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Pattern Recognition with Measurement Space and 
Spatial Clustering for Multiple Images 

R. M. HARALICK, STUDENT MEMBER, IEEE AND G. L. KELLY, MEMBER, IEEE 

Abstract-Remote sensor imaging technology makes it possible 
to obtain multiple images of extensive land areas simultl!neously from 
the radar, infrared, and visible portions of the electromagnetic 
spectrum. It would be useful to automatically obtain from such data 
land-use maps indicating those areas of similar types of land, that is, 
similar as seen through the sensor's eyes. 

This classification problem is approached from the perspective of 
the structure inherent in the data. The classification categories or 
clusters so constructed are the natural homogeneous groupings 
within the data. There is high similarity within each cluster and high 
dissimilarity between clusters. 

Two clustering procedures are presented: the first partitions the 
image sequence and the second partitions the measurement space. In 
both, the partition is constructed by finding appropriate center sets 
and then chaining to them all similar enough points. The resulting 
clusters are ·simply connected and not necessarily convex. 

An example of the measurement space clustering procedure is 
presented for a set of three multispectral images taken over Phoenix, 
Ariz. 

I. INTRODUCTION 

THE pattern recognition problem can be considered as 
the problem of constructing a ~lassification decision 
rule and then employing this rule in order to identify 

a set of measurement N-tuples. In the remote sensing situa
tion, the ith component of each N-tuple can be the measure
ment made by the ith sensor. For example, in aerial photog
raphy a camera with a red filter, a camera with a blue filter, 
and a camera with a green filter would produce three dif
ferent components of a measurement N-tuple. Various 
frequency and polarization combinations can contribute 
components in a measurement N-tuple for radar imagery. 

The set of all possible measurement N-tuples which can 
be produced from a given set of sensors is usually defined as 
measurement space. Suppose we denote the N sensors by 
X 1, X 2 , • • ·, XN and the range set for the ith sensor by 
L;, i= I, 2, · · ·, N. Thus sensor X; produces a measurement 
which can be any one of the values in L;. 

Formally, measurement space G is defined as the Car
tesian product of the range sets: G=L1 x L 2 x · · · x LN. 
To facilitate our introductory discussion, we will tentatively 
use this definition of measurement space. 

The classification phase of the pattern recognition prob
lem consists of constructing a decision rule which defines a 
partition over measurement space, such that each cell of the 
partition has belonging to it measurements which are similar 
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to each other. In order to do this, we must have a measure 
of similarity between any two elements in measurement 
space. 

Similarity is sometimes defi~ed in terms of a priori 
knowledge. The investigator chooses a set of categories, 
and he calls similar all those measurements taken of objects 
in the same category. The problem here is to compromise 
on the inconsistencies with an appropriate decision rule; 
such a rule is a Bayes rule [I], [2]. Sometimes similarity is 
defined in terms of a posteriori knowledge. Two measure
ments are similar if the data structure indicates that they 
are similar. In this case the problem is to define a clustering 
or clumping procedure which links together all those ele
ments which are similar; such a procedure is the multiple 
linkage clustering method employed in numerical tax
onomy [3], [4]. 

In this paper we define similarity on the basis of the struc
ture of the data themselves. We wish to find the natural 
groupings or clusters within the data. These natural group
ings are sometimes called similarity sets and are charac
terized by being disjoint subsets of measurement space in 
which there is high similarity for elements in the same subset 
and high dissimilarity for elements in different subsets. 
Since the similarity sets are disjoint and cover measurement 
space, the collection of similarity sets is a partition over 
measurement space, each similarity set being a cell of the . 
partition. 

Various clustering methods have been developed for con
structing such partitions. One strategy analogous to the 
multiple linkage clustering method employed in numerical 
taxonomy is as follows: define similarity as being inversely 
proportional to Euclidean distance and evaluate the simi
larity between each pair of elements in measurement space. 
Then in a step-by-step fashion successively link or chain the 
most similar elements together. However, if measurement 
space is large, then the time needed to evaluate the simi
larity for all pairs of elements in measurement space be
comes excessive. 

A second strategy is an eigenvector technique [5], [6]. 
Clusters are constructed by determining the dominant 
eigenvector of the covariance matrix, then projecting the 
data onto the space spanned by this eigenvector, and split
ting them when the projected data have a multimodal dis
tribution. Covariance matrices are found for each of the 
subsets in the split data and the procedure is repeated until 
all data subsets have unimodal distributions. The tech
nique is easy to implement, but if the interdispersion of the 
actual clusters is too large compared to the intradispersion, 
then it fails. 
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The ISODAT A method iteratively improves the center 
position of the clusters on the basis of a squared distance 
criterion [7), [8]. During every iteration, each point is put 
into the cluster for which the squared distance between it 
and the cluster center point is least. Then the center point 
is updated. Although the ISODATA method is much faster 
than the multiple linkage clustering method, ISODATA is 
not fast enough for the large amount of points obtained 
from image data in the remote sensing situation. 

