
Contemporary Mathematics

Pattern Recognition Approaches to Solving Combinatorial
Problems in Free Groups

Robert M. Haralick, Alex D. Miasnikov, and Alexei G. Myasnikov

Abstract. We review some basic methodologies from pattern recognition that
can be applied to helping solve combinatorial problems in free group theory.
We illustrate how this works with recognizing Whitehead minimal words in

free groups of rank 2. The methodologies reviewed include how to form feature
vectors, principal components, distance classifers, linear classifiers, regression
classifiers, Fisher linear discriminant, support vector machines, quantizing,

classification trees, and clustering techniques.

Free group, automorphism problem, Whitehead method, Pattern Recognition,
Classification

Primary 20F28, Secondary 68T10

Contents

1. Introduction 1
2. General remarks on Pattern Recognition tasks 2
3. Feature Vectors 3
4. Pattern Recognition Tools and Models 5
5. Recognizing Whitehead Minimal Words in Free Groups 12
References 17

1. Introduction

There are many problems in mathematics that can be solved by a search over all
possibilities. In combinatorial group theory every classical decision problem has its
natural ”search” variation. For example, the search version of the Word Problem
for a group given by a presentation 〈X | R〉 would ask for a word u from the
normal closure of the set of relators R to produce an expression of u as a product of
conjugates of elements from R±1. The search Conjugacy Problem would require to
produce a conjugating element, and the search Membership Problem would ask for
an expression of a given u from a subgroup 〈v1, . . . , vk〉 as a product of the generators
(and their inverses) v±1

1 , . . . , v±1
k . In a free group finding a solution of a given

consistent equation or determining whether or not a given element has minimal

c©0000 (copyright holder)

1

2 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

length in its automorphic orbit (Whitehead minimality problem) are typical search
problems. All these problems are recursively enumerable, so, in principal, the total
search would produce an answer sooner or later. Unfortunately, in practice the
total search could be extremely inefficient: there are not any recursive bounds on
time complexity of the search word, conjugacy, or membership problems, and there
is no algorithm known to find solutions of equations or determine minimality of a
word in a free group in time better than exponential time in the size of the problem.
In this paper, we offer some insights to speed up the solving of computational hard
problems that arise in certain problem populations of free groups. We will show that
with some intelligent reasoning, a significant fraction of problems in the population
can be solved much quicker than exponential time.

The classical way algorithms are formulated in search problems is to design
a way to perform the associated tree search and try to improve the solution time
by fancier data structures, more efficient code, and by heuristics. Our point of
view is to improve how we solve these problems using the experience of having
solved many such problems from the given population. Thus our problem domain
is given by a population of problems. We will sample many problem instances
from the population and solve each instance. We will then examine the statistical
characteristics in the tree search of how each problem instance was solved and then
incorporate this statistical derived knowledge from the experience of solving these
problems into a smarter tree search. There are situations in which we may not have
to do any tree searching at all and our pattern recognition techniques will do all
the work.

The use of this kind of experience may not improve the worst case complexity.
But it can dramatically improve the computational complexity on a large fractions
of problems from the population. For example, we may discover that 99 percent of
the problems can be solved in linear time, 0.9 percent in quadratic time, and the
remainder 0.1 percent in exponential time.

There are two dimensions to using this pattern recognition technology. The
first dimension is the representation of any problem instance to a fixed dimensional
feature vector which captures the information in the problem instance. The second
dimension is the use of standard tools in pattern recognition that given the feature
vector designates the most probable class or the most probable next successful step
in the tree search.

In this paper we discuss briefly several typical pattern recognition techniques
and demonstrate some of their applications by the Whitehead’s minimality problem.
For notations and relevant results on Whitehead method we refer to the paper [4].

2. General remarks on Pattern Recognition tasks

One of the main applications of Pattern Recognition (PR) techniques is classifi-
cation of a variety of given objects into categories. Usually classification algorithms
or classifiers try to find a set of measurements (properties, characteristics) of ob-
jects, called features, which gives a descriptive representation for the objects.

Generally, pattern recognition techniques can be divided in two principal types:
• supervised learning;
• unsupervised learning (clustering).

In supervised learning the decision algorithms are “trained” on a prearranged
dataset, called training dataset in which each pattern is labelled with its true class

PATTERN RECOGNITION IN FREE GROUPS 3

label. If such information is not available, one can use clustering. In this case clus-
tering algorithms try to find clusters or “natural groupings” of the given objects.
In this paper we use supervised learning pattern recognition algorithms.

Every pattern recognition task of the supervised learning type has to face all
of the following issues:

(1) Obtaining the data. The training datasets can be obtained from the
real world or generated by reliable procedures, which provide independent
and representative sampled data.

(2) Feature extraction. The task of feature extraction is problem specific
and requires knowledge of the problem domain. If such knowledge is
limited then one may consider as many features as possible and then try
to extract the most “significant” ones using statistical methods.

