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Abstract  Stereo vision is important m determining three-dimensional positions of tile visible surfaces in images. Most existing 

stereo matching methods involve matching low-level image features such as edges. A stereo matching technique based on match- 

ing high-level image features is described in this paper. The high-level image features extracted are topographic structures, arc 

segments and region segments. Matching results in stereo images are also discussed. 
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1. Introduction 

A major industrial application of computer 
vision systems is in automatic inspection. One ap- 
proach to such an inspection task is a coordinated 
system that employs robot arms with measurement 
devices for inspection along with a stereo vision sys- 

tem that provides information to a planner that 
guides the robot arms [20]. The functions of the 
vision system are to determine the position of the 
objects in the scene in relation to the camera(s) and 
to determine the portion of object which the camera 
is viewing. The first problem can be solved by find- 
ing correspondences between features extraced 
from the stereo pair of images. The second problem 
can be approached by matching structures 
extracted from the images to parts in a three-dimen- 
sion description of the object to be inspected. One 
such object model can be found in [20] which em- 
ploys a hierarchical relational model to describe a 
complex F-I 5 bulkhead. 

This work was supported in part by NSF Grant ECS-8505662. 

A stereo approach to automatic inspection must 
solve the following problems. First, how are struc- 
tures in the images to be extracted'? In particular, 
we are interested in extracting structures which are 
usuful for finding correspondences between the im- 
ages of the stereo pair and for matching structures 

in the three-dimensional object model. To extract 
structures from an image usually involves some 
kind of segmentation procedure. Unfortunately, 
none of the existing segmentation techniques seems 

to produce satisfactory results. In this paper, we 
will examine a scheme for extracting line-like and 
surface-like structures which are used frequently in 
modeling three-dimensional objects [20]. Prelimi- 
nary experiments show that this scheme produces 
improved results over the existing techniques. 

The second problem is to find correspondences 
between structures in the stereo pair. Most existing 
stereo matching techniques use local features as pri- 
mitives for matching. Although continuity con- 
straints are imposed in some systems to resolve am- 
biguity, it seems that the use of local features is far 
from adequate. In solving this problem, we will de- 
scribe a stereo matching technique based on match- 
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ing higher-level primitives such as arc segments, re- 
gion segments and topographic structures. 

2. Feature extraction 

The goal of early visual processing is to extract 
a rich symbolic representation of the gray scale in- 
tensity changes in an image. Mart  [14] names this 
representation the primal sketch. It is important for 
the primal sketch to capture all gray scale intensity 
variations in an image because any intensity 
changes can be related to changes in scene charac- 
teristics such as surface orientation, surface discon- 
tinuity, surface reflectance and illumination. Mart 's  
primal sketch relies solely on a special form of in- 
tensity changes which are detected as zero-crossings 
of the Laplacian of a Gaussian filtered image [16]. 
Unfortunately, the use of this representation alone 
cannot provide a rich enough description for inten- 
sity changes, since it fails to account for smooth in- 
tensity changes or shadings which frequently ap- 
pear in images of curved surfaces. 

Haralick [1 1] proposed a rich and robust repre- 
sentation for all types of two-dimensional intensity 
variations. This representation is called the topo- 
graphic primal sketch. We will present here a fea- 
ture extraction scheme which extracts topographic 
structures such as edges, ridges, valleys and hill- 
sides. Edges, which usually correspond to sharp 
changes in gray scale intensities, are used to de- 
scribe the basic structure of an image. The rest of 
the topographic structures are used to describe the 
intensity variations within regions which are 
extracted as connected sets of non-edge structures. 

The proposed feature extraction scheme can basi- 
cally be outlined as follows: 
1. detect raw edge elements by a local edge opera- 

tor; 
2. extract arc segments by linking fragmented edges 

and cleaning noisy edges; 
3. assemble non-edge pixels into regions by a con- 

nected components algorithm; and 
4. compute topographic structures with regions. 

