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Abstract

We propose to use the combinatorial assignment prob-
lem to model the issue of associating ground-truth and de-
clared edge pixels in the objective empirical performance
evaluation of edge detectors. The assignment problem is
adapted to the maximal assignment problem to incorporate
the need for tolerating certain amount of localization error
for the detected ground-truth pixels. The solution to this
problem yields a maximal one-to-one association between
ground-truth and declared edge pixels. Performance eval-
uation based on this association has the attitude of making
the most positive interpretation of the declared edge map.
Synthetic test data is used in the experiment to allow un-
ambiguous subjective judgement of edge detection perfor-
mance. The preciseness and reasonableness of the perfor-
mance evaluation from the proposed method is observed.
The usefulness of this method in other performance evalua-
tion applications is also discussed.

1. Introduction

Performance evaluation in computer vision is an impor-
tant and active research area [4, 5, 10, 1, 6, 7]. Both theoreti-
cal and empirical approaches are being taken, and both have
their strength and weaknesses. In empirical performance
evaluation, one major approach is to get ground-truth for the
image data and compute the objective performance measure
by comparing the algorithm output with the ground-truth.

In assessing the performance of edge detectors [2, 3,
9, 12], we care about the detection rate, false alarm rate
and the average localization error for the correctly detected
edge pixels. A performance evaluation technique needs to
classify ground-truth edge pixels into two distinct classes,
namely detected and misdetected edge pixels, and to clas-
sify edge pixels in the declared edge map into two distinct
classes, namely correct declarations and false alarms. To

tolerate certain amount of localization error, ground-truth
and declared edge pixels do not have to be at exactly the
same pixel location for them to be declared as detected
ground-truth edge pixels and correct declarations, respec-
tively. However, each detected ground-truth edge pixels
needs to be associated with at least one of the correct decla-
rations, and vice versa. Because of the relaxed requirement
on the localization, the classification and association of the
ground-truth and declared pixels are not trivial problems.
Different ways of doing these leads to different performance
measures.

A distance transform based technique has been proposed
for this purpose. A distance map is first obtained where
each pixel location is assigned a value which is the dis-
tance from this pixel location to the closest ground-truth
edge pixel. A threshold on this distance is chosen. The
correct declarations are all those edge pixels in the declared
edge map which have a distance value not larger than the
threshold. The detected ground-truth pixels are those which
have declared edge pixels within their neighborhood, which
is also determined by the threshold on the distance. The
problem with this technique is that it allows multiple-to-
one and one-to-multiple correspondence between ground-
truth and declared edge pixels. For example, consider the
example shown in Figure 1, where ground-truth edge pixels
are marked by circles, and declared edge pixels are marked
by solid squares. According to distance transform based
method, all ground-truth pixels are detected and there is no
false alarm declarations.

Intuitively, one would want to have an exact one-to-
one correspondence between the detected ground-truth edge
pixels and the correct declarations. If this is established,
the numbers of detected and misdetected ground-truth edge
pixels and the numbers of correct declarations and false
alarms will be more informative of the edge detection
performance. According to this consideration, only two
ground-truth pixels, the one in the middle on the left half
and the one on the right are regarded as being detected, and
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true declared

Figure 1. An example where distance trans-
form based method fail to give accurate per-
formance measures.

the other two on the left half are regarded as being misde-
tected. Similarly, only two of the declared pixels, the one
on the left half and one of the three on the right (which
one does not matter in this example), are regarded as cor-
rect declarations. The remaining two on the right half are
regarded as false alarm declarations. Therefore, the more
appropriate performance evaluation method should declare
two misdetections and two false alarms.

Here we propose to establish the desired one-to-one cor-
respondence by solving a combinatorial maximal assign-
ment problem. The solution yields such a correspondence
between the ground-truth and declared edge pixels. Perfor-
mance measures based on this correspondence follow the
intuition and are more informative of the edge detection per-
formance.

