neighboring square. To connect them, we therefore need to reflect 

every other square around its horizontal axis of symmetry, producing a circle 

of squares, each linked to its neighbors by shared edges. 

In this dual graph, vertices represent notes, line segments represent 

chords, and efficient voice leading corresponds to “edge flips” around a com-

mon vertex. Observe, however, that the fourth C–G shares a vertex with both 

the tritone C♯–G and with the fourth G–D. To preserve voice-leading dis-

tances, we should consider the change from C–G to G–D to be a two-step 

motion, rather than a simple flip; otherwise, “flip distance” will not corre-

spond in any obvious way to the total number of semitones moved by each 

voice.21 I will say that the graph is flip restricted, since not all of its flips are size-

one voice leadings. (In other words, if we want to model voice leading, we 

must restrict people from using these larger flips.) As we will see, flip restric-

tions often arise in complex note-based graphs. 

First family, three dimensions and higher

Figure 14a shows the cubic lattice at the center of three-dimensional chord 

space. This structure was discovered by Douthett and Steinbach (1998) in a 

slightly more abstract form and is sometimes known as “Cube Dance.”22 As 

above, we can replace each cube by its dual octahedron, attaching them at 

their common faces to produce the lattice in Figure 14b.23 (For clarity, Figure 

15 shows how to construct the dual of an isolated cube in the original chord-

based graph.) Efficient voice leading in the note-based graph is now repre-

sented by a “triangle flip” that links two triangles sharing a common edge. Note 

that a major triad such as C–E–G shares an edge with both the augmented 

triad C–E–G♯ and the minor triad C–E–A. (This is analogous to the way that 

C–G shared a vertex with C♯–G and G–D.) To accurately model voice leading, 

we must once again introduce flip restrictions, requiring that the major triad 

move first to the augmented triad before proceeding up to the minor triad.24 

Let’s now review the properties common to the two- and three-note 

cases. Figure 13c can be conceived as a circle of one-dimensional simplexes 
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25 Recall that every vertex of a cross-polytope is located 
either on the top face or on the bottom face; there are no 
vertices not contained by these two faces.

(vertical line segments) representing the completely even two-note chords 

(tritones). Each vertex in one tritone-simplex is connected by a line segment 

to all those notes in the neighboring tritone-simplexes except for those that are 
a semitone away. The tritone-simplexes thus form the “top” and “bottom” 

faces of a two-dimensional cross-polytope (� square, the dual of the two-

dimensional cube, which is also a square).25 Similarly, Figure 14b is a circle of 

two-dimensional simplexes (horizontal triangles) containing completely even 

three-note chords (augmented triads); each vertex in one augmented-simplex 

Figure 14. To form the note-based graph of nearly even three-note chromatic 

chords, we start with the chord-based graph at the center of three-note chromatic 

chord space (a); then we replace each cube with its dual and glue the resulting 

octahedra together in the appropriate way. This produces a circle of octahedra 

linked by common faces (b). Here, triangles represent major, minor, and augmented 

chords, and edge-preserving flips represent single-semitone voice leading. Note 

that the top face is a 120° rotation of the bottom face, indicating that the structure 

is globally twisted.
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26 First, the inner (B diminished) tetrahedron should be 
understood to contain the outer (C♯ diminished) tetrahe-
dron, since the graph is a “circle of tetrahedra.” For the 
sake of clarity, I have not duplicated the B diminished tet-
rahedron. Second, the vertices of each tetrahedron poke 

through the faces of the tetrahedron enclosing it; this is 
simply for legibility—were each simplex entirely contained 
within the other, the smallest simplex would be much 
smaller than the largest.

is connected to all the notes in the neighboring augmented-simplexes except 
for those that are a semitone away. The augmented-triad simplexes form the “top” 

and “bottom” faces of a three-dimensional cross-polytope (an octahedron, 

dual to the three-dimensional cube).

In four dimensions, we thus expect to find a circle of three-dimensional 

simplexes (tetrahedra) containing completely even four-note chords (dimin-

ished-seventh chords), with each vertex in one tetrahedron connected by line 

segments to all the notes in the neighboring tetrahedra except for those that are 
a semitone away. Somewhat surprisingly, it is possible to portray this figure in 

three dimensions. Figure 16 presents three nested tetrahedra, eliminating 

connections between them for the sake of visual clarity. (Figure 17 provides 

a glimpse of the chord-based dual, a circle of four-dimensional cubes, or “tes-

seracts,” linked by shared vertices.) Since this is a three- dimensional repre-

sentation of an inherently four-dimensional structure, it necessarily involves 

certain simplifications.26 But it is clear enough to be useful as a model of 

tetrachordal voice leading.

Chords here are represented by tetrahedra. The completely even chords 

(diminished-seventh chords) are shown on the graph. To form dominant sev-

Figure 15. The duality between the chord-based cube and the note-

based octahedron.
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enths, minor sevenths, French sixths, and half-diminished sevenths, we com-

bine vertices from adjacent tetrahedra, subject to the proviso that a tetra-

hedron cannot contain notes that are a semitone apart. (Semitonally related 

notes are maximally distant on adjacent tetrahedra and cannot be connected 

without cutting through one of the diminished-seventh chords; in this sense, 

they seem like they do not belong together.) Dominant and half-diminished 

sevenths contain a triangle from one tetrahedron and a vertex from another; 

this additional vertex is maximally close to the triangle in question. (For 

instance, the notes A ♭ and B ♭, on Figure 16’s inner and outer tetrahedra, are 

directly above the triangle C–E♭–G ♭ on the middle tetrahedron.) To form 

minor sevenths and French sixths, combine two edges from adjacent tetrahe-

dra. For a given line segment, there is only one available line segment on 

another tetrahedron, and its position is visually obvious; for instance, A –E♭ 
on the middle tetrahedron can be combined either with C♯–G on the outer 

or B–F on the inner. (All other line segments on the inner and outer tetrahe-

dra contain a note semitonally adjacent to either A or E♭.) Once again, semi-

tonal voice leading is represented by a “simplex flip” that transforms a tetra-

hedron into another tetrahedron sharing a common face. The tetrahedron 

Figure 16. A note-based graph representing single-

semitone voice leading among nearly even four-note 

chromatic chords. The graph is a series of nested 

tetrahedra, each dual to its neighbors. Chords are 

represented by tetrahedra drawing their vertices from 

(at most) two adjacent tetrahedra. 
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Figure 17. The chord-based graph at the center of four-note 

chromatic chord space. This represents the same musical 

possibilities as Figure 16.
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27 The graph in Figure 16 is a three-dimensional represen-
tation of an inherently four-dimensional structure, a fact 
that may lead some readers to wonder where the extra 
dimension has gone. The answer is, first, that the seventh 
chords (� tetrahedra) constructible on Figure 14 are not 
all congruent, while in four dimensions they are. (Note 
that diminished sevenths are all similar on Figure 14; I am 
talking here about minor sevenths, dominant sevenths, 
etc.) Furthermore, the radial dimension (outward from the 
graph’s center) is doing double duty, with the interior of 
each diminished-seventh chord containing another dimin-
ished seventh. In the four-dimensional graph this is not 
the case, and the interior of every seventh chord is free of 
notes.