Sebestyen has proposed a technique somewhat similar to 
the ISODATA method [9], [10]. However, the Sebestyen 
technique is more oriented towards developing a nice repre
sentation of the probability density function rather than 
getting at the cluster structure of the data. 

A more extensive survey of clustering techniques may be 
found in Ball [11] and Friedman and Rubin [12]. 

The clustering method suggested in this paper is faster 
.,han the ISODATA method and is less sensitive to the ratio 

· of cluster interdispersion to cluster intradispersion. It 
achieves its speed by building one cluster at a time, thus 
eliminating much of the computation connected with find
ing the squared distance or similarity of a point with each of 
the clusters. It is less sensitive to the ratio of interdispersion 
to intradispersion because examination of the data is made 
in the full dimensionality of measurement space and not in 
some one-dimensional subspace. Finally, because cluster-

- ing is done on the basis of chaining, the method wor~ as 
easily for long stringy serpentine clusters as for spherical 
clusters. The clusters formed are simply connected and not 
necessarily convex. 

II. IMAGE DATA 

Now let us examine in detail the clustet problem for 
multiple-image data~ Consider first a single image with 
finite resolution. At first we might conceive of measurement 
space as the set of all possibly observed 3-tuples (a 3-tuple is 
an ordered triplet); the first two components are integers 
specifying the spatial coordinates of the resolution cell and 
the third component specifies a particular grey density 
which belongs to the range set of all densities between black 
and white. However, for any given pair of spatial coordi
nates there is one and only one measurement in the data set; 
this is so from any irilagery since each resolution cell can 
have only one grey density. Therefore, we may describe a 
single image as a two-dimensional sequence of resolution 
cells, each resolution cell containing a uniform density from 
the range set as shown in Fig. 1. In this case, it is more useful 
to conceive of measurement space as the density range set 
instead of the set of all possibly observed 3-tuples. 

Now suppoSe there are N sensors, each imaging the same 
environment. The sensors can be cameras, infrared scan
ners, or radar imagers. To make matters simple we bypass 
geometric image distortion and congruencing problems 
and suppose that the images from each sensor are in plani
metric correspondence. Let L; be the range set for image i. 
L; is the set of all possible densities which could appear on 
image i. We may set up the isomorphic correspondence of 
the lightest density of all the images with the number 0 and 
the darkest density of all the images with the number 1 and 
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655 . 

Fig. I. Single image. Resolution cell (i, J) contains a number which 
represents the particular grey density which fills the resolution cell. 

9ir ~ r-: esolutlon 

cell (l,j) 

Fig. 2. Multiple image. Resolution cell (i,J) contains t,Pe L-tuple density 
gii• gii=(g1. gij, · · ·, g~). where g~ is the density in the (i,J) resolution 
cell of the kth image. · 

all the various intermediate grey densities with the ap
propriate number between 0 and 1. Thus each range set can 
be considered as a set of numbers instead of a set of densities. 
Then each range set is contained in the interval [0, 1 ]. 

A multiple image, like a single image, is a two-dimensional 
sequence where each element in the multiple-image se
quence is a N -tuple which is some member of measurement 
space G. In this case, as mentioned previously, measure
ment space G is the Cartesian product of the range sets: 
G=L1 x L 2 x · · · x LN. If we suppose that the multiple 
image is rectangular with N x resolution cells horizontally 
and My resolution cells vertically, then we may represent 
the multiple image I as the sequence I= (gulieZx, jeZy) 
where Zx={l, 2, ···,NY}, Zy= {1, 2, ···,My}, and g;ieG for 
every i andj, that is, each gii is anN-tuple whose kth com
ponent is some number representing the power received by 
the kth sensor (we assume power and density to be propor
tional) when that sensor was looking at the (i, j) resolution 
cell (see Fig. 2). 

Clustering procedures, as we previously mentioned, 
usually partition measurement space. In the case of image 
data there are two candidates which might be partitioned. 
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(a) Simple image. 

1 2 1 3 3 

1 1 1 3 3 

1 1 1 3 3 

2 2 2 2 2 

2 2 2 2 2 

(b) Classified image using a best partition of G. 

1 1 1 3 3 

1 1 1 3 3 

1 1 1 3 3 

2 2 2 2 2 

2 2 2 2 2 

(c) Classified image using a best partition of Zx x z,. 
Fig. 3. 