2.1. Extracting edge elements 

Edge detection was pioneered by Roberts [19]. A 
comprehensive survey of edge detection can be 
found in [7]. A set of edge detection criteria that 
capture the desirable properties of an edge operator 
is formulated in [5]. A comparison of the various 
edge operators is given by Haralick [12]. Based on 
the results of[ l  2], Haralick's second directional de- 
rivative edge operator was selected for our initial 
edge detection process. A precise mathematical defi- 
nition of the operator can be found in [12]. The re- 
sults of the second directional derivative edge oper- 
ator applied to the stereo images of Figure 1 are 
illustrated in Figure 2. 

Although the second directional derivative zero- 
crossing edge operator is less sensitive to noise than 
the classical gradient edge operators, it still produ- 
ces undesired and fragmented edges for a complex 
and noisy image such as the one shown in Figure 
1. Moreover, industrial objects often consist of shi- 
ny metallic parts. Specular reflection creates further 
problems in edge detection. In order to obtain more 
meaningful edge structures, a procedure is used to 
extract arc segments by linking fragmented edge 
segments and cleaning noisy edges. 

Figure 1. Stereo images of a F-15 bulkhead. 
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Figure 2. Edges detected from the images of Figure I. 

2.2. Extracting arc segments 

Edge cleaning and edge linking are two difficult 
problems which may lead to conflicting consequen- 
ces. Edge cleaning tends to create wider gaps be- 
tween already broken edges. Linking noisy edges 
often results in more undesired edges. An attempt 
is made here to give an even-handed treatment of 
both. The proposed technique is based on the ob- 
servation that true edges are usually detected as se- 
quences of orderly oriented pixels, while noisy edges 
are usually oriented in some random manner. The 
idea behind this scheme is to first link edge pixels 
into arc segments based on their detected orienta- 
tions: isolated or short segments will then be delet- 
ed and a final gap filling scheme is used to create 
closed boundaries. 

The edge linking process attempts to link to- 
gether edge pixels which are detected as edges with 
similar orientations. This edge linking process is in 
some sense similar to Burns et al.'s [4] method for 
extracting straight lines. Our approach is more 
powerful than theirs in the context that our method 
extracts arc segments other than straight lines. In- 
stead of estimating edge orientation by a 2 x 2 
mask as in [4], we compute edge orientation directly 
from the facet fitting coefficients. Specifically, edge 
orientation is defined to be the direction perpendic- 
ular to the direction which extremizes the first di- 
rectional derivative. A region growing scheme is 
employed for the edge linking process. This region 
growing scheme differs from the traditional region 
growing scheme in that the similarity measure is de- 
rived directly from edge orientation instead of from 
gray level intensity and that the resulting regions 

are long-thin edge regions. 
An image is scanned left-to-right and top-to-bot- 

tom. Each edge pixel's orientation is compared to 
the mean orientation of all its neighboring edge seg- 
ments. An edge segment is selected such that its 
mean orientation is closest to the edge pixel's orien- 
tation. The edge pixel is merged into the edge seg- 
ment provided that their orientations are not too 
different. If no merging is possible, the edge pixel 
starts a new segment. 

After a single scan through the image, a set of ini- 
tial segments is created. In order to produce more 
meaningful and longer arc segments, a second 
merging processing is performed. In this step, mean 
orientations of adjacent edge segments are com- 
pared. Adjacent edge segments are merged if their 
mean orientations are not too different. A cleaned 
edge image can then be obtained by eliminating arc 
segments of sizes less than a certain predetermined 
threshold. Results show that our technique not only 
removes most of the undesired edges, but also 
groups edges into meaningful arc segments which 
are useful for higher level matching. One undesir- 
able result of removing all short segments is that it 
disconnects edges at locations where there are sharp 
changes in orientation, for example, at corners. 
This problem can be fixed by joining nearby end 
points of neighboring arc segments. 