28 In a three-dimensional figure, let e be an edge between 
vertices A and B. The dual edge is the intersection of the 
faces F and G, with F dual to A and G dual to B.

29 There is a slight complication in the case where there 
are only two simplexes, as with six-note chords in twelve-
tone equal temperament. Here there are two separate sets 
of connections between the simplexes: going in one direc-
tion, each vertex is connected to all the neighboring sim-
plex’s vertices except for the one that is a scale step above 
it, while in the other direction each vertex is connected to 
all the neighboring simplex’s vertices except for the one 
that is a scale step below it. This six-dimensional figure 
is graph-theoretically identical to Walter O’Connell’s “tone 
lattices” (1968).

C–E♭–G ♭–B ♭ shares a face with both C–E♭–G ♭–A and C–E♭–G ♭–A ♭. To preserve 

voice-leading distances, we must treat the flip from cø7 to A ♭7 as being a size-

two “compound” motion, for exactly the reasons discussed in the two- and 

three-dimensional cases.27 Once again we encounter “flip restrictions,” in 

this case to prevent us from flipping directly between half-diminished and 

dominant sevenths.

We can use the concept of “duality” to get a better grip on this fascinat-

ing figure. Each tetrahedron is drawn as the dual of its neighbors; for instance, 

the inner tetrahedron B–D–F–A ♭ contains a vertex for each face of the tet-

rahedron C–E ♭–G ♭–A, and vice versa. Nearly even chords are combined by 

taking dual elements from adjacent tetrahedra: a face of one tetrahedron can 

combine with the dual vertex on its neighbor, forming dominant and half-

diminished sevenths, just as an edge on one tetrahedron can be combined 

with the dual edge on a neighbor to form minor sevenths and French sixths.28 

The figure thus provides a very clear representation of common-tone rela-

tionships. For example, every face is dual to two vertices related by major-

second transposition, just as every edge is dual to two edges related by that 

same interval. Thus, the face C–E♭–G ♭ is dual to both A ♭ and B ♭ (forming A ♭7 
and cø7), while the edge G ♭–A is dual to both C♯–E and B–D (forming f ♯7 and 

b7). We see that the progression (F♯, A, C♯, E) → (F♯, A, B, D) is in some sense 

analogous to (C, E♭, G ♭, B ♭) → (C, E♭, G ♭, A ♭), insofar as both combine a fixed, 

middle-simplex element (F♯  –A or C–E ♭–G ♭) with both its outer-simplex and 

inner-simplex duals, related by major second in each case. Such relation-

ships are much clearer in the note-based Figure 16 than in its chord-based 

counterpart.

At this point, the generalization to five and higher dimensions should 

be fairly clear: the chord-based graph is always a circle of hypercubes linked 

by shared vertices, while the note-based graph is always a circle of cross-

polytopes linked by shared facets. (Alternatively, we can imagine a circle of 

(n –1)-dimensional simplexes, with each vertex connected to all the vertices 

of neighboring simplexes except those that are a semitone away.)29 The sim-

plicial facets of the cross-polytope represent chords, while single-step voice-
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leading corresponds to “flips” that preserve one of the simplex’s own facets 

(ridges of the original cross-polytope). As in the previous cases, some sim-

plexes will share facets both with a perfectly even chord and with one of their 

own inversions; to model voice-leading distances, we must require that they 

move first to the perfectly even chord before proceeding onward to their 

inversions.

Second family, one chord type

We now turn to the second family of chord-based graphs, arising when the 

size of the chord is relatively prime to the size of the scale. As mentioned 

above, the dimension of these graphs is controlled not by the number of notes 

in the chord but rather by the number of chord-types we wish to represent. Thus, if 

we are concerned only with maximally even chords, we can produce a one-

dimensional voice-leading graph, no matter how large the chord happens to 

be. The second dimension is needed when we also want to represent the sec-

ond most even type of chord, just as we need three dimensions to represent 

the third most even type of chord, and so on.

When we restrict our attention to just one chord type—the maximally 

even chord—things are attractively simple. The chord-based graph is a “gen-

eralized circle of fifths” that links transpositionally related chords by single-

step voice leading (see Figure 10). To form the note-based dual, replace every 

vertex on the chord-based graph with an (n – 1)-dimensional simplex (n 

being the number of notes in the chord, and the number of vertices in the 

simplex). The result is a “circle of simplexes” each linked to its neighbors by 

a shared facet. Figure 18 illustrates the one- and two-dimensional cases. Since 

we require a vertex for each note, the note-based graphs involve progressively 

more and more dimensions. Indeed, the note-based analogue to the circle of 

fifth-related diatonic scales (the true “circle of fifths,” whose one-dimen-

sional chord-based graph is shown in Figure 19) would be six-dimensional!

The triadic case has previously been explored by Candace Brower 

(2008), who observes that the rightmost triangle on Figure 18b needs to be 

attached to the leftmost with a “twist.” Were we to embed this graph in two 

dimensions, it would therefore lie on a Möbius strip. (Alternatively, we can 

imagine embedding this figure in three-dimensional chord space, where the 

“twist” is partially supplied by the space itself.) Another way to think about 

the construction is that it is a common-tone Tonnetz for an inversionally sym-

metrical triad. Figure 20 shows that for a “generic” trichord, there are three 

separate inversions that preserve two of the chord’s notes. For an inversion-

ally symmetrical trichord, however, there are only two such inversions, since 

one inversion reproduces the original trichord. Since the diatonic triad is 

inversionally symmetrical, its “common-tone Tonnetz” must therefore consist 

of a single strip of triangles, in contradistinction to the planar Tonnetz we are 

all familiar with.
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Figure 21 shows the four-note analogue to Brower’s graph, a chain 

of tetrahedra (three-dimensional simplexes) representing diatonic seventh 

chords. The circle of thirds spirals around the exterior of this structure in 

a  way that is distantly reminiscent of Elaine Chew’s (2000) “spiral array.” 

