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Poor contrast in the apex zone and non-homogeneous mixing of the dye with the blood in
the left ventricle causes the left ventricle pizel-based classifiers operating on ventriculograms
[1] to yield boundaries which are not close to ground truth boundaries as delineated by the
cardiologist. They have a mean boundary error of 6.4 mm and an error of appoximately 12.5
mm in the apex zone. These errors have a systematic positional and orientational bias, the
boundary being under-estimated in the apex zone.

This paper discusses two calibration methods: the Identical Coefficient and the Indepen-
dent Coefficient to remove these systematic biases. From these methods, we constitute a fused
algorithm which reduces the boundary error compared to either of the calibration methods.
The algorithm, in a Greedy way, computes which and how many vertices of the left ventricle
boundary can be taken from the computed boundary of each method in order to best improve
the performance.

The corrected boundaries have a mean error of less than 3.5 millimeters with a standard
deviation of 3.4 mm over the approximately 6 x 10* vertices in the data set of 291 studies.
Our method reduces the mean boundary error by 2.9 millimeters over the boundary produced
by the classifier. We also show that the calibration algorithm performs better in the apex
zone where the dye is unable to propagate. For End-Diastole, the algorithm reduces the error
in the apex zone by 8.5 millimeters over the pizel-based classifier boundaries.
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1 Introduction

Accurate and automatic boundary estimation of the left ventricle (LV) and its quantitative
analysis is important for diagnostic purposes. One of the popular methods for studying cardiac
disorders is by catheterization. In this procedure, the contrast medium (a Barium compound
dye) is injected into the heart where it mixes with the blood during the heart cycle. Because
this mixing takes place in a non-homogeneous manner and because of the papillary muscle
structure of the heart, very little dye reaches the apez zone (See Figs. 1, 2, and 3). Con-
sequently, the gray scale contrast of the apez zone is poor. In addition left ventriculograms
(LVG) have a high level of noise due to the scattering by tissue volumes which are not related

to the left ventricle as explained by Tanaka, Sezan and Nakajima [6].

A pizel-based classification procedure [1] followed by motion morphology was developed
at the Intelligent Systems Laboratory (ISL) in conjunction with the Cardiovascular Research
and Training Center (CVRTC), University of Washington, Seattle, to estimate the borders of
the left ventricle. These algorithms however do not yield boundaries close to the hand-drawn
boundaries as delineated by the cardiologist. Of the many reasons for the failure of pizel-based
image processing algorithms, the foremost is the poor contrast in the apez zone that causes the
image processing boundaries to fall short of ground truth boundaries or to be under-estimated
[1] (see Fig. 1 and Fig. 2). Furthermore, irregularities of the inferior walls, variations in the
left ventricle shape, size, orientation, and heart rate cause the boundaries from the pizel-based

classifier output to push outwards or to be over-estimated (see Fig. 1).

Due to all of the above complications, a reliable left ventricle boundary detection algorithm
must make use of as much knowledge of the left ventricle shape, size, position and orientation
as possible. This knowledge can be learned from a population of left ventricle boundaries man-
ually traced by the cardiologist or a trained technician. Our database population consisted of

291 patient studies. 135 studies had acute myocardial infarction with a top 50% in quality.
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Figure 1: Left: End-Systole (ES) frame showing very little dye in the apex zone of the LV.
ES frame is that frame of the heart cycle when the LV has fully contracted. It is named
so because it is the last frame of the Systole (contraction) cycle. Right: End-Systole frame
showing with little dye and interference by ribs with the LV. Thick lines represent the border
drawn by the Cardiologist. Thin lines are the border computed by the pizel-based classifier
or boundaries produced by image processing algorithms. Background consists of gray scale

ventriculograms (LVG) of size 384 x 512.

Figure 2: Left: End-Diastole (ED) frame showing very little dye in the apex zone of the
LV. ED frame is that frame of the heart cycle when the LV has fully expanded. It is named
so because it is the last frame of the Diastole (expansion) cycle. Right: End-Diastole frame
showing the pizel-based classifier boundaries are under-estimated in anterior, inferior walls and
apex zone. Thick lines represent the border drawn by the Cardiologist. Background consists

of gray scale left ventriculograms (LVQG) of size 384 x 512.
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35 patients were studied during acute infarction, who then underwent follow-up studies over
the course of one year. 27 studies from Japan were normal and had a diagnostic cardiac
catheterization, but were found to have normal anatomy. The Japanese patient LV images
represented the top 50% in quality; the remainder of the 94 studies were from Catheterization
Laboratory, at the University of Washington, Seattle, Washington. These studies represented
a top 30% in quality. Using this knowledge of traced boundaries from this population and the
information about the pizel-based classifier boundaries, it was possible to construct an off-line
training system which can train two sets of boundaries: the boundaries produced by an image
processing algorithm and the boundaries traced by the physicians. The trained system can

then be applied on-line to new patient boundaries generated by an image processing algorithm.

In this paper we show that the aforementioned training procedure is a very promising
technique for measuring the accuracy of left ventricle borders of the left ventricle, particularly
in the apez zone and walls where the dye has not mixed well with the blood. We show that
when the trained system is applied to new left ventricle test patient boundaries generated from
the pizel-based classifier, the system reduces the systematic boundary biases and provides au-
tomatic left ventricle boundaries that are within 3.5 mm of the physician traced boundaries.
Our procedure can be thought of as a calibration procedure: calibrating the initial pizel-based

boundaries closer to the ground truth boundaries by removing any systematic bias in shape,

position, and orientation.

Calibration in general is very popular in vision, image processing, and statistical medical
imaging. Wunderlich and Fischer [2] developed an isocenter calibration technique by which
they transformed the cardiac structures in digitized biplane angiograms to absolute dimen-
sions calculating their radiological magnification and video transformation. Most imaging
systems have an inherent magnification which requires a calibration to calculate the number
of pixels per millimeter. Our calibration is of a different kind, one where we remove systematic

shape, positional, and orientational errors from boundaries produced by an image processing
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algorithm operating on low contrast heart images.

The boundary calibration system employs two different techniques: the Identical Coeffi-
cient Method and the Independent Coefficient Method, named after the way each technique
estimates the parameters. Each method produces estimates of the vertices of the polygon
bounding the left ventricle and is independent for each frame of the heart cycle. We then fuse
these vertex sets to form a final boundary. We select in a Greedy manner that fixed subset of
estimated vertez positions from each method which, when fused together, most minimizes the

resulting errors between the final estimated polygon boundary and the physician traced left

ventricle boundary.