(3) Model selection. The model is the theoretical basis for the classifier. A
particular choice of the model determines the basic design of the classifier
(though there might be some variations in the implementation). Model
selection is one of the most active areas of research in pattern recognition.
Usually model selection is closely related to the feature extraction. In
practice, one may try several standard models starting with the simplest
ones or more economic ones.

(4) Evaluation. Evaluation of the performance of a particular PR system
is an important component of the pattern recognition task. It answers
the question whether or not the given system performs as required. To
evaluate a system one can use various accuracy measures, for example,
percentage of correct answers. To get reliable estimates other sets of data
that are independent from the training sets must be used. Such sets are
called test datasets.

Typically we view a PR system as consisting of components 1)-4).
(5) Analysis of the system. Careful analysis of performance of a par-

ticular classifier may improve feature extraction and model selection. For
example, one can look for an optimal set of features or for a more effective
model. Moreover, through analysis of the most significant (insignificant)
features one may gain a new knowledge about the original objects.

3. Feature Vectors

A feature vector is just a vector of properties about the object of interest, in
our case about the mathematical object of interest. The properties are chosen to
be ones thought to be relevant to the problem. We will illustrate the selection of
features by the Whitehead minimal problem for a free group F = F (X) with basis
X.

Let w be a reduced word in the alphabet ∈ X±1. Below we describe features
of w which characterize a certain placement of specific words from F (X) in w.

Let K ∈ N be a natural number, v1, . . . , vK ∈ F (X) be words from F (X), and
U1, . . . , UK+1 ⊆ F (X) be subsets of F (X). Denote by

C(w,U1v1 . . . vKUK+1)

the number of subwords of the type

u1v1u2 . . . vKuK+1,

4 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

where uj ∈ Uj , which occur in w. For fixed K, v1, . . . , vK , U1, . . . , UK+1 we obtain
a counting function

(1) w ∈ F −→ C(w,U1v1 . . . vKUK+1) ∈ N
The normalized value

1
|w|

C(w,U1v1 . . . vKUK+1)

is called a feature of w and the function

w ∈ F −→ 1
|w|

C(w,U1v1 . . . vKUK+1) ∈ R

is called a feature function on F . Usually we omit Ui in our notations if Ui = ∅.
If C̄ = (C1(w), . . . , CN (w)) is a sequence of counting functions like (1) one can
associate with w a vector of real numbers:

fC̄(w) =
1
|w|

< C1(w), . . . , CN (w) > ∈ RN

which is called a feature vector. Every choice of the sequence C̄ gives a vector fC̄(w)
which reflects the structure of w.

For example, if a ∈ X±1 then C(w, a) counts the number of occurrences of
the letter a in w. The feature vector (where for simplicity we assume that the
components are written in some order which we do not specify)

f0(w) =
1
|w|

< C(w, a) | a ∈ X±1 >

shows the frequencies of occurrences of letters from X±1 in w. The feature vector

f1(w) =
1
|w|

< C(w, v) | |v| = 2 >

shows the numbers of occurrences of words of length two in w relative to the length
of w.

To visualize some structures described by the counting functions above we
associate with a given word w ∈ F (X) a weighted labelled directed graph Γ(w).
Put V (Γ(w)) = X±1. For given x, y ∈ X±1 and v ∈ F (X) we connect the vertex x
to the vertex y by an edge with a label v and weight C(w, xvy). Now, with every
edge from x to y with label xvy one can associate a counting function C(w, xvy),
and vice versa. It follows that every subgraph Γ of Γ(w) gives rise to a particular
set of counting functions C̄Γ of the type C(w, xvy), and conversely, every set C̄ of
counting functions of the type C(w, xvy) determines a subgraph ΓC̄ of Γ(w). For
instance, the feature mapping f1 corresponds to the subgraph Γ1(w) of Γ(w) which
is in a sense a directed version of the so-called Whitehead graph of w.

Let Un be the set of all words in F that are length n. Let Wn be the set of all
words in F that are of length n or less. Other relevant features can be defined as
follows. Each corresponds to various subgraphs of the graph Γ(w):

f2(w) =
1
|w|

< C(w, x1U1x2) | x1, x2 ∈ X±1 >;

f3(w) =
1
|w|

< C(w, x1U2x2) | x1, x2 ∈ X±1 >;

f4(w) =
1
|w|

< C(w, x1U3x2) | x1, x2 ∈ X±1 >;

PATTERN RECOGNITION IN FREE GROUPS 5

f5(w) =
1
|w|

< C(w, x1W1x2) | x1, x2 ∈ X±1 >;

f6(w) =
1
|w|

< C(w, x1W3x2) | x1, x2 ∈ X±1 > .