2.3. Extracting region segments 

Once a final set of arc segments is determined, the 
regions extracted are the largest connected areas of 
pixels which are entirely surrounded bv arc seg- 
ments. This process is accomplished by a connected 
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components algorithm which assigns a unique label 
to each maximally connected group of non-edge pi- 
xels. An efficient memory-limited connected com- 
ponents algorithm can be found in [13]. This algo- 
rithm requires only one top-down scan and one 
bottom-up scan of the entire image. The non-edge 
pixels are labeled as regions, and the arc segments 
which exist between regions remain unaffected. 
This region extracting scheme can sometimes create 
small regions which may not contain enough infor- 
mation for meaningful matching, therefore, regions 
of sizes less than a certain threshold are usually 
eliminated. The region segments of the images of 
Figure 1 are shown in Figure 3. 

The topographic primal sketch can be used to 
represent the underlying intensity surface of a digi- 
tal image. A digital image may be interpreted as a 
sampling and quantizing of a real-valued function 
f While the image is a discrete matrix of values, the 
underlying surface is continuous. The gradient 
magnitude and the directional derivatives comput- 
ed from the underlying surface are used in deter- 
mining the topographic labeling of the surface. A 
complete mathematical treatment of the topograph- 
ic primal sketch is given in [11]. 

3. Stereo matching 

2.4. Extracting topographic: structures 

Multiple images of the same scene can be ob- 
tained under different illumination conditions and 
with a variety of camera gain settings. Such photo- 
metric variations can create problems if raw intensi- 
ty values are used for stereo matching. We are inter- 
ested in describing intensity variations within 
region segments in a way which is insensitive to 
photometric variations. The major categories 
{peak, pit, ridge, valley, saddle, hillside and flat} of 
the topographic primal sketch [11] have been prov- 
en to be invariant under monotonic gray scale 
transformations. Although its subcategories .{edge, 
slope, convex hill, concave hill and saddle hill I may 
change under gray scale transformation, to the ex- 
tent we deal only with slight alterations in imaging 
condition (which is usually the case for stereo 
vision), it is reasonable to assume that such changes 
are tolerable. 

Stereo matching has been approached mainly in 
two directions. The first approach matches area fea- 
lures, while the second approach matches lineal fea- 
tures such as edges. The area based approach at- 
tempts to find a match for each neighborhood in the 
first image by searching for neighborhoods of maxi- 
mum similarity in the second image. A typical simi- 
larity measure is the mean-square difference of the 
gray levels within the two neighborhoods. Since the 
search process is computationally expensive and 
not all pixels can be unambiguously matched, mat- 
ches should be restricted to neighborhoods with 
high information content. One such technique for 
finding candidate points for matching is Moravec's 
interest operator [18]. Moravec's operator com- 
putes an initial interest measure for each pixel by 
finding the minimum of the four directional vari- 
ances (horizontal, vertical and two diagonals) over 
the neighborhood centered around the pixel. A 
pixel is of interest if its interest measure attains a 

Figure 3. Regions extracted from the images of Figure I. 
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local maximum. Moravec's interest operator tends 

to select corners. 
Barnard and Thompson [3] use a relaxation la- 

beling technique to find matches for area features. 
They use Moravec's interest operator to select 
matchable points. The searching space is restricted 
by assuming a maximum disparity. An initial prob- 
ability is given to each match based on the similari- 
ty of the neighborhoods around the pixel. A relaxa- 
tion labeling technique is then used to improve the 
initial probabilities by using the local continuity 
property of disparity. A common problem with 
area-based approaches is that they are sensitive to 
changes in contrast and brightness between the pair 
of images. 

The edge-based approach attempts to search for 
edge correspondence between edges detected from 
the stereo pair. Since an edge often corresponds to 
a discontinuity in the depth of an object, edge-based 
methods are less sensitive to photometric character- 
istics of the object in the scene. Furthermore, edge- 
based matchings are in general more accurate and 
less expensive. This is because there are fewer edges 
than pixels and edges can usually be detected at rea- 
sonably precise locations. 