We used a cross-validation procedure for estimating the error of the calibration system.
The procedure took a database of N patient studies and partitioned this database into K
equal sized subsets. For all the K choose L combinations, we trained the system using L sub-
sets, and applied the estimated transformation on the remaining (K — L) subsets. The mean
error of the transformed boundary was then computed from these (K — L) subsets coming
from all K choose L combinations. Our experiments consisted of varying the calibration pa-
rameters: N, K, L, P. We chose six different sets of K values (corresponding to each protocol)
for training the system.

Because of the small number of available patient studies in our database, (N=291) and the
large number of parameters (about 200 times N) in the transformation, there was a danger of
memorization rather than generalization in the estimation of the transformation parameters.
Therefore, it was essential that the number of vertices (P in the left ventricle polygon) be
carefully chosen. As P decreased, the generalization improved but the representation of the
true LV shape got worsend, thereby causing higher error with respect to the ground truth.
As P increased, generalization was lost but representation of the true LA shape improved.
With the other parameters K, L and N fixed, there was optimal number of boundary vertices

P* balancing the representation error with the memorization error. Our protocol found the
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optimal number.

We measured the error between an automatically constructed boundary produced by an
image processing algorithm and a ground truth boundary as traced by physician using a poly-
line distance metric. The polyline distance metric was symmetrically defined as the average
distance between a vertex of one polygon to the boundary of the other polygon. Using this dis-
tance metric, we analyzed the left ventricle estimated boundary data in seven different ways:
The main four are: cumulative distribution of the average of the End-Diastole (ED) and End-
Systole (ES) errors (E—Q;"—M) , error by frames of the systolic heart cycle, error per vertez and
error per arc length along the left ventricle contour, starting from the anterior aspect of the
aortic valve. We showed that the calibration improves the estimation of the boundary in the
apez zone where there is low contrast in ventriculograms. For the End-Diastole frame, there
is an improvement of about 8.5 millimeters (approximately 20 pixels) and for the End-Systole
frame about 3 millimeters (approximately 7.5 pixels) over the initial image processing al-
gorithm boundaries. The Greedy algorithm that fused the Identical Coefficient Method and
Independent Coefficient Method boundaries yielded the best results, thereby further reducing
the error by 0.3 millimeters in the apez zone . We showed 81% of the patient boundaries had

a mean (EZ2$ES) less than 4.0 millimeters using the Greedy calibration technique.

2 Left Ventricle Related Literature

This section discusses how the previous research work is related to current research and sig-
nificant reviews which use automatic algorithms for LV boundary extraction. Segmentation
of medical organs for medical diagnosis began when the imaging systems became available for
imaging of the body organs [3], [4]. In medical applications, the shape of the organs vary con-
siderably between patient studies and through time. The foundation of most of the boundary
segmentation techniques have been histogram-based. Tanaka, U.S. Patent number 4,952,805,
developed a histogram-based division method followed by statistical shape analysis. Shimura,

U.S. Patent number 4,028,079, developed an edge detection technique along the radial lines
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Figure 3: Labelling of the Left Ventricle (ED frame): The anterior and inferior side walls, the
apex zone, the AoV plane (joining AAV and IAV). Bold line joining mid of AoV and the apex
point is the longitudinal axis of the left ventricle, shown, about one-third region of the left

ventricle region is the apez zone.
from the center of the image followed by thresholding. All these methods are either semi-

automatic or are not robust enough to produce reliable boundaries.

Cootes [5] attempted using an active shape model to infer the position of boundary parts
where there was missing data (top of the ventricle); he used the knowledge of the expected
shape combined with information from the areas of the image where good evidence of wall
could be found. Cootes had used Least Squares method to estimate shape parameters. For
the final shape estimation, Cootes then used a weighted interactive algorithm where weights
were proportional to the standard deviation of the shape parameter over the training set.
Cootes used the Mahalanobis distance for performance.
van Bree attempted to find the LV borders using a combination of probability surfaces and
dynamic programming. van Bree’s algorithm consists of three major steps. The first step
is building the probability surfaces from a database of hand-drawn boundaries after the left
ventricle boundaries have been corrected for translation and rotation. The second step con-
sists of generation of extraction lines (also called search lines) for the design of the search

matrix. These search lines are the lines which originate from the interior of the left ventricle
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and extend radially outward to the outer region (background) of the left ventricle. The third

step consists of smoothing the search matrix followed by dynamic programming to search for

the optimal path of the left ventricle border.

Lee [1] used a pizel-based bayesian approach for the left ventricle boundary extraction where
he looked at the gray scale value of the location throughout the cardiac cycle as a vector: Lee
assumed that the distribution was bi-variate normal. For each observed vector, one class is
assigned according to the ground truth, which is available by filling the LV region surrounded
by the ground truth LV boundary. Ground truth of a pixel through F' frames generates 27
possible classes but, far less than 2F classes are actually required in order to represent all
existent classes. Due to the different heart rates (i.e. variable number of frames in the cardiac
cycle for different studies) Lee allowed different dimension of the observation vector. Lee
simultaneously segmented all the frames from End-Diastole through End-Systole to the next
End-Diastole instead of segmenting frame by frame separately, assuming that each pixel was
statistically independent in the same frame. Lee later modified his assumption by considering
the nearest neighbor. For performance and error computation of the detected LV boundary,
Lee compares classifier boundary with manually traced boundary using the Hausdorf distance
measure. Because the gray scale contrast in the region of apex zone is very low and there is
interference of diaphragm with inferior walls, the classifier produces boundaries which are not
close to ground truth boundaries; furthermore, the boundaries produced by the classifier do
not reflect true LV shape. In this paper, we discuss three sets of algorithms which takes these
classifier boundaries and transform them closer to the boundaries as delineated by cardiologist.

The apex is harder to identify in gray scale LVG’s because of the inadequate dye propaga-
tion; therefore, Suri, Haralick and Sheehan are developing an integrated directional derivative

approach to determine the directional (angle) patterns in the ventriculograms which are very

useful for apex estimation in the LVG.

Quantification of LV wall motion particularly interested [7], [8] researchers since the quan-
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tification relates directly to cardiac disorders. These methods are computer based and differ
in geometrical approach for quantification of wall motion. Putting markers on the mid-wall
for quantification of wall dynamics was first suggested by Gibson [34]. Gibson’s paper dis-
cusses five methods for wall quantification. Sheehan developed the Centerline Method for
measurement of wall motion [7]. Sheehan measures the motion along 100 chords constructed
perpendicular to a Centerline drawn midway between the End-Diastole and End-Systole LV
contours. Suri, Haralick and Sheehan developed the Polyline Distance Method for estimat-
ing mean distances between two LV boundary shapes [9]. We discuss our method in the
performance section.