4. Pattern Recognition Tools and Models

There are a variety of pattern recognition tools that are useful for determining
a way of making a distinction given a set of feature vectors from one class and a
set of feature vectors from another class. For each given class of objects, we sample
objects from the class and construct the set of corresponding feature vectors. The
pattern recognition technology provides a way of determining a best or near best
boundary in the feature space that distinguishes the one class from the other. In
this section we will review some of the basic techniques. The reader interested in a
fuller discussion may consult general references [2],[5][3],[6].

4.1. Principal Components. There are occasions when the feature vectors
coming from a class either all lie in a small dimensional flat or most of them lie in
a small dimensional flat. Principal component analysis can determine this.

Let x1, . . . , xN be the set of feature vectors sampled from a given class. Define
their sample mean µ by

µ =
1
N

N∑
n=1

xn

Define their sample covariance C by

C =
1
N

N∑
n=1

(x− µ)(x− µ)′

Let t1, . . . , tN be the eigenvectors of C with corresponding eigenvalues λ1 ≥ λ2 . . . ≥
λN . Should the feature vectors indeed lie in a small dimensional flat, then there
will be a K < N such that λk = 0, k = K + 1, . . . , N .

In this case, feature vectors x coming from objects that are in the class can be
recognized by testing whether or not

||T (x− µ)|| = 0

where T is a N × (N −K) matrix whose columns are eigenvectors tK+1, . . . , tN .
Those in the class will have ||T (x − µ)|| = 0. ||T (x − µ)|| > 0|| is a sure

indication that x comes from an object out of the class, but there may be some
objects out of the class for which ||T (x− µ)|| = 0.

In the case of two classes, we form the matrix T1 from the zero eigenvalue
eigenvectors of the covariance matrix from the class one feature vectors and the
matrix T2 from the zero eigenvalue eigenvectors of the covariance matrix from the
class two feature vectors.

Now if ||T1(x − µ1)|| = 0 and ||T2(x − µ2)|| > 0, we assign vector x to class
one. If ||T1(x − µ1)|| > 0 and ||T2(x − µ2)|| = 0, we assign vector x to class two.
If ||T1(x− µ1)|| = 0 and ||T2(x− µ2)|| = 0, feature vector x comes from an object
that is both class 1 and class 2. If ||T1(x− µ1)|| > 0 and ||T2(x− µ2)|| > 0 feature
vector x comes from an object that is neither class 1 nor class 2.

6 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

4.2. Classifying by Distance. Let T1 and T2 be defined as before. We form
the discriminant function

f(x) = ||T1(x− µ1)|| − ||T2(x− µ2)||

which measures the difference between feature vector x and the flat associated with
class 1 and the flat associated with class 2. The decision rule is to assign vector
x to class 1 if f(x) > θ, otherwise assign to class 2. Here, after the discriminant
function is defined we determine the value of θ that minimizes the error.

Classifying by distance can also be done with respect to the class means. Here
the discriminant function is defined by

f(x) = (x− µ1)′C−1
1 (x− µ1)− (x− µ2)′C−1

2 (x− µ2)

As before, the decision rule is to assign vector x to class 1 if f(x) > θ, otherwise
assign to class 2. Here also after the discriminant function is defined we determine
the value of θ that minimizes the error.

4.3. Linear Classifiers. Classifying may be done by a linear decision rule.
Here the discriminant function is given by

f(x) = v′x

where vector v is the weight vector and is the normal to the hyperplane separating
the feature space into two parts.

If f(x) < θ the decision rule is to assign the vector x to class 1 otherwise to
class 2.There are a variety of ways to construct the weight vector v. One mthod is
by regression. Another is names the Fisher linear discriminant. A third is called
the support vector machine approach.

4.3.1. Regression Classifier. In the regression classifier, we form a matrix A
whose rows are the feature vectors. We form a vector b whose kth component is 0
if the kth feature vector comes from class one and whose kth component is 1 is the
kth feature vector comes from class two. We determine the weight vector v as that
vector that minimizes ||Av − b||. The minimizing vector v is given by the normal
equation

v = (A′A)−1A′b

The discriminant function is defined by

f(x) = v′x

We assign a vector to class one if f(x) < θ and to class two otherwise. θ is chosen
to minimize the error of the assignment.

4.3.2. Fisher Linear Discriminant. Fisher’s linear discriminant function is ob-
tained by maximizing the Fisher’s discriminant ratio, which, as described below, is
the ratio of the projected between class scatter to the projected within class scatter.

