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of rank 2
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(Communicated by A. V. Borovik)

Abstract. We describe a linear time probabilistic algorithm to recognize Whitehead minimal
elements (elements of minimal length in their automorphic orbits) in free groups of rank 2. For
a non-minimal element the algorithm gives an automorphism that is most likely to reduce the
length of the element. This method is based on linear regression and pattern recognition tech-
niques.

1 Introduction

The field of pattern recognition (PR) has been actively developing for several de-
cades. It has been successfully applied in a large number of diverse fields, ranging
from computer vision and speech recognition to geological analysis.

The present paper shows that PR techniques can be successfully used in group
theory. There are several potential benefits of this approach. First, it helps to produce
fast stochastic algorithms to solve problems in groups; secondly, PR suggests heu-
ristics which improve, on average, the performance of known group-theoretic algo-
rithms; and finally one may use PR to reveal hidden algebraic structures and formu-
late rigorous mathematical hypotheses (see [5], [9] for more examples). Indeed, we
believe that if a stochastic algorithm performs very well or some statistical observa-
tions persistently occur, then there must be a purely mathematical reason behind this
phenomenon, which can be uncovered by a proper statistical analysis.

We introduce a PR system that recognizes minimal (sometimes also called White-
head minimal) words, i.e., words of minimal length in their automorphic orbits, in
free groups of rank 2. The corresponding probabilistic classification algorithm, a
classifier, is very fast (linear time algorithm) and recognizes minimal words correctly
with an accuracy rate of more than 98%. The recognition system is based on linear
regression and does not use any particular results from group theory. On the con-
trary, some recovered patterns suggest a new notion of a weighted labeled directed
graph r(H') associated with a word w in a free group F. The graph r{w) seems to be
quite useful in recognizing minimal elements in F; indeed, our classifiers of minimal
elements based on r{w) outperform the classifiers based on the Whitehead graph of w
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(at least, in the case of a simple linear regression model). Moreover, we have found
a very simple PR system which partitions all non-minimal elements in F2 into two
clusters A/| and Mi. It also partitions the set of all elementary Whitehead automor-
phisms into two subsets T\ and Ti such that, with high probability, only automor-
phisms from Ti can reduce the length of elements in M/ for i — 1,2. This allows one
to reduce the search for a length-reducing automorphism for a given iv e Fihy -d half.

We use here a simple linear regression model as a base for our classifiers. For free
groups of higher ranks other models (quadratic regression and vector support ma-
chines) provide more accurate classification; see [8].

2 Whitehead's minimization algorithm

In this section we give a brief introduction to Whitehead's minimization problem.
Let F = F{X) = F2{X) be a free group of rank 2 with basis X. Put

X - ' — ( x - ' I -V G A"}. A word w = x\ ... Xn in the alphabet X- ' is called reduced
if Xi i^ .vr '̂i, and it is cyclically reduced if xi i^ .Y^'. We view elements in F as
reduced words in X-^. Clearly every element vv in F can be presented in the form
•w = u~^wu for some u e F{X) and a cyclically reduced element iv G F{X) such that

2\u\. This IV is unique and is called the cyclically reducedJbrm of
Let Aut(F) be the set of all automorphisms of the group F. The automorphic orbit

) of a word w e F is the set of all automorphic images of w in F:

Orb(iv) = {ve F\ there exists (pG Aut(F) such that (p{w) = v).

A word M' G F is called minimal if |it'| ^ |i?'(»')| for any (p G Aut(F). By iVmin we denote
a word of minimal length in Orb(H). Notice that ivmin need not be unique.

A classifier for minimal elements in a free group F has to determine, for an arbi-
trary given element iv e F, whether \v is minimal or not. Since every minimal word in
F is cyclically reduced and since cyclic reduction is very fast, it suffices to construct a
classifier for cyclically reduced words in F.

