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Abstract—Pattern discrimination is viewed from the perspective of relation theory. Measurement data
is a binary relation from the set of units to the set of measurements and the category identification
data is a binary relation from the set of units to the set of categories. The decision rule is a binary
relation from the set of measurements to the set of categories. First, no structure is assumed on
the set of measurements or the set of units and the form of the optimal decision relation is determined
for the case of unit independence. Then a binary relation dependence. structure is assumed on the
‘set of units and two approximating forms of decision relations are determined. The approximating
decision relation for the unit dependence case has a distinctive form quite different from the decision
tule which would. result from the usual Markov dependence assumption. It is hoped that relation
model for pattern discrimination. can provide a useful complementary alternative to the statistical

model currently in use.
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1. INTRODUCTION

We will posc some pattern recognition problems
using the relation construct and then explore some
alternative ways of examining these problems. Some
of the deductions we make are illustrated in figures
and the reader giving careful attention to them will
understand the essence of the paper. Those desiring
a more formal understanding will find that the lemmas
which are mentioned in the body of the paper are
formally stated and proved in the appendix.

The relation theoretic approach we take to pattern
recognition is an interesting alternative .to the more
usual probablistic models. Readers who are interested
in seeing another kind of set theoretic approach might
examine the interval covering ideas of Michalski!?
Michalski and McCormick,” and Read and Jayara-
mamurthy.

The pattern discrimination problem we want to
discuss usually- occurs in a context in which there
is-an initial opportunity to be an omniscient observer
discovering and formally recording some of the cate-
gory. identifications and pattern measurements made
from some set of environmental objects.

The envirenmental objects can be plants, animals, .
insects, chemical compounds, printed. characters,
medical X-rays, photographs, images, words or sci-
tences. The measurements can relate to shape, shape
of the various parts, temperature, color, tone, texture
or sequence dependencies.

We will call the objects environmental units (units,
for short) and denote by the letter U the non-empty
set of such units to be considered. We will call the
measurements of the units measurement patterns (pat-
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terns, for short) and denote by the letter D the non-
empty set of such patterns. Finaily, we denote by
the letter C the non-empty set of category labels with
which the units may be identified. -

The number of possible categories is usually orders
of magnitude smaller than the number of possible
measurement patterns or units but the number of
units may be smaller or larger than the number of
possible measurement patterns.

During the initial opportunity to be an omniscient
observer, each unit in the umit training subset U,
of units is observed. We assume that in the measuring
process {which may take only an instant or may take
a long period of time) each unit measured gives rise
to at least one measurement pattern and, for genera-
lity, possibly even more than one measurement pat-
tern. We denote by X, the relationships between the
units measured and the measurement patterns, Z, is
a binary relation from the subset of units U, to the
set of patterns D and hence a subset of U, x D;
that is, Z, S U, x D. I, is called the measurement
training relation and consists of the set of all ordered
pairs (4, d) where d is a measurement made of the
unit # in the set U, (see Fig. 1).

At the same time that the units are measured, the
investigator identifies the units by category. Each unit
is assigned one category. We denote by T, the rela-
tionships between the units observed and the category
labels. T, is a binaty relation from the subset of units

'U, to the set of categories C and hence a subset

of U, x C; that is, T, € U, x C. The relation T, is
called the category identification training relation and
consists of the set of all ordered pairs (i, ¢) where
¢ is the category identification made of the unit u
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Fig. 1. Digraph of unit training relation E, where the

unit training set is U, = {u;, uz, ua, uy, us}, the measure-
ment space is D = {4, dy, d,}, and the unit training rela-
tion is Z, = {{uy, d,), (uz,

. (us, da)}.

in the set U7, (sec Fig. 2). The pair of relations I,
and T, is often referred to as the training data. Figure
3 illustrates-a digraph of an example pair of relatlons
Z,and T, :

After this initial opportunity of omniscient observa-
tion has passed, a2 new subset of units U/, becomes
available for sensing or measuring. The measurement
prediction relation Z,= U, x D, is then defined as
the set of all ordered pairs (u, d) where d is 2 measure-
ment made of the unit u in the set U,. The category
identification relation for the-units in U, we denote
by T,. The relations I, and T, are often rcferred
to as the prediction data

When no further information is avallablc the pat-
tern discrimination problem becomes one of deter-

mining a rule to ¢stimate or assign, in some optimal-

way, the proper category identifications to all units
i U, purely on the basis of the trammg data z,
and T and the measurement relation Z,. :