Let v be the unknown weight vector. Let µ1 and µ2 be the class one and
two sample means and let C1 and C2 be the class one and two sample covariance
matrices. Let N1 be the number of feature vectors in class one and let N2 be the
number of feature vectors in class two. Define the overall mean µ by

µ = P1µ1 + P2µ2

PATTERN RECOGNITION IN FREE GROUPS 7

where P1 = N1/(N1 +N2) and P2 = N2/(N1 +N2). Then the between-class scatter
matrix Sb is given by

Sb =
2∑

i=1

Pi(µi − µ)(µi − µ)′

= P1P2(µ1 − µ2)(µ1 − µ2)′

Define Sw to be the average class conditional scatter matrix, then

Sw =
2∑

i=1

PiCi

Finally, if we let S designate the scatter matrix of the mixture distribution,

S =
1

N1 + N2

N∑
k=1

[(xk − µ)(xk − µ)′]

then
S = Sw + Sb

In the one dimensional projected space one can easily show that the projected
between class scatter sb and the projected within-class scatter sw are expressed as

sb = v′Sbv

sw = v′Swv

Then the Fisher discriminant ratio is defined as

F (v) =
sb

sw
=

v′Sbv

v′Swv
The optimum direction v can be found by taking the derivative of F (v) with

respect to v and setting it to zero:

∇F (v) = (v′Swv)−2(2Sbvv′Swv − 2v′SbvSwv) = 0

From this equation it follows that

v′SbvSwv = Sbvv′Swv

If we divide both sides by the quadratic term v′Sbv, then

Swv =
v′Swv

v′Sbv
)Sbv

= λSbv

= λP1P2(µ1 − µ2)(µ1 − µ2)′v
= λκ(µ1 − µ2)

where λ and κ are some scalar values defined as

λ =
v′Swv

v′Sbv

κ = P1P2(µ1 − µ2)′v

Thus we have the weighting vector v as

v = KS−1
w (µ1 − µ2)

where K = λκ is a multiplicative constant.

8 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

The discriminant function is defined by f(x) = v′x. The vector x is assigned to
class one if F (x) > θ and to class two otherwise. The threshold θ is set to a value
that minimizes the error of the class assignment.

4.3.3. Support Vector. Let z1, . . . , zN be the set of N training vectors with
corresponding labels y1, . . . , yN , a label being +1 for class one and -1 for class two.
Consider a hyperplane ribbon R that can separate the training vectors of class one
from the training vectors of class two. We represent R by

R = {x |1 ≤ w′x ≤ 1}

The support vector machine approach seeks to find the widest ribbon so that R
separates the vectors of class one from class two.

The distance of the hyperplane H = {x | w′x = 1} from the origin is 1
||w|| .

Therefore the ribbon R has width 2
||w||| . To maximize this width is equivalent

to minimizing ||w||. This minimization must be done under the constraint that
ykw′zk > 1, k= 1,. . . , K. Define the matrix A by

A =

y1z

′
1

y2z
′
2

...
yKz′K

Define the vector b to be a vector of K components all of which have value 1. The
support vector approach determines the vector w by minimizing w′w subject to
the constraint Aw > b. This can be solved by standard quadratic programming
methods.

4.4. Quantizing. Let f be a discriminant function. We evaluate f(x) over
all the sampled vectors x from class one and from class two to determine the range.
We divide the range in a fixed number M of quantizing intervals. The simplest
way is called equal interval quantizing. Here the range is divided up into M equal
intervals. In each interval the number of sampled vectors coming from class one
and coming from class two is determined. The interval is labelled by the class of
the majority of the vectors in it.

A vector x having discriminant value f(x) which falls into the mth quantizing
interval is assigned to the class that labels the quantizing interval.

Another simple alternative quantizing scheme is to divide the range into inter-
vals each of which have the same number of sampled discriminant values. This is
called equal probability quantizing.

A more complex scheme is to divide the discriminant range into M intervals in
such a way that the classification error is minimized.

4.5. Classification Trees. The type of classification tree discussed here is a
binary tree with a simple discriminant function; thus every nonterminal node has
exactly two children [1]. During classification, if the node’s discriminant function
is less than a threshold, the left child is taken; if it is greater than the threshold,
the right child is taken. This section describes the design process of the binary tree
classifier using a simple discriminant function. There are two methods of expanding
a nonterminal node according to the selection of a decision rule for the node. We
show how to use an entropy purity function to decide what the threshold value
should be, and we discuss the relationship of the purity function to the χ2 test

PATTERN RECOGNITION IN FREE GROUPS 9

statistic. We discuss the criteria for deciding when to stop expanding a node and
for assigning a class.

Let x1, . . . , xN be the set of vectors in the training set. Associated with each
vector is a class label. Let M be the number of classes. Let

Xn = {xn
k | k = 1, . . . , Nn}

be the subset of Nn training vectors associated with node n. Let Nn
c be the number

of training vectors for class c in node n. Since Nn is the total number of training
samples in node n, we must have Nn =

∑M
c=1 Nn

c . The decision rule selected for
node n is that discriminant function having the greatest purity, a quality we will
precisely define later.

Now we define how the decision rule works at node n. Consider the feature
vector xn

k . If the discriminant function f(xn
k) is less than or equal to the threshold,

then xn
k is assigned to class Ωn

LEFT , otherwise it is assigned to class Ωn
RIGHT . An

assignment to Ωn
LEFT means that the feature vector descends to the left child node.