A computational theory of human stereo vision 
was formulated by Marr and Poggio [15]. They sug- 
gest matching features which are located as zero- 
crossings of the Laplacian of a Gaussian filtered im- 
age. This scheme works well on random-dot stereo- 
grams, but fails for real images. Grimson [10] imple- 
mented a modified version of Marr's algorithm. 
Grimson's approach seems to generate reasonable 
results for some real images. A coarse to fine ap- 
proach is used in these methods. This is done by 
convolving the image with filters of various resolu- 
tion. This approach tends to fail for complex scenes 
because edges detected from low resolution filters 
do not usually correspond to any true edges and in- 
correct matches are often introduced. Thus, correct 
matches as well as incorrect matches propagate 
from the low levels to the higher levels. 

More recently, Baker and Binford [2] and Arnold 
[1] developed two similar methods for stereo match- 
ing based on a dynamic programming technique. 
The Viterbi dynamic programming algorithm is 
used in the matching process. They attempt to find 
an optimum match for each pair of epipolar lines in 

the image by assuming that there is no order rever- 
sal of edges. The optimum match is obtained by 
maximizing a measure derived from local properties 
of edges and by requiring that an edge angle and in- 
terval constraint be satisfied. One limitation of 
these methods is that a dynamic programming im- 
plementation is possible only if the edge ordering 
assumption is not violated. 

Until recently, most feature based stereo match- 
ing systems match low level edge primitives. Medi- 
oni and Nevatia [17] proposed a technique for 
matching higher level primitives, namely, line seg- 
ments. Matching line segments from the two images 
are searched within a parallel sided window which 
has two of its sides parallel to the orientation of a 
line segment and the other two sides horizontal. By 
using such a window, all epipolar lines that inter- 
sect the line segment to be matched are considered 
and a maximum disparity is allowed for each 
match. This is an iterative technique. At each itera- 
tion, each possible match is evaluated by assuming 
a minimal differential disparity. A preferred match 
for each segment is selected to be the one which is 
most consistent with the disparities suggested by its 
neighbors. 

While Mediono and Nevatia solve the correspon- 
dence problem by matching line segments, Gosh- 
tasby [8] suggests using region segments. Goshtasby 
first uses an image segmentation procedure to de- 
termine optimally similar regions, by an appropri- 
ate measure, from multiple images. Region cor- 
respondences are then achieved by a probabilistic 
relaxation labeling process. 

Cheng and Huang [6] present a method for reg- 
istering images. A relational description is used in 
their method to represent structures extracted from 
images. They extract straight line segments as pri- 
mitives and use relations such as parallel, antiparal- 
lel, collinear and adjacent to describe the interrela- 
tionships between line segments. The image 
correspondence problem is then solved by matching 
relational structures. As another step toward using 
higher level primitives, the proposed matching 
scheme matches arc segments, region segments, and 
topographic structures, and uses spatial relations 
among these structures to resolve ambiguous mat- 
ches. 
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3.1. S tereo  imaging g e o m e t r y  

The stereo imaging geometry is illustrated in Fig- 

ure 4. We assume that the image planes of the stereo 
cameras are coplanar and are placed at a distance 
/'~ the focal length of the lens, in front of the two 
camera foci. The cameras are arranged so that the 
camera baseline, the line joining the two camera 
loci, is parallel to the row scan direction of the im- 

age (the x-axis in Figure 4). Given any point in the 
scene, the epipolar plane is defined as the plane de- 
termined by the point and the camera foci. It is 

clear that the projections of a point in 3-space onto 
the two image planes must lie somewhere along the 
intersecting lines between the epipolar plane and 

the image planes. The intersecting lines on the left 
and right image planes are called epipolar lines. 
Therefore, the corresponding problem is reduced to 
finding matches along corresponding epipolar lines. 
If the input images are taken under a different ar- 

rangement, a preprocessing step is required to ac- 
count for the differences. One such technique can be 

found in [9]. 