Since the “spiral of thirds” takes approximately a quarter-turn with each step, 

one can find vaguely straight “lines of seconds” on the figure, for instance, 

Figure 18. For an n-note chord, the “generalized circle of fifths” is represented by a one-

dimensional chord-based graph and an (n – 1)-dimensional note-based graph. Here we 

construct the note-based graphs representing stepwise voice leading among maximally 

even two- and three-note diatonic chords, shown in (a) and (b), respectively.
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C–B–A–G at the top, E–D–C–B at the bottom front, and G–F–E–D at the 

bottom rear.

Thus, where our first family of note-based graphs (Figures 13, 14, and 16) 

contains “generalized octahedra” (cross-polytopes) linked by shared facets, 

the second family—at least in its most elementary manifestations—contains 

“generalized tetrahedra” (simplexes) linked by shared facets (Figures 18 and 

21). With the first family, the octahedra are linked by simplicial faces repre-

senting completely even chords. Since these chords share no notes with their 

semitonal transpositions, we are required to form “hybrid” chords combining 

the notes of adjacent simplexes—yielding “nearly even” chords such as perfect 

fifths, major and minor triads, and dominant seventh chords, all of which com-

bine the notes of two semitonally adjacent perfectly even chords.30 With the 

second family, the maximally even chords are not completely even, and neigh-

boring chords turn out to share all but one of their notes. This allows us to 

Figure 19. The traditional “circle of fifths” represents single-semitone voice 

leading among seven-note diatonic scales. The chord-based graph is one-

dimensional, while its note-based analogue requires six dimensions.

30 Each of these chords has a partner that can be con-
nected to it by what Robert Cook (2005) calls “extravagant” 
voice leading, in which every note moves semitonally (e.g., 
C major and A ♭ minor, C7 and e ♭ø7, C♯–D♯–E–G–A ♭–B ♭ and 

C–D–F–F♯–A–B, which are not inversionally related). How-
ever, there is also an alternative generalization of Cook’s 
“extravagance” in terms of near inversional symmetry, as 
in (C, D♯, E) → (D ♭, D, F).
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form a “circle of simplexes” sharing a common facet, leaving no possibility 

for the “hybrid chords” in the first family of lattices.

Second family, two or more chord types

We now turn to figures that represent more than just maximally even chords. 

Figure 22 uses the graph of single-step voice leading among diatonic thirds 

and fourths to generate the note-based analogue. What is surprising is that 

the note-based graph contains redundancies, multiple line segments repre-

senting the same chord; for instance, the tritone B–F appears on three con-

Figure 20. (a) A generic triad shares two notes with three 

of its inversions. For instance, if we start with the C major 

chord (a � 0, b � 4, and c � 7), then the bottom vertex is A, 

the leftmost vertex is E ♭, the rightmost vertex is B, and the 

three peripheral triangles represent A minor, C minor, and 

E minor. (b) By contrast, if we start with an inversionally 

symmetrical triad, then one flip reproduces the original 

chord. For instance, suppose we start with the C diatonic 

triad (a � 0, b � 4, c � 2, measuring in diatonic scale 

steps). Then c � a � b – c, and the triad is connected to 

only two distinct inversions.
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secutive line segments located on the three leftmost squares. This is because 

the original, chord-based graph contains squares that are joined at a com-

mon face: when we take the dual of each of the graph’s component squares, 

the shared vertices in the chord-based graph turn into duplicated edges in 

the note-based graph.

These redundancies are unattractive, and one’s initial instinct is that 

there must be some simple way to remove them. But this turns out to be easier 

said than done. Figure 23b removes some—but not all—of the duplications, 

transforming two adjacent squares into a single square with a point at its 

center (C–F still appears in the two leftmost squares). However, this process 

has created edge flips that represent nonstepwise voice leading; for instance, 

F–A and F–D share a vertex on the new graph, even though the voice leading 

(F, A) → (F, D) moves one voice by three steps. By contrast, all the edge flips 

on Figure 23a represented single-step voice leadings, as do all edge flips on 

the standard Tonnetz. To use our new graph to represent voice-leading dis-

tances, we must therefore introduce “flip restrictions,” disallowing nonstep-

wise flips, much as we disallowed the direct move from C–G to G–D on Fig-

ure 13.

Thinking about it a little more, it becomes clear that redundancies and 

flip restrictions are not unique to this second graph family. Consider that 

when we took the dual of the squares in Figure 13a, we created a series of dis-
joint squares in which every tritone was redundantly represented (Figure 13b). We 

were able to remove these redundancies by gluing together adjacent squares, 

as in Figure 13c, but only at the cost of introducing flip restrictions, as when 

we declared that C–G could not directly flip to G–D. (There was no possibil-

ity of such flips when we considered a series of disjoint cubes.) Figure 24 

describes another case in which redundancies appear, extending our earlier 

Figure 21. Voice-leading relations among maximally even diatonic seventh chords are 

represented by a circle of tetrahedra, each linked to its neighbors by a shared face.
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graph of two-note chords (Figure 13a) so as to include major thirds. This 

introduces shared faces into the chord-based graph, which in turn produce 

redundancies in the note-based analogue. From this perspective, the two 

families of lattice are not fundamentally dissimilar: the only difference is 

exactly where the redundancies (or flip restrictions) happen to appear.

In fact, we can make this point more precisely. Suppose that a chord-

based voice-leading graph contains a point where a single note can move 

either upward or downward by step: symbolically, we can write A ← B → C, 

meaning that at chord B a note can move either down by step to form chord 

A or up by step to form chord C. In the note-based analogue, single-step voice 

Figure 22. Constructing the dual lattice representing voice leading among 

the two most even kinds of two-note diatonic chord (i.e., thirds and 

fourths). In (a) we begin with the chord-based lattice. We then take the 

dual of each cube (b), producing a redundant lattice in which some chords 

appear multiply.
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31 A and C share a common facet but by hypothesis are 
not connected by single-step voice leading: since single-
step voice leading (in the same voice and in the same 
direction) takes A to B and B to C, the voice leading A → C 
moves one voice by two steps.

32 Another way of thinking about the underlying issue is 
that there are fundamental divergences between com-

mon-tone and voice-leading distances. From a common-
tone perspective, F–A is just as close to F–D as it is to F–B, 
since they all share the note F. But from a voice-leading 
perspective, F–A is closer to F–B than it is to F–D. Redun-
dancies serve the function of preserving voice-leading 
distances in the face of shared common tones. To collapse 
these duplications is to begin to prioritize common-tone 
distance over voice leading.

leadings will be represented by “flips” that connect simplexes sharing a com-

mon facet. It follows that either (a) A, B, and C will all share a common facet, 

and the chord-based graph will be flip restricted;31 or (b) B will appear redun-

dantly on the graph. Thus, redundancies and flip restrictions, rather than 

being problems to be avoided, are actually intrinsic to complex note-based 

graphs.32 What is remarkable, perhaps, is that the standard Tonnetz contains 

Figure 23. We can eliminate some duplications by combining adjacent cubes in the chord-

based graph. Here, for instance, squares 1 and 2 in (a) become the leftmost square-with-a-

central-point in (b). As a result, some “flips,” such as (F, A) � (F, D), will represent non-

stepwise voice leading. (c) We can also use Brower’s graph of diatonic triads to represent 

voice leading among diatonic thirds and fourths.
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33 For instance, the C and E of C–E–A can be raised but 
not lowered, while the A can be lowered but not raised.

