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Introduction

Assume you know linear algebra
Present concepts in a slightly different way
Not a formal presentation of linear algebra
Will introduce projection operators in a formal way



Spaces

Spaces have points called vectors
Spaces have sets of points
Some sets are called subspaces
Spaces have directions
Spaces have sets of directions
Spaces have a language of representing points in terms of
traveling different lengths in different directions



Language of Spaces

The words of the language are the basis elements
b1,b2, . . . ,bN , ||bn|| = 1,n = 1, . . . ,N

The basis elements specify independent directions
The sentence takes the form

∑N
n=1 αnbn

The meaning of the sentence is
Begin at the origin
Go α1 in direction b1
Go α2 in direction b2
. . .
Go αN in direction bN
And you arrive at the point represented by (α1, . . . , αN)

The set of all places that can be reached by such a
sentence is called the space spanned by the directions
b1, . . . ,bN

The interesting sentences are the minimal ones



Linear Independence

Minimal sentence means using independent directions.

Definition
b1, . . . ,bN are independent directions (linearly independent)
when

N∑
n=1

αnbn = 0 if and only if αn = 0,n = 1, . . . ,N

If you travel α1 in direction b1, then travel α2 in direction b2, . . .,
then travel αN in direction bN and you return to the origin, then
the directions are dependent.



Linear Dependence

Definition
b1, . . . ,bN are linearly dependent if and only if for some
α1, . . . , αN , not all 0

N∑
n=1

αnbn = 0

If you travel α1 in direction b1, then travel α2 in direction b2, . . .,
then travel αN in direction bN and you return to the origin, then
the directions are dependent.



Angles and Inner Products

x ′y is the inner product of x and y
b1, . . . ,bN set of norm 1 basis vectors
b′i bi = 1, norm 1
b′i bj cosine of the angle between directions bi and bj

b′i bj = b′j bi

b′i bi = ||bi ||2

b′(c + d) = b′c + b′d
(αb)′c = α(b′c)
bi ⊥ bj geometrically orthogonal
bi ⊥ bj if and only if b′i bj = 0
b1, . . . ,bN is orthonormal if and only if

b′i bj = 0 when i 6= j
||bi || = 1



Lengths

Definition
The length of a vector x is its distance from the origin.

||x || =
√

x ′x

Let x =
∑N

n=1 αnbn and b1, . . . ,bN be orthonormal

||x ||2 = ||
N∑

i=1

αibi ||2 = (
N∑

i=1

αibi)
′

N∑
j=1

αjbj

=
N∑

i=1

αib′i (
N∑

j=1

αjbj) =
N∑

i=1

N∑
j=1

αiαjb′i bj

=
N∑

i=1

α2
i b′i bi +

N∑
i=1

N∑
j=1
j 6=i

αiαjb′i bj =
N∑

i=1

α2
i



Coordinate Representation

Let b1, . . . ,bN be an orthonormal basis
Let x be a vector
Find α1, . . . , αN such that x =

∑N
n=1 αnbn

Suppose x =
∑N

n=1 αnbn.

b′i x = b′i (
N∑

n=1

αnbn)

=
N∑

n=1

αnb′i bn

= αib′i bi = αi

x = (α1, . . . , αN) with respect to basis b1, . . . ,bn
Change the basis and you change the coordinate
representation.



Inner Product

Let x = (α1, . . . , αN), y = (β1, . . . , βN), be coordinates with
respect to orthonormal basis b1, . . . ,bN

x ′y = (
N∑

i=1

αibi)
′(

N∑
j=1

βjbj)

=
N∑

i=1

αib′i (
N∑

j=1

βjbj) =
N∑

i=1

N∑
j=1

αiβjb′i bj

=
N∑

i=1

αiβib′i bi +
N∑

i=1

N∑
j=1
j 6=i

αiβjb′i bj

=
N∑

i=1

αiβi



Dimensionality

N: Dimension of Space
Number of directions required in a minimal sentence to
specify (reach) any point in the space
Number of degrees of freedom needed to represent a point
in the space
{x | x =

∑N
n=1 αnbn}

M: Dimension of Subspace
Number of directions required in a minimal sentence to
specify (reach) any point in the subspace
Number of degrees of freedom needed to represent a point
in the subspace
{x | x =