In our experiments, we choose to use a synthetic image
to show the difference between two evaluation techniques.
Although the use of synthetic imagery in comparing the
performance of edge detectors (using a chosen evaluation
technique) is questionable [6], it is appropriate in compar-
ing performance evaluation techniques. This is because it
allows a clear and unambiguous judgement of edge detec-
tion quality with minimal inter- and intra-observer varia-
tion. This judgement acts as a standard to which the out-
put of different performance evaluation techniques should
be compared. The best performance evaluation technique is
the one whose output is closest to that judgement.

2. Assignment problem

2.1. Unconstrained case

In the unconstrained assignment problem, one is con-
cerned with establishing a full one-to-one correspondence
between two sets K andL, both of which haveN elements.

An assignment is a one-to-one mapping a : K ! L.
Let the cost for associating k 2 K with l 2 L be q(k; l).

The total cost of an assignment a is
X
k2K

q(k; a(k)) (1)

The optimal assignment is a mapping a : K ! L which
yields the smallest cost. The assignment problem is to find
such an optimal assignment.

If q(k; l) is finite for all k 2 K and l 2 L, the optimal
solution always exists, but might not be unique. However,
from the optimization point of view, all optimal solutions
are equivalent.

In the context of edge detection performance evaluation,
K is the set of ground-truth edge pixels, and L is the set
of declared edge pixels. The cost q(k; l) is the distance be-
tween a ground-truth edge pixel k and a declared edge pixel
l.

Most likely, the numbers of ground-truth edge pixels and
declared edge pixels are not equal. This does not cause a
problem. Conceptually, we can think of adding “ghost” pix-
els to the set which has smaller number of elements. The
distance from any ghost pixel to all pixels in the other set is
assigned a finite but very large value. This way, the ghost
pixels will not compete with any of the original pixels in
the assignment. In the end, all ghost pixels will also be as-
signed to pixels in the other set. All those pixels that are the
counterparts of the ghost pixels are considered unmatched,
and therefore are either misdetected ground-truth edge pix-
els (if the ghost pixels are added to the declared edge pixel
set) or false alarms in the declared edge map (if the ghost
pixels are added to the ground-truth edge pixel set.)

2.2. Hungarian algorithm

The unconstrained optimal assignment problem is essen-
tially determined by the cost function q(�; �). Exhaustive
search for the optimal assignment would requireO(N) com-
putations of the total cost in Equation (1). Fortunately, this
need not be done.

Let the cost function be represented in a matrix form.
Adding a constant to any row of the matrix does not change
the the optimal assignment. (Although the total cost of the
resulting optimal assignment gets changed, it is the optimal
assignment, not its associated total cost, that is of interest
to us.) Similarly, adding a constant to any column of the
matrix does not change the solution, either. The Hungar-
ian algorithm [11, 8] works by adding proper constants to
properly chosen rows and columns of the matrix, and find-
ing the maximum number of independent zeros in all equiv-
alent forms of the cost matrix. Due to the König-Egerváry
Theorem, this is equivalent to finding the smallest number
of lines (rows and columns) to cover all zeros.
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In the situation where every element in K is allowed to
be paired with every element in L, the optimal solution al-
ways exists. If all entries in the cost matrix are integral
or rational numbers, the Hungarian algorithm is guaranteed
to arrive at one optimal solution with finite iterations. The
Knuth implementation [8] of the algorithm handles the inte-
gral cost matrix. The number of elements in K and L need
not be equal. The computational complexity is O(m2n)
where m is the smaller of the cardinalities jKj and jLj, and
n is the larger.

2.3. Constrained case

In edge detection performance evaluation, we know that
corresponding ground-truth edge pixels and declared edge
pixels cannot be spatially very far apart. The threshold on
the distance between them can be conveniently set by the
neighborhood size used in the edge detection. We want to
put a constraint on the solution of the optimal assignment
problem:

q(k; a(k)) � � 8k 2 K (2)

The constrained optimal assignment problem is then to find
a mapping a : K ! L which minimizes the cost in Equa-
tion (1) and satisfies the constraint in Equation (2). Now
the finiteness of q(k; l) does not guarantee a solution to the
constrained problem.

The constrained problem in its original form is not an ap-
propriate model for our problem at hand. Instead, we con-
sider another model which we call the maximal assignment
problem.

