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We discuss a more powerful probabilistic graphical model for discovering semantic patterns from sequen- 

tial text data, such as sentences. It is developed based on the idea that each word (or each symbol) in 

a sentence itself might carry lexical, semantic, or syntactic information, which can be used to replace 

conditional dependences in existing methods. Hence, our method has fewer conditional independence 

assumptions in contrast to these existing probabilistic graphical methods, such as CRFs, HMMs, MEMMs 

and Naive Bayes. Moreover, our method does not need to employ dynamic programming and therefore 

the on-line time complexity and memory complexity are reduced. We test the method on discovering 

noun phrases, the meaning of an ambiguous word, and semantic arguments of a verb in a sentence. We 

find that the misclassification rate is smaller compared to previously published results on the same data 

sets. For example, the method achieves an average f -measure of 98.25% for recognizing noun phrases on 

WSJ data from Penn Treebank; an average accuracy of 81.12% for recognizing the six sense word line ; an 

average f -measure of 93.61% for classifying semantic argument boundaries of a verb in a sentence on WSJ 

data from Penn Treebank and PropBank. 
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. Introduction 

Recently, Neural Networks (NNs), such as Convolutional Neural

etworks (CNNs) and Recurrent Neural Networks (RNNs), have

hown great success in some NLP tasks [36] . The most com-

only used type of RNNs in NLP is Long-Short Term Memory

LSTM) [13] in which three gates are designed for capturing

ependencies. However, these networks are designed for handling

eal-valued vectors rather than for handing symbols. In fact, the

atural language is a sequence of symbols. In texts, various of

esources of information are existed among symbols. For exam-

le, there are syntactic relations, lexical relations, and semantic

elations among words in a sentence. The original resources of

nformation might be difficult to carry when a word is represented

y a real-valued vector with a predetermined size. Moreover, the

unning time complexity would be increased and errors could be

reated by transforming a symbol into a vector, and then a result

ector back to a symbol. Besides, the vector representations are

ore difficult to interpret and manipulate than symbol represen-

ations. For example, it is difficult to know and fix an error in a

ector representation. Furthermore, some tasks, such as inference

nd decision making are ineffective on these networks [25] . In
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his paper, we present a probabilistic graphical model built based

n the nature of language data. Because of our model is built on

ymbol data, the properties of natural language are remained. Our

odel runs faster and is easy to interpret and manipulate. Our

odel can perform sequential decision making. 

Probabilistic graphical models, such as Hidden Markov models

HMMs) [19,28] , Maximum-entropy Markov models (MEMMs) [26] ,

nd conditional random fields (CRFs) [18,21] , have been used for

dentifying semantic patterns in texts. These models are derived

rom either a joint probability function or a conditional probability

unction for a sequence of class assignments given a sequence of

ymbols These assumptions might not be the best assumptions

or capturing such semantic patterns in texts . For example, one

f the conditional independence assumptions is that the class

dentification for the current symbol depends only on the class

dentification of the previous symbol, not others. 

Moreover, these graphical models lead to an optimization that

ependently threads through the sequence of class assignments

o optimize the joint or conditional probability of the class as-

ignment given the symbol sequence. This optimization can be

nderstood as an optimization of expected gain [11] . The implicit

ain function employed by these models gains one if all class

ssignments are correct and zero if any assignment is wrong. No

artial credit is given for some correct assignments. This criterion

eads to difficulties where noise in data can cause the resulting

ptimal class assignments to hallucinate an incorrect yet seem-
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Fig. 1. The conditional independence graph defining our graphical model. 

Fig. 2. The partial conditional independence graph for c n . 
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t  
ingly coherent class identification sequence. A noisy or perturbed

symbol at any position in the input sequence can produce a wrong

category path for a substantial length subsequence. In contrast

an optimization using a gain function that gives credits for each

correctly classified symbol, wrong but coherent classification

subsequences of any substantial length tend not to happen. 

Furthermore, for these graphical models, the maximum global

probability value cannot be determined until the last symbol of the

sequence has been reached and the computation must be done by

a dynamic programming algorithm. In order to identify a sequence

of n symbols among a set of m classes, these models need to have

time complexity of O ( m 

2 n ) and memory complexity of O ( mn ). 

By observing text data carefully, we have noticed that a word

(or a symbol) in a sentence itself might carry lexical, semantic, or

syntactic information. These pieces of information can be used to

replace conditional dependences in existing methods. For example,

in the case of NP chunking, identifying noun phrases in a sentence,

information carried by the previous symbol of each symbol carries

more class information about the current symbol than does the

assigned class information associated with the previous symbol. 

In contrast to these probabilistic graphical models, our model

has fewer conditional independence assumptions. The true identi-

fication of the current symbol is based on information carried by

the current symbol, the information between the current symbol

and the preceding symbol, and information between the current

symbol and the succeeding symbol. Moreover, understanding our

optimization as an optimization of expected gain, our implicit gain

function gives a partial credit for each correct class assignment.

When we make a mistake on one symbol in a sequence, it will

not effect other correct decisions that have been made or will be

made for other symbols. Furthermore, our method does not need

to employ dynamic programming. The time complexity is reduced

to O ( mn ) while the memory complexity is reduced to O (n + m ) ,

Numerical comparisons are shown on Section 4 . 

