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Linearly Separable

Definition

The set of points {x1, ..., Xy} is Linearly Separable from the set
of points {y1,..., yn} if and only if there exists a w such that

Wxnm > 0,m=1,....M
W,yn < 0,n:1,...,N




Affine Separable

Definition

The set of points {x1, ..., Xy} is Affine Separable from the set of
points {y1, ..., yn} if and only if there exists a w and 6 such that

Wxm > 6, m=1,....M
wy, < 6,n=1,...,N




2D Dichotomies 3 Points Affine Separable
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2D Dichotomies 4 Points Not Affine Separable




Linear and Affine Separable

Proposition
Let X’ = (X1, Xo,...,Xn) @nd u’ = (uy, U, ..., uyn) Define

X={x|Uux>6}
Lety’ = (y1,¥2,...,yn.—1) and v’ = (uq, U, ..., un, 0) Define

Y={ylvy>0}

Then
X=Y




Linearly Separable Dichotomies

Theorem

There are C(N, D) homogeneously linearly separable
dichotomies of N points in general position in Euclidean
D-space, where

Thomas Cover, Geometrical and Statistical Properties of Systems of Non-Linear
Inequalities with Applications in Pattern Recognition|EEE Transactions on Electronic
Computers, Vol. EC-14, 1965, pp. 326-334.



Linearly Separable Dichomoties

@ D Dimension of space
@ N Number of points
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Affine Separable Dichotomies

@ D Dimension of Space
@ N + 1 Number of Points

CINLA,N+1) = 2%( I/\!)
k=0

Any N + 1 distinct points are affine separable in an

N-dimensional space.




Multilayer Perception

Definition

A Multilayer Perceptron consists of multiple layers of nodes in a
directed graph, with each layer fully connected to the next one.
Except for the input nodes, each node is a processing element
with a nonlinear activation function.




Hidden Layer

Definition
A Hidden Layer of a multilayer perceptron is any layer that has
no direct connection to both the Input and Output Layers.




Network With Hidden Layer

Hidden Layers

connections
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Generality

A Multi-layer perceptron with at least one hidden layer, with
sigmoidal or Gaussian non-linearities, can approximate any
Borel measurable function.

@ The theorem says it is possible
@ It does not say how
@ The number of hidden units may be very large

(Funahashi, 1989), (Hornik, 1989), (Hartman, 1990), (Park, 1991)




Finite Continuous Multivariate Representation

Theorem

Kolmogorov and Arnold

Theorem
Any continuous function g(x) defined on the N-dimensional unit
hypercube can be represented in the form

2N-+1

9(X1,. . XN Z¢n[z¢’mnxm]




Finite Continuous Multivariate Representation

Theorem

Lorentz

Any continuous function g(x) defined on the N-dimensional unit
hypercube can be represented in the form

2N+1

9(Xi. s Z ¢(Z W Xm}

@ Theorem does not say how to determine the functions
@ The functions may very complicated and not smooth
@ Back propagation algorithm may not work




Back Propagation

Rosenblatt introduced Perceptrons beginning in the late
1950’s

Funded by the Office of Naval Research
Done at Cornell facility at Buffalo NY
Done at Cornell, Ithaca

Computers at NYU

Input layer, middle layer, output layer

Minsky and Papert wrote the book Perceptrons in 1969
e Explaining all the simple things the Rosenblatt Perceptrons
could not do
Rummelhart (1969) designed an iterative learning
algorithm to train multi-layer networks: Back Propagation



Simple 4 Layer Network




Back Propagation Network
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Derivative of Sigmoidal Activation Function
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Back Propagation Network
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Back Propagation Network Error

@ Xx is input
@ cis the desired output
@ E is the error function

2(vy) = HVy)=——

E@y:v) = sle-Hvy)P
LWy = vy
R (o
= VYA~ (V)W) - o)y
= 2(1-2)(z-o)
= #(1-2)z-oy"
= &y



Back Propagation Network Update
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Back Propagation Network Error
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Back Propagation Network Error
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Back Propagation Network Error

Fori=1,..., N, j=1,....M-1
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Back Propagation Network Error

Fori=1,...,N, j=1,..., M -1
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Back Propagation Update

Ul Ul - asyjsaVIX




Paradigm Shift

Neural networks models marked a paradigm shift from
high-level (symbolic) artificial intelligence, characterized by
expert systems with knowledge embodied in if-then rules, to
low-level (sub-symbolic) machine learning, characterized by
knowledge embodied in the parameters of a dynamical system.




No Biologic Analog

It is interesting that although the original motivation for neural
networks came from biology, there no known biologic analog for
the back propagation calculation. F. Crick, The Recent Excitement

About Neural Networks, Nature, Vol 337, January 1989




@ Neural Networks are a black box

@ Functional relationship between input and output is not
made explicit

@ Functional relationship between input and output is too
complicated

@ The importance of each input variable is not revealed
@ Requires a lot of data

@ There is no theoretical way to determine the structure of
the network




