
,·,, 

C = 0, m = 0, N = 0, and N = np, + · · · + np,· Thus, the 
composite statistics of the training class are 

(9) 

(10) 

A Computationally Simple Procedure for Imagery Data 
Compression by the Karhunen-Loeve Method 

K. SHANMUGAM AND R. M. HARALICK 

Abstract-Of the several methods that bave been proposed for imagery 
data compression, the Karhunen-Loeve procedure minimizes the mean­
square error between the original and reconstructed imagery data. In 
spite of its optimality property, the Karhunen-Loeve procedure has 
not been widely used because of its computational complexity. The 
main difficulty is in the computation of the eigenvectors and the eigen­
values of the covariance matrix of the imagery data since the dimension 
of the covariance matrix is usually large. 

A computationally short procedure for calculating the eigenvalues 
and eigenvectors of the covariance matrix is presented. We show that 
the eigenvalues and eigenvectors of the N x N bisymmetric covariance 
matrix can be obtained from the eigenvalues and eigenvectors of two 
N/2 x N/2 submatrices. Since the eigenvector calculations are pro­
portional to the third power of the matrix dimension, the proposed 
procedure reduces the computations by a factor of four. 

I. INTRODUCTION 

Imagery data in general contain a large amount of redundant 
information because of the high positive correlation between the 
gray levels of spatially adjacent image elements. Several imagery 

. data compression techniques have been proposed recently for 
removing this redundant information [1 ]- [4]. Of these methods, 
the principal component method (based on the Karhunen­
Loeve expansion) minimizes the mean-square error between the 
original and compressed imagery data. 

In the principal components method, the image is first split 
into a number of small mutually exclusively spatial regions or 
windows, and the gray levels of these regions are treated as 
N-dimensional vectors. (These vectors are assumed to have a 
mean of zero; if not, the mean vector can be calculated and 
subtracted from each of these vectors.) The image is then a 
collection of these vectors. These N-dimensional vectors X1oX2 , 

· • · ,Xk are then projected into some smaller r-dimensional sub­
space having maximal variance. In this way the. N components 
of the original data may be expressed in terms of r components, 

. thus achieving a data compression of Nfr. 
An optimal basis for the r-dimensional subspace is the set of 

r eigenvectors V1o V2 ,- • ·, V,. corresponding to the r largest eigen­
values of the sample covariance matrix of X1oX2 ,- • • ,Xk. The 
reconstructed value of the imagery. data in the jth subimage 
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region (window) is given by 
r 

X/ = ~ [J-f' • x1 ]J'i (1) 
1=1 

where V,' denotes the transpose of V,. The principal component 
procedure minimizes the mean-square error 

1 ~ • 2 E = - t.. IIX1 - X 1 II . 
kt=l 

(2) 

The minimum value of E for r projections is given by 

(3) 

where A.1 are the N - r smallest eigenvalues of the covariance 
matrix. 

In spite of its optimality, the principal component method has 
not been widely used because of its computational complexity 
[5]. The main difficulty is in the computation of the eigenvalues 
and the eigenvectors of the N x N covariance matrix. The win­
dow sizes for large images range from 4 x 4 to 10 x 10, leading 
to 16 x 16 to 100 x 100 covariance matrices. The calculations 
for the eigenvalues and eigenvectors of these large-sized matrices 
require a considerable amount of computation time and storage. 

We are presenting in this paper a computationally short pro­
cedure for calculating the eigenvalues and eigenvectors of the 
covariance matrix. This simplification results from the bisym­
metric properties of the covariance matrix, which is an out­
growth of using a square window as a sampling device over an 
image. We show that the eigenvalues and eigenvectors of the 
N x N bisymmetric covariance matrix can be obtained from 
the eigenvalues and eigenvectors of two N/2 x N/2 submatrices. 
Since the eigenvector calculations are proportional to the third 
power of the matrix dimension, the proposed procedure reduces 
the computations by a factor of four. · 

II. CONSTRUCTION OF THE SAMPLE COVARIANCE MATRIX 

The entries in the covariance matrix of a given image are 
obtained by calculating the average covariance of all the elements 
in the image that has the same spatial relationship as the entry 
being considered. This procedure can best be illustrated using 
an example. 

The 4 x 4 array shown in Fig. 1(a) represents a small image 
whose data are to be compressed. The image elements are labeled 
from 1 to 16. The size of the window for this example is 2 x 2 
and the arrangement of components of the data vector X within 
each window is shown in Fig. 1(b). For this image, the average 
covariance array and the covariance matrix are computed as 
follows. 