An assignment to Ωn
RIGHT means that the feature vector descends to the right child

node.
Given a discriminant function f , we sort the feature vectors in the set Xn in

an ascending order according to their discriminant function value. Without loss
of generality we assume that the feature vectors are sorted in such a way that
f(xn

k) ≤ f(xn
k+1) for k = 1, . . . , Nn − 1,. Let wn

k be the true class associated with
the measurement vector xn

k . Then the set of candidate thresholds Tn is defined by

Tn =
{

=
f(xn

k+1)− f(xn
k)

2

∣∣∣wn
k+1 6= wn

k

}
For each possible threshold value, each feature vector xn

k is classified by using
the decision rule specified above. We count the number of samples nt

Lc assigned to
Ωn

LEFT whose true class is c, and we count the number of samples nt
Rc assigned to

Ωn
RIGHT whose true class is c.

nt
Lc

= #{k
∣∣∣f(xn

k) ≤ t and wn
k = c}

nt
Rc

= #{k
∣∣∣f(xn

k) > t and wn
k = c}

Let nt
L be the total number of samples assigned to Ωn

LEFT and nt
R be the total

number of samples assigned to Ωn
RIGHT , that is,

nt
L =

M∑
c=1

nt
Lc

nt
R =

M∑
c=1

nt
Rc

We define the purity PRt
n of such an assignment made by node n to be

PRn =
M∑

c=1

(
nt

Lc ln pt
Lc + nt

Rc log pt
Rc

)
where

pt
Lc =

nt
Lc

nL

10 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

pt
Rc =

nt
Rc

nR

The discriminant threshold selected is the threshold t that maximizes the purity
value PRt

n. The purity is such that it gives maximum value when the classes of
the training vectors are completely separable. For example, consider a nonterminal
node having m units in each of three classes in the training sample. If the selected
decision rule separates the training samples such that the LEFT child contains all
feature vectors in one class and the RIGHT child contains all the feature vectors
in the other two classes, the purity is 0− 2(m ln 1

2) = −2m ln 2. In the worst case,
when both the LEFT and the RIGHT children contain the same number of feature
vectors for each class, the purity is −3(m

2 ln 1
3) − 3(m

2 ln 1
3) = −3m ln 3. Thus we

can easily see that the purity value of the former case, where the training samples
are completely separable, is greater than the purity value of the latter case, where
the training samples are not separable.

The maximization of the purity can also be explained in terms of the χ2 test
of goodness of fit. If a decision node is effective, the distribution of classes for
the children nodes will be significantly different from each other. A statistical test
of significance can be used to verify this. One test statistic that measures the
significance of the difference of the distributions is defined by

χ2 =
M∑

c=1

(
nt

Lc ln pt
Lc + nt

Rc ln pt
Rc −Nn

c ln
Nn

c

Nn

)
It has a χ2 distribution with M − 1 degree of freedom. Comparing this equation
with PRt

n, we find that the χ2 value is just the sum of the purity PRt
n and some

constant value.
Now we discuss the problem of when to stop the node expanding process and

how to assign a class to the terminal node. First, it is not reasonable to generate
a decision tree that has more terminal nodes than the total number of training
samples. Using this consideration as a starting point, we set the maximum level
of the decision tree to be log2 N1 − 1, which makes the number of terminal nodes
less than N1

2 , where N1 is the number of training samples in node 1, the root node.
Next, if the χ2 value is small, the distributions of classes for the children nodes are
not significantly different from each other, and the parent node need not be further
divided. Finally, when the number Nn of units at node n becomes small, the χ2

test cannot give a reliable result. Therefore we stop expanding node n when Nn is
less than some lower limit. If one of these conditions is detected, then the node n
becomes a terminal node.

When a node becomes terminal, an assignment of a label to the node is made.
Each terminal node is assigned that class label that is the majority of the class
labels of the training vectors in the node.

An alternative decision tree construction procedure uses the probability of mis-
classification in place of entropy. In this procedure the decision rule selected for the
nonterminal node is the one that yields the minimum probability of misclassifica-
tion of the resulting assignment. To describe the termination condition of a node
expansion, we first define type I and type II errors as follows: Let type I error be
the probability that a unit whose true class is in Ωn

LEFT is classified as Ωn
RIGHT ,

and type II error be the probability that a unit whose true class is in Ωn
RIGHT is

classified as Ωn
LEFT . Then, if the sample space is completely separable, we would

PATTERN RECOGNITION IN FREE GROUPS 11

get zero for both type I and type II errors. Since this is not always the case, we
control these errors by considering only those thresholds in the process of threshold
selection that give type I error less than εI and type II error less than εII , where εI

and εII are values determined before we start constructing the decision tree. Next,
in the process of expanding a nonterminal node, if we cannot find a decision rule
that gives type I error less than εI and type II error less than εII , which means
that the sample space is not separable at a εI and εII level, we stop expanding this
nonterminal node. This process of decision tree construction is repeated until there
is no nonterminal node left or the level of the decision tree reaches the maximum
level. Assignment of a class to a nonterminal node is done in the same way as in
the previous procedure.