34 For example, the voice leading (F, A) → (F, B) is reflected 
by a 120° flip, while (F, B) → (F, C) spans 180°. 

no such redundancies or flip restrictions. This is because we can use “parsi-

monious” (or single-step) voice leading to either raise or lower each note of 

every triad, but not both.33

Somewhat surprisingly, however, we can use Brower’s three-note “dia-

tonic Tonnetz” (Figure 18b, reproduced here as Figure 23c) to represent 

voice-leading relations among nearly even two-note diatonic chords. Brower’s 

graph is redundancy free, with every diatonic third and fourth appearing as 

a line segment in exactly one place on the graph. (Indeed, it has no super-

fluous connections or line segments, containing exactly the edges that are 

needed for this particular purpose.) From a contrapuntal perspective, how-

ever, the figure is a bit perverse, as stepwise voice leading is reflected by 

maximally inefficient flips defining internal angles greater than 90°.34 Flips 

such as (F, A) → (F, D) are visually more salient, connecting two edges of a 

triangle (and spanning only 60°), but represent musically inefficient voice 

leadings in which a voice moves by third or fourth. This inverse relation 

Figure 24. Redundancies can occur in the first family of lattices as well. 

Here, (a), we start with a graph containing the three most even types of 

two-note chromatic chords (i.e., tritones, perfect fourths, and major 

thirds). Since some squares are linked by a common face, the dual 

contains duplications (b).

Journal of Music Theory

Published by Duke University Press



34 J O U R N A L  o f  M U S I C  T H E O R Y

35 Note the inverse relationship between note-based and 
chord-based graphs: if the hypercubes in the chord-based 
graph intersect at common vertices, then the note-based 
cross-polytopes will intersect in shared facets; conversely, 

if the chord-based cubes intersect in shared facets, then 
the note-based cross-polytopes will intersect in shared 
vertices. This, of course, is a consequence of the way dual-
ity exchanges vertices and facets. 

between geometrical and contrapuntal distance is problematic insofar as the 

central goal of geometrical music theory is to construct spaces in which geo-

metrical proximity models musical proximity.

Once again, these ideas can be generalized to higher dimensions. Fig-

ure 25a shows a three-dimensional chord-based graph representing efficient 

voice leading among diatonic triads, fourth chords, and incomplete sevenths; 

Figure 25b shows the note-based analogue, a circle of octahedra linked by 

shared vertices.35 Again, we encounter redundancies, with the F major triad 

being represented by three separate triangles on Figure 25. Figure 26a removes 

some of these duplications exactly as before, by combining two adjacent octa-

hedra into a single octahedron with a point at its center. This transformation 

comes at the cost of introducing flip restrictions, since some edge flips (such 

as C–G–A → C–B–A, which share a face) now represent nonstepwise voice 

leading. Alternatively, and again somewhat surprisingly, we can use the three-

dimensional, tetrahedral Tonnetz (Figure 26b) to model diatonic trichords, 

with chords being represented either as triangles (e.g., E–G–B) or as open 

line segments (e.g., C–G–D). Since this graph is completely redundancy free, 

it requires a number of flip restrictions. Interested readers are invited to inves-

tigate further.

The appearance of redundancies and flip restrictions is disappointing, 

in large part because the familiar Tonnetz has conditioned us to expect graphs 

without these features. One might have hoped that there was an elegant fam-

ily of redundancy-free, Tonnetz-like graphs for whatever musical situation we 

might happen to find ourselves in. Instead, however, it seems that flip restric-

tions and redundancies are inherent in the very project of creating general-

ized note-based graphs, avoidable in just a few special cases. Even modest 

extensions to the Tonnetz, such as the “chain of octahedra” in Figure 13, 

require flip restrictions. It is ironic that the first and earliest example of a 

note-based graph would turn out to be such an unusual case.

Though this section has constructed just a few lattices from just two families 

of graphs, our procedures are applicable more broadly: virtually any suffi-

ciently complete chord-based voice-leading lattice will be composed of (hyper)-

cubes, and these can always be converted via duality to cross-polytopes in 

which notes represent chords (see Section 2); it is just a matter of determining 

how these cross-polytopes intersect with one another and of locating any 

duplications they might contain. Thus, very little of our work depends on the 

particular structure of the diatonic and chromatic collections: the important 
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Figure 25. (a) The chord-based graph representing voice-leading relations 

among the three most even types of three-note diatonic chords, a circle of 

cubes linked by shared faces. (b) Its note-based version, a circle of octahedra 

linked by shared vertices. Note that the top graph contains four cubes, 

whereas the bottom graph, for clarity, contains only three octahedra.
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36 In particular, the preceding ideas are straightforwardly 
applicable to the hexatonic, octatonic, whole-tone, melodic 
minor, and many other scales. See Tymoczko 2011, chap-
ter 4.

37 There is no guarantee that we could always use a model 
of trichords to represent voice leading among intervals 
(Figure 23c) or a model of tetrachords to represent tri-
chords (Figure 26b). Interested readers are invited to con-
sider the conditions under which these constructions can 
be generalized.

variable is simply the relative size of chord and scale.36 The one exception 

concerns the use of higher-dimensional diatonic models to model smaller 

diatonic chords, as in Figures 23c and 26b.37

4. Generalizing the Tonnetz Proper

So far, we have come close to the original Tonnetz without recreating it 

exactly: the “circle of octahedra” shown in Figure 14 is a three-dimensional 

Figure 26. (a) We can glue together adjacent octahedra in Figure 25, forming octahedra with 

central points. Once again, however, the resulting graph will have “flips” that represent 

nonstepwise voice leading—including (C, G, A) � (C, B, A). (b) We can also represent voice 

leading among diatonic trichords using our “circle of tetrahedra.” Here, trichords are repre-

sented by triangles (e.g., E–B–D) or chains of line segments (e.g., C–G–D). In either case, we 

need flip restrictions.
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38 As promised in Section 1, intrinsic and extrinsic are 
involved in a subtle dance. Essentially, the music-theoretical 
question is whether to consider the augmented chord as a 
triangle or as a circular dimension.

figure that displays single-semitone voice leading among major, minor, and 
augmented triads, whereas the standard Tonnetz shows only major and minor 

chords. The question, then, is how to eliminate the augmented triad so as to 

recover the Tonnetz proper.

