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crementing the load counter, and decrementing the NUSED
register. -All the control signals issued by the microcontroller
are marked with an “X” in Fig. 4. The labeling process re-
sumes when the microcontroller finishes its task.

VI. CONCLUSIONS

The procedure proposed in this, paper solves the problem of
memory overflow for connected component labeling and fea-
ture extraction applications. The proposed procedure enables
a practically unlimited number of possible labels. Two imple-
mentation options are shown, using the interrupted method
and the parallel method. The parallel method requires more
complex logic and faster communication to the host to enable
the transfer of the nonactive labels and their features. Section
IT discusses how both methods handle the worse case data. A
design for hardware implementation of the interrupted mode

is presented.
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Comments on “Digital Step Edges from Zero Crossings of
Second Directional Derivatives”

W. E. L. GRIMSON a~p E. C. HILDRETH

Abstract-In a recent paper,1 Haralick published an edge detection
scheme that was supported, in part, by an evaluation against the Prewitt
and the Marr-Hildreth ( V2 G) operators. This evaluation led to the con-
clusion that Haralick’s method performed the best, and the e opera-
tor performed the worst. The implementation of the V2G operator, on
which this evaluation was based, differed significantly from that used
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by Marr and Hildreth. Evaluation of the performance of the Marr-
Hildreth implementation of the VZG operator on similar images shows
that this edge detection method in fact performs comparably to the
Prewitt and Haralick operators.

Index Terms—Edge detection, edge operator, Laplacian of a Gaussian
operator, visual feature detection, zero-crossings.

" Recently, Haralick® published an edge detection scheme
based on the zero-crossings of a second directional derivative
applied to a cubic polynomial approximation of the underlying
grey-level surface. To support the proposed scheme, Haralick
evaluated its performance, under a variety of criteria, against
several other edge detection operators, most notably, the
Prewitt gradient operator [30] and the Laplacian of a Gaussian
(V2G) operator suggested by Marr and Hildreth [24], [25].
This evaluation led to the conclusion that, under these criteria, .
Haralick’s method performed the best, followed by the Prewitt
operator, and the Marr-Hildreth operator performed the worst.
The implementation of the V?G operator, on which this
evaluation was based, differed significantly from that used by
Marr and Hildreth [24] and other researchers (see below). This
correspondence presents the results of the Marr-Hildreth opera-
tor, applied to synthetic images similar to those used by Hara-
lick, which suggest that this edge detection method in fact per-
forms comparably to the Prewitt and Haralick operators.

The vision literature contains several descriptions of the
analytic form of the V?G operator, given, for example, by
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which differ only in an overall multiplicative constant that does
not change the shape of the operator [10]-[121, [14]-[17],
[24], [26]. The V>G operator has been successfully imple-
mented and used by many researchers (for example, [1], [3],
(41, [6]-[91,[17], [19]1-[21], [23]1,[27], [28],[321,[35],
[36]). As described in the literature [10], [11], [16], the
construction of the discrete V2 G operator typically involves:
1) scaling the operator values by some constant (for example,
2048 in the case of the implementation at the Massachusetts
Institute of Technology Artificial Intelligence Laboratory),
2) using nearest integer values for each scaled operator value,
3) extending the support of the filter to include all nonzero
integer values, and 4) manipulating operator values by a small
amount to ensure that the values integrate to zero. For exam-
ple, using a scalar of 2048, an operator with ¢ = 5.0 has a non-
zero support with a diameter of 49 pixels.

Haralick! generated the Laplacian of a Gaussian operator by
sampling the kernel
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where (r, ¢) designate the row and column of the pixel loca-
tions of the operator. The scalar A is arbitrary and was set so
that the kernel values could be reliably approximated by inte-
ger values. For practical reasons, Haralick limited the size of
the operator to an 11 X 11 support, independent of the mag-
nitude of the kernel values outside of this support. The value
of k was then chosen so that the sum of the resulting weights
of the operator was zero. (The two forms described in (1) and
(2) are equivalent only when k = 0.5; the actual values of k in
Haralick’s implementation were not stated in the original paper,
but if k differed significantly from 0.5, the resulting operators
would differ from the true V2G operator.) - Examples of the
kernels generated in this manner were listed in Fig. 10 of
Haralick’s paper! and are repeated in Fig. 1. -

The V*G operator with 0 = 1.4 fits well within the 11 X 11
window, but in the case of the operators with ¢ = 5.0 and ¢ =

Cx? +y2-2(72
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Fig. 1. Haralick’s kernels for the VG operators.