As just described, there are two groups of classes at each nonterminal node in
the binary decision tree. For the purpose of discussion, we denote all the classes in
one group as ΩLEFT and all the classes in the other group as ΩRIGHT . The job of
the decision rules discussed here is to separate the left class ΩLEFT from the right
class ΩRIGHT . We will employ the same notational conventions used previously.
The superscript n denoting the node number will be dropped from the expression
if it is clear from the context that we are dealing with one particular node n.

The simplest form for a discriminant function to take is a comparison of one
measurement component to a threshold. This is called a threshold decision rule. If
the selected measurement component is less than or equal to the threshold value,
then we assign class ΩLEFT to the unit uk; otherwise we assign class ΩRIGHT to it.
This decision rule requires a feature vector component index and a threshold. Each
feature vector component is selected in turn and the set of threshold candidates T
of that component is computed. For each threshold in the set T , all vectors in the
training set Xn at node n are classified into either class ΩLEFT or class ΩRIGHT

according to their value of the selected feature component. The number of feature
vectors for each class assigned to class ΩLEFT and to class ΩRIGHT is counted,
and the entropy purity is computed from the resulting classification. A threshold
is selected from the set of threshold candidates T such that, when the set Xn is
classified with that threshold, a maximum purity in the assignment results. This
process is repeated for all possible feature components, and the component and
threshold that yield an assignment with the maximum purity is selected.

4.6. Clustering. All the previous methods required that the feature vectors
be generated for each of the objects to be discriminated and an associated class
label be associated with each of the feature vectors. In this section we discuss
a method to automatically determine the natural classes, called clusters, to be
associated with each feature vector. Feature vectors with the same cluster label
are more similar to each other and less similar to feature vectors of a different
cluster label. Clustering can be used to help generate hypotheses about natural
distinctions between mathematical objects before these distinctions themselves are
known.

The most widely used clustering scheme is called K-means. It is an iterative
method. It begins with a set of K cluster centers µ0

1, . . . , µ
0
K . Initially these are

chosen at random. At iteration t each feature vector is assigned to the cluster center
to which it is closest. This forms index sets St

1, . . . , S
t
K .

St
k = {n | ||xn − µt

k|| ≤ ||xn − µt
m||,m = 1, . . . ,K}

12 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

Then each cluster center is redefined as the mean of the feature vectors assigned
to the cluster.

µt+1
k =

1
#St

k

∑
n∈St

k

xn

Each iteration reduces the criterion function J t.

J t =
K∑

k=1

∑
n∈St

k

||xn − µt
k||

As this criterion function is bounded below by zero, the iterations must con-
verge.

5. Recognizing Whitehead Minimal Words in Free Groups

In this section we return to the Whitehead minimal word problem. We first
discuss a pattern recognition system based on linear regression, then we show some
applications of clustering.

5.1. Linear regression classifier. Data sets. To train a classifier, we must
have a training set. To test the classifier we must have an independent test set.

A ”random” element w of F = F (X) can be produced as follows. Choose ran-
domly a number l (the length of w), and a random sequence y1, . . . , yl of elements
yi ∈ X±1 such that yi 6= y−1

i+1, where y1 is chosen randomly and uniformly from
X±1, and yi+1 is chosen randomly and uniformly from the set X±1 − {y−1

i }. Sim-
ilarly, one can pseudo-randomly generate cyclically reduced words in F , i.e., words
w = y1 . . . yl where y1 6= y−1

l .
To generate the training data set we used the following procedure. For each

positive integer l = 1, . . . , 1000 we generate randomly and uniformly 10 cyclically re-
duced words from F (X) of length l. Denote the resulting set by W . Then using the
deterministic Whitehead algorithm one can effectively construct the corresponding
set of minimal elements

Wmin = {wmin|w ∈ W}.

With probability 0.5 we substitute each v ∈ Wmin with the word ṽt, where t is a
randomly and uniformly chosen Whitehead automorphism such that |ṽt| > |v| (if
|ṽt| = |v| we chose another automorphism t, and so on). Now, the resulting set
D is a set of pseudo-randomly generated cyclically reduced words representing the
classes of minimal and non-minimal elements in approximately equal proportions.
We choose D as the training set.

One remark is in order here. It seems, the class of non-minimal elements in
D is not quite representative, since every one of its elements w has Whitehead
complexity 1, i.e., there exists a single Whitehead automorphism which reduces w
to wmin (see [4] for details on Whitehead complexity). However, our experiments
showed that the set D is a sufficiently good training dataset which is much easier to
generate than a set with uniformly distributed Whitehead complexity of elements.
A possible mathematical explanation of this phenomena is mentioned in [4].

To test and evaluate the pattern recognition methodology we generate several
test datasets of different type:

PATTERN RECOGNITION IN FREE GROUPS 13

• A test set Se which is generated by the same procedure as for the training
set D, but independently of D.