The trick—and it is a subtle one—is to forget the augmented triad by 

reconceiving our graph’s topology. Essentially, we declare that the triangle rep-
resenting the augmented triad, rather than enclosing a region of three-dimensional 
space, is actually a circular dimension unto itself. (That is, we stop conceiving of 

the augmented triangles extrinsically, as embedded in a surrounding three-

dimensional space, and start thinking of them intrinsically, as one-dimensional 

spaces unto themselves, topologically equivalent to the circle.)38 This has the 

effect of converting our structure from a three-dimensional lattice, embed-

ded within twisted three-dimensional space, into a two-dimensional lattice 

living on a two-dimensional torus. It also has the effect of creating a very 

sharp distinction between the augmented triads and the major and minor 

triads. Figure 27 represents this visually: we declare that the top and bottom 

triangles of each octahedron are dimensions unto themselves, unlike the 

space-enclosing triangles comprising the rest of the figure. This allows us to 

inscribe the remaining six triangles onto a cylinder. (These triangles together 

comprise the “LP cycle” of semitonally related hexatonic triads.) Unrolling 

the entire stack of octahedra produces the two-dimensional Tonnetz shown 

in Figure 1a.

Figure 27. If we remove two opposite faces of an octahedron (left), we can unfold the 

remaining faces into a “circle of triangles” (right), shown here as a chain whose right edge is 

the same as its left.
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39 See Cohn 2011b. For the original criticism, see Tym-
oczko 2009a, 2010, and 2011.

40 Cohn, however, continues to use the traditional, two-
dimensional Tonnetz, which in my view draws an unneces-
sarily sharp distinction between the augmented and the 
other triads.

41 For claims that the Tonnetz is toroidal, see Cohn 1997 
and Gollin 1998, among many other examples. As far as I 
know, no previous theorist has ever considered the possi-
bility that the equal-tempered Tonnetz could be anything 
other than a torus.

42 The assumption that the Tonnetz is toroidal is an exam-
ple of music theorists implicitly attributing structure to 
their models over and above that contained in their math-
ematical formalism. For other examples, see Tymoczko 
2008a and 2009b, which argue that David Lewin implicitly 
conceived of group elements as having magnitudes. 
Indeed, Lewinian formalism, being much closer to graph 
theory than to geometry, may have helped to obscure the 
sorts of questions we have been asking.

This reconstruction of the Tonnetz sheds new light on an issue that 

is  currently the subject of spirited theoretical debate. Recently, Richard 

Cohn responded to criticism that the Tonnetz does not faithfully represent 

voice-leading distances by proposing to include augmented triads on the 

structure.39 On Cohn’s revised Tonnetz, the self-intersecting line segment 

C–E–G♯–C is to be counted as triangle just like C–E–G–C and A–C–E–A. 

Cohn further declares that the triangle C–E–G–C cannot be flipped directly 

onto A–C–E–A but must first pass through C–E–G♯–C. (This flip restriction 

has the effect of converting the “R voice leading” into a size-two move, con-

sistent with the fact that it moves its voices by two total semitones.) When I 

first encountered Cohn’s proposal, it struck me as fairly ad hoc, largely 

because the “triangle” C–E–G♯–C is geometrically very different from those 

representing major and minor triads: the former is a circular dimension unto 

itself, enclosing no surface area on the toroidal Tonnetz, while the latter is a 

generic triangle within the space. (Indeed, the entire mathematical subject 

of simplicial homology centers around this distinction.) But once we reconceive 

the Tonnetz as a three-dimensional structure, dual to the stack of cubes at the 

center of three-note chord space, Cohn’s construction looks considerably 

more natural: on the three-dimensional version of the Tonnetz shown in 

Figure 14, the augmented triad is no less triangular than the other chords. In 

this sense, the three-dimensional Tonnetz is the natural geometrical environ-

ment for Cohn’s current work.40

This should lead us to ask whether the (equal-tempered) Tonnetz is in 

fact truly toroidal. Previous theorists have unanimously answered this ques-

tion affirmatively, to the point where one would almost court ridicule to sug-

gest otherwise.41 But our discussion has given us reason to be more circum-

spect. Considered as a graph, the Tonnetz is simply a collection of vertices and 

edges having no particular geometry or topology. To embed this graph into 

a robustly geometrical space requires us to ask questions like “should the 

‘major third axis’ be a single straight line?” or “should the edges representing 

augmented triads be similar to those representing major and minor triads?” 

Our answers, rather than being simple consequences of the Tonnetz’s graph-

theoretical structure, will depend on what we want to do with the space.42
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43 In Figure 14b, augmented triads are equilateral triangles 
rather than straight lines. Similarly, the paths representing 
perfect fifths and minor thirds change direction at every 
vertex.

44 Douthett and Steinbach (1998) call this voice leading 
“R*.”

45 Note that the vertex outside the triangle in one layer is 
not connected to the vertex at the center of the triangle in 
the next layer. Note also that the triangle in one layer is 
dual to those in the adjacent layer: a vertex on one triangle 
is not connected to the vertex that is the dual of the original 
vertex’s opposite edge.

And here it becomes vitally important that Tonnetz is a multivalent 

structure. From a purely acoustical point of view, it is eminently reasonable to 

arrange the notes of the augmented triad along a straight line that returns to 

itself, creating an “axis of thirds” and an “axis of fifths.” (Thus, when model-

ing acoustics, we are implicitly assigning to the Tonnetz more than graph-

theoretical structure, asserting that it has “straight lines” rather than simply 

connections among vertices.) But insofar as the Tonnetz is understood as a 

model of voice leading, these acoustical desiderata take a back seat to the goal 

of faithfully representing contrapuntal distances. It follows that we should 

represent the voice-leading Tonnetz as a nontoroidal, three-dimensional struc-
ture whose individual octahedra are the duals of the cubes in “Cube Dance,” and in 
which major, minor, and augmented triads are all on an equal footing. In this three-

dimensional structure, we no longer have linear “axes” representing motion 

by major third, minor third, or perfect fifth, having sacrificed this acoustical 

nicety in order to make room for the augmented triads.43 To the graph theo-

rist, the two structures the same, but to the topologist, geometer, or music 

theorist, they are quite different. If this seems surprising, it is only because we 

have been conditioned to assume that there is a single, univocal Tonnetz that 

can represent both acoustics and voice leading—and perhaps even common-

tone retention as well.