10.0, the negative support is severely truncated. The width w
of the central positive region of the kernel remains the same
for the two operators (roughly nine pixels); in the case of a
correct V3G kernel, however, this central width should vary
linearly with o, following the relationship w = 2\/30. The
ViG operator with 0 = 1.4, shown above, is a valid V2 G opera-
tor, but Marr and Hildreth argued against the use of such small
operators, because their sensitivity to high spatial frequencies
makes them very sensitive to noise [16]. Thus, while Haralick’s
evaluation of the performance of the V> G operator with ¢ = 1.4
is a valid one, it is not in the spirit of the Marr-Hildreth method
to use such a small operator.

Fig. 2(a) and (b) shows perspective plots of the V2 G operator
implemented by Marr and Hildreth, for ¢ =5.0 (the weights
have been multiplied by -1 to yield positive values in the cen-
ter), and the corresponding implementation used by Haralick
(Fig. 10! and Fig. 1). These plots illustrate that the two opera-
tors are not the same. In Fig. 2(c) and (d), one-dimensional
cross-sections through the center of the two operators are
shown for comparison. Fig. 2(e) and (f) shows similar one-
dimensional cross-sections for the Marr-Hildreth V2 G operator
and Haralick’s version of the operator, for o= 10.0.

Forcing the larger V> G operators to fit within'a window of a
particular size, by truncating the kernel, critically affects the
spatial frequency characteristics of the resulting filter. In par-
ticular, it increases the sensitivity of the operator to high-fre-
quency noise, undermining the purpose of the underlying
Gaussian smoothing provided with large values of o. Fig. 3
shows the magnitude of the discrete Fourier transforms for the
two implementations of the V?G operator. To compute the
transform shown in Fig. 3(a), an integer-valued discrete sam-
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pling of the full V2G operator, for 0 = 5.0, was initially placed
in an array of size 128 X 128 elements. To compute the trans-
form shown in Fig. 3(b), the V2 G filter with ¢ = 5.0 was trun-
cated to a central area of 12 X 12 values, scaled according to
Haralick’s criteria, and also placed in an array of 128 X 128
elements. The FFT was then used to compute the discrete
Fourier transforms shown in Fig. 3(a) and (b). Fig. 3(c) and
(d) shows one-dimensional slices through the center of the
transforms. Fig. 3(e) and (f) shows one-dimensional slices
through transforms generated from operators with ¢ =10.0
(the operators were constructed in a manner similar to that for
0=5.0). The V?G operator as implemented by Marr and
Hildreth is bandpass in the frequency domain, while the opera-
tor implemented by Haralick has greater sensitivity to higher
frequency components of the signal. Asa consequence of this
sensitivity, one would expect the performance of the larger
V26 operators implemented by Haralick to show little improve-
ment over the smaller ones, an effect that appears to be verified
by Haralick’s results.

In light of the differences in the two implementations, we
have reexamined Haralick’s evaluation of the Marr-Hildreth
operator to determine whether these differences are critical to
the operator’s performance. We constructed a noisy checker-
board pattern, following the description (p. 63! ) illustrated in
Fig. 4(a). The entire image was 200 pixels on a side, with each
square being 20 pixels on a side. To the base intensities of 75
and 175 was added independent Gaussian noise of mean zero
and standard deviation 50. Fig. 4(b) shows a one-dimensional
slice through the center of the pattern.

Fig. 5 shows the zero-crossings obtained using Haralick’s
implementation of the V?G operator, for 0 = 5.0, limited to
an 11 X 11 support. Fig. 6 shows the remaining Zero-crossings
after thresholding the slope of the zero-crossings so as to equal-
ize the conditional probabilities of true edges given assigned
edges and vice versa (a criterion used by Haralick in his original
evaluation). The slope of a zero-crossing was defined to be the
magnitude of the gradient of the convolved image at the loca-
tion of the zero-crossing. Thus,

slope = | V(V*G # I)|

where I denotes the image (the gradient was computed by sub-
tracting adjacent values of the convolved image, in the x and y
directions). Figs. 5 and 6 are very similar to Figs. 11 and 13 of
Haralick’s paper.!

Fig. 7 shows the zero-crossings obtained using the Marr-
Hildreth implementation of the V2G operator, for 0 =5.0.
The results are different from those of Figs. 5 and 6. This is
not surprising given the difference in spatial frequency charac-
teristics of the two operators shown in Fig. 3. One expects the
operator implemented by Haralick to show greater sensitivity
to the added noise given its sensitivity to higher frequencies.

