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A new, fast template-matching method using the Singular Value Decomposition (SVD) is 
presented. This approach involves a two-stage algorithm, which can be used to increase the 
speed of the matching process. In the first stage, the reference image is orthogonally 
separated by the SVD and then low-cost pseudo-correlation values are calculated. This 
reduces the number of computations to 2*N*L instead of N2L2,  where L x L is the size of 
the reference image and N x N is the original image size. At the second stage, a small group 
of values near the maximum pseudo-correlation is selected. The true correlation for the 
small number of pixels in this group is then computed precisely in the second stage. 
Experimental and analytic results are presented to show how the computation complexity 
is greatly improved. 

I. INTRODUCTION 

The problem of registering one image to another image or model, possibly 
made at a different time or from a different perspective, is one of the major 
research problems in remote sensing, image processing and robotic vision.’-3 

The registration problem can be considered as a transformation T that maps 
an arbitrary point (x,y) in the first (image) coordinate space to a corresponding 
point (u,u) in the second (model) coordinate space such that the corresponding 
points represent the same points of the viewed objects. 

In the brute force technique, the parameters of the transformation are varied 
until some measure of “difference” between the images is minimized or some 
measure of “similarity” (e.g., cross-correlation) is maximized. The value of this 
measure is then used to determine the optimum position of registration. 

If an appropriate a priori correction has been applied or if the patches are 
defined small enough, then any residual geometric error is pure translation. 
Matching, then, consists of determination of the translations offset of one sub- 
image from another “reference” subimage corresponding to the same scene. The 
most widely used method of measuring the correspondence of two images is 
cross-correlation, which follows naturally from the mean square error criteria. 
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But the high costs of its implementation severely limits its utility. In the correla- 
tion method, each point in the corrdation surface requires a fixed amount of 
computation. Each reference point, regardless of informational content, is there- 
fore processed with very high precision. However, accuracy is required only for 
those relatively few points with values close to the maxima of the cross-correlation 
surface. Hence, there is considerable waste in performing high accuracy calcula- 
tion for the vast majority of points within an image. 

This article presents a new fast correlation registration method which in- 
volves the SVD of the reference image. This greatly reduces the computational 
redundancy in performing a two-stage template matching algorithm. In the first 
stage we only use the largest eigenimage which is obtained from the SVD of the 
reference image to evaluate cross-correlation. We call it the pseudo-correlation. 
Using it, the computation complexity reduced from N2 * L2 to 2NL. After this 
stage a small group of values near the maximum is selected. The small group of 
pixels near the pseudo-correlation peak are chosen by looking for positions which 
have enough pseudo-correlation. High enough means here than a threshold. 
Suitable thresholds values are discussed in Section 111. The true correlation for 
only the pixels in this group needed to be calculated precisely in the second stage. 
In Section 111, the cross-correlation problem using the SVD derived eigenimage is 
formulated. In Section 111, the correlation threshold is derived and statistical 
properties are presented. In Section IV, the computational requirement is dis- 
cussed. In Section V ,  the implementation details and experimental results are 
included. Some conclusions are discussed in Section VI. 

11. FAST-CORRELATION METHOD 

A. Cross-Correlation 

For each translation ( i , j ) ,  the conventional discrete two-dimensional cross- 
correlation coefficient is defined by: 

where R ( i j )  is the normalized cross-correlation surface with (M x M) pixels, 
S( i , j )  is a sensor image with N X N pixels, and W(i,j)  is a reference image with a 
L x L correlation kernel. The dimensions of R are given by M = N + L - 1, i.e., 
( N - L +  1)2 cross-correlation have to be computed. Among all the computed 
values, the one with the largest value corresponds to the position of the best 
match. The number of multiplications required for conventibnal computation is 
N ~ *  L~ 
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B. The SVD Method 
The underlying idea of this two-stage fast registration method proposed in 

this article involves using the SVD technique to reduce the computation complex- 
ity in the first stage. The true cross-correlation is calculated with very high 
precision only for those relatively few points which are close to the maxima in the 
second stage. 