• A test set SR of randomly generated elements of F (X).
• A test set SP of (pseudo-) randomly generated primitive elements in

F (X). Recall that w ∈ F (X) is primitive if and only if there exists a se-
quence of Whitehead automorphisms t1 . . . tl ∈ Ω(X) such that xt1...tl = w
for some x ∈ X±1. Elements in SP are generated by the procedure de-
scribed in [4], which, roughly speaking, amounts to a random choice of
x ∈ X±1 and a random choice of a sequence of automorphisms t1 . . . tl ∈
Ω(X).

• A test set S10 which is generated in a way similar to the procedure used to
generate the training set D. The only difference is that the non-minimal
elements are obtained by applying not one, but several randomly chosen
Whitehead automorphisms. The number of such automorphisms is chosen
uniformly randomly from the set {1, . . . , 10}, hence the name.

Features. We use the feature vectors f1(w), . . . , f6(w) described in Section 3.

Model. Our model is based on the linear regression classifier described in Section
4.3. For any word w having feature vector z(w) we compute the discriminant
function

P̂ (w) = b′z(w)
where b′ is the vector of regression coefficients obtained from the training data set
D. The decision rule is based on the equal interval quantizing method described in
Section 4.4.

Evaluation. Let Deval be a test data set. To evaluate the performance of the
given PR system we use a simple accuracy measure:

A = |{w ∈ Deval|minimality of w is decided correctly}|
It is the number of the correctly classified elements from the test set Deval.

Results. Now we present the evaluation of classifiers Pf on the test dataset Se

when f runs over the set of feature mappings f1, . . . , f6 mentioned above. By A(f)
we denote the accuracy of the classifier Pf . For simplicity we present results only
for the free group F of rank 2 with basis X = {a, b}.

The results of evaluation of the classifiers Pi = Pfi
, i = 1, . . . , 6 on Se are given

in Table 1.

A(f1) A(f2) A(f3) A(f4) A(f5) A(f6)
|w| > 0 0.954 0.968 0.926 0.869 0.977 0.980
|w| > 4 0.957 0.969 0.927 0.870 0.977 0.981
|w| > 100 0.975 0.984 0.947 0.893 0.992 0.994

Table 1. Performance of the classifiers P1, . . . ,P6 on the set Se.

One can draw the following conclusions from the experiments:

14 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

• It seems, that the accuracy of the classifiers increases when one adds new
edges to the graphs related to the feature mappings (though it is not clear
what is the optimum set of features);

• The classifier P6 is the best so far, it is remarkably reliable;
• Very short words are difficult to classify (perhaps, because they do not

provide sufficient information for the classifiers);
• The estimated conditional probabilities for P6 (which come from the

Bayes’ decision rule) are presented in Figure 1. Clearly, the classes of
minimal and non-minimal elements are separated around 0.5 with a small
overlap. So the regression works perfectly with the threshold Θ = 0.5.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

regression value

P
r(

 re
gr

es
si

on
 v

al
ue

 |
cl

as
s

)

minimal
non−minimal

Figure 1. Conditional probabilities for P6.

Looking for the best feature vectors. As we have seen above the performance of
a classifier Pf directly depends on the feature vector f(w) built into it. Sometimes
it is possible to reduce the number of features in f maintaining the same level of
classification accuracy of, and even find more efficient combinations of the given
features. The corresponding procedure is called feature selection.

By far, the feature vector f6 was the most effective. Observe, that f6 has 60
components (features). To find a better feature vector we used an iterative greedy
procedure to select the best vector from the set of all counting functions of the type

{C(w, xvy) | x, y ∈ X±1, v ∈ F (X), 1 ≤ |v| ≤ 3}.

It turns out that one of the most effective feature vectors consists only of two
counting functions:

f∗(w) =
1
|w|

< C(w, a−1b), C(w, b−1a) > .

The results of comparison of P∗ = Pf∗ with P1 and P6 are presented in Table
2.

PATTERN RECOGNITION IN FREE GROUPS 15

A(f1) A(f6) A(f∗)
|w| > 0 0.954 0.980 0.987
|w| > 4 0.957 0.981 0.989
|w| > 100 0.975 0.994 0.993

Table 2. Comparative results for P∗.

5.2. Clustering. In this section we describe one application of the K-means
clustering scheme to the Whitehead minimization problem.

In general cluster analysis is used to recover hidden structures in a sampled set
of objects. In the Whitehead’s minimization method the following Length Reduction
Problem is of prime interest: given a non-minimal word w ∈ F find a (length-
reducing) Whitehead automorphism t such that

|wt| < |w|.

Below we apply K-means clustering method described in section 4.6 to the
Length Reduction Problem. The task is to partition a given set of non-minimal
elements into clusters in such a way that every cluster would have a Whitehead
automorphism assigned to it which reduces the length of the most words from the
cluster. To illustrate performance of the K-means algorithm we take the feature
vector function f2 from Section 3 and the standard Euclidean metric in R4 (recall
that f2(w) ∈ R4 for w ∈ F2).