One candidate is the set G which we have called measure
ment space, and the other is the set Zx x Zy, the set of 
spatial coordinates. However, a partition of Zx x ZY readily 

·leads to a more natural interpretation of image data as 
illustrated in Fig. 3(a). Here we have a single image, Zx=Zy 
= {1, 2, 3, 4, 5} and G= {giO~g~ 1 }. 

Intuitively, a good partition of G based on measurement 
space closeness with three cells is H={H;};=I, H1 = 

· {giO~g<.0.25}, H2 ={gl0.25~g<0.5}, H3 ={gl0.5~g~1}. 
This partition creates the partition A of Zx x ZY with three 
cells, A= {A;};= i [see Fig. 3(b)]: 

A.l = {(5, 1), (5, 3), (4, 1), (4, 2), (4, 3), (3, 1), (3, 2), (3, 3)} 

A 2 = {(5, 2), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (1, 1), (1, 2), (1, 3), 

(1, 4), (1, 5)} 

A3 = {(5, 4), (5, 5), (4, 4), (4, 5), (3, 4), (3, 5)}. 

A1 is the set of all spatial coordinates which have measure
ment space coordinates less than 0.25. A 2 is the set of all 
spatial coordinates which have measurement space co
ordinates between 0.25 and 0.5. A3 is the set of all spatial 
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coordinates which have measurement space coordinates 
greater than 0.5. 

A good partition of Zx x Zy based on spatial closeness 
probably is B={B;};=I [see Fig. 3(c)]: 

B1 = {(5, 1), (5, 2), (5, 3), (4, 1), (4, 2), (4, 3), (3, 1), (3, 2), (3, 3)} 

B2 = {(2, 1), (2, 2), (2, 3), (2, 4), (1, 5), (1, 1), (1, 2), (1, 3), (1, 4), 

1, 5)} 

B3 = { (5, 4), (5, 5), (4, 4), (4, 5), (3, 4), (3, 5)}. 

This partition of Zx x Zy does not create a partition of G 
since the resolution cell (5, 2) in B1 has the density 0.25 and 
the cell (1, 3) in B 2 also has the density 0.25; hence it cannot 
be uniquely determined whether 0.25 would go into the cell 
of a partition of G associated with B1 or the cell of a par
tition of G associated with B2 • We should also note that 
the resolution cell (5, 2), containing the density 0.25, on the 
basis of spatial proximity as well as density most likely
belongs with group 1, not group 2. It is because of this type 
of phenomenon that a good partition of Zx X zi leads to a 
more natural interpretation than a good partition of G. In 
this paper we suggest two clustering procedures: 1) spatial 
clustering, and 2) measurement space clustering. The first 
method partitions Zx x Zy and the second partitions G. 

III. SPATIAL CLUSTERING 

Our goal is to describe a clustering procedure which 
partitions the two-dimensional image sequence I, i.e., par
titions the domain of I, Zx x ZY. For a given K, where K is 
the number of clusters, we must find a partition H = {H;};= ~ 
such that 

K 

u H; = Zx x Zy and H; n Hi = 0 for i =I= j. 
i= 1 

From this partition H the classified image C can immedi
ately be constructed. Let ZK= {1, 2, · · ·, K}. The classified 
image C is that sequence (ciilieZx, jEZy) where each 
c;iEZK and Hc,j is the cell of the partition H to which the 
(i, j) resolution cell belongs. The first step in achieving our 
goal must be to understand the basis of clustering. 

The basis of a Clustering procedure is the grouping to
gether of similar items, but what constitutes similarity and 
why? To answer this question pragmatically we put forth 
the following model for images of extensive land areas on 
planetary surfaces : 

1) things which are very close together are probably the 
same or similar type of thing 

2) a sensor which is sensing the same or similar type of 
object will record the same or similar numerical 
measurement. 

Under this model spatial closeness as measured by Euclid
ean distance is a good measure of similarity, and we use it as 
part of the foundation of our clt1stering method. 

To see the rest of the foundation we must examine further 
the kind of structure we can expect to find in image data. 
First, relative to all else, the number of resolution cells per 
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image is very high .. This consideration implies that it is out 
of the question to cluster by comparing the spatial distance 
and measurement space distance from each resolution cell 
to every other resolution cell and one by one grouping 
together those cells closest together. There are too many 
comparisons. The number of comparisons can be cut down 
if center sets can be determined. We can cluster by grouping 
together all those points which are similar enough to the 
first center set and adding them to the center set. We con
tinue to cluster by grouping together all those points which 
are similar enough to the now enlarged center set. This pro
cedure can continue until there are no more points similar 
enough to the first center set. Then we can cluster around 
the second center set, etc. At this stage all is well; but how do 
we find the center set? To answer this question we continue 
our description of the density and spatial distribution struc
ture we can expect to find in image data. 