When the problem is posed: in this manner, -the
only basis for making category identifications for the
units in U, is by using the measurements made of
them, that is I, since that is the oaly information

we have'about them. -Hence, to solve the pattern

discrimination problem, we need to find some relation
A which pairs at least one category to each possible
mieasurement subset of D. However, for simplicity,
we shall assume that the relation A pairs at least
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Fig. 2. Digraph of a true category 1dent1hcat10n trammg

relation T, where the unit trammg set is U, = {uy, u,,

U3, gy, tig), the category set is € = {en, cz} and the true

category identification trammg felation is T, = {(u 1 Lk
(w2, €1), (U3, ¢1), (s 3), (s, €2)}.

“identification training ‘relation- T, of Figs. |
di)y (s, da), (44, d2), (ua d3), .

Fig. 3. Digraph of the training data consisting of the
measurement trdmmg relation %, and the true category
and 2
respectively.

one category to each possible measurement in D.
Note that implicit in thlS initial problem formulation
is the. feature of treating units independently ie.
assigning: a category-to-one umit independent of a
decision made about another unit. -

The decision relation A must depend, of course,
on the training data £, and T,. Once A is known,
the assigned category identifications ’IA‘ of the units
in U, can be made in a strdlghtforward way by
the relatlon composition of £, and A: T =L,0A
T is a set having all the ordered pairs (u ) where
u is a unit of U, ¢ is a category of ¢ such that
(1) there is some measurement d which is a measure-
ment made of u, (u,d) € X, and (2) d is paired by
the decision relation’ with the .category ¢, {d,¢) € A.

2 THE ERROR:FREE CASE

Consider what happens when an error free solution
to the pattern discriminatien problem exists: in this
case, the decision relation A allows all the units in
the- prediction sct to be assigned to categories cor-
rectly and without error urely on the -basis of the
patterns measured from' them. Hence, we must have
that, for each -unit 4 in the prediction set of units
U, (Z,0A)u)=T,u) since for any unit  u,
(Z, O A) (w9 is the set of all categories relating 1o some
measurment which has been taken of unit w:in some
instances'and T,{u) is the set of all catégories which
have been:the.true category identification :for unit
u; the equality (Z, O A){u).= T,{u) then says that for
each unit 4, we may obtain its category identification
T (u), without error, from its pattern measurements
Z,(u) by linking its pattern measurements through
the decision relation A, . that s AT (u) =
(Zp O A) () =-T,{u) for every unit u. Figure 4 illus-
trates an example. set of relations £, and T, where
an-error free solution exists. Figure 5 illustrates an
example set of relations £, and 7, where an error
free solution does not-exist.

A measure’ indicating the . identification accuracy
of-the ‘decision relation A can be constructed by com-
paring T »+ 'the decision relation assigned category
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Fig. 4. An example set of relations X, and T, where an
error free solution exists. The unit prediction set is U, =
{u,, Uz, #3, ug, us}, the measurement space is D = {d,,
ds, dy}, the category set is C =-{¢, £}, the measurement
prediction relation is 2, = {(u, d,}, {ty, dy), {19, dp), {ua,
d;), (i, ds), (us, dq)}, the true category identification pre-
diction relation is T, = {1y, c1h (4, 1) (M3, €0) (U4 €2),
(45, €7)}, the decision relation is A = {{d;, ¢;) (ds, ¢;),
(ds, €5)}, and the assigned category identification is the
relation composition ,04 = {{t, ¢() (42, ¢1) (03, c1),
(14, c2)y (w5, €20}

identification with T, the frue category ldennﬁcatlon
of the predlctlon data,

There are’ three parts to the companson of T
Z,0A with T,

T,nT, (1}
’ T,nTS 2)
TenT, )

Ordered pairs (4, ¢) which are in T ~ T, are the
unit-category pairs which are correctly lmked through
the decision relation. Ordered pairs (u ¢) which are
in T N 'l" are those unit-category pairs which are
lmked through the decision relation but which are
incorrect. Ordered pairs (u, ¢) which are in Tf, nT,
are those unit-category pairs which should have been
linked through the decision relation but which were
not. Note that when I 0OA= T =T, then
T T = T“ AT, =, the empty set, 50 that there
are no errors. We shall take the best decision relation
to be that one which minimizes the number of unit
category pairs in the set (7, " T (TLAT,) ‘or
some gquantity closely related to that number.

