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Abstract—This paper is a report on our participation
in the Bond Trade Price Contest and Online Product Sales
Contest with two main contributions. First, we provide
a detailed description of our approaches in both con-
tests, which includes our expert model based on support
vector machines in the Bond Trade Price Contest and
our ensemble of gradient boosted trees and Gaussian
processes in the Online Product Sales Contest. We also
review briefly the approaches of other teams. Second, this
paper presents general strategies that we found helpful in
Machine Learning contests. These strategies are embedded
in a holistic view on competing in such contests, which
provides a valuable set of tools for successful participation
for readers with basic knowledge about Machine Learning.

I. INTRODUCTION

Each student has access to lectures on machine learn-
ing, in particular to the huge number of online videos
and courses1. However, theoretical in-depth knowledge
of concepts obtainable from such sources has to be
complemented with practical hands-on experience in im-
plementing and tuning algorithms for machine learning.
Only then are major advances in research or successful
applications possible. By participating in competitions,
students can obtain experience in the engineering part of
machine learning in a very short time. Online contests
in particular, such as the ones hosted on the Kaggle
website, have drawn a lot of attention lately, as they
allow everyone to directly compete against world-class
machine learning experts from all over the world. Hence,
every student interested in related topics is advised to
participate in such contests and enjoy the motivation of
neck-and-neck races. With enough effort – and a bit of
luck – a large amount of prize money, followed by world-

1Popular websites with online lectures are for example Videolec-
tures.net, Coursera or MIT OpenCourseware.

wide fame and interesting job offers, comes for free as
icing on the cake.

This paper is a report on the participation in the
Bond Trade Price Contest and the Online Product Sales
Contest during the Advanced Machine Learning Project
at TU Darmstadt, Germany. We provide in-depth anal-
yses of our submissions as well as a comparison to
strategies of other top-scoring teams. Moreover, this
paper should serve as a guide for contest participation
in general. Readers should have basic knowledge of
machine learning techniques, e.g., from an introductory
lecture, but are provided with an overview of tools, good
practice and other information required for successful
participation. The variety of these topics only allows a
summary of the main facts and ideas. However, pointers
and references to further information are included.

The remainder of this paper is structured as follows.
First, we present general advice for machine learning
contests in Section II, including an introduction to con-
test settings and useful software packages. Section III
covers the Bond Trade Price contest. We introduce the
task, highlight major challenges and present a quan-
titative analysis of our approach as well as a short
description of other models. Afterwards, Section IV
follows the same pattern but for the Online Product Sales
contest. The paper is concluded in Section V with a short
discussion on the background of contestants.

II. GENERAL CONTEST ADVICES

In the following we discuss helpful advice for machine
learning contests in general. While we focus on compe-
titions hosted on the Kaggle website2, the methodologies
presented here are applicable to other contests as well.
First, the setting of contests with online submission
systems is presented briefly, followed by a discussion
of standard procedures, which have proven themselves

2http://kaggle.com
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handy for most contestants. We discuss in particular how
to evaluate the quality of your method in Section II-C,
preprocessing in Section II-D, prediction models in
Section II-E and building an ensemble in Section II-F.
Finally, a selection of prominent software packages is
presented.

A. Contest Setting

Kaggle hosts several contests, in which everyone can
compete for free against machine learning enthusiasts all
over the world. The contests are organized by companies,
non-profit organizations or universities. The prizes range
from money to job offers or simply “fame” for research
tasks. Contestants can participate as individuals or in
teams and merge teams during the competition. The
duration is typically three months, but can vary between
a day and a few years. For example, Kaggle hosted the $3
million Heritage Health Prize3 running for 2 years, the
Facebook Recruiting Competition4 or the Million Song
Dataset Challenge5.

The core component of each contest is the data sets.
The provided data is split into training and test set,
which have the same attributes (often numerical or
categorical, but text and structured data such as graphs
are also possible). The prediction output, called label, is
additionally provided for the training data. The goal is
to generate predictions for the test set, which is usually
a classification or regression problem. There are no
restrictions on the methodology for obtaining a solution,
even labeling manually is sometimes possible.

The predictions for the test data can be uploaded on a
submission webpage, but only a limited number of times
per day until the final deadline. The test set is split into
a private and public part. The submission’s score on the
public part is immediately calculated and published on
the public leaderboard, while the score on the private
part determines the winner and is disclosed on the private
leaderboard after the deadline. Both scores are calculated
according to a publicly known evaluation measure. This
splitting approach penalizes leaderboard overfitting, a
common mistake avoidable by sound methodology (see
Section II-C).

B. General Strategy

The process of generating predictions for the test
set commonly consists of three main steps. First, the
feature representation is transformed and data may be

3http://www.heritagehealthprize.com/c/hhp
4http://www.kaggle.com/c/FacebookRecruiting
5http://www.kaggle.com/c/msdchallenge
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Fig. 1: Common prediction pipeline in contests: After preparing
your data in a preprocessing step, several machine learning models
generate independent predictions. Then the predictions are merged
with an ensemble technique.

subsampled such that relevant patterns are emphasized
and noise is reduced. In the second step, several inde-
pendent machine learning algorithms generate proposal
predictions for each test sample. The final prediction
is then generated by merging the single proposals with
an ensemble model. See Figure 1 for a visualization.
Deviations from this scheme are possible, e.g., only one
prediction model is used without an ensemble technique
or prediction pipelines with more steps. However, the
main steps presented here are part of most approaches.
Participating in a contest actually means improving each
component of this pipeline in order to obtain better
prediction performance.

The key element for success is to identify the parts
with room for improvement during the contest. It is
important to understand the task and data well, i.e.,
inspecting the dataset is crucial. In general, the prediction
problem should be decomposed into sub-problems. A
common tool is for example a bias-variance analysis6.
It is also reasonable to improve each component of the
prediction pipeline individually. We provide a collection
of helpful strategies for evaluation, preprocessing, em-
ploying prediction models and finally blending them in
the following four sections.

C. Model Evaluation

The final goal is to minimize the prediction error
on the private test set. As the private leaderboard is
not available during the contest the actual performance
can only be estimated. One might be tempted to use
the public leaderboard score for evaluation. However,
minimizing this score may cause overfitting on the public
test set and yield inferior performance on the private
test set. To circumvent this issue, we highly recommend

6http://cs229.stanford.edu/materials/ML-advice.pdf
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to use cross-validation [Mur12, Chapter 6.5.3] on the
training set and occasional submissions to check that the
public leaderboard score and the cross-validation score
are consistent. In addition, the neck-and-neck race on
the leaderboard is a great booster for motivation. If the
computation of cross-validation scores on a large training
set takes too much time, it is reasonable to use only one
split, e.g., splitting the training set in an 80% split to
train the models and a 20% validation split. If it still
takes more than a few hours to evaluate the models, we
recommend using only part of the training set. However,
special care is necessary to ensure that the sample is
representative by comparing statistics (e.g. the first and
second moments of the target distribution).

Models tend to become more and more complicated
during the contests, hence, significance tests are highly
recommended (c.f. [Was07, Chapter 10]). For example,
a one-sided paired T-test for cross validation scores can
be used to decide whether a new model actually predicts
more accurately or not. This methodology prevents the
models from getting unnecessarily complex.

In general, the entire evaluation pipeline (preprocess-
ing the data, training the models, training the ensemble,
computing cross-validation scores) should be automated
as much as possible to promote reproducibility and fast
exploration of ideas for improving the prediction.