∑M
m=1 βmbm}

{x | x =
∑M

m=1 βmbm +
∑N

m=M+1 0bm}
M degrees of freedom; N −M degrees of constraint



Constraints

M: Dimension of Subspace
Number of directions required in a minimal sentence to
specify (reach) any point in the subspace
Number of degrees of freedom needed to represent a point
in the subspace
{x | x =

∑M
m=1 βmbm}

{x | x =
∑M

m=1 βmbm +
∑N

m=M+1 0bm}
M degrees of freedom; N −M degrees of constraint

Let i ∈ {M + 1, . . . ,N} and b1, . . . ,bN be orthonormal.
Consider b′i x

b′i x = b′i
M∑

m=1

βmbm =
M∑

m=1

b′iβmbm =
M∑

m=1

βmb′i bm

=
M∑

m=1

βm0 = 0



Co-Dimension

M: Dimension of Subspace
Number of directions required in a minimal sentence to
specify (reach) any point in the subspace
Number of degrees of freedom needed to represent a point
in the subspace
{x | x =

∑M
m=1 βmbm}

{x | x =
∑M

m=1 βmbm +
∑N

m=M+1 0bm}
M degrees of freedom
N −M degrees of constraint
N −M Co-dimension

N −M Constraints

Let i ∈ {M + 1, . . . ,N} and b1, . . . ,bN be orthonormal.

b′i x = 0, i ∈ {M + 1, . . . ,N}



Basis Vectors

Let b1, . . . ,bN be an orthonormal basis for a space S.
Each bn is a direction
The length of each bn is one
A direction and a length represents a point or vector in the
space
bi ⊥ bj , i 6= j
bn is a point or vector in the space



Representing Subspaces

b1

b2

2-Dimensional Space

1-Dimensional Space

{x | for some α1, x = α1b1}
{x | b′2x = 0}



Representing Subspaces

N Dimensional Space S
M Dimensional Subspace T
b1, . . . ,bN orthonormal basis
S = {x | for some α1, . . . , αN , x =

∑N
n=1 αnbn}

M degrees of freedom
T = {x | for some α1, . . . , αM , x =

∑M
m=1 αmbm}

N −M degrees of constraint
T = {x | b′i x = 0, i ∈ {M + 1, . . . ,N}}



Orthogonal Subspaces

Definition
A subspace T is orthogonal to a subspace U if and only if t ∈ T
and u ∈ U implies

t ′u = 0

Definition
Let T be a subspace of S. The orthogonal complement of T ,
denoted by T⊥, is defined by

T⊥ = {x ∈ S |for every t ∈ T , x ′t = 0}



Orthogonal Subspaces

Proposition
Let b1, . . . ,bN be an orthonormal basis of S. Let V be a
subspace of S spanned by b1, . . . ,bM . Then V⊥ is the
subspace spanned by bM+1 . . . ,bN

Proof.

V⊥ = {x ∈ S | v ∈ V implies x ′v = 0}

x ′v = x ′
M∑

m=1

αmbm = (
N∑

n=1

βnbn)
′

M∑
m=1

αmbm

=
N∑

n=1

βn

M∑
m=1

αmb′nbm =
M∑

m=1

αmβm

∑M
m=1 αmβm = 0 for all α1, . . . , αM implies β1 = 0, . . . , βM = 0

Therefore,

V⊥ = {x | x =
N∑

i=M+1

βibi}



Orthogonal Representations

Proposition
Let V be a subspace of S and let x ∈ S. Then there exists a
v ∈ V and w ∈ V⊥ such that x = v + w

Proof.
Let b1, . . . ,bN be an orthonormal basis for S such that
b1, . . . ,bM is an orthonormal basis for V and bM+1, . . .bN is an
orthonormal basis for V⊥ Then for some α1, . . . , αN ,

x =
N∑

n=1

αnbn =
M∑

n=1

αnbn +
N∑

i=M+1

αibi

But v =
∑M

n=1 αnbn ∈ V and w =
∑N

i=M+1 αibi ∈ V⊥.
Therefore x = v + w for v ∈ V and w ∈ V⊥.



Orthogonal Projection

Definition
Let V be a subspace of S. Let x ∈ S and x = v + w where
v ∈ V and w ∈ V⊥. Then v is called the orthogonal projection
of x onto V .