For conceptual simplicity, from this point on we
will assume that the prediction measurement relation
%, consists of all the observable unit-measurement
pairs; L, =L S U x D. (Note that the set of all
observable unil-measurement pairs is most usually
only a small subset of the set of all -possible unit-
measurement pairs U x D). Similarly we assume that
the true prediction category identification relation T,
consists of all the observed unit-category pairs, T, =
T S U x C. (Note also that the set of all observed
unit-category pairs is only a small subset of the set
of all possible unit-category pairs U x C) It is
natural to make the following assumptions dbout X
and T: (1) at least one measurement is- paired to
cach unit in U by Z; that is, I is defined everywhere;
(2) each measurement is paired with some unit; that

is, Z is onto the sel of measurements; (3) at least
one category is paired to each unit in U by T'; that
is, T is defined everywhere; (4) only one category
is assigned to each unit in U by T that is, T is
single-valued; and (5) cach category is paired with
some unit.in U by T; that is, T is onto the set
of categories. o

On the. basis of the few assumptlons made, it is
possible to determine the decision relation when we
know that some decision relation exists which will
assign categories and make no-errors. Furthermore,
we shall he able to characterize and interpret the
relationship between ¥ and T which guarantees the
existence of a2 no error .decision relation.

The first observation we wish to make is that if
there exists a decision relation with the property that
the category assignment ¢ given to any units having
measurements d is correct, then it is only reasonable
to expect that there should be at least some unit
u,  whose true category identification is ¢, (w,¢) €T,
and which has d for one of its measurements, (u, d)
€ L, for otherwise there would be no basis for includ-
ing the pair {d,c) in the decision relation A. This
observation can. be stated in a more formal manner
ag in . lemma 1: if, of those assignments made by
the decision relation, there are to be no incorrect
assignments in the sense of assigning a unit to the
wrong category (the decision relation can also err by

Fig. 5. An example set of relations £, and T,," where
an'error {ree solution does not exist. The unit prediction
set is Uy, = {uy, Uz, ti3, Uy s}, the measurement space
is D = {d,, dy, ds}, the category set is C ={c,, ¢;)}, the
measurement prediction relation is I, = {u,d,), (4,,4d,),
(13, d3), (Ui, d), (g, dy ), (1, d3)], the category Ldentlﬁca-
tioh prediction relation is T, = {{uy, ¢1) (U2, cy), (3, €4),
(u.,, cz) (s, ¢;)}. Consider three possible decision relations
{dy, €1), {dy, 1) (dss Ca)}y Az = {{dy, c1), (day 3}

(da, Cz)} Az = {ldy, ¢1), [y, cr) (da, €2) (dy, €3)}. The
assigned categories for these relations are Z, 0 A, = {{u,,
1) Uz, 1) (s, 1) (tay €1) (g, €2), (05, Cz)} Z,Ch, =
{(Nb er), Qugs e, (y, €2d (43, eg), (s, €2}, and Z 0A4; =
ugs cod gy €1 (ae €1)y (3, 1) (44, 1), (“4, c3), (us,
1)}, respectively. The troublesome assignments are those
for d,, and they are shown in a dotted line. When . the
decision refation pairs d, with ¢, then u, will be assigned
to ¢, incorrectly and u, will be assigned to ¢, cofrectly.
When the decision relation. pairs dy: with ¢, then u, will
be assigned .to. ¢ incorrectly. and u; will be assigned to
¢, correctly. When the decision relation pairs d; with ¢,
then u, will be assigned to c, correctly but w, will be
3551gncd 10 €3 mcorrectly When the decision rélation pairs
d, with both ¢, and ¢j; thén-u, will be assigned to ¢,
correctly and ¢, - incorrectly and u, will. be assigned to ¢,

correctly and ¢, incorrectly. .
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leaving some units unassigned), then the decision rela-
tion A must be a subset of T™'QT; that is,
ASE 'O T. (The relation T~ is the inverse of the
relation £ and is defined by the set of all measure-
ment-unit pairs (d, %) such that (u, d)e ).