Regression-based approaches offer an alternate way to fit noisy boundary data. For exam-
ple, some techniques which can be applied are: the median Least Squares approach developed
by Kim [22] for fitting the noisy data. Hampel and Holland [23], [24], [25] developed an It-
erative Reweighted Least Square (IRLS) for robust estimation of the outliers. Suri, Haralick
and Sheehan developed an Iterative Reweighted Least Square scheme for computing the robust
apez coordinates of the left ventricle and then computing the serial number of the apex point
starting from the anterior aspect of aortic valve. Performance of the robust procedure can be
determined by estimating its efficiency which is defined as the ratio of root mean square error
computed using inlier data alone in the the regression to the root mean square error using the

combined inlier as well as outlier data in the regression.

3 Two Coefficient Methods: IdCM & InCM

This section gives the mathematical statements of the two calibration methods used by the
Greedy algorithm for estimation of the left ventricle boundaries. Ground truth boundaries
refer to the hand delineated boundaries drawn by the cardiologist or the trained technician.
Classifier boundaries (also called as raw boundaries) refer to the boundaries produced by the
initial pixel based automated classification procedure. In the Identical Coefficient Method,
each vertex is associated with a set of coefficients. The calibrated z-coordinate for that vertex

is computed as the linear combination of raw z-coordinates of the LV boundary using the
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coefficients associated with that vertex. The calibrated y-coordinate of that vertex is sim-
ilarly computed as the same linear combination of raw y-coordinates of the LV boundary.
In the Independent Coefficient Method, the calibrated z-coordinate is computed as the lin-
ear combination of raw z- and raw y-coordinates of the LV boundary, using the coefficients
associated with that vertex. The calibrated y-coordinate of that vertex is computed with a
different linear combination of raw z- and y-coordinates. The problem of calibration then
reduces to a problem of determining the coefficients of the linear combination which can be
accomplished by solving a regression problem. The initial (z,y) coordinates of the left ventri-
cle are converted from pixels to millimeter using magnification correction factor. This factor
is computed by keeping a grid of lead wire of known millimeter size or a kugel of known
diameter (in mm) over the ventriculograms. The kugel is approximately the same size as the
left ventricle (approximately 70 millimeters). These input raw and ground truth boundaries
are initially in a 100 vertices polygon format with unit dimensions in millimeters, we therefore

resample and interpolate each of these polygons into equally spaced vertices before it undergoes

the calibration procedure discussed below.

3.1 Identical Coefficient Method (IdCM) for any frame

Let g, and h, be the row vectors of z-coordinates and y-coordinates respectively for the
ground truth boundaries for patient n. Let 7., and s,, be the row vectors of z-coordinates and
y-coordinates respectively for the classifier boundary for any patient n, where n = 1,..., N.
For the calibrated boundary estimation in left ventriculograms using the Identical Coefficient

Method , we are

e Given: Corresponding pairs of ground truth boundaries R [2N x P], and the classifier
boundaries Q [2N X (P + 3)], respectively:

!
, 7‘1 ].’U,11 U1
91 1
h’l 81 1’!)11 V21
R=| .. Q= .
1 7
aN Ty luin uan
N ——
R’ !
N sy lvinvan
————
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where, (u11,v11), (¥1n,v1n) and (u21,v21), (u2n,van) are the coordinates for the anterior
aspect and inferior aspect of the AoV plane of the left ventricle (see figure 1) from ground

truth boundary.

e Let A [(P + 3) x P] be the unknown regression coeflicients matrix.

e The problem is to estimate the coefficient matrix A, to minimize || R — Q A ||2. Then

for any classifier boundary matrix Q, the calibrated vertices of the boundary are given

by QA, where A is the estimated coefficients.

Note that from the problem formulation, the coefficients that multiply g, also multiply A,
hence the name Identical Coefficient Method. Also note that the new z-coordinates for the
n** boundary depend only on the old z-coordinates from the n** boundary, and the new y-

coordinates from the n*" boundary depend only on the old y-coordinates from the nt* bound-
ary.
3.2 Independent Coefficient Method (InCM) for any frame

As before, let g/, and k., be the row vectors of z- and y-coordinates for any patient n. Let 7,
and s,, be the row vectors of z- and y-coordinates of the classifier boundary. For the calibrated
boundary estimation in ventriculograms using the Independent Coefficient Method, we are:

e Given: Corresponding ground truth boundaries R [N x 2P], classifier perturbed bound-
aries Q [N x (2P + 5)] respectively:

7 7
1oyt 7187 1u11 v11 U21 Va1
91 h1 11 N

R - Q-

I“. 7 ’ !
9N by TN Sy 1 Uin vin UanN Van,

where, (411, v11), (41N, v1n) and (u21, v21), (¥2n, v2n) are the coordinates of the anterior aspect
and inferior aspect of the AoV plane of the left ventricle (see figure 1) from ground truth

boundary.

o Let A [(2P + 5) x 2P| be unknown regression coefficient matrix.
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e The problem is to estimate the coefficient matrix A, to minimize || R — Q A ||2. Then
for any classifier boundary matrix Q, the calibrated vertices of the boundary are given

by QA, where A is the estimated coeficients.

Note that the new (z,y)-coordinates of the vertices of each boundary is a different linear com-
bination of the old (z,y)-coordinates for the polygon, hence the name Independent Coefficient
Method. The above two methods are different in the way the calibration model is set up.
The classifier boundary matrix Q in IdCM is of size 2N x (P + 3) while in InCM is of size
e
N x (2P + 5). For IdCM, the number of coeflicients estimated in the A matrixis (P+ 3) x P.
~——————— ~——
For InCM, the number of coefficients estimated is (2P + 5) x 2 P. Thus the Independent Co-

efficient Method requires around 4 times the number of coeflicients of the Identical Coefficient
Method to be estimated, and this difference represents a significant factor in the ability of the

technique to generalize rather than memorize for our data size.

4 Greedy Algorithm for LV Calibration by Vertex

Section 4.1 discusses the boundary data preparation before it is fed to the boundary calibrator.
Section 4.2 discusses the estimation of the training coefficients and the estimated boundaries

for both boundary calibrations. Section 4.3 discusses the Greedy algorithm and vertex pooling

process.