D. Preprocessing

Preprocessing is supposed to emphasize relevant pat-
terns and minimize noise in the data. To this end, the
feature representation of each sample is transformed (e.g.
by adding expressive new features generated from the
existing ones). It may also be beneficial to remove irrel-
evant features or omit outlying samples during training.
As the feature representation is highly task dependent,
domain knowledge is most helpful for identifying rele-
vant features. A crucial point of the Online Product Sales
Competition was for example to realize that the number
of sales of a product is influenced by the day of the year
it is launched (see Section IV-C). An important tool for
recognizing patterns is to visualize the data including
statistics such as the number of different values of a
feature or its variance. Correlation plots of single features
and targets can also point to principal dependencies. The
graphical interface of Weka (see Section II-G) provides
particularly easy access to standard visualizations.

In the end, preprocessing should help the prediction
model to find patterns most efficiently. Due to the
different nature of machine learning algorithms the op-
timal feature transformation depends on the subsequent
algorithm. For example, kernel- or distance-based algo-
rithms such as Support Vector Machines or k-Nearest

Neighbor are most suited for features in continuous do-
main and comparable quality. The performance of such
algorithms can be increased by normalizing the features
such that each dimension has mean zero and variance one
[VTS04]. As categorical features lack a natural order,
either a specialized kernel has to be used or the features
need to be encoded differently. A categorical feature with
k different values can for example be replaced by k
binary indicator features, where the ith indicator feature
is active if the original feature takes the ith value (one-
hot encoding, see [Mur12, Chapter 2.3.2]). Moreover,
distance based algorithms are prone to irrelevant features
as they diminish the quality of the distance measure7. In
contrast, decision-tree-based approaches such as Random
Forests can cope with large numbers of bad features
well. They do not require feature normalization either,
as linear transformations of features have no effect in
decision trees. However, while kernel approaches usually
can cope with missing values well8, special treatment
is necessary for decision tree approaches. Replacing
missing values with mean or median is a common way.
The feature representation can additionally be augmented
by binary features which indicate whether a value was
missing.

E. Prediction Models

Prediction models (or their implementation as predic-
tion algorithms) are the key component of prediction
pipeline. The choice of a suitable model for the task at
hand as well as tuning its hyper-parameters is most cru-
cial for the prediction quality. Whether an algorithm is
suited for a particular problem or not depends on several
properties such as the evaluation measure, feature rep-
resentation, the training set size or the task type (struc-
tured prediction, classification, regression and ranking).
In the following we provide a short list of algorithms
successfully applied in contests. We limit ourselves to
regression and classification algorithms for clarity. Other
tasks such as ranking problems or structured output
problems are often reduced to regression or classification
and solved with the same algorithms. As this paper
does not aim to explain Machine Learning methods in
general, we only give short remarks indicating the most
important properties of each algorithm in the context of
competitions.

7for common kernels such as the Gaussian or exponential kernels.
Alternatively, more sophisticated distance measures such as auto-
mated relevance determination forms can be used and their hyper-
parameters be learned from data.

8Dimensions with missing values can be omitted during computa-
tion of the distance for example.
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Algorithm Task Class Data size
Linear Regression regression large
Logistic Regression classification large
Gaussian Processes regression distance small
Support Vector Machines both distance medium
Gradient Boosted Trees both tree large
Random Forests both tree large
Neural Nets both large
K-Nearest Neighbors both distance medium
Naive-Bayes Classifier classification large

TABLE I: Overview of Machine Learning algorithms applicable
to classification and regression problems. Whether an algorithm is
distance-based or tree-based influences its suitability for specific tasks
and the necessary preprocessing (c.f. Section II-D). The scalability
information should be taken with a pinch of salt (highly dependent
on the actual implementation) but can help to decide which method
to choose for a problem at hand.

Linear Regression [Mur12, Chapter 1.4.5] is a simple
model for regression which minimizes the mean-squared
error on the training dataset. As they are prone to
overfitting, the value of the hyper-parameter for the
`2-regularization is crucial. The method is particularly
suited for large datasets with many features, where a
linear model is expressive enough.

Logistic Regression [Mur12, Chapter 1.4.6] extends
linear regression by squashing the outputs through a
sigmoid-function. The result is a classification model
with probabilities for each class as output. It shares most
properties with linear regression such as high scalability
but limited expressiveness in low-dimensional data.

The Naive Bayes Classifier [Mur12, Chapter 3.5] is
a probabilistic classification model similar to logistic
regression. Because of its simplicity and scalability it
is often used in practice. As shown by Jordan and
Ng [JN02], it needs less data to converge than logistic
regression, but usually yields worse predictions.

While Logistic Regression and Naive Bayes Classi-
fiers have high bias, the k-Nearest-Neighbor method
[Mur12, Chapter 1.4.2] is a non-parametric approach and
predicts perfectly for infinitely many training data. A test
point is predicted by assigning it to the predominant label
of the k nearest training points. Therefore, the quality of
the prediction largely depends on the distance measure.
Sophisticated data structures such as kd-trees reduce
the runtime for finding the neighbors [GCB97], but the
algorithm is still limited to medium sized datasets by
its computational effort and the requirement to store the
entire training data. While the method is commonly used
for classification, it is also applicable for regression9.

Gaussian Processes [RW06] are powerful proba-
bilistic models for regression tasks minimizing the

9assign the average of the values of the k nearest neighbors

mean squared error. They are very data efficient, non-
parametric and their regularization can be accurately
controlled by defining prior distributions. Hence, Gaus-
sian Processes are one of the first choices for regression
on continuous datasets. Unfortunately, training involves
the inversion of a samples×samples matrix, which limits
the algorithm to small datasets. As the model relies on
(infinite-dimensional) Gaussian distributions, the likeli-
hood of its hyper-parameters such as the width of the
Gaussian kernel can be computed analytically. Thus,
hyper-parameters can be tuned with local optimization
algorithms (e.g. L-BFGS [LN89]) much more efficiently
than with standard exhaustive grid search.

Support Vector Machines are kernel-based methods
just like Gaussian Processes. Yet, they are not derived
with Bayesian statistics but with frequentist statistics. As
they minimize the Hinge loss function, Support Vector
Machines are powerful classification [CV95] and regres-
sion [SS04] algorithms particularly robust against out-
liers. They can be trained efficiently with stochastic sub-
gradient descent even on large datasets for linear kernels.
Using non-linear kernels such as the standard Gaussian
kernel restricts training to medium sized datasets (c.f.
Section III).

Neural Networks [Mur12, Chapter 16.5] are flex-
ible, biologically inspired models for regression and
classification, which can be visualized as a network of
neurons. Since the number of nodes (neurons) as well
as their overall structure can vary tremendously, neural
networks can have large bias or large variance. The high
flexibility of neural networks make them hard to use for
novices. However, if designed properly, the models beat
state-of-the art methods especially in tasks with low-
level features such as pixels in images [CM12]. Neural
networks have been a focus of research recently. These
efforts yielded advanced training schemes such as drop-
out training [HS12] and deep belief networks (extended
neural networks trained with combination of supervised
and unsupervised learning). Their capabilities, including
high scalability, were demonstrated by the winners of the
Merck Molecular Activity Challenge [Dah12].