Grossly simplifying, an image may or may not have some 
sort of homogeneous background(s), and scattered in the 
background(s) (if any) are various categories of land use or 
objects. The scattered objects may or may not have a geo
metric pattern. Each type of object occupies an approxi
mately connected spatial region on the image. The measure
ment recorded for each point or each resolution cell of each 
object is not too dissimilar from the measurement recorded 
at any other point or resolution cell of that same object. In 
other words, the set of measurements recorded from each 
object is a fairly homogeneous set. There can be any spatial 
distribution of objects; one object may only occur once and 
others hundreds of times or each object may occur ap
proximately the same number of times. 

It would be intuitively reasonable to form center sets 
from those spatial locations which have fairly homogeneous 
measurement space coordinates and which are representa
tive measurements of a class of objects. However, since the 
location and extent of objects are unknown to the clustering 
procedure, it must try to induce this information from the 
data structure. Since we assume that the set of measure
ments recorded from any object form a homogeneous set, 
and the location of these measurements in the image se
quence is in a small and more or less spatially connected 
region, then perhaps by breaking up the image sequence into 
a set of spatially connected subsequences and examining 
the measurements in each subsequence we can obtain the 
necessary information. Thus we make each spatially con
nected subsequence 1) large enough to include within it a 
substantial proportion of the measurements recorded from 
at least one object, and 2) small enough so that a substantial 
proportion of the measurements recorded from the object 
make up a large proportion of the measurements in the 
subsequence. If we can form subsequences in this way, then 
the empirically observed probability distribution of the 
measurements in each sequence will be dominated by the 
substantial proportion of measurements in the sequence 
recorded from some particular type of object. Thus, if a 
par:ticular object occurs only once, then there will be one 
subsequence dominated by it. By picking out the kind of 
measurements which typify that subsequence (i.e., those 
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which have high probability in the subsequence), then the 
set of all the spatial locations containing these measure
ments is a good center set. 

Since the clustering procedure we have proposed starts 
with center set one, builds on it until not more similar 
measurements can be found, and then starts building on 
center set two, etc., we must specify how the order is de
termined for center sets. We should naturally start with the 
most important center set and here importance can be corre
lated with probability. That center set is most important 
which has the highest probability of all center sets in the 
subsequence from which it originates. 

We now summarize our description. I= (gijjiEZx, jEZy) 
is the image sequence where Zx= {1, 2, .. ·, Nx}, 
Zy= {1, 2, ···,My}; Zx x Zy is the domain of the sequence 
and each gii belongs toG, the measurement space. I can be 
represented as a function from the domain Zx x Zy into G; 
I:ZxxZY-+G. Let S={S.}.=q be a set of spatially con
nected subsequences of I. By a spatially connected sub~ 
sequence s. we mean that for every gijES" there exists at 
least one gkmESn such that the spatial distance between gij 
and gkm equals 1, i.e., 

d(gij• gkm) = j(i - k)2 + U - m)2 = 1 

and there exists no subsequence s~ of sn which has all of its 
members more than distance 1 away from s~c, its comple- · 
ment subsequence in s •. s~c is the subsequence of sn which 
contains all the elements of s. except for those inS~. 

We define the empirically observed probability P;(g) on 
S; as the proportion of elements inS; which have measure
ment space coordinates g. Let # be the counting measure 
on Zx x Zy so that, for example, #(S;) is the number of ele
ments in the subsequence S;. The sequence I is a function 
from Zx x ZY into G; for each (i, j)EZx x ZY there exists one 
and only one gijEG defined by I(i,j), i.e., gij=I(i,j). Since I is 
a function, for any gEG, r 1(g) is the inverse image of g; 
r 1(g) is the set { (k, m)} of all spatial coordinates in Zx x ZY 
such that I(k, m) =g. #(S;nr 1(g)) is then the number of 
elements in the subsequence S; which have measurement 
space coordinates g. P; is simply defined as 

#(S; n r 1(g)) 
P;(g) = #(S;) · for every g E G. 

From the collection of probability functions 
{ P;(g)jgEG};= i we must construct the center sets as well as 
define their importance. Let W be a function from G into 
(0, 1), W: G-+(0, 1), defined by 

W(g) = max Pi(g) 
j 

j = 1, 2, ... ' Q 

and let the sequence B = (g;jg;EG) be constructed such that 
W(g;)~ W(gi) whenever i~j. The collection of center sets 
is {I- 1(g;)};=q where r 1 (g;) is more important than 
r 1(gj) ifi~j. 

There are two parameters which govern how the cluster
ing proceeds. They are K, the maximum number of clusters 
(i.e., similarity sets or cells in the partition) wanted, and e, a 
probability cutoff parameter. 
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r~{ we niust now describe how the center set is used to form 
~~···. ·the similarity set. Our description proceeds inductively. 
f;;,. For convenience, let H 0 = 0. Suppose we have defined 
~~'~ Hn. We now define Hn+ 1 where n is less thanK. 
~}>. Let 

li t • ., ~ m}n?ig,EG- {~, H,)} j ~I, ·,Q. 

