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Abstract Simple optimization procedures are used to obtain optimal filters based on the Matheron
expansion for binary images corrupted by subtractive noise. The Matheron expansion allows us
to represent all morphological filters as either a union of erosions or an intersection of dilations.
We perform a search over a subset of the filters represented by the union-of-erosions version of the
Matheron expansion. We present results for a set of simple binary images with regular borders and
a more complex set with very irregular borders. Results are compared against results for binary
closings.

1 Introduction

Noise manages to corrupt most images in one way or another. As a result, a common problem
in image processing is filtering a noisy image to recover the original. Linear filters are well un-
derstood. In addition, they are easy to design and analyze. Classical Wiener filtering provides a
mathematically simple and computationally efficient optimization process. Unfortunately, linear
filters often blur edges and introduce other types of distortion. Nonlinear methods, while more
intractable than linear methods, tend to have many desirable properties, such as the ability to
preserve edges. There are no simple optimal-filtering methods for nonlinear filters, such as Wiener
filtering. Optimal nonlinear filters are often found by computationally intensive search procedures.

A number of papers have been written on the subject of optimal nonlinear filtering. For instance,
Coyle et al. present theoretical and experimental results for optimal stack filtering of gray-scale
images [1][2], and Schonfeld and Goutsias derive optimal morphological sequences of openings and
closings for binary images based on the pattern spectrum [3]. Our interest focuses on the approach of
Dougherty [4] [5], who derives several results for optimal binary and gray-scale morphological filters
based on the Matheron expansion. This representation originally was introduced by Matheron [6).
Maragos [7] and Giardina and Dougherty [8] give several variations on the theorem for both binary
and gray-scale images defined on both continuous and digital domains. With these representations,
filters are expressed as either a union/max of erosions or as an intersection/min of dilations for
binary/grayscale images.

As presented, the methodology of [4] presents an intractable search for optimal structuring elements
if one wishes to consider even moderately large structuring elements. To mitigate the search prob-
lem, Loce and Dougherty [9] [10] have employed various optimization constraints, search strategies,
and error representations. Most relevant to the current approach is library optimality [9], where
only structuring elements contained in some a priori library are examined for filter goodness.

Most relevant to the optimization routine developed herein is the model-based approach of Dougherty .
and Haralick [11], who model classes of images in terms of the holes within them and model noisy
images in terms of the new holes created by hole-creating noise processes. The intent of [11] is to
develop a “spectral-like” approach akin to frequency-based Wiener-type filtering. As the Wiener



filter weights the spectrum of the noisy image to a produce mean-square-error-optimal estimate of
the uncorrupted signal, the method of [11] examines the therein-defined “hole-spectrum” to derive
an optimal morphological filter (based on the Matheron expansion). Although there is an algorith-
mic paradigm discussed in theoretical terms [11], it is tied to the hole spectrum and is not actually
implemented. For completeness, we mention that Haralick et al. [12] have presented a model-based
Wiener-type approach to opening filters based on the opening spectrum. This approach, however,
is not immediately relevant herein because it does not utilize the Matheron expansion.

As in [11], we focus on holes created by a subtractive noise process. We relax the model require-
ments, however, by postulating only a noise-process model and not an uncorrupted-image model.
The cost is a lack of mathematical elegance and a spectral formulation of the filter; the gain is
a simple and practical nonlinear-optimization procedure for restoration of images corrupted by
subtractive noise.

In Section 2 we briefly discuss the basic morphological operations of erosion and dilation and
introduce the Matheron expansion theorem and discuss its various properties. In Section 3 we
discuss our optimization procedure for binary images corrupted by subtractive noise. Optimal
filters are derived for two sets of images and experimental results are presented in Section 4. In the
final sections we discuss the performance of our algorithm and some of the extensions required for
other noise models.

