
Pattern Recognition 35 (2002) 2125–2139
www.elsevier.com/locate/patcog

Optimal matching problem in detection and recognition
performance evaluation

Gang Liua ;∗, Robert M. Haralickb
aCognex Corporation, One Vision Drive, Natick, MA 01760, USA

bComputer Science Department, Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Received 14 February 2001; received in revised form 3 October 2001

Abstract

This paper proposes a principle of one-to-one correspondence in performance evaluation of a general class of detection
and recognition algorithms. Such a correspondence between ground-truth entities and algorithm declared entities is essential
in accurately computing objective performance measures such as the detection, recognition, and false alarm rates. We math-
ematically de�ne the correspondence by formulating a combinatorial optimal matching problem. In addition to evaluating
detection performance, this methodology is also capable of evaluating recognition performance. Our study shows that the pro-
posed principle for detection performance evaluation is simple, general and mathematically sound. The derived performance
evaluation technique is widely applicable, precise, consistent and e�cient. ? 2002 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Performance evaluation of computer vision systems
and algorithms is an important subject of computer vision
research [1–12]. It concerns setting up conventions and
developing techniques by which we compare di�erent algo-
rithms and gauge the state-of-the-art in a particular sub�eld
of computer vision research.
A broad class of computer vision applications concern

detecting and recognizing particular entities in scenes rep-
resented by digital images. There is signi�cant amount of
similarity in the evaluation of systems developed for such
applications. Some commonly used performance met-
ric, such as detection, recognition, and false alarm rates,
are important performance indicators in most of these
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applications. In empirical performance evaluation, such
performance measures can be computed from the proper
comparison of algorithm output against ground-truth. In
order for the computed performance measures to be cor-
rect, accurate and consistent, a systematic approach is
needed.
For evaluating detection and recognition performance, we

believe that establishing a maximal one-to-one correspon-
dence in conducting the comparison is the key to precise
and consistent computation of such performance measures.
Thereby, we propose it as a principle in such performance
evaluation, and develop a methodology that exampli�es the
principle. The exact meaning of the principle is captured in
a mathematical formulation of an optimal matching prob-
lem. The development of the methodology, i.e., how an
optimal matching problem is set up, transformed into
an optimal assignment problem, and solved by the e�-
cient Hungarian algorithm, is carried out in a discussion of
evaluating edge detection performance [6–10,13–16]. This
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particular application is chosen because it is adequate for
showing most aspects of the methodology, yet simple and
familiar enough for a very broad audience to understand
the essence of the methodology without the requirement of
other application speci�c background knowledge. The re-
sult, however, is readily applicable to evaluating algorithm
performance in many other detection and recognition ap-
plications, such as corner detection, line segment detection,
building detection, and vehicle detection.
Experimental results are reported for performance eval-

uations in edge detection and automatic target recognition
(ATR) applications [17,18]. Compared with a popular ex-
isting technique, the new methodology is found to be more
precise and accurate. Because it is also general, consistent,
conceptually clear, and mathematically sound, we encour-
age the research community to adopt this methodology as a
standard practice in the empirical evaluation of all detection
and recognition related applications.
The rest of this paper is organized as follows. Section 2

reviews literature in performance evaluation. Section 3
takes a close look at edge detection performance evalu-
ation. Section 4 provides some background information
for the mathematical foundation of the proposed method-
ology. Section 5 develops and solves the mathematical
problem that models the detection performance evaluation
scenario. Section 6 derives from the results of Section 5
and presents a practical technique for establishing a maxi-
mal one-to-one correspondence between ground-truth and
declared entities. Section 7 presents an experimental com-
parison between the proposed technique and a distance
transform based technique for edge detector evaluation.
This section also describes how the proposed technique is
used in comparing target detection algorithms on a real im-
age sequence. Section 8 extends the proposed technique to
provide support for recognition performance evaluation in
addition to detection performance evaluation. An example
in ATR evaluation is presented to help the reader better
understand the details of the technique. Section 9 gives a
summary and some concluding remarks. A pointer to the
relevant software source code on the Internet is given at the
end.

2. Literature review

Performance evaluation is an important and active area
of research in computer vision [1–12]. Both theoretical and
empirical approaches are being taken. Haralick takes one
theoretical approach [1,19,20] and uses the covariance prop-
agation technique [2] to characterize algorithm performance.
This approach was also used by Yi et al. [21] to study the
uncertainty in the distance between 2D corner points, by
Ramesh and Haralick [10] to study the performance of an
edge detector, and by Ramesh [3] to study a number of other
algorithms.

In empirical performance evaluation [4–9,12,22], algo-
rithms are applied to some test data set. Algorithm perfor-
mance is summarized by examining the algorithm output.
In doing this, both subjective and objective measures of al-
gorithm performance can be used.
Subjective measures are given by human operators who

examine the algorithm output and decide how good that re-
sult is for a particular application. For example, Heath et al.
[6] used subjective measures and studied the performance
of �ve edge detectors. Real images without ground-truth
were used in their experiments. Human visual rating of
the edge detection result were used to assess the relative
performance of the operators. Heath et al. used correlation
and analysis of variance (ANOVA) to statistically study the
performance data. They also used synthetic data to give an
objective characterization in terms of probability of false
alarm and misdetection rate. Their test data set of 28 im-
ages is made available on the Internet. They gave detailed
instructions for others to follow their methodology in
evaluating the performance of other edge detection algo-
rithms. Using the subjective measure has the disadvantage
of requiring many human operators to assess a signi�cant
amount of algorithm output, which can be very costly. Is-
sues of inter- and intra-observer variations also need to be
taken care of. Therefore, this methodology is suitable for
well-established algorithms, where the signi�cant e�ort in
characterizing the performance is justi�ed. Recently, this
research group at the University of Southern Florida works
actively on using objective performance measures based on
ground-truth. Much e�ort is put into automating the search
for tuning parameters values which correspond to operat-
ing points on the receiver operation characteristic (ROC)
curve.
Objective measures are some (usually quantitative) values