Having examined the three-note Tonnetz, let us now turn to its four-

dimensional analogue. Since the Tonnetz eliminates augmented chords, 

directly connecting major and minor triads by way of the “R voice leading,” 

we expect that the four-dimensional graph will eliminate diminished sev-

enths in favor of direct connections between chords such as C7 and eø7, which 

share the diminished triad E–G–B ♭.44 And just as we formed the three-note 

Tonnetz by pulling apart the augmented triad, so that the two-dimensional 

triangle becomes a one-dimensional circle, we will form the four-note Tonnetz 

by flattening three-dimensional tetrahedra (Figure 16) into two spherical 

dimensions. Figure 28 shows two ways to flatten a tetrahedron: in the first, 

one vertex appears in the center of a triangle, while in the second, it appears 

in three separate places, lying beyond the triangle’s vertices. The four-note 

Tonnetz, shown in Figure 29, can thus be represented as a series of layers, 

each identical to one of these two-dimensional representations. Notes on one 

layer are connected by edges to all notes on the adjacent layers except those 

that are a semitone away.45 (Again, I leave out the cross-layer connections for 

the sake of visual clarity.) Chords are represented by (space-enclosing) tetra-

hedra that draw their notes from two adjacent layers.
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46 By contrast, the lattice at the center of four-note chord 
space is not homogeneous, since each note of the dimin-
ished seventh can be raised or lowered by semitone; in 

eliminating the perfectly even chord, we remove this inho-
mogeneity, which in turn eliminates the need for redun-
dancies and flip restrictions.

One interesting feature of the four-note Tonnetz (and indeed, the anal-

ogous constructions in all dimensions) is that it is homogeneous: at every point 

in the space, each note can be moved stepwise up or down, but not both. 

(This homogeneity is precisely what allows us to avoid flip restrictions and 

redundancies, as discussed in Section 3.) For instance, the root of the domi-

nant seventh can be raised by whole step to produce a half-diminished sev-

enth, while the third, fifth, and seventh can each be lowered by half step, 

producing a minor seventh, a French sixth, and a minor seventh, respectively.46 

Figure 30 tries to illustrate this by representing only those connections that 

participate in single-step voice leading from the C half-diminished chord. 

The figure consists of four “peripheral” tetrahedra surrounding the central 

C half-diminished tetrahedron, with each peripheral tetrahedron sharing 

three notes (and hence a face) with the original. Since the graph is homoge-

neous, the neighborhood around any tetrahedron will look locally like the one 

Figure 28. Two ways of flattening a tetrahedron. If we look from above, 

the fourth vertex appears to be in the center of the triangle. From 

below, the fourth vertex is reachable in three separate directions. (To 

see this, imagine cutting the globe at the north pole and spreading it 

flat. No matter which direction we go, from the perspective of the 

south pole, we will eventually get to the north pole.)
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47 The hexagon is the shape we get when we project 
a three-dimensional cube into two dimensions, along 
the diagonal line connecting two opposite vertices. (For 
instance, we can project the cube whose coordinates are 
all �1 into the plane whose coordinates sum to 0.) The 
rhombic dodecahedron is the shape that results from the 

analogous projection of a four-dimensional cube. Musi-
cally, these projections arise when we remove the aug-
mented triad from the cubic lattice at the center of three-
note chord space, or the diminished-seventh chord at the 
center of four-note chord space.

shown in the figure. Thus, by relabeling the vertices on our graph, we could 

represent the voice-leading possibilities for any chord in the four-note Ton-

netz (Figure 31).

The four-note Tonnetz is complex enough to justify a look at its chord-

based dual, whose cross sections are shown in Figures 32 and 33. (This struc-

ture is to our four-note Tonnetz as the “chicken-wire torus” is to the original 

three-dimensional Tonnetz [Figure 1].) The graph is a circle of “rhombic 

dodecahedra,” analogues to the hexagons shown in Figure 1b.47 Each rhom-

bic dodecahedron contains four dominant seventh, minor-seventh, and half-

Figure 29. The four-note Tonnetz, with the diminished 

sevenths flattened into two dimensions. Each note on one 

layer can be connected to all the notes on the adjacent 

layers, except those a semitone away. If we require that 

chords be three-dimensional figures, then the diminished-

seventh chord is no longer available, since all its notes lie 

in two dimensions.

Journal of Music Theory

Published by Duke University Press



42 J O U R N A L  o f  M U S I C  T H E O R Y

48 This graph can be obtained from the familiar chain 
of four-dimensional cubes (Figure 17) by eliminating 
   diminished-seventh chords and connecting dominant and 
half- diminished sevenths when they share a diminished 
triad.

49 In an unpublished 1998 letter, Jack Douthett extended 
Gollin’s figure by including minor-seventh chords, coming 

very close to the four-dimensional Tonnetz (which, unlike 
Douthett’s graph, also has French sixths).

50 On a sphere, any two points can be connected by two 
separate arcs of the same great circle. But if Gollin’s cross 
sections were truly spherical, then some of these line seg-
ments should intersect each other.

diminished seventh chords, as well as two French sixths; all these chords draw 

their notes from two adjacent diminished sevenths. The dominant seventh 

chords on one dodecahedron are linked to the half-diminished sevenths on 

another dodecahedron by single-step voice leading.48

Interestingly, the Tonnetz of Figure 29 is quite similar to a structure 

discovered in the very early days of neo-Riemannian theory. Figure 34 pre-

sents an annotated reproduction of Ed Gollin’s “3D Tonnetz,” consisting of a 

series of planes each containing the notes of a diminished-seventh chord 

(Gollin 1998).49 Exactly as in our own four-note Tonnetz, each note is con-

nected to all the notes on the next plane except those a semitone away. The 

differences are relatively minor. First, Gollin’s space contains a few super-

fluous connections. For example, the C in the diminished-seventh chord is 

connected by two distinct line segments to F♯/G ♭, implying that there are two 

different but equal ways to move between them; in our space, by contrast, the 

diminished-seventh chord forms a tetrahedron, with exactly one line seg-

ment connecting any two notes.50 Second, Gollin describes his figure as a 

Figure 30. The tetrahedron representing C half-

diminished shares a face with four other 

tetrahedra. As a result, there are four possible 

“simplex flips,” each of which raises or lowers 

a different note of the original chord.
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“three-dimensional torus,” whereas our figure is (topologically, at least) the 

twisted product of a circle and a two-dimensional sphere. Third, Gollin pro-

poses his structure as a model of voice-leading relationships between dominant 

seventh chords and half-diminished sevenths only, whereas our figure also 

contains minor sevenths and French sixths. (Moreover, the note-based graph 

in Figure 16 includes diminished sevenths as well.) These differences not-

withstanding, the relationship between the two figures is actually quite 

remarkable. Gollin may not have had a robust geometrical framework for 

thinking through these issues, but he came very close to the figure that we 

have just described.