Orthogonal Projections are Unique

Proposition
Let V be a subspace of S. Let x ∈ S and x = v1 +w1 = v2 +w2
where v1, v2 ∈ V and w1,w2 ∈ V⊥. Then v1 = v2.

Proof.
Let b1, . . . ,bM be an orthonormal basis for V . Then
v1 =

∑M
m=1 αmbm and v2 =

∑M
m=1 βmbm.

b′i x = b′i (v1 + w1) = b′i
M∑

m=1

αmbm = αi

= b′i (v2 + w2) = b′i
M∑

m=1

βmbm = βi

Therefore, αi = βi , i = 1, . . . ,M



Orthogonal Projection Operator

Proposition

Let V be an M dimensional subspace of S. Let x ∈ S and x = v + w
where v ∈ V and w ∈ V⊥. Let b1, . . . ,bN be an orthonormal basis of
S and b1, . . . ,bM be an orthonormal basis of V . Then v = Px where
P =

∑M
m=1 bmb′m.

Proof.

x ∈ S implies x =
∑N

n=1 βnbn =
∑M

m=1 βmbm +
∑N

n=M+1 βnbn. Then

b′mx = b′m
N∑

n=1

βnbn =
N∑

n=1

βnb′mbn = βm

Now,

v =
M∑

m=1

βmbm =
M∑

m=1

(b′mx)bm = (
M∑

m=1

bmb′m)x

= Px



Projection Operators

Definition

P is called a projection operator if and only if P2 = P

(
.3 .7
.3 .7

)(
.3 .7
.3 .7

)
=

(
.3 .7
.3 .7

)
(

1 −1
0 0

)(
1 −1
0 0

)
=

(
1 −1
0 0

)
(
.2 .4
.4 .8

)(
.2 .4
.4 .8

)
=

(
.2 .4
.4 .8

)



Orthogonal Projection Operator

Definition
Let b1, . . . ,bN be an orthonormal basis for S and b1, . . . ,bM an
orthonormal basis for the subspace V of S. Then
P =

∑M
m=1 bmb′m is the orthogonal projection operator to V .



Orthogonal Projection Operator

If b1, . . . ,bM is an orthonormal basis for a subspace V of S,
then the orthogonal projection operator onto V has the
following representation.

P =
M∑

m=1

bmb′m

=


...

... . . .
...

b1 b2 . . . bM
...

... . . .
...




. . . b′1 . . .

. . . b′2 . . .
...

...
...

. . . b′M . . .





Orthogonal Projection Operators

Proposition

If P is an orthogonal projection operator to the subspace V of S, then

P2 = P

P = P′

Proof.

Let b1, . . . , bM be an orthonormal basis for V . Then,

P2 =
M∑

m=1

bmb′m
M∑

i=1

bib′i

=
M∑

m=1

bm

M∑
i=1

(b′mbi)b′i =
M∑

m=1

bmb′m = P

P′ = (
M∑

m=1

bmb′m)
′ =

M∑
m=1

(bmb′m)
′

=
M∑

m=1

bmb′m = P



Uniqueness

Proposition

Suppose P = P2, P = P ′, Q = Q2, and Q = Q′. If PQ = Q and
QP = P, then Q = P.

Proof.

Q = PQ = (PQ)′ = Q′P ′ = QP = P



Orthogonal Projection Operators are Unique

Proposition
Let V be a M dimensional subspace of S. Let b1, . . . ,bM be a
basis for V and let c1, . . . , cM be an orthonormal basis for V .
Define P =

∑M
m=1 bmb′m and Q =

∑M
m=1 cmc′m. Then Q = P.

Proof.
By the definition of orthogonal projection operators, both P and
Q are orthogonal projection operators onto V . Hence, P = P2

and P = P ′. Likewise, Q = Q2 and Q = Q′. Since the columns
of P and Q are in V , PQ = Q and QP = Q By the uniqueness
proposition, Q = P.



Orthogonal Projection Operator Characterization
Theorem

Theorem

If P = P2 and P = P ′, then P is the orthogonal projection
operator onto Col(P).

Proof.
Let b1, . . . ,bM be an orthonormal basis for Col(P). Define
Q =

∑M
m=1 bmb′m. Then Q = Q2 and Q = Q′. Clearly,

Col(Q) = Col(P) so that QP = P and PQ = Q. By the
uniqueness proposition, P = Q. And since Q is the orthogonal
projection operator onto Col(P), P must also be the orthogonal
projection operator onto Col(P).