We have applied the method to identify semantic patterns

in documents [14–17] . The semantic patterns in documents are

noun phrases, the meaning of a polysemous word , and semantic

arguments of a verb in a sentence. In Section 5 , we will formerly

discuss the experiments. The results demonstrate that the method

works well. For instance, the method achieves an average preci-

sion of 97.7% and an average recall of 98.8% for recognizing noun

phrases on WSJ data from Penn Treebank; an average accuracy

of 81.12% for recognizing the six sense word line ; an average

precision of 92.96% and an average recall of 94.94% for classifying

semantic argument boundaries of a verb in a sentence on WSJ

data from Penn Treebank and PropBank. 

2. The method 

2.1. Defining the task 

Let S = < s 1 , . . . , s N > be a sequence of N symbols. Let C be a set

of M classes, C = { C 1 , . . . , C M 

} . 1 The task is to assign each symbol

s n ∈ S a class c ∗n ∈ C, s.t. the sequence of classes < c ∗
1 
, . . . , c ∗

N 
> best

describes S = < s 1 , . . . , s N > in the sense of 

< c ∗1 , c 
∗
2 , . . . , c 

∗
N > = argmax 

c 1 , ... ,c N 

p(c 1 , . . . , c N | s 1 , . . . , s N ) 

In order to find the optimal sequence < c ∗
1 
, c ∗

2 
, . . . , c ∗

N 
>, we

need to compute the function of p(c 1 , c 2 , . . . , c N | s 1 , s 2 , . . . , s N ) .

Therefore, we build a decomposable graphical model [20] . 
1 C m ∈ C will have a different meaning for each of the different tasks. 

v  

s

T

.2. The probabilistic graphical model 

To find the assigned class sequence c 1 , . . . , c N for the in-

ut sequence s 1 , . . . , s N that maximizes the expected economic

ain [11] , we select a gain function that gains some value if a

lass assignment for a symbol in the input sequence is correct

nd zero otherwise. Based on Appendix A , we find an assigned

lass c n , n = 1 , . . . , N that maximizes the joint probability function

p(c n , s 1 , . . . , s N ) . Further, we assume that the current assigned

lass is only dependent on the current symbol, the preceding

ymbol, and the succeeding symbol. These lead to the graphical

epresentation of our model in Fig. 1 . 

The graphical model in Fig. 1 leads to the mathematical

epresentation in equation (1) . See Appendix B and Appendix C . 

p(c 1 , . . . , c N | s 1 , . . . , s N ) 
= 

∏ N 
n =1 p(s n −1 | s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) ∑ 

c k ∈ C 
∏ N 

k =1 p(s k −1 | s k , c k ) p(s k +1 | s k , c k ) p(s k | c k ) p(c k ) 
(1)

.3. Finding < c ∗1 , . . . , c 
∗
N > 

To find a class sequence < c ∗
1 
, . . . , c ∗

N 
> for a symbol sequence

 s 1 , . . . , s N >, we only need to find c ∗n for s n individually. More-

ver, the denominator in (1) is a constant and it does not effect a

ecision for assigning c i to s i . Therefore, 

 c ∗1 , c 
∗
2 , . . . , c 

∗
N > 

= 

N ∏ 

n =1 

argmax 
c n ∈ C 

p(s n −1 | s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) (2)

This simplifies for each n , 

 

∗
n = argmax 

c∈ C 
p(s n −1 | s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c) (3)

.4. Complexities 

.4.1. Time complexity 

For each p(s n −1 | s n +1 , s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) , we need

o have three multiplications. To obtain the maximum probability

alue among M classes, we need to have M − 1 comparisons. For a

equence of N symbols, we need 
 N = 3 ∗ N ∗ (M − 1) = O (NM) 
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Fig. 3. The conditional independence graph defining the revised graphical model. 

Fig. 4. The partial conditional independence graph is a complete graph of K 4 . 
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.4.2. Memory complexity 

For each symbol, we need to store M values of

p(s n −1 | s n +1 , s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) to determine the

aximal probability value. Hence, for a sequence of N symbols,

e have 

 N = N + M = O (N + M) 

. A revised probabilistic graphical model 

In a conditional independence graph, s i and c i , i = 1 , . . . , N, are

odes. Therefore, there are 2 N nodes in total. If no conditional

ndependence assumptions are made, there is a link between

very pair of nodes. The degree of each node should be 2 N − 1 .

ompared to the conditional independence graph in Fig. 1 , the

onditional independence graph in Fig. 3 has less conditional

ndependence assumptions. 

p(c 1 , . . . , c N | s 1 , . . . , s N ) 
= 

∏ N 
n =1 p(s n −1 , s n , s n +1 , c n ) ∑ 

c k ∈ C 
∏ N 

k =1 p(s k −1 , s k , s k +1 , c k ) 
(4) 