3.2. No ta t ion  

The segmentation process partitions the images fl 
and F into arc and region segments. As a notation, 
we will use superscripts l and r to denote, respec- 
tively, descriptors for the left and right image (de- 
scriptors without superscript can be applied to ei- 
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Figure 4. Stereo imaging geometry. 

ther image). The matching process to be described 
is performed in both directions, that is, from the left 
to the right image, and vice versa. In the following 
discussion, we will concentrate on finding matches 
from the left image to the right. 

Let 

N A = number of arc segments, 
A = ~aili = 1 . . . . .  NAI = set of arc segments, 
NR = number of region segments, 

R = ~rili = 1 . . . . .  N~} = set of region segments. 
Associated with each arc segment, the mapping 

o:A ~ [0,360] gives the mean orientation for each 
arc segment in A. Similarly, the mapping g: R 

[Imi,,Im~x] gives the mean gray level for each region 
in R. 

Define a boolean function p(x ,y )  for x e A ~ and y e 
A r by 

~ true if d(x,  y)  < to, 

p(x,  y) = [ fa l se  otherwise 

where to is a threshold for edge orientation and 

d ( x , y )  = 

[o(x) - o(y)[ if [o(x) o(y)[ > 180, 

360 - ]o(x) - o(y)[ otherwise. 

Thus p(x ,y )  is true if and only if arcs x and y are 
oriented similarily enough. Define a boolean func- 
tion q(x ,y )  for x ~ R I and y e  R r by 

~true if Ig(x) - g(y)] < tg, 

q(x ,  y) = [ fa l se  otherwise 

where tg is a threshold for mean gray level. Thus 
q(x ,y)  is true if the mean gray scales of regions x and 
y are similar. The selection of the above thresholds 
is quite loose. Although tight thresholds can reduce 
the search space, it increases the risk of ruling out 
potential matches. In the examples presented in this 
paper, to is set to 30 and tg i s  set to 50. 

3.3. M a t c h i n g  along epipolar lines 

Since arc and region segments can be very large, 
it will be expensive in terms of both memory and 
computat ion to correlate segments. Instead of treat- 
ing segments as whole units, we will divide the 
matching problem into subproblems by first match- 
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ing along epipolar  lines. Region or arc segments  

correspondences ,  which are discussed in the next 
section, will then be determined globally by com- 
bining match ing  results on the epipolar  lines. 

Let L t and U be a pair  of  cor responding epipolar  

lines from the topograph ic  images. We have 

Lt(i) = t ~ and U(i) = t ~ 

for i = l . . . . .  nppl where nppl is the number  of pixels 
per line, and t ~ and t~• {ridge, valley, convex hill- 
side, concave hillside, saddle hillside, slope, flat I. 
Since the images are par t i t ioned into arc and region 

segments,  an image line is divided into conntected 
arc-sections and region-sections. For  an epipolar  
line, let 

n, = number  of arc-sections, 

S~,~ = ',bi]i = 1 . . . .  n,} = set of arc-sections, 
n~ = number  of region-sections,  

S~g = '~cili = 1 . . . .  n~j = set of region-sections. 
Notice that  each region-section cor responds  to 

part  of a region segment  and is bounded  by a pair  
of arc-segments  except at the boundar ies  of the im- 
age. We thus have for y • S ~ g ,  the mapp ing  REG: 

&,.g--. R, which gives the region segment  to which 
y belongs. Correspondingly ,  for x e S  .... the map-  

ping ARC': S~,~ --+ A gives the arc segment to which 
x belongs. 

Let BEGIN: S~eg -+ [1 ,nppl] and END: Srcg ---+ [1 ,nppl] 
be functions which return respectively the begin- 

ning and ending locations of a region-section. We 
can then define a function, LARC: &~g--+ {A',O}, 

which returns the arc segment  to the immedia te  left 
of x. If BEGIN(x) = 1, LARC(X) = 0. Similarly, the 
function RAR(': Sreg-+ {A~,O} returns the arc seg- 
ment  to the immedia te  right of x. If END(X) = nppl, 
RARC(X) = 0. 