Gradient Boosted Decision Trees (GBT) [Fri01,
Fri02] are iteratively boosted decision trees. At each iter-
ation a new tree is learned to reduce the training errors of
the previous trees. As most boosting approaches, GBTs
are very robust against overfitting (see Section IV-D)
and irrelevant features. They have proven themselves as
one of the most important models in competitions with
regression tasks (c.f. Sections III-E and IV-H), but can
also be employed for classification. While the trees can
only be learned sequentially, training on large datasets is
still possible when the training data is sub-sampled for
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each tree. Considering only a random subset of instances
usually does not hurt the final accuracy.

Random Forests [Bre01] consist of several decision
trees, too. In contrast to gradient boosted trees, each
tree is trained independently on a subset of features
and instances, which allows parallelizing learning of
extremely large datasets (e.g. on computing clusters).

Hyper-Parameter Search. Setting good hyper-
parameters for the prediction algorithm is as crucial
as the algorithm choice itself, in particular for flexible
models such as neural networks or gradient boosted
decision trees. The performance of gradient boosted
trees depends for example on the number of iterations,
the learning rate, the tree size, the minimum number of
training instances per leaf or the splitting criterion.

Finding optimal hyper-parameters can be considered
as a non-linear (and in general non-convex) optimization
problem. The function value to minimize is the cross-
validation or held-out error which depends on the hyper-
parameter values. Facilitating hyper-parameter search
is a recent focus of research [HHLBM10, HHLB11,
BBBK11, BB12]. The most naive way to find good
hyper-parameters is to define a reasonable range of
values for each parameter and compute the error for
each possible combination of parameter values. Although
evaluating the error at each point of a grid spanned
in the parameter space (referred to as exhaustive grid-
search) is computationally involved, it is still the most
used approach due to its simplicity. We also employed
grid-search in both contests we participated in. How-
ever, Bergstra and Bengio [BB12] showed that sampling
hyper-parameters uniformly within a specified range is
more efficient when some parameters are more important
than others, which is often the case. As such a random
search is just as easy to implement and parallelize
as grid-search, we recommend its use in contests. In
situations where the error or score of hyper-parameters
(and their derivatives) can be computed analytically, e.g.
their negative log-likelihood in Gaussian Processes, ap-
proximate Newton methods such as L-BFGS [LN89] can
be applied much more efficiently than exhaustive search
strategies. For score values that are not analytically
tractable, gradient descent with finite-difference approx-
imation can refine the parameters found by grid- or ran-
dom search. Each strategy relies on the parameter ranges
to be chosen reasonably. Unfortunately, the ranges vary
substantially between different tasks in most cases. We
recommend first exploring the effect of hyper-parameters
manually by evaluating hand-set parameter values and
estimate a suitable range. If necessary, the range should
be adapted by iterating between parameter search and re-
fining the ranges to search. Alternatively, a model of the

score function can be learned with few evaluations (e.g. a
Gaussian Process) which is then iteratively refined with
new evaluations and minimized by a global optimiza-
tion algorithm. This technique, referred to as Bayesian
Optimization [BBBK11], is computationally expensive
but still faster than other approaches when the error of
hyper-parameters is costly to evaluate. Probabilistically
motivated algorithms allow fully Bayesian approaches,
where the hyper-parameters are marginalized out instead
of only using one. Such models are also referred to
as hierarchical Bayesian models [GCSR03, Chapter 5].
While marginalizing out hyper-parameters often yields
significantly better performance, it is only tractable for
a very simple models. Otherwise, extensive sampling is
necessary, which is not feasible in competitions.

F. Ensemble of Models

Most competitions are won by an ensemble of meth-
ods (e.g. the Netflix Prize [BKV08]), where outputs
of several prediction models are blended together by a
weighted average. Blending several predictors can for
example be beneficial if errors are only mildly correlated
and the individual errors counterbalance each other.
While there are theoretical work on blending models
in classification tasks, the effect of model averaging is
not well investigated in regression tasks. Models do not
necessarily need to be blended by a weighted average,
but any algorithm can be trained with the output of
the individual predictors as input (also referred to as
Stacking [Mur12]). However, simple models such as
linear regression (i.e. a weighted average) obtain best
performance in practice. Complex ensemble algorithms
tend to overfit, which can also be a problem of simple
ensemble models with flawed training schemes.

We therefore recommend training the ensemble as
follows. The training set is split into 5 or 10 folds.
Each individual model is trained on all but one fold and
predicts the outputs on the remaining fold. Repeating this
scheme yields outputs of each model for all samples in
the training set. Afterwards the training data is split again
into a large portion on which the ensemble method is
trained and a held-out set, which is used to evaluate the
ensemble. The hyper-parameters of the ensemble method
are chosen so that they minimize the error on the held-out
set. Eventually, the ensemble model is trained with the
optimal hyper-parameters on the entire training set10. As
this technique involves retraining of the base prediction
models, special care has to be taken if they have a high
variance (e.g. due to a randomized learning procedure).

10Each individual model has to be trained again on the entire
training set to predict on the test-set.
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In this case, reducing the variance should be considered,
e.g. by methods such as Bagging [Bre96a].

Although it is reasonable to optimize the prepro-
cessing, the prediction models and the ensemble model
individually, improving one part sometimes yields worse
overall performance. We particularly observed this effect
for the individual prediction models. For example, if an
algorithm generates poor predictions for most samples
but is able to tackle a small subset very well, it can
improve the ensemble – even if it has a high overall
error. Therefore, combining complementary models such
as tree-based and distance-based algorithms should be
considered in competitions.

G. Software Packages

Writing code for contests and research is quite dif-
ferent from software engineering in general. While ro-
bustness, maintainability, and security might be the most
important properties of software in other domains, fast
prototyping is most crucial in competitions. Minimal im-
plementation effort for visualizing data, processing data
and applying machine learning algorithms results in short
iteration cycles, which allow exploring many ideas for
improving the prediction performance. Several software
tools proved themselves handy for producing fast and
stable code during contests. We give an overview of the
most prominent ones by highlighting their strengths and
shortcomings in the following.

Weka [HFH+09] is a data mining framework written
in Java with a very helpful graphical user interface for
exploring and visualizing data. It has great capabilities
when it comes to preprocessing and handling of meta
data. For example, one can distinguish between numer-
ical and ordinal attributes and track attributes along
the preprocessing pipeline. However, the use case of
Weka is very limited, as implementing machine learning
algorithms in Java is cumbersome and only few bindings
for other machine learning packages exist.

Matlab [MAT10] is a numerical computing environ-
ment. Its programming language features a rich syntax
for matrix operations that makes implementing new
algorithms easy. Hence, it is widely used in engineering
and applied mathematics. However, as a special purpose
language, Matlab is actually useful only for numerical
data and slow in other tasks. We do not recommend it for
building large modular machine learning pipelines, due
to its lacking support of anything other than numerical
operations. Moreover, Matlab is a commercial product
with large costs while all other tools presented here are
available for free.

R [R C12] is the favored tool for many statisticians.
It provides a lot of functionality for manipulating nu-

merical and categorical data and many machine learning
algorithms are made available in separate packages.
However, understanding the syntax requires investing a
substantial effort.

In the last couple of years, there has been an emerg-
ing trend of using Python for scientific computing.
A large set of libraries including the interactive shell
IPython [PG07], numpy for numerical data, matplotlib
[Hun07] for visualization and scikit-learn [PVG+11] for
machine learning has been developed. The combination
of a high-level general-purpose language and efficient
libraries written in C provide the tools for automating the
entire prediction pipeline in machine learning contests.
However, Python only supports limited syntax for matrix
operations and does not use multiple threads out of the
box. The scikit-learn library provides a vast number
of algorithms and has a clean interface, allowing the
rapid integration of custom code into the framework.
Moreover, other prominent machine learning libraries
such as Shogun [SRH+10] have Python bindings. Python
enables fast scripting and prototyping, but it may be slow
on computationally hard problems. Scikit-learn is a very
good choice for numerical data.