2 Morphological Preliminaries

If E is the set of numbers used for the row column coordinates of a binary image, then a binary
image F'is a subset of EXE. Dilation is defined as

FOoK = {z| forsome fe Fandke K,z= f+k}

= UFk:

keK

where ' C EXE, K C EXE. The set K is referred to as the structuring element. The notation
Fy denotes the set obtained by adding k to each point of F. The set F} is the translation of the
set F' by the point k. Erosion of a binary image F by a structuring element K is defined as

FOK = {z| foreveryke€ K,z+ k€ F}

= [\ F

kex

A morphological opening is defined as an erosion followed by dilation,
FoK=(FO6K)® K,
and a morphological closing is defined as a dilation followed by an erosion,

FeK=(FaK)OK.



For further reference see Giardina and Dougherty [8].

A binary-image-to-binary-image mapping is denoted by ¥ : EX E — Ex E. A mapping ¥ is said
to be a T-mapping if it is translation invariant. That is, if ¥(F;) = ¥(F),. A mapping is said to
be increasing if F C G implies ¥(F) C ¥(G). Increasing T-mappings are an important class of
filters. Erosion, dilation, opening, and closing are increasing T-mappings. Increasing T-mappings
are also called “morphological filters” [8].

The kernel of an increasing T-mapping ¥ [6][7][8] consists of all the sets F where the origin is
contained in ¥(F),

. Ker(¥) = {F:{0} € ¥(F)}. (1)

The following representation theorem [7][8] is originally attributed to Matheron [6]. E ¥ : Ex E —
E X E is an increasing 7-mapping, it possesses a representation

9(F)= |J FoxK (2)
KeKer(¥)

The kernel of ¥ is far too large to make this realization of ¥ computationally practical. The
function ¥ can be realized as an expansion over a basis set Bas[¥] rather than the kernel. The
basis for the kernel [8] is a subset of the kernel. The members of a basis set must satisfy two
conditions [8]. These conditions are

1. f F,G € Bas[¥], then F € G and G ¢ F;
2. For any F €Ker[¥] there exists G €Bas[¥] such that G C F.

Dougherty and Giardina show that if a basis exists, it is unique [13]. They also provide a bound
on the number of elements in the basis. This bound is dependent upon the size of the domain of
the image being filtered. The number of elements in the basis is usually a manageable size. If not,
the basis can often be truncated with reasonable approximate results. Dougherty [4] [5] presents
an approach where optimization is performed by searching over sets of bases.

A function ¥ that satisfies the above conditions can also be represented by an intersection of
dilations (Matheron [6]). f ¥ : Ex E — E X E is an increasing 7-mapping, it possesses a
representation

¥F)= (] F8&k. (3)
KeKer(¥°) -

The dual of ¥ denoted as ¥* and is given as [8]



T*(F) = (¥(F°))". (4)

3 Optimal Morphological Filtering For Subtractive Noise

We wish to design a filter to restore a class of images with similar structural features that are
corrupted by noise with known statistics. The noise process is one that creates holes in the images.
Our algorithm incorporates knowledge of the structure of the images through a representative set
of ideal training images {Fi, Fs,... Fa}.

The noise is modeled as a set of possible hole shapes {Ny, N, ... N;} with an associated probability
distribution. The set of possible hole shapes that may occur is assumed to be finite and their
probability distribution known. It is also assumed that holes with respect to a given structuring
element K, do not interfere with each other. Noninterference with respect to a structuring element
K means that any hole dilated by K has an empty intersection with every other hole. This is the
set of noise modeling assumptions used in our optimization algorithm. These assumptions compose
the full set of our model assumptions (compare to [11]). While they often will not be completely
satisfied, filters derived under the model perform well so long as the noninterfering hypothesis is only
moderately violated. This robustness relative to moderate interference is consistent with respect
to grain overlapping reported in other morphological studies ([3][12][14][15]). The performance of
filters optimized under these assumptions will not be greatly affected by an increased variety of
hole shapes and interference among holes present in real images.

With this model the noisy F image can be represented by
F=F-N=FnNs, (5)

where F' is an ideal image. The noise N can be represented as

I
N = U N;@{z;x,miz,...}, (6)

1=1,2...

where the N; belong to the set of hole shapes { Ny, N, ... N7}, and {zi,,zi,, ...} are sets of randomly
distributed points determined by the hole distribution and underlying point process.