. Comparisons 

.1. Graphical representations and dependence sequences 

All existing graphical models are derived under some condi-

ional independence assumptions. Fig. 5 presents an HMM [26,28] ,

n MEMM [26] , a CRF [21,30] , a Naive Bayes, and our models

For the simplicity, here only shows links for c i ). While HMM

nd MEMM are directed graphical models, Naive Bayes, CRF, and

ur model are undirected graphical models. Compared with these

raphical models, we note that for each c i , the degree of our model

s three while others are at most two. This indicates that our

odel has fewer assumptions. The HMM model is built under two

onditional independence assumptions. First, given its previous

lass, the current class is independent of other classes. Moreover,

iven its current class, the symbol is independent of other classes

nd symbols. The MEMM model is built under one conditional

ndependence assumption. Given its previous class and the current

ymbol, the current class is independent of other classes and

ymbols. The CRF model is built under the same two conditional

ssumptions as the HMM model. The Naive Bayes is built under

he assumption of given the current symbol, the current class is

ndependent of other classes and symbols. The model presented in
his paper makes one conditional independence assumption. Given

he current, the preceding, and the succeeding symbol, the current

lass is independent of other classes and symbols. 

Obviously, c i can be better predicated by our model than the

aive Bayes because our model has more information (more

inks) for predicating c i than the Naive Bayes. Moreover, in HMM,

EMM, and CRF, the sequence dependency is a dependency of

lass to neighboring class. In our model, one dependency is be-

ween class and neighboring symbols and another dependency is a

ependency of symbols to neighboring symbols. We believe that c i 
an be better predicated from s i −1 and s i +1 rather than c i −1 when

 symbol contains several types of information, such as lexical

nformation and syntactical information. For example, in the case

f NP chunking, Part-of-speech (POS) tag information carried on

he previous symbol of each symbol is more useful than the class

nformation assigned to the previous symbol. 

.2. Complexities 

HMMs or CRFs employ dynamic programming to obtain a

equence of optimal classes for a sequence of symbols by com-

uting a joint probability p ( s 1 . . . s n c 1 . . . c N ) or a conditional

robability p ( c 1 . . . c N | s 1 . . . s n ). By dynamic programming, an

ptimal class for the current symbol is obtained based on an

ptimal class of the previous symbol. Therefore, the optimal class

or the last symbol is determined after the last symbol has been

eached. The optimal class sequence needs to be determined by

racing back from the last optimal class to the first optimal class.

or each symbol, information for M classes needs to be stored.

ence, for a sequence of N symbols, we need to have O ( M 

2 N ) time

omplexity and O ( M 

∗N ) memory complexity. We compute ratios of

ime complexity and memory complexity of our model to HMM s

nd CRF s to see the differences. 

The ratio of time complexity is NM 

M 

2 N 
= 

1 
M 

The ratio of memory

omplexity is M+ N 
M∗N = 

1 
N + 

1 
M 

If we need to recognize a sequence of

 symbols with M categories, our model only takes 1 
M 

time and

emory compared to HMMs or CRFs. For example, if the cardinal-

ty of C is ( M = 6 ), for a sequence of fifty symbols ( N = 50 ), our

ethod only needs to have 1 
6 time and 

14 
75 memory of a HMM or

 CRF to recognize this sequence. 

. Application – recognizing text patterns 

The model discussed in Section 2.1 is applied to classify three

ypes of text patterns. These text patterns are the sense of a pol-

semous word, noun phrases of a sentence and the semantic ar-

uments of a verb. For identifying the word sense of a polysemous

ord, in contrast with the methods in papers [7,12,22,23,35] , in our

ethod, the polysemous word is represented by a sequence of con-

ext symbols, each symbol is an ordered pair of the lexicon and the

OS tag of a word. Each symbol is represented by it’s left symbol

nd right symbol. Moreover, for identifying NP, compared with the

ethods proposed by papers [1,5,28,29,34] . We follow Ramshaw’s

dea [29] of designing three categories for a word in a sentence to

etermine whether the word is inside an NP chunk, outside an NP

hunk, or should start a new NP chunk. However, most methods

or this task use HMMs [26,28] , MEMMs [26] , and CRFs [21,30] . 

For identifying semantic arguments of a verb from a sentence,

ur method is different from the methods proposed by papers

2,6,8–10] . Our method is developed based on the idea that if

 sentence is represented by a rooted tree, the root is the start

f a sentence and leaves are words in the sentence. A semantic

rgument of a verb in the sentence will be associated with a

ooted subtree. Hence, all semantic arguments of a verb in the

entence will be represented by a set of rooted subtrees. For each

erb node v , there exists a path, from which, all roots of the
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Fig. 5. This shows the conditional independence graphs for different models: (1): a HMM model, (2): a MEMM model, (3): a CRF model, (4): a Naive Bayes model, (5) and 

(6): the models presented by this paper. 
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subtrees will be extracted. Obviously, the unique feature, which is

a path, represents all the semantic arguments of the verb. 

5.1. Identifying the word sense of a polysemous word 

Let S = < s 1 , . . . , s t , . . . , s N > be a sequence of symbols associ-

ated with a sentence. Let s t ∈ S be a given ambiguous symbol that

needs to be disambiguated. Let C = { C m 

| m = 1 , . . . , M} be a set of

predefined senses of the ambiguous symbol s t . 