We can now define the set of all feasible matches  
for x • S~eg as 

M~(x) = 
q(RE(/(x),  REGr(y)) = true. 

p(LARC(X), LARC(y)) = true or 
p(RARC(X), RARe(y)) = true, 
IBEGIN(X)-  BEGIN(y)[ < d . . . .  

and lEND(x) -- END()')] < dmaxl 

where d ..... is a m a x i m u m  allowable disparity.  That  
is, x e Slog and y e Sf~g is a feasible match  if 

( I ) the mean gray levels of the region segments to 

which the region sections belong are not too differ- 
ent, 

(2) the mean orientat ions of the arc segments to 
the immediate  left (or right) of the matching  region 
sections are not too different, and 

(3) the dispari ty of the end points of the matching  
region sections is less than a certain m a x i m u m  al- 
lowable disparity.  

For  each possible match,  its similarity measure  is 
computed  by correlat ing topograph ic  structures 

within the corresponding region-sections. If we let 
x ~ S[~ and y ~ M~(x), the lengths of x and y are giv- 
en by 

f =  END(X) BEGIN(X) and 
d r =  END(V) BEGIN(y), 

and the arc-sections adjacent to x and y are related 
by 

Pl = p ( L A R C ( x ) , L A R c ( y ) )  and 
P2 = p ( R A R C ( x ) , R A R c ( y ) ) .  

It is worth noting that  Pl (or ./)2) is true if the arc 
segments to the immediate  left (or right) of x and 

y are matchable .  In order  to handle occlusion, we 
only require that  one of the p's be true. There are 
three cases to be considered: 

(1) i fpl  is true and P2 is false, we compute  a simi- 
larity measure  which is propor t iona l  to the number  
of times that  the topographic  labels to the immedi-  
ate right of LARC(X) and LARC(y) are compatible:  

(2) i fpl  is false and P2 is true, we compute  a simi- 
larity measure  which is propor t iona l  to the number  
of times that the topographic  labels to the immedi-  
ate left of RARC(X) and RAR('(y) are compatible:  
and 

(3) if both  Pl and P2 are true, we compute  a simi- 
larity measurc  which is propor t iona l  to the number  
of compat ib le  topographic  labels at both ends of the 
region-sections. 

Formal ly ,  we compute  a similarity measure 

m(x,y)  in the following way: 

l i r a ' ; , )  h(BEG'N(x) ] = + k, B~GIN(y) + k) , m(x,y) M' 

if PI = true and P2 =J'alse, 

I Im~(:h(END(X) 1 . = - - k ,  E N D ( V ) - - L ' )  , mix ,  v) M'  ~ 

if Pl = false and P2 = true, 
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1 [ m l / ~  - 1 
= h(BEGIN(X) + k, BEGIN()') + k) 

m(x,y) M '  L k=o 

mr~2 1 1 
+ ~ h(END(x) -- k, END(y) -- k) , 

k=0 

otherwise, 

where 

M' = max(dl, dr), 

and 

m ' =  min(d,d  r) 

{~ if L~(i) = Lr(j), 
h(i,j) = otherwise. 

Notice that h(ij) determines whether the topo- 
graphic labels at the ith location of the first region- 
section and the jth location of the second region- 
section are the same. The motivation for using m as 
a similarity measure is that if the topographic struc- 
tures around two potentially matching segments are 
similar, the likelihood that they really match is 

high. 
We call y* a preferred match o f t  ifm(x,y*) is the 

largest among all possible matches. We also call 
LARC(y*), the arc-section to the immediate left of 
y*, a preferred match of LARC(X) if Pl is true. Simi- 
larly, RARC(y*) is a preferred match of RARC(X) if 
P2 is true. In order to avoid ambiguous matches, no 
preferred match is assigned to x if m(x,y*) is smaller 
than some predetermined threshold. 

