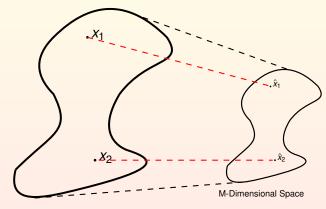
Principal Components

Robert M. Haralick

Computer Science, Graduate Center City University of New York

ъ

Space Squeezing: Dimensionality Reduction



イロト イポト イヨト イヨト 三日

N-Dimensional Space

- Assume you know linear algebra
- Present concepts in a slightly different way
- Not a formal presentation of linear algebra
- Will introduce projection operators in a formal way

- Spaces have points called vectors
- Spaces have sets of points
- Some sets are called subspaces
- Spaces have directions
- Spaces have sets of directions
- Spaces have a language of representing points in terms of traveling different lengths in different directions

Language of Spaces

The words of the language are the basis elements

• $b_1, b_2, \dots, b_N, ||b_n|| = 1, n = 1, \dots, N$

- The basis elements specify independent directions
- The sentence takes the form $\sum_{n=1}^{N} \alpha_n b_n$
- The meaning of the sentence is
 - Begin at the origin
 - Go α₁ in direction b₁
 - Go α₂ in direction b₂
 - ...
 - Go α_N in direction b_N
 - And you arrive at the point represented by $(\alpha_1, \ldots, \alpha_N)$
- The set of all places that can be reached by such a sentence is called the space spanned by the directions b₁,..., b_N
- The interesting sentences are the minimal ones

Minimal sentence means using independent directions.

Definition

 b_1, \ldots, b_N are independent directions (linearly independent) when

$$\sum_{n=1}^{N} \alpha_n b_n = 0 \text{ if and only if } \alpha_n = 0, n = 1, \dots, N$$

If you travel α_1 in direction b_1 , then travel α_2 in direction b_2, \ldots , then travel α_N in direction b_N and you return to the origin, then the directions are dependent.

Definition

 b_1, \ldots, b_N are linearly dependent if and only if for some $\alpha_1, \ldots, \alpha_N$, not all 0

$$\sum_{n=1}^{N} \alpha_n b_n = 0$$

If you travel α_1 in direction b_1 , then travel α_2 in direction b_2, \ldots , then travel α_N in direction b_N and you return to the origin, then the directions are dependent.

Angles and Inner Products

- x'y is the inner product of x and y
- b_1, \ldots, b_N set of norm 1 basis vectors
- $b'_i b_i = 1$, norm 1
- b'_ib_j cosine of the angle between directions b_i and b_j
- $b'_i b_j = b'_j b_i$
- $b'_i b_i = ||b_i||^2$
- b'(c+d) = b'c + b'd
- $(\alpha b)'c = \alpha(b'c)$
- $b_i \perp b_j$ geometrically orthogonal
- $b_i \perp b_j$ if and only if $b'_i b_j = 0$
- b_1, \ldots, b_N is orthonormal if and only if

•
$$b'_i b_j = 0$$
 when $i \neq j$

•
$$||b_i|| = 1$$

Lengths

Definition

The length of a vector *x* is its distance from the origin.

$$||\mathbf{X}|| = \sqrt{\mathbf{X}'\mathbf{X}}$$

Let $x = \sum_{n=1}^{N} \alpha_n b_n$ and b_1, \dots, b_N be orthonormal

$$|\mathbf{x}||^{2} = ||\sum_{i=1}^{N} \alpha_{i} b_{i}||^{2} = (\sum_{i=1}^{N} \alpha_{i} b_{i})' \sum_{j=1}^{N} \alpha_{j} b_{j}$$

$$= \sum_{i=1}^{N} \alpha_{i} b_{i}' (\sum_{j=1}^{N} \alpha_{j} b_{j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} b_{j}' b_{j}$$

$$= \sum_{i=1}^{N} \alpha_{i}^{2} b_{j}' b_{i} + \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \alpha_{i} \alpha_{j} b_{j}' b_{j} = \sum_{i=1}^{N} \alpha_{i}^{2} b_{j}' b_{j}$$

◆□> ◆□> ◆豆> ◆豆> ・豆・ 釣べで

Coordinate Representation

- Let b_1, \ldots, b_N be an orthonormal basis
- Let x be a vector
- Find $\alpha_1, \ldots, \alpha_N$ such that $x = \sum_{n=1}^N \alpha_n b_n$

Suppose $x = \sum_{n=1}^{N} \alpha_n b_n$.

$$b'_{i}x = b'_{i}(\sum_{n=1}^{N} \alpha_{n}b_{n})$$
$$= \sum_{n=1}^{N} \alpha_{n}b'_{i}b_{n}$$
$$= \alpha_{i}b'_{i}b_{i} = \alpha_{i}$$

 $x = (\alpha_1, \dots, \alpha_N)$ with respect to basis b_1, \dots, b_n Change the basis and you change the coordinate representation.