In this section we first give the Singular Value Decomposition theorem as 
follows: 

Let A E Emx" there exist orthogonal matrices U E Emxm, V E En"", and a 
rn X m diagonal matrix D with diagonal elements p~ 3 p2 a 3 pn 2 0, such 
that 

U ' A V = D  (2.12) 

Note: The numbers pl, . . . pn are unique and are called the singular values of A. 
From the above theorem, the singular value decomposition of A is given by 

R 

[A] = 2 aiuiufi 
i= 1 

(2.13) 

where R is the rank of matrix [A].  The more traditional approach is given by the 
following definitions: 

and 

[A1 [A]' = [ul [A1 [Vl' (2.15) 

where [A] is the diagonal matrix of eigenvalues of [A] [AY, and the columns of [ Ul 
are the eigenvectors of [A] [AIf, and the columns of [Vl are the eigenvectors of 
[A]' [A] .  Because [A] [A]' and [A]' [A] are symmetric and square, the pi are real 
and the eigenvector sets {ui} and {ui} are self-orthogonal. Figure 1 is a graphical 
illustration of the SVD. From Eq. (2.13) and Figure 1 it is evident that for smaller 
R, fewer independent rows (columns) are required to define the matrix [A] .  
Ordering the singular values in monotonic decreasing order yields the most 
efficient least-square representation of the image in the fewest (truncated) set of 
retained components: {p1l2 upi?. The retention of only the t Q R largest 
eigenvalues in the expansion gives a normalized error energy of 

f / R  

(2.17) 



Figure 1. Translational Registration Parameters. S(i,jbsensor image with N x N pixels. 
W(i.jFreference image with L X  L correlation kernel. 

We show next that if an approximate representation of the matrix A is formed by 
truncation, then 

k 

Ak = pi”2uiu~ 
i= I 

and the squared norm between [A] and [Ak] becomes 

R 

IIVI - [Aklll’ = 2 PI 
i = k + l  

(2.18) 

(2.19) 

where the matrix norm is the Euclidean measure. 

Tr[A]‘[A] = llAl12. 

The motivation for utilizing the SVD expansion is that, hopefully, [A] admits 
a good low-ranked (small k) approximation; in that case, the storage require- 
ments drop from N2 to K(2N+ 1) computer words (i.e., 2N words for two singular 
vectors and one word for the singular value). The approximation error is mini- 
mized by choosing the k largest singular values and the corresponding singular 
vectors. 

The SVD matrix decomposition applies for any arbitrary matrix. Hence the 
SVD expansion can be applied directly to a discrete image represented as a 
matrix. Now we go back to the cross-correlation problem. Suppose the reference 
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image H (i.e., matrix H) has been orthogonally decomposed by the SVD as 
below: 

R 

H = aiuiuiT 
i= 1 

where R is the rank of H,ai is the ith singular values and ui, ui are the correspond- 
ing singular vectors. We will show next that if H is of full rank, the number of 
operations required to perform the correlation is of the order of (2N2L)*L. In 
many practical cases, the rank value R of the matrix His much less than L,  and the 
number of operations can be reduced accordingly. For example, if the rank of the 
reference image is 1, the number of operations required to perform the cross 
correlation is ~ N L . ~  

As discussed earlier in this section, the cross-correlation matching of a 
M x M sensor image with a L x L reference image requires evaluation at every 
one of the possible ( N - ~ 5 + 1 ) ~  shift positions. Among all these computed posi- 
tions, the one with the largest value gives the cross-correlation coefficient for the 
best match. The number of multiplications required for conventional computa- 
tion is N ~ * L ~ .  

