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Abstract 
We present an approach for performing edge de- 

tection which builds on our prior work in fast facet 
edge detection using tree-structured vector quantiza- 
tion (TSVQ). We first extend the approach by using 
larger image vectors to reduce computational complex- 
ity by performing edge detection on multiple pixels a t  
once. We then reduce the computational complexity of 
the edge detector without sacrificing performance by 
pruning the TSVQ with an edge detection-based crite- 
rion. We present results of edge detector performance 
on a sequence of images obtained from a mobile robot. 

1. INTRODUCTION 
This paper presents extensions to our work using 

TSVQ [2] to  speed up the process of facet edge detec- 
tion [4, 51. Because image VQ and facet edge detection 
operate on small block-based neighborhoods, VQ can 
be used to perform edge detection. The image is en- 
coded with a VQ for which the edge/no-edge decision 
has already been made for each codeword. Thus edge 
detection becomes a simple lookup of this information. 
The algorithm behaves as a ‘[trainable edge detector” 
which has the advantage of having lower computational 
complexity than the conventional facet edge detector. 

To improve the computational speed of the edge de- 
tector, we first explore the use of larger image vectors 
to perform edge detection on more than one pixel per 
codeword. We briefly describe our previous work and 
the extension in Section 2. When edge detection is per- 
formed on the centroid associated with each node of the 
tree, we find that often, the leaves of an entire subtree 
of the TSVQ has nodes which are all labeled as edge or 
no-edge nodes. Thus we can prune the TSVQ based on 
this edge detection criterion without affecting the edge 
detection performance. We describe the approach to 
pruning TSVQ-based edge detectors in Section 3. We 
conclude in Section 4. 
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2. FAST FACET EDGE DETECTION 
The second directional derivative edge detector [4] 

models a digital image as being derived by sampling a 
continuous underlying graytone intensity surface. The 
surface can be represented by a bivariate polynomial. 
referred to as a facet. Each pixel is labeled as an edge 
pixel if the second directional derivative of the facet in 
the direction of the gradient has a negatively sloped 
zero crossing within a threshold radius of the center of 
the pixel and if the edge contrast exceeds a threshold 
value. The facet polynomial coefficients for a cubic 
facet are obtained by performing a least squares fit to  
a 5 x 5 neighborhood of pixels centered around a pixel 
with a suitable set of bivariate basis polynomials. 

The overall approach presented in [5] which we ex- 
tend in this paper is as follows: 1) VQ Codebook De- 
sign: The training set is formed from all overlapping 
5 x 5 blocks of the first image of a motion sequence. It 
is then used to design an unbalanced TSVQ. 2 )  Facet 
Edge Detection on the VQ Codebook: For each vec- 
tor in the codebook, the facet parameters are com- 
puted. Second directional derivative edge detection 
is then performed on each of the codewords and the 
edge/no-edge decision for the center pixel is stored with 
the codeword. 3) Fast Facet Edge Detection: Later im- 
ages in the sequence are encoded using the VQ and the 
edge/no-edge decision is output for each center pixel. 

For an average depth R TSVQ with vector dimension 
M x M, edge detection on one pixel costs R (M x M)-  
dimensional hyperplane tests. A rough estimate for 
this cost is RM’ multiplications per pixel. 

We first reduce the complexity of this algorithm by 
using vectors of size ( M  + 1) x (M + 1) to perform edge 
detection on the four center pixels of the larger vector. 
In this case, the complexity is now roughly 
multiplications per pixel and for our case of M = 5, 
the complexity reduces from 2 5 R  t o  9R multiplications 
per pixel. We see that increasing the vector size im- 
proves the edge detector in Section 2. Figure 1 is the 
original input image which is Frame 2 of a mobile robot 
motion sequence. The output of a TSVQ-based edge 
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detector using 6 x 6 vectors a t  a rate of 6.8 bits per 
vector appears in Figure 2 ;  this rate TSVQ includes all 
perceptually meaningful edges while rejecting signifi- 
cant amounts of texture edges. 

To provide a quantitative measure of edge detector 
performance, we compare the output of the edge de- 
tector against a "ground-truth" edge image, generated 
by a human operator, which contains the perceptually 
meaningful edges of the image (see Figure 3). The edge 
detector makes two kinds of errors - the first type, mis- 
detection ~ P T O T ~ ,  occurs when a pixel that is labeled 
as an edge in the ground-truth image is labeled as no- 
edge; the second type, false alarm errors, occurs when 
a pixel that is labeled as no-edge in the ground-truth 
image is labeled as an edge. 