Inner Product

Let $x = (\alpha_1, \ldots, \alpha_N)$, $y = (\beta_1, \ldots, \beta_N)$, be coordinates with respect to orthonormal basis b_1, \ldots, b_N

$$\begin{aligned} x'y &= \left(\sum_{i=1}^{N} \alpha_i b_i\right)' \left(\sum_{j=1}^{N} \beta_j b_j\right) \\ &= \sum_{i=1}^{N} \alpha_i b_i' \left(\sum_{j=1}^{N} \beta_j b_j\right) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \beta_j b_i' b_j \\ &= \sum_{i=1}^{N} \alpha_i \beta_i b_i' b_i + \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} \alpha_i \beta_j b_j' b_j \\ &= \sum_{i=1}^{N} \alpha_i \beta_i \end{aligned}$$

<ロ> <四> <四> <四> <三</td>

Dimensionality

- N: Dimension of Space
 - Number of directions required in a minimal sentence to specify (reach) any point in the space
 - Number of degrees of freedom needed to represent a point in the space

•
$$\{x \mid x = \sum_{n=1}^{N} \alpha_n b_n\}$$

- M: Dimension of Subspace
 - Number of directions required in a minimal sentence to specify (reach) any point in the subspace
 - Number of degrees of freedom needed to represent a point in the subspace

•
$$\{x \mid x = \sum_{m=1}^{M} \beta_m b_m\}$$

• {
$$x \mid x = \sum_{m=1}^{M} \beta_m b_m + \sum_{m=M+1}^{N} 0b_m$$
}

M degrees of freedom; N – M degrees of constraint

Constraints

- M: Dimension of Subspace
 - Number of directions required in a minimal sentence to specify (reach) any point in the subspace
 - Number of degrees of freedom needed to represent a point in the subspace

• {
$$x \mid x = \sum_{m=1}^{M} \beta_m b_m$$
}
• { $x \mid x = \sum_{m=1}^{M} \beta_m b_m + \sum_{m=M+1}^{N} 0b_m$ }
• *M* degrees of freedom; *N* - *M* degrees of constraint

Let $i \in \{M + 1, ..., N\}$ and $b_1, ..., b_N$ be orthonormal. Consider $b'_i x$

$$b'_{i}x = b'_{i}\sum_{m=1}^{M}\beta_{m}b_{m} = \sum_{m=1}^{M}b'_{i}\beta_{m}b_{m} = \sum_{m=1}^{M}\beta_{m}b'_{i}b_{m}$$
$$= \sum_{m=1}^{M}\beta_{m}0 = 0$$

(日)

Co-Dimension

- M: Dimension of Subspace
 - Number of directions required in a minimal sentence to specify (reach) any point in the subspace
 - Number of degrees of freedom needed to represent a point in the subspace

•
$$\{x \mid x = \sum_{m=1}^{M} \beta_m b_m\}$$

• {
$$x \mid x = \sum_{m=1}^{M} \beta_m b_m + \sum_{m=M+1}^{N} 0b_m$$
}

- M degrees of freedom
- N M degrees of constraint
- N M Co-dimension

N – M Constraints

Let $i \in \{M + 1, \dots, N\}$ and b_1, \dots, b_N be orthonormal.

$$b'_i x = 0, \ i \in \{M+1,\ldots,N\}$$

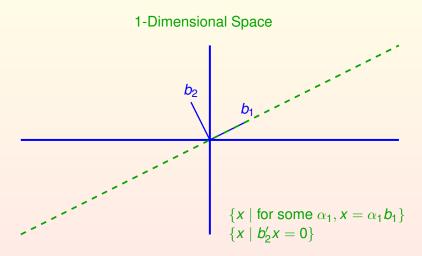
Let b_1, \ldots, b_N be an orthonormal basis for a space *S*.

