Measuring Magnetically Treated Water

Robert M. Haralick

The Sequid SDM-10G Dielectric Probe

1 1/4 inches in Diameter

Faraday Cage

12 Inches High, 5 Inches Diameter () () ()

5 Inches in Diameter Ultraperm 80 Mu Metal Alloy Shielding

Ground Rod

Ground Rod

Circuit Breaker Panel

900

Circuit Breaker Panel

Vector Network Analyzer: Tektronix TTR506A

ъ

イロト イヨト イヨト ・

- Frequency Range
- 300KHz 6 GHz

Vector Network Analyzer

- The coaxial cable and wires that connect the VNA to the dielectric probe act as a transmission line
- The load on the transmission line is the Dielectric Probe
- The Dielectric Probe is put into the water
- When the wave traveling down the transmission line reaches the end
 - Part of its energy is absorbed
 - Part of its energy is reflected
 - Part of its energy is radiated
- The vector network analyzer measures the complex reflection coefficient
- The reflected complex reflection coefficient depends on the water's permittivity and permeability

Forward Direction:

•
$$v(t,x) = sin(\omega t - kx)$$

• If t increases, x must increase to keep $(\omega t - kx)$ constant

Back Direction:

•
$$v(t,x) = sin(\omega t + kx)$$

• If t increases, x must decrease to keep $(\omega t + xk)$ constant

Wave	Time Domain	Phasor
Forward Wave	$\mathbf{v}^+(\mathbf{x},t) = \sin(\omega t - k\mathbf{x})$	<i>V</i> ⁺ = 1
Reflected Wave	$\mathbf{v}^{-}(\mathbf{x},t) = \mathbf{A}\sin(\omega t + \mathbf{k}\mathbf{x} + \phi)$	$V^- = A e^{j\phi}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

There is a change in

- Amplitude
- Phase

Reflection Coefficient $\Gamma = \frac{V^-}{V^+} = Ae^{j\phi}$

Suppose that

- The wave generator has an impedance of Z₀
- The transmission line has an impedance of Z₀
- The load at the end of the transmission line has an impedance of Z_L

• When $Z_0 \neq Z_L$ there will be a reflected wave

Complex Reflection Coefficient

- The VNA sends a sinuosoid with phasor V⁺
- The dielectric probe at the end of the transmission line sends back a sinuosoid phasor $V^- = \Gamma V^+$
- Γ is the complex reflection coefficient
- $\Gamma = \frac{V^-}{V^+}$
- If V[−] ≠ 0 the result is a standing wave on the transmission line
- Z_L is the load impedance
- Z_0 is the characteristic transmission line impedance

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$

ヘロト 人間 とくほ とくほ とう

The Complex Reflection Coefficient

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$
$$Z_L = Z_0 \frac{1 + \Gamma}{1 - \Gamma}$$

Characteristic Impedance	$Z_L = Z_0$	$\Gamma = 0$
Short	$Z_{L} = 0$	$\Gamma = -1$
Open	$Z_L = \infty$	Γ = 1

Magnitude and Phase

Γ(ω) = |Γ(ω)|e^{jθ(ω)}

Real and Imaginary

Γ(ω) = Real(Γ(ω)) + j Imaginary(Γ(ω))
Smith Chart

<

VNA Experimental Protocol

- Calibrate Vector Network Analyzer
- Plastic Test Tube 1.5 inches in Diameter
- Pour 40ml of Water To Be Tested Into Test Tube

- Insert Dielectric Probe
- Put Test Tube With Probe Into Faraday Cage
- Measure
 - Log Magnitude
 - Linear Magnitude
 - Real
 - Imaginary
 - Smith

Log Magnitude Complex Reflection Coefficient

Short	log magnitude(short) = 0
Open	log magnitude(open) = 0
50 ohm load	log magnitude(50 Ohm) = $-\infty$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Dielectric Probe In Open Air

Dielectric Probe in Test Tube

Water Smacker

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Experimental Protocol

- Put Distilled Water in Water Smacker
- Treat At Least 1 Hour With
 - Circumferentially Out Polarized Ring Magnet

- Circumferentially In Polarized Ring Magnet
- Radially Polarized Ring Magnet N inside
- Radially polarized Ring Magnet S inside
- Axially Polarized Ring Magnet N up
- Axially Polarized Ring Magnet S up