The second observation we wish to make (lemma
2} is that if there exists a decision relation with the
property that the category assignment given to any
unit is correct (ZO A =T} and all units are given
correct category assignments (EOA 2 T), then it is
necessary for the decision relation to contain all
measurement-category pairs {d, ¢) such that for some
unit #, ¥ had measurement d, (4, 4) ¢¥, and u had
true category identification ¢, (u, cje T. Formally, T=
ZOoAimplies ARZ'OT.

Combining lemma 1 and 2 we obtain that if an
error-free decision relation exists, that is, if there
exists A such that ZOA = T, then A must be equal
to the relation composition Z~' O T. :

If we consider T to be defined everywhere and
single-valued then {T~!(c)lceC} is a partition over
the set of units. Lemma 3 characterizes the relation-
ship between I and T for the error-free case. It basi-
cally states that a set of all units giving rise to the
same measurement d must be contained in some cell
T~ 'c) of the partition of units, There are many
equivalent ways of stating this idea. One is that
T 'oT is single valued; another is that
L£0E'0TS T
" Having characterized interrelationships between T
and T which are necessary and sufficient to allow
the existence of an error-free decision relation, our
next task is to determine how the unit training set
is to be obtained so that the corresponding measure-
ment training relation and category identification
training relation can be used to calculate the error-
free decision relation, Since in the error-free case,
the crror-free decision relation can be expressed by
E7'OT, we should like to find necessary and suffi-
cient conditions on the training data X, and T, so
that the decision rule calculated from the training
data as £7' O T, would be the same as that calculated
by the full data as £7' O T, ie. T ' 0T =£710QT,
Surprisingly, this characterization is quite easily
obtained. Lemma 4 states that, if an error-free solu-
tion exists, the requirements that the unit training
set U, have such a diverse set of unils such that
{1) for each possible category there is some unit in
U, identified in that category and (2) for each possible
measurement.in D there is some unit in U, giving
rise to that measurement, are necessary and sufficient
to ‘guarantee that the decision relation calculated
from the training data will in fact be the érror-free
decision relation.

The case when there exists an error-free decision

relation is rather easy, What happens, however, when
no such decision relation exists? Lemma 5 states that
if the decision relation should contain all the
measurement-category pairs (d,¢) in -1 QT, then
at least one of the categories to which a unit gets
assigned by the decision relation will be correct. For-

A= TaT

S

TS.
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Fig. 6. The large number of incorrect category assignments
in (£ 0 A) » T* which can occur when the decision relation
A=ZX"'0OT and an error-free solution does not exist,
The true category identification relation T = {{u,, c,), (s,
€1} (3, €2), (U4, €3), (5, €3)}, the assigned category identifi-
cation relation LOA = {u,¢)) (uz,¢y) (4z,¢5) (3, €,)
(u3! CZ)! (ud-’ Cl): (udh CZ)! (HS’ 62]1 (MS! C3)} and the incorrect
assignments in (ZOA) A T = {{u, c2), (3, 1) (uas 1),
(ua, ¢3), (s, c3)}. Note that there are no incorrect assign-
ments in (Z O AF ~ T. Lemma S shows that this is always
the case when A2 7 '0T.

mally, A2 L' O T implies ZCA = T. This means
that it is possible to reduce the errors in the set
(EOAFNT to zero. Unfortunately, setting
A2E7'0T can often lead to a relatively large
number of errors in (20 A) ~ T° as illustrated in the
example of Fig. 6. '

3. THE DECISION RULE WHICH ERRS

‘I Single-valued

We now examine the case when an error-free deci-
sion relation may not exist. We consider first the
special case when I is single-valued. Here, we may
express the number of correct decisions minus the
number of incorrect decisions (see _lemma 6) by

#(Z0A)NT)— #(Z0A) AT

=3 [2 Y Pld.c)— #Ad)Y P, c):|,
eC

&=D of A(d)

where P(d,c) = #(Z ' ()~ T~ L(c)). _
The unique largest decision relation A which maxi-
mizes this is defined by

A= {(d, c)l for some {d, ) #(EZ~d) T" f(c))
= #(E7Ydyn T ) Horevery ¢'e Cland
[Z #FE DN T HYS 24 DA T 1((:))}},

c'el

ot equivalently,
A= {(d, e)f for some (d, c), [P(d, ¢) = P(d, ¢

foreveryc'eCland -

[Z Pid,c') < 2P(d, ¢ ]}
c'el

This is proven in three parts. Lemma 7 shows that if
Pd,c) <12} P(d,c)

c'eC
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for every ce C then
2 Y Pldc)~ #Ad) Y Pd,c)
ceA(d) ceC

is maximal if an only if A(d) = ¢. Lemma 8 shows that
if there exists a c € C such that :