- Each *b_n* is a direction
- The length of each *b_n* is one
- A direction and a length represents a point or vector in the space

< □ > < □ > < □ > < □ > <

- $b_i \perp b_j, i \neq j$
- *b_n* is a point or vector in the space

Representing Subspaces



2-Dimensional Space

▲□▶▲□▶▲□▶▲□▶ = のへで

Representing Subspaces

- N Dimensional Space S
- *M* Dimensional Subspace *T*
- b_1, \ldots, b_N orthonormal basis

•
$$S = \{x \mid \text{for some } \alpha_1, \dots, \alpha_N, x = \sum_{n=1}^N \alpha_n b_n\}$$

• M degrees of freedom

•
$$T = \{x \mid \text{for some } \alpha_1, \dots, \alpha_M, x = \sum_{m=1}^M \alpha_m b_m\}$$

• *N* – *M* degrees of constraint

•
$$T = \{x \mid b'_i x = 0, i \in \{M + 1, \dots, N\}\}$$

・ロト・西・・日・・日・ つんの

Definition

A subspace T is orthogonal to a subspace U if and only if $t \in T$ and $u \in U$ implies

$$t'u = 0$$

Definition

Let *T* be a subspace of *S*. The orthogonal complement of *T*, denoted by T^{\perp} , is defined by

$$T^{\perp} = \{x \in S \mid \text{for every } t \in T, x't = 0\}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Orthogonal Subspaces

Proposition

Let b_1, \ldots, b_N be an orthonormal basis of S. Let V be a subspace of S spanned by b_1, \ldots, b_M . Then V^{\perp} is the subspace spanned by b_{M+1}, \ldots, b_N

Proof.

 $V^{\perp} = \{x \in S \mid v \in V \text{ implies } x'v = 0\}$

$$x'\mathbf{v} = x'\sum_{m=1}^{M} \alpha_m b_m = \left(\sum_{n=1}^{N} \beta_n b_n\right)'\sum_{m=1}^{M} \alpha_m b_n$$
$$= \sum_{n=1}^{N} \beta_n \sum_{m=1}^{M} \alpha_m b_n' b_m = \sum_{m=1}^{M} \alpha_m \beta_m$$

 $\sum_{m=1}^{M} \alpha_m \beta_m = 0 \text{ for all } \alpha_1, \dots, \alpha_M \text{ implies } \beta_1 = 0, \dots, \beta_M = 0$ Therefore,

$$V^{\perp} = \{ x \mid x = \sum_{i=M+1}^{N} \beta_i b_i \}$$

Orthogonal Representations

Proposition

Let V be a subspace of S and let $x \in S$. Then there exists a $v \in V$ and $w \in V^{\perp}$ such that x = v + w

Proof.

Let b_1, \ldots, b_N be an orthonormal basis for S such that b_1, \ldots, b_M is an orthonormal basis for V and b_{M+1}, \ldots, b_N is an orthonormal basis for V^{\perp} Then for some $\alpha_1, \ldots, \alpha_N$,

$$x = \sum_{n=1}^{N} \alpha_n b_n = \sum_{n=1}^{M} \alpha_n b_n + \sum_{i=M+1}^{N} \alpha_i b_i$$

But $v = \sum_{n=1}^{M} \alpha_n b_n \in V$ and $w = \sum_{i=M+1}^{N} \alpha_i b_i \in V^{\perp}$. Therefore x = v + w for $v \in V$ and $w \in V^{\perp}$.

Definition

Let *V* be a subspace of *S*. Let $x \in S$ and x = v + w where $v \in V$ and $w \in V^{\perp}$. Then *v* is called the orthogonal projection of *x* onto *V*.

Orthogonal Projections are Unique

Proposition

Let V be a subspace of S. Let $x \in S$ and $x = v_1 + w_1 = v_2 + w_2$ where $v_1, v_2 \in V$ and $w_1, w_2 \in V^{\perp}$. Then $v_1 = v_2$.

Proof.