computed from the algorithm output. In many cases, these
measures are computed from comparing algorithm output
with the ideal result which one wishes the algorithm would
produce. The ideal result is called the ground-truth. This
is the method that is used in a large number of works in
computer vision literature. For example, Borra and Sarkar
[4] used 50 aerial images to study the performance of three
feature grouping algorithms. The images had manually cre-
ated ground-truth on the detected edges. Five performance
measures were used to compare the algorithms. They used
ANOVA to analyze the results. Interpretations of the per-
formance were based on the ranking of the algorithms by
the respective measures, as well as on a combined measure.
Burlina et al. [23] used empirical objective performance
measures to select tuning parameters and performed a sen-
sitivity analysis. Cyganski et al. [24] created arti�cial test
data from real images and clutter. From this, they obtained
empirical ROC curves to compare the performance of al-
gorithms. O’Kane et al. [25] reported a study on the e�ect
of image enhancement on human operators’ target identi�-
cation ability. They studied three kinds of histogram mod-
i�cation methods and di�erent zooming methods. Young
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and Cook [26] compared the performance of matched �l-
ter with a human performance model in a target detection
application. Shufelt [27] used a data set of 83 test images
with ground-truth to evaluate monocular building extraction
algorithms. Some pixel-based performance measures were
used to quantitatively evaluate four algorithms. He also pro-
vided an analysis for the impact on building detection per-
formance by scene complexity, image obliquity, and object
complexity.
There are also empirical performance evaluation methods

which do not require ground-truth. Among these, Kitchen
and Rosenfeld [9] used the local edge coherence mea-
sure to study edge detectors, Cho et al. [5] used bootstrap
methods to study the reliability of edge detector output.
Since the criteria used here were arbitrarily set up, there
are concerns that these measures may have biased charac-
terization that does not correspond to requirements in real
applications.
For the performance evaluation methods that do require

ground-truth, there has not been a widely accepted method-
ology that dictates exactly how the comparison between the
ground-truth and algorithm output should be conducted. As
a result, it may be very di�cult or confusing to directly
compare performance characterization results in di�erent
studies, simply due to the lack of a common principle
or methodology. This makes performance evaluation re-
sults less useful. Therefore, a pressing issue in perfor-
mance evaluation is to answer the question of how to
conduct the comparison between algorithm output and
the ground-truth. A common platform should be built
that is based upon clear, sound and easy-to-follow prin-
ciples. It will facilitate the development of particular
performance evaluation techniques suitable for di�erent
applications.
In this paper, we focus our attention on the evaluation

of a general class of detection and recognition algorithms.
Although characterizing their performance is much sim-
pler a task compared with developing such algorithms, such
characterization is often by no means trivial. For example,
consider performance evaluation of automatic target recog-
nition (ATR) algorithms [24,28–37]. Performance of such
algorithms are customarily characterized by the detection
rate, false alarm rate, as well as the recognition rate for the
correctly detected targets. These values need to be deter-
mined by properly comparing the algorithm output against
the ground-truth. Frequently, there are multiple ground-truth
target instances in a single test image, and an ATR algo-
rithm may also produce multiple target declarations on that
image. The declared targets may or may not be close enough
to ground-truth targets, and the ones close enough may or
may not have the right identi�cation of the target type.
Also, algorithms may claim more than one target around
a single ground-truth target, and may also claim targets
around clustered ground-truth targets where it is not obvious
which ground-truth target(s) should be associated with the
declarations.

Faced with this complicated situation, we need to develop
a general, concrete and consistent technique that unambigu-
ously and reasonably classi�es ground-truth targets into de-
tected and misdetected targets, and classi�es ATR algorithm
target declarations into correct declarations and false alarms.
Also, for the detected ground-truth targets, it distinguishes
those that are correctly recognized and those that are not.
As a matter of fact, the need for doing such classi�cations
is not unique of ATR performance evaluation. It is a com-
mon task in evaluating algorithms for a wide variety of ap-
plications, such as building [27] and vehicle detection [22]
in aerial image understanding, and biological cell counting
in medical image analysis.

3. Performance evaluation problems in edge detection

In assessing the performance of edge detectors
[6,9,13–16], we care about the detection rate, false alarm
rate and the average localization error for the correctly
detected edge pixels. A performance assessment technique
needs to classify the edge pixels in the ground-truth into
two distinct classes, namely detected and misdetected edge
pixels, and to classify the edge pixels in the declared edge
map into two distinct classes, namely correct declarations
and false alarms. To tolerate a certain amount of local-
ization error, ground-truth edge pixels and declared edge
pixels do not have to be at exactly the same pixel location in
order for them to be declared as detected ground-truth edge
pixels and correct declarations, respectively. However, each
detected ground-truth edge pixel needs to be associated
with at least one of the correct declarations, and vice versa.
Because of the relaxed requirement on the localization, the
classi�cation and association between ground-truth edge
pixels and declared edge pixels are not trivial problems.
Di�erent ways of doing these lead to di�erent performance
characterizations.
A distance transform based technique [6,7] has been

customarily used for this purpose. A distance map is �rst
obtained where each pixel location is assigned a value
which is the distance from this pixel location to the clos-
est ground-truth edge pixel. A threshold on this distance
is chosen. The correct declarations are all those edge pix-
els in the declared edge map whose distance values are
not larger than the threshold. The detected ground-truth
pixels are those which have declared edge pixels within
their neighborhoods. The size of the neighborhood is also
determined by the threshold on the distance. The prob-
lem with this technique is that it allows multiple-to-one
and one-to-multiple correspondence between ground-truth
and declared edge pixels. Consider the example shown in
Fig. 1, where ground-truth edge pixels are marked by cir-
cles, and declared edge pixels are marked by solid squares.
According to a distance transform based method, all
ground-truth pixels are detected and there is no false alarm
declarations.
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true declared

Fig. 1. An example where a distance transform based method fails
to give accurate performance measures.