4.1 Data Preparation & Correspondence

Figure 4 shows the overall boundary calibration system, where the heart of the system is the
IdCM or InCM calibrator. The input to the calibrator is the LV boundary data that consists
of N studies, F' frames and P, = 100 vertices. The input boundary data is resampled and
interpolated so that each polygon has equally spaced P, vertices. Thus, every vertex number
of ground truth boundary corresponds to the same vertex of the classifier boundary. This
resampling and linear interpolation is done in an automatic way, where the user needs to only

specify the number of boundary vertices to be sampled and which frames of the cardiac cycle
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to be sampled. In our case, we choose two frames for sampling, the End-Diastole and the
End-Systole, and the number of sampled boundaries vertices are P,. Note that the AoV plane

is known. This means the (z,y)-coordinates for the anterior aspect of aortic valve and inferior

aspect of aortic valve is known.

BOUNDARY CALIBRATION SYSTEM DESIGN OF Q AND R MATRICES
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Figure 4: Object process diagram for the IdCM and InCM calibrations for any frame of the
heart cycle. We sample and interpolate the input normalized data, followed by the partitioning
the data into K subsets, L used for training and K — L used for the testing set. Magnification
conversion factors are used to convert pixels to millimeter where 1 pixel = 0.39 mm. Right:
figure showing design of system matrices using the database for each frame independently.

4.2 IdCM and InCM Calibrations: Estimation Process
In either case, the regression model is to find the off-line coeflicient matrix A(t) to minimize
& = | R(t) - Q)A®)|? (1)

Generalizing for any frame ¢ of the systolic cycle, minimizing A s given by the normal equa-

tion:

Atr ngTQ)v—l QTRJ (2)

The above equation is solvedtusing singular value decomposition (SVD) [30]. Given the test

set (Qqe) or training set (Qy ), we can estimate the calibrated boundary as:

3%9 = Qte Atv & 3:&1' = Qtr At'r; (3)
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Thus the estimated matrices for the IdCM and InCM test sets are:
Ris = Qe Aig, & Rin = Qi Ay, (4)
—————— e —

Note, if P, are the sampled vertices, then f{id is of dimension 2N x P, and f{in is of dimension

N x 2P,.
4.3 Best InCM index selection: Greedy Algorithm

The Greedy algorithm is shown in the object process diagram 5. We select a fixed subset
of estimated vertex positions from IdCM and InCM technique which when fused together,
minimizes the resulting error between the final estimated polygon boundary and the physician
traced LV boundary. Let S, S;4 and S;, be three sets consisting of all vertices, IdCM pool
vertices and InCM pool vertices respectively. Let Rig (2N x P,) and Ry, (N x 2P,) be the
estimated boundary matrices from IdCM and InCM techniques with P, samples vertices. Let
R, (N x2P,) and R (N x 2P,) be the matrices consisting of (z,y)-coordinates from original
ground truth with P, =100 and sampled P, vertices respectively. Initially all the vertices
are considered in the IdCM pool and the error is computed. Denote its error by €;4. Now
we select that vertex from IdCM pool which when fused with InCM pool vertices yields an
estimated boundary error lower than €;4. This procedure is repeated until there is no further
improvement. If € be the error at any time in the Greedy do-while loop, and F be the set

consisting of all the frames, then the Greedy do-while loop for any frame ¢ in the set F, consists

of the following steps.
Greedy Boundary Calibration()

For each t € F
Sia=S; Sin=0¢, e=0 greedyCounter=0
While (e < €4) do
greedyCounter++

For each : € S;3, /* total vertices are Py */

Sid = Sid - {Z} ) Sin - Sin U{Z}
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Combine IdCM (f{,,-d) and InCM (f{m) Using S;q and S,

A

Room = Combine(R,q, Rin, N, P;, Sid, Sin, greedyCounter)

Performance Evaluation using Original GT: Error for index 2

e; = PolyPerformance( Reom, R, N, P, P,)
end /* end of the for loop */

ArgMin Computation: Minimum error and best vertex j selection

(€min,7) = ArgMin(e[¢], P,q — greedyCounter )
if ( €min < €) then S;g=Sia—{j} ; Sin = SinU{j} else break; end
end /* end of the while loop */

end /* end of all the frames of systolic heart cycle */
Note there are three steps in the Greedy algorithm. First, fusion of IdCM and InCM boundary

data, second, polyline performance to compute the errors and third, the vertex selection. The
input to the fusion process are 2 sets of boundaries R;; and R, which need to be fused. The
fusion is done by selection of that vertex (or column) of InCM boundary which contributed
to a reduction in error. The Polyperformance() function takes 2 sets of boundaries: the fused
boundary Reom and the original ground truth Ry consisting of P, =100 vertices and computes
the mean error (as discussed in section 5). The third function is the argmin() function or
vertex selection function that takes the error associated with P, vertices and finds that vertex
number from InCM LV boundary that yielded the least error in each Greedy cycle. One such
Greedy cycle is shown in fig. (5),right. Consider 2 baskets say b; and b, containing same
number of balls P, but of different color, say white and black. These balls can be imagined to
represent the vertices of the LV boundary. The first cycle consists of searching of that black
ball from basket b, which when combined with P,-1 white balls in basket b; will yield lower
error when no ball was transferred. Finally 1 such ball is transferred from basket b, to basket

b, and cycle is repeated till no more balls are found which improves the performance of the

system.
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GREEDY LOOP AFTER IDCM & INCM CALIBRATIONS REEDY AL ITHM -
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Figure 5: Left: For loop for combining the IdCM and InCM calibrations used in the Greedy
do-while loop. The data structure of the do-whlie loop is implemented in the form of lists
where the best vertex is computed and empted from the IdCM pool and unioned in the InCM
pool. The do-while loop is implemented independently for ED and ES frames. Right: One
Greedy cycle where best vertex (ball) is selected out of basket b,.

'
1 jas, april 20, ‘96

REEDY ALGORITHM - P CYCLES

Cycle 1

Cycle 2

Cycle 7

jas, april 20, ‘96

Figure 6: The figure shows basket number b, filling up after each Greedy cycle.
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5 Polyline Distance Measure and Performance Terms