Let b_1, \ldots, b_M be an orthonormal basis for V. Then $v_1 = \sum_{m=1}^{M} \alpha_m b_m$ and $v_2 = \sum_{m=1}^{M} \beta_m b_m$.

$$i'_{i}x = b'_{i}(v_{1} + w_{1}) = b'_{i}\sum_{m=1}^{M} \alpha_{m}b_{m} = \alpha_{i}$$

 $= b'_{i}(v_{2} + w_{2}) = b'_{i}\sum_{m=1}^{M} \beta_{m}b_{m} = \beta_{i}$

ヘロア ヘロア ヘヨア ヘヨア

ъ

Therefore, $\alpha_i = \beta_i$, $i = 1, \ldots, M$

Orthogonal Projection Operator

Proposition

Let V be an M dimensional subspace of S. Let $x \in S$ and x = v + wwhere $v \in V$ and $w \in V^{\perp}$. Let b_1, \ldots, b_N be an orthonormal basis of S and b_1, \ldots, b_M be an orthonormal basis of V. Then v = Px where $P = \sum_{m=1}^{M} b_m b'_m$.

Proof.

$$x \in S$$
 implies $x = \sum_{n=1}^{N} \beta_n b_n = \sum_{m=1}^{M} \beta_m b_m + \sum_{n=M+1}^{N} \beta_n b_n$. Then

$$b'_m x = b'_m \sum_{n=1}^N \beta_n b_n = \sum_{n=1}^N \beta_n b'_m b_n = \beta_m$$

Now,

$$v = \sum_{m=1}^{M} \beta_m b_m = \sum_{m=1}^{M} (b'_m x) b_m = (\sum_{m=1}^{M} b_m b'_m) x$$

= Px

Definition

P is called a projection operator if and only if $P^2 = P$

$$\begin{pmatrix} .3 & .7 \\ .3 & .7 \end{pmatrix} \begin{pmatrix} .3 & .7 \\ .3 & .7 \end{pmatrix} = \begin{pmatrix} .3 & .7 \\ .3 & .7 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} .2 & .4 \\ .4 & .8 \end{pmatrix} \begin{pmatrix} .2 & .4 \\ .4 & .8 \end{pmatrix} = \begin{pmatrix} .2 & .4 \\ .4 & .8 \end{pmatrix}$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Definition

Let b_1, \ldots, b_N be an orthonormal basis for *S* and b_1, \ldots, b_M an orthonormal basis for the subspace *V* of *S*. Then $P = \sum_{m=1}^{M} b_m b'_m$ is the orthogonal projection operator to *V*.

If b_1, \ldots, b_M is an orthonormal basis for a subspace *V* of *S*, then the orthogonal projection operator onto *V* has the following representation.

$$P = \sum_{m=1}^{M} b_m b'_m$$
$$= \begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ b_1 & b_2 & \dots & b_M \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \dots & b'_1 & \dots \\ \dots & b'_2 & \dots \\ \vdots & \vdots & \vdots \\ \dots & b'_M & \dots \end{pmatrix}$$

Orthogonal Projection Operators

Proposition

If P is an orthogonal projection operator to the subspace V of S, then

- $P^2 = P$
- *P* = *P*′

Proof.

Let b_1, \ldots, b_M be an orthonormal basis for V. Then,

$$P^{2} = \sum_{m=1}^{M} b_{m} b'_{m} \sum_{i=1}^{M} b_{i} b'_{i}$$

=
$$\sum_{m=1}^{M} b_{m} \sum_{i=1}^{M} (b'_{m} b_{i}) b'_{i} = \sum_{m=1}^{M} b_{m} b'_{m} = b$$

$$P' = (\sum_{m=1}^{M} b_{m} b'_{m})' = \sum_{m=1}^{M} (b_{m} b'_{m})'$$

=
$$\sum_{m=1}^{M} b_{m} b'_{m} = P$$

Proposition

Suppose $P = P^2$, P = P', $Q = Q^2$, and Q = Q'. If PQ = Q and QP = P, then Q = P.

Proof.

$$Q = PQ = (PQ)' = Q'P' = QP = P$$

メロト メポト メヨト メヨト 三日

Proposition

Let V be a M dimensional subspace of S. Let b_1, \ldots, b_M be a basis for V and let c_1, \ldots, c_M be an orthonormal basis for V. Define $P = \sum_{m=1}^{M} b_m b'_m$ and $Q = \sum_{m=1}^{M} c_m c'_m$. Then Q = P.

Proof.

By the definition of orthogonal projection operators, both P and Q are orthogonal projection operators onto V. Hence, $P = P^2$ and P = P'. Likewise, $Q = Q^2$ and Q = Q'. Since the columns of P and Q are in V, PQ = Q and QP = Q By the uniqueness proposition, Q = P.

Orthogonal Projection Operator Characterization Theorem

Theorem

If $P = P^2$ and P = P', then P is the orthogonal projection operator onto Col(P).

Proof.