Clearly, every package has its strengths and weak-
nesses. To pick the cherries out of each one, wrapper
libraries can be employed, which allow us to call R
code within Python for example. For a beginner, we
recommend Python as it is easy to learn and scikit-
learn features many commonly used machine learning
algorithms.

III. BOND TRADE PRICE CONTEST

The Benchmark Bond Trade Price Challenge (Bond
Contest for short) was our first contest. It was launched
on January 27th 2012 and ended three months later on
April 30th 2012. The task was to predict the trade price
of a bond given general characteristics and information
about the last ten trades of this bond. A bond is a cer-
tificate that a borrower, usually a state or company, has
received money from a lender and that the borrower has
to pay the money back at the date of maturity [OS05].
In the meantime, additional interests called coupons are
paid by the borrower in regular intervals. Bonds may be
traded at financial markets, similar to stocks. The pricing
of a bond at the market reflects various factors such as
the credibility of the borrower or the time until the bond
matures, e.g., the shorter the time to maturity the less
money can be earned from the coupons.

The large size of the training set with approximately
750,000 samples poses the main challenge of the contest
and requires always taking the computational complexity
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of different algorithms into consideration. In addition,
modelling the last trades as time series is important for
exploiting the given information most efficiently.

Our main goal for the Bond contest was to familiarize
ourselves with applying machine learning techniques
on real word problems, identifying general strategies
and developing an efficient workflow. Eventually, we
achieved the 33rd place out of 265 competing teams.

In the following, we first introduce the main facts
about the setting, then present different reformulations
of the problems we used in the contest and afterwards
discuss our preprocessing and prediction model. Finally,
we briefly review the strategies of other teams.

A. Dataset and Evaluation

The dataset consists of roughly 750,000 samples with
60 features, which can be divided into information about
the bond and information about the current and the last
ten trades. They are listed in table II. The task was to
predict the value of the trade price column p0 given the
values of the other columns such that the Weighted Mean
Absolute Error (WMAE) is minimal. The WMAE is
defined as follows. Given a set of true values y1, ..., yn, a
set of predicted values y′1, ..., y

′
n and weights w1, ..., wn,

the weighted mean absolute error is calculated as

WMAE =
1∑n

i=1wi

n∑
i=1

wi|yi − y′i|. (1)

The training set contains an additional feature bond id
that indicates which particular bond is traded. This
feature allows to reconstruct the full time series for each
bond by combining all samples from the same bond.
However, the feature bond id is not present in the test
dataset. Additionally, the competition host ensured, that
there is no overlap in the samples of the test set, i.e.,
that any two samples from the same bond are at least 11
trades apart. Otherwise, the ith last trade price pi could
have matched the unknown trade price p0 of another
sample in the test set.

Since evaluating models on the whole dataset is time
consuming, we took subsets of the training set with non-
overlapping samples to speed up the modelling process.
For training and evaluation we generated two pairs of
subsets with 10,000 resp. 50,000 samples, which we used
to compare our modeling approaches during the contest.

B. Alternative Problem Formulations

Instead of modelling the trade price directly, we
predicted the difference of the trade price to the price
of the last trade. We give two arguments of why this
might be a good idea. First, we believe that the last trade

Original Abs. Diff Rel. Diff
Linear 0.932 ± 0.165 0.932± 0.165 0.933 ± 0.166
Tree 1.160 ± 0.172 0.917 ± 0.150 0.916± 0.151

TABLE III: Cross Validation WMAE and standard deviations using
the original and the two derived learning problems for a linear model
and a tree model.

price greatly narrows the range in which the actual trade
price may lie, so encoding this knowledge explicitly by
only predicting the price differences saves the learning
algorithm from modelling it. Second, we assume that
most of the short term price dynamics is independent
of the actual price level. For example, if the last trade
was due to a customer selling a bond to a dealer and the
current trade is the dealer selling the bond to another
customer the price of the last trade will be significantly
lower than for the current trade. These dynamics can
be better expressed with price differences than with the
actual price level.

We tried two ways to express price differences: Abso-
lute differences ∆pA that are the price of the last trade
minus the price of the current trade, i.e.

∆pA = p0 − p1

and relative differences ∆pR that are absolute differences
normalized by the price of the last trade, i.e.

∆pR = (p0 − p1)/p1

where p0 is the current trade price and pi is the trade
price of the ith most recent trade. The transformation
to absolute differences leaves the error of an estimator
invariant, i.e. pa − p′a = p0 − p′0, whereas this is not the
case for the relative differences, i.e. pr − p′r 6= p0 − p′0.
Hence, an estimator that minimizes some loss function
on the relative differences will not necessarily be the
estimator that minimizes the same loss function on the
untransformed prices. Note, that a linear model will be
invariant to the transformation to absolute differences.

In table III the WMAE of a linear model (Linear
Regression without regularization) and a tree model
(Gradient Boosting Trees) is evaluated using each of
the three ways to formulate the learning problem. The
results agree with our hypotheses. For the linear model,
predicting the absolute difference does not change the
WMAE and predicting relative differences is slightly
inferior. For the tree model, however, reformulating
the learning problem improves the performance. Both,
predicting absolute and relative differences, resulted in
significantly lower errors.
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feature name domain description
id N A unique identifier for the current sample
p0 R The price for which the bond was traded. This variable is the label to predict.
w R The weight given to this sample.
current coupon R The coupon on this bond (interest rate).
time to maturity R The time until the bond is redeemed.
is callable {0, 1} A flag indicating whether the bond can be called by the issuer.
reporting delay R The time between the trade actually happening and its apprearance in the reporting system.
pi R The price for the bond in this trade.
si N The amount of bond certificates traded in this trade.
ki {2, 3, 4} This feature indicates whether the trade represents a customer sell (2), a customer buy (3) or a trade

between professional dealers.
ei R Long-term price estimate provided by the contest hosts.
ti R The time between the current trade and the last ith trade taking place.

TABLE II: Features in the Bond Contest. The features having an i in their name are instantiated for i = 0..10 and represent the information
given about the current trade and the last ten trades.

C. Preprocessing and Feature Extraction

In this section we describe which transformations we
applied to the data and which new features we derived.
To quantify the impact of each preprocessing step, we
evaluate a linear regression model (called “Linear”), a
GBT model on absolute price differences (called “Tree”)
and our final Treeclustering+SVR model on absolute
price differences (called “TC+SVR”) on the original
feature set and on the processed feature set. Note, that
we do not compare the performance of the different
models, as their parameters are set in order to allow a
fast evaluation.

a) Time Series Features: Each data vector contains
information about the ten most recent trades before the
current trade, i.e. a time series. Hence, it is natural to
include information about the differences of consecutive
trades in the feature set. To be precise, we included the
time between two consecutive trades ti+1− ti as well as
difference in the trade price pi+1 − pi as features. We
also took relative and absolute differences of the trade
prices into account, analogous to the transformation of
the target trade price p0.