~ :;hlc~\~:e ::~~:.::~:;fi!~~~~.;t;~ in the sequence B 

'~.··. g is the most impo~~:·n:Lt-u~d measmement in 
-:_. thne+ ~et G. Let V0 be the set of spatial coordinates (i, j) for 
·::. which I(i,j)=gii=g1n+l; that is, it is the set of spatial co

~:.•~.. ordinates on the image which have g1n +, for their measure
~.· -ment space coordinates; V0 =r 1(g1n+ 1). We construct the 
l~' similarity set Hn+ 1 around its center set V0 . 

~~~ First we need the following definitions. Let d be the 

~··· Euclidean :;;:.:7~ :;ri~ ~~~~ xk~: + U _ m)' 

~-~~f~ ~e!f ~= ~~YE;~l~~~:~ ~~::~:a~~:r~~:e~~ ~o:::~~~~~:~ 
... ment (i,j) in Zx x ZY as 

dist1 ((i,j), A) = min d((i,j), (n, m)). 
(n,m)eA 

Similarly, for any subset D of G we define the distance be
tween D and the element g in G as 

dist2 (g, D) = min p(g, g'). 
g'eD 

2''' At the first stage we start with V0 as the center set of Hn+ 1. 
~~-~ , Then we build on V0 successively forming V1, Vz, · · · , l'ko' · · · 
Ji~'- . until there is nothi~g more which, can be added to t~e cur
~·. rent set. We descnbe how the V; s are constructed mduc
~: tively. Suppose we have defined l'ko; we now define l'ko+ 1· 

t. 'Let 
~-. 

U = {(i,j) E Zx X Zy- k~O HkiO < dist1 ((i,j), J-k0 ):::; 1 

and 0 < dist2 (/(i,j), J(fk0 )) :::; l} · 
U is the set of all spatial locations (not already included in 

' other similarity sets or in the present set l'ko) which are 
spatially closer to the set l'ko than 1 and whose corresponding 
measurement space coordinates are closer in measurement 
space G to the cluster /(fk

0
) than 1. If U # 0. then the chain

ing procedure is terminated and Hn+ 1 = l'ko· If not, then 
let {(i,j)} be the set of all spatial coordinates in U, {(i,j)} c U, 
such that 

1) P(gii) ~ eh 
2) P(g;j} :::; hje 
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where 

gij = /(i,j), h = min P(gkm) 
(k,m)eVk0 

and 

h = max P(gkm)· 
(k,m)eVk0 

If {(i,j)} is empty, Hn+ 1 = fk
0

• If {(i,j)} is not empty, define 
l'ko+ 1 = ~0u{(i, j)}. After constructing the disjoint subsets 
H i• i = 1, · · · , K, we are not sure that 

K 

U H; = Zx X Zy. 
i= 1 

. Therefore we initiate a nearest-neighbor spatial search. For 
every pair of spatial coordinates (i, j) in 

K 

Zx X ZY- U H; 
i= 1 

we assign an index as follows. Let[> be the smallest number 
such that 

A= {(n, m)i(n, m) E ;~1 H;,d((i,j), (n, m)) < [> }' 

is nonempty. A is the set of all spatial coordinates which 
already have been classified and which are a distance less 
than [> away from (i, j). Let r be the smallest index which 
maximizes #(AnH,); we assign the index r to (i, j). After 
every pair of spatial coordinates in 

M 

Zx X Zy- U H; 
i= 1 

has been assigned an· index r, they are put into the corre
sponding subset H,. The union of the H;'s now covers 
Zx x ZY and { H;};= ~ is a partition of Zx x Zy. 

IV. MEASUREMENT SPACE CLUSTERING 

Our goal is to describe a clustering procedure which par
titions measurement space G. We proceed in a manner 
similar to the discussion in Section III. We wish to start with 
center sets which are ordered. We build on the first center 
set until no more measurements in G are similar enough to 
it and then start with a second center set, etc. The difference 
between the measurment space clustering and the spatial 
clustering is that in the former, center sets are subsets of 
Z x Z whereas in the latter, center sets are subsets of G. 

xLet P be the empirically observed probability distribu
tion on G. Pis defined by 

#(r 1(g)) 
P(g) = #(r 1(G)) 

for every g in G, where /, I :Zx x Zy-+G, is the image se
quence. The possible center sets will be singleton sets 
{g} forginG. Perhaps one simple way to order the single 
sets is by their empirically observed probabilities: the set 
with the highest probability first and the set with the lowest 
probability last. However, with such an ordering, some 
center sets would rank too low-specifically those in small 
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isolated pockets having relatively high probability com
pared to their surrounding neighborhoods, but low proba
bility globally. Center sets of relatively high probability 
locally and low probability globally should rank just below 
center sets of relatively high probability locally and high 
probability globally. Therefore, the ordering for the elements 
in measurement space G, obtained from the empirically 
observed probability function P, must clearly be based on 
more global properties than the probability of {g}. 

We propose that the ordering be based on the association 
of the cylinder sets which characterize the singleton sets 
{g} for g in G. Suppose the range sets L; are quantized so 
that L;= {lit, 1;2 , • • ·, liN.}, i= 1, 2, · · ·, N. The cylinder set 
Eii is defined by 

Eii = {g = (x1, x2 , • · ·, xN)Ix; = l;J: 

i = 1,···,N;j = 1,···,N;. 