Let b_1, \ldots, b_M be an orthonormal basis for Col(P). Define $Q = \sum_{m=1}^{M} b_m b'_m$. Then $Q = Q^2$ and Q = Q'. Clearly, Col(Q) = Col(P) so that QP = P and PQ = Q. By the uniqueness proposition, P = Q. And since Q is the orthogonal projection operator onto Col(P), P must also be the orthogonal projection operator onto Col(P).

Orthogonal Projection Minimizes Error

Theorem

Let V be a subspace of S. Let $f : S \rightarrow V$ and $x \in S$.

$$\min_{f}(x-f(x))'(x-f(x))$$

is achieved when f is the orthogonal projection operator from S to V

Proof.

Let $x \in S$. Then there exists $v \in V$ and $w \in V^{\perp}$ such that x = v + w. Consider

$$\begin{aligned} \epsilon^2 &= (x - f(x))'(x - f(x)) \\ &= x'x - (v + w)'f(x) - f(x)'(v + w) + f(x)'f(x) \\ &= x'x - v'f(x) - f(x)'v - f(x)'f(x) \\ &= (v + w)'(v + w) - v'f(x) - f(x)'v - f(x)'f(x) \\ &= v'v - v'f(x) - f(x)'v + f(x)'f(x) + w'w \\ &= (v - f(x))'(v - f(x)) + w'w \end{aligned}$$

イロン 不通 とうほう 不良 とう

3

 ϵ^2 is minimized by making f(x) = v, the orthogonal projection of x onto V.

Dimensional Reduction by Orthogonal Projection

Corollary

Let $x_1, \ldots, x_K \in S$. Let V be a subspace of S. Let $f : S \to V$. Then

$$\min_{f} \sum_{k=1}^{K} (x_k - f(x_k))'(x_k - f(x_k))$$

is achieved when f is the orthogonal projection operator from S to V

Proof.

The best f can do for each x_k is for $f(x_k) = v_k$, the orthogonal projection of x_k onto V. Therefore,

$$\min_{f} \sum_{k=1}^{K} (x_k - f(x_k))'(x_k - f(x_k))$$

ヘロア 人間 アメヨア 人間 ア

ъ

is achieved when f is the orthogonal projection operator onto V.

Orthogonal Projection Operators

Proposition

If P is an orthogonal projection operator onto M dimensional subspace V of S, then for some orthonormal matrix T whose first M columns constitute an orthonormal basis for V,

P = TDT'

where D is a diagonal matrix whose first M diagonal entries are 1 and whose remaining diagonal entries are 0.

Proof.

Let b_1, \ldots, b_N be an orthonormal basis of *S* with b_1, \ldots, b_M being an orthonormal basis of *V*. Then $P = \sum_{m=1}^{M} b_m b'_m$. Let $T = (b_1 b_2 \ldots b_N)$ Consider,

$$TDT' = \begin{pmatrix} \vdots & \dots & \vdots \\ b_1 & \dots & b_N \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \vdots & & \\ & & & 1 & & \\ & & & 0 & & \\ & & & & \vdots & \\ & & & & 0 \end{pmatrix} \begin{pmatrix} \dots & b'_1 & \dots \\ \dots & \vdots & \dots \\ \dots & b'_N & \dots \end{pmatrix}$$

Orthogonal Projection Operators

TDT' =

$$\begin{pmatrix} \vdots & \dots & \vdots & 0 \dots & 0 \\ b_1 & \dots & b_M & \vdots & \dots & \vdots \\ \vdots & \dots & \vdots & 0 \dots & 0 \end{pmatrix} \begin{pmatrix} \dots & b'_1 & \dots \\ \dots & \vdots & \dots \\ \dots & b'_N & \dots \end{pmatrix}$$
$$= \begin{pmatrix} \vdots & \vdots & \dots & \vdots \\ b_1 & b_2 & \dots & b_M \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \dots & b'_1 & \dots \\ \dots & b'_2 & \dots \\ \vdots & \vdots & \vdots \\ \dots & b'_M & \dots \end{pmatrix}$$
$$= \sum_{m=1}^M b_m b'_m$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ● ◆○ ◆○