Each element in the average covariance array (Fig. l(c)) is the 
average covariance of all the elements in the original image, 
having the same spatial relationship to each other as the element 
of the covariance array has to the lower center element. For 
example, the element c in the covariance array is located along 
the 45° diagonal line from the lower center (reference) element e. 
t\.ccordingly, the entry cis the average covariance of 9 pairs of 
similarly spatially related image elements (5,2), (6,3), (7,4), (9,6), 
(10,7), (11,8), (13,10), (14,11), and (15,12). Other elements of the 
average covariance array are calculated using similar spatial 
relationships. The entries in the 4 x 4 covariance matrix (Fig. 
l(d)) for the image can be obtained from the data contained in 
the average covariance array. For example, the entry at the 
second row, third column of the covariance matrix represents 
the covariance of x 2 and x 3 • Elements x 3 and x 2 are along the 
45° diagonal of the window and the element c in the average 

r. 
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Fig. 1. (a) Original image. (b) Arrangement of variables within window. 
(c) Average covariance array. (d) Covariance matrix. 
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Fig. 2. (a) Elements of X in 4 x 4 window. (b) Partitioned form of 
covariance matrix C of X. 

covariance array bears the same relationship to the lower center 
(reference) element e. Hence, the entry c is used to fill in the 
(2,3) element in the covariance matrix. Similarly, the remaining 
entries in the covariance matrix are obtained. 

The procedure described in the preceding paragraphs can be 
used for square windows of any size M x M, with M less than 
the overall dimension of the image itself. In the following we 
will restrict our attention to windows of size M x M, where M 
is even. The sample covariance matrix obtained from the average 
covariance array has a bisymmetric 1 form. Also, the M 2 x M 2 

covariance matrix consists of M sublnatrices of dimension 
M x M. These submatrices appear in a bisymmetric form within 
the covariance matrix, Let us consider the following example to 
further illustrate the bisymmetric properties of C. 

Fig. 2(a) shows ,the arrangement of the components of X 
within a 4 x 4 window, and the 16 x 16 covarjance matrix of 
X is shown in a partitioned form in Fig. 2(b ); The 4 x 4 sub­
matrices A, represent the covariance of the elements of one row 
of the window with the elements of another row of the window. 
The matrices A1, A6 , Au, and A16 represent the covariance of 
the elements of a row with the elements of the same row. The 
spatial relationships existing between the elements of row 1 is 
the same -as the spatial relationships between the elements of 
row 2, row 3, or row 4. Since the entries in all these matrices are 
obtained from the, average covariance array using the spatial 
relationship between the elements, Ato .A6 , Au, and A16 are 
identical. Next, let us consider the matrices A2, A7 , A12, A5, A10, 
and A 15, which represent the covariance between the element of 

1 Bisymmetric: An N x N matrix A is bisymmetric if and only if 
au= a1,, i,j = l,2, .. ·,N and au= aN+t-I,N+l-J• i,j = 1,2, .. ·,N. It 
follows from this definition• that a 11 = a 11 = aN+1-I,N+1-J = 
QN+1-J,N+1-b i,j = 1,2,"' •,N. 
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one row of the window and the elements of an adjacent window. 
For instance, A2 represents the covariance between the elements 
xj,x2,x3;x4 and x 5,x6,x7,x8. Referring to Fig. 2(a), the spatial 
relationships between Xtox2,x3,x4 and x 5,x6,x7,x8 and the spatial 
relationships between x 5,x6,x7,x8 and x 9,x10,x11 ,x12 are the 
same. Hence, the entries in A2 and A 7 will be the same. Extend­
ing this reasoning, it is easy to see that A2 , A7 , A 12, A 5 , At0 , and 
A15 are identical. Similarly, it can be shown that A3 , A8 , A9 , and 
A14 are the same and that A4 and A13 are also identical. Hence, 
the form of the covariance matrix becomes 

where At' denotes the transpose of A1• Thus, the bisymmetric 
property of the covariance matrix is inherent in the window 
image sampling process. This example also illustrates that the 
M 2 x M 2 covariance matrix consists of M submatrices of · 
dimension M x M arranged in a bisymmetric form. The sub­
matrices are not symmetric; however, for .each matrix, a11 = 

QM+l-I,M+l-J• 
The symmetry properties of the covarianee matrix lead to a 

computationally simple procedure for the eigenvalue--eigenvector 
calculations. The procedure we will develop in the next section 
is similar to a method given by Ray and Driver [6] for de­
composition of the Karhunen-Loeve series representation of 
stationary random process. 

III. EIGENVALUES AND EIGENVECTORS OF THE 

COVARIANCE MATRIX 

We now show that the eigenvalues and eigenvectors of the 
2m x 2m covariance matrix C can be obtained by calculating 
the eigenvalues and eigenvectors of two m x m submatrices of 
c. This simplification results from the bisymmetry properties of 
C and the simplified procedure is developed through lemmas 1-3. 

Lemma 1 

The covariance matrix C, of dimension 2m x 2m, can be 
partitioned into m x m submatrices of the following form: 

c = [tB--i-_B{] 
where A and Bare m x m submatrices of C, and P is an m x m 
matrix with ones along the NE-SW diagonal and zeros else­
where; i.e., the (i,j)th element of P is given by 

(P)iJ = { 1, 
0, 

for j = m + 1 - i 

otherwise. 

The proof of lemma 1 follows from the construction of C. 