To perform the K-means procedure one needs to specify in advance the number
K of expected clusters. Since we hope that every such cluster C will correspond
to a particular Whitehead automorphism that reduces the length of elements in C
then the expected number of clusters can be calculated as follows. It is easy to see
that the set Ω2 of all Whitehead automorphisms of the free group F2(X) with basis
X = {a, b} splits into two subsets: the set

N2 =
{(

a → ab
b → b

)
,

(
a → b−1a
b → b

)
,

(
a → a
b → ba

)
,

(
a → a
b → a−1b

)}
of Nielsen automorphisms and the set of conjugations. If we view elements of F2 as
cyclic words (i.e., up to a cyclic permutation) then the conjugations from Ω2 can
be ignored in the length reduction problem. Therefore, we would like the K-means
algorithm to find precisely 4 clusters.

Let S ⊂ F2 be a set of non-minimal cyclically reduced words from F2. We
construct the set

D =< f2(w) | w ∈ S >

of feature vectors, corresponding to words in S. To start the K-means algorithm one
needs to choose the set of initial centers µ0

t , t ∈ N2. Observe, that the algorithm is
quite sensitive to this choice of the centers. There are various methods to generate
µ0

t , t ∈ N2, here we describe just one of them. Let S′ be a sample subset of the set
S. For an automorphism t ∈ N2 put

Ct = {w ∈ S′ | |wt| < |w|,∀r ∈ N2(r 6= t → |wr| ≥ |w|)}

16 R. M. HARALICK, A. D. MIASNIKOV, AND A. G. MYASNIKOV

and define

(2) µ0
t =

1
|Ct|

∑
w∈Ct

f2(w)

as the initial estimates for the cluster centers (we assume here that the sets Ct are
not empty).

The goodness of the clustering is evaluated using a measure Rmax defined below.
Let C ⊂ D be a cluster. For t ∈ N2 define

R(t, C) =
| < v||t(v)| < |v|, v ∈ C > |

|C|
.

The number R(t, C) shows how many elements in C are reducible by t. Now put

Rmax(C) = max{R(t, C) | t ∈ N2}.
The number Rmax(C) shows how many elements in Ci can be reduced by a single
automorphism.

Now we perform 4-means clustering algorithm on the set S and compute
R(t, Ci), t ∈ N2, for each obtained cluster Ci. The results of the experiments
are given in Table 5.2 for two different choices of the initial centers (the random
choice and the choice according to 2). We can see from the table that the clustering,
indeed, groups elements in S with respect to the length reducing transformation.

random µ0
t µ0

t estimated by (2)
avg(Rmax) 0.930 1.000
max(Rmax) 1.000 1.000
min(Rmax) 0.743 1.000

Table 3. Evaluation of 4-means clustering of the set D.

The experiments show that it is possible to cluster non-minimal elements in
F2, using the standard clustering algorithms, in such a way that:

• every cluster contains elements whose length can be (with a very high
probability) reduced by a particular Nielsen transformation;

• the transformation that reduces the length of the most elements from one
cluster does not reduce the length of the most elements in another cluster.

This gives a very strong heuristic for choosing a length reducing automorphism for
a given word w ∈ F2.

A simple decision rule which for a given word w ∈ F2 will predict a corre-
sponding length reducing automorphism t can be defined as follows. Let µt be the
centers of the clusters, produced by the K-means clustering. Each µt corresponds
to a particular automorphism t ∈ N2. For a given non-minimal cyclically reduced
word w ∈ F2 we select an automorphism t∗ ∈ N2 such that

∀t ∈ N2 (||f2(w)− µt∗ || ≤ ||f2(w)− µt||)
as the most probable length-reducing automorphism for w.

In the conclusion we would like to add that a similar analysis can be used to
predict most probable length-reducing automorphisms for words in free groups of
ranks n larger then 2. However, the number of the corresponding clusters grows

PATTERN RECOGNITION IN FREE GROUPS 17

exponentially with n which increases the error rate of the classification. In this case
more careful clustering still could be applied where the clusters correspond to some
particular groups of Whitehead automorphism.

References

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, 1984.

[2] S. D. Duda R., Hart P. Pattern Classification. John Wiley and Sons Inc., 2001.
[3] K. Fukunaga. Introduction to Statisical Pattern Recognition. Academic Press Inc., 1990.
[4] A. D. Miasnikov and A. Myasnikov. Whitehead method and genetic algorithms. Preprint.

[5] E. Patrick. Fundamentals of Pattern Recognition. Prentice Hall Inc., 1972.

[6] E. Schalkoff. Pattern Recognition. John Wiley and Sons Inc., 1992.

Department of Computer Science, Graduate Center, City University of New York,
365 Fifth Avenue, New York, NY 10016