Consider the orthogonal projection operator onto the space spanned by

$$\frac{1}{5}\begin{pmatrix}3\\4\end{pmatrix}$$
$$P = \frac{1}{5}\begin{pmatrix}3\\4\end{pmatrix}\frac{1}{5}(3\ 4) = \frac{1}{25}\begin{pmatrix}9\ 12\\12\ 16\end{pmatrix}$$
$$\frac{1}{25}\begin{pmatrix}9\ 12\\12\ 16\end{pmatrix} = \begin{pmatrix}\frac{3}{5}\ \frac{-4}{5}\\\frac{4}{5}\ \frac{3}{5}\end{pmatrix}\begin{pmatrix}1\ 0\\0\ 0\end{pmatrix}\begin{pmatrix}\frac{3}{5}\ \frac{4}{5}\\\frac{-4}{5}\ \frac{3}{5}\end{pmatrix}$$

Orthogonal Projection Operators

Proposition

Let P be an orthogonal projection operator and T be an orthonormal matrix. Then Q = TPT' is an orthogonal projection operator.

Proof.

$$Q^{2} = (TPT')(TPT')$$

$$= TP(T'T)PT'$$

$$= TP^{2}T'$$

$$= TPT' = Q$$

$$Q' = (TPT')'$$

$$= TP'T' = TPT'$$

Let P be an orthogonal projection operator. Then the diagonal elements of P lie in the interval [0, 1]

Proof.

Since $P^2 = P$, $p_{ij} = \sum_{n=1}^{N} p_{in}p_{nj}$. In particular $p_{ii} = \sum_{n=1}^{N} p_{in}p_{ni}$. Since P = P', $p_{ii} = \sum_{n=1}^{N} p_{in}p_{in}$. Now, $p_{ii} = \sum_{n=1}^{N} p_{in}^2$ implies $p_{ii} \ge 0$. And $p_{ii} = p_{ii}^2 + \sum_{\substack{n=1 \ n \neq i}}^{N} p_{in}^2$ implies $p_{ii} \ge p_{ii}^2$ from which $p_{ii} \le 1$.

Definition

The Kernel of a matrix operator A is

$$Kernel(A) = \{x | Ax = 0\}$$

• The Range of a matrix operator A is

 $Range(A) = \{y \mid \text{for some } x, y = Ax\}$

Let P be a projection operator onto subspace V of S. Then

$$Range(P) + Ker(P) = S$$

Proof.

Let $x \in S$. Px + (I - P)x = Px + x - Px = x. Certainly $Px \in Range(P)$. Consider (I - P)x. P[(I - P)x] = Px - PPx = Px - Px = 0 Therefore, by definition of Kernel(P), $(I - P)x \in Kernel(P)$.

Let P be an orthogonal projection operator. Then $Range(P) \perp Kernel(P)$

Proof.

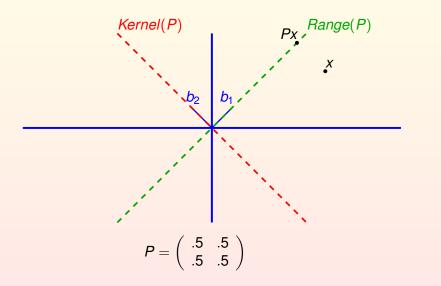
Let $x \in Range(P)$ and $y \in Kernel(P)$. Then for some u, x = Pu. Consider x'y.

$$x'y = (Pu)'y = u'P'y = u'Py$$

But $y \in Kernel(P)$ so that Py=0. Therefore x'y = 0.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Projecting



Let P be the orthogonal projection operator onto the subspace V. Then I - P is the orthogonal projection operator onto the subspace V^{\perp} .

Proof.

$$(I-P)(I-P) = I-P-P+P^2 = I-2P+P = I-P$$

 $(I-P)' = I'-P' = I-P$

 $V^{\perp} = Kernel(P)$. Let $x \in V^{\perp}$. Then Px = 0. Consider (I - P)x = x - Px = x

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のなぐ

Definition

Let $A = (a_{ij})$ be a square $N \times N$ matrix.

$$Trace(A) = \sum_{n=1}^{N} a_{nn}$$

Proposition

$$Trace(\sum_{n=1}^{N} \alpha_n A_n) = \sum_{n=1}^{N} \alpha_n Trace(A_n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

$$Trace(AB) = Trace(BA)$$

Proof.