P(d,¢c)>1/2 Y Pld.c),
ceC
then
2 Y Pldec)—
cEA(d)
is maximal if and only if Ald) = {c|P(d, c) ZIP(d, )
for every ¢’e C. Lemma 9 takes care of the case of
equality; that is, when there exists a ¢ € C such that

P{d,c)=1/2 ¥ P(d<).

ceC

#0d) Y, P(d, )
cC

In this case,

2Y Pdc)—

veA(d)

# Ald) Z P, ¢
ceC

is maximal if and only if A{d) is any subset of

{c| P(d, c) = P(d, c'Yfor every ¢’ ¢ C}. Hence, the unigue
largest decision relation A which maximizes

ced{d)

#Ad) Y Pd, c):l
=C
is
A= {(d, el folr some (d, c)[P{d, c) = P(d, )

for every ¢’ e C] and

|:P(d, o= 125 P, c’):|}.

c'eC

Z not single-valued

When I is not single-valued, we know of no easy
way of determining the optimal decision relation. The
problem could be formulated so-that it is equivalent
to finding an optimal set of linear discriminant fung-
tions. Since we make no distributional assumptions,
an iterative procedure to find such linear discriminant
functions would have to be used in a rather high
#. D-dimensional Euclidean space. Therefore, we will
take another approach and make some approxima-
tions.

The approximations we make are based on the
following idea. If £ is not single-valued, then some
units may give rise to more than one measurement.
In these cases, there may be more than one assign-
ment given such units. Instead of considering
cach of these multiple assignments with equal weight,
we should consider each unit category assignment
pair weighted by the reciprocal number of times the
unit can be assigned a category. This weight factor
is 1/#Z(u). Thus those units which are “tight” and
give rise to only one measurement d will have full
weight in.the counting for d. But those units which
are “loose” and give rise to many measurements will
have only small weight in the counting for one of

its measurcments 4. The approximations we make
are:

#(ZoA)NT)
=)D
=l dep
#([(ZOANTY

SOIDNDY
dD e eC weT ™ Ho)NI ™ Hd)
' #c

#(Ad) ~ {c})
#X(u)

e~ He)nE ™ Hd)

#(Ald) n {c})
# Z(u)

These approximations are exact if all measurements
from any given unit get paired by the decision rela-
tion with the same category. Lemma 10 shows that
with these approximations, the number of correct
decisions minus the number of incorrect decisions can
be expressed by '

#(Z0A)AT) — #(ZOA) N T

= ;, [2 ;@ P(d, ¢} — #A(d) ZC P(d, c):l

where

1

P{d,c) = .
) ueT = 1{e)nE™ Hd) # Z{u)

Since the form

2 Y, Pldc)— #Ad) Y, P(d, cj

cedld)
is identical to the one obtained when T is single valued,

l.emmas 7-9 show that, as before, the largest optimal
decision relation A is defined by

A= {(d, ¢) for some (d, c)[P(d, c) = P{d, )

for every ¢’ e CJ, and

[P(d, 0> 125 P, c’):|}.

c’«C

Fig. 7. A measurement relation X and true category identi-

fication relation T for which there exists no perfect or

error-free decision relation A, The decision relation A which

is shown is equal to £~' O T. The set (ZOA)~ T¢ = {u,,

ci), (us, ¢4}, (uy, c3)} There are three incorrect identifica-

tions.- The set (ZOA) N Te= {{tiy, ¢}, (43, c3), (ua, c3}}-
There are three correct identifications.