In some cases, hole interference effects will be too great toignore. One way around this problem is to
augment the set of noise shapes {N;, N,,... N r} to include some of the interference. If single-point
noise is considered, the set of noise shapes consists of just a single-point hole. By considering the
probabilities that these holes fall together to create larger holes, the noise model can be adjusted
to account for holes with two points, three points etc.

With subtractive noise, all the points of the noisy image belong to the ideal image. We wish to
restore the missing points. To do this, we use the union-of-erosions form of the Matheron expansion.
With this form, the single-point structuring element consisting of the origin is always used as one



element in the expansion. This erosion is just an identity operation, and it ensures that all points
of the noisy image are included in the output. Then, other erosions in the union are used to restore
the missing points.

An example of how a single erosion fills a hole is shown in Figure 1. Since the origin has been
included as a structuring element, the rest of the structuring elements do not include the origin
due to basis requirement (1): that each basis structuring element cannot be contained in any other
basis structuring element. A point z belonging to a hole at z (z € N,) is filled when all the points
of the translated structuring element K, fit into the noisy image (K. C F).

Instead of optimizing by searching over sets of bases [4][5][9][10], we build a basis with a simple
best-first search. At each step in the search, we choose the structuring element with the minimum
cost. In order to obtain a basis, structuring elements are chosen so that they meet the conditions
1 and 2 for members of a basis. It is not computationally possible to search over all possible
structuring elements. For example, the number of structuring elements that are contained within
a 5 x 5 grid is 25 x 225. As with the library approach [9][10], we limit our search to structuring
elements that intuitively seem to be good at fixing holes. With this method, we hand pick a set of
N (several hundred) structuring elements {K, K3,... Kn} over which we execute the search.

In choosing structuring elements, we must consider their connectedness or disconnectedness. Struc-
turing elements that are good at filling holes are often, but not always, disconnected sets. This
is because, in addition to how well a structuring element fills holes, we must consider how much
a structuring element degrades the noise free image (see [9] [11]). Figure 2 shows how two-point
disconnected (K;) and connected (K,) structuring elements both fix a hole equally well but K,
overfills along the right edge. This is because the erosion of an image by a connected structuring
element not containing the origin translates the image so that part of it falls outside the border
of the original image. Disconnected structuring elements can be chosen to translate the image in
opposing directions and then intersect. As a result, most of the erosion falls within the boundary of
the original image. Another consideration is the amount of overfilling a structuring element does.
Structuring elements that fix holes well but tend to overfill can often be modified by the addition
of a few points so that they still do a good job of fixing but overfill far fewer points.

In our algorithm we want to be able to determine for a noisy image F with a hole Ny, whether
f belongs to F © K. One way to determine this is to actually erode F by K. This method is
inefficient, however, since we wish to consider a large number of such cases, and performing an.
erosion for each case is far too computationally expensive. A more efficient method is to use the
result of the following proposition that specifies under what conditions a given pixel f ¢ F will be
included in F e K.

Proposition: SupposeF:FﬂN;. Then (fEe FO K and fE NS K)if fe FO K.

Proof:
fEN;©OKand fe FEKiff

fE(FOK)N(N;oK)iff



FE(FNN;)oK=FoK.

By checking whether the noise satisfies f € Ny°© K, and whether the noise-free image satisfies
f € FO K, it is possible to determine whether a given point is in # & K without actually eroding
the noisy image. The set ' © K is an upper bound on the set of points that can be added to the
expansion with the use of the structuring element K in the expansion. The set of points that will
actually be added are a subset of this set since erosion is an increasing operation and #' C F. The
second condition states that the origin of the noise shape must be fixable in the infinite plane (i.e.
f € N¢© K). This is the simplest case for a given noise shape since there are no border effects.

Our problem is to determine an optimal filter, given a set of structuring elements {K, Ka,...Kn},
a set of noise shapes {Ny, Ny,... Ns} with their associated probabilities of occurrence, and an ideal
image F.- The image F is assumed to be contained in some given region S, F C S.