For every gEG, g=(x1, x 2, • • ·, xN), let t:5(g) be the character
istic function of g; t:5(g)=(t:51(g), t5 2(g), · · ·, t:5N(g)), where 
b;(g) = j if and only if X;= Iii· It can easily be shown that for 
any gEG, 

N 

{g} = n E;~,<g>· 
i=1 

Since each singleton subset {g} is equivalent to an ap
propriate intersection of cylinder sets, and the cylinder sets 
do reflect more global properties than {g}, it is natural to 
base the ordering on the association between the ap
propriate cylinder sets. 

We use the coefficient Vas a measure of association [13 ]. 
For any two subsets A and B of G, Vis defined as follows: 

V(A B) = P(A n B)P(Ac n B<) - P(Ac n B)P(A n B<) 
' [P(A)P(Ac)P(B)P(B<)] 112 

where Ac is the complement of A. It is quickly verified that 
V has the following properties : 

1), V(A, A)= 1 
2) V(A, B)= V(B, A). · 
3) V(A, B)= 0 if and only if P(AnB) = P(A)P(B) 
4) V(A, R")=- V(A, B). 

Let f be the function which establishes the raiik of each 
g in the ordering : 

f(g) =max i = 1, · · ·, N v(E;~,<g>• ~ Ei~·<g>) · 
i j= 1 J 

i*i 

The sequence B=(g;lg;EG) is constructed such that f(g;) 
"?. f(gi) whenever i ~j. 

As in Section III, two parameters govern how the cluster
ing proceeds: K, the maximum number of clusters (i.e., 
similarity sets or cells in the partition) wanted, and e, a 
probability cutoff parameter. 

We now may describe the clustering procedure induc
tively. For convenience, we let the first cell or cluster H0 be 
the empty set cp. Suppose we have defined cell H". We define 
Hn+ 1 for n less thanK. 

Let 

G 

Fig. 4. Geometric illustration of how distance is used 
in the clustering procedure. 
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Thus tn+ 1 is the smallest index of those g/s in the sequence B 
which have not already been included in 

and {g1n +.} is the most important unused center set con
tained in G. We construct the cluster Hn+ 1 around its center 
set V0 = {g1n+ J We build on V0 , successively, forming V1, 
V2 , • • • , ~o' · · • , until there is nothing more which can be 
added to the current set. We describe how the V;'s are 
constructed inductively. Suppose V.k has been defined. We 

0 ) 

assume that there is a metric p on G; p: G x G-+[0, oo]. 
Therefore, p [14] has the following properties: 

1) for every g1, g2EG, p(g1, g2)"?.0 with equality if and 
onlyifg1 =g2 

2) for every gl> g2EG, p(g1, g2 )=p(gz, g1) 
3) for every g1, g2 , g3EG, p(g1, g3)~p(g1, gz)+ p(gz, g3). 

In this paper we take p to be the standard Euclidean dis
tance measure· and assume that each of the values in the . 
range sets are integers. Let 

where 

dist (g, ~0) = min p(g, g'). 
g'EVk0 

S is the set of all the elements in G which are not already 
included in other clusters 

n 

U H; 
i= 1 

or the present set ~o' and which are a distance less than 1 
away from ~0, as illustrated in Fig. 4. If S =4J, then cluster
ing procedure is terminated for the (n+ 1)th similarity set, 
and we define Hn+ 1 = ~o· If we find agES which is similar 
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P(g) 

~ -------------------------------------£ 

e Other elements in V k 
0 

h = m!n P(g') 
g'£Vk 

--------- - 0 ---

L_-----------------------------------------+9 
Fig. 5. Geometric illustration of how probability is used in the clustering 

procedure for a one-dimensional measurement space. 

Fig. 7. Image taken over Phoenix, Ariz., with a bandwidth of 
520 to 550 millimicrons. 
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Fig. 6. Image taken over Phoenix, Ariz., with a bandwidth of 
400 to 500 millimicrons. 

Fig. 8. Image taken over Phoenix, Ariz., with a bandwidth of 
810 to 900 millimicrons. 
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PHOENIX 

~-;:'; ,._..·: 

Fig. 9. A 400- to 500-millimicron image quantized to 10 levels. 

PHOENIX 
PHOEI'tl X 

Fig. 10. A 520- to.550-millimicron image quantized to 10 levels. Fig. 11. An 810- to 900-millimicron image quantized to 10 levels. 
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(a) Category 1 identified. The large field and the lawn grass are seen 
as similar. 
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(c) Category 3 identified. The middle part of the turnpike complex is 
different from the rest. Notice that a few houses are seen as similar to a 
section of the turnpike. These houses probably had roofs made of material 
with the same type of reflectance properties as this part of the turnpike. 
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(b) Category 2 identified. It seeins mainly to be dirt or dirt overgrown 

with weeds. 
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(d) Category 4 identified. It largely consists of the rectangular field at 
the top. 

Fig. 12. 
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(e) Category 5 identified. It is largely the bottom part of the turnpike. 
Notice the house which is seen as similar to it. The roofing material on this 