For any particular assignment a : K ! L, let Ks be a
subset of K such that the constraint is satisfied for all its
members.

q(k; a(k)) � � 8k 2 Ks

Let Km(a) be the largest among all such subsets.

Km(a) = arg max
fKs�Kjq(k;a(k))��;8k2Ksg

jKsj (3)

where jKsj is the cardinality (number of elements) of Ks.
Km(a) is called a maximal subset of K w.r.t. the assign-
ment a.

The rank of a is defined as the cardinality of its corre-
sponding maximal subset

r(a) = jKm(a)j (4)

In edge detection evaluation, we are only interested in the
largest ranking assignments, which are called the maximal
assignments. The cost for a maximal assignment a is de-
fined by X

k2Km(a)

q(k; a(k)) (5)

The maximal assignment problem is to minimize this cost
over all maximal assignments.

In the edge detection evaluation application, the solution
to the maximal assignment problem gives the largest possi-
ble number of pairs of ground-truth and declared edge pix-
els. Among all the different ways for making this kind of
match, it picks the one with the smallest localization error.
In a sense, it tries to give the most positive interpretation of
the declared edge map. This is the right attitude, since all
computer vision algorithms using the edge map need to try
their best to make the most positive use of it.

2.4. Solving the maximal assignment problem

We now apply the idea of “ghost pair” to transform the
maximal assignment problem back to the unconstrained as-
signment problem, solve the unconstrained problem, and
apply some simple post-processing to obtain the solution
to the maximal assignment problem.

Let d be a finite and very large value. For example,

d = N� (6)

We selectively modify the cost by

q(k; l) =

�
d if q(k; l) > �

q(k; l) otherwise
(7)

This modified cost function is used to form an uncon-
strained problem. Each pair of elements whose cost gets
changed to d is called a “ghost pair.” Since d is such a large
value, this particular pair does not compete for each other
against other elements in the assignment process. Notice
that, normally each ground-truth and declared edge pixel is
involved in many ghost pairs since there almost always ex-
ist edge pixels in the other class that are faraway from it.
However, detected ground-truth edge pixels and correctly
declared edge pixels are also involved in some pairs that are
not ghost pairs. In the association process, it is these non-
ghost pairs that are of interest to us. However, the provision
for the ghost pairs is needed to change the hard constraint
on the pixel eligibility into penalty terms in the total cost.
This is necessary for the Hungarian algorithm to be used to
find the solution.

The optimal solution to this new unconstrained problem
exists due to the finiteness of the cost function. Hence it
can be found by the Hungarian algorithm. In the resulting
solution, we examine again the cost between the assigned
pairs, to enforce the constraint on the pixel eligibility for
being paired up. The pairs whose cost are not larger than �
are good associations. They give correspondence between
the involved detected ground-truth edge pixels and correct
declarations. The cost of each of the rest of the pairs is
larger than � , and these must all be ghost pairs.

1063-6919/00 $10.00 � 2000 IEEE 



Remember that the original distance between the two el-
ements in a ghost pair is larger than the threshold. In edge
detection performance evaluation, we do not allow pixels
that are farther apart than the threshold to be associated with
each other. The two elements in a ghost pair are then deter-
mined to be a misdetected ground-truth edge pixel and a
false alarm in the declared edge map.

3. Association procedure

It is now clear that the association of ground-truth edge
pixels with the declared edge pixels can be obtained with
the procedure described below. The result of the association
also determines the misdetected ground-truth edge pixels
and the false alarms in the declared edge map.

Note that although the original formulation assumes the
numbers of elements in K and L are equal, the algorithm
can handle unequal cases as well [8]. Therefore, we do not
need to make them the same size by adding ghost elements.
Let NK and NL denote the number of elements in K and
L, respectively.

Edge detection result classification and association pro-
cedure:

1. Resolving the simple cases:

� The ground-truth edge pixels which have de-
clared edge pixels right at the same locations
are automatically determined as detected ground-
truth edge pixels. They are associated with those
declared edge pixels at the same locations, hence
they have no localization error.