5.1.1. Defining contexts 

The context of an ambiguous symbol s t is a k − tuple,

represented by T t . Each element in T t is a symbol in S ,

T t = (t 1 , . . . , t k , . . . , t K ) , t k ∈ S , and K ≤ N . 

5.1.2. Identifying the sense of a word 
• Find the context T t for s t . 
• Find a sequence of classes < c ∗

1 
, . . . , c ∗

K 
> for T t = (t 1 , . . . , t K ) ,

s.t. 

< c ∗1 , . . . , c 
∗
K > = argmax 

c 1 , ... ,c K 

p(c 1 , . . . , c K | t 1 , . . . , t K ) 
• Assign C j to s t if and only if 

# { k | c k = C j } ≥ # { k | c k = C m 

} , m = 1 , . . . , M, m � = j 

5.2. Identifying NP chunks in a sentence 

Let S = < s 1 , . . . , s i , . . . , s N > be a sequence of symbols associated

with a sentence. Let C be a set of classes, C = { C 1 , C 2 , C 3 } , where

C 1 represents that a symbol is inside a noun phrase, C 2 represents

that a symbol is not in a noun phrase, and C 3 represents that a

symbol starts at a new noun phrase. 

5.2.1. Building blocks 

B is a block if and only if: 

1. For some i ≤ j , B = < ( s i , c i ), (s i +1 , c i +1 ) , . . . , ( s j , c j ) > 

2. c i ∈ { C 1 , C 3 } 

3. c n = C 1 , n = i + 1 , . . . , j

4. For some B 

′ , if B 

′ ⊇ B and B 

′ satisfies 1, 2, 3, then B 

′ ⊆ B

5.2.2. Identifying noun phrases 
• Find a sequence of classes < c ∗

1 
, . . . , c ∗

N 
>, s.t. 

< c ∗1 , . . . , c 
∗
N > = argmax 

c 1 , ... ,c N 

p(c 1 , . . . , c N | s 1 , . . . , c N ) 
• Find { B 1 , . . . , B M 

} , where each B m 

is a block satisfying the
definition of B. t  
.3. Identifying semantic arguments of a verb 

Let T = (V, E, r) be a tree associated with a sentence, where

 is a set of vertices, E is a set of edges, E ⊆V × V . Let r ∈ V be

he root of T . Each vertex v ∈ V is associated with a label defined

y Weischedel et al. [33] . Let π be a set of special labels related

erbs in a sentence. Let V 

′ ⊂ V , each v ′ ∈ V 

′ has a label in π . Let

 = { C 1 , C 2 } be a set of classes, where C 1 represents that a path

ill be extended from the current node to an adjacent node; C 2 
epresents that a path will not be extended from the current node

o an adjacent node. 

• Form a path of P(v ) , v ∈ V 

′ 
– For v ∈ V 

′ , and v is not a node in P(v ′ ) , P(v ′ ) is a path that

has been already formed previously, v ′ ∈ V 

′ , find 

< v ∗1 , . . . , v 
∗
K > = argmax 

v 1 , ... , v K 
p(c 1 , . . . , c K , v 1 , . . . , v K ) 

Where, c k ∈ C, v k ∈ V , { v k −1 v k } ∈ E. 
• Form a set of roots R (v ) = { r i | i = 1 . . . M} from P(v ) , where

r i ≤ v k . 

– For all siblings of v k , find x , s.t. x �∈ V ′ and x �∈ { v k | k =
1 , . . . , K} , then R ( v ) ← R ( v ) ∪ { z } 

– For all children of v k , find y , s.t. y �∈ V ′ and y �∈ { v k | k =
1 , . . . , K} , then R ( v ) ← R ( v ) ∪ { y } 

• Find a rooted forest F (v ) = { T i | i ∈ { 1 , . . . , I}} , 
– Each T i is induced from the root r i by all its codependents. 

– For each T i ∈ F ( v ), the leaves { l 1 
i 
, . . . , l K 

i 
} correspond to one

of the semantic arguments of v . 

.3.1. An example 
• The sentence, He sat on the bank of the river and watched the

currents. , represented by the rooted tree T is shown in Fig. 6 . 
• A path for verb sit is in Fig. 7 . 
• A labeled rooted forest F (sit) = { T 1 , T 2 } is in Figs. 8 and 9 . 
• The semantic arguments of verb sit are: 

– He 

– on the bank of the river 

. Experiments 

.1. Data sets and evaluation metric 

The data sets that we used for evaluating our methods were

he WSJ data from the Penn TreeBank and the PropBank [27,33] ,

ata developed by Leacock et al. [23] and Bruce and Wiebe [3] ,

nd data of CoNLL-20 0 0 Shared Task [31] . Our reasons for using

hese data sets were that they have been studied by a number of
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Fig. 6. The parse tree of the sentence: He sat on the bank of the river and watched 

the currents. 

Fig. 7. The path for the verb sit . 

Fig. 8. The rooted tree T 1 . 