The famous deterministic algorithm of Whitehead [12] finds, for a given » G F,
some Mmin in an at most quadratic number of steps with respect to |u|. This algorithm
works for arbitrary free groups, but in higher ranks it becomes inefficient (it is still
quadratic in the length of the input, but the constants grow exponentially with the
rank). We refer to [9] for a detailed discussion of the complexity of Whitehead's
algorithms. Here we mention only a few basic ideas related to Whitehead's descrip-
tion of minima! words. We denote by O.{X) the following set of automorphisms
/eAut(F(A')) (called Whitehead automorphisms):

(1) ? permutes elements in A*-';

(2) t fixes a given element a e A"-' and maps each element x e X-\ x i= a*' to one
of the elements x,.Ya,a"'.v, or a~^ xa.

An element w e F{X) is called Whitehead minimal if |/(H')| ^ |u'| for every
/ G Q.{X). In 1936 Whitehead [12] proved that w G F is minimal if and only if it is
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Whitehead minimal. This gives a simple deterministic classifier for minimal words in
F{X], whose complexity depends on the cardinality of n(A').

In the free group of rank 2 with basis X = {a, b} the set Q.{X) consists of some
permutations of A'-', conjugations by letters from A"-', and the following set T of
eight Nielsen automorphisms:

7" — {x —> x y - ' , x —• y-^x\x, y G {a,b},x / v}.

Since we are working only with cyclically reduced elements we can ignore con-
jugations in the deterministic decision algorithm for the minimality problem, as well
as permutations (which always preserve the length of the word).

Our goal here is to study minimal elements in F{X) by pattern recognition meth-
ods and construct a probabilistic classifier which has linear time complexity and gives
correct answers with a small classification error.

3 Recognition of minimal words in F2

One of the main applications of pattern recognition (PR) techniques is classifica-
tion of a variety of given objects into categories. Usually classification algorithms or
classifiers use a set of measurements (properties, characteristics) of objects, called
features, which gives a descriptive representation for the objects,

In this section we describe a pattern recognition system MIN2 for recognizing
minima! elements in free groups of rank 2. The corresponding classifier is a su-
pervised !earning c!assifier which means that the decision a!gorithm is 'trained' on a
prearranged training dataset, in which each pattern is !abeled with its true class la!3e!.
The algorithm is based on linear regression model with a decision rule of the Bayes
type.

We refer to [3] for a detailed introduction to pattern recognition techniques.

3.1 Data generation: training datasets. A random e!ement ii- of F — F2(A'} can be
produced as the result of a no-return simp!e random walk on the Cayley graph of F
with respect to the set of generators X (see [ 1 ] for details). In practice this amounts to
a pseudo-random choice of a number / (the !ength of iv), and a pseudo-random se-
quence _vi,... ,17 of e!ements y, e X-^ such that _i', ?̂  _v,r̂ ',. where vi is chosen ran-
dom!y from A"*' with probability ^, and al! other terms are chosen randomly with
probability \. Similarly, one can pseudo-random!y generate cyc!ica!!y reduced words
in F, i.e.. words iv — vi . . . >'/ where y\ ^ ly ' . As mentioned in the Introduction, it
suffices to construct a classifier for cyclically reduced words in A'-'.

At first glance, the obvious choice for the training dataset would be the set of
randomly generated cyclica!!y reduced words from F. However, it has been shown
in [6] that random!y chosen cyclic words in F are already minima! with asymptotic
probabi!ity !. Therefore a set of random!y generated words wou!d be highly biased
toward the class of minima! e!ements. To obtain fair numbers of representatives from
both c!asses we use the foHowing procedure.

For each positive integer / — 1, . . . , 1000 we generate pseudo-random!y and uni-
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formly ten cyclically reduced words from F{X) of length /. This choice of parameters
is purely practical: we want to have long words but be able to execute experiments
in a reasonable amount of time. Denote the resulting set by W. Then, using the de-
terministic Whitehead algorithm, one can effectively construct the corresponding set
of minimal elements

Wm\n - {tVminhvG W}.

With probability 0.5 we substitute each v e Ŵmm with the word t{v), where t is a
raiidomly and uniformly chosen automorphism from Q.{X) such that \l{v)\ > \v\ (if
\t{v)\ — l̂ l we chose another t e Q.{X), and so on). Now the resulting set Z, is a set
of pseudo-randomly generated cyclically reduced words representing the classes of
minimal and non-minimal elements in approximately equal proportions. However, it
seems that the class of non-minimal elements is not quite representative, since each
of its elements vv has Whitehead complexity 1. i.e., there exists a single Whitehead
automorphism which reduces »v to vvmin (see [9] for details on Whitehead complexity).
We will see in Section 4 that the set described above is a sufficiently good training
dataset which is much easier to generate than a set with uniformly distributed White-
head complexity of elements. A possible mathematical explanation of this phenome-
non is mentioned in [9].