The difference in results may also be due to the method used
to threshold the zero-crossings. We consider the gradient to be
the most appropriate measure on which to base the threshold,
as it is a function of the contrast and sharpness of the under-
lying intensity change. It is also the measure of Zero-crossing
strength used in the Marr-Hildreth scheme [24].

We also measured Haralick’s three criteria for judging the
performance of the operators (see Table I, p. 661). Using the
Marr-Hildreth implementation of the V2 G operator with ¢ =
5.0, we found that the conditional probability of an assigned
edge pixel, given a true edge pixel, was 0.8887, and the condi-
tional probability of a true edge pixel, given an assigned edge
pixel, was 0.9237. These should be compared to reported
values by Haralick of 0.3977 and 0.4159, respectively. The
reported values for the Prewitt operator were 0.6738 and
0.6872, and the reported values for the Haralick facet-model
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Fig. 2. (a) A peispective plot of the V2G operator implemented by
Marr and Hildreth, for o= 5.0. (b) A pérspective plot of Haralick’s
implementation of V2%E (from the paper,” Fig. 10). (c), (d) One-
dimensional cross sections through the centers of the operators shown
in (a) and (b); respectively. (e), (f) One-dimensional cross sections of
the V2G operator, for ¢ =10.0, for the Marr-Hildreth and Haralick
implementations, respectively.
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Fig. 3. The two-dimensional discrete Fourier transforms for the two
implementations of the V2 G operator. (a) Transform for the Marr-
Hildreth V2G operator, for o0 =5.0. (b) Transform for Haralick’s
implementation of the V2G operator, for 0 =5.0 (c), (d) One-di-
mensional slices through the centers of (a) and (b). (e), (f) One-
dimensional slices through the centers of the two-dimensional trans-
forms for the Marr-Hildreth and Haralick V2G operators, with o =

10.0.

operator were 0.7207 and 0.7197, indicating that the Marr-
Hildreth operator performed comparably to the other two.
The measured value of Haralick’s edge distance criterion for
the correct Marr-Hildreth operator was 1.17, as opposed to
the value of 1.76 reported by Haralick, and compared favorably
to the values of 1.79 and 1.16 for the Prewitt and Haralick
operators. If these evaluation criteria are applied to the zero-
crossings obtained with Haralick’s implementation of the V2 G
operator, shown in Fig. 6, conditional probabilities of 0.46
and 0.45 are obtained. Comparison to Haralick’s reported

values of 0.40 and 0.42 suggests that there are no significant
differences between our noisy checkerboard image and that
used by Haralick.

Finally, if the size of the ViG operator is reduced by a factor
of 2(0 = 2.5), similar results hold, as shown in Fig. 8. The left-
hand figure shows all the zero-crossings, and the right-hand
figure shows those zero-crossings that remain after thresholding
so as to equalize the conditional probabilities. In the second
case, the conditional probability of an assigned edge, given a
true edge, was 0.8782; the conditional probability of a true
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Fig. 4. (a) A noisy checkerboard image, constructed in a manner similar
to Haralick’s (see the paper,1 Fig. 5)..(b) One-dimensional slice through
the center of the pattern shown in (a).
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Fig. 5. The2= zerdcroésings oﬁtained using Haralick’s implementation of
the V* G operator, for o = 5.0, limited to dan 11 X 11 support.

edge, given an assigned edge, was 0.8719; and the value for the
edge distance criterion was only 1.29,

DISCUSSION

From the above analysis, we conclude that Haralick’s imple-
mentation of the V2 G operator suggested by Marrand Hildreth
has led to a misleading evaluation of its performance. When
the correct operator is used, it can be seen that based-on Hara-
lick’s criteria, the V?G operator performs comparably to the
Prewitt gradient operator and the Haralick facet model operator.