I 1(dl) = {u}

- l(dz)— )}

I 1d3) = {u,}

Z7dy) = {uy, Hy, Uaf

z (ds) = luz, u3} .
CETNd) T ey = {uy)

E W) o T 1(01) = {u,} '

I N T Ney) = {uy}
Z7dy) T (ey) = {u,}
TN T ey =1{ }

Fig. 8 The approximate largcst optimal decision relation. (20 A}yn T¢ = {( u,,cz) }and (ZC AN

=
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T ey = fu, )

WV

T ezl = {1y, 42}
l("11)ﬁ T ] ={ }
T = ]
‘(ds) AT Ye)=1§ }
TN T 1(c_a_} {07, u3}

Z7Hds) v T eg) = {uz, u3)

T

= {(ulscl) (uz’f-z) (uascl)}

{(d )| Pid, c) = P(d, '} for every ¢’ € C and P(d, c) > 1/2 Z P(d, [

where
1
Pld.c) = —_—
( ) weT'= 1{c)ME - 1(d) # Z(u)
Pldy, e} =14
P(dlﬁcl) ='%
Pldy, ) =14
Pldy,e)) =32
Plds,c;) =0

4. DECISION RULES FOR RELATED UNITS

-The discussion so far has provided no really new
problems or solutions: . only the set-relation
orientation in which the material has been presented
is mew. In this section we shall use the relation
orientation to pose a different kind of problem and
suggest a solution to it.- The problem we pose is
this. Supposc that the units are related together
because of spatial nearness (such as neighboring reso-
lution cells on an image) or because of time (such
as those signal time samples which occur one immedi-
ately after the other). In this casc, the units are not
independent and they should not be treated separa-
tely. Category assignments made for one unit should
be dependent on the unit's measurements as well as
measurements made from spatially related or time-
sequentially related units. Specifically, we shall
assume that units which are related together “tend”
(we shall make this more precise) to have the same
true category identification and “tend” to give rise
to “similar” measurements. This assumption in a rela-
tion mode is somewhat analogous to a Markoy
dependence or tree dependence assumption."%)

The idea of inter-unit relationships can be made
precise when it is represented by a Binary relation
R on the set of units U, that is, R SUxU. A pair
of units (i, u,) belongs to R if and. only if unit
u, is related to unit u,,

(i

&'eC

LI | I T

—_——_—g o9

Characteristic measurement decision algorithm

One possible way of using the relation R in the
decision algorithmn is to determine A as before and
then, for each unit u, determine any measurement
d which is linked to u by the most paths through
R and through X and then pair u with any category
linked to the characteristic measurement 4 by the
decision relation A, This characteristic measurement
decision -algorithm is useful when D is small and
R links many units (see Fig. 9). Let 4 S U x D be
the binary relation pairing each unit with its charac-
teristic measurement; that is, A4 = {(s, d)for some
,d),  #RWNIZ @)= #RU)NZ ) - for
every deD}. Then the characteristic measurement
decision’ algorithm assigns a unit u to category ¢
by decision relation A if and only if (4, d) e40A.

Since this decision algorithm is just like the deci-
sion algorithm X O A, using the approximations

#(A40 A T
#(Ald) N {c})
t§: E::; -i@naw  #F AW
#{(A0ANTY).
AT Y #(Ald) o {c})

- Alu)

*D e o6C wT— '(.:]nA 1
c#C
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we obtain that #{(A0A)NT)— #{A0ANTY is
approximately maximized if and only

A= {(d, ¢)| for some (d, c)[P(d, ¢) = P{d, ¢

for every ¢’ e CJ, and

[P(d, 9= 123 PG, c')}}, |
o 14

where
Pdo= T o
,¢) = R
wT-ianaw # Ald)
The approximation is exact when A is single valued
or when all measurements linked to each unit are
paired w1th the same category by A.

4

Characteristic category decision algorithm

. When the set D is large and R does not link many
units, the chance for a unique characteristic measure-
ment (o occur is small and the characteristic measure-
ment decision rule is not effective. In this case we
can formulate another decision algorithm such as:
assign the unit u to that category ¢ having a majority
of the measurements in (R OZX)() linked to c by
A. Figure 10 Hlustrates this  measurement majority
decision algorithm.

- When for each unit u having true: category. identifi-
cation ¢, a majority of the measurements linked to
u through ROE each have a majority of the units
linked by (R OX)™" linked to category ¢ by T, then

uy, 4y, d,

My, My, dy
Uz, g, dy
Uy, Uy, d;
Uy, iy, d
Uy, U3, d;
Uy, 3, dy
U3, Ugy d3
iy, Uy,

Lnst of paths from # through R and then through X.