In equation (6), the noise process is given as a set of noise shapes, translated to a set of random
points z € S. In our algorithm, we evaluate the improvement in restoration gained by the use of
each structuring element K in the expansion for every point in each noise shape at every possible
translation. These computations are made easier if we augment our set of shapes {N1, N2,...Nr}
so that for each shape N, we consider the shape with the origin at each point in N. For example, a
two-point noise shape is now considered twice; once with the origin at each point. This augmented
set is denoted by N = {N;, N3,...N;}. We can then consider the event N, (N translated to s) for
each Ne€ N andeachs€ S .

The probability of occurrence of a noise shape with its origin translated to a point s belonging to
set of noise shapes in the noisy image (6) is denoted P(N,s). We assume that the noise process
is stationary so we can define P(N) = P(N,s). Note that these events are mutually exclusive, so
summing all the probabilities over the noise shapes yields the probability that a pixel will be lost
in the noisy image. '

At each step in the search, we evaluate the expected number of additional fixes each potential
structuring element K could add to the restoration. A fizis defined as the restoration of a point
f that is not in the noisy image but is in the original image. After the first step in the search, we
count only those fixes that previously chosen structuring elements are not capable of doing. That
is, we compute only the net improvement to the restoration gained by the addition of each potential
structuring element.

Given that 7 — 1 structuring elements, K;, K5,...K;_1, have been selected, for each unselected
structuring element K we would like to know the expected number of net fixes, which we denote
by E[netfizes | K,i]. For each pixel s € F, define the random variable

. y_ [1, if sisfixed by K but not by Ky, Ks,..., K;_4
QUIRe)= {0, otherwise

:{1, ifse F-F,sc(FoK),ands¢ FoKpfork<i—1 (7

0, otherwise.



Then

i-1
E[Q(K,i,s)] = Pls € (F - F)n (Fe K)n [)(F e K)]. (8)
k=1
Because we have assumed that each noise shape occurs with the origin at every pixel within it, the
event s € F — F can be partitioned into J mutually exclusive events, s € F — N,, N € . Letting

' ~_[1, £Q(K,i,s)=1andse F- N,
Q(s,N,K,1) = {0, otherwise, )
we have
BlQ(K,is)]= 3 E[Q(s, N, K,3)]
NeN
= > E[Q(K,i,s)| s € N,|P(N,s)
NeN
= Y E[Fis(s, N, K,)P(N), (10)
NeN
where —1
. 5
Fia(s, N, K,i)={ b SEFOK s N 0K ands¢ kL_JlFeKk’ (11)

0, otherwise

sE€F, and N e NV.
Summing E[Q(K,1,s)] over s € F gives the expected number of net fixes, so that

Elnetfizes | K i)=Y Y Fiz(s,N,K,i)P(N). (12)
, seFNeN

In addition to the fixes, we must also evaluate the expected number of fills. A fill is defined as the
addition of a point f to the restored image that did not belong to the original image. As with fixes,
at each step in the search we count only those fills that would not have been filled by any of the
structuring elements chosen at previous steps. With fills we must also consider the event when no
noise occurs at a point. This is because the erosions can introduce fills into the noise-free image.
We did not worry about this with fixes because no noise meant that the point was not missing and,
therefore, did not need to be fixed due to the inclusion of the origin as structuring element. To
account for fills, we define the following function whose domain consists of those points of S not
belonging to F

-1

& _

Fill(s, N, K, i) = l, seFOK,se NSO K,and s ¢ kL_leeKk, (13)
0, otherwise

s€ S—F, and N € NU{0}.

An analysis similar to that for equation (12) shows the expected number of net fills at each step in
the search is



Enetfills | K,i)= Y > Fill(s,N,K,i)P(N). (14)
s€S—F NeNU{0}

Then we can define a cost function for each K at each step in i the search as

J(K,i) = E[netfills | K,i| — E[netfizes | K,1], : (15)

where the sign of the cost function has been chosen so that we minimize cost. Using this cost
function, the M best K € {K;, K,,...Kn} are chosen by using a simple best-first search.