Let
$$C^{N \times N} = (c_{ij}) = A^{N \times K} B^{K \times N}$$
 and $D^{K \times K} = (d_{mn}) = B^{K \times N} A^{N \times K}$

$$C_{ij} = \sum_{k=1}^{K} a_{ik} b_{kj}$$

$$d_{mn} = \sum_{i=1}^{N} b_{mi} a_{in}$$

$$Trace(C) = \sum_{i=1}^{N} c_{ii} = \sum_{i=1}^{N} \sum_{k=1}^{K} a_{ik} b_{ki}$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{N} b_{ki} a_{ik} = \sum_{k=1}^{K} d_{kk} = Trace(D) = Trace(BA)$$

200

Corollary

$$x'Ax = Trace(Axx')$$

Proof.

$$x'Ax = Trace(x'Ax) = Trace(x'(Ax))$$

= $Trace((Ax)x') = Trace(Axx')$

◆□ > ◆□ > ◆ □ > ● □ >

Trace

Proposition

Let $A = (a_{ij})$ be a $M \times N$ matrix. Then

$$\sum_{m=1}^{M}\sum_{n=1}^{N}a_{mn}^{2}=\textit{Trace}(\textit{AA}')$$

Proof.

Let
$$B = (b_{ij}) = AA'$$
. Then $b_{ij} = \sum_{n=1}^{N} a_{in}a_{jn}$. Hence,
 $b_{ii} = \sum_{n=1}^{N} a_{in}a_{in} = \sum_{n=1}^{N} a_{in}^2$. Therefore
Trace(B) = Trace(AA') = $\sum_{m=1}^{M} b_{mm} = \sum_{m=1}^{M} \sum_{n=1}^{N} a_{mn}^2$

Trace

Proposition

Let P be an orthogonal projection operator to the M dimensional subspace V. Then Trace(P) = M

Proof.

Let b_1, \ldots, b_M be an orthonormal basis for V. Then $P = \sum_{m=1}^M b_m b'_m$

$$Trace(P) = Trace(\sum_{m=1}^{M} b_m b'_m)$$

=
$$\sum_{m=1}^{M} Trace(b_m b'_m) = \sum_{m=1}^{M} Trace(b'_m b_m)$$

=
$$\sum_{m=1}^{M} Trace(1) = \sum_{m=1}^{M} 1 = M$$

Trace

Proposition

Let P be an orthogonal projection operator onto a M dimensional subspace. Then

$$\sum_{i=1}^N\sum_{j=1}^N\rho_{ij}^2=M$$

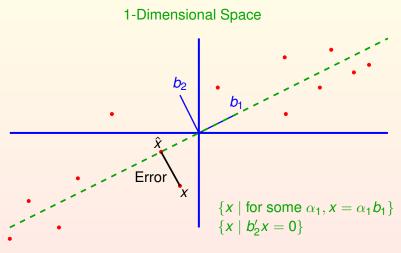
Proof.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij}^{2} = Trace(PP') = Trace(PP) = Trace(P) = M$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- When we squeeze *N* dimensional data into an *M* dimensional subspace, our viewpoint is the *M* degrees of freedom perspective
- When we fit N dimensional data to an N M dimensional function our viewpoint is the N – M degrees of constraint perspective

Line Fitting



2-Dimensional Space

- *f*(*x*) = 0 are the constraints specifying the subspace
- f takes N Dimensional vectors to N M Dimensional subspaces in the N-Dimensional Space

イロト イポト イヨト イヨト 三日

- N dimensional vectors x_1, \ldots, x_K
- Fitting function f
- Squared Error $\epsilon^2 = \sum_{k=1}^{K} f(x_k)' f(x_k)$
- Find *f* to minimize ϵ^2

Dimensionality Reduction

- f(x) is the dimensionality reduced vector
- f takes N Dimensional vectors to M Dimensional subspaces in the N-Dimensional Space
- N dimensional vectors x₁,..., x_K
- Squared Error $\epsilon^2 = \sum_{k=1}^{K} (x_k f(x_k))'(x_k f(x_k))$

<

• Find *f* to minimize ϵ^2

Orthogonal Projection Operators are Positive Semidefinite

Proposition

Let $x \in S$ and P be an orthogonal projection operator. Then $x'Px \ge 0$.

Proof.