From the construction of the set L we know for each element v e L whether it is
tninimal or not. Finally, we construct a training set

where

1 if V is minimal;

0 otherwise.

3.2 Features. Let w be a reduced word in the alphabet e A'-'. In this section we
describe the features of w which characterize the pattern of occurrences of specific
words from F{X) as subwords in w.

Let AT G N be a natural number, V],... .,Vfc e F{X) be words from F{X), and
(7i, . . . , UK+I ^ ^{^) be subsets of F{X). Denote by

the number of subwords of the type u\v\U2... VfcUK+\, where Uj e Uj, which occur in
w. For fixed AT, y i , . . . , i!jt, t / | , . . . , ^7^4.1, this defines a counting function

weF ^ C{w,Uivi...VKUK+i)e^. (1)

The normalized value
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\w\

is called a feature of w and the function

w € F —f — C{w, U\V\ ...
w

is called a feature function on F. Usually we omit f/, in our notation if Ui — 0. If
C = (Ci [w],..., CA'(VV)) is a sequence of counting functions like (1) one can associate
with w a vector of real numbers.

'-' |w| ' '

which is called a feature vector. Every choice of the sequence C gives a vector f^{w)
which reflects the structure of w.

For example, if a e A'*' then C{n\a) counts the number of occurrences of the let-
ter a in w. The feature vector (where for simplicity we assume that the components
are written in some order which we do not specify)

f { ) ^

shows the frequencies of letters from A"-' in w. The feature vector

f{) —
w

shows the numbers of occurrences of words of length 2 in w relative to the length of w.
If .Vi,.y2 e A"-' then the counting function C{w,xiUx2) for U — X-^ gives the num-
ber of occurrences of xi and X2 in w one letter apart.

To visualize some structures described by the counting functions above we as-
sociate with a given word w e F{X) a weighted labeled directed graph r{w). Put
K(r(H')) — X^^. For given x, y e A"*' and v e F{X) we connect the vertex x to the
vertex _v by an edge with a label v and weight C{w,xvy). Now, with every edge from
X to _v with label xvy one can associate a counting function C(vv, xvy), and vice versa.
It follows that every subgraph V of F(H') gives rise to a particular set of counting
functions Cp of the type C{w,xvy), and, conversely, every set C of counting func-
tions of the type C{w,xvy) determines a subgraph T^ of r(iv).

For instance, the feature mapping f\ corresponds to the subgraph r\{w) of F(w)
which is in a sense a directed version of the Whitehead graph of w; see [13].

3.3 Model. The classification algorithm has to predict the value P{w) of the predi-
cate F for a given word w. One of the approaches is to explore the relationship be-
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tween P{w] and the corresponding feature vector v ^ / ( i r ) of the word w. We can try
to approximate the value of P{w) by a linear function on f{w):

where p is an unknown column vector of coefficients. Inferring /? from the training set
is the task of classical linear regression analysis (see e.g. [2], [11]). Given a dataset

one can compute the feature vectors / ( H , ) , and form the standard regression model as

where ^ = <P(H'I) , . . , , P{wn)y is a (column) vector of the known values of P, V is
the matrix

with the feature vectors as rows, /f is a vector of unknown regression coefficients and
£ represents the approximation error. Using the least squares method we find fi such
that the mean square error

is as small as possible.
Now. for a given word vv and the computed vector jS. one can obtain the value

P{w) predicted by the regression model as

Packages for computing linear regression models are now standard and available in
many software distributions (see e.g. [4], [7]); we used SYLModel Library [10].