Circumferential Ring Magnet

Out Means that My Wife Says It Pushes On Her Hand

Circumferential Out Magnetic Treatment

Boyce Untreated Log Magnitude

Boyce Circumferential Out Log Magnitude

Boyce Untreated Real

Boyce Circumferential Out Real

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Boyce Untreated Imaginary

Boyce Circumferential Out Imaginary

Boyce Untreated Log Magnitude

Boyce Untreated Log Magnitude From Circum. Out

Boyce Circumferential In Log Magnitude

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙

Boyce Circumferential Out In Log Magnitude

Boyce Untreated Real

Boyce Circumferential In Real

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙
Boyce Untreated Imaginary

Boyce Circumferential In Imaginary

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙

Radially Polarized Ring Magnet North Inside

North Means North Seeking Pole

Magnetic Radial N Inside Treatment

Boyce Untreated Log Magnitude

Boyce Radial N Inside Log Magnitude

Boyce Untreated Real

Boyce Radial N Inside Real

Boyce Untreated Imaginary

Boyce Radial N Inside Imaginary

Radially Polarized South Inside Ring Magnet

Magnetic Radial South Inside Treatment

Boyce Untreated Log Magnitude

Boyce Radial S Inside Log Magnitude

Boyce Untreated Real

Boyce Radial S Inside Real

Boyce Untreated Imaginary

Boyce Radial S Inside Imaginary

Axially Polarized South Up Treatment

▲□▶▲□▶▲□▶▲□▶ □ のへで

Boyce Untreated Log Magnitude

Boyce Axial South Up Log Magnitude

Boyce Untreated Real

Boyce Axial South Up Real

Boyce Untreated Imaginary

Boyce Axial South Up Imaginary

Axially Polarized North Up Treatment

Boyce Untreated Log Magnitude

Boyce Axial North Up Log Magnitude

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Boyce Untreated Real

Boyce Axial North Up Real

Boyce Untreated Imaginary

Boyce Axial North Up Imaginary

 Circumferential Out generated a smoother curve than Circumferential In

- Radial N Inside generated a smooth sloped line
- Radial S Inside had no effect
- Axial South Up moved the dips by 1GHz
- Axial North had no effect

What Might Be Changing

- Water molecules H₂O exist in two forms or isomers
- ortho and para
- They have different proton spin states
- Ortho water 75% (Higher Energy State)
 - The proton spins of the hydrogens are parallel
- Para Water 25% (Lower Energy State)
 - The proton spins of the hydrogens are antiparallel

< ロ > < 同 > < 回 > < 回 >

Boyce Untreated Log Magnitude 36 Hours

Boyce Untreated Log Magnitude 40 Hours

Boyce Untreated Log Magnitude 42 Hours

Boyce Untreated Log Magnitude 53 Hours

Boyce Untreated Log Magnitude 118 Hours

Boyce Untreated Log Magnitude 150 Hours

- The AquaCure (Model EA-H160)
- Generates up to 75 liters per hour (lph)
- Mixed hydrogen and oxygen gases (Brown's Gas)

Aquacure Untreated Log Magnitude

🖸 VectorVu-PC 1.2.4 TTR506A_V010174_73E37D37											
Stimulus Response Channel / Trace Markers / Analysis System Help								Tektronix			
Edit Title Lab	el: aquacur	e untreated 3	Display Title Label: N	o Grat	icule Label: Yes	Display Frequency:	Yes			5	2 🗉 🗢
aquacure untreated 3											
Tr1 S11 Logarithmic 0.5 / 1 D											
1.5											
0.5											
0							-				
-0.5			~~~~				-				
-1				\sim	~					~	
-2							<u> </u>				
뜅 -2.5	<u> </u>						+				
-3											
-4							-				
-4.5							-				
-5											
-6											
-6.5							-				
1 2 3 4 5 6 Freemancy (GHz)											
1			Start 300 kHz	IFI	3W 10 kHz	Stop 6 GHz					1
							U	(A)	I		

Aquacure Circumferential Out Log Magnitude

Aquacure Untreated Real

Aquacure Circumferential Out Real

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Aquacure Untreated Imaginary

Aquacure Circumferential Out Imaginary

Aquacure Untreated Log Magnitude

Aquacure Radial N Inside Log Magnitude

Aquacure Untreated Real

Aquacure Radial N Inside Real

Aquacure Untreated Imaginary

Aquacure Radial N Inside Imaginary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - 釣�?

Aquacure Untreated Log Magnitude

Aquacure Radial S Inside Log Magnitude

Aquacure Untreated Real

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Aquacure Radial S Inside Real

Aquacure Untreated Imaginary

Aquacure Radial S Inside Imaginary

Aquacure Untreated Log Magnitude

Aquacure Radial N Inside Log Magnitude

Aquacure Untreated Real

Aquacure Radial N Inside Real

Aquacure Untreated Imaginary

Aquacure Radial N Inside Imaginary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - 釣�?

Aquacure Untreated Log Magnitude

Aquacure Axial S Up Log Magnitude

Aquacure Untreated Linear Magnitude

Aquacure Axial S Up Linear Magnitude

Aquacure Untreated Real

Aquacure Axial S Up Real

Aquacure Untreated Imaginary

Aquacure Axial S Up Imaginary

Aquacure Untreated Log Magnitude

Aquacure Axial N Up Log Magnitude

Aquacure Untreated Real

Aquacure Axial N Up Real

- Circumferential Out generated no change
- Radial N Inside generated a smoother curve
- Radial S Inside generated no change
- Axial S Up generated no change
- Axial N Up generated a smoother curve

Scalar Healing Machine

Created By Micha Eizen

The device works on the principle of amplifying one's intention, thus accelerating moving into a state of well-being physically and mentally.

- 528 Hertz Oscillator
 - 528 Hz is the *Miracle* note of the original Solfeggio musical scale

- The *Miracle* tone brings remarkable and extraordinary changes
- 528 Hz is the bioenergy of health and longevity
- Fourth Harmonic 2,112 Hertz Pulsed
- Quartz Crystal
- Counter-Wound Coils Around the Quartz Crystal

Scalar Healing Machine

O.L.S.A. = Only Love Should Activate

< ロ > < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > 三 三

Untreated Linear Magnitude

Conscious Intention Linear Magnitude