Just like in other detection applications, one would in-
tuitively want to have an exact one-to-one correspondence
between detected ground-truth edge pixels and correct dec-
larations. If this is established, the numbers of detected
and misdetected ground-truth edge pixels and the num-
bers of correct declarations and false alarms will be more
informative of edge detection performance. According to
this consideration, for the example in Fig. 1, only two
ground-truth pixels, the one in the middle on the left half
and the one on the right half, are regarded as being de-
tected. The other two on the left half are regarded as being
misdetected. Similarly, only two of the declared pixels, the
one on the left half and one of the three on the right half (in
this example, it does not matter which one of the three is
selected), are regarded as correct declarations. The rest two
on the right half are regarded as false alarm declarations.
Therefore, a more appropriate performance evaluation
method should declare two misdetections and two false
alarms.
Here we propose to establish the desired one-to-one cor-

respondence by setting up a combinatorial optimal matching
problem. This problem is transformed into an unconstrained
optimal assignment problem, which can be e�ciently solved
by the Hungarian algorithm [38,39]. The solution yields
a maximal one-to-one correspondence between ground-
truth edge pixels and declared edge pixels. Performance
characterizations based on this correspondence follow the
intuition and are more informative of the edge detection
performance.
In our experiment, we choose to use a synthetic image

to show the di�erence between two evaluation techniques.
Although the use of synthetic imagery in comparing the per-
formance of edge detectors (using a chosen evaluation tech-
nique) is questionable [6], it is appropriate in comparing
di�erent performance evaluation techniques. This is because
that it allows human observers to make a clear and unam-
biguous judgment of edge detection quality with minimal
inter- and intra-observer variations. This judgment acts as a
gold standard to which the characterization given by di�er-
ent performance evaluation techniques should be compared.
The best performance evaluation technique is the one whose
output is closest to that judgment.

3.1. A note on the relevance of performance
characterization for edge detection modules

The following development on the edge detector perfor-
mance evaluation procedure not only serves as an example
for how to establish a one-to-one correspondence in the gen-
eral performance evaluation framework, it is also very im-
portant in its own right. This is due to the wide presence of
edge detection modules in various computer vision systems,
and to the numerous edge detection techniques proposed in
the literature.
Since edge detection is usually at earlier stages of com-

puter vision algorithms and is almost never the �nal goal of
any practical system, there is legitimate concern about its
performance characterization without the context of a par-
ticular vision system. We agree that, due to the many dif-
ferent ways in which edge detection output is used by sub-
sequent vision algorithm modules, the impact of edge de-
tection quality on the entire vision system performance will
vary among di�erent vision systems. However, we still in-
sist on the need for a general framework for precise charac-
terization of edge detection quality. This framework needs
to adopt a set of quality measures that are general enough to
be used in as many di�erent applications as possible. At the
same time, the quality measures needs to be capable of car-
rying enough speci�c information in order to be useful. For
most applications, we believe that the detection rate, false
alarm rate, and average localization error constitute a good
set of measures for this purpose.
In addition, algorithm performance sensitivity analysis is

an important subject in performance evaluation [2,3,19,23].
Highly precise quality measures are essential in studying the
sensitivity of the entire vision system performance to the
edge detection module. Precision here refers to the sensi-
tivity in the values of the measures to changes in the edge
detector output. A quality measure is considered precise if
very small changes in the edge detector output are captured
and re�ected by small changes in the value of the quality
measure. As supported by experimental analysis, the perfor-
mance measures computed from the methodology proposed
in this paper is much more precise than a distance-transform
based technique, which is being customarily used. We real-
ize that this level of precision might be so high that it is not
even necessary for certain computer vision systems, which
can be true because of the relative insensitivity of the en-
tire vision system performance to the edge detection module
performance. However, we insist on promoting a general
framework over ad hoc techniques, especially when such a
general framework provides very high precision with fairly
low cost.

4. Mathematical foundation—assignment problem
and its solution

This section provides a brief introduction to the optimal
assignment problem. It also introduces proper notation to
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facilitate later discussions. The optimal assignment problem
and its solution are essential in solving the problem formu-
lated in the next section. More details of the assignment
problem and its solution can be found in standard textbooks
such as Ref. [38].

4.1. Unconstrained optimal assignment problem

In the assignment problem, one is concerned with
establishing a full one-to-one correspondence between
two discrete sets K and L, both of which have N el-
ements. An assignment is a full one-to-one mapping
a : K → L.
Let the cost for associating k ∈K with l∈ L be q(k; l).