Lemma2 

The eigenvectors "f, i = 1, • · ·,2m, of C have either one of the 
following two forms: 

Yt = [~J or (4) 

where v1 is an m x 1 column vector. 
Proof: The characteristic equation of C is given by CY = 

,t Y, where Y is an eigenvector of C corresponding to the eigen­
value ,t, We want to prove that the ith component of Y, denoted 
y" satisfies 

Yt = ±Y2m+l-t· (5) 

.'t: 



. ' 

' ' 

We begin by writing the characteristic equation in the form 

or 

2m 

AYt = L CtjYJ, 
J=l 

i = 1,2,· ··,2m 

2m· 

AY2m+l-i = L C2m+l-t,JYJ 
j=l 

(6) 

(7) 

where c11 is the (i,j)th element of C. We may also write (7) as 
2m 

AY2nt+l-t = L C2m+l-l,2m+l-JY2m+l-J• 
j=l 

i = 1,2,· ··,2m. 

The bisymmetric property of C yields c2m+l-t,2m+l-J = CtJ• 
and hence we may write the preceding equation as 

2m 

AY2m+l-t = L CuY2m+l-j· 
j=l 

(8) 

Equations (6) and (8) both represent 2m equations in 2m un­
knowns. Letting Y2m+l-t = Zt> (8) becomes 

(9) 

From (6) and (9) it is obvious that the solution for the Yt is also 
the solution for the Z~> i.e., Yt and y 2m+l-t have the same solu­
tion. 

Since the signs of the eigenvectors are not unique, forcing the 
norm of the eigenvectors to 1 makes Yt = ±Y2m+l-t• i = 
1,- ··,2m. Thus we establish (4), and hence the proof of the 
lemma • 

Lemma3 

The 2m eigenvalues A-1 ,-1.2 , • • • ,A.2m and the corresponding 
eigenvectors V1,V2 ,- • ·,V2m of C divide into the following two 
groups: part I, 

A.t = A./ fi = [;;~+]' i = 1,2,· · ·,m (10) 

arid part II, 

At = At- J-i+m = [ v.i- _] , i = 1;2,· · ·,m (11) 
-Pvt 

where A;+ and vt + are the eigenvalues and eigenvectors 2 of the 
m X m submatrix A + B and At~ and Vt- are the eigenvalues 
and eigenvectors of the m x m subrnatrix A - B; i.e., 

(A + B]v/ = A/v/ 

[A - B]v1- = At-v1-

(12) 

(13) 

;:~~ \ where i = 1,2, ... ,m. 

Proof: The characteristic equation of C is 

Cfj = A.tfl· 

Using the partitioned form of C, we may write the preceding 
equation as 

(14) 

Lemma 2 gives two forms of V;, and substituting the first form 
given in (4), we can write (14) as 

[
A BP]. [ Vi ] = . At [ Vt ] • 
PB A Pvt Pvt 

(15) 

z The vectors v, + and v,- are normailzed to give Hv, + 11 2 ,;, Uv,-uz = ! 
so that nv,uz = I. 
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The first m equations of (15) yield 

Avt + BPPvt = AtVt or [A + B]vt = AtVt (16) 

since PP =I. 
Comparing (16) with the characteristic equation of the matrix 

A + B given in (12), we see that A1 = At+ and Vt = Vt + ; .and 
hence the proof of the first part of the lemma. Similarly, by 
taking the second form of fi given in (4) we can prove part II 
of lemma 3. This completes the proof of lemma 3, which shows 
that the eigenvalues and eigenvectors of the 2m x 2m covariance 
matrix C can be obtained from the eigenvalues and eigenvectors 
of two m x m submatrices A + B and A - B. 

IV. CONCLUSIONS 

We have presented a procedure which simplifies the computa­
tional complexity involved in calculating the eigenvectors and 
eigenvalues of the covariance matrix of imagery data. The pro­
cedure is based on the decomposition of the covariance matrix 
Cas 

c = [~--! -~] . 
We have shown that the eigenvalues and eigenvectors of the 
2m x 2m covariance matrix can be obtained from the eigenvalues 
and eigenvectors of the m x m submatrices A + B and A - B. 
Since the eigenvector calculations are proportional to the third 
power of the dimension of the matrix, the proposed procedure 
reduces the computations by a factor of four. 

Also, the eigenvectors of the covariance matrix has to be 
stored or transmitted to the receiver for reconstructing the 
imagery data according to (1). The symmetry property of the 
eigenvectors given in (10) and (11) enables us to store or transmit 
only half of the components of the eigenvectors. This results in 
a considerable saving in transmission time, especially if the 
dimension of the eigenvector is large. 
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On User Supplied Evaluations of Time-Shared Computer 
Systems 
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Abstract-Comments are made regarding the collection of user 
preference data for varying characteristics of time-sharing systeiDS. 
These "utility functions," when de,ermined for a ninnber of variables, 
can be used as an aid to managers and designers of time-sharing service 
facilities. 

Manuscript received February 17, 1972; revised October f3, 1972. Tpis 
work was supported by a grant from the Office of Information Processmg 
Services, Massachusetts Institute of Technology. ' 

The author was with the Sloan School of Management, Massachusetts 
Institute of Technology, Cambridge, Mass. 02139. He is now with 
American Management Systems, Arlington, Va. 22209. 