Fig. 9. The rooted tree T 2 . 
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ther researchers and many results have been published over the

ears. The evaluation metrics designed for classifying semantic ar-

uments of a verb and NP chunks were precision , recall, F-measure

F 1 ). and for classifying the sense of a polysemous word was

ccuracy . The reason for selecting different evaluation methods

as based on the design of classes described in Sections 5.1 –5.3 . 2 

ne of the classes needed no evaluation in the tasks described in

ection 5.3 and 5.2 while all the classes needed to be evaluated

n the task described in Section 5.1 . Moreover, we have used a

0-fold cross validation technique for obtaining our result for all

xperiments. 

.2. Data preprocessing 

To prepare data for recognizing the sense of a polysemous word

nd NP chunks in a sentence, capital letter words were converted

nto low case words. Punctuation marks were deleted. Digits were

oerced into artificial words. Moreover, each word in a sentence

as tagged with a part-of-speech tag. Furthermore, for the first

ask, for each given target word, the left N open class words and

ight N open class words were extracted, N was in the range of two

o ten. To prepare data for recognizing the semantic arguments of

 verb in a sentence, for each sentence, the corresponding parse

ree [33] was obtained. Then the tree was transformed into an

djacency matrix and a corresponding label table. 

.3. Results and discussions 

Table 1 shows the results of our method for identifying the

ense of a polysemous word (the first text pattern), NP chunks

the second text pattern), and the semantic arguments of a verb

the third text pattern). Details will be discussed as the following

ections. 

.3.1. Recognizing the sense of given target words 

Experiments were conducted for identifying the sense of a

olysemous word on data sets line, interest, serve , and hard . The

enses’ descriptions and instances’ distributions could be found in

3,23] . In these data sets, line and interest were polysemous nouns,

ard was a polysemous adjective, and serve was a polysemous

erb. In our experiment, line had 6 senses, serve had 4 senses, hard

ad 3 senses, interest had 3 senses (other 3 senses were omitted

ue to lack of instances). We formed the context of each given

arget word by including the left four open class words and the

ight four open class words combining with the left word and the

ight word for each of these words. The test results were shown in

ow one to row five in Table 1 . A base line at the last column was

btained by assigning the most frequent sense to a given target

ord in test samples. 

In this experiment, we found that misclassified instances were

rimarily generated by the ambiguity of context words. For exam-

le in Table 1 , comparing with the three sense noun interest and

he three sense noun line obtained by selecting three senses at

ach time from six senses and averaging all twenty combinations,

e found that the accuracy of the word interest was almost 9%

igher than the accuracy for the word line . Moreover, by examin-

ng the accuracies generated from each combination for the word

ine , we found that some combination, for example, (Sense#1,

ense#2, Sense#4) had the highest average accuracy: 91.7% while

ome combination, for example, (Sense#1, Sense#3, Sense#5) had

owest average accuracy: 77.1%. The difference was almost 20%. By

arefully checking these misclassified instances, We learned that
2 There was no class that represented none of these classes for the previous two 

atterns while every class was a distinct sense for the second pattern. 
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Table 1 

Output results of our method for identifying three different text patterns. 

4: The line has six senses. 5: The line has three senses. 6: Defined by [27] and [33] . 

Table 2 

Comparisons on recognizing word sense on line data. 
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if two senses are similar to each other, there were more chances

that their contexts consisted of the same words. As a consequence,

the misclassification rate increases. 

We average the results from the ambiguous nouns, the am-

biguous adjective, and the ambiguous verb in Table 1 , our model

achieves an average of accuracy 83.5184%. In Table 2 , we show the

comparisons between our method on the six sense word line with

methods LSA by Levin et al. [24] , CV and NN by Leacock et al.

[23] . The result achieved by our method was very encouraging and

surpassed the results published by these methods. Moreover, by

observing the outputs of two polysemous nouns line and interest ,

we found that as the number of senses of a polysemous noun

increases, the accuracy decreases. This suggests that nouns with a

larger number of senses are more difficult to recognize than nouns

with small number of senses by our method. Furthermore, by

observing accuracies in column six, we noticed that nouns were

relatively easier to identify than adjectives or verbs. Moreover, we

noticed that accuracies generated by our method on adjectives

had a larger variance than that on nouns or verbs. 

6.3.2. Recognizing the sense of word line by the revised model 

We test the revised probabilistic graphical model described

in Section 3 on the collection of sets of senses with the size

of two, three, four, five, and six on the word line . To obtain

the value of 
∏ N 

n =1 p(s n −1 | s n +1 , s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) ,

especially the value of p(s n −1 | s n +1 , s n , c n ) on the data set, we com-

pute 
∑ N 

n =1 (logp(s n −1 | s n +1 , s n , c n ) + logp(s n +1 | s n , c n ) + logp(s n | c n ) +
logp(c n )) instead. For each case, we compute all the combinations

of 
(

6 
n, 

)
where n = 2 , 3 , 4 , 5 , 6 . We average the results. The average

accuracy for two senses is 91.26%, the average accuracy for three
enses is 86.85%, the average accuracy for four senses is 82.76%, the

verage accuracy for five senses is 81.87%, and the average accuracy

or six senses is 80.98%. Compared with Tables 1 and 3 , we notice

hat in the case of the word line has three senses, the Revised

odel achieved the better result. However, in the case of the word

ine has six senses, the model discussed in Section 2.2 achieved

he better result. For this model, We need to do further study. 