If we can decompose a 2-D matrix into two separated 1-D vectors (i.e., we 
decompose the L x L reference image into two vectors with L components), the 
cross-correlation can also be decomposed into two vector correlation operations 
as: 

L L  

M 

where S is the sensor image, and W is the reference image 

and A ,  B are vectors. From the above expression we calculate the one dimension 
correlation with vector A row by row, and then calculate the one dimension 
correlation with vector B column by column. Furthermore, if we use pipeline 
 technique^,^ the number of multiplications required for the row vector is N2*L, 
and the number of multiplications required for the column vector is N2*L. Thus, 
for a L x L reference image, the decomposition method used 2* L operations per 
pixel instead of L2 operations per pixel. 
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In general, if H is of full rank, the number of operations required to perform 
the correlation is of the order ( 2 L ) * L * p .  For most real world images, the 
eigenimages having largest singular value dominate the remaining eigenimages. 
Pseudo-correlation uses the largest eigenimage of the reference image to evaluate 
the cross-correlation. The computation complexity reduces from N2* L2 to 2N2L. 

The pseudo-cross-correlation value at the optimal match position is not 
necessarily a maxima. Usually it falls into a small region around it which we will 
test further for the optimal matching. The pseudo-cross-correlation value at the 
optimal match position usually has high value closed to the maximum pseudo- 
cross-correlation value. Table I illustrates this fact for some experimental results. 
From the table we see that usually only 1-3% of the pixels have pseudo- 
correlation values higher than the pseudo-correlation value at the optimal match 
position. Thus only a very small number of pixels needs to be calculated precisely 
in the second stage. 

111. THE CORRELATION VALUE THRESHOLD DETERMINATION 

A. Correlation Threshold for Noise-free Image 

The greatest difficulty in the two-stage algorithm is in the determination of an 
accurate correlation threshold value during the first stage. If the threshold value is 
too low, the size of the candidate group is too large. The optimal match position 
might be missed, however, if the threshold value is too high. In this section, we 
derive the correlation threshold value of the first stage, using the SVD definition 
and considering the noise-free and noisy images, respectively. As we showed in 
the previous section, the reference image, which is taken as an L x L array of 
digital picture elements, can be expressed as a sum of separable eigenimages by a 
singular value decomposition (SVD): 

w = c a;a,b;T = c a;E; (3.1) 

Table 1. Experimental results of pseudo-correlation. 

Sensor Reference TH" Minimum grouph 
image image value size (%) 

250 x 250 15 x 15 0.2918 5.6 
250 x 250 11 x 11 0.1718 2.0 
250 x 250 11 x 11 0.1485 1.5 

"TH indicates the ratio between largest singular value and summa- 
tion of all singular values. 

?he minimum candidate size indicates that the number of pixels 
have pseudo-correlation values higher than the pseudo-correlation value 
of the optimal match position. 
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where ai, Ei are the ith singular value and the eigenimage, respectively. 
Let 

and 

L L  

where R ( i j )  is the cross-correlation, and R’(i,j) is the pseudo-correlation value, 
which is the cross-correlation between the original image and the largest refer- 
enced eigenimage 

Suppose at the (i*,j*) position, R(i*j*)  = max R(i , j ) ,  which will be repre- 
sented as RM, and at the position ( i ‘ , j ’ ) ,  R’(i’ , j‘)  = max R’(i , j)  which will be 
represented as RM’ (where 1 d ij S M-L+1, 1 d f,m C M). 

We have 

and 

L L  

2 2 alEl(f,m)*S(i‘+l,j‘+m) 

(3.5) 
1=1 m = l  

R ’ M  = R(i’,j’) = L L  

1 = 1  m=I  I=1  m=1 

and 

L L  
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For a noise-free image the correlation threshold can be expressed as below: 

- Pseudo-correlation at optimal matching position (i* J* )  

Pseudo-correlation at pseudo-optimal matching position (i' j ' )  
- 

For noise-free image the intensities of the reference image and sensor image 
should be the same at the optimal matching position, that is W(f,rn) = s ( f ,m)  for 
(f ,m=l.  . . . ,L) ,  so the above is given by 

B. Statistical Properties of the Cross-Correlation 

Before deriving the threshold for noisy images, we shall first discuss the 
statistical properties of the c ros s -~or re l a t ion .~~~  Without loss of generality, let the 
cross-correlation R be expressed as below: 

(i) ( X l . Y , )  . . . (X,,Y,)  . . . (Xn,Y,)  are samples from a bivariate normal 