The total cost of an assignment a is

∑
k∈K

q(k; a(k)): (1)

The assignment problem is to �nd an optimal assignment
a :K → L with the smallest cost among all possible full
one-to-one mappings. If there is some constraint between
the k’s and the l’s, a constraint which prohibits certain
pairings, then the problem becomes the constrained opti-
mal assignment problem. Otherwise, it is the unconstrained
problem.
If q(k; l) is �nite for all k ∈K and l∈ L, an optimal solu-

tion to the unconstrained problem always exists, but might
not be unique. However, from the optimization point of
view, all optimal solutions are equivalent.
For an integral or rational valued cost function q(·; ·),

an optimal assignment can be found by the Hungarian al-
gorithm [38,39]. This is a numerical search algorithm that
guarantees to arrive at one optimal solution. The computa-
tional complexity is O(N 3) [39].
In the context of edge detection performance evalua-

tion, K is the set of ground-truth edge pixels, and L is
the set of declared edge pixels. The cost q(k; l) is a mea-
sure of the distance between a ground-truth edge pixel
k and a declared edge pixel l. Di�erent forms of dis-
tance measure can be used, e.g., the L1 norm (city-block
distance), L2 norm (Euclidean distance), and L∞ norm.
In our experiments, the Euclidean distance squared is
used.
In edge detection evaluation, most likely the number of

ground-truth edge pixels is not equal to the number of de-
clared edge pixels. It appears that the assignment problem
does not apply. However, this can be �xed easily. Concep-
tually, we can think of adding imaginary pixels to the set
with the smaller number of elements. The distance from
any imaginary pixel to all pixels in the other set is as-
signed a �nite but very large value. This way, in the as-
signment the imaginary pixels will not compete with any
of the original real pixels for any pixel in the other set. In

the end, all imaginary pixels will also be associated with
pixels in the other set. All those pixels that are the coun-
terparts of the imaginary pixels are considered unmatched,
and therefore are either misdetected ground-truth edge pix-
els (if the imaginary pixels were added to the declared edge
pixel set) or false alarms in the declared edge map (if
the imaginary pixels were added to the ground-truth edge
pixel set).

4.2. The Hungarian algorithm

An unconstrained optimal assignment problem is essen-
tially determined by its cost function q(·; ·). An exhaustive
search for an optimal solution would require a prohibitive
O(N !) computations of the total cost in Eq. (1). Fortunately,
this can be avoided.
Let the cost function be represented in a matrix form.

Adding a constant to any row of the matrix does not change
the optimal solutions. (Although adding a constant changes
the total cost of the resulting optimal assignment, it is an
optimal assignment, not its associated total cost, that is of
interest to us). Similarly, adding a constant to any column
of the matrix does not change the solutions, either. There-
fore, two matrices are considered as in di�erent equiva-
lent forms of a same matrix if one can be obtained from
the other via a sequence of additions of constants to vari-
ous rows and columns. The Hungarian algorithm [38–40]
works by �nding the maximum number of independent ze-
ros in all equivalent forms of the cost matrix. Due to the
K�onig-Egerv�ary Theorem [38,39,41,42], this is equivalent
to �nding the smallest number of lines (rows and columns)
to cover all zeros.
In this research, we take a black-box approach to the

Hungarian algorithm. It is simply used as a proven and e�-
cient tool to solve the assignment problem. In performance
evaluation, it is su�cient to know the existence of such
a solution, to know its computational complexity, and to
have available its software implementation. The details of
the algorithm are not of major interest to this research and,
therefore, are omitted here. Interested readers can �nd the
details of the algorithm in Refs. [38–42] and the references
therein.
In the situation where every element in K is allowed

to be paired with every element in L with a �nite cost,
an optimal solution always exists. Furthermore, if all en-
tries in the cost matrix are integral or rational numbers,
the Hungarian algorithm is guaranteed to arrive at one
optimal solution with �nite iterations. The Knuth imple-
mentation [39] of the algorithm handles the integral cost
matrix. This implementation also handles the case where
the numbers of elements in K and L are not equal, in which
case an optimal subset of the bigger set appears in the �nal
pairs. The computational complexity is O(m2n) where m
is the smaller of the cardinalities |K | and |L|, and n is the
larger.
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5. Detection performance evaluation—an optimal
matching problem

In edge detection performance evaluation, we know that
corresponding ground-truth edge pixels and declared edge
pixels cannot be very far apart spatially. It makes sense
to set up a threshold on the maximum tolerable localiza-
tion error, i.e., the maximum tolerable distance between a
ground-truth edge pixel and a declared edge pixel that are to
be associated with each other. The threshold on the distance
between them can be conveniently set by the neighborhood
size used in edge detection. To enforce this requirement,
all we need is to put a constraint in the optimal assignment
problem:

q(k; a(k))6 � ∀k ∈K; (2)

where � denotes the maximum tolerable distance. The
constrained optimal assignment problem is then to �nd
an assignment a :K → L which minimizes the cost in
Eq. (1) among all assignments that satisfy the constraint
in Eq. (2).
For the constrained problem, the �niteness of q(k; l) does

not guarantee the existence of a solution. However, in or-
der to determine misdetections and false alarms in perfor-
mance evaluation, we have to �nd some reasonable associa-
tion, maybe compromised in some way, between the k’s and
the l’s.
Taking a closer look at the situation, we realize that the

constrained optimal assignment problem in its original form
is not an appropriate model for our detection performance
evaluation problem. Our problem, however, can be well
modeled by an optimal matching problem.
The matching problem is similar to the assignment prob-

lem in that it tries to establish a one-to-one pairing between
elements in K and L. Here the sizes of K and L may be
di�erent. There is a compatibility relationship H ⊂ K × L.
Any k ∈K and l∈ L for which (k; l) �∈ H are not allowed
to be associated with each other. Only a subset of K needs
to be associated with distinct elements in L. The matching
problem is to determine a match with the largest number of
pairs.
Naturally, for our problem at hand, the compatibility

relationship is

H = {(k; l)∈K × L | q(k; l)6 �}:

For any particular match m : K → L, let Ks(m) be a subset
of K containing all the members for which the constraint is
satis�ed.