Figure 31. (a–c) The local geometry around all chords on the Tonnetz is identical. (d) Every 

note of every chord can either be raised or lowered but not both. 

( a ) ( b )

( c ) ( d )
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51 The original circle of cross-polytopes will require flip 
restrictions, since these chords share all but one of their 
notes both with each other and with the perfectly even 
chord. To model voice leading, we therefore need to 
require that they move to one another not directly but by 

way of the perfectly even chord. By forgetting the per-
fectly even chord, we lose the intermediary and hence the 
need for flip restrictions—at the cost of distorting voice-
leading distances.

As before, the ideas in this section can be extended to arbitrary dimen-

sions. Whenever the number of notes in our chord evenly divides the number 

of notes in our scale, we can construct a chord-based lattice that is a circle 

of n-dimensional cubes linked by shared vertices. Taking the dual of each 

hypercube and attaching in the appropriate way, we produce a circle of 

n-dimensional cross-polytopes linked by shared simplicial facets. We then 

forget the perfectly even chord, reconceiving the graph’s topology by “flat-

tening” the shared (n – 1)-simplicial facets so that they lie within an (n – 2)-

dimensional spherical space. This “forgetting” of the perfectly even chord 

has the effect of linking chords by a generalized version of the “R relation”—

linking chords such as major and minor triads, or dominant and half- 

diminished sevenths, that share all but one of their notes with the perfectly 

even chord.51 The resulting graph can be conceived as a circular arrangement 

Figure 32. The dual of the four-dimensional Tonnetz is a circle of rhombic dode-

cahedra. Each dodecahedron contains four dominant sevenths, half-diminished 

sevenths, and minor sevenths, as well as two French sixths. Connections between 

dodecahedra occur by way of the tetrachordal “R relation”—single-step voice lead-

ing between dominant and half-diminished sevenths sharing a diminished triad. 
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Figure 34. (Top) Ed Gollin’s three-dimensional Tonnetz 

(1998) is remarkably similar to the one we are discussing 

(Figure 29). Gollin’s graph consists of a series of diminished-

seventh layers, with each note connected to all the other 

notes in its own layer, and to all the notes in the adjacent 

layers except those a semitone away. (Bottom) The only 

difference lies in the internal geometry of the layers, with 

Gollin’s cross section not being tetrahedral. However, one 

can see hints that the cross section should be spherical, 

since the two circumferential paths from G ♭ to F♯ pass 

through the same notes in the same order. (Gollin 

incorrectly describes this graph as toroidal.) It is likely that 

Gollin was trying to create straight lines that correspond 

to motion by particular intervals (e.g., perfect fifth, major 

third, etc.), but as in the case of the three-note Tonnetz, this 

is incompatible with the goal of representing voice leading 

accurately.
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52 The graph is “twisted” for the same reason that the 
chord-based analogue is twisted: a series of transpositions 
will return us to the same horizontal location but in a new 
spatial orientation. Thus, for instance, the top and bottom 

faces of Figure 14b are rotated relative to one another: if 
we transpose the augmented triad up by four steps, we 
return to the same triangle but with B in the voice that held 
G, D♯ in the voice that held B, and so on.

of layers, with each layer being an (n – 2)-dimensional sphere, topologically 

the outside or “hull” of an (n – 1)-dimensional simplex, and with every note 

on one layer connected to all the notes on the next layer except for those that 

are a single scale step away. Thus, the generalized Tonnetz, rather than 

being a higher-dimensional torus, is the twisted product of a circle and a 

higher-dimensional sphere—mathematically, an Sn–2 bundle over S1.52 (The 

two-dimensional Tonnetz is a series of perfect fifths linked by common 

tones—Figure 13c without the vertical lines; the six-dimensional Tonnetz is 

graph-theoretically identical to Walter O’Connell’s “tone lattice” [1968], the 

complete graph of pitch classes.) Figure 35 presents two adjacent layers of the 

Tonnetz representing five-note chords in the fifteen-note equal-tempered 

scale.

5. Historical and Analytical Conclusion

A decade ago, theorists confronted a blizzard of seemingly unrelated graphs. 

Besides the standard Tonnetz, there was Ed Gollin’s three-dimensional Ton-

netz (Figure 34); Douthett and Steinbach’s (1998) chord-based “chicken-wire 

Figure 35. Two adjacent layers of the five-note Tonnetz. Each four-dimensional simplex is 

“flattened” into a three-dimensional figure, analogous to the two tetrahedra in Figure 28. 

Numbers refer to scale degrees in fifteen-tone equal temperament. Each note on one layer is 

connected to all the notes on the other layer, except for the one a semitone away.
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53 See Gollin 1998, Douthett and Steinbach 1998, Roeder 
1984 and 1987, Callender 2004, Cohn 2003, and Quinn 
2006 and 2007.

54 See Callender 2007, Hoffmann 2008, and Tymoczko 
2008c.

55 The circle of fifths can also be understood as the two-
note analogue of the traditional Tonnetz: if we remove the 
tritones from Figure 13c, we obtain a sequence of perfect 
fifths linked by voice leading in which only one voice 
moves, and it moves by a major second. 

torus” (Figure 1b), Cube Dance (Figure 14a), and “Power Towers” (a subgraph 

of Figure 17); John Roeder’s set-class graphs; Cliff Callender’s trichordal set-

class space; Richard Cohn’s tetrahedral set-class space; and Ian Quinn’s six-

dimensional, Fourier-based model of chord quality.53 To the casual—or even 

committed—theorist, it was not clear where these models came from or how 

they related to one another. What was needed was a twofold process of gen-

eralization, one that allowed us to extend these specific models to a wider 

range of musical circumstances (including arbitrary chords in arbitrary 

scales), while also uncovering the structural principles linking them.

Since then we have seen significant progress on both fronts. An early 

step was describing the continuous spaces representing voice-leading rela-

tionships among all n-note chords, spaces that naturally contained chord-

based graphs such as Cube Dance and Power Towers (Tymoczko 2006, 2011). 

From there, it was possible to understand the analogous “set-class” graphs 

discussed by Roeder, Callender, and Cohn (Callender, Quinn, and Tym oczko 

2008). (Indeed, these set-class graphs are essentially projections of chord 

spaces along the direction representing transposition.) Clear understanding 

of these set-class graphs in turn made it possible to draw connections to Quinn’s 

Fourier spaces.54 With this article, we can start to bring the note-based graphs 

into the fold, for we now have the ability to produce Tonnetz-style graphs that 

describe a wide range of musical circumstances, as well as a more principled 

understanding of their relation to their chord-based cousins. In this sense, we 

are nearing the point where we can begin to see the outlines of a complete 

geometrical theory of voice-leading.