house must have reflectance properties similar to this section of the 
turnpike. 
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(g) Category 7 identified. Due to the crudeness of the quantization, 
the grossness of the resolution, and inaccuracies of perhaps one resolution 
cell in congruencing the images, not all the houses (which are only three or 
four resolution cells) were seen as similar. However, Category 7 represents 
a substantial portion of the houses. 
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(f) Category 6 identified. The uppermost left field is seen as similar to 
the right part of the triangular wedge-shaped field of dirt overgrown with 
weeds at the bottom. Perhaps this part of the wedge-shaped field was 
wetter or drier than the rest of it. 
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(h) Category 8 identified. It consists largely of the upper portion of 
turnpike complex. It is interesting to note that there are probably three 
different types of road materials used in the turnpike construction. 

Fig. 12 (cont'd). 
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. _ •· enough to J-k
0

, then we add that g into J-k
0

• "Similar enough" 
· · is determined by the following four conditions: 

1) P(g) ;;:::: P(g') for every g'ES 
2) P(g);;:::;eP(g1n+.) 
3) P(g);;:::: e min P(g') 

g'eVk0 

1 
4) P(g)5,- max P(g'). 

B g'eVk0 

If there exists a gES satisfying these conditions, then we set 
Vko+ 1 =J-k

0
u{g}; if no such g exists, then the clustering 

• ._ procedure is terminated and we set Hn+ 1 = J-k
0

• 

It is useful to discuss the interpretation of these condi
tions. Condition 1) mel;lns that of the not-yet-clustered 
elements within a distance 1 from J-k

0
, we wish to consider 

only those of highest probability. Condition 2) means that 
we wish to consider only those elements whose probability 

. is not too much smaller than the center element g in 
" tn+l 

· · H n + 1. This guarantees that there will not be too wide a 
variance for the elements in H n + 1, and it prevents us from 

· · considering background noise. Conditions 3) and 4) restrict 
·· our attention to only those elements which have proba

,'bilities not too different from those already considered in 
· the cluster. Extreme differences usually indicate an outer 

. • boundary for the cell H n + 1. Fig. 5 illustrates these conditions 
·geometrically for the case when G is one-dimensional. 

Clearly the subsets H;, i= 1, · · ·, K, when constructed, are 
disjoint subsets of G, but it is not certain whether 

K 

U H;= G. 
i= 1 

To make sure the { H;}; = ~ is a partition of G, we perform a 
:. nearest-neighbor search procedure. 

For each 
K 

gEG- U H; 
i=1 

we assign an index as follows: let r be such that 

dist(g,H,) = disdg, ;9
1 
H} 

· where we choose the smaller r if r is not unique. After all 
the points in 

K 

G- U H; 
i= 1 

have been assigned an index, they are included in the cor
_responding subset H,. We now have {H;};= ~.a partition of 
G with K cells. 

V. APPLICATION TO MULTISPECTRAL IMAGERY 

Figs. 6, 7, and 8 illustrate three images taken on 70-mm 
film from a nine-lens multispectral camera. The images are 
over a suburb of Phoenix, Ariz. Each image recorded the 
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energy in a specific bandwidth. These were 400 to 500 
millimicrons, 520 to 550 millimicrons, and 810 to 900 milli
microns, respectively. Each image was put on an 80 x 80 
grid, and the average density for each resolution cell was 
measured by hand with a microdensitometer: The densities 
on each image were then quantized to ten levels; the reduced 
quantized images are illustrated in Figs. 9, 10, and 11. 

The measurement space clustering classification method 
described in Section IV was programmed for a GE-625 
computer and was tried out for the Phoenix imagery. The 

. maximum number of categories K was set equal to 8 while 
the parameter e was allowed to vary. 

An identification of each resolution cell on the quantized 
imagery was made with respect to the similarity sets or 
clusters constructed. For small e, less than 0.01, the first 
couple of similarity sets constructed were so large that they 
alone covered the entire image. For large e, greater than 
0.6, the similarity sets found seemed to have no correspon
dence to reality-turnpikes, roads, and fields composed the 
same similarity set, for example. Variations of± 10 percent 
in the final value of e had no effect on the results. A value of 
e of0.13 gave the best balance with regard to size of similarity 
set and correspondence with reality. 

When K is too small, the clusters constructed tend to be 
large, indicating only the most distinct and different simi
larity sets. When K is too large, some clusters can be 
empty or indicate unimportant noisy pockets. K should be 