We hoped that the time difference allow a better mod-
elling of why a trade happened. If two trades are issued
at the same time, the later trade may be automatically
issued in response to the first and hence price differences
are intrinsic and can be modelled. If two trades are
days apart, the later trade may be issued because of
external factors such as bad news and there may therefore
be no underlying deterministic model causing the price
differences.

In table IV we show cross validation scores for
different models in two settings: Once with the original
features and once with the additional new time difference
features. We could observe no improvements of the error
scores. In two cases, adding the new features even hurt
the performance, which leads to the conclusion that

Original With Time Diff.
Linear 0.932 ± 0.165 0.932± 0.166
Tree 0.917± 0.150 0.927 ± 0.150
TC+SVR 1.015± 0.152 1.027 ± 0.157

TABLE IV: Cross Validation WMAE and standard deviations com-
paring the original feature set to an extended set with time difference
features.

Original Abs. Diff Rel. Diff
Linear 0.932 ± 0.165 0.932 ± 0.165 0.932± 0.165
Tree 0.917 ± 0.150 0.880± 0.158 0.892 ± 0.156
TC+SVR 1.015 ± 0.152 1.014± 0.157 1.014± 0.157

TABLE V: Cross Validation WMAE showing the effect of the price
difference features for different models.

the time difference features alone have no additional
predictive strength compared to the original feature set.
Table V shows evaluation results for the price difference
features. For the linear model, extending the feature set
yields no performance gains, as the new features can
be expressed as linear combinations of already existing
features. For the tree model, however, adding the price
difference features improves the error score.

b) Removing Features: At the end of the contest
we experimented with removing features about the least
recent trades from the feature set, as we believed that
they do not carry useful information about the short term
dynamics of the trade price and that the mid and long
term dynamics are already incorporated in the estimated
price features ei. Table VI shows the cross-validation
scores for excluding varying number of features. Re-
moving the features has (in isolation) no impact on the
linear model, while the tree model obtains its best score
when features from the 7th to 10th most recent trades
are removed. We also observe an improved error score
for the tree clustered SVR model.

c) Logarithmic Transformations: The trade time
and trade size related features show a highly skewed,
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Original 10 9-10 8-10 7-10 6-10 5-10
Linear 0.932 ± 0.165 0.931± 0.166 0.936 ± 0.167 0.936 ± 0.160 0.938 ± 0.159 0.938 ± 0.162 0.945 ± 0.162
Tree 0.917 ± 0.150 0.916 ± 0.149 0.917 ± 0.149 0.909 ± 0.150 0.907± 0.145 0.910 ± 0.152 0.907 ± 0.141
TC+SVR 1.015 ± 0.152 1.013 ± 0.152 1.008 ± 0.152 1.003 ± 0.153 1.000 ± 0.156 1.000± 0.159 1.001 ± 0.162

TABLE VI: Cross Validation WMAE for removing successively more features from the feature set. In the first column, only features from
the 10th most recent trade are removed, in the second column features from the 9th and 10th most recent trades are removed, etc.

scale free distribution. We applied logarithmic trans-
formations11 to these features and evaluated the effect
of this transformation. We did not expect this trans-
form to have a major impact on the performance of
a tree based regression model as the logarithm is just
a monotone transformation of the input feature. Hence,
after the transformation the tree algorithm will split the
input space between exactly the same two values of
the training data, but the actual split point will differ.
Yet, the transformations play a role for distance-based
approaches such as our tree clustered SVR model, where
we actually observed increasing performance from 1.015
to 1.003.

d) One-Hot Encoding of Trade Types: The trade
types ki are categorical features taking three values (see
Table II). We added one-hot encoding features for each
of them to make the their nominal nature explicit (c.f.
Section II-D). This transformation leads to a substantial
reduction of the error from 0.932 to 0.855 for the linear
model and from 1.015 to 0.958 for the tree clustered
SVR model. The tree model is unaffected by the newly
introduced features, as they do not increase the expres-
siveness of the model (at least, if the tree depth is not
limited).

e) Removing Trades With Low Weight: The weight
w of each sample determines the influence of the sample
on the overall error. All these weights exhibit a heavy
tailed distribution, i.e., most training samples have a very
small weight and few instances have a considerable high
weight. See Figure 2b, where the sorted weights are
summed up and plotted against the fraction of instances.
Half of the instances account for only about 3% of the
total weights. A regression algorithm, which assumed
unweighted training data, alters its function prediction in
favor of those instances, which are actually not relevant
for the weighted error. This increased focus on instances
with small weight may hurt the error on instances with
high weight. Removing some of the training samples
with low weight may hence improve the model. In
contrast, removing these instances may hurt performance
for a learning algorithm with a high variance. Figure 2a
shows the performance of different models on multiple

11As we are only dealing with integer values that may be zero, we
actually apply the log1p function, i.e. log1p(x) = log(x+ 1)

datasets with varying number of dropped instances. In
addition, we used the final preprocessing pipeline. While
the linear model benefits from removing instances, no
such effect could be observed for the other models.
Alternatively, we could have resampled based on the
weight to balance the distribution or we could have
incorporated the weights into the optimization problem
of the SVR. We did not explore these options due to
time constraints and the implementation effort, but we
expect those to outperform dropping instances.
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Fig. 2: Figure a shows the performance of different models that are
learned on datasets, where we drop an increasing percentage of the
samples with the lowest weights. Figure b shows the fraction of
samples with the lowest weights versus the fraction of total weight
they account for. Standard errors are consistently around 0.03.
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Input Space

Cluster Model

Cluster 1 Cluster 2 Cluster 3
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Cluster N

Expert N

...

Fig. 3: The two layer expert model used in the Bond Contest. At the
top layer a clustering model partitions the input space into disjoint
subsets and hence the dataset into different clusters. A regression
model is trained on each cluster to form an expert model for this
part of the input space.

D. Prediction Model

When starting the contest, we decided to use Support
Vector Regression (SVR) [SS04] as the base for our
prediction model. At that time, we had no experience
on prediction in heterogeneous datasets such as the Bond
dataset and only limited knowledge about random forests
and gradient boosted trees in general.

Training a support vector machine with non-linear ker-
nels is not feasible on the Bond dataset with hundreds of
thousands of samples. Hence, we decided to implement
a two layer model: The first layer clusters the training
set into batches of manageable sizes and the second
layer consists of regression models (experts) fitted to one
cluster each. At prediction time, new samples are first
assigned to a cluster and then the expert of that cluster
predicts the price for the sample. Figure 3 illustrates this
approach. It is crucial that the clustering layer partitions
the input space in such a way that the data in each region
can be predicted more easily by the model class of the
regression models. For example, we do not expect purely
local methods such as a nearest neighbor regression
model to benefit from this approach. In contrast, global
models such as linear regression may actually improve.

There are many design choices in this model. Depend-
ing on the clustering algorithm, samples can be assigned
hardly or softly to the clusters. For soft assignments, the
predictions of the respective experts could be averaged
depending on the assignment weights. Another option
is to assign an expert to a cluster exclusively but to
assign multiple clusters to each expert, again leading
to an increased size of the expert’s training sets. We

did not explore these design choices but stuck to the
simple model because of limited time until the end of
the contest. We mainly considered two alternative models
for the clustering layer: K-means and Regression Trees.
Both models are described in the following paragraphs.