One of the possible classifiers based on linear regression model is as follows. Given
a word w £ F{X) it returns the answer decide(w) according to the following formula:

. -. , , fl if P(vv) > 0 ; ,^.
decide(n-') ^ i ^ ' ' (2)

[ 0 otherwise,
where 0 is a given threshold. However, there is an ambiguity in selection of the
parameter 0 in the decision rule (2). Therefore we elected to use the following
Bayesian decision rule. Suppose that an event ^ ( H ) — a, where a e IR, is observed.
We are going to make a prediction on whether P{w) — 1 or P{w) — 0 based on esti-
mations of conditional probabilities
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?T{P{W) - 1 I P{w) - a) and Pr{P{w) = 01 P{w) - a)

so that, theoretically, the corresponding decision rule is

o otherwise.

Since we cannot compute the conditional probabilities above precisely, we estimate
them as follows. We partition the set IR into intervals A of equal length and estimate
the conditional probabilities

PT{P{W) - 1 I Piw) G A) and Pr(P(H') - 01 P{w) G A).

Using Bayes' formula, one can rewrite these probabilities as

, ., n . . . _ . ^ Pr(F(.v) e A I P{w) ^ 0 . Pr(P(,v) ^ /)

' ' ' ' Pr(P(iv)eA)

(Here / = 0,1.) Therefore

Pr{P[w) = 11 P{w) G A) > Pr(P(iv) - 0 j P{w) G A)

if and only if

Pr(P(H')GA|P(vv)-l)P, >Pr(P(H')GA|P(u')-O)Po. (4)

where the probabilities Pi ^ Pr(i*(w) = 1) and Pu = Pr(P{H') = 0) are prior prob-
abilities corresponding to the distribution of minimal and non-minimal elements
among the inputs given to the classifier. We have already mentioned that in the gen-
eral situation a randomly chosen element of a free group is Whitehead-minimal with
probability 1. This makes the classification task simple if we assume that inputs will
be chosen randomly. However, the rate of false positive error (the error of classifying
non-minimal element as minimal, see Section 3.4.2) in this case will be very high. The
class of non-minimal elements is of the same interest as the class of minimal elements.
To avoid bias toward minimal elements, we choose a more conservative approach by
choosing equal prior probabilities for both classes.

Thus the inequality (4) takes the form

?r{P[w) e AI P{w) = 1) > Pr(P(vv) e A | P{w) = 0).

The conditional probabilities above can be estimated from the given training dataset
D. For / = 0,1 put

d,{^) = \{^v\P{^v) e d.A^'jy ^ D]\/\D\.
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Pv{P{w) 6 AI P{w) = i) :̂  di{A) for / = 0,1.

Finally we can define the following decision rule, which is a variation of the Bayes'
decision rule above:

decide(H) - | ' '^ ^S^^ ^ ^ ^"'^ ^^^^^ ^ ^^^^^ ^^^ ^^^^ interval A;
l o if P{w) e A and do{A) > di{A) for some interval A.

3.4 Evaluation.

3.4.1 Test datasets. To test and evaluate our pattern recognition system MIN2 we
generate several test datasets of different type.

* A test set 5^ which is generated hy the same procedure as for the training set D, but
independently of D.

• A test set SR of (pseudo-) randomly generated elements of J^(^). We used the ran-
dom walk described in the beginning of Section 3.1 to generate SR.

' A test set Sp of (pseudo-) randomly generated primitive elements in F{X). Recall
that w E F{X) is primitive if and only if there exists a sequence of Whitehead
automorphisms t\...ti&Q{X) such that xt\...ti = w for some xeJV^' (here
wt ^ t{w) for {e Cl{X)). Elements in Sp are generated by the procedure described
in [9], which, roughly speaking, amounts to a random choice of xeX^^ and a
random choice of a sequence of automorphisms t\ ...tie Q.{X).

' A test set 5*10 which is generated in a way similar to the procedure used to generate
the training set D. The only difference is that the non-minimal elements are ob-
tained by applying not one, but several randomly chosen automorphisms from
Q{X). The number of such automorphisms is chosen uniformly randomly from the
set ( 1 , . . . , 10}, hence the name.

Some characteristics of the generated datasets are given in Table I.