We modify the definition of false alarm errors to  con- 
sist of edge pixels that are outside a two pixel radial 
tolerance of the ground-truth edge. To provide a quan- 
titative measure of edge detector performance, we com- 
pute the probability of false alarms ( P j o )  and misde- 
tections (Pmd) in the output of the edge detector. An 
ideal edge detector would have Pja = Pmd = 0.0. 

In Table 1 we present the false alarm and misde- 
tection probabilities for four frames of the sequence of 
images. The results are for the TSVQ-based edge de- 
tector with 6 x 6 vectors for a rate of 6.8 bits per vector 
of Figure 2 ;  the facet edge detector; and the VQ-based 
edge detector (from [5]) with 5 x 5 vectors for a rate of 
6 bits per vector. The edge contrast thresholds used in 
all three edge detectors are identical. 

Comparing the VQ-based edge detectors to  the facet 
edge detector, we see that the VQ-based edge detectors 
have substantially lower false alarm rates but higher 
misdetect rates. This would not adversely affect a scene 
interpretation system that fits lines and curves to  the 
resulting edge data  because such systems are more sen- 
sitive to high false alarm rates than to  high misdetec- 
tion rates. 

In addition we find that the VQ-based edge detector 
with 5 x 5 vectors has a higher false alarm and misdetect 
rate than the one with 6 x 6 vectors. Upon visual ex- 
amination of the edge detector output, we see that the 
6 x 6 VQ-based edge detector detects low probability 
high contrast edges fairly reliably while rejecting higher 
probability low contrast edges. Also, as we mentioned 
earlier, the computational complexity of the 6 x 6 VQ- 
based facet edge detector is substantially lower than 
that of the original facet edge detector and the 5 x 5 
VQ-based edge detector. 

In Table 2 we present the false alarm and misde- 
tection probabilities for the 6 x 6 TSVQ for Frame 2 
with rates of four to  nine bits per vector. Note that 
increasing the rate increases false alarms while decreas- 

ing misdetections. Choosing the TSVQ design rate is 
a tradeoff of these two quantities. 

3. PRUNING OF TSVQ-BASED FACET 
EDGE DETECTORS 

In our second extension, we prune the TSVQ-based 
edge detector using an edge detection criterion. We 
examine the TSVQ and if two siblings have the same 
edge/no-edge assignments, we prune them and assign 
the edge decisions to their parent node. This reduces 
the complexity and storage requirements by lowering 
the average rate of the TSVQ used t o  encode the im- 
ages, but clearly the performance of the edge detector 
does not change. Usually, pruning is a tradeoff of de- 
creasing the average bit rate and increasing the average 
distortion [3 ] ,  but here we decrease the edge detector 
complexity without affecting its performance at all! 

It is possible to predict the expected number of nodes 
pruned from a tree if we assume that we know the struc- 
ture of the tree (i.e. the number of nodes at each level 
of the tree), and the probability that an edge assign- 
ment is an edge/no-edge. For example, assume that 
we have a balanced tree with N levels where level 0 is 
the root node and level N - 1 is the leaf nodes. Also 
assume that any edge assignment at a leaf node is inde- 
pendent of other edge assignments and has the proba- 
bility of being an edge or not an edge of P ( e )  and P ( c )  
respectively, where P ( e )  + P ( g )  = 1. Let T [ N ]  be the 
expected number of nodes pruned from an N level tree. 
We can write 

where T[1] = 0 and m is the number of edge decisions 
per node (i.e. m = 1 for 5 x 5 vectors and m = 4 for 6 x 6 
vectors). In other words, the number of nodes pruned 
from a balanced tree with N levels is the number of 
nodes pruned from two balanced trees with N - 1 lev- 
els (the subtree rooted at  the children of the root node) 
plus two times the probability that the two children of 
the root node are pruned (all of the leaf nodes must 
have the same edge decisions). The expected percent- 
age of nodes that are pruned is given by Q [ N ]  = x. 
Notice that Q [ N ]  versus N is plotted in Figure 4 for 
m = 4. We can derive an asymptotic limit for Q[N] by 
rewriting T [ N ]  as 

T [ N I  = 2~ 
N -  1 

2- i [ (~ (e ) )2 i  + ( P ( E > ) " ] ~ .  
i = l  

It is easily seen that T [ N ] / 2 N  is absolutely convergent 
as N goes to infinity. Then 

W 

lim Q[N] = 2-'[(P(e))2i + (P(6!))2i]m. 
N - + w  

i = l  
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While this sum does not have an obvious closed form 
solution, it converges so quickly that a good estimate 
can be found by using only the first few terms of the 
sum. The expected percentages of nodes pruned for 
m = 1 and m = 4 are plotted in Figure 5. 

