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Abstract

The main goal of this paper is to show that pattern recog-
nition techniques can be successfully used in abstract alge-
bra. We introduce a pattern recognition system to recog-
nize words of minimal length in their automorphic orbits in
free groups of rank 2. This system is based on linear regres-
sion and does not use any particular results from group the-
ory. The corresponding classifier is very fast and surpris-
ingly accurate.

1. Introduction

The field of pattern recognition has been actively devel-
oping for several decades. It has been successfully applied
in a large number of diverse fields.

In this paper we show that pattern recognition techniques
can be successfully used in abstract algebra and the the-
ory of infinite groups in particular. The statistical approach
gives one an exploratory methods which could be helpful
in revealing hidden mathematical structures and formulat-
ing rigorous mathematical hypotheses. Our philosophy here
that if irregular or non-random behavior has been observed
during an experiment then there must be a pure mathemat-
ical reason behind this phenomenon, which can be uncov-
ered by a proper statistical analysis. The discovered knowl-
edge can be of great interest to mathematicians. In addition,
one can try to develop new (perhaps probabilistic) methods
to solve hard combinatorial problems in algebra.

Note that this is a very novel application area of pattern
recognition. Some of the previous work can be found in [2,
4].

We start by giving a brief introduction to the White-
head minimization problem. Let X be a finite alphabet,
X−1 = {x−1 | x ∈ X} be the set of formal inverses of let-
ters from X , and X±1 = X ∪ X−1. For a word w in the
alphabet X±1 by |w| we denote the length of w. A word

w is called reduced if it does not contain subwords of the
type xx−1 or x−1x for x ∈ X . Applying reduction rules
xx−1 → ε, x−1x → ε (where ε is the empty word) one can
reduce each word w in the alphabet X±1 to a reduced word
w. The word w is uniquely defined and does not depend
on the order in a particular sequence of reductions. The set
F = F (X) of all reduced words over X±1 forms a group
with respect to multiplication defined by u · v = uv (i.e.,
to compute the product of words u, v ∈ F one has to con-
catenate them and then reduce). The group F with the mul-
tiplication defined as above is called a free group with ba-
sis X . The cardinality |X| is called the rank of F (X). Free
groups play a central role in modern algebra and topology.

A bijection φ : F → F is called an automorphism of F
if φ(uv) = φ(u)φ(v) for every u, v ∈ F . The set Aut(F )
of all automorphisms of F forms a group with respect to
composition of automorphisms. Every automorphism φ ∈
Aut(F ) is completely determined by its images on elements
from the basis X since φ(x1 . . . xn) = φ(x1) . . . φ(xn) and
φ(x−1) = φ(x)−1 for any letters xi, xi ∈ X±1. An auto-
morphism t ∈ Aut(F (X)) is called a Whitehead’s auto-
morphism if t satisfies one of the two conditions below:
1) t permutes elements in X±1;
2) t fixes a given element a ∈ X±1 and maps each element
x ∈ X±1, x �= a±1 to one of the elements x, xa, a−1x, or
a−1xa.

By Ω(X) we denote the set of all Whitehead’s automor-
phisms of F (X). It is known [5] that every automorphism
from Aut(F ) is a product of finitely many Whitehead’s au-
tomorphisms.

The automorphic orbit Orb(w) of a word w ∈ F is the
set of all automorphic images of w in F :

Orb(w) = {v ∈ F | ∃ϕ ∈ Aut(F ) such that ϕ(w) = v}.
A word w ∈ F is called minimal (or automorphically min-
imal) if |w| ≤ |ϕ(w)| for any ϕ ∈ Aut(F ). By wmin we
denote a word of minimal length in Orb(w). Notice that
wmin is not unique. By WC(w) (the Whitehead’s complex-
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ity of w) we denote a minimal number of automorphisms
t1, . . . , tm ∈ Ω(X) such that tm . . . t1(w) = wmin. The al-
gorithmic problem which requires finding wmin for a given
w ∈ F is called the Minimization Problem for F , it is one
of the principal problems in combinatorial group theory and
topology. There is a famous Whitehead’s decision algorithm
for the Minimization Problem, it is based on the following
result due to Whitehead ([7]): if a word w ∈ F (X) is not
minimal then there exists an automorphism t ∈ Ω(X) such
that |t(w)| < |w|. Unfortunately, its complexity depends
on cardinality of Ω(X) which is exponential in the rank of
F (X). We refer to [4] for a detailed discussion on complex-
ity of Whitehead’s algorithms.

In this paper we focus on the Recognition Problem for
minimal elements in F . It follows immediately from the
Whitehead’s result that w ∈ F is minimal if and only if
|t(w)| ≥ |w| for every t ∈ Ω(X) (such elements sometimes
are called Whitehead’s minimal). This gives one a simple
deterministic decision algorithm for the Recognition Prob-
lem, which is of exponential time complexity in the rank
of F . Below we construct a probabilistic classifier which is
based on linear regression, it has real time complexity and
gives correct answers with a sufficiently high probability.