chosen to be the number of distinct homogeneous cate
gories the investigator thinks it is reasonably possible to 
obtain from the data. Fig. 12 illustrates the identification 
resulting from a value of0.13 fore and 8 forK, and indicates 
an interpretation for each of the resulting simitarity sets. 

VI. CoNCLUSIONS 

We have presented two clustering algorithms for multiple 
images: one which partitions measurement space and one 
which partitions the image sequence itself. Both algorithms 
terminate in a finite number of steps since there are only a 
finite number of data points to be classified. However, the 
exact number of steps is variable and depends on the nature 
of the cluster and the number of resolution cells considered. 

To the author's knowledge, all clustering procedures 
suffer because it is required to specify various parameters. 
The technique proposed here requires specification of K, 
the maximum number of categories, and e, the probability 
cutoff parameter. For a good clustering, various combina
tions of K and e must be tried. It would be useful if a good
ness criterion were formulated so that the partition con
structed could be evaluated for each (K, e) combination. 
Then a search can be done on K and e to find the values 
which give the best result. However, this poses another 
problem because average minimum distance or entropy
type criteria are not necessarily the best criteria. More 
fundamental work needs to be done regarding the nature 
of clusters and exactly what constitutes a good criterion for 
judging cluster classifications. 
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Further research can be done in using this type of cluster
ing as a possible coding scheme in transmitting remotely 
sensed images of planets. Instead of transmitting the mea
surement space coordinates for each resolution cell, only a 
code for the cluster in which the resolution cell or the mea
surement space coordinates reside need be transmitted. 
This can offer a considerable reduction in bandwidth when 
used properly. 
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Relating Remote Sensor Signals to 
Ground-Truth Information 

WALTER G. EPPLER, JR., MEMBER, IEEE, AND ROY D. MERRILL, JR., MEMBER, IEEE 

Abstract-This paper describes two computer-based methods for 
data handling and display which significantly simplify the task of 
relating remote sensor signals to that ground-truth information which 
can be derived from aerial photographs of the ground scene. These 
techniques have been applied successfully to microwave radiometer 
and infrared spectrometer flight-test data. Results indicate that the 
digital computer. with its associated storage and display capabilities, 
makes possible systematic and accurate analysis of remote sensor 
data in large volume at low cost. In one approach, the computer is 
used to determine and display, on aerial photographs, the exact path 
of the sensor boresight over the ground scene. Using this display, an 
investigator can observe visually certain simple correlations between 
the sensor return and the ground scene. In the second approach, the 
analyst uses a special light-pen console to put ground-truth informa
tion (in graphical form) into the computer. Using techniques described 
here for storing. retrieving. and processing graphical data, the com
puter automatically converts the ground-truth information into a 
form where it can be correlated directly with the remote sensor 
signals. 
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I. INTRODUCTION 

I NVESTIGATORS in many countries are current!~ 
conducting aircraft flight tests in support of research · 
on remote sensing of the environment. In these flight 

tests, the output signals from many different types of sensors 
are recorded while the aircraft is flown over a variety of 
terrain types. The .basic objective of these tests is to deter
mine how outputs from each of the various sensors depend 
on the type of material in the sensor field of view. To satisfy 
this objective, it is necessary to relate the recorded sensor 
signals to the ground truth visible in or derived from1 

aerial photographs taken in the course of the flight test. 
At the beginning of a typical flight-test program, the 

investigator is usually presented with several aerial photo
graphs and a strip-chart recording of the sensor output 
signal. He often spends many hours trying to determine 
which particular object in the ground scene gave rise to 

1 In some cases it is not possible to obtain all of the necessary ground
truth information (e.g., soil type, soil moisture content, plant species, e1c.) 
from the aerial photography alone. In these cases, however, ground
truth teams can be directed to the location in question by reference to the . 
landmarks evident in the photographs. 
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