1) K-means: The k-means algorithm clusters a set
of training samples into k clusters by minimizing the
average squared distance to the assigned cluster centroid
[Bis06]. We used this algorithm because an efficient
implementation was already available for Weka. There
are two important hyper-parameters: The number of
clusters k and the distance measure imposed on the
input space. Setting the number of clusters too low
will produce clusters with many training samples, which
renders learning the SVR model infeasible. If the training
samples are partitioned into too many clusters with just a
few training samples each, the SVR models would overfit
and generalize poorly.

As k-means is an unsupervised clustering algorithm
it may partition the data in a way that is not related
to the target variable. During the contest, a distance
measure that only takes the trade types and prices into
account performed best. Table VII shows results for dis-
tance measures defined on different subsets of features.
Calculating the distance only on the trade price yields
the lowest error, but the tree clustering model presented
below turns out to be superior.

2) Tree Based Clustering: Tree-based clustering uses
a regression tree to partition the input space into clusters
by assigning all samples of a leaf to a cluster. In contrast
to k-means clustering, we can control the number of
samples per cluster directly by specifying the minimum
number of training samples per leaf. Moreover, the
regression tree takes the label into account (supervised
clustering), which yields clusters with low inter-cluster
variance of the target variable (the tree is split such that
the MSE of the leaf nodes is minimized). We found that
learning a regression tree is much faster than learning a
k-means clustering.

We evaluated the clustering model both with support
vector and linear regression as experts and the entire
preprocessing pipeline presented in the previous section.
The results are shown in table VII. Tree clustering
with SVRs outperforms the base line significantly, but,
interestingly, using just linear regression as regressors
works even better. Figure 4 shows the learned tree on
a subset of the data12. The first splits occur on the
trade types, as the price difference to the last trades

12The tree was learned with the regression tree implementation of
WEKA. The evaluations in this paper are generated with the scikit-
learn implementation.
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Model WMAE
Linear 0.842 ± 0.034

TreeCluster+SVR 0.799 ± 0.029
TreeCluster+Linear 0.791± 0.032

K-Means+SVR (all features) 0.844 ± 0.033
K-Means+SVR (trade prices) 0.837 ± 0.032
K-Means+SVR (trade types) 0.845 ± 0.031

TABLE VII: Cross Validation WMAE and standard deviations com-
paring a linear regression model to a tree clustering model with SVR
and linear regression and to a k-means clustering model with SVR,
where k-means used all features, only the trade prices or only the
trade types for calculating distances. All preprocessing steps of our
final pipeline were applied and prediction was done on the absolute
trade price differences.

Fig. 4: The tree was learned on a subset of the data. The first splits
divide the data according to the current and last trade type.

strongly depends on whether they were between dealers
or between dealers and customer.

We employed the preprocessing steps mentioned
above with fine-tuned parameter settings for the final
model. We also added higher order difference features on
the trade prices and improved our model with boosting.
In the end, we achieved a final score of 0.772 on the
Kaggle leaderboard while the winning team got a score
of 0.680 and thus outperformed our model significantly.

E. Strategies of Other Teams and Conclusion

The contestants are not required to publish their
strategies and most keep their solution secret after the
contest. In the Kaggle online forum discussion [Bon12]
only few teams revealed their general strategies for
the Bond contest. Hence, only a limited comparison to
our approach is possible. We briefly present the best
performing and disclosed strategies in the following.

Second Place [Bon12, Post #14]: The second placed
team of Sergey Yurgenson and Bruce Cragin used an
ensemble of Random Forests (RF) [Bre01] and Gradient
Boosted Trees (GBT) ([Fri01]). They only required little
preprocessing effort to obtain competitive scores.

Seventh Place [Bon12, Post #12]: Glen Koundry
also used an ensemble of Random Forests and Gradient
Boosted Trees to which he added a model based on
locally weighted regression. As part of his preprocessing,
he only used features from the four most recent trades,
a strategy that we also employed.

Ninth Place [Bon12, Post #4, #8, #21]: Anil Thomas
used Random Forests as a base regressor. Just as we did,
he experimented with different problem formulations and
predicted price differences as well as differences between
the known prediction of the long term model and the
actual trade price. In contrast to us, he did not pick
the best-working approach but blended all models for
a better score.

Two main differences between the best performing
models and our approach are apparent. First, most
good teams concentrated on random forests or gradient
boosted trees. These models are more robust to hyper-
parameter settings than our model and can be learned
faster. Second, many contestants used a variety of models
and blended them together to get a final ensemble (c.f.
Section II-F), which outperforms each individual model.
For our second contest, we adopted both methodologies.
Moreover, we had familiarized ourselves with impor-
tant software tools, which allowed us to approach the
next contest more goal-oriented (e.g. avoiding manual
work by automating the evaluation pipeline, see also
Section II-B).

IV. ONLINE PRODUCT SALES CONTEST

The Online Product Sales (OPS) Contest started on
May 9th, 2012 and ended on July 3rd, 2012. The
contestants should predict the number of online sales of
a product for each month of the first year after product
launch.

The main challenges of this contest are the large num-
ber of features, many missing values, unknown meaning
of attributes and the small training set size. In total 366
teams participated in the contest and our team scored 7th

place.
In the following, we will first give some more details

about the contest setting including the dataset and the
evaluation process. Afterwards, we describe the main
components of our prediction method. Subsequently,
approaches are presented which have a reasonable moti-
vation but turned out to be not fruitful for this particular
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problem. Eventually, some key points of other teams’
strategies are discussed.

A. Dataset and Evaluation

All teams are provided with the test set containing
519 samples with 546 attributes and a training set of
751 instances (products), which contains up to 12 labels
for each product in addition. The labels correspond to
the number of monthly sales of the product in the first
year after product launch rounded in steps of 500. For
some products, the sale numbers for the last months are
not available. We assume that products with incomplete
sale numbers either left the market within a year or have
been released recently so that the sales numbers are not
available yet. Missing labels are omitted during training
and evaluation13.

The performance of each team is measured with the
Root Mean Squared Logarithmic Error

RMSLE(y, ŷ) =
√

MSLE(y, ŷ) =√√√√ 1

12n

n∑
i=1

12∑
j=1

[
log(yij + 1)− log(ŷij + 1)

]2
(2)

where yij is the prediction of sales of product i in month
j and ŷij the corresponding true sale number. Equa-
tion (2) is the (root) mean squared error of the labels in
log-space. Hence, standard algorithms for least squares
solutions can be used, if the labels are transformed a-
priori by

ỹ = log(y + 1) (3)

and the predictions are transformed back afterwards.
In addition, the mean squared logarithmic error MSLE
decouples into equally weighted terms for each month
and product which allows to treat the task as independent
one-dimensional regression problems.

The competition hosts obfuscated the meaning of
attributes. A description is available only for two fea-
tures: (1) the date when the product was announced
and the advertisement started and (2) the date of the
actual product sale launch. For a detailed discussion of
those two dates consider Section IV-C. The remaining
features are divided into 513 categorical (Cat1,...) and
31 numerical attributes (Quan1,...). Yet, the given par-
tition is questionable, as some categorical features show
characteristics of continuous data (e.g. almost all values
differ) and vice versa. Almost all features contain a large
number of missing values.

13While the entire instances are omitted for the line-fitting model,
months with labels are kept for the Gaussian processes and the
boosted trees.

Boosted
Trees

Line Fitting Gaussian
Processes

Feature
Preprocessing

Linear BlendingLinear BlendingLinear Blending

Fig. 5: Overview of our final model in the OPS contest: After
preprocessing the features, they are fed into three kinds of prediction
models: boosted trees, a linear fit with trees and Gaussian processes.
The individual predictions are then merged by a weighted average
and minor post-processing. The boosted trees, Gaussian processes
and the final blending consist of single models for predicting the
label of each month.