The performance of the calibration algorithms is evaluated by computing the boundary error
on the test data set (Q). IdCM and InCM calibration algorithms compute the error in a
suboptimal way; i.e., for each vertex there is error between the ground truth LV boundary to
the corresponding vertex on the estimated LV boundary. But the cardiologists are interested
in finding the closest distance of a vertex on one polygon boundary to another LV polygon.
Sheehan [7] developed a centerline method for quantitative assessment of ventricular boundary.
She measured the motion along 100 chords constructed perpendicular to a centerline drawn
midway between the ED and ES LV contours. The Centerline method was developed to find
the extent of local LV wall motion. The algorithm consists of the following principle: If
the two LV polygons are ED and ES boundaries, ED being having larger number of points
on it, then first linearly interpolate the larger contour to get 200 points and then for each
tuple of three points on this contour a perpendicular is drawn to the tangent of the circle
passing through these 3 points. Centers of these perpendicular constitute the centerline. On
the similar basis of computing perpendicular from one vertex to another polygon, polyline
distance metric is based. We give the formal definition as follows: The polyline distance
Dy(B; : By) between two polygons representing boundary B; and B, is symmetrically defined
as the average distance between a vertex of one polygon and the boundary of the other polygon.
To define this measure precisely, we first need to define a distance d(v, s) between a point v

and a line segment s. The distance d(v, s) between a point v having coordinates (z,,y,), and
a line segment having end points (z1,y1) and (z2,y») is:

B min{d;,ds}; f A<0,A>1
d(v,s) = {ldJ_’; if 0<)A<1, (5)

where

di = /(20 —21)" + (3o — 1)’
dy = \/(mo - m2)2 + (%0 — y2)2 (6)

)= (y2—v1 )(yo—w1)+(z2—z1 )(mo—21)
(z2—z1)?+(y2-v1)?
dJ_ — (y2—y1 )(z1—mo)+(z2—21 )(yo—y1)

V(2 —21)2+(y2—y1)?
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The distance dy(v, B;) measuring the polyline distance from vertex v to the boundary B, is

defined by:
dy(v,By) = min_ d(v,s) (7)

8 € sides Bo

The distance dys(B1, B2) between the vertices of polygon B; and the sides of polygon B, is

defined as the sum of the distances from the vertices of the polygon B; to the closest side of

B2- dub(Bth) = Z d(’U,Bg)

vE vertices By
Reversing the computation from B; to By, we can similarly compute dy (B2, B;). Using Eq.

7, the polyline distance between polygons, D,(B; : B;) is defined by:
dvb(BI;BZ) + dvb(BZ;Bl) (8)
(#vertices € By + #vertices € B;)

D,(B]_ : Bg) =
5.1 Mean error (efjgp) or Measure of Goodness
Using the definition of the polyline distance between 2 polygons, we can now compute the

mean error of the overall calibration system. It is denoted by e’;’;yp and defined by:

F N
ol E =1 n=1 Da(G'n.t, Cnt)
e = = p (9)

where, Dy(Gnt,Cnt) is the polyline distance between the ground truth G, and calibrated

polygons Cy; for patient study » and frame number ¢t. Using the definition of the polyline

distance between 2 polygons, the standard deviation can be computed as:

F N 2 2
— ‘/Etzl Zn:l {ZVG vertices Gp; (db(U’Cnt)_e}l’V’c,;'yP) + E‘IIG vertices Cpy (db(v’Gnt)_ef\:Il"yP ) } (10)

gPoly . :
N x F x(#vertices€ By +#vertices€ By)

NFP

5.2 Error per vertex and Error per Arc Length

Using the polyline distance formulaes, we can compute the error per vertex from one polygon
(ground truth) to another polygon (calibrated). This is defined as the mean error for a vertex
v over all the patients and all the frames. The error per vertez for a fixed vertex v when

computed between ground truth and calibrated boundary, defined by:

F N
efc _ > i=1 E;j::(‘il;f(% Gnt) (11)
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Similary we can compute the error per vertez between calibrated and ground truth using
eq. 7. Error per arc length is computed in the following way: For the values e€C where
v=1,2,3,... P,, we construct a curve f°C defined on the interval [0,1] which takes the value
eCC at point z which is the normalized arc length to vertex v and whose in between values
are defined by linear interpolation. We compute the curve f°¢, between calibrated boundary
and ground truth boundary in a similar way. We then add algebraically these two curves to

yield the final error per arc length, given as: f = ——fcc;fcc.

6 Data Analysis Using IdCM, InCM & Greedy Method

The performance of the system can be judged by evaluating the error measures on the test
data Q. set. This section discusses the performance of IdCM, InCM and the Greedy methods.

All our performance is with respect to the original ground truth boundaries having P, =100

vertices.

6.1 Data Analysis 1: Vertex Optimization

We find the mean error as a function of the number of polygon boundary vertices on the left

ventricle contour. The optimization curve and operating point is shown in figure 7. The data

Optimization of Polygon Vertices [dCM, CV vs. TT, PDM Optimization of Polygon Vertices (InCM), PDM
N=291, F=2, P-variable, K=145, L=144, Cross Validation, jas Dec 13 '95 N=291, F=2, P-variable, K=145, L=144, Cross Validation, jas Dec 13 '95
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Figure 7: Vertex Optimization using the polyline distance metric. Left: IdCM (identical
coefficient method), cross validation vs. TT, Right: InCM (independent coefficient method).
Note the IdCM operating point is 30 vertices and InCM operating point is 15 vertices.
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base consists of N=291 patient studies and the selected number of partitions K=145. We
now vary the number of vertices P, on the left ventricle polygon varying it from 10 vertices to
90 vertices with b vertex increments. If L=144 are the training sets then for each combination
there are K — L test set boundaries on which the error is computed. We choose the number
of vertices P, to minimize the error on the test set. Since there are ¥ C, =145 trials, each trial
has (K — L) subsets, each subset consists of % patients ( in a protocol if % is not a perfect
division, then for the last trial in £ Cf, combinations, we have (K — L +r,) patients as testing
set, where 7, is a remainder number of ¥) and each patient consists of P, vertices and F'=2
frames. We thus get the total number of points as: F' x ¥Cp, x (K — L) x £ x P,, resulting
int: Nx F x P, x % points for each (N, K, L, P,) tuple. Since we are computing the
polyline distances, the number of operations is N x F' x P? x P, x ZK_E—I%.—:IT)%? We see from
the plot 7 that the optimal number of vertices in InCM is about half the optimal number of

vertices in IdCM, the reason being that the number of coefficients that have to be estimated

in InCM is about four times the number of coeflicients that have to be estimated in IdCM.

6.2 Data Analysis 2,3: Cumulative distribution of (Z2t£%) errors
and Error Per Arc Length along LVC

We show here the cumulative distribution of end frame errors (£2$£5) from both the cali-
bration methods using IdCM and InCM and as shown in figure 8. Figure 9 demonstrates the
mean error per arc length along the LVC. The abssisa shows the length of the arc starting
from AAV. The ordinate shows the error at each vertex in mm. As seen in the plot, the mean
error per vertez is largest near the middle of the normalized arc length which is close to the
apex of the left ventricle. Thus the error is maximum in the apex region.