Orthogonal Projection Minimizes Error

Theorem

Let V be a subspace of S. Let f : S → V and x ∈ S.

min
f
(x − f (x))′(x − f (x))

is achieved when f is the orthogonal projection operator from S to V

Proof.

Let x ∈ S. Then there exists v ∈ V and w ∈ V⊥ such that x = v + w. Consider

ε2 = (x − f (x))′(x − f (x))

= x ′x − (v + w)′f (x)− f (x)′(v + w) + f (x)′f (x)

= x ′x − v ′f (x)− f (x)′v − f (x)′f (x)

= (v + w)′(v + w)− v ′f (x)− f (x)′v − f (x)′f (x)

= v ′v − v ′f (x)− f (x)′v + f (x)′f (x) + w ′w

= (v − f (x))′(v − f (x)) + w ′w

ε2 is minimized by making f (x) = v, the orthogonal projection of x onto V .



Dimensional Reduction by Orthogonal Projection

Corollary

Let x1, . . . , xK ∈ S. Let V be a subspace of S. Let f : S → V. Then

min
f

K∑
k=1

(xk − f (xk ))
′(xk − f (xk ))

is achieved when f is the orthogonal projection operator from S to V

Proof.

The best f can do for each xk is for f (xk ) = vk , the orthogonal
projection of xk onto V . Therefore,

min
f

K∑
k=1

(xk − f (xk ))
′(xk − f (xk ))

is achieved when f is the orthogonal projection operator onto V .



Orthogonal Projection Operators

Proposition

If P is an orthogonal projection operator onto M dimensional subspace V of S, then for
some orthonormal matrix T whose first M columns constitute an orthonormal basis for
V ,

P = TDT ′

where D is a diagonal matrix whose first M diagonal entries are 1 and whose
remaining diagonal entries are 0.

Proof.

Let b1, . . . , bN be an orthonormal basis of S with b1, . . . , bM being an orthonormal
basis of V . Then P =

∑M
m=1 bmb′m. Let T = (b1b2 . . . bN) Consider,

TDT ′ =


... . . .

...
b1 . . . bN
... . . .

...





1
1

...
1

0
...

0



 . . . b′1 . . .

. . .
... . . .

. . . b′N . . .





Orthogonal Projection Operators

TDT ′= 
... . . .

... 0 . . . 0

b1 . . . bM

... . . .
...

... . . .
... 0 . . . 0


 . . . b′1 . . .

. . .
... . . .

. . . b′N . . .



=


...

... . . .
...

b1 b2 . . . bM
...

... . . .
...




. . . b′1 . . .

. . . b′2 . . .
...

...
...

. . . b′M . . .


=

M∑
m=1

bmb′m



Orthogonal Projection Operator Example

Consider the orthogonal projection operator onto the space
spanned by

1
5

(
3
4

)
P =

1
5

(
3
4

)
1
5
(3 4) =

1
25

(
9 12

12 16

)

1
25

(
9 12

12 16

)
=

( 3
5
−4
5

4
5

3
5

)(
1 0
0 0

)( 3
5

4
5

−4
5

3
5

)



Orthogonal Projection Operators

Proposition
Let P be an orthogonal projection operator and T be an
orthonormal matrix. Then Q = TPT ′ is an orthogonal projection
operator.

Proof.

Q2 = (TPT ′)(TPT ′)
= TP(T ′T )PT ′

= TP2T ′

= TPT ′ = Q
Q′ = (TPT ′)′

= TP ′T ′ = TPT ′



Orthogonal Projection Operators

Proposition
Let P be an orthogonal projection operator. Then the diagonal
elements of P lie in the interval [0,1]

Proof.

Since P2 = P, pij =
∑N

n=1 pinpnj . In particular pii =
∑N

n=1 pinpni .
Since P = P ′, pii =

∑N
n=1 pinpin. Now, pii =

∑N
n=1 p2

in implies
pii ≥ 0. And pii = p2

ii +
∑N

n=1
n 6=i

p2
in implies pii ≥ p2

ii from which

pii ≤ 1.