In general, we are using unbalanced trees, so find- 
ing a closed form expression of the expected number 
of nodes pruned from any tree is difficult. Instead, we 
assume that we know the number of nodes at each level 
and again that any edge decision made at  a leaf node 
is independent of other edge decisions and has proba- 
bility of edge/no-edge assignment, P(e )  and P(c )  re- 
spectively, where P(e )  -t P(E) = 1. Given any node n 
from the tree, we say that T[n] is the number of nodes 
pruned from the tree descended from node n, and Pn(e) 
and Pn(E) are the probabilities that an edge decision 
at  node n is an edge or not an edge respectively. Note 
that P,,(e) + P,(a) 5 1 since it is possible that there 
may not be any edge decision due to conflict among 
the node’s children. We can find the expected number 
of edges pruned from a tree with a known structure as 
follows. If node n is a leaf node, 

Pn(e) = P ( e ) ,  Pn(a) = P(a) ,  T[n] = D. 

If node n is not a leaf node, then 

where nl is the left child of n, n, is the right child of 
n, and m is the number of edge decisions per node. 
In other words, the number of nodes pruned from a 
tree descended from node n is the number of nodes 
pruned from the trees descended from node n’s children 
plus two times the probability that the two children of 
node n have the same edge decisions. Note that this is 
similar t o  the balanced case. 

Results for TSVQs with 6 x 6 vectors a t  various rates 
are displayed in Table 3, where N is the number of 
nodes in the tree, P ( e )  is the probability that an edge 
assignment a t  a leaf node is an edge, Qp is the predicted 
percentage of nodes pruned, Qa is the actual percent- 
age of nodes pruned, and R is the effective rate of the 
TSVQ after pruning. While the analytic results of ex- 
pected pruning may seem pessimistic, we have found 
that in practice the results of pruning far exceed our 
expectations. The reason is that in our analysis we 
have assumed for simplicity that all edge decisions are 
independent, even when there are multiple edge deci- 
sions per node. Since many of the edges we detect are 
5 pixels wide, the actual edge decisions are highly cor- 
related. 

Figure 1: Original Image of Frame 2. 

4. CONCLUSIONS 
We have reduced the complexity of our fast facet 

edge detector in two ways. In the first, we increased 
the size of the VQ vector so that edge detection could 
be performed on multiple pixels a t  a time with lower en- 
coder complexity. In the second, we pruned the TSVQ 
based on a new edge detection criterion that reduces 
storage requirements and further lowers encoder com- 
plexity without changing the performance. Finally, we 
presented a quantitative measure of edge detector per- 
formance for false alarm and misdetect rates relative t o  
a ground-truth image generated by a human operator. 
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Table 3: Pruning Results for 6 x 6 TSVQ. 

8 
9 

7717 0.4977 3.13 14.05 7.62 
10587 0.5035 3.13 13.05 8.69 

Figure 2: VQ-based edge detector at rate 6.8 bits per 
vector for Frame 2 using 6 x 6 vectors. 
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Figure 3: Ground-truth edge image for Frame 2. 

P f a  Pmd Pfa Pmd P j a  Pmd 
0.564 0.745 0.832 0.471 0.602 0.757 
0.559 0.706 0.832 0.434 0.599 0.719 

0 0  Fe&) N 
Table 1: Comparison of edge detector errors for 6 x 6 
TSVQ (6.8 bpv), original facet, and 5 x 5 TsVQ (6 bpv). Figure 4: The expected Percentage of nodes pruned vs. 

the depth of a balanced TSVQ with 6 x 6 vectors (m = 4). 

0.587 
0.555 

I F l 6 x 6 T S V Q  I Facet I 5 x 5 T S V Q 1  

0.695 0.863 0.402 0.648 0.733 
0.744 0.839 0.480 0.603 0.750 

7 0.5870 0.7391 
8 0.6208 0.6986 

, 9 

Table 2: 6 x 6 TSVQ edge detector errors vs. Rate for 
Frame 2. 

0.6918 0.6693 

0.2740 0.9401 
0.4366 0.8373 
0.4418 0.7935 

6.8 0.564 0.745 

Figure 5: Expected percentage of nodes pruned from a 
balanced TSVQ with 5 x 5 vectors (m = 1) and 6 x 6 vectors 
(m = 4). 
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