� The ground-truth edge pixels which do not have
any declared edge pixels within a distance of the
chosen threshold � are automatically determined
as misdetected ground-truth edge pixels.

� Similar rules apply for the declared edge pixels to
determine the automatic correct declarations and
false alarms.

The rest of the procedure only deals with the ground-
truth and declared edge pixels that are left undeter-
mined.

2. Let K be the set of ground-truth edge pixel locations,
L be the set of declared edge pixel locations. Create an
NK � NL matrix Q of distance values between each
pair in K � L.

3. Selectively modify Q by applying the rule in Equa-
tion (7), with NK as N in Equation (6).

4. Apply the Hungarian algorithm on the modified Q.

5. Examine the resulting assignment. (Recompute the
distance for the assigned pairs if Q is destroyed by the
implementation of the Hungarian algorithm.)

� For each assigned pair

– if the value in the distance map Q is not
larger than � , this is a valid association. The
involved ground-truth and declared edge
pixels are paired up and to be counted as
a detected ground-truth pixel and a correct
declaration;

– otherwise, this is a ghost pair. If this pair
is denoted by (k; l), k is counted as a mis-
detected ground-truth edge pixel, and l is
counted as a false alarm.

� The left-over elements in K (if NK > NL) or
L (if NK < NL) that are not paired up are all
misdetected ground-truth edge pixels (if NK >

NL) or false alarms (if NK < NL).

4. Experiment

We use the synthetic test image used in [6] to com-
pare the proposed method with a distance transform based
method. This test image is 64 � 64, and has a brighter
disk of constant gray value against a darker constant back-
ground. White Gaussian noise is added to obtain a noisy
version of the image with SNR=4. Figure 2(a) shows the
ground-truth edge map obtained by following the boundary
(using 8-connectivity) of the disk on the noise-free image.
There are a total of 132 ground-truth edge pixels and 3964
background pixels. Notice that this ground-truth is differ-
ent from that used in [6], where a three-label (true-positive,
don’t-care, and false-positive) ground-truth is used. Here
we want to give sharper performance measures and do not
specify the “don’t-care” region in the ground-truth.

We apply the implementation of Canny’s edge detector
used in [6] to the noisy image with different tuning parame-
ters. The tuning parameters of (1.05,0.77,0.88) given in [6]
produces the edge map shown in Figure 2(b). Another two
sets of parameters are chosen to give more obvious mis-
detections and false alarms, respectively. These are also
shown in Figure 2.

The proposed assignment based method and the distance
transform based method are used to compare the declared
edge maps with the ground-truth edge map. The distance
transform based method used in [6] has a circular search ra-
dius of three pixels for edge (true-positive) pixels. Our im-
plementation of this method used in the experiment reported
here uses a square search region of 5�5 pixels with the ori-
gin at the center. The threshold � in the assignment model is
set accordingly to 2

p
2. The performance measures of num-

ber of misdetections (#MD), number of false alarms (#FA),
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(a) ground-truth (b) edge map 1

(c) edge map 2 (d) edge map 3

Figure 2. Edge maps on which the perfor-
mance measures are calculated.

and the root-mean-squared (RMS) localization error for the
detected ground-truth edge pixels from these two methods
are given in Table 1.

It should be noted that the purpose of the experiment here
is to demonstrate the appropriateness of using the assign-
ment model for counting misdetections and false alarms and
calculating localization error for correct detections. It is not
our purpose here to carry out a full empirical evaluation of
any edge detector. No effort was made to tune the detector
to its best performance according to the performance mea-
sures.

When examining the data in Table 1, the emphasis
should be on comparing the same performance measures
given by the two different methods.

In visually comparing edge map 1 with the ground-truth,
we see no misdetection. However, the thickness of the
edge is not even, with some parts being 8-connected and
some parts being densely 4-connected. According to our 8-
connected thin ground-truth edge map, these thicker parts
of the declared edge (where edge pixels have more than two
8-neighbors) contains false alarms. The proposed method
precisely picks out some declared pixels as false alarms,

while the distance transform based method overly leniently
accepts all declared edge pixels as being appropriate. If,
however, this level of detail is not of interest, a “don’t care”
zone can be specified in the ground-truth. The false alarms
declared by the assignment based method falling into that
zone will then be tolerated and not counted as false alarms.
If that were done, both methods would claim no false alarm.