.3.3. Recognizing NP chunks in a sentence 

Experiments were conducted for identifying NP chunks on

oNLL-20 0 0 data and WSJ data from Penn Treebank. Three types

f symbols designed for identifying NP chunks were the lexicon

f a word, the POS tag of a word, and the lexicon and the part of

peech (POS) tag of a word. The results are shown in the 6th row

f Table 1 . Observing the column six, we notice that if we only use

he lexical information, the method had the lowest performance

9.75%. The method’s performance improved 3% if we use only

OS tags. The method achieved the best performance of 95.59% if

oth lexicon and POS tags were included. 

On the second experiment on the WSJ data from Penn Tree-

ank, shown at 7th row of Table 1 , used only one type of symbol:

he lexicon and the POS tag of a word. The main reason for using

his data set was that we wanted to see whether the performance

f our model could be improved when it was built on more

ata. In this case, the training set was seven times larger than

he CoNLL-20 0 0 shared task training data set. The test results

ere shown in the row seven of Table 1 . In this experiment, the

tandard deviations of precision, recall, and F -measure were 0.19,

.14, and 0.08. Comparing the results on these two data sets,

e notice that the average precision improved about 2.7% from
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Table 3 

Recognizing word sense on line data on revised model. 

Table 4 

Comparisons on recognizing NP chunks on CoNLL-20 0 0 data. 

Table 5 

Six typts of paths. 
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5.15% to 97.73% . The average recall improved about 2.8% from

6.05% to 98.65%. The average F -measure improved about 2.7%

rom 95.59% to 98.2% as the training sets expanded to seven times

arger. This suggests that the larger the training set, the better the

erformance that was obtained by our method. 

Table 4 showed the best performances of the related methods

n the CoNLL-20 0 0 shared task data. Compared with the method

BL by Veenstra and den Bosch [32] , the method HMM by Molina

t al. [28] , the method NB (We implemented the Naive Bayse

ased on the equation p(s 1 , . . . , s N | c 1 , . . . , c N ) = 

∏ N 
n =1 p(s n | c n ) .),

he method MEMM by Sha and Fereira [30] , the method VP [4] ,

he method CRF [30] , the method SVM [34] , we see that the role

ased learning achieved the worst F -measure performance and

ur method achieved the best F -measure performance. 

.3.4. Recognizing semantic arguments of a verb in a sentence 

Experiments were conducted for identifying semantic argu-

ents of a verb in a sentence on the data set, the section 00

f WSJ from Penn Treebank and PropBank [33] . There were 223

entences in files 20, 37, 49, and 89. Associated with each of these

entences, was an automatically determined parse tree provided

y Penn Treebank. These parse trees had an average accuracy of

5.0%. Among these sentences, there were 621 verbs. Each verb

ad an average of three semantic arguments. Hence about 20 0 0

emantic arguments were used. The semantic arguments were

rovided by PropBank. These were created manually. Among 621

erbs, about 560 verbs were used for obtaining probability values

hile about 60 verbs were used to form paths based on these
robability values. Some of the paths were listed on Table 5 . We

oticed that 86% paths fell into the first three patterns. After

orming a path for a verb in the test instances, a set of roots

ere found. From these roots, a set of labeled rooted subtrees,

hose leaves were associating with semantic arguments of the

erb, was formed. The test results were shown in Table 1 . On the

verage, each time 1 
10 of the semantic arguments were classified,

bout 93% of semantic arguments was correctly identified and

% of semantic arguments was mistakenly identified. By checking

hese classified instances, we found that our system was very

ffective in the case of a semantic argument being a sequence

f consecutive words. However, if a semantic argument consisted

f two or more word fragments, separated by some phrases, our

ystem was less effective. The reason was that these phrases were

arts of leaves of a tree induced from a root determined by our

ystem. This suggested that in order to exclude phrases from a

emantic argument, we need to develop a method so that a set of

ubroots can be found. Each of them corresponds to a fragment of

 semantic argument. Moreover, other misclassified instances were

enerated by errors carried in original syntactic trees. 

. Conclusions 

A new generic probabilistic graphical model has been discussed

hroughout this paper. It has an unique graphical representation

hich is different from other existing graphic models such as

MMs, CRFs, and MEMMs. It does not need to employ dynamic

rogramming for obtaining a sequence of optimal class assign-
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Fig. 10. p(A, B, C) = p(C) p(B | C) p(A | BC) . 

Fig. 11. p(A, B, C) = p(C) p(A | C) p(B | C) . 
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ments for a sequence of symbols. As a consequence, it requires less

computation time and less memory than other competing tech-

niques. Moreover, because a sequence of optimal class assignments

for a sequence of symbols is determined by finding the optimal

class assignment for each symbol independently, the misclassifica-

tion for the sequence of class assignments is reduced. This model

is applied to recognize three types of text patterns. These patterns

are noun phases, the sense of a given polysemous word, and se-

mantic arguments of a verb. The results achieved by our methods

have demonstrated the effectiveness of our graphical model. 