Table 1.
Description of the datasets

Dataset

D

Se

^lo

SR

Sp

size

10000

5000

5000

5000

6000

% min

51.9

49.5

48.6

98.8

0

% non-min

48.1

50.5

51.4

1.2

100

(min, avg, max) word lengths

(I. 541, 1202)

(1, 542, 1200)

(1,691, 10629)

(1,499,998)

(2, 30, 3443)
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3.4.2 Accuracy measure. Let /)evai be a test data set. To evaluate the performance of
the given PR system we use a simple accuracy measure:

A - |{H' I decide(H') = P{w), w e /)evai}|/|^evai|,

which gives the fraction of the correctly classified elements from the test set Z)evai-
Notice thai the numbers of correctly classified elements follow the binomial

distribution and A is approximately normally distributed with estimated variance
A{\ -/l)/|Z)evai|- Another measure of accuracy of the classifier is the estimated
length of a particular confidence interval for A.

For example, suppose that we choose to compute the length of the 95% confidence
interval for the mean ^ of ^ . It is known that for the standard normal variable z

FT{\Z\ < 1.96} ^0.95.

Therefore

?r{\{A ^ ^)/y/Ail - A)/\D,,,,\\ < 1.96)^0.95

The formula above gives an interval I{A) where the expected value for accuracy A
lies with nearly 95% confidence. Obviously, the smaller the interval is, the better is
our approximation.

Note that there are two types of error, called false positive and false negative, that
can occur during the classification of minimal elements. A false positive is an error of
classifying a non-minimal element as minimal. A false negative error means that a
minimal element is classified as a non-minimal element. We do not give any prefer-
ence to either of the classes and will expect the rates of the two errors to be approxi-
mately equal.

3.5 Feature selection algorithm. Let y be a PR system and P be the corresponding
classifier. The perfonnance of the classifier P often directly depends on the set of
features built into •9'. Sometimes it is possible to reduce the number of features in S^
maintaining the same level of classification accuracy of P, and even find more effi-
cient combinations of the given features. The corresponding procedure is caWed fea-
ture selection. We give a description of one of possible procedures below.

Let <i bea finite collection of counting functions (see Section 3.2). Every sequence
C = <Ci , . . . . C/> of functions from ''€ gives rise to the corresponding feature map-
ping /^ . Denote by .9'^-. the PR system obtained from .'y by replacing the feature set
in .y by C. Let P^ be the classifier that corresponds to the system 5^. Every system
. ^ has one and the same test data set Z)evai and the same accuracy measure A. De-
note by A{f^) = A{C) the accuracy of the classifier P^ evaluated on the set /)evai-

We implement the feature selection as an iterative greedy procedure. At each iter-
ation /, we select a new feature mapping / with the current best evaluation value
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A{fi) and add it to the set ^ of feature mappings constructed before. The procedure
stops in at most I'î j iterations. The best overall feature mapping / * 6 , ^ of minimal
length is returned as the output of the procedure. More precisely, the algorithm pro-
ceeds as follows:

Iteration 1. Choose C| G '^^ such that A{Ci) - max{.4(C) \Ce^'}.
S e t / , - y c , and ^ = {/,}.

Iteration N. Suppose that feature mappings / i , . . . , fN-\ are constructed and

for some C,,._.., C^-i e '€. Choose CN G '^€\{C\ , . . . , CA'-I } such that
the sequence C^ — <Ci , . . . , C^> satisfies the following condition:

C -: <C| , . . . , O - i , C>, C G "£}.

Put /v = f^^ and i^ = J^ U
I-̂ l then STOP.

Output. Put/fni.x
Select the mapping f*e^ such that A{f') e /(/Imax), where f{Amax.) is
the 95% confidence interval described in Section 3.4.2, and / * has the
smallest possible length among all such feature mappings.

Observe that this feature selection procedure does not check all possible feature
mappings that can be built from the counting functions from "î . There would be too
many of them even for reasonably small sets '^. Instead, it makes at most \'^\ iter-
ations, although each iteration could be time consuming since it requires evaluation
of the current classifier P^.

4 Experiments

4.1 Evaluating classifiers. In this section we present results of evaluation of classi-
fiers Pf on the test dataset 5,, when / runs over a particular set of feature mappings.
By A{f) we denote the accuracy of the classifier Pf.