The difference between the two methods is clearer on
their evaluation results on edge maps 2 and 3. In edge map
2, we clearly see gaps in the declared edge map which we
certainly want to call misdetections. At the same time, we
also tend to point out some false alarms on the thicker parts
of the declared edges. Both of these are reflected in the eval-
uation result by the assignment based method. The distance
transform based method is overly lenient again.

In edge map 3, the assignment based method treats not
only the stray edge pixels as false alarms, but also some on
the thicker parts of the edges around the ground-truth edges.
The distance transform based method treats only those stray
edge pixels as false alarms, and tolerates all declared edge
pixels around ground-truth edge pixels.

In general, we observe the tendency of the distance trans-
form based method of being overly reluctant to declare false
alarms around ground-truth edge locations, and overly re-
luctant to declare misdetections around any declared edge
pixels. It gives inappropriately high performance measures.
The assignment based method is more precise, and gives
performance measures conforming to the intuition and the
subjective evaluation.

5. Usefulness in other applications

The proposed methodology is useful in many applica-
tions where a maximal one-to-one correspondence is to be
established between two sets, where a distance-like dissimi-
larity/penalty measure can be made between the elements in
the two sets, and the pairing process is constrained by some
threshold on the dissimilarity/penalty measure. We choose
to base our discussion on the edge detection application not
only due to the importance of edge detection as a major fea-
ture extraction module in many computer vision algorithms,
but also due to the relative simplicity of its performance
evaluation so that the main idea of the proposed methodol-
ogy can be described more clearly without much potential
confusion from other unrelated application-specific issues.

The proposed methodology is readily applicable to per-
formance evaluation in applications where the classification
as well as the localization performance are of interest. Ex-
amples include vehicle detection in aerial images where the
misdetected and false alarm vehicles need to be counted,
and automatic target recognition (ATR) applications where
the detection rate, false alarm rate and the recognition rate
for the correctly detected targets need to be computed to
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Table 1. Performance measures for the declared edge maps by two performance evaluation methods.

edge map assignment distance transform
# MD # FA RMS loc error # MD # FA RMS loc err

1 0 42 0.5 0 0 1.0
2 9 28 1.39 0 0 1.27
3 0 74 1.0 0 28 1.0

characterize the system performance.
For applications such as ATR which involve both detec-

tion and recognition, a two-stage assignment based proce-
dure needs to be used. This procedure first identifies targets
that are both correctly detected and correctly recognized. It
then identifies targets that are correctly detected but incor-
rectly recognized. In the first stage, the distance matrix is
constructed so that only targets of the same class ID can
potentially form pairs. The targets paired up by this stage
are those both correctly detected and correctly recognized.
The left-overs go through the second stage. In this stage,
the target class ID does not play any role in the construction
of the distance matrix. The pairs formed in this stage in-
volve only targets that are correctly detected but incorrectly
recognized.

The number of correctly detected targets is the total num-
ber of pairs produced by both stages. Among these pairs,
those produced by the first stage are the ones for the targets
also correctly recognized. The left-overs from the second
stage are the misdetected and false alarm targets. All the
pairs and left-overs provide the precise information required
in constructing the confusion matrix to show the recognition
performance of the system.

6. Summary

We have presented a methodology for most reasonably
associating the ground-truth edge pixels with the edge pix-
els declared by edge detection algorithms. The central idea
is to identify the association problem as a maximal assign-
ment problem. The solution to this problem establishes a
one-to-one correspondence between detected ground-truth
edge pixels and the correct declarations in the edge detector
output. The determination of misdetected ground-truth pix-
els and false alarms in the declaration as well as the com-
putation of the localization error for the detected ground-
truth edge pixels are made according to the established cor-
respondence. We showed examples where the appropriate-
ness of this technique was verified. The usefulness of this
methodology in the performance evaluation of other detec-
tion and recognition applications was discussed.
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