Particularly interesting here is the way the Tonnetz, a fundamentally 

discrete structure, falls out of the continuous spaces representing all possible 

three-note chords. When Callender, Quinn, and I were struggling to formu-

late our general approach to chord and set-class geometry, continuity was 

an important methodological principle: a robustly physical fact—since fre-

quency is in fact continuous—that privileges certain music-theoretical con-

structions over others. (Indeed, continuity was a key feature of Callender’s 

groundbreaking 2004 paper.) For instance, continuity leads us to consider 

the (note-based) circle of semitones B–C–C♯– .  .  . –[B] more fundamental 

than the circle of fifths B –F♯–C♯– . . . –[B], since the former, but not the latter, 

is a simple discretization of the continuous pitch-class circle. From this point 

of view, it is gratifying to find the circle of fifths reappearing as a chord-based 
graph describing single-semitone voice leading among diatonic scales.55 But 

the Tonnetz never made any such reappearance: at best, it seemed like an 
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56 Suzannah Clark has argued that such relationships are 
particularly important in Schubert, a point echoed in Cohn’s 
own analysis of “Der Doppelgänger.” See Clark 2002 and 
Cohn 2011b.

inaccurate and incomplete version of the lattice at the center of chromatic 

three-note chord space rather than something more principled. Now, how-

ever, we understand that there is a nontoroidal version of the Tonnetz that is 

simply the geometrical dual of Cube Dance, containing augmented triads and 

faithfully representing voice-leading distances among its constituent chords. 

This allows us to derive the Tonnetz from the continuous geometrical spaces 

representing chords in general.

What remains is the very large project of using these spaces to elucidate 

particular pieces. From this perspective, the work in this article might seem 

somewhat superfluous, since it simply provides alternative representations of 

relationships already modeled by the well-understood family of chord-based 

graphs. However, there are situations where note-based graphs are quite use-

ful. Cohn, for example, has stressed that these graphs can sometimes allow 

analysts to track the play of pitch classes more easily than the chord-based 

alternatives. This is relevant in music where common-tone relationships play 

an important role.56 There is also the fact that the three- and four-note Ton-

netze can be embedded in spaces of one fewer dimension than their chord-

based counterparts: the standard Tonnetz is embeddable in two-dimensional 

toroidal space, in either its note-based or chord-based versions (Figure 1a,b), 

whereas “Cube Dance” requires three dimensions (Figure 14a); similarly, the 

four-note Tonnetz (Figure 27) is embeddable in a three-dimensional space, 

whereas the lattice at the center of four-note chord-space requires four dimen-

sions. (This reduction in dimensionality, as we have seen, is a byproduct of 

the way the graphs eliminate the perfectly even chord, subtly distorting voice-

leading distances.) Not only does this dimensional reduction aid in visualiza-

tion, but it  also opens the door to some interesting theoretical questions. 

Giovanni Albini, for example, has explored Hamiltonian paths through these 

spaces both in compositions and in theoretical work. (A Hamiltonian path 

touches on all the vertices in a graph without passing through any of them 

twice, and is in that sense a generalization of the twelve-tone row. If we are 

interested in Hamiltonian paths, it pays to remove the augmented triad and 

diminished-seventh chords, as they severely constrain the possibilities.) Finally, 

it is inherently useful to have a principled theoretical understanding of the 

connections between our various geometrical models of chord structure. The 

very existence of these multiple models testifies to the incredible richness of 

the voice-leading relations that underwrite so much familiar music.

That said, the complications we have encountered do underscore the 

simplicity of the chord-based models. It is no accident, I think, that a general 

understanding of voice-leading geometry began with the chord-based spaces, 

as they are in many ways simpler to construct, generalize, and comprehend. 
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57 For instance, the graph in Figure 14b has twelve points 
and thirty-six triangles, while that in Figure 16 has twelve 
points and forty-six tetrahedra.

Absent a robust understanding of the full family of chord-based graphs, it 

would be quite hard to see that the nontoroidal, three-dimensional Tonnetz 

(Figure 14b) is in some ways preferable to the toroidal version shown in Fig-

ure 1a. Similarly, it would be (and indeed was) difficult to realize that the 

generalized Tonnetz is the twisted product of a circle and a higher-dimen-

sional sphere. Furthermore, note-based graphs confront some inherent limi-

tations: as we consider more and more chords of larger and larger size, the 

note-based Tonnetze become harder and harder to use, not just because their 

dimension increases but also because they represent chords using extended 

shapes (polytopes) which inevitably become hard to visualize. (The ratio of 

polytopes to vertices grows with the dimension of the space, requiring us to 

picture increasingly complex arrangements of the same basic pitch classes.)57 

Finally, while it is possible to eliminate dimensions in the second family of 

chord-based graphs, this is not true in the note-based case: the chord-based 

circle of fifths (Figure 19) is one-dimensional, while the note-based alternative 

requires five additional dimensions! And of course, there are also those unat-

tractive but unavoidable redundancies and flip restrictions. For all of these 

reasons, chord-based graphs are significantly simpler and more straightfor-

ward than the Tonnetze we have explored in this article.

Rather than concluding with a decision in favor of one or another type 

of lattice, however, let me instead close by reflecting on the amazing fact that 

we can derive something like the standard Tonnetz in three very different 

ways: as a graph of acoustical relations among notes, as a graph of common-

tone relations among triads, and as a graph of efficient voice leading among 

nearly even three-note chords. Cohn (2011a) has emphasized the many dif-

ferent times in which the Tonnetz has been rediscovered, by theorists with 

many different interests and agendas. The present article identifies yet 

another route to the figure: to generate Figure 14b’s “chain of octahedra,” we 

do not need to make any postulates about acoustics or common tones; instead, 

we simply take the geometrical dual of each cube in Figure 14a. In much the 

same way, we can derive the “common tone” and “acoustical” Tonnetze with-

out mentioning voice leading at all. Prior to writing this article, I would have 

said that one and the same structure could be put to three different theoretical 

uses. And in a sense this is true: from the standpoint of graph theory, there 

is just one equal-tempered Tonnetz. But to the geometrical music theorist, 

the acoustic, common-tone, and voice-leading Tonnetze are all subtly differ-

ent creatures. The coincidence among them was striking enough to mislead 

the theoretical community into thinking that there was just one underlying 

structure, but we can now see that this is wrong. Our quest to generalize the 

Tonnetz has also led us to particularize it, teasing apart the very similar struc-

tures that have previously gone under a single name.
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