Ks(m) = {k ∈K | q(k; m(k))6 �}: (3)

The rank of a match m is the number of valid pairs it
establishes between the elements in K and those in L.
Formally, it is de�ned as the cardinality (number of

elements) of Ks(m)

r(m) = |Ks(m)|: (4)

In edge detection evaluation, we are only interested in
the largest ranking matches, which are called the max-
imal matches. Let M be the set of all possible matches
between K and L subject to the compatibility relation-
ship H . Then the set of maximal matches can be formally
written as

Mx =
{
m∈M | r(m) = max

n∈M
r(n)

}
: (5)

The cost for such a maximal match m is de�ned as

C(m) =
∑

k∈Ks(m)
q(k; m(k)): (6)

The optimal matching problem is to minimize this cost over
all maximal matches.

m0 = arg min
m∈Mx

C(m): (7)

In edge detection performance evaluation, the solution to the
optimal matching problem gives the largest possible num-
ber of associated pairs between ground-truth and declared
edge pixels. Among all the di�erent ways for making such
a match, it picks the one with the smallest total localiza-
tion error. In a sense, it is trying to give the most pos-
itive interpretation of the declared edge map. This is the
right attitude, since all computer vision algorithms using
the edge map should strive to make the most positive use
of it.

5.1. Solving the optimal matching problem

We use the idea of “ghost pair” to transform the opti-
mal matching problem back to the unconstrained optimal
assignment problem, solve the optimal assignment problem
using the Hungarian algorithm, and then apply some sim-
ple post-processing to enforce the constraint and obtain the
solution to the optimal matching problem.
Let d denote a very large but �nite value. For example,

d= |K | × �: (8)

The cost function is selectively modi�ed by

q(k; l) =

{
d if q(k; l)¿�;

q(k; l) otherwise:
(9)
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Then the matrix form of this modi�ed cost function is aug-
mented to a square matrix by padding the shorter dimension
with the value d. This corresponds to adding imaginary
elements to the smaller set to make the two sets of equal
size. We now have an unconstrained optimal assignment
problem that is de�ned by this augmented cost matrix. Each
pair of elements in K and L whose cost gets changed to
d is called a “ghost pair”. Since d is such a large value,
the two elements in a ghost pair do not compete for each
other against other elements in the assignment process.
Notice that, each ground-truth edge pixel is typically in-
volved in many ghost pairs since there are almost always
declared edge pixels that are faraway from it. The same is
true for each declared edge pixel. However, some detected
ground-truth edge pixels and some correctly declared edge
pixels are also involved in pairs that are not ghost pairs. In
the association process, it is these non-ghost pairs that are
of interest to us. Nonetheless, the provision for the ghost
pairs is necessary in order to change the hard constraint on
the compatibility relationship into penalty terms in the total
cost. This is the key element in transforming the constrained
matching problem into an unconstrained assignment
problem.
At least one optimal solution to this new unconstrained

assignment problem exists due to the �niteness of the cost
function. Such a solution can be found by the Hungarian
algorithm. In the resulting solution, we examine again the
cost between the assigned pairs, to enforce the compat-
ibility relationship. The pairs whose cost are not larger
than � are good associations. They give corresponding
detected ground-truth edge pixels and correct declara-
tions. The cost of each of the rest of the pairs is larger
than �, and these pairs must either be ghost pairs, or in-
volve the imaginary pixels added in augmenting the cost
matrix.
Remember that the original distance between the two

elements in a ghost pair is larger than the threshold. In
edge detection performance evaluation, we do not allow
pixels that are farther apart than the threshold to be as-
sociated with each other. The two elements in a result-
ing ghost pair are then determined to be a misdetected
ground-truth edge pixel and a false alarm in the declared
edge map.
The other kind of pairs whose cost is larger than � in-

volve imaginary pixels. The real elements in such pairs
come from the set whose number of elements is larger than
that of the other set. Therefore, these are the “left-overs”
that did not succeed in competing for the limited number
of counterparts from the other set. If the imaginary ele-
ments were added to the set of ground-truth pixels, that
means there are too many edge pixels in the algorithm out-
put. Therefore, these left-overs re�ect false alarms. Other-
wise, if the imaginary elements were added to the set of
declared edge pixels, that means there are not enough edge
pixels in the algorithm output. The left-overs re�ect misde-
tections.

6. Practical technique—association procedure

6.1. Edge detection result classi�cation and association
procedure

Note that the Hungarian algorithm can be implemented
to handle cases where the numbers of elements in K and
L are di�erent [39]. The conceptual addition of imaginary
elements in augmenting the cost matrix does not need to
be literally carried out. An implementation can achieve the
same e�ect without the extra computational burden required
in doing that. Therefore, the cost matrix augmentation step
does not need to be explicitly carried out.
The following is an outline of the edge detection result

classi�cation and association procedure.

Step 1: Resolving the simple cases:

• The ground-truth edge pixels which coincide at exactly the
same pixel locations with some declared edge pixels are
automatically determined as detected ground-truth edge
pixels. They are associated with those declared edge pix-
els at the same locations, hence they have no localization
error. The declared edge pixels that these ground-truth
pixels are associated with are automatically determined
as correct declarations.

• The ground-truth edge pixels which do not have any
declared edge pixel within a distance of the chosen
threshold � are automatically determined as misdetected
ground-truth edge pixels.

• Similarly, the declared edge pixels which do not have
any ground-truth edge pixel within a distance of the
chosen threshold � are automatically determined as false
alarms.

The rest of the procedure deals only with the ground-truth
and declared edge pixels that are left undetermined.
Step 2: Let K be the set of ground-truth edge pixel loca-

tions, L be the set of declared edge pixel locations. Let NK
and NL be the numbers of elements in them, respectively.
Create an NK×NL matrix Q of distance values between each
pair in K × L.
Step 3: Selectively modify Q by applying the rule in (9),

with NK as |K | in (8).
Step 4: Apply the Hungarian algorithm on the modi�edQ.
Step 5: Examine the resulting assignment.

