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Abstract

An algorithm for making consistent 2-D to 3-D geomet-
ric inference in polyhedral world using one perspective line
drawing is described. Hypotheses are made on the internal
angles of visible faces. The normals to the face planes are
then determined. Valid normals lead to the reconstruction
of the 3-D polyhedral world up to a scale factor. The per-
formance of the algorithm is verified by using covariance
matrix propagation. The experimental results show satis-
factory performance.

The general propagation formulae for the covariance
matrix of both observed and inferred quantities are also de-
rived.

1. Introduction

Given only one 2-D perspective projection line drawing
of a 3-D polyhedral world and the camera calibration, with-
out any other hints, except that the faces of polyhedra are
planar, what can be inferred about the polyhedral world, in
terms of the geometric properties of the polyhedra? How
accurate is the inference? These are two aspects of a classi-
cal computer vision problem. The goal is to find a possible
explanation of the polyhedral world which would be consis-
tent with the observed 2-D image. Liebowitz et al [3] and
Shum et al [4] proposed methods to solve the single view
computer vision problem. Both authors took advantage of
geometric regularity in the real world, such as parallelism
and orthogonality. In our approach, the polyhedra can have
general shapes, not limited to those with parallelism or or-
thogonality.

Hypotheses are made on the internal angles of visible
faces. The normals to the face planes are then determined.
Valid normals lead to the reconstruction of the 3-D polyhe-

dral world up to a scale factor.
The validity of the hypotheses is tested using the covari-

ance matrix associated with the solution, which is derived
analytically starting from the covariance matrix of the ob-
served quantities and is propagated through each inference
step. Performance validation is important especially when
non-deterministic algorithms are involved because the be-
havior of such algorithms can be at most probabilistically
predicted, but not logically.

2. Covariance Matrix of Both Observed and
Inferred Quantities

Let �� ~X
2 Rn�n be the covariance matrix of ~X, a vec-

tor of observed perspective projection locations and line di-
rections, and ��~� 2 R

m�m be the covariance matrix of
~�, a vector of inferred 3-D polyhedral geometry. The co-
variance propagates from �� ~X

to ��~�. Haralick [1] sum-
marized the methodology of covariance propagation for a
vision algorithm from an observed data vector ~X 2 R

n to
an inferred parameter vector ~� 2 R

m . As assumed in [1],
the solution to the vision algorithm can be modeled as opti-
mization of certain objective functions having finite second
partial derivatives and the perturbations are small enough so
that a first order approximation is good enough.

Here, we are interested in the covariance matrix �~�; ~X 2

R
(n+m)�(n+m) , which gives the covariance between ~� and
~X as well as ��~� and �� ~X

. One such situation happens
when inference is not being made in the first step but has
intermediate steps and ~X is an inferred quantity from a pre-
vious step rather than a directly observed quantity. ~� is fur-
ther inferred from ~X . Since they are all inferred quantities,
it is likely that the covariance between ~� and ~X would be of
interest. In the following sections, we will derive the closed-
form formula to calculate the covariance matrix �~�; ~X .
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2.1. Explicit Function ~� = F( ~X) Is Known

Given the explicit function ~� = F( ~X) : Rn ! R
m , ~� is

calculated by evaluating F( ~X), which is a vector function
in general. Taking the first order Taylor series expansion,

we get �~� � dF( ~X)T

d ~X
� ~X. So the covariance matrix can

be found as

��~�;� ~X
�

�
GT�� ~XG GT�� ~X

�� ~X
G �� ~X

�
(1)

whereG = dF( ~X)

d ~X
. The upper-left sub-matrix is ��~�.

2.2. Unconstrained Optimization with Objective
Function F ( ~X; ~� )

F ( ~X; ~� ) : (Rn ;Rm ) ! R
+ [ f0g is a nonnegative

scalar function of ~X and ~�. ~� is the optimal solution to the
minimization problem: min

~�2Rm
F ( ~X; ~� ). From [1], �~� �

�
�
@~g

@~�

��1
@~gT

@ ~X
� ~X , where ~g = @F ( ~X;~� )

@~�
. It follows that

��~�;� ~X
is�

H�1MT�� ~X
MH�1 �H�1MT�� ~X

��� ~XMH�1 �� ~X

�
(2)

where H = @~g

@~�
and M = @~g

@ ~X
. The upper-left sub-matrix is

��~�.