4 Experimental Results

4.1 Images

Two classes of ideal binary images are used to verify our algorithm. The first class consists of
images with smooth regular borders and large interior areas. By interior area we mean those pixels
not touching border pixels. These images generally consist of only a few connected components.
To represent this class, a set of binary machine-part images is used. These images are shown in
Figure 3.

The second class of images are those images with irregular borders and relatively little interior area.
Such images typically have many irregularly shaped connected components. In these experiments,
we use a set of thresholded aerial images of Washington. D.C., which are typical of images in this
class. These images are given in Figure 4.

4.2 Structuring Elements

For this set of experiments, we limit the size of the structuring elements to those which are contained
within a 5 x 5 neighborhood. This set consists of 25 x 22° possible structuring elements, which is
still far to large a set to search over. The set is reduced by choosing only structuring elements that
seem to be good at fixing holes. Using intuitive selection methods, a set of 582 structuring elements
have been chosen. Such an approach is fully analogous to library constraint [9). The manner of
selection used here to form bases from the library, however, is very different from the approach of
[9], which is formulated to facilitate the original search strategy of [4]. Also as in [9], to limit the
run time of the design algorithm, we limit the basis size by stopping when the gain (according to
equation (15)) becomes insignificant. Filter suboptimality results from both the library and size
constraints.



4.3 Noise Model

All experiments are based on single-point whitening noise. The ideal images are corrupted by noise
with densities of 0.05, 0.1, 0.15, and 0.2. This means if the density is 0.1, a binary-1 pixel has a
1 in 10 chance of being independently changed to a zero. Since the noise is subtractive, binary-0
pixels are unaffected by the noise process.

For training purposes, the noise is assumed to consist of several types of non-overlapping holes.
The assumption that the holes do not overlap is an idealization introduced for the optimization
process.

In this set of experiments, the noise neighborhoods are modeled as the set of eight-connected
holes with three points or less. The probability of a single-point hole p; is the probability that a
noise point falls with no eight-connected neighbors. If p is the noise density, then p; = p(1 - p)&.
Similarly, each probability of occurrence for the four possible two-point holes is the probability that
two independent noise points fall together with no other nearest neighbors. Connected holes with
three or more points are considered to be equivalent. The probability of a three-point hole is the
probability that a hole occurred that was not a one-or two-point hole.

4.4 Error Criterion Function

The performance of each filter can be evaluated by comparing the average Hamming distance
between each filtered noisy image and its associated ideal image. This error is defined as

e(F,F) = #((Fn F°)u (Fn F°)), (16)

where F is the ideal image and F is the noisy or filtered image. The # operator counts the number
of points in a set.

4.5 The Experiments

Filters for each image and noise type are generated for a total of eight (2 images x 4 noise types)
filters. One representative image from each set is used for training. The program is run until
additional structuring elements yield less than five net fixes (expected number of fixes - expected
number of fills). The program also outputs the cost ( 15) associated with each structuring element.
The performance of these filters on the image sets is measured using the error criterion function
given above. Noisy images are generated by corrupting the ideal images with noise of the four
densities given above.

We used one machine-part and one D.C. image for training. In the machine-part example, per-
formance is evaluated for noisy versions of the training image and three additional images. For

10



the D.C. example, one image in addition to the training image is used. For each image and noise
density, ten noisy images are generated. The error criterion is averaged over the ten results for each
image/noise-density pair.

For purposes of comparison, the noisy images are closed with 10 structuring elements: a disk of
radius 2, squares with widths from 2-4, and horizontal and vertical lines with lengths 2-4. The
results of the best closing for each image are compared against the union-of-erosions output. Like
a union of erosions, one of which is the identity, closing by K is an antiextensive filter (Fe K O F)
that fills holes. Moreover, as an increasing filter, closing possesses a Matheron representation over
its basis. Were we able to fully optimize relative to the Matheron expansion as called for in [4]
and were the closing by K optimal, then the optimal Matheron expansion would be the expansion
for the closing by K. The algorithm proposed here has several features that lead to suboptimality,
so that, even if the closing is optimal, we should not expect to find its Matheron expansion. Qur
purpose for considering the closing is only for comparison with a well-known filter that is often
used to fill holes.