Appendix A 

Economic gain function. Let s = < s 1 , . . . , s N > be a sequence

of N symbols. Let C be a set of M classes, C = { C 1 , . . . , C M 

} .
Let c = < c 1 , . . . , c N > be a sequence of assigned classes. Let

c T = < c T 1 , . . . , c 
T 
N > be a sequence of true class classes. Let e be the

economic gain function e : C N × C N → R 

+ . It is defined by: 

e (c T 1 , . . . , c 
T 
N , c 1 , . . . , c N ) = 

N ∑ 

n =1 

e (c n , c 
T 
n ) (5)

where 

e (c T n , c n ) = 

{
> 0 , when c T n = c n 
0 , otherwise 

To maximize the expected gain under equation (5) : 

E[ e (c 1 , . . . , c N )] 

= 

∑ 

c T 
1 
, ... ,c T 

N 

e (c T 1 , . . . , c 
T 
N , c 1 , . . . , c N ) p(c T 1 , . . . , c 

T 
N , s 1 , . . . , s N ) 

= 

∑ 

c T 
1 
, ... ,c T 

N 

N ∑ 

n =1 

e (c T n , c n ) p(c T 1 , . . . , c 
T 
N , s 1 , . . . , s N ) 

= 

N ∑ 

n =1 

∑ 

c T 
1 
, ... ,c T 

N 

e (c T n , c n ) p(c T 1 , . . . , c 
T 
N , s 1 , . . . , s N ) 

= 

N ∑ 

n =1 

∑ 

c T n 

e (c T n , c n ) 
∑ 

c T 
1 
, ... ,c T 

n −1 
,c T 

n +1 
, ... ,c T 

N 

p( c T 1 , . . . , c 
T 
N , s 1 , . . . , s N ) 

= 

N ∑ 

n =1 

∑ 

c T n 

e (c T n , c n ) p(c T n , s 1 , . . . , s N ) 

When the gain matrix is diagonal and positive, then: 

E[ e (c 1 , . . . , c N )] = 

N ∑ 

n =1 

e (c n , c n ) p(c n , s 1 , . . . , s N ) 

When the gain matrix is the identity, assigning the value 1 for a

correct assignment and the value 0 for an incorrect assignment,

then: 

E[ e (c 1 , . . . , c N )] = 

N ∑ 

n =1 

p(c n , s 1 , . . . , s N ) 

In this case, maximizing the expected gain is associated with

maximizing p(c n , s 1 , . . . , s N ) , where n = 1 , . . . , N. 

max (E[ e (c 1 , . . . , c N ]) = 

N ∑ 

n =1 

max 
c n ∈ C 

p(c n , s 1 , . . . , s N ) 

Appendix B 

Statistical graphical models. A graph contains nodes and links.

In a probabilistic graphical model, each node represents a random
ariable (or a group of random variables) and links carry proba-

ilistic relationships between these variables. We say that node

 and node B are independent if there is no link between them.

e say that node A and node B are conditional independent on

he node C if A reaches B (or B reaches A ) through C . A probability

istribution can be represented as a directed graphical model or

n undirected graphical model. The following is an example. The

robability distribution p(A, B, C) = p(C) p(B | C) p(A | BC) represented

y a directed graphical model is depicted in the left hand side

f Fig. 10 . An undirected graphical model is depicted in the right

and side of Fig. 10 . 

If we assume that A is independent of B given C , then we have

p(A, B, C) = p(C) p(A | B ) p(B | C) . This model can be described by

ig. 11 . 

Note, in an undirected graphical model, the probability distri-

ution of all random variables equals a product of probabilities

f cliques from the clique set: { �1 , . . . , �N } divided by a product

f probabilities of separators from the separator set: { �1 , . . . , �M 

} .
et G = (V, E) , where V is a set of nodes and E is a set of

dges, s.t. E ⊆V × V . A clique is a maximal complete set of nodes,

.t. �⊆V is a clique if and only if λ1 , λ2 ∈ �, λ1 � = λ2 , imply

 λ1 , λ2 } ∈ E and there is no set that properly contains � with

his property. � = { �1 , . . . , �M 

} is a set of separators, where

k = �k ∩ (�1 ∪ . . . , ∪ �k −1 ) . For example, in the right hand side

f Fig. 11 , the cliques are { B, C } and { A, C } and the separator is

 B, C} ∩ { A, C} = { C} . Therefore: 

p(A, B, C) = 

p(A, C) p(B, C) 

p(C) 
= p(A, C) p(B | C) 

= p(C) p(A | C) p(B | C) 

ppendix C 

Computing p(c 1 , . . . , c N | s 1 , . . . , s N ) 
From Fig. 1 , according to appendix A, we have: 

p(c 1 , . . . , c N , s 1 , . . . , s N ) 

= 

∏ N−1 
n =1 p(s n , s n +1 , c n ) p(s n , s n +1 , c n +1 ) ∏ N−1 

m =1 p(s m 

, s m +1 ) 
∏ N−1 

m =2 p(s m 

, c m 

) 

= 

1 ∏ N−1 
m =1 p(s m 

, s m +1 ) 
×

∏ N−1 
n =1 p(s n , s n +1 , c n ) ∏ N−1 

m =2 p(s m 

, c m 

) 

×
N−1 ∏ 

n =1 

p(s n , s n +1 , c n +1 ) 