Let

be the feature mapping discussed in Section 3.2. Recall that in view of the charac-
terization of feature mappings as corresponding to the subgraphs of the graph r{w)
(see the end of Section 3.2) the mapping f corresponds to the subgraph Ti (iv) which
is a directed analog of the Whitehead graph of u. The accuracy of the classifier
Pi — Pf, is over 95%, which is quite good, but leaves some room for improvement.
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Consider the following feature mappings which correspond to various subgraphs of
the graph r(vv):

•± iEX-',\V\ =

\ \v

The results of evaluation of the classifiers Pi = Pf for / ^ 1, . . . , 6 on 5̂ . are given in
Table 2. In all cases, rates of false positive and false negative errors were very close to
each other.

Table 2.
Performance of the classifiers i*i , . . . , /*6 on the set

w >0

w > 4

H'l > 100

A{A)

0.954

0.957

0.975

A{f2)

0.968

0.969

0.984

A{f,)

0.926

0.927

0.947

A{f4)

0.869

0.870

0.893

A{f5)

0.977

0.977

0.992

A{f6)

0.980

0.981

0.994

Conclusions.

(1) The accuracy of the classifiers increases when one adds new edges to the graphs
related to the feature mappings (although it is not clear what is the optimum set
of features).

(2) The classifier P^ is the best so far: it is remarkably reliable.

(3) Very short words are difficult to classify (possibly because they do not provide
sufficient information for the classifiers).

(4) The estimated conditional probabilities for Pb (which come from the Bayes' de-
cision rule, see Section 3.3) are presented in Figure 1. Clearly the classes of min-
imal and non-minimal elements are separated around 0.5 with a small overlap.
So the regression works perfectly with the threshold 0 — 0.5.
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• l

• 1
' 1
' 1
' 1Jl"

IS 1 J5

Figure 1. Conditional probabilities for P(,

4.2 Feature selection and analysis of the pattern recognition systems. In this section
we are looking for a feature mapping which is at least as effective as ff,, but contains
considerably fewer features. Observe that f(,, as a vector, consists of 60 components
(features). In a search for the most effective feature mapping we apply the Feature
Selection Algorithm from Section 3.5 to the set of all counting functions involved in

so that counting functions from ^ correspond to edges of the graph r6(H').
Rather surprisingly, the Feature Selection Algorithm, when applied to the set

found a feature mapping based on only two counting functions:

/•(•^')=T:^

where X = {a,b}.
The corresponding classifier P, = Pj- showed the best overall performance when

tested on the dataset Se. The results of comparison of P. with P] and Pf, are presented
in Table 3. The estimated conditional probabilities for P^ are given in Figure 2 (a).

Table 3.
Comparative results for P.

w

w

\v

> 0

> 4

> 100

A{A)

0.954

0.957

0.975

A(f,)

0.980

0.981

0.994

0.987

0.989

0.993
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(a)

Figure 2. Results of experiments with /**: (a) conditional probabilities for /*»; (b) scatter plot of
points f'{w), w e S^

One can see that non-minimal elements in S^. are divided into two clusters
M] (left) and Mi (right) such that the regression values for the class of the mini-
mal elements lie between the regression values for elements in A/| and A/n. This
shows that the linear regression cannot predict correctly values P{w) of the predi-
cate P for w e Se- Indeed, the standard threshold-based decision rule (2) will al-
ways give an error, at least, in 25% of trials, no matter what threshold value is
chosen.

However, there is an obvious separation between minimal and non-minimal ele-
ments in Figure 2 (a) and the Bayesian decision rule (5) was able to catch it. Since
f*{w) is a two-dimensional vector, one can plot points f'{w), w e Se, on the plane.
Figure 2 (b) is a scatter plot for / *. Again, one can clearly see three groups of points.
The one in the middle corresponds to the class of minimal elements, two others are
formed by non-minimal elements.

Now we test classifiers P[.Pi,. and P, on the datasets SR,S\Q., and Sp. The results
of these tests are given in Table 4.