2.3. Constrained Optimization with Objective
Function F ( ~X; ~� )and constraints s(~�)

F ( ~X; ~� ) : (Rn ;Rm ) ! R
+ [ f0g is a nonnegative

scalar function of ~X and ~�. s(~�) = 0 represents a set of
equations constraining ~�. These constraints can be equal-
ities or inequalities. ~� is the optimal solution to the mini-
mization problem min

s(~�)
F ( ~X; ~�). From [1],

"
@~g

@~�
@s

@~�
@sT

@~�
0

# �
�~�

�~�

�
�

"
�@~gT

@ ~X

0

#
� ~X (3)

where~g= @F ( ~X;~�)

@~�
and ~� is the Lagrangian multiplier vec-

tor. Transforming Eq (3) to2
64

@~g

@~�
@s

@~�
0

@sT

@~�
0 0

0 0 I

3
75
2
4 �~�

�~�

� ~X

3
5 �

2
4 �@~gT

@ ~X

0

I

3
5� ~X

and letting

C =

2
64

@~g

@~�

@s

@~�
0

@sT

@~�
0 0

0 0 I

3
75 ; D =

2
4 �@~gT

@ ~X

0

I

3
5

we obtain the covariance matrix (C is symmetric)

��~�;�~�;� ~X
� C�1D�� ~X

DTC�1 (4)

3. Geometric Inference and Covariance Prop-
agation in the Polyhedral World

Given one 2-D perspective line-drawing of a polyhedral
world, infer the 3-D positions and orientations of each poly-
hedron whose perspective projection can result in a per-
spective projected line-drawing statistically consistent with
the observed 2-D perspective line-drawing. Validate the in-
ference procedure by comparing the covariance matrix de-
rived analytically and the one estimated experimentally.

Hypotheses are made about intrinsic properties of a poly-
hedron, such as the length of one edge of each polyhedron
and/or the angle between two edges, while those geometric
properties that change over space, such as the 3-D position
of a vertex, are avoided.

A polyhedron has planar faces, which is a strong con-
straint in the problem. The inference procedure starts with
hypotheses of angles and the length of one edge of each
polyhedron, and repeats with new hypotheses until consis-
tency is attained.

Polyhedra having from some view the same topology but
incongruent geometric structure might produce the same
perspective images, even if we cannot come up with the
“correct” values of the unknowns, we might arrive at a so-
lution which produces the same perspective image. This is
perfectly good up to the consistency requirement, since a
single 2-D perspective image is not enough to make 3-D
inference in general.

We assume that the visible faces, edges and vertices have
been labeled and grouped in the given perspective image.
They are represented as: �k for a visible face, with normal
~pk and a 3-D point Wk on the face, k = 1; :::;K; Li for
a visible edge with direction cosine vector ~bi, two terminal
points Pi1 and Pi2 and the observation plane normal ~ni ,
i = 1; :::; V ; Pq for a visible vertex with perspective pro-
jection P�q = (uq; vq ; f)

T , q = 1; :::; Q, where uq and vq
are the projected coordinates of Pq and f is the distance
the imaging plane is in front of the center of projection. To
simplify the notation, we use:

P = (PT
1 ; � � � ;P

T
Q)

T b = (~bT1 ; � � � ;
~bTV )

T

p = (~pT1 ; � � � ; ~p
T
K)

T W = (WT
1 ; � � � ;W

T
K)

T

n = (~nT1 ; � � � ; ~n
T
V )

T uv = (u1; v1; � � � ; uQ; uQ)
T

The initial covariance matrix of the observed quantities
is �uv and the covariance matrix of the unknowns is
�P;b;p;W.
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Step 1. Calculating the normal to the observation plane

Goal: The normal ~ni to the observation plane of each edge
Li. The observation plane of a line passes the line and the
center of projection.
Observations: The 2-D perspective image P�i1P