B. Overview of our Approach

Our final model consists of three individual models
which are blended by a linear model [Bre96b]. See
Figure 5 for an overview. The main component of our
approach are gradient boosted regression trees. We chose
them as a starting point since tree-based models can
handle many features of varying quality and character-
istics well. During the contest, we increased their per-
formance by hyper-parameter optimization and further
randomization to reduce their bias (c.f. Section IV-D
for the details). Besides improving the boosted trees,
we developed two alternative prediction models which
themselves perform inferior. However, as the errors of
the single models are only mildly correlated, we could
decrease the overall error by computing a weighted
average of the predictions.

Tree-based models generate piecewise constant re-
gression functions, i.e., they cover the input space with
axis aligned tiles of constant value each. To coun-
terbalance the tendency towards axis-aligned solutions,
we employed a Gaussian process as a second model.
Gaussian processes [RW06] generate smooth regression
functions and their output for a test point is determined
by its distance to training points. Hence, their nature is
quite different to decision trees. Details can be found in
Section IV-F. Both models consist of separate predictors
for each month, i.e., we trained a gradient boosted tree
model and Gaussian process individually for each of the
12 months. Implicitly, we thereby assumed independence
of the sales of a product for each months. Obviously, this



13

assumption does not hold as the sales are correlated over
time. To circumvent this shortcoming, we added a third
model which couples the predictions for each month.
We chose to simply fit a line to the sales of each product
throughout the year and then learn the parameters of this
line. Again, we relied on boosted trees to do so. Details
are presented in Section IV-E.

To find the optimal weights for the final blending of
all models, we applied standard linear regression with
the outputs of the three models as input. The outputs of
each model were generated by 10-fold cross validation
on the training dataset (always take the predictions on
the test split). Afterwards we trained the weights for the
blending by minimizing the training error. While this
methodology may lead to overfitting, it yielded more
robust results than evaluation on held-out data points,
because of the limited number of training examples and
low complexity of the linear model. Each month was
blended with separate weights.

Apart from composing a good prediction model and
tuning its hyper-parameters, preprocessing the input data
had the largest effect on the final performance. While
each model required its own input transformations to
work well, some processing steps were beneficial for all
models. We present those in Section IV-C.

C. General Feature Preprocessing

Feature engineering and preprocessing is hindered by
the fact that the feature names were obfuscated. The only
features with clear semantics are the dates when a prod-
uct was announced and when it was launched. These are
given as the number of days since some date in the past.
Figure 6 shows a scatter plot of the release date as day
of the year versus the sales record of the second month.
There is a trend that sales are higher when the product
is released around day 320, which suggests that there is
a “Christmas” effect. Transforming the two date features
modulo 365 results in a significantly smaller prediction
error. We also experimented with other transformations
of the date features, e.g. taking the month of the year or
just the year, with no additional benefits to the overall
model.

Aside of the date transformation, we also apply a
logarithmic transform on features for which it is justi-
fied by an increasing predictive performance (see also
Section III-C). The missing values are replaced with
the median of all existing values. In addition, we omit
features that were either constant or binary with one
strongly predominant value. In Tables X and IX we see
that while preprocessing is more crucial for the Gaussian
process model, it also decreases the error for the gradient
boosted tree model substantially.
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Fig. 6: Dependency of the release day in the year on product sales
in the second month.

D. Gradient Boosted Trees

We decided to use decision trees for prediction to
cope with the problem of many features of unknown
quality. The most prominent regression models based on
trees are Random Forests [Bre01] and Gradient Boosting
Trees (GBT) [Fri01, Fri02]. As we observed consistently
better off-the-shelf performance with the latter ones, we
took them as a base model for further exploration. Gra-
dient Boosting Trees allow to directly minimize different
loss functions by iteratively fitting tree models. For the
squared error loss this amounts to fitting each new tree
to the residuals of the current model. In practice, it is
necessary to learn each tree only on a subsample of the
training data to prevent overfitting. We also follow the
advice of Friedman in [Fri01] to limit the depth of each
tree to a small value of six. As Figure 7 illustrates, the
resulting GBT model is very robust to overfitting.

As gradient boosted trees basically perform gradient
descent, they are prone to get stuck in local optima. One
way to find different local optima is to add random-
ization to the optimization procedure [LBOM98]. The
standard boosted tree model is already randomizated by
subsampling the training instances for each new tree and
is hence doing mini-batch gradient descent. We extended
this idea and learn each tree on a random subsets of
features and samples (Gradient Boosted Random Trees
(GBRT)). This approach reduces the RMSLE from 0.593
to 0.576 (see Table IX). We had assumed that GBRT
have lower variance than GBT, and our post-contest
evaluation revealed, that it also reduces bias. Table VIII
shows the squared bias and the variance of the GBT
and GBRT model. Note, that the bias and variance of
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Fig. 7: This figure shows a typical evolution of test and training errors
of a GBT for an increasing number of learned trees (iterations). As
the training error converges to zero, the test error levels at a certain
value and does not increase again.

Bias2 Variance
GBT 0.365 0.047

GBRT 0.364 0.040
RF 0.428 0.021

TABLE VIII: Squared bias and variance of the GBT model, Gradient
Boosted Random Trees (GBRT) and Random Forests (RF). The
introduction of feature subsampling in the GBRT model reduces the
variance as well as the bias. Using RF yields a reduction of variance
at the cost of an increased bias. Bias and variance are estimated by
100 iterations of 3-fold cross validation.

the model are directly related to the mean squared error
(MSE) by the equation MSE = bias2 + variance.

E. Line Fitting with GBTs

We include a model in our ensemble, that predicts the
sales of all months jointly, to account for the correlation
of the sales in different months. Instead of using indi-
vidual GBRTs to estimate the sales for each month, we
assume that the sales change only linear over time and
predict the intercept and slope of this linear progress.
See Figure 8 for an illustration. As the assumption of
linearity does not hold on the training examples, we
estimated their slope and intercept by a least-squares
line-fit. Table IX shows that this approach yields error
of 0.694, which larger than estimating the sales for each
months individually. But as it differs sufficiently from
the other models, it is useful as a component in the final
ensemble.

We also experimented with fitting two line segments,
which assumes that the temporal change of the sales
of 12 months can be explained by two lines (6 months
each). While fitting multiple lines improves the model on

Model CV Score Std. Dev.
Our GBRT Model 0.576 ±0.032
Our GBT Model w/o feat. subs. 0.593 ±0.032
Our GBRT Model without prep. 0.598 ±0.034
Split-randomized GBT 0.572 ±0.034
Linear Model 1 Line 0.694 ±0.038
Linear Model 2 Lines 0.637 ±0.027
Blended Models (1 Line) 0.568 ±0.035
Blended Models (2 Lines) 0.569 ±0.033

TABLE IX: 10-fold Cross-Validation Scores of Different Tree-
Models.
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Fig. 8: The blue curve shows the log sales for a single training
instance plotted over all twelve months. The red line shows the
optimal linear regression model and the green line shows the line
with predicted slope and intercept.

its own, it harms the performance of the final ensemble
(see Table IX). We believe that this is due to the changed
model being more similar to the model with individual
GBRT for each month and their errors hence being more
correlated.