An issue that is often raised in the evaluation of edge detec-
tion methods.is their computational complexity. ‘It should be
noted that the increased support of the Marr-Hildreth imple-
mentation of the V2@ operator, with large values of 0, .need
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Fig. 6. The zero-crossings reméining from Fig. 4 after thresholding the
slope of the zero-crossings so as to equalize the conditional probabilities
of true edges given assigned edges and vice versa.
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Fig. 7. The zero-crossings obtained using the Marr-Hildreth implemen-
tation of the V° G operator. The results differ significantly from those
of Figs. 4 and 5.
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not lead to overwhelming computational expense. Convolu-
tion with the V2G operator normally requires m? multiplica-
tions per image element where m is the width of the total
support. The V2G operator, however, can be approximated
by the difference of two Gaussian functions (DOG) [24]. The
separability of the Gaussian distribution- into. the product of
two one-dimensional Gaussians allows the two-dimensional
Gaussian convolution to be decomposed into two successive
one-dimensional Gaussian convolutions. The use of the DOG
approximation to V2 G thus reduces the number of multiplica-
tions per image element from m? to 4m. A hardware convolver
has been constructed at the Massachusetts Institute of Tech-
nology, using standard TTL technology, which is capable of
convolving a 1000 X 1000 8 bit image with a 32 X 32 element
DOG operator in about 1.5 s [29]. More recently, an efficient
optical imaging device that performs linear convolutions with
two-dimensional circularly symmetric operators in parallel has
been. designed using VLSI technology [18]. Thus, the convolu-
tion of an image with a large V2 G operator may at first seem
computationally expensive; the particular form of the operator,
however, has led to efficient hardware implementations.

There remains considerable theoretical and empirical work
to be done in the area of edge detection. The use of directional
versus nondirectional operators, for example, continues to be a
topic of intense debate. Marr and Hildreth [24] and Marr and
Poggio [25] suggest that a directional detection of zero-cross-
ings take place after the initial filtering of an image with the
nondirectional V? G operator. Binford [2] also argues for the
use of a nondirectional lateral inhibition operation, followed
by directional derivative operations. In early implementations
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Fig. 8. (a) The zero-crossings obtained from the Marr-Hildreth imple-
mentation of the V°G operator with ¢ = 2.5. (b) Zero-crossings that
remain after thresholding so as to equalize the conditional probabilities.

of the Marr-Hildreth scheme, zero-crossings were defined as
any transition between positive and negative values of the VG
convolutlon output, and the gradient of this output was used
to asmgn ‘local orientation to the zero-crossing contours ([10],
[11],7[16]). The design of more sophisticated operators for
this detection stage remains an area for future investigation.
Haralick! proposes the use of the zero-crossings of the second
directional derlvatlve ‘taken in the direction of the intensity
gradrent

While Haralick’s evaluation of these edge detection methods
was largely empirical, there has also been significant theoretical
work comparing directional derivative operators and isotropic
operators such as the Laplacian (for example, [1], [5], [13]
[22], [31], [33], [34]). These latter studies have: exammed
such issues as the conditions under which the zeros of the two
operators are equivalent [31], the deviation between the zeros
of the two operators for partrcular types of intensity patterns
[13] (see also the analysis of the zeros of the Laplacran in[1]),
and the difference in signal-to-noise ratio and localization ability
of the operators [5]. Yuille and Poggio ([33], [34]) have
studied the behavior of the zero-crossings as a function of the
size of the underlying Gaussian filter and the information con-
tent of the zero-crossings across multiple size operators. Theo-
retical studjes have also addressed the relationships between
alternate approaches; for example, the relationship between
the V? G operator and the optimal frequency domain filter [22],
the relationship between Haralick’s method of surface fitting
followed by derivative estimation, and methods ‘based on lin-
ear convolution with operators whose shape is-roughly the first
or. second derivative of a Gaussian [5]. Future theoretical
studies of this type, taken- together with empirical and practlcal
con51derat10ns will ultlmately determine the v1ab111ty of par-
ticular methods for edge detectlon

(1]
[2]
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‘Author’s Reply?
R. M. HARALICK

Abstract—We present evidence that the Laplacian zero-crossing opera-
tor does not use neighborhood information as effectively as the second
directional derivative edge operator. We show that the use of a Gaussian
smoother with standard deviation 5.0 for the Laplacian of a Gaussian
edge operator with a neighborhood size of 50 X 50 both misses and
misplaces edges on an aerial image of a mobile home park. Contrary
to Grimson and Hildreth’s results, our results of the Laplacian edge
detector on a noisy test checkerboard image are also not as good as the
second directional derivative edge operator. We conclude by discussing
a number of open issues on edge operator evaluation.

I. INTRODUCTION

Grimson and Hildreth [3] suggest that comparisons between
edge detectors should be done without regard to considerations
of neighborhood size. Their suggestion for an edge detector is
to eliminate noise on the input image by smoothing with a
sufficiently broad Gaussian filter, take the Laplacian of the
smoothed image, and mark pixels as edges if in some direction
the pixel on the convolved image has a zero-crossing with a high
enough slope. They state that for the test checkerboard image
with 20 X 20 checks and a check contrast-to-noise ratio of 2:1
using a Gaussian smoother with standard deviation of 5.0, the
probability of a true edge being assigned an edge by their edge
detector is about 0.9 when the zero crossing slope is given a
threshold in a way which equalizes the number of true edges
assigned as nonedges with the number of nonedges assigned as
edges. They argue for a neighborhood size in the range of
45 X 45 rather than the truncated neighborhood size of 11 X
11 used in Haralick.