�
i2 of each

3-D edge Pi1Pi2, i = 1; :::; V .
Inference: ~ni =

P�
i1
�P�

i2

kP�
i1
�P�

i2
k ; i = 1; ::; V

Covariance Propagation: In this step, we have explicit for-
mula for n, so by Eq (1) we know

�n;uv �

�
GT
1 �uvG1 GT

1 �uv
�uvG1 �uv

�
where

G1 =

@

��
P�
11
�P�

12

kP�
11
�P�

12
k

�T
; � � � ;

�
P�
V 1
�P�

V 2

kP�
V 1
�P�

V 2
k

�T�T
@uv

Step 2. From coplanar edges with known in-between
angles on a face to infer the normal to the face

Suppose there are N coplanar edges L1; L2; :::; LN , with
unknown direction cosine~b1;~b2; :::;~bN on the face �k. The
normal ~pk to �k and the position of �k are unknown.
Goal: Find the normal ~pk to face �k, k = 1; :::;K.
Inferred Quantities from Previous Steps: ~n1; ~n2; :::; ~nN ,
with covariance matrix �~n1;:::;~nN .
Assumptions: Hypothesized Mk cosines of the angles be-
tween Mk (Mk � N) pairs of the N coplanar lines. We
write these assumptions as

j1j = j~b1 �~b2j; � � � ; jMk�1j = j~bMk�1 �
~bMk

j; jMk
j = j~bMk

�~b1j

The angle cosines that are most likely to be observed in the
real world should be hypothesized [4].
Inference: For the i-th edge Li, we know: ~bi ? ~ni and
~bi ? ~pk. So~bi =

~ni�~pk
k~ni�~pkk

. Hence, for i = 1; :::;Mk,

jij = j~bi �~bi+1j =

���� ~ni � ~pk
k~ni � ~pkk

�
~ni+1 � ~pk
k~ni+1 � ~pkk

���� (5)

To solve for ~pk, we need two more equations, since we al-
ready have a constraint k~pkk = 1. When there are more
than two equations, the equations can be solved by con-
strained optimization. Let

f(~ni; ~ni+1; ~pk; i)

=

8<
:

[(~ni � ~pk) � (~ni+1 � ~pk)]
2

�(ik~ni � ~pkkk~ni+1 � ~pkk)
2; i 6= 0

(~ni � ~pk) � (~ni+1 � ~pk); i = 0

and the constrained optimization can be formulated as a
non-linear least squares problem:

min
k~pkk=1

F (~n1; :::; ~nMk
; ~pk) = min

k~pkk=1

MkX
i=1

f2(~ni; ~ni+1; ~pk; i)

The above problem can be solved numerically. I random
guesses are made for the initial value of each ~pk and save
the first J (J � I) most optimal solutions for later use in
hypothesis test. I and J are determined by training exper-
iments. After the numerical optimization, the consistency
is checked for the direction cosines of edges which can be
derived from different paths. The best combination of the
solutions of the normals which makes the direction cosines
of edges most consistent is selected. The consistency is cal-
culated by the summation of the squares of difference of di-
rection cosines of edges which can be computed by two dif-
ferent faces, that is, to find the best combination of ~pk, from
the optimal and sub-optimal solutions which minimizes

� =

VX
i=1

minfk~bi1 �~bi2k
2; k~bi1 +~bi2k

2g

=
VX
i=1

min

( ~ni � ~pi1
k~ni � ~pi1k

�
~ni � ~pi2
k~ni � ~pi2k


2

;

 ~ni � ~pi1
k~ni � ~pi1k

+
~ni � ~pi2
k~ni � ~pi2k


2
)

where ~pi1 and ~pi2 are the normals to the two visible faces
which intersect at edge Li.
Covariance Propagation: �p;�1;:::;�K ;n �

C�1D�nD
TC�1, where

C =

2
664
�
@~g
@p

�
3K�3K

�
@~s
@p

�
3K�K

03K�3V�
@~s
@p

�T
K�3K

0K�K 0K�3V

03V�3K 03V�K I3V�3V

3
775

D =

2
64 � @~gT

@n
3K�3V

0K�3V
I3V�3V

3
75

~g =
@
PK

k=1 F (~nk1; :::; ~nkMk
; ~pk)