F. Gaussian Processes

The main challenge of using Gaussian processes on
the OPS dataset is to design a good distance measure,
i.e., preprocess the attributes and use an appropriate
kernel to obtain distances relevant for the task. Gaussian
processes work particularly well in continuous spaces
and smooth target functions. However, most nominal
attributes in the OPS dataset only take less than 10
values and do not have a natural order of the values.
We therefore excluded features which take less than 60
unique values on the training set. The cross-validation
results in Table X (c.f. the entries with different min. val.
settings) show that this threshold is the optimal trade-off
between reducing noise by omitting harmful features and
including helpful features. The cross-validation scores in
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the table are slightly biased towards lower thresholds as
the set used for training during cross-validation is smaller
than the true one. Yet, we found it not to be significant
by checking against the public leaderboard score.

Besides selecting the right subset of features, normal-
ization and the kernel choice play an important role
in optimizing the model. While the Gaussian kernel
is the best distance measure in many applications, we
experienced that the absolute exponential kernel

k(x, y) = exp
(
σ−1‖x− y‖1

)
(4)

decreases the error significantly (c.f. Table X), where
σ = 10 is the length-scale. This observation is consis-
tent with the good performance of decision-tree based
models as both approaches prefer axis-aligned regression
functions. As shown in Table X, the attributes need to
be normalized, e.g. with mean zero and variance one, to
obtain reasonable prediction performance.

Independent Gaussian processes are trained for each
response variable but we also tried to include the month
as an additional feature and use a single Gaussian process
for all predictions. While the performance is on par
with the separate models (c.f. All-in-one GP Model vs.
Single Monthly GP Model in Table X), the memory
consumption increases drastically as there are 12 times as
much training samples which go in quadratically instead
of linear as for separate models trained in parallel. As
the memory requirement of 8 GB prevent computing
cross-validation scores in parallel and thus slows down
the evaluation process, we followed the individual model
approach.

The prediction error can be reduced further with
Bagging proposed in [Bre96a]. Instead of training one
Gaussian process per month, the prediction of 200 GP
models are averaged. Each model is trained on a random
subset of the training data, consisting of 11 features14

each and 70% of the instances. In the end, the Gaussian
process model consists of 12 · 200 = 2400 individual
models and yield a cross-validation score of 0.607.

G. Unfruitful Ideas

While developing our final model, we experimented
with several things which turned out not to improve
the predictive performance of the model. In this section
we shortly discuss the ideas which did not work out
as expected. As an alternative to GBT, we also tried
out Random Forests (RF). Random forests are bagged
decision trees, i.e., the average of independently trees
trained on a random subset of the data. Therefore,

14Each feature still need to take at least 60 different values on the
training set

Model CV Score Std. Dev.
Bagged Monthly GP Model 0.607 ±0.031
Single Monthly GP Model 0.621 ±0.032
Monthly GP Model no date feat. 0.650 ±0.033
Monthly GP Model no log trans. 0.623 ±0.031
Monthly GP Model Squared Exp. 0.833 ±0.052
Monthly GP Model unnormalized 1.014 ±0.047
All-in-one GP Model 0.623 ±0.031
Monthly GP Model minval=3 0.679 ±0.037
Monthly GP Model minval=30 0.619 ±0.029
Monthly GP Model minval=40 0.618 ±0.031
Monthly GP Model minval=60 0.618 ±0.031
Monthly GP Model minval=200 0.790 ±0.031

TABLE X: 10-fold Cross-Validation Scores of Different GP-Models.

random forests have usually lower variance than GBT
at the cost of having a higher bias. A bias-variance
decomposition of our GBRT model and random forests
shown in Table VIII support this statement. Since the
bias is the dominating source of error in the OPS contest,
random forests yield inferior performance.

As all sales numbers are rounded to multiples of 500
and the sales of all products are low in the last months,
the target values of these months take only a few values
in the training set. Hence, it can also interpreted as
a classification task, which might be easier to learn.
However, the caveat of this approach is the complex
loss function between the different values as the RMSLE
in the original formulation yields different penalties for
each pair of classes. We had no implementation of a
classifier available that could directly minimize such a
loss function and the short timespan of the contest did
not allow to implement one ourselves. Therefore, we
resided to classifiers minimizing the standard 0/1 loss,
which lead to poor results.

Using a plain linear regression model also turned out
to yield a bad performance. As the dataset had many
features but only a very limited amount of data, we
tried Lasso Regression as it selects the relevant features
due to its `1-regularization. However, fitting a linear
model resulted in poor error scores because the linearity
assumption does not hold on the given features, i.e.
extensive preprocessing would have been necessary.

H. Strategies of Other Teams and Conclusion

As in the Bond contest, we can only rely on sparse
information about strategies of other teams from the
Kaggle online forum discussion [OPS12]. In the follow-
ing we briefly present an overview of the best performing
and disclosed strategies.

First Place [OPS12, Post #6]: The winner Peter
Prettenhofer employed only a single gradient boosted
tree model with similar pre-processing as ours. He
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reduced the variance of the model by sub-sampling the
features during learning for each split of the decision
trees, while we sub-sampled the attributes similarly but
only once per decision tree. Moreover, he put more
effort in tuning the hyper-parameters such as tree depths,
learning rate or minimum number of instances in the
tree leafs by exhaustive grid-search which required large
computational power. Based on this information, we tried
to reproduce his results but only obtained better results
than our GBRT model (see Table IX).

Second Place [OPS12, Post #3]: Xavier Conort relied
on gradient-boosted regression trees and random forests.
The single models were combined by a generalized addi-
tive model [HT86] with a cubic spline smoother. While
we trained GBRT models for each month individually,
he included the month to predict as a feature and trained
only a single model.

Fourth Place [OPS12, Post #16]: Shea Parkes also
considered the prediction for all month as a single regres-
sion problem and predicted with a linear combination of
random forests and neural nets. To reduce the variance,
he subsampled the features during training of the neural
net (bagged neural nets [HTF08]).

In general, models based on decision trees and in
particular boosted decision trees seemed to be partic-
ularly suited for this contest due to their robustness to
irrelevant features. The transformation of the date feature
was another key element to accurate predictions for most
teams.

As the comparison to the first place shows, a single
perfectly tuned model would have sufficed to win the
contest. Influenced by our experience from the Bond
contest, we focused more on creating a bundle of
good methods for the ensemble instead of tuning the
hyper-parameters excessively. To keep the computational
costs manageable, we did not fully explore the hyper-
parameter space. For example, we also tried to randomly
subsample attributes per split instead of tree for the
GBT model, but did not experience any benefit for the
small number of trees in our evaluation. Nevertheless,
the lessons from the Bond contest, e.g. fully automating
the evaluation process, relying on boosted trees and
building an ensemble, definitely paid off. For future
contests, we would keep the methodology but allow more
computational effort for tuning the hyper-parameters of
each model.

V. CONCLUSION

We have shown in this report that a strong theoretical
background as well as practical experience and a sound
methodology is needed to be on par with the high
performing teams in machine learning contests. We want

to emphasize one more thing that cannot be conveyed by
thorough analysis: Participating is a lot of fun! Creating
ideas and putting them to work, seeing your team rising
and falling on the leaderboard, exchanging thoughts
within your team and with other competitors in the
forum generates a highly motivating atmosphere while
the deadline is inevitably approaching. In the end, you
find yourself spending a lot more time on the contest than
you expected. We encourage everyone who is interested
in machine learning and has not yet gained practical
experience to take the chance these contests offer.
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