• For each assigned pair
◦ if the value in the distance map Q is not larger than �,
this is a valid association. The involved ground-truth
and declared edge pixels are paired up and to be
counted as a detected ground-truth pixel and a correct
declaration;

◦ otherwise, this is a ghost pair. If this pair is denoted by
(k; l), k is counted as a misdetected ground-truth edge
pixel, and l is counted as a false alarm.
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• The left-over elements in K (if NK ¿NL) or L (if
NK ¡NL) that are not paired up are all misdetected
ground-truth edge pixels (if NK ¿NL) or false alarms (if
NK ¡NL).

6.2. Corner and line segment detection performance
evaluation

The exact procedure just described can be applied directly
without any change in evaluating algorithms for many kinds
of detection applications. Two simple examples are corner
detection and line segment detection. These are important
because many complex vision systems use corners and line
segments as basic image feature units. The performance of
corner and line segment detection modules can signi�cantly
a�ect the overall performance of the entire system.
Evaluating corner detection performance is almost iden-

tical to evaluating edge detection performance. In most ap-
plications, the Euclidean distance squared is suitable for
constructing the distance matrix Q. This was used in a
study to compare three di�erent corner detection algorithms
[43–45]. To limit the length of this paper, details of this
evaluation is not included here.
Evaluating line segment detection performance just re-

quires a di�erent distance measure in constructing the dis-
tance matrix Q. A weighted Hausdor� distance [46] could
be used in this case.

q(S1; S2) = max
(‖S1‖
‖S2‖ ;

‖S2‖
‖S1‖

)
max(h(S1; S2); h(S2; S1));

(10)

where S1 and S2 denote two line segments, and the double
vertical bars denote the Euclidean norm (length) of a line
segment. The function h(·; ·) denotes the (directed) Haus-
dor� distance [46] de�ned as

h(Sa; Sb) = max
∀x∈Sa

{
min
∀y∈Sb

‖x − y‖
}
: (11)

q(S1; S2) in Eq. (10) is the balanced Hausdor� distance be-
tween the two line segments S1 and S2 weighted by the ratio

in the length of the two segments. Therefore, it penalizes
both the di�erence in length and the di�erence in location
and orientation of two line segments.

7. Experiment

7.1. Comparing with distance transform based evaluation
technique

We use the synthetic test image used in Ref. [6] to com-
pare the proposed method with a distance transform based
method for edge detection performance evaluation. This test
image is 64× 64, and has a brighter disk of a constant gray
value against a darker constant background. White Gaus-
sian noise is added to obtain a noisy version of the image
with SNR = 4. Fig. 2(a) shows the ground-truth edge map
obtained by following the boundary (using 8-connectivity)
of the disk on the noise-free image. There are a total of
132 ground-truth edge pixels and 3964 background pixels.
Notice that this ground-truth is di�erent from that used
in Ref. [6], where a three-label (true-positive, don’t-care,
and false-positive) ground-truth is used. Here we want
to give sharper performance measures and do not specify
the “don’t-care” region in the ground-truth. Our method,
however, can easily accommodate the provision for the
“don’t-care” zone in situations where it is desired. This is
done by re-examining the false alarms and omitting the
ones falling in that zone.
We apply the implementation of Canny’s edge detector

used in Ref. [6] to the noisy image with di�erent tun-
ing parameters. Fig. 2(b) shows the edge map produced
from the tuning parameters of (1:05; 0:77; 0:88) given in
Ref. [6]. We also choose two other sets of parameters
which give more obvious misdetections and false alarms,
respectively. Figs. 2(c) and 2(d) show the resulting edge
maps.
The proposed optimal matching based method and the

distance transform based method are used to compare the

Fig. 2. Edge maps in comparing the proposed and a distance transform based performance evaluation methods. (a) Ground-truth (b) Edge
map 1. (c) Edge map 2. (d) Edge map 3.
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Table 1
Performance measures for the declared edge maps by two perfor-
mance evaluation methods

Optimal matching Distance transform

Edge #MD #FA RMS loc #MD #FA RMS loc
map error error

1 0 42 0.5 0 0 1.0
2 9 28 1.39 0 0 1.27
3 0 74 1.0 0 28 1.0

declared edgemaps with the ground-truth edgemap. The dis-
tance transform based method used in Ref. [6] has a circular
search radius of three pixels for edge (true-positive) pixels.
Our implementation of this method used in the experiment
reported here uses a square search region of 5 × 5 pixels
with the origin at the center. The Euclidean distance squared
is used to form the distance matrix of the proposed method.
The threshold � in inequality (2) is set to 8, correspond-
ing to a circular search radius of 2

√
2. Table 1 gives the

performance measures of number of misdetections (#MD),
number of false alarms (#FA), and the root-mean-squared
(RMS) localization error for the detected ground-truth edge
pixels from these two methods.
It should be noted that the purpose of the current ex-

periment is to demonstrate the appropriateness of enforcing
one-to-one correspondence for counting misdetections and
false alarms and calculating localization error for correct
detections. It is not our purpose here to carry out a full em-
pirical evaluation of any edge detector. No e�ort is made to
tune the detector to achieve its best performance according
to the performance measures.
When examining the data in Table 1, the emphasis should

be on comparing the same performance measures given by
the two di�erent methods.
In visually comparing edge map 1 with the ground-truth,

we see no misdetection. However, the thickness of the
edge is not even, with some parts being 8-connected and