( i i )  p is the estimated population correlation coefficient, 
distribution. (t=l, . . . ,n) 
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The probability distribution of R can be expressed as below? 

when n is number of samples 
It is clear that the distribution of R is so complicated that it is very difficult to 

use without a practical approximation or an extensive set of tables. Johnson2 gave 
a practical approximation to the distribution of R, which can be obtained by the 
transformation: 

Z’ = tanh-’ R = 1/2 log( (l+R)/(l-R) ). (3.12) 

This transformation might be seen as a variance-equalizing transformation, and 
have properties as below: 

var(R) = (1 .- p2)2n-’ 

and 

J (l--p2)-’ dp = 1/2 log (l+p/l-p). (3.13) 

Johnson’ pointed out that we can approximately regard Z’ as normally distri- 
buted with an expected value of 1/2log(l+p/l-p) and variance (n-3)-’ .  Finally 
he proved the following approximation results: 

PR[R 6 r] = @ ( B )  (3.14) 

where 

r(1 - r2)1/2(n-3/2)1./2 - p(1 - p2)l”-(n - 5/2)’12 
B =  (3.15) 

[ 1 +r2( 1 - r y / 2  + p2( 1 - p2)- 1]1/2 

and 

From Eq. (3.15) we see that the distribution of R is a function of p, r ,  and n. The 
first and second moments of the distribution of R can be approximated as below: 

FI = p- 1/2n p(1-p2) (3.16a) 
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(3.16b) 

C. Correlation Threshold for Noisy Image 

Suppose the sensor image is a digital image with Gaussian noise, which can be 
expressed as below: 

S(i,j) = I ( i , j )  + N ( i J )  

and we assume N ( i , j )  is smaller than I ( i , j ) .  As before, we have the expressions: 

R M  = R(i*,j*) = 

L L  

C 2 W(l,m)*I(i*+I,j*+m) 
(3.17) / = I  m=l 

I L  L L L  

and 

1. L 

At the (i*j*) position, R(i*,j*) = max R( i , j ) ,  which is represented by R M ,  and at 
the position ( i ’ j ’ ) ,  R‘(i’ , j’)  = max R’(i*,j*),  which is represented by RIM.  We 
should note that the RM corresponding to  the optimal match position is the 
maximum cross-correlation value of true intensity value. 

L L  

C 2 a,El([,m)*S(i*+f,j*+m) 
/ = I  m = l  

L L L  R’(i*J*)  = , 
L L  

!=I m = l  - - 
l L  L L L  \ 2  

For a noisy image the correlation threshold can be expressed as below: 

(3.19) 
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(3.20) 

where po, p are the estimations of the correlation coefficient (3.9) at pixels (i* j * )  
and (i‘,j’), respectively. Also we have 

E[ ( W+” -E( W+”))*(I+N-E(Z+N)] 
E(R’(i*,P)) = 

[VAR(W+N’)*VAR(I+N)]1/2 

E[ ( W- E( w ) ) * ( I -  E(z))] + E[ ( W-E( W))*Aq+E[”*(I-E(I)] +E[“NI - - 
[ (VAR( W)+VAR(N’))*(VAR(I)+ VAR(N))]’l2 

(3.21) 

Because of the independence between the sensor image and the noise and 
also the white noise assumption, we have the following 

. (3.22) - - E[(W-E(W))*(I-E(I))I 
[ (VAR( W) + VAR(N’)) * (VAR(I) +VAR(N))]’/’ 

Finally, the correlation threshold for a noisy image can be expressed as below: 

For the noisy image, we can simplify the expression for the threshold as follows: 

z z a,E,(l,m)*W(Z,m) 
TH = . (3.23) 

[ (ZZ W2(f ,m) + VAR(N)) * ( Z h l  2E12(f ,m) + VAR(N))]’’’*R’ 

IV. COMPUTATION REQUIREMENT 

In the two-stage template matching process, the expected computational cost 
at each pixel of the picture (ignoring the cost of the SVD operations) is of the form 
c+pd,  where 

c: cost of applying the “first-stage,” pseudo-correlation, 
p: probability of the cross-correlation value above the threshold, 
d :  cost of applying the cross-correlation in the second stage. 