Since P is an orthogonal projection operator, $P = P^2$ and P = P'. Then,

$$x'Px = x'PPx = x'P'Px = (Px)'Px \ge 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ����

Proposition

Let $x_1, \ldots, x_k \in S$ an N-dimensional vector space. Let P be an orthogonal projection operator having rank M. Then P minimizes $\sum_{k=1}^{K} (x_k - Px_k)'(x_k - Px_k)$ if and only if P maximizes $\sum_{k=1}^{K} x'_k Px_k$

Proof.

$$\sum_{k=1}^{K} (x_k - Px_k)'(x_k - Px_k) = \sum_{k=1}^{K} (x_k'x_k - x_k'Px_k - x_k'P'x_k + x_k'P'Px_k)$$
$$= \sum_{k=1}^{K} (x_k'x_k - x_k'Px_k - x_k'Px_k + x_k'Px_k)$$
$$= \sum_{k=1}^{K} x_k'x_k - \sum_{k=1}^{K} x_k'Px_k$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のなぐ

Proposition

Let $x_1, \ldots, x_K \in S$, an N-dimensional vector space and Q be an orthogonal projection operator of rank M. Then

$$\sum_{k=1}^{K} x_k Q x_k = \text{Trace}(Q^* D)$$

where TDT' is the eigenvector representation of $\sum_{k=1}^{K} x_k x'_k$ and $Q^* = T'QT$.

Proof.

$$\epsilon^{2} = \sum_{k=1}^{K} x_{k}^{\prime} Q x_{k} = \sum_{k=1}^{K} \operatorname{Trace}(x_{k}^{\prime} Q x_{k}) = \sum_{k=1}^{K} \operatorname{Trace}(Q x_{k} x_{k}^{\prime})$$
$$= \operatorname{Trace}(\sum_{k=1}^{K} Q x_{k} x_{k}^{\prime}) = \operatorname{Trace}(Q \sum_{k=1}^{K} x_{k} x_{k}^{\prime})$$

 $\sum_{k=1}^{K} x_k x'_k$ is a real symmetric non-negative matrix. Therefore for some orthonormal matrix *T* and non-negative diagonal matrix *D*, $\sum_{k=1}^{K} x_k x'_k = TDT'$. Hence $\epsilon^2 = Trace(QTDT') = Trace((T'QT)D) = Trace(Q^*D)$ where $Q^* = T'QT$

Proposition

Let D be a diagonal matrix satisfying $d_{ii} \ge d_{jj}$, i < j. Let P be a rank M orthogonal projection operator. Then

$$\max_{\substack{P = P^2; P = P'; \text{Trace}(P) = M}} \text{Trace}(PD) = \sum_{m=1}^{M} d_{mm}$$

Proof.

Consider $w_{ij} = \sum_{n=1}^{N} p_{in}d_{nj}$, the $(i,j)^{th}$ element of PD. Since $d_{nj} = 0$ for $n \neq j$, $w_{ij} = p_{ij}d_{jj}$. Hence $w_{ii} = p_{ii}d_{ii}$. Therefore Trace(PD) = $\sum_{i=1}^{N} p_{ii}d_{ii}$. Since P is an orthogonal projection operator, $0 \leq p_{ii} \leq 1$. Trace(P) = M implies $\sum_{i=1}^{N} p_{ii} = M$. Since $d_{ii} \geq d_{jj}$, i < j, max_P Trace(PD) = $\sum_{m=1}^{M} d_{mm}$.

Theorem

Let $x_1, \ldots, x_K \in S$ an N-dimensional vector space and Q be an orthogonal projection operator of rank M. Then $\sum_{k=1}^{K} x_k Q x_k$ is maximized when Q projects to the M-Dimensional subspace spanned by the M eigenvectors of $\sum_{k=1}^{K} x_k x'_k$ having largest eigenvalues.

Proof.

Let $\sum_{k=1}^{K} x_k x'_k = TDT'$ and $Q^* = T'QT$. Without loss of generality we assume that the diagonal entries are ordered $d_{ii} \ge d_{jj}$, i < j. Then $\max_{Q^*} \operatorname{Trace}(Q^*D) = \sum_{m=1}^{M} d_{mm}$, where the maximum is taken over all Q^* satisfying $Q^* = Q^*Q^*$ and $Q^* = Q^{*'}$. Thus, the first M diagonal entries of Q^* are one and the remaining diagonal entries 0. Since $\sum_{i=1}^{N} \sum_{j=1}^{N} q_{jj}^2 = M$, and there are M ones on the diagonal, the remaining elements of Q^* are 0. This implies $Q = TQ^*T'$ is the orthogonal projection operator onto the space spanned by the first M eigenvectors of $\sum_{k=1}^{K} x_k x'_k$ for these are the eigenvectors having largest eigenvalues.