Although Grimson and Hildreth [3] do not mention it in
their correspondence, they did, in private correspondence, note
that the equation given by Harahck1 for the Laplacian of a
Gaussian consistently had a typographical error of a misplaced
parenthesis. Computer programs and results, however, were
correct. i

We attempted to replicate the Grimson-Hildreth result using
a Gaussian smoother with standard deviation of 5.0 with a neigh-
borhood size of 50 X 50. Any pixel which had a zero crossing
slope greater than 10 zero-crossings of the smoothed Laplacian

2Manuscript received March 27, 1984; revised September 10, 1984.
The author is with Machine Vision International, Ann Arbor, MI
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was assigned an edge. True edges were declared for any pixel
of the no-noise checkerboard, which was black but bordered a
white pixel, or which was a white pixel and bordered a black
pixel. Our results indicate that, given a pixel is a true edge, the
probability that the pixel is a331gned an edge is 0.7217. Given
that a pixel is assigned as an edge, the probability that it is a
true edge pixel is 0.7155. This differs considerably from their
result. It would be worthwhile to carefully review each of our
procedures to determine why this difference arises. Is it due
to a different definition of true edge? Is it due to a difference
in the zero-crossing slope computation?

Even if the replication agreed with the Grimson-Hildreth
experiment, the situation would be more complicated than it
appears on the surface. From a signal content/noise content
point of view, the standard deviation of the Gaussian filter
must be set based on the size distribution of the homogeneous
regions, their relative contrasts, and the amount of noise. A
standard deviation of 5.0 for a Gaussian averager may leave
objects such as the 20 X 20 checks intact, but would tend to
smooth out of existence objects which are small or thin. Thus,
there are circumstances in which a standard deviation of 5.0
would be inappropriately large, and it is precisely for this reason
that a fixed window size was selected to do the experiments.

To see the folly of not fixing the size of the window, con-
sider an image whose size is as large as we like, whose left-hand
side is noisy black, and whose right-hand 51de is noisy white.
Suppose the signal-to-noise ratio is reasonable. Under these
circumstances, consider how we would want to evaluate edge
operators. Since the geometry is utterly simple and the objects
are as large as we would like, each edge operator proponent
could find a window of sufficiently large size so that the edge
operator produces a result of prespecified accuracy. Obviously,
in this situation the above evaluation is meaningless. What we
must do is perform the evaluation under conditions in which
the pixel information provided to the edge operator is limited
and then perform the evaluation under the limiting informa-
tion conditions. Under these circumstances, an edge operator
could be said to be uniformly better than other edge operators
if under each possible information limiting condition it per-
forms better than all the other edge operators. Thus, perfor-
mance in controlled experiments must be performance as a
function of information utilized. The key issue is, how well
does the operator utilize a fixed information set?

II. EXPERIMENTS

To show the problem of an excessively large standard devia-
tion for the Gaussian smoother, we try to determine the edges
of the aerial image of a mobile home park, shown in Fig. 1.
We perform three experiments. In the first experiment, a
Gaussian standard deviation of 5.0 is used with an adequate
45 X 45 window as the smoother preceding the Laplacian. The
zero-crossings obtained having a nonzero slope are shown in
Fig. 2. Notice how many edges are not detected and that many
edges are misplaced around nearly straight boundaries as well
as around corners. This is only a reasonable edge image if the
rows of the mobile homes are the desired objects. It is not a
reasonable edge image if the boundaries of the individual homes
are desired.

In the second experiment, a Gaussian standard deviation of
0.8 is used with an adequate 7 X 7 window as the smoother
preceding the Laplacian. The zero-crossings obtained having
a slope greater than 2 are shown in Fig. 3. 25 percent of the
pixels are assigned edges. Although noisy, at least this image
shows the individual edges around the mobile homes.

The third experiment uses the second directional derivative
zero-crossing edge operator. The equally weighted least squares
bivariate cubic fit is done in a 7 X 7 neighborhood, and a pixel
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Fig. 1. An aerial image of a trailer park.