In fact, it is convenient to consider the Minimization
Problem only for cyclically reduced words in F . A word
w = x1 . . . xn ∈ F (X) (xi ∈ X±1) is cyclically reduced
if x1 �= x−1

n . Clearly, every w ∈ F can be presented in the
form w = u−1w̃u for some u ∈ F (X) and a cyclically re-
duced element w̃ ∈ F (X) such that |w| = |w̃| + 2|u|. This
w̃ is unique and it is called a cyclically reduced form of w.
Every minimal word in F is cyclically reduced, therefore, it
suffices to construct a classifier only for cyclically reduced
words in F .

2. Recognition of minimal words in F2

In this section we describe a particular pattern recogni-
tion system for recognizing minimal elements in free groups
of rank 2. The corresponding classifier is a supervised-
learning classifier based on linear regression model with a
decision rule of the Bayes’ type.

2.1. Data generation: training datasets

A pseudo-random element w of F = F2(X) can be gen-
erated as a pseudo-random sequence y1, . . . , yl of elements
yi ∈ X±1 such that yi �= y−1

i+1, where the length l is also
chosen pseudo-randomly. However, it has been shown in [4]
and in [3] that randomly taken cyclic reduced words in F
are already minimal with asymptotic probability 1. There-
fore, a set of randomly generated cyclically words in F
would be highly biased toward the class of minimal ele-

ments. To obtain fair training datasets we use the following
procedure.

For each positive integer l = 1, . . . , 1000 we gener-
ate pseudo-randomly and uniformly 10 cyclically reduced
words from F (X) of length l. Denote the resulting set by
W . Then using the deterministic Whitehead algorithm we
construct the corresponding set of minimal elements

Wmin = {wmin | w ∈ W}.
With probability 0.5 we substitute each v ∈ Wmin with
the word t̃(v), where t is a randomly and uniformly cho-

sen automorphism from Ω(X) such that |t̃(v)| > |v| (if

|t̃(v)| = |v| we chose another t ∈ Ω(X), and so on). Now,
the resulting set L is a set of pseudo-randomly generated
cyclically reduced words representing the classes of mini-
mal and non-minimal elements in approximately equal pro-
portions. It follows from the construction that our choice of
non-minimal elements w is not quite representative, since
all these elements have Whitehead’s complexity one (which
is not the case in general). One may try to replace the au-
tomorphism t above by a random finite sequence of auto-
morphisms from Ω to get a more representative training set.
However, we will see in Section 3 that the training dataset
L is sufficiently good already, so we elected to keep it as it
is.

From the construction we know for each element v ∈ L
whether it is minimal or not. Finally, we create a training set

D = {< v, P (v) > | v ∈ L},
where

P (v) =
{

1, v is minimal;
0, otherwise.

2.2. Features

Letw be a reduced word in the alphabetX±1. In this sec-
tion we describe the features of w which characterize a cer-
tain placement of specific words from F (X) in w.

Let U2 be the set of all words in F2 that are length 2. De-
note by C(w, u) the number of subwords u ∈ U2 occurring
in w. The normalized value

C(w, u) / |w|
is a feature of w and feature vector

f(w) =
1
|w| < C(w, u) | ∀u ∈ U2 >

gives the numbers of occurrences of words of length two in
w relative to the length of w.

This is the basic feature vector in all our considerations,
it corresponds to the so-called Whitehead graph of w ([5]).
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2.3. Decision Rule

The classification algorithm has to predict the value
P (w) of the predicate P for a given word w. We use the re-
gression classifier as the basis of the decision rule, (see [1],
[6]). For any word w having feature vector f(w) we com-
pute

P̂ (w) = β′f(w),

where P̂ (w) is the value of P (w) predicted by the regres-
sion model and β is the vector of regression coefficients.

Unfortunately, we cannot guarantee thatP (w) is, indeed,
a linear function of f(w). We explore non-linear dependen-
cies by using a general quadratic mapping. Let fϕ(w) =
ϕ(f(w)) be a vector consisting of components of f(w) and
all their pair-wise products written in some order. The cor-
responding prediction value

P̂ (w) = β′
ϕfϕ(w).

The decision rule, R(w), of minimal or not is made ac-
cording to the following formula:

R(w) =
{

1, if P̂ (w) > Θ;
0, otherwise.

(1)

where Θ is a given threshold. However, there is an ambi-
guity in selection of the parameter Θ in the decision rule
(1).

Here we elected to use the following Bayesian type of the
decision rule. Suppose an event P̂ (w) = α, where α ∈ R,
is observed. We are going to make a prediction on whether
P (w) = 1 or P (w) = 0 based on estimations of condi-
tional probabilities

Pr(P (w) = 1|P̂ (w) = α) and Pr(P (w) = 0|P̂ (w) = α).

Let P1(w) and P0(w) denote the events P (w) = 1 and
P (w) = 0 respectively. Similarly, by P̂α(w) we denote
event P̂ (w) = α. Theoretically, the decision rule is:

R(w) =
{

1, Pr(P1(w)|P̂α(w)) > Pr(P0(w)|P̂α(w));
0, otherwise.