Fig. 9. Dlgraph of R, Z and A, 111ustratmg the character-
istic measurement decision “algorithm. Unit u, has two
characteristic measurernents 4, and d, with -one path to
each. Since 4, and d; are paired with category. ¢, by
A, the decision algorithm assigns u, to category ¢,. Unit
u, has two paths to characteristic measurement d, and
d, is palrcd with category ej, by A Thereforc, t, is
assigned to category c¢,. Unit u; has two - paths to charac-
teristic measurement d; and d, is paired with category
¢; by A. Therefore, uy is assigned to category c,. Unit
u, has its only path to characteristic measurement d, and
hence is also assigned to category c,.

(@/’ .\
C@<
C®<_©

(ROL)(u,)'= {d,, ds, ds}

AR O I)(u,) ={dy; di, da}

(ROE)(ua) = {dy, da}
Fig: 10. The characteristic category decision algorithm.
Unit u; is assigned to category ¢, since the majority of
measurements in (R O I).(u,) are linked to ¢, by A. Units
u; and u; are asmgned to category ¢, since a majority
of measurements in (R O £)(u;) and (R O E)(u,) are linked

to c; by A

lemma 11 shows that a no error decision relation
A exists. Formal]y, if (u, ) €T implies

#{de(ROZ)u) #((ROZT) 'd)n T '(c)) >
12 #ROE) ) > 12#(R O D)),

and the unit u is assigned to-category ¢ if and only
if #(A™Ne)n(ROI)u)) > 1/2 #(R OZ](u) then an
error-free decision relation A exists and- is defined
by ' e
A={dc)#R o';:)"' d)n T~ 4(e) >
T 1/2 #(ROZ) '(d)}.

That this condition is sufficient but not necessary
is shown by an cxample lllustrated in Fig. 11.

As usual, the case for the en‘or -free decision rela-

tion has to be worked out using an approximation,
When

#T ) - #TnT)
#A(d) ~ T(w)
~ Z#D weRU)~E~ iy
bt 2 #IW)

u'(k(l:l)

D weRWINE™ Hd) #A(d] A TC(H)
— Y #EIW)

weRiu)

wtf

Lemma 12 shows that

#T AT - #(T 0T
= Z[ 2 P@ c) #_A(d)ZP(d,c)]
- D ceAld) x=C

Then, using Lemmias. 7-9, we obtain that the
approximate optimal decision rule A is

A= {(d, o) for some (4, c)P(d, ¢} = P(d, ')
al . N
for every c'e C]

" I:P(d, Y T P, c’):l},
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where

P{d,c) = ) #R(u)n =)

1
mTE‘:'(c)( Z #2( )

weR(u)

§. SUMMARY

We have discussed the pattern discrimination prob-
lem from the perspective of set-relation theory., The
central idea of this perspective-is to think of the
measurement data as a binary relation T S U x D
from the set of units U to the set of measurements
D and to think of the category identification data
as a binary relation TS U x C-from the’set of units
U to the sct of categories C. The decision relation
AS Dx C is a binary relation from the set of
measurements D to the set of categories I/, The unit
category assignments pair is then naturally given by
the relation composition £ 0 A. We have shown that
when there exists an error-frée decision relation A
the training data Z, and T, must be chosen so that
Z(Uy=D and T{U)=C. In this case 7' 0T, =
Z1OT = A so that the decision relation A which
is computed from X, and T, will be optimal. In the
case when no error-freé decision relation -exists we
have shown that some of the :possibly. multiple cate-
gory identification assignments made by the decision
relation I7! O T, are incorrect assignments and that
one of the assignments must be correct. To reduce
the errors of commission (assigning units o incorrect
categories) and yet keep the errors of omission (not
assigning units to any cate:gory') we cxamined a deci-
sion relation which tended to minimize the sum of
these two kinds of errors. T h]S decision relation A
was defined by :

= {(d, e}l for some (d, ¢)[P(d, c) = P(d, ")

for every ¢’ € C] and

P(d,c)> 12 Y P, c)}

$'eC

Fig. 11. An example where #(ROZ™ "Yd3)n T™Yey)
> #(ROZITNd)n T Mey) yet Aldy)=c; is the
best pd.ll’mg for di when the decision algorithm is
“assign” the unit u to each category c such that
#A )N (ROZ) W) = (A7 Y)Y » (ROE) () Tor every
c'eC. Note that if dy and ¢, were paired together by
A, then  there would still be perfect category
' assignments.

HArALICK

where

1
P(d, c) S FE
It does indeed minimize the error when ¥ is single
valued but only tends to when Z is not single-valued.

We then examined the case when units are related
by a reflexive binary relation R on the set of units
U. We suggested two possibilities for the definition
of an appropriate decision relation.