4.6 Results

We used the images in Figures 3a and 4a as our training images. The resulting filters for the
machine part images are shown in Figure 5 and the filters for the D.C. images are shown in Figure
6. The performance of these filters was evaluated as described above and the results are given in
Table 1.

The results for most of the D.C. images were significantly better for the union-of-erosions filter
over the best closing. The improvement is much greater for the lower noise densities. For the
highest noise density performance was roughly equivalent with slightly better performance for the
union-of-erosions on the training image and slightly better for the closing on the test image. An
example of a closed and union-of-erosions filtered image is given in Figure 7.

The data from the D.C. images indicates that closings are better at hole filling at the expense of
overfilling, while the union-of-erosions filter does not fill noise holes quite as well but is good at
avoiding overfilling. With noise density Np = 0.05, the D.C. images do not have many holes to
fill, and the closing actually overfills more than it fixes. The union-of-erosions filter, on the other
hand, is able to better discriminate between noise and non-noise holes, resulting in much better
performance. The amount of overfilling doesn’t change much with increasing noise density, but the
number of noise holes does. As the noise density increases, the closing is able to compensate for its
overfilling by fixing more holes than the union-of-erosions filter until performance is equivalent at
Np = 0.20.

In all cases, the closing results were better for the machine-part images. The results were good for
both filters, but in many cases the closing fixed twice as many points as the union-of-erosions filter.
A noisy machine part image after closing and union-of-erosions filtering can be seen in Figure 8.
The machine part images have much simpler structure than the D.C. images, and there is far less
potential for overfilling. In these cases, the superior hole filling ability of the closing is responsible

11



for the better performance.

Equation (15) gives the cost function for our algorithm, which is the the expected number of fills
minus the expected number fixes. This is just the negated net restoration improvement for each
step in the search. If we sum the negated values of the cost function for the optimal K for each of
the M steps in the search, we obtain the overall net restoration improvement as

M
E[e(FrF) = e(F:FFH = ZJ(Kiopu?:),

=1

where Fr is the union-of-erosions filtered image. Table 2 gives this expected improvement, as
computed by our algorithm, and the values from our experimental results. The expected values
were computed under the assumption of noninterfering noise holes, while the measured values are
due to a real noise process in which interference could occur. The results in Table 2 show good
agreement, with the average difference in the two columns being less than 10 %. This indicates
that our assumption of noninterference did not have a great effect on our optimization results, and
that we chose an appropriate set of noise shapes with which to model the noise.

Running on a Sun SPARC 1+, the algorithm took approximately 8 to 48 hours to determine each
filter. This time represents design time for the filter, not implementation time, which can be under
a second for the filters of both Figures 5 and 6 when implemented on appropriate inexpensive
hardware, even if, as is usually the case, the erosion unions are implemented serially. The design
algorithm is assumed to be off-line.

5 A Comment on Mixed Noise

Owing to the dual Matheron representation in terms of an intersection of dilations, the additive
noise problem is similar to the subtractive noise problem. When both additive and subtractive
noise are present, however, the problem becomes much more difficult. In this case, it is not possible
to consider the noise and image separately to determine if a point will be fixed. To design a union-
of-erosions filter, an erosion must be done for each noise shape and image point to determine if
the point will be fixed. Without modification to this approach, the added complexity of combined
additive and subtractive noise will probably yield an algorithm with unacceptable run times.

6 Conclusion

An algorithm for union-of-erosion filter design has been given to restore images degraded by subtrac-
tive noise. The salient point is that it provides a way of constructing (sub)optimal morphological
filters via the Matheron expansion by using the image process and the statistics of the noise. It does
so by using a relatively simple cost function in conjunction with a prechosen library of structuring
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elements from which to choose. Experiments indicate that filter design is fairly robust with respect
to the noninterference assumption of the noise model. They also indicate that the suboptimal
filters work better than closings when the original image possesses small holes and crevices that are
easily overfilled, whereas images that are not easily overfilled might better be restored with closings
rather than using the suboptimal procedure.
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Figure 1: An example of hole filling by union of erosions.
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(a) | (v)

(c) (d)
Figure 3: Machine part images. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4.