(2)
Since we cannot compute the conditional probabili-
ties above precisely, we estimate them as follows. We par-
tition the set R into intervals ∆ of equal length. Now, let
P̂∆(w) denote event P̂ (w) ∈ ∆. We estimate the condi-
tional probabilities:

Pr(P1(w)|P̂∆(w)) and Pr(P0(w) = |P̂∆(w))

Using Bayes’ formula one can rewrite the probabilities
above (i = 0, 1):

Pr(Pi(w)|P̂∆(w)) =
Pr(P̂∆(w)|Pi(w))Pr(Pi(w))

Pr(P̂∆(w))

Therefore

Pr(P1(w)|P̂∆(w)) > Pr(P0(w)|P̂∆(w))

if and only if

Pr(P̂∆(w)|P1(w))Pr1 > Pr(P̂∆(w)|P0(w))Pr0

The probabilities Pr1 = Pr(P1(w)) and Pr0 = Pr(P0(w))
are prior probabilities corresponding to the distribution of
minimal and non-minimal elements among the inputs given
to the classifier. It is safe to assume that the prior probabili-
ties are equal. Thus the inequality above takes the form

Pr(P̂∆(w)|P1(w)) > Pr(P̂∆(w)|P0(w))

The conditional probabilities above can be estimated from
the given training dataset D. For i = 0, 1 put

di(∆) = |{w | P̂ (w) ∈ ∆, < w, i >∈ D}| / |D|
Then

Pr(P̂ (w) ∈ ∆|P (w) = i) ≈ di(∆), i = 0, 1.

Finally we can define the following decision rule, which
is a variation of the Bayes’ decision rule above:

R(w) =
{

1, P̂ (w) ∈ ∆ and d1(∆) > d0(∆);
0, P̂ (w) ∈ ∆ and d0(∆) > d1(∆).

(3)

2.4. Test datasets

To test and evaluate our pattern recognition system we
generate several test datasets of different types:

• A test set Se which is generated by the same procedure
as for the training set D, but independently of D.

• A test set SR of pseudo-randomly generated cyclically
reduced elements of F (X), as described in Section
2.1.

• A test set SP of pseudo-randomly generated cyclically
reduced primitive elements in F (X). Recall that w ∈
F (X) is primitive if and only if there exists a sequence
of Whitehead automorphisms t1 . . . tm ∈ Ω(X) such
that tm . . . t1(x) = w for some x ∈ X±1. Elements
in SP are generated by the procedure described in [4],
which, roughly speaking, amounts to a random choice
of x ∈ X±1 and a random choice of a sequence of au-
tomorphisms t1 . . . tm ∈ Ω(X).

• A test set S10 which is generated in a way similar to the
procedure used to generate the training setD. The only
difference is that the non-minimal elements are ob-
tained by applying not one, but several randomly cho-
sen automorphisms from Ω(X). The number of such
automorphisms is chosen uniformly randomly from
the set {1, . . . , 10}, hence the name.

Some comparative characteristics of the generated datasets
are given in Table 1.
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size % min % non-min avg(|w|) max(|w|)
D 10000 51.9 48.1 541 1202
Se 5000 49.5 50.5 542 1200
S10 5000 48.6 51.4 691 10629
SR 5000 98.8 1.2 499 998
SP 6000 0 100 30 3443

Table 1. Description of the datasets.

3. Results of experiments

Let f(w) be the feature mapping discussed in Section
2.2, and fϕ(w) be the image of f(w) under the quadratic
mapping ϕ as was discussed in Section 2.3.

We run experiments with two different classifiers P and
Pϕ which are based on the linear regression model applied
to vectors f(w) and fϕ(w).

The results of evaluation of the accuracy of the classifier
P are given in Table 2a. This data shows that the accuracy
of P decreases when the Whitehead’s complexity of inputs
grows.

However, the classifier Pϕ achieves almost perfect clas-
sification accuracy (see Table 2b).

SR Se S10 SP

|w| > 0 0.960 0.954 0.828 0.567
|w| > 4 0.962 0.957 0.828 0.532
|w| > 100 0.984 0.975 0.824 0.494

(a)

SR Se S10 SP

|w| > 0 0.991 0.995 0.996 0.945
|w| > 4 0.993 0.996 0.996 1.000
|w| > 100 1.000 1.000 1.000 1.000

(b)

Table 2. Classification accuracy of the classi-
fiers a) P; b) Pϕ.

Conclusions:

• The classifier Pϕ is remarkably reliable;

• Very short words are more difficult to classify (per-
haps, because they do not provide sufficient informa-
tion for the classifiers);

• The estimated conditional probabilities for Pϕ (which
come from the Bayes’ decision rule, see Section 2.3)
are presented in Figure 1b. Clearly, the classes of min-
imal and non-minimal elements are separated around
0.5 with a small overlap. So the regression works per-
fectly with the threshold Θ ≈ 0.6. From the figure we
can see that the probability of misclassification of clas-
sifier P is much higher then the one for Pϕ .
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Figure 1. Conditional probabilities obtained
with a) P; b) Pϕ.
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