= 

p(s 1 , s 2 , c 1 ) ∏ N−1 
m =1 p(s m 

, s m +1 ) 
×

∏ N−1 
n =2 p(s n , s n +1 , c n ) ∏ N−1 

m =2 p(s m 

, c m 

) 

×
N−1 ∏ 

n =1 

p(s n , s n +1 , c n +1 ) 
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3 In a rooted tree, a vertex can be also called a node. 
= 

p(s 1 , s 2 , c 1 ) ∏ N−1 
m =1 p(s m 

, s m +1 ) 
×

N−1 ∏ 

n =2 

p(s n +1 | s n , c n ) 

×
N ∏ 

m =2 

p(s m −1 , s m 

, c m 

) 

Setting n = m − 1 in the last product: 

p(c 1 , . . . , c N , s 1 , . . . , s N ) 

= 

p(s 1 , s 2 , c 1 ) p(s N−1 , s N , c N ) ∏ N−1 
m =1 p(s m 

, s m +1 ) 
×

N−1 ∏ 

n =2 

p(s n +1 | s n , c n ) 

×
N−1 ∏ 

m =2 

p(s m −1 , s m 

, c m 

) 

= 

p(s 1 , s 2 , c 1 ) p(s N−1 , s N , c N ) ∏ N−1 
m =1 p(s m 

, s m +1 ) 

×
N−1 ∏ 

n =2 

p(s n +1 | s n , c n ) p(s n −1 , s n , c n ) 

= 

p(s 1 , s 2 , c 1 ) p(s N−1 , s N , c N ) ∏ N−1 
m =1 p(s m 

, s m +1 ) 

×
N−1 ∏ 

n =2 

p(s n +1 | s n , c n ) p(s n −1 | s n , c n ) p(s n | c n ) p(c n ) 

= 

1 ∏ N−1 
m =1 p(s m 

, s m +1 ) 
× p(s 2 | s 1 , c 1 ) p(s 1 | c 1 ) p(c 1 ) 

×p(s N−1 | s N , c N ) p(s N | c N ) p(c N ) 

×
N−1 ∏ 

n =2 

p(s n +1 | s n , c n ) p(s n −1 | s n , c n ) p(s n | c n ) p(c n ) 

efine p(s 0 | s 1 , c 1 ) = 1 and p(s N+1 | s N , c N ) = 1 , then: 

p(c 1 , . . . , c N , s 1 , . . . , s N ) 

= 

1 ∏ N−1 
m =1 p(s m 

, s m +1 ) 
× p(s 2 | s 1 , c 1 ) p(s 0 | s 1 , c 1 ) p(s 1 | c 1 ) p(c 1 ) 

×p(s N+1 | s N , c N ) p(s N−1 | s N , c N ) p(s N | c N ) p(c N ) 

×
N−1 ∏ 

n =2 

p(s n +1 | s n , c n ) p(s n −1 | s n , c n ) p(s n | c n ) p(c n ) 

= 

1 ∏ N−1 
m =1 p(s m 

, s m +1 ) 

×
N ∏ 

n =1 

p(s n −1 | s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) 

efine M s 1 , ... ,s N = 

1 ∏ N−1 
m =1 

p(s m ,s m +1 ) 
, then: 

p(c 1 , . . . , c N , s 1 , . . . , s N ) 

= M s 1 , ... ,s N ×
N ∏ 

n =1 

p(s n −1 | s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) 

herefore the conditional probability: 

p(c 1 , . . . , c N | s 1 , . . . , s N ) 
= 

p(c 1 , . . . , c N , s 1 , . . . , s N ) ∑ 

c ′ 
1 
, ... ,c ′ N∈ C p(c ′ 

1 
, . . . , c ′ 

N 
, s 1 , . . . , s N ) 

= 

∏ N 
n =1 p(s n −1 | s n , c n ) p(s n +1 | s n , c n ) p(s n | c n ) p(c n ) ∑ 

c k ∈ C 
∏ N 

k =1 p(s k −1 | s k , c k ) p(s k +1 | s k , c k ) p(s k | c k ) p(c k ) 

ppendix D 

Knowledge of a rooted tree. A rooted tree T is a 3-tuple ( V,

, r ), where V is a finite set of vertices, E ⊆V × V is a finite set of
dges, and r ∈ V is the root that all edges of T are directed away

rom it. The tree-order is the partial ordering on V for any v, u ∈ V,

 ≤ v if and only if the unique path from the root r to v passes

hrough u . In T , the root r is a unique minimal vertex and we say it

as level 0. An edge in E is an ordered pair ( x, y ) ∈ ( V × V ) s.t. x < y

nd there exists no z ∈ V with x < z < y . In this case, x is a parent of

 and y is a child of x . If two nodes 3 x, y have the same parent z, x

nd y are called siblings. Any node y on the unique path from r to

 is called an ancestor of x . In this case, x is a descendant of y . The

ub-tree rooted at node x is the tree induced by the descendants

f x . A node with no children is an external node or a leaf. A node

hat is not a leaf node is an internal node. The largest depth of a

ode in T is the height of T . A rooted forest is a set of rooted trees,

.t. F = { T i | i = 1 . . . N} where T i is a rooted tree. 
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