some parts being densely 4-connected. According to our
8-connected thin ground-truth edge map and the one-to-one
correspondence principle, these thicker parts of the declared
edge (where edge pixels have more than two 8-neighbors)
contain false alarms. The proposed method precisely picks
out these declared pixels as false alarms, which are shown
in Fig. 3(a). On the other hand, the distance transform based
method leniently accepts all declared edge pixels as being
appropriate. If, however, this level of detail is not of interest,
a “don’t care” zone can be speci�ed in the ground-truth.
The false alarms declared by the proposed method falling
into that zone will then be tolerated and not counted as false
alarms. If that were done, both methods would claim no false
alarm.
The di�erence between the two methods is clearer on

their evaluation results on edge maps 2 and 3. In edge map
2, we clearly see gaps in the declared edge map which
we certainly want to call misdetections. At the same time,
we also see some false alarms on thicker parts of the
declared edges. Both of these are re�ected in the evaluation
result by the proposed method. The identi�ed misdetec-
tion and false alarm pixels are shown in Fig. 3(b) and
3(c), respectively. The distance transform based method is
overly lenient again and declares no misdetection nor false
alarm.
In edge map 3, the proposed method treats not only the

stray edge pixels as false alarms, but also some on the thicker
parts of the edges around ground-truth edges. These pix-
els are shown in Fig. 3(d). The distance transform based
method treats only those stray edge pixels as false alarms,
and tolerates all declared edge pixels around ground-truth
edge pixels.
In general, we observe the tendency of the distance trans-

form based method to be overly reluctant to declare false
alarms around ground-truth edge locations, and overly re-
luctant to declare misdetections around any declared edge
pixel. It gives inappropriately high performance measures.
The optimal matching based method is more precise, and
gives performance measures agreeing with subjective eval-
uation.

Fig. 3. Misdetection and false alarm edge pixels in the edge maps. (a) False alarms in map 1. (b) Misdetections in map 2. (c) False alarms
in map 2. (d) False alarms in map 3.
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Fig. 4. First frame in the tank image sequence and detection result
by the combined algorithm. (a) True target. (b) Detection result
by one ART algorithm.

7.2. Evaluating tank target detection performance

The proposed method was applied to comparing the per-
formance of six algorithms in detecting a moving tank tar-
get in a sequence of 340 forward-looking infrared (FLIR)
images. This sequence was acquired from a newly devel-
oped low-cost uncooled sensor, which is known to produce
low quality imagery. In many of the 340 images, one sin-
gle tank target is present and not signi�cantly occluded.
In others, the tank target is either present but with some
parts occluded by the terrain, or not present in the image

at all. Out of the 340 frames, there are 244 frames where
the target is either not occluded, or not signi�cantly oc-
cluded. Fig. 4 shows the �rst frame of the sequence with the
true target boundary outlined. Also shown in the �gure is
the detection result on this image by one of the algorithms
studied.
Six target detection algorithms were run independently on

each of the images in the sequence. Thresholds in the algo-
rithms were changed over a range of values. At each thresh-
old value, the output from each algorithm on each image
was compared with the ground-truth for that image using the
technique described in the previous section. The compari-
son results for all 340 images together were used to compute
the detection and false alarm rates for that algorithm at a
detection performance level corresponding to that threshold
value. This gave one point on the ROC curve for that algo-
rithm. The points corresponding to all tested threshold val-
ues make up the entire ROC curve for that algorithm. The
statistical Z-test [47] was conducted to examine the signif-
icance of the di�erence between the performance of the al-
gorithms. More details of the algorithms and the evaluation
results can be found in Ref. [48].

8. ATR performance evaluation

The proposed methodology is useful in many applications
where a maximal one-to-one correspondence is to be estab-
lished between two sets, a distance-like dissimilarity=penalty
measure can be made between the elements in the two
sets, and the pairing process is constrained by some thresh-
old on the dissimilarity=penalty measure. We choose to
base our discussion �rst on the edge detection applica-
tion not only due to the importance of edge detection as
a major feature extraction module in many computer vi-
sion algorithms, but also due to the relative simplicity of
its performance evaluation. This way, the main idea of
the proposed methodology can be described more clearly
without confusion from other unrelated application-speci�c
issues.
Now that the methodology has been described clearly, we

use it to develop a procedure for ATR performance evalua-
tion. The purpose of this section is two-fold. First, it shows
how the proposed methodology is easily extended to support
recognition performance evaluation. Second, it gives a de-
tailed example to let the reader walk through the procedure
in order to help the understanding.
In characterizing ATR performance, not only do we need

to determine the detection rate and false alarm rate, we also
need to compute the recognition rate for the correctly de-
tected targets. In this situation, a two-stage procedure needs
to be used. This procedure �rst identi�es targets that are
both correctly detected and correctly recognized. It then
identi�es targets that are correctly detected but incorrectly
recognized. In the �rst stage, the distance matrix is con-
structed so that only targets of the same class ID can po-
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Fig. 5. Ground-truth and declared targets compared by the two-stage
matching procedure to determine the detected, recognized and false
alarm targets. (a) Ground-truth targets. (b) Declared targets.

tentially form pairs. The targets paired up by this stage are
those both correctly detected and correctly recognized. The
left-overs go through the second stage. In this stage, the
target class ID does not play any role in the construction
of the distance matrix. The pairs formed in this stage in-
volve only targets that are correctly detected but incorrectly
recognized.
The number of correctly detected targets is the sum of

the numbers of pairs produced by the two stages. Among
these pairs, those produced by the �rst stage are the ones
for the targets also correctly recognized. The left-overs from
the second stage are the misdetected and false alarm targets.
All the pairs and left-overs provide the precise information
required in constructing the confusion matrix to show the
recognition performance of an ATR system. This procedure

Table 2
Targets in the example on using the proposed method for ATR
performance evaluation