From the previous analysis we know that c is equal to 2L multiplication opera- 
tions, and d is equal to L2 multiplication operations. 

The probabilityp can be evaluated from Eqs. (3.14) and (3.15), if we know 
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the reference image size, the correlation threshold TH,  and the population 
correlation coefficient p. On the other hand, if the probability p is specified, we 
also can get the correlation threshold T H  from Eqs. (3.14) and (3.1.5) using the 
typical statistical hypothesis test method. 

V. IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS 

I n  this section we summarize the procedure of the fast matching algorithm, 
and then present some experimental results to demonstrate the feasibility of this 
algorithm. 

A. Implementation Details 

The steps necessary to perform the fast correlation match using SVD are 
summarized below: 

( i )  Decompose the reference image represented as a matrix using the SVD. 
(ii) For noise-free image, Eq. (3.7) is used to evaluate the correlation 

threshold. For this equation, a l ,  E l  ( f ,m)  can be obtained from the 
SVD, w(f , rn)  is the graytone values of the reference image, which 
is known. R,& is the pseudo-correlation value at the pseudo-optimal 
matching position. For the noisy image, Eq. (3.23) is used to evaluate 
the correlation threshold. For this equation, aI, E,(f,rn) w(l,rn) and R,(, 
can be obtained in the same way as the noise-free case, and we assume 
that the noise is zero mean and variance given by VAR(N). 

(iii) Calculate the pseudo-correlation values for each pixel. 
(iv) Pick out the pixels whose pseudo-correlation values are larger than the 

(v)  At the second stage, calculate the cross-correlation values of these 

(vi) Find the maximum value of cross-correlation and determine the posi- 

threshold as candidates. 

candidate pixels again. 

tion, which is the optimal match position. 

B. Experimental Results 

The technique is illustrated using digital remote sensing data collected by the  
Landsat and some large-scale airphoto images. The results and cornpariaon of 
regular cross-correlation with the fast algorithm are illustrated in Table 11. These 
results show that this method significantly speeds up the registration procedure 
for typical images between 256 X 256 and 1000 X 1000 and template images of 1.5 
x 15 to 21 X 21. 

V1. CONCLUSION 

A method to speed up the template matching process has long been desired. 
We have developed a fast correlation registration method using Singular Value 
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Table 11. The computational cost comparison between the Fast Correlation 
Method and the Conventional Method. 

Reference CPU time CPU time SVD Total 
Method Image image stage 1 .stage 2 cost cost 

Regular 
SVD 256 x 256 21 x 21 

Reg u I a r 
SVD 256 x 256 15 x 15 

Regular 
SVD 150 x 150 11 x 11 

Regular 
SVD 130 x 90 11 x 11 

Regular 
SVD 1OOOX1OOO 1 5 x 1 5  

Regular 
SVD 130 x 90 5 x 5  

1411101s I 14m01s 
211105s lmlOs 3.2s 3m15s 

711142s I 711142s 
111133s 1 m08s 2.9s 211148s 

lm37.8~ I 111137.8s 
25 s 5 s  1.7s 30.1s 

lm05s / lm05s 
12.75s 10.2s 1.7s 25.5s 

lh54m7s I lh54m7s 
14m05s 9m02s 2.9s 23m10s 

20.07s I 20.07s 
7.47 s 5.35s 1.7s 15.0s  

rank 1 matrix 

G = I 1  i 12  t .... 1- 1 R  
Figure 2. Singular Value Decomposition of G. 

Decomposition. In this article the approach is a two-stage matching algorithm, 
which can be used to increase the speed of the matching process. In the first stage, 
the reference image is orthogonally separated by the SVD and then the low-cost 
pseudo-correlation values are calculated. This reduces the number of computa- 
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tions to 2NL instead of N2L2, where L X L is the size of the reference image, and 
N x  is the original image size. Experimental and analytic results have been 
presented to show how the computation complexity is greatly improved. 
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