Table 4.
Perfonnance of the classifiers P\, Pe, P. on the test datasets 5^, 5|o,

w

|w

|w'

> 0

> 4

> 100

A{A)

0.828

0.828

0.842

AiA)

0.981

0.982

0.994

Aif)

0.981

0.983

0.993

SR

Aifx)

0.960

0.962

0.984

A{f,)

0.978

0.979

0.993

Aif)

0.967

0.975

0.992

Sp

Aif)
0.567

0.532

0.494

Aif,)

0.879

0.922

1.000

Aif)

0.945

0,922

0.979
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One can see that the classifiers P(,, P* are robust and perform well even on datasets
which are essentially different from the training dataset D. The classifier P\ has some
difiicuhies with primitive elements.

What remains so far unexplained is the unexpected partition of the class NM(5e)
of non-minimal elements from S^ into the clusters M] and M2 reflected on Figure 2 (a)
for the conditional probabilities for / ' .

A direct inspection of the clusters M\ and M2 shows that the clustering is based on
the types of elementary Whitehead automorphism that reduce the length of an ele-
ment from NM(5e.). More precisely. Table 5 shows that the set of elementary Nielsen
automorphisms T can be partitioned into two subsets T = T\\J T2, where

T =

such that automorphisms from T, are most likely to reduce the length of elements
from the cluster A/,, and very rarely reduce the length of elements from the other
cluster. Therefore the classifier P. not only solves the minimality classification prob-
lem, but it also appears to predict length-reducing automorphisms for a given
w€F{X).

To find further evidence in support of this observation, we looked at the dis-
tributions of the conditional probabilities for / * on the test datasets 5*10 and Sp. Even
though the clustering structure of these datasets was more complicated, we were able
to see a similar decomposition of the sets NM(5io),NM{5p) of non-minimal ele-
ments in ^lo and Sp into two clusters M\ and A/?.

Table 5 shows that the sets T\ and Tj of Nielsen automorphisms play a similar role
in clustering of NM(5i()) and NM(5'/.} as in NMfi'f,), thus expanding the scope of
the observation made for NM(5'<,). It is significant that, for elements of length more
than 100, the two clusters become mutually exclusive, i.e. none of the automorphisms
from T\ reduces elements in M] and vice versa. It shows again that 'long' words are
easier to classify.

One of the reasons why automorphisms from Ti reduce length of elements from
Ml is that about 75yo of elements in M] have positive exponent sum for one letter
and negative exponent sum for another letter. Similarly, in about 75"/i of elements in
M2 the exponent sums are positive for both letters, so that automorphisms from T2
have a better chance of reducing the length of such elements. However, the accuracy
of the recognizer is much higher than that, and so there must be some other govern-
ing rule for such clustering. We shall address this problem in the future. We state the
following conjecture.

Conjecture. The set of feature vectors of non-minimal elements in a free group of
rank 2 can be partitioned into finitely many bounded disjoint clusters in such a way
that the length of elements in a cluster can be reduced by Nielsen automorphisms of a
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very particular type that correspond to this cluster. Moreover, these clusters can be
separated from each other by hyperplanes.

Table 5.
Fraction of elements in NM(5t.},NM(5|o) and NM(.S/>) reduced by

automorphisms from T] and T2

a-^ba.b^b

a^ab,b^b

a —> a,b —• ah

a —* a.b ^- ba

a —>• b"^a,b —' b

a —> ab~\b -* b

a —• a,b —• a~^b

a —> a.b —> ba~^

NM(5,.)

M,

0.7152

0.7136

0.7522

0.7458

0.0016

0.0016

0.0000

0.0008

M2

0.0008

0.0023

0.0000

0.0038

0.7320

0.7328

0.7199

0.7184

NM(5,o)

Ml

0.7480

0.7488

0.7457

0.7417

0.0000

0.0008

0.0008

0.0000

A/2

0.0008

0.0023

0.0023

0.0031

0.7567

0.7559

0.7291

0.7322

NM{5/>)

Ml

0.76714

0.76714

0.76633

0.76633

0.00000

0.00000

0.00000

0.00000

M:

0.04057

0.04057

0.05428

0.05428

0.69956

0.69956

0.69243

0.69243

Conclusions.

(1) The Feature Selection Algorithm is useful: it found by far the most economical
and effective feature mapping / * .

(2) The classifier P* not only solves the minimality classification problem: as a bonus,
it also predicts which automorphisms are most likely lo reduce the length of a
given non-minimal element w G F[X).
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