Ground-truth Declared

Reference Class Centroid Reference Class Centroid

t1 21 (268; 60) d1 21 (269; 59)
t2 1 (391; 74) d2 1 (392; 74)
t3 18 (253; 114) d3 18 (255; 113)
t4 26 (72; 243) d4 24 (211; 205)
t5 24 (209; 205) d5 19 (284; 177)
t6 31 (370; 191) d6 25 (414; 154)
t7 29 (268; 259) d7 15 (327; 203)
t8 23 (429; 287) d8 31 (371; 191)
t9 27 (149; 367) d9 26 (73; 243)
t10 9 (236; 351) d10 3 (111; 281)

d11 4 (256; 251)
d12 9 (237; 351)
d13 23 (431; 286)

is used in the experiments in Refs. [18,48] for evaluating
ATR algorithm performance.
An example is provided here. Fig. 5(a) shows one of

the test images used in this study. There are ten target in-
stances in this image, with their silhouettes overlaid and an
instance number given by which they are referenced. These
targets are referred to as t1; : : : ; t10. The �rst “class” column
in Table 2 gives the class identi�cation of these targets.
The �rst “centroid” column in the table gives the positions
of the centroids of these targets in image column and row
coordinates.
Fig. 5(b) shows the output from one algorithm with

the silhouettes of the thirteen declared targets overlaid
on the image. The image also shows the instance num-
bers for these declared targets, which are referred to as
d1; : : : ; d13. The second “class” and “centroid” columns in
Table 2 gives the classes and locations of these declared
targets.
The Euclidean distance squared is used in constructing

the distance matrix in the proposed performance evaluation
method. In tolerating the location error, a threshold on the
squared distance of �=625 pixel2 is used, corresponding to
a circular search region of radius 25 pixels.
In the �rst stage of the procedure, only targets of the

same class (same class ID, not instance number) can be
paired up. For any pair of ground-truth and declared tar-
gets whose class ID numbers are di�erent, a distance value
of 626, which is greater than the threshold � = 625, is
assigned, regardless of the actual distance between the
centroids of these targets. The actual distance is used only
for pairs of targets whose class ID numbers are the same.
Fig. 6 shows the resulting distance matrix. Subjecting this
matrix to the procedure in Section 6, we �nd eight pairs—
eight out of the ten ground-truth targets are both correctly



2136 G. Liu, R.M. Haralick / Pattern Recognition 35 (2002) 2125–2139

Fig. 6. Distance matrix used in the �rst matching procedure for determining targets both correctly detected and correctly recognized.
Threshold to be used is 625.

Table 3
Targets that are both correctly detected and correctly recognized

Ground-truth t1 t2 t3 t5 t6 t4 t10 t8
Declared d1 d2 d3 d4 d8 d9 d12 d13
Class ID 21 1 18 24 31 26 9 23

detected and correctly recognized. These are shown in
Table 3.
The targets left unpaired are t7; t9 on the ground-truth

side and d5; d6; d7; d10; d11 on the declaration side. Any
valid pairing between them that satis�es the distance
constraint identi�es correctly detected but incorrectly
recognized targets. The distance matrix for the second
stage of the procedure contains only the actual dis-
tances, as shown in Fig. 7. The solution is obvious: only
(t7; d11) is a valid pair whose distance is smaller than the
threshold.
Now the full characterization of the algorithm output in

Fig. 5(b) can be summarized as follows:

• Of the 10 ground-truth target instances
◦ nine are correctly detected, eight of which are also
correctly recognized;

◦ (redundant) one was misdetected; one was correctly
detected but incorrectly recognized.

• Of the 13 declared target instances

Fig. 7. Distance matrix used in the second matching procedure for
determining correctly detected but incorrectly recognized targets.
Threshold to be used is 625.

◦ nine are correct declarations, eight of which also have
the correct class ID;

◦ (redundant) four are false alarms which do not corre-
spond to any ground-truth target; one correct declara-
tion has a wrong target class ID declared.

9. Summary and conclusion

We propose enforcing a maximal one-to-one corre-
spondence as a general principle to follow in evaluating
detection performance. We argue that it leads to a most
reasonable association between the ground-truth entities
and the entities declared by algorithms. This applies to a
broad class of detection and recognition applications. We
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develop the principle mathematically by formulating an
optimal matching problem. This problem is transformed
into an unconstrained optimal assignment problem, which
is known to have an e�cient solution technique, namely
the Hungarian algorithm. The solution to the problem es-
tablishes a one-to-one correspondence between the detected
ground-truth entities and the correct declarations in the al-
gorithm output. The correspondence also determines misde-
tected ground-truth entities, false alarms in the declaration,
and the computation of localization error for the detected
ground-truth entities.We showed examples where the appro-
priateness, preciseness and generality of this technique are
veri�ed.
Although the main development of the principle and the

derived technique is carried out in an edge detector eval-
uation scenario, this methodology is readily applicable to
evaluating performance of other applications, such as cor-
ner and line segment detection, and building and vehicle de-
tection in aerial images. These applications share the com-
mon feature that both detection performance and localization
performance are of interest, and that they are closely tied
together.
We extend the technique to support recognition perfor-

mance evaluation. This requires a two-stage procedure,
which is outlined for the ATR application. This procedure
can be applied with marginal or no modi�cations for other
detection and recognition applications, such as evaluat-
ing the performance of multiple category biomedical cell
counting algorithms.
From the development of the methodology, as well as

from its successful application in a number of di�erent de-
tection and recognition evaluation experiments, we believe
that the one-to-one correspondence principle is general,
clear and mathematically sound. The technique derived
from this principle is precise, consistent and e�cient.
Therefore, we highly recommend the principle and tech-
nique be adopted by the research community as a standard
practice in empirically evaluating detection and recognition
performance.
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