We see that Greedy algorithm does best in the apex zone compared to the IdCM and InCM
methods. The error per vertez in figure 9 shows that in the ED frame, the apex zone error is
reduced by 8.5 mm (from 12.5 mm to about 4 mm), while in ES frame, the apex zone error
is reduced by 3 mm (from 9 mm to 6 mm). The corresponding mean error over ED and ES

frames of the pixel-based boundaries was 6.4 mm which is reduced to 3.8 mm in IdCM and
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3.5 mm in Greedy. As per our assumption, the error is least at the end points of the LVC

since the AoV plane is known, thus the error per vertez curve drops at both ends.

Cum. Distribution of (ED+ES/2) errors, InCM, SDM vs. PDM

Cumulative Distribution of (ED+ES/2) errors, IdCM vs. Greedy, SDM vs. PDM
N=291, F=2, P*=30, K=291 L=145, CV case N=;

Cum. Distribution of (ED+ES/2) errors, IdCM, SDM vs. PDM
291, F=2, P=51, K=291 L=145, CV case

N=291, F=2, P=30, K=291 L=145, CV case
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Figure 8: Cum. distribution vs. mean error of (Z2£5) errors. Left: Identical coefficient
method. Middle: Independent coefficient method. Right: Greedy vs. IdCM. The curves
shows that 80% patient estimated boundaries have error < 4 milli-meters in IdCM, while 72%
of the patients have error < 4 mm in InCM. and 81% of the patients have error < 4 mm in
Greedy. Partition Protocol Parameters: N=291, F'=2, K=145, L=144, P,=100, P,=30.

6.3 Data Analysis 4: ED and ES errors Vs. InCM Pool vertices

Here we show the effect of the Greedy calibration scheme. Figure 10 shows the drop in

ED and ES frame errors when the IdCM pool vertices are transferred to InCM pool. This is
implemented using the Greedy do-while loop where some columns (or vertices) of IdCM matrix
R, are replaced by corresponding columns (or vertices) of InCM matrix, R;,. Plot 10 (right)
shows that the Greedy algorithm reduces the error by 0.3 mm over IdCM. We also observe
that the best number of vertices for IdCM is 30 while for InCM it is 15. The best performance
over all the three techniques is by the Greedy algorithm with the number of vertices being 30.
In the Greedy calibration technique, the error does not rise very sharply after 30 vertices but

rises gradually by (755)®* of a milli-meter from 30 vertices to 40 vertices.
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EPAL: Error Per Arc Length, ED, IdCM, INCM, Greedy EPAL: Error Per Arc Length, ES, IdCM, INCM, Greedy
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Figure 9: Mean error per arc length (EPAL) using polyline distance method where we su-
perimpose 4 curves, the initial raw (perturbed), identical coeflicient method, independent
coefficient method and greedy calibration method. Left: ED frame Right: ES frame Greedy
does the best out of all the 3 techniques of calibration in both ED and ES frames. Greedy
method also does better in the apex zone (where the dye was unable to reach) compared to
all other vertices. In ED frame, apex error reduces by 8.5 mm and in ES frame, apex error

reduces by 3 mm.
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Figure 10: Greedy Performance: Left: Plot showing the reduction in the error for ED and
ES frames when some vertices are calibrated using IdCM and others using InCM. With the
increase InCM pool, the error drops. Right: Comparion of 3 calibation techniques, Greedy
does the best. Partition Protocol Parameters: N=291, F'=2, K=145, L=144, P,=100, P,=30.
Mean error for IICM=38.8 mm, InCM=3.9 mm and Greedy=3.5 mm. So Greedy improve by
0.3 mm over IdCM method.
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7 Reliability Algorithm and Validation: Rejection Anal-

ysis

In this section we develop a general and automatic validation technique that can detect the
left ventricle boundaries whose mean end frame boundary errors (22F£5) are above a given
threshold, R. This validation scheme has the following features and advantages: 1. It
determines those left ventricle boundaries from the database (which could be coming from
any source) whose (M) error is above a given threshold error. 2. The scheme provides
feedback to the boundary calibration system so that the system knows which left ventricle
boundaries can be rejected. 3. It estimates the overall performance of the boundary calibration
system without taking the rejected boundaries into consideration. 4. It provides a check for
consistency and reliability of the output estimation algorithms (for example: Classification
algorithm, IdCM, InCM or Greedy). For this test we need three inputs: the left ventricle
boundary coordinates (z,y), the gray scale left ventriculograms, and the binary indicator
for the left ventricle region (1 for inside the left ventricle region and 0 for outside the LV
region). This boundary rejection scheme is based on the gray scale information near the
boundary of the left ventricle. Using a mutually exclusive window of a fixed size centered
on the left ventricle boundary vertex and along the left ventricle contour, we compute the
mean gray level value for part of the window which is inside the LV region and part of the
window which is outside the LV region (see fig. 11, left). We then associate this difference

in the mean gray scale intensities (also called as contrast values) to the corresponding vertex

of the LV observed boundary. Since we know the observed boundary errors (%) for

patient study n estimated from any technique, we can regress these contrast values against
the observed errors to compute the rejection training coeflicients. These training coefficients
can then be used to find the predicted errors on the test contrast boundary data (CBD). The
predicted errors which are above the threshold, we state them to be rejected boundaries or have
unacceptable boundary errors. This rejection system is a reliability test because this system

helps in determining the procedure as to how reliable the estimated boundaries are. In section
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7.1, we give the mathematical statement for computing the predicted errors. Section 7.2
discusses the reliability test algorithm and training system, section 7.3 gives the mathematical
formulae for computing the probability of false alram, probability of mis-detection, mean
predicted errors when n patients are rejected from the database. Finally we discuss the

resultant reliability curves from our experiments.
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Figure 11: Left: Contrast Data generation process showing 2 schemes. (i) Non-Separate
Contrast data and (ii) Separate Contrast Data. Right: Overall system for reliability and
validation test. It has 2 parts. First part is the generation of the training rejection coefficients
from the contrast data set. Second part consists of applying the training coeflicients on
the test contrast data to generate the predicted errors. These predicted errors undergo the
performance evaluation of the system. WS is the window size which moves along the LVC.
We use 3 statistical techniques for estimating the rejection regression coeflicients (RRC),

depending upon the layout of the constrast data matrix (C).

7.1 Problem Statement: Reliability Equation

We now present the mathematical statement for the estimation of the prediced errors for
the left ventricle boundaries given the contrast data matrix C and observed end frame error

( E_D_g_@.g) vector e. The predicted errors are used for spotting the left ventricle boundaries

that are above the given error threshold.