(a) (b)
Figure 4: Aerial images of Washington DC. (a) D.C. 1. (b) D.C. 2.
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Figure 5: Union of erosions filters for machine part images. (a) Np = 0.05. and Np = 0.10. (b)
Np = 0.15. (¢) Np = 0.20.
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Figure 6: Union of erosions filters for D.C. images. (a) Np = 0.05. (b) Np = 0.10. (¢) Np = 0.15.

(d) Np = 0.20.
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Figure 7: Filtering example with 256 X 256 center section of D.C. 1 image and Np = 0.15. (a)
Noisy image. (b) Noisy image filter by union-of-erosions. (c) Noisy image closed by a 2 x 1 line. (d)
Blowup of a 63 x 63 pixel section: upper left original image, upper right noisy image, lower left
image filtered by a union-of-erosions, and lower right image closed by a 2 x 1 line.



(a) (b)

() (d)

Figure 8: Filtering example with Part 2 and Np = 0.20. (a) Noisy image. (b) Noisy image filtered
by union-of-erosions. (c) Noisy image closed by a 4 x 4 square. (d) Blowup of a 63 x 63 pixel section:
upper left original image, upper right noisy image, lower left image filtered by a union-of-erosions,
and lower right image closed by a 4 x 4 square .



Normalized | N ormalized
Noise Noisy UOE Filtered Closed filtered closed
density | image error | image error | image error | image error | image error
Image | Np e(F, F) e(F, Fr) e(F, Fg) -(@F‘%l %
B.C. 1 0.05 5314 3783 * 6614 0.7120 1.2448
0.10 10668 7009 * 8790 0.6570 0.8240
0.15 16065 10467 *x 11616 0.6515 0.7230
0.20 21547 13333 * 13595 0.6118 0.6309
D.C.2 0.05 4715 3303 * 5199 0.7005 1.1025
0.10 9462 6118 * 7170 0.6466 0.7579
0.15 14260 9138 * 9795 0.6408 0.6869
0.20 19024 11241 * 11212 0.5909 0.5894
Part 1 0.05 1974 43 * 35 0.02172 - 0.01783
0.10 3977 91 ¢ 63 0.02296 0.01582
0.15 5952 166 o 88 0.02781 0.01472
0.20 7980 227 o 116 0.02841 0.01453
Part 2 0.05 2239 42 © 37 0.01871 0.01643
0.10 4543 98 © 58 0.02165 0.01279
0.15 6805 165 o 84 0.02424 0.01231
0.20 9117 236 o 110 0.02594 0.01209
Part 3 0.05 1618 29 * 25 0.01761 0.01544
0.10 3260 74 © 51 0.02279 0.01555
0.15 4875 128 ¢ 69 0.02617 0.01419
0.20 6516 172 o 84 0.02639 0.01294
Part 4 0.05 2083 162 e 84 0.07766 0.04039
0.10 4158 202 > 145 0.04855 0.03494
0.15 6309 201 > 223 0.04617 0.03760
0.20 8393 487 > 433 0.05808 0.05162

Closing types

* 2 x 1line
* 2 X 2 square
© 3 X 3 square
o 4 X 4 square
e 1 X 3 line
> 1 x4 line

Table 1: Experimental results.
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Noise Expected Actual
density net fixes net fixes
Image | Np | E[e(F,F)— e(F,Fp)] | e(F,F) - e(F, Fr)
D.C.1 0.05 1333 1530
0.10 3439 3659
0.15 5882 5599
- 0.20 7830 8214
Part1 | 0.05 - 1957 1931
0.10 3860 3885
0.15 5888 5787
0.20 7904 7753

Table 2: Cost function and the net number of fixes.
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