Kernel and Range

Definition
The Kernel of a matrix operator A is

Kernel(A) = {x |Ax = 0}

The Range of a matrix operator A is

Range(A) = {y | for some x , y = Ax}



Kernel and Range

Proposition
Let P be a projection operator onto subspace V of S. Then

Range(P) + Ker(P) = S

Proof.
Let x ∈ S. Px + (I − P)x = Px + x − Px = x. Certainly
Px ∈ Range(P). Consider (I − P)x.
P[(I − P)x ] = Px − PPx = Px − Px = 0 Therefore, by definition
of Kernel(P), (I − P)x ∈ Kernel(P).



Kernel and Range

Proposition
Let P be an orthogonal projection operator. Then
Range(P) ⊥ Kernel(P)

Proof.
Let x ∈ Range(P) and y ∈ Kernel(P). Then for some u,
x = Pu. Consider x ′y.

x ′y = (Pu)′y = u′P ′y = u′Py

But y ∈ Kernel(P) so that Py=0. Therefore x ′y = 0.



Projecting

b1b2

Range(P)Kernel(P)

P =

(
.5 .5
.5 .5

)

x

Px



Proposition
Let P be the orthogonal projection operator onto the subspace
V . Then I − P is the orthogonal projection operator onto the
subspace V⊥.

Proof.

(I − P)(I − P) = I − P − P + P2 = I − 2P + P = I − P
(I − P)′ = I′ − P ′ = I − P

V⊥ = Kernel(P). Let x ∈ V⊥. Then Px = 0. Consider
(I − P)x = x − Px = x



Trace

Definition
Let A = (aij) be a square N × N matrix.

Trace(A) =
N∑

n=1

ann

Proposition

Trace(
∑N

n=1 αnAn) =
∑N

n=1 αnTrace(An)



Trace

Proposition

Trace(AB) = Trace(BA)

Proof.

Let CN×N = (cij) = AN×K BK×N and DK×K = (dmn) = BK×NAN×K .

cij =
K∑

k=1

aik bkj

dmn =
N∑

i=1

bmiain

Trace(C) =
N∑

i=1

cii =
N∑

i=1

K∑
k=1

aik bki

=
K∑

k=1

N∑
i=1

bkiaik =
K∑

k=1

dkk = Trace(D) = Trace(BA)



Trace

Corollary

x ′Ax = Trace(Axx ′)

Proof.

x ′Ax = Trace(x ′Ax) = Trace(x ′(Ax))
= Trace((Ax)x ′) = Trace(Axx ′)



Trace

Proposition

Let A = (aij) be a M × N matrix. Then

M∑
m=1

N∑
n=1

a2
mn = Trace(AA′)

Proof.

Let B = (bij) = AA′. Then bij =
∑N

n=1 ainajn. Hence,
bii =

∑N
n=1 ainain =

∑N
n=1 a2

in. Therefore
Trace(B) = Trace(AA′) =

∑M
m=1 bmm =

∑M
m=1

∑N
n=1 a2

mn



Trace

Proposition
Let P be an orthogonal projection operator to the M
dimensional subspace V . Then Trace(P) = M

Proof.
Let b1, . . . ,bM be an orthonormal basis for V . Then
P =

∑M
m=1 bmb′m

Trace(P) = Trace(
M∑

m=1

bmb′m)

=
M∑

m=1

Trace(bmb′m) =
M∑

m=1

Trace(b′mbm)

=
M∑

m=1

Trace(1) =
M∑

m=1

1 = M



Trace

Proposition
Let P be an orthogonal projection operator onto a M
dimensional subspace. Then

N∑
i=1

N∑
j=1

p2
ij = M

Proof.

N∑
i=1

N∑
j=1

p2
ij = Trace(PP ′) = Trace(PP) = Trace(P) = M



Representing Subspaces

When we squeeze N dimensional data into an M
dimensional subspace, our viewpoint is the M degrees of
freedom perspective
When we fit N dimensional data to an N −M dimensional
function our viewpoint is the N −M degrees of constraint
perspective



Line Fitting

b1

b2

2-Dimensional Space

1-Dimensional Space

x

x̂

Error

{x | for some α1, x = α1b1}
{x | b′2x = 0}



Curve Fitting

f (x) = 0 are the constraints specifying the subspace
f takes N Dimensional vectors to N −M Dimensional
subspaces in the N-Dimensional Space
N dimensional vectors x1, . . . , xK

Fitting function f
Squared Error ε2 =

∑K
k=1 f (xk )

′f (xk )

Find f to minimize ε2



Dimensionality Reduction

f (x) is the dimensionality reduced vector
f takes N Dimensional vectors to M Dimensional
subspaces in the N-Dimensional Space
N dimensional vectors x1, . . . , xK

Squared Error ε2 =
∑K

k=1(xk − f (xk ))
′(xk − f (xk ))

Find f to minimize ε2



Orthogonal Projection Operators are Positive
Semidefinite

Proposition
Let x ∈ S and P be an orthogonal projection operator. Then
x ′Px ≥ 0.