3.4. Matching segments 

At this point, each region (or arc) section in the 
epipolar line of one image is associated with a pre- 
ferred matching section, if one exists, in the other 
image. The next attempt is to find global matches 
for the segments as a whole. Since each segment (re- 
gion or arc) is decomposed into a set of subsections 
during the epipolar line matching process, we define 
SECTIONS(X) to be the set of all subsections of x, that 

is 

SECTIONS(X) = {Yl REG(y) ~-- Xll for x e R ,  

or  

SECTIONS(X) = {Yl ARC(y) ---- x~ for x C A .  

Since a preferred match is determined for each y e 
SECTIONS(X), we can define a mapping M*: SEC- 

TIONS ~ R r which gives the segment to which the 
preferred match of y belongs. The set of all possible 
matches for x is then 

ALLMATCH(X) = [ M*(y) [ Y E SECTIONS(X)~. 

We now have for each segment in one image a set 
of potentially matching segments in the other im- 
age. In order to obtain the best of the potential 
matches, each possible match, x ~ R  ~ and y~ 
ALLMATCH(X), is evaluated. Two criteria are used in 
determining the best matches for region segments: 

(1) the number of times that y matches each of the 
region sections in SECTIONS(X); and 

(2) the widths of region sections of which y is the 
perferred match. 

Specifically, the similarity measure sm(x,y) is giv- 

en by 

1 
sm(x,y) . . . .  Y' len(z,y) Ixl: sEc.oNs,x, 

where Ix I denotes the size of x and 

l en(z 'Y)={  END(z)-BEG'N(z) otherwise.ifM*(z)=Y" 

Notice that len(z,y) returns the length of z if y is a 
preferred match of z and returns zero otherwise. 
The best match is considered to be the one which 
gives the highest similarity measure. We also re- 
quire that the similarity measure corresponding to 
the best match be greater than some predetermined 
value. A similar evaluation can be computed for 
matching arc segments, except that for an arc seg- 
ment, its width or thickness does not play as impor- 
tant a role as for region segments. 

A final global matching process is performed as 
an attempt to resolve ambiguity and to preserve 
consistent matches. To measure the degree of con- 
sistency between two sets of matches, we examine 
the region adjacency graphs of the matching seg- 
ments. Ideally, if x matches y, then each neighbor 
of x should match some neighbor of y. So far, we 
have employed only the segment adjacenty relation 
for the global matching process. A possible exten- 
sion of the current scheme is to include relations 
such as parallel, antiparallel, and collinear. 

In summary, the proposed stereo matching sche- 
me is divided into three stages: 

134 



Volume 9, Ntunber 2 PATTERN RECOGNITION LETTERS February 1989 

Figure 5. Matching results of the arc segments. 

ii ...................... i:::,~::i:: : ............ 

Figure 6. Matching results of the region segments. 

(1) an epipolar line matching process which uses 
epipolar geometry to reduce the problem to a one- 
dimensional matching process: 

(2) a segment matching process which establishes 
globally optimal matches for region and arc seg- 
ments: and 

(3) a global matching process which uses spatial 

relations among high-level structures to resolve am- 
biguous matches. 

4. Results 

Experiments have been performed on the stereo 
images (Figure 1) of the F-15 bulkhead. Figures 5 
and 6 illustrate respectively the matching arc seg- 
ments and matching region segments. Matching 

segments in the pictures are displayed with the same 
brightness. All matching segments have been identi- 
fied correctly. It is interesting to note that horizon- 
tal arc segments were also matched correctly. 
Matching between horizontal arc segments was 
possible because segment adjacency information 
was incorporated in the global matching process. 