@p
;

~s =
�
k~p1k

2 � 1; � � � ; k~pKk
2 � 1

�T
Step 3. From an edge on a face with known normal to
infer the direction cosine of the edge

Goal: ~bi; i = 1; :::V
Inferred Quantities from Previous Steps: ~pk; k = 1; :::;K,
~ni; i = 1; :::V
Inference: ~bi =

~ni�~pk
k~ni�~pkk

(i = 1)

Step 4. From the length of an edge and its direction co-
sine to infer its 3-D position

Goal: The terminal points of the edge, Pj1;Pj2.
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Observations: P�j1 = (uj1; vj1; f)
T ;P�j2 = (uj2; vj2; f)

T

Inferred Quantities from Previous Steps: ~bj ; j = 1.
Assumptions: The length d of the j-th edge Lj of a poly-
hedron. The value of d does not affect the other inference
results up to the scale.
Inference: See [2] p63 for details.

Step 5. From a known edge on a face to infer the 3-D
position of the face

Goal: A pointWk on the face.
Inferred Quantities from Previous Steps: The k-th face nor-
mal ~pk. The terminal points of an edge Pj1;Pj2.
Inference: Wk = (Pj1 +Pj2)=2, the geometric mid-point
between Pj1 and Pj2, gives the best solution in the least
square sense.

Step 6. From a known face to infer the 3-D positions of
edges on this face

Goal: The terminal points of the i-th edge Li, Pi1 and Pi2

Observations: P�i1 and P�i2
Inferred Quantities from Previous Steps: ~pk and Wk of the
face on which the edge is located.
Inference: Pi1 and Pi2 satisfy (P �Wk)

T ~pk = 0 and by
perspective projection Pi1 = �i1P

�
i1 and Pi2 = �i2P

�
i2.

Solving these equations, we obtain Pi1 =
W

T

k
~pk

P�T
i1
~pk
P�i1 and

Pi2 =
WT

k
~pk

P�T
i2

~pk
P�i2.

After the edge is known, go back to Step 5 to infer the
position of the other face of the edge. Step 5 and step 6 form
a recursive call loop. The recurrence keeps going until all
the edges and faces of each polyhedron are resolved.

4. Experiment Results

We built a polyhedral world composed of a cuboid and
a pyramid. Gaussian noise is applied to generate noisy ob-
servation. The noise is not required to be Gaussian as long
as it has zero mean and finite variance. Fig 1 shows the
perspective projection of the inferred 3-D world with noise
standard deviation at 0:005 and 0:1.

All the non-deterministic behavior introduced by the al-
gorithm comes from Step 2 – the numerical optimization
whose result depends on initial guess. Hence, we concen-
trate on finding the covariance matrix about p by Step 1 and
2. (The covariances of other geometric properties inferred
from Step 3 to 6 are omitted since these steps are deter-
ministic.) Corresponding entries in the analytical derived
covariance matrix and the experiment-estimated one for p
show similar values and also form similar value patterns.
(See http://isl.ee.washington.edu/˜msong/covariance.pdf)
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Figure 1. Perspective Projection of Inferred
3�D Polyhedral World

5. Conclusions

We gave a general approach to making geometric infer-
ence from 2-D to 3-D in a polyhedral world using a sin-
gle view perspective projection. We verified our implemen-
tation by comparing the estimated covariance matrix and
the analytically computed covariance matrix. They showed
consistent characteristics when the noise is small, additive
and finite in variance.

The procedure outlined in this paper provides a way to
begin for the covariance matrices of the observed 2-D per-
spective projection points and propagate these covariances
to corresponding 3-D polyhedral vertices. The inferred 3-D
positions are not those that have the smallest covariance. In
another paper, we will discuss this more difficult problem.

For non-deterministic algorithms, e.g. some optimiza-
tion problems whose solution depends on the choice of the
initial value, the logical proof of correctness of a program is
impossible. Off-line Monte Carlo testing has been the only
way to test the correctness of the program. However, the
on-line hypothesis testing using covariance matrix provides
another way to safeguard the solution.
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