Proof.

Since P is an orthogonal projection operator, P = P2 and
P = P ′. Then,

x ′Px = x ′PPx = x ′P ′Px = (Px)′Px ≥ 0



Principal Components

Proposition

Let x1, . . . , xK ∈ S an N-dimensional vector space. Let P be an orthogonal
projection operator having rank M. Then P minimizes∑K

k=1(xk − Pxk )
′(xk − Pxk ) if and only if P maximizes

∑K
k=1 x ′k Pxk

Proof.

K∑
k=1

(xk − Pxk )
′(xk − Pxk ) =

K∑
k=1

(x ′k xk − x ′k Pxk − x ′k P′xk + x ′k P′Pxk

=
K∑

k=1

(x ′k xk − x ′k Pxk − x ′k Pxk + x ′k Pxk

=
K∑

k=1

x ′k xk −
K∑

k=1

x ′k Pxk



Principal Components

Proposition

Let x1, . . . , xK ∈ S, an N-dimensional vector space and Q be an orthogonal projection
operator of rank M. Then

K∑
k=1

xk Qxk = Trace(Q∗D)

where TDT ′ is the eigenvector representation of
∑K

k=1 xk x ′k and Q∗ = T ′QT.

Proof.

ε2 =
K∑

k=1

x ′k Qxk =
K∑

k=1

Trace(x ′k Qxk ) =
K∑

k=1

Trace(Qxk x ′k )

= Trace(
K∑

k=1

Qxk x ′k ) = Trace(Q
K∑

k=1

xk x ′k )

∑K
k=1 xk x ′k is a real symmetric non-negative matrix. Therefore for some orthonormal

matrix T and non-negative diagonal matrix D,
∑K

k=1 xk x ′k = TDT ′. Hence
ε2 = Trace(QTDT ′) = Trace((T ′QT )D) = Trace(Q∗D) where Q∗ = T ′QT



Principal Components

Proposition
Let D be a diagonal matrix satisfying dii ≥ djj , i < j . Let P be a
rank M orthogonal projection operator. Then

max
P

P=P2;P=P′;Trace(P)=M

Trace(PD) =
M∑

m=1

dmm

Proof.

Consider wij =
∑N

n=1 pindnj , the (i , j)th element of PD. Since
dnj = 0 for n 6= j , wij = pijdjj . Hence wii = piidii . Therefore
Trace(PD) =

∑N
i=1 piidii . Since P is an orthogonal projection

operator, 0 ≤ pii ≤ 1. Trace(P) = M implies
∑N

i=1 pii = M.
Since dii ≥ djj , i < j , maxP Trace(PD) =

∑M
m=1 dmm.



Principal Components

Theorem
Let x1, . . . , xK ∈ S an N-dimensional vector space and Q be an
orthogonal projection operator of rank M. Then

∑K
k=1 xk Qxk is

maximized when Q projects to the M-Dimensional subspace spanned
by the M eigenvectors of

∑K
k=1 xk x ′k having largest eigenvalues.

Proof.

Let
∑K

k=1 xk x ′k = TDT ′ and Q∗ = T ′QT. Without loss of generality we
assume that the diagonal entries are ordered dii ≥ djj , i < j . Then
maxQ∗ Trace(Q∗D) =

∑M
m=1 dmm, where the maximum is taken over

all Q∗ satisfying Q∗ = Q∗Q∗ and Q∗ = Q∗
′
. Thus, the first M diagonal

entries of Q∗ are one and the remaining diagonal entries 0. Since∑N
i=1
∑N

j=1 q2
ij = M, and there are M ones on the diagonal, the

remaining elements of Q∗ are 0. This implies Q = TQ∗T ′ is the
orthogonal projection operator onto the space spanned by the first M
eigenvectors of

∑K
k=1 xk x ′k for these are the eigenvectors having

largest eigenvalues.