Instead of using low level image features, we have 
presented here a stereo matching procedure based 
on high level structures such as arcs, regions and to- 
pographic structures. Results show that this is a 
promising step toward using high level features for 
stereo matching. For both the feature extraction 
and the stereo matching methods, we anticipate a 
great deal more work. We would need to carry out 
these methods for a large number of images. Only 
then will we be able to explore methods for generat- 
ing a full disparity map accurately from the 

matched features. 

References 

[1] Arnold, R.D. 11983). Automated stereo perception. Stan- 
ford University, Ph.D. Dissertation, March I983. 

121 Baker, H.H. and T.O. Binford (1981). Depth from edge and 
intensity based stereo. Proe. 7th Intern. Joim ConL Art!ficial 

lntelli~,,enee, Vancouver, Canada, August 1981. 631 636. 
[3] Barnard, S. and W. Thompson (198(}). Disparity analysis of 

images. I E E E  Trans. Pauern Anal. Machine lntell. 333 340. 
[4]Burns, J.B., A.R. Hanson and E.M. Riseman (1984). 

Extracting straight lines. Proe. 7th Intern. Joint Pattern Rec- 

o t~nition, Montreal, August 1984, 482 485. 

135 



Volume 9, Number 2 PATTERN RECOGNITION LETTERS February 1989 

[5] Canny, J.F. (1983). Finding edges and lines in images. Mas- 
sachusetts Institute of Technology, Master Thesis, June 
1983. 

[6] Cheng, J.K. and T.S. Huang (1982). Image registration by 
matching relational structures. Proc. 6th Intern. Joint Con[. 
Pattern Recognition, 354-356. 

[7] Davis, L.S. (1975). A survey of edge detection techniques. 
Computer Graphics and Image Processing 4, 248 270. 

[8] Goshtasby, A. (1983). A symbolically-assisted approach to 
digital image registration with application to computer 
vision. Michigan State University, Ph.D. Dissertation. 

[9] Gennery, D.B. (1977). A stereo vision system for an autono- 
mous vehicle. Proe. 5th Intern. Joint Con[. Artificial Intelli- 
gence, MIT, Cambridge, MA, August 1977, 576 582. 

[10] Grimson, W. (1981). From Images to Sur[~tces, MIT Press, 
Cambridge, MA. 

[11] Haralick, R.M., L.T. Watson and T.J. Laffey (1983). The 
topographic primal sketch. Intern. J. Robotics Research 2 
(1), 50 72. 

[12] Haralick, R.M. (1984). Digital step edges from zero crossing 
of second directional derivatives. IEEE Trans. Pattern Anal. 
Machine Intell. 6 (1), 58 68. 

[13] Lumia, R. (1982). A new connected components algorithm 
for virtual memory computers. Proc. IEEE Con[i Pattern 
Recognition and Image Processing, 560 565. 

[14] Marr, D. (1976). Early processing of visual information. 
Phil. Trans. Roy. Soc. London B 275,483 534. 

[15] Marr, D. and T. Poggio (1976). A theory of human stereo 
disparity. Science 194, 283 287. 

[16] Marr, D. and E.C. Hildreth (1980). Theory of edge detec- 
tion. Proc. Roy. Soc. London B 207, 187 217. 

[17] Medioni, G.G. and R. Nevatia (1985). Segment-based ste- 
reo matching. Computer Vision, Graphics. and hnage Pro- 
cessing 31, 2-18. 

[18] Moravec, H.P. (1977). Towards automatic visual obstacle 
avoidance. Proc. 5th Intern. Joint Cm~[. Art!fieial Intelligen- 
ce, MIT, Cambridge, MA, August I977, 584. 

[19] Roberts, G. (1965). Machine perception of three-dimensio- 
nal solids. In: J.T. Tippett et al., Eds., Optical and Electropt- 
ical ln/brmation Processing. MIT Press, Cambridge, MA, 
179 197. 

[20] Shapiro, L.G. and R.M. Haralick (1984). A hierarchical re- 
lational model for automated inspection tasks. Proe. Intern. 
Con[~ Roboties, Atlanta, GA, March 1984, 70 77. 

136 