Revised Manuscript for IEEE, TMI: Suri, Haralick and Sheehan 24

Boundary Contrast data refers to the gray scale data generated along the left ventricle bound-
ary by superimposing the left ventricle boundary over the gray scale left ventriculograms. At
each chosen vertex of the LVC, there is a corresponding contrast value. The contrast value for
a given window is the difference between the mean gray scale intensities inside and outside the
window. This superimposed boundary can be from any given boundary estimation algorithm.
Observed errors are the mean end frame boundary errors (Z24£5) for each patient study
n. Let ¢/ =[c1,...,cp] be the row vector of contrast values of dimension P for patient study
n, where, n=1,...,N. Let e=[ey,...,en] be the vector of the observed end frame errors,

(%) for N patient studies. For the predicted errors of the patient study n, we are:

e Given: Corresponding pairs of contrast data matrix C [N x (P + 3)], and the observed
errors e [N x 1], respectively as:

/
¢, 1sgm
1 1 1 el
CNx(P+3) — eNx1 —
ch 1sym
N NmN EN
———

where s,, m, is the standard deviation and mean of the P contrast values for the

patient study n along the LVC.

e Let a [N x 1] be the vector of unknown regression coeflicients.

e The problem is to estimate the coefficient vector a, to minimize || e — Ca ||2. Then for

any boundary contrast data matrix C, the predicted error for the boundary is given as:

Ca, where a is the estimated coefficients.

7.2 Reliability Algorithm: C-e Relation

Following are algorithm steps for estimating the predicted errors which form the basis for the

reliability of the boundaries estimated from any boundary estimation algorithm.

1. Boundary Contrast matrix generation (C): The contrast matrix can be generated by

first superimposing the LV boundaries over the gray scale images (LVG). We use two
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methods for generating the contrast data. The mathematical statements for expressing
the contrast value at a vertex 1 are given as follows: Let g, be the gray scale value for
pixel p. Let I and O be the sets which contain the pixels inside and outside the mutually
exclusive moving window. Let G; and Go be the sum of all the gray scale intensities

for pixels which are inside and outside the window given by:

Gr=) 6& Go=) g (12)

p€el p€e0
Let f; and fo be the cardinality of the sets I and O. Using the above notations, we give

the expression for the contrast value at vertex ¢ using the two methods.

_ (Gi=Go) |,

“ = T (method — I) (13)
_ (G (Goy s

6 = (7= (32 (method —I1) (14)

Note, the difference between the above equations lies in the way the sums of the gray
scale intensities Gy and Go are subtracted in the two cases. In method I, we compute the
gray scale difference between the total gray scale values inside and outside the window
and then divide the difference by the total number of pixels in the window. In second
case, we find the mean values for inside and outside separately and then subtract it.
The first one is named as non-separate contrast data while the later separate contrast
data. This is shown in fig. 11. We also compute the mean and standard deviation of
the contrast values for each patient study n. Now, using Eq’s. 12 and 13 we find the
contrast values for P vertices on LVC which yields the contrast vector ¢ for patient

study n. Repeating this process for all the studies N, we get the contrast data matrix
C [N x (P +3)].
2. Estimation of the training coeflicients (a): We compute the training coefficients using

the standard Least Squares to minimize the error function €2, given as:

e =||Cra—e|® & a=(CLC,)'CLe (15)

~~

Note, C; has dimension of N X (P + 3), a has dimension (P +3) x 1, and e has
~— ~———

dimension of N;. X 1. N, are the number of training studies.
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3. Estimating the predicted errors & on test boundaries (Vi)

é = Cteé (16)

Cie has dimension N x (P + 3).

4. Statistical techniques and window sizes: Here we repeat the rejection regression coef-
ficient estimation process for three different set of statistical techniques. They are: 1.
Plain, 2. Ordered, 3. Normalized and Ordered. Plain, because we take the contrast
values are arranged as per the vertex number of the LVC, Ordered, because we arrange
the contrast values in increasing order and then use it for calibration. Normalized be-
cause, we normalize the constrast values by its standard deviation. For each of the above
techniques, we also change the window size for generation of the contrast data. two sets

of window sizes were taken into consideration namely, 11 x 11 and 22 x 22.

Assigned
True | My | Myg
True | Mg, | Mgy

Table 1: Contengency Table

7.3 Performance:Mathematical Formulaes for Probability of Mis-
Detection, False Alram, and Mean Predicted Errors

Let (s(;), e(:)) be the name and the error for a patient from the list of ideal errors and cor-
responding names. This list is the output of the boundary estimation algorithm. Similarly
let (g(;), p(j)) be the name and the error for a patient from the list of the predicted errors
and corresponding names. This list of errors results from the output of boundary rejection
scheme. Note that the errors in both lists are sorted in increasing order and hence the names
of the patient boundaries are not in same order in both the lists. These two lists will be used

for finding the probabilities of mis-detection vs. probabilities of false alram, mean errors for

rejected and non-rejected patient boundaries.
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Let us define mathematically the terms of the contingency table shown in table (1). m,. is the
number of patient studies truly rejected and was assigned to be rejected. m,, is the number
of patient studies truly rejected but was assigned to be non-rejected (selected). m,, are the
number of patient studies truly non-rejected (selected) but was assigned to be rejected. m,, is
number of patient studies truly non-rejected (selected) and were assigned to be non-rejected

(selected). These four terms can be mathematically expressed using our two input lists as:

me(n) = #{i]35,(s0)=49),7 >N —n),i>(N—n) (17)
mo(n) = #{i|35,(50)=a(5)), § < (N —n), s> (N —n) (18)
meo(n) = #{i|3J,(s6) =19, 7 > (N —n), i <(N —n) (19)
mes(n) = #{i|37,(s6)=49), ] <(N—n),i <(N—n) (20)

Note that the elements of the contigency table are function of each set of patient studies
rejected n. Using these definitions we can express the probability of mis-detection P,q(n)

and probability of false alram Py,(n) as a function of the total number of patient studies

rejected n:

Mr (1) B mer(n)
Mpe (1) + Mpy(n) & Praln) = Mgr(n) + Mys(n) (21)

Ppna(n) =

7.3.1 Errors for rejected p,(n) and non-rejected studies pron(n)

Given the above lists, we can express the mean error of the rejected and non-rejected patient
boundaries for the ideal and cross-validation cases as follows: Let €.(n) and €,.n(n) be the
errors for rejected and non-rejected (selected) patient boundaries for the ideal case. Let p,(n)

and pnon(n) be the errors for rejected and non-rejected (selected) patient boundaries for the

cross-validation case. For the ideal case:

N 1 N-—-n

Bn)= = 3 e & Ewn(n)= > €6 (22)

i=N—n+1 N—n

For the cross-validation (CV) case:

(23)
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The rejection threshold for n patient studies is computed using the list of predicted errors and

is given as: Run(n)=p,_,.
7.4 Relationships developed: Reliability Curves

1. €non(n) and Ppon(n) vs. n: This is the relation between the mean error for the non-
rejected patients for both ideal and cross-validation cases and the total number of pa-
tients rejected n. €pon(n) and Ppon(n) can be computed using the Eq.’s (22) and (23).
We took a data set of 245 studies for these experiments. In the first case n is made
to increase from 1 to 50 and second case we increase n from 1 to all the patients in
the data base (N). These 2 plots are shown in figure (12). We see as we rejected 20%
percent of the patient boundaries the mean error for €pon(n) and ppon(n) drops down
from 4.4 milli-meter to 4 milli-meters (for CV case) and 3.85 millimeters (for Ideal case)
respectively. For the plot when all the patients (V) are taken into account, there is a
steep drop of the mean error dropping to 1.98 milli-meter. This experiment was done

when the ideal errors are estimated from IdCM.

2. €non(n) and Pron(n) vs. Ru: The is the relation between the mean error for the non-
rejected patients for both ideal and cross-validation cases and the rejection threshold
Rin. €non(n) and Ppon(n) can be computed using the Eq.’s (22) and (23). This is show

in fig. 12. With the reduction in the rejection threshold Ry;,, mean error drops down

gradually.

3. Pa(n) vs. Pge(n): This is the relation for the probability of mis-detection versus the
probability of false alram for the set of n studies rejected. The curve is shown in fig. 13.

With increase in Ppg(n), Pf.(n) decreases. Note both scales are from 0 to 1. (see Eq.
(21)).
4. Ppa(n) vs. n: This is the relation for the probability of mis-detection versus the number

of patients rejected n. (see Eq. (21)). This plot demonstrates that when more patients

are rejected then the probability of mis-detection falls down. (see fig. (12)).
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5. Pfo(n) vs. n: This is the relation the probability of false alram and the number of
patients rejected n, computed using the relations expressed in Eq. (21). We see from
the plot, with increase in n, the probability of false alram (P,,4(n)) increases. We have
shown two cases, first when the WS is 11 x 11 and second when the WS is 22 x 22. When
n is small, that is when small number of patient boundaries are rejected, the P,(n)

is more or less the same for both window sizes, but when large number of patients are

rejected, then the Pg4(n) is higher for larger window size.

RR-Exp2: Mean Error, Non-Rejected Patients Vs. Threshold (IR study)

Mean Error for Non-Rejected Vs. # of Pat. Rejected (IR study)
Total Pati L IR 1t R ion, Jas, June 22, '95 s (;I'otal Patients=245, Cross Valﬁiaﬁon Vs. Ideal , jas (June 22, '95)
{ 8.0 L i
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K — L +——— Ideal, Normalized+Ordered, WS=22 sq.
2 “ E 60 { ——— CV, Normalized+Ordered, WS=22 sq.
£ £
s )
£ W o |
= | B 50
< | £ 4.0
s —— Ideal, Normalized+Ordered, WS=11 sq. =2
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Figure 12: Left: Plot of mean of non-rejected patient studies vs. number of patients rejected
(n). Right: Plot of mean of non-rejected patient vs. rejection threshold.

8 Discussions

The Greedy algorithm for error correction fuses two sets of estimated boundaries: bound-
aries produced by the Identical Coefficient Method and boundaries produced by Independent
Coefficient Method. If these two estimated boundaries have large errors with respect to the
ground truth (ideal or hand-drawn boundary), then the Greedy algorithm rapidly identifies
those vertices which are too far from the ideal vertices, significantly reducing the boundary
error. Nevertheless, the true shape of the left ventricle depends upon the number of optimized
boundary vertices selected on the left ventricle contour. If the number of vertices is less than

the optimum number of vertices, the true LV shape may not be represented. On the other
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RR-Exp5: Prob. of Mis Detection Vs Patients Rejected (#) (IR study) Prob. of False Alarm Vs No. of Patients Rejected (IR study)

RR:Exp3: Prob. of Mis. Detection Vs. False Alarm (from IR)
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Figure 13: Left: With the increase in probability of mis-detection P,,4(n) the probability
of false-alarm Py,(n) decreases. Note that each point on the curve corresponds to the total
number of patients rejected (n). There are 2 cases shown in this plot. First when the window

size (WS) is 11 x 11, and second case when the WS is 22 x 22. Middle: Plot of P4(n) Vs.
n Right: Plot of Ps,(n) Vs. n

hand, if the number of vertices are larger than the optimized boundary vertices, the shape
becomes more accurate, but generalization is lost. Therefore, we first optimize the techniques:
IdCM and InCM and then fuse the best results, Consequently, the error will always improve,
but the drop in the error will depend upon the following factors: 1. the number of vertices on
LVC, 2. the initial errors of IdCM and InCM boundary data before the fusion starts, which
in turn depends upon the number of data vectors N for training the calibration model. 3. the

starting error value (€) before the Greedy loop starts. (In our case, starting value is the best

error for IdCM boundary data).

These preliminary results indicate that the three sets of calibration algorithms significanly re-
duce the boundary error over the image processing algorithms. However, we can make the left
ventricle boundary calibration system robust by padding information or features like the apex
information to the Q matrix (classifier data) to improve the accuracy. Our algorithm requires

no operator assistance; further, the algorithm is relatively simple and can be implemented on

any commercial imaging system.
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9 Conclusions

We presented three sets of calibration algorithms, the Identical Coefficient Method, the In-
dependent Coefficient Method and the Greedy Calibration Method. The Greedy calibration
algorithm for calibrating the initial pizel-based classifier boundaries takes the best of the other
two calibration Methods: the Identical Coefficient Method and the Independent Coefficient
Method. The mean error over ED and ES frames using a cross-validation protocol and polyline
distance metric is 3.5 millimeters over the database of 291 patient studies. The Greedy algo-
rithm is a considerable improvement over the Identical Coefficient Method by 0.3 millimeters
which is significant for the accuracy of the overall calibration system. The Greedy algorithm
performs best in the apex zone of the left ventricle where the dye is unable to propagate,

reducing the error by approximately 8.5 mm. Thus we see that the calibration constitutes a

significant last step for boundary estimation.
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(al) ED Frame: GT and Classifier (a2) ED Frame: GT and Estimated

(bl) ES Frame: GT and Classifier (b2) ES Frame: GT and Estimated
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