Fig. 2. The zero-crossings of a Laplacian edge detector having a Gaussian
standard deviation of 5.0 and using a window of 45 X 45. 22 percent

of the pixels are assigned as edges.

Fig. 3. The zero-crossings of a Laplacian edge detector having a Gaussian
standard deviation of 0.8 and using a window of 7 X 7. 25 percent of
the pixels are assigned as edges.
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Fig. 4. The second directional derivative edge detector using an equally
weighted cubic fit in a 7 X 7 window. 25 percent of the pixels are
assigned as edges.

Fig. 5. The zero-crossings of a Laplacian edge detector using an equally
weighted cubic fit in a 7 X 7 window. 25 percent of the pixels are
assigned as edges.

is declared as an edge pixel if in the gradient direction a nega-
tively sloped zero-crossing of the second directional derivative
occurs within a distance of 0.85 of the center of the pixel and
the gradient magnitude is greater than 12. The resulting image
has 25 percent of the pixels assigned as edges and is shown in
Fig. 4. The results are not as noisy as the Laplacian of Fig. 3.
The edges are placed accurately, and they tend to be connected.

We tried an interesting variation in which we used the fitting
coefficients from the bivariate cubic fit to estimate the Laplac-
ian. The resulting zero-crossings are shown in Fig. 5, in which
the zero-crossing threshold is chosen so that 25 percent of the
pixels are assigned as edges. They appear more connected than
the zero-crossings of the Laplacian of a Gaussian operator.

II1. DiscussioN

There are some interesting issues which have not yet been
fully discussed or understood. Whether the edge operator is a
Laplacian zero-crossing one or a second directional derivative
zero-crossing one, the operator must estimate partial derivatives
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Fig. 6. The checkerboard test image (upper left-hand side), the true
edge image (lower left-hand side), the zero-crossing of the Laplacian
image using a Gaussian standard deviation of 5.0 (upper right-hand
side), and the second directional derivative edge operator with a Gauss-
ian presmoother having standard deviation 0.88, followed by an equally
weighted cubic fitin a 9 X 9 window (lower right-hand side).

up through the third order if a zero-crossing slope is used. For
a fixed neighborhood size, what is the most effective way to
‘estimate these partial derivatives? The Marr and Hildreth
scheme is equivalent to averaging and then taking finite differ-
ences to compute the partial derivatives. The Haralick scheme
performs a least squares estimate assuming a local cubic poly-
nomial model. Finite differences and least squares yield the
same result only when the polynomial model has as many pa-
rameters as pixels in the neighborhood. The least squares
estimate can be generalized to a weighted least square (Hashi-
moto and Sklansky [4] have already suggested a binomial
weighted least square), and it is possible to presmooth followed
by a least squares estimate. It is also possible to pose the
estimation problem as a robust estimation problem, which in
effect makes the weights used in the least squares fit adaptive.
We tried an example of presmoothing with a Gaussian filter
having a standard deviation of 0.88 followed bya 9 X 9 equally
weighted fit. Fig. 6 shows the checkerboard test image; the
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perfect edge image; the zero-crossings of the Laplacian of a
Gaussian with a 5.0 standard deviation (upper right-hand side)
result, which does not replicate the stated accuracy of the
Gaussian-Hildreth experiment; and the zero-crossings of the
second directional derivative edge detector (lower right-hand
side). For the directional derivative edge operator, 0.8391 is
the probability of a pixel being a true edge pixel given that it is
assigned an edge pixel. The probability of a pixel being assigned
an edge, given that it is a true edge, is also equal to 0.8391.

The Marr-Hildreth scheme chooses a direction which maxi-
mizes the zero-crossing slope of the Laplacian. The Haralick®
and Canny [2] schemes choose the gradient direction, although
they compute it in a different way. Are there other reasonable
directional choices or computational techniques? What kind
of experiment could be done to evaluate which is the better
choice? What kind of analysis could be done to evaluate the
choices in a theoretical way? -

Both techniques cause edges to be displaced under certain
conditions. In regions of nonlinear gray tone intensity surface,
the Laplacian technique can spatially displace edges by as much
as the standard deviation of the Gaussian smoother; it can even
miss edges also (Berzins [1], Leclerc and Zucker [5]). Edges
which curve rapidly around corners can be displaced by both
techniques. There are difficulties around saddle points, espe-
cially in the second directional derivative technique which
requires a nonzero gradient.

These sorts of issues and problems need to be addressed.
Perhaps there could be a reader’s forum on this to help us all
understand the most effective way to think about the problem.
Write up your idea and submit it as a note or reply to this
correspondence.
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