The first possibility is based on a situation where
D is a small set, many units are relaied together,
and £ may not be single-valued. In this case, we
might expect that each unit is linked through R and
then through £ to many measurements in D. Among
these measurements some of them are linked to a
unit by the most paths. Call any such measurement
d a characteristic measurement for unit.«, The charac-
teristic. measurement algorithm would assign unit
to any Categories linked to 4 by the decision relation
A Formally, let 4= U x D be the binary relation
pairing each umt with its characteristic measufement,

= {(u d)Ifor some {u, ¢) #(Ru)~ T~ '(d) =
: #(R(u) NE” 1(d')) for every d'eD}

The- characteristic measurement decision algorithm
defines the unit category assignment pairs by the rela-
tion composition. 4 O A where the decision relation
A is defined by

= {(d, ¢)| for some (d, c)[ﬁ(d, ¢) = P(d, )

for every ¢’ € C] and

Pld, c) 2172 Y P, c)}

c(C

where

1
P(d, c) mT"(Zc)nA(d) Py
The second possibility. is based on a situation where
D is a large set and few units are related together.
In this case there is not likely to be unique representa-
tive characteristic measurements for each unit
although each unit may be linked to many measure-
ments in D through R OZX. The decision relation A

links each one of the measurements in (R O E){x)

to a category in C. Among these categories consider
that category linked to u by the majority paths. Call
such categoty a characteristic category for . The

characteristic category algorithm would assign unit

u, to such a characteristic category for u.
~.Formally, the. characteristic category algorithm
ass1gns the unit w0 category ¢ when

#(A™ 1(t:)."‘\(R OE)(u}) > 1/2 #(R O E){u).
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The decision relation A is defined by.

= {(d, ¢)| for some (4, c)[P(d, ¢) = P(d, c')
for every ¢’ € C] and

[P(d, =127 Pd, c’)]}, .

c'el
where
1
Pid,c) = ———— V #Rl) " E7d)
( C) WTZL{C)( 'EER:( ) #z(ul)) (u) ( )

Both the characteristic measurement algorithm and
the characteristic category algorithm provide pro-
cedures for taking into account unit to unit depen-
dence without making the typical Markov type
assumption for the form of the probability distribu-
tion used in the usual statistical decision procedure,
In fact, the notation P(d, c) which we have used has
suggested that when pattern discrimination is viewed
from relation theory probability-like functions can
arise but in a form peculiar to the set-relation context.

Although this paper is theoretical in nature, offer-
ing no practical example pattern recognitions pro-
blems which are solved by the suggested procedures,
it is the hope of the author that the paper will open
some new alternatives to investigators.
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APPENDIX

Lemma 1. Let ):‘ be onto.
ASZ'oT
Proof. Let (d, cjeA. Since I is onto, 3 uel 3 (u, d)eL.

Now, (u, d)e and (4, c)eA imply (4, c)eZOA. Since

I ZOAST, then

LoAc T (u, ¢)eT also. But (u, d)eZ and (u, c)eT imply:

{d, )X 'OT. Hence, AS 271 OT.

Lemma 2. Let T be single-valued cmd A be defined cvery-
where. I T=Z0A then ASZ 10T

Proof. Let (d, c)eZ ™' O T. Then 3 uelUs (u, d)€Z and (u,
c)eT. Since (4, )eTand T = XL C A, then (1, c)eZ O A also.
Since A is defined evcrywhf:rc 3 & 3(d, &)eA. But (u, d)eX
and (d, c)eA imply (u, )eZ0A =T, and T smgle valued
implies ¢ = ¢, Hence (d‘ cleAsothat ASZ™'0OT.

Lemma 3. Let T be defined everywhere, and T be defined
everywhere and single valued. Then the followmg stite-
ments are equivalent:

£ Tis single-valued
o loTeT
oI 'oT="T
{d, c)eD x € implies E“(d) S T~ e
ofr Z7Hd) T Ne) = 7
Suppose 7! O T is single-valued. Certainly,

Proof(
(T lomloElonesl
Hence
T 'o{(ZoZ 'oT)CEl
Letting T~! play the role of £, (EOE™'OT) play the

role of A, and I play the role of T, in lemma | we obtain
Tor'oTeT.

(2) Suppose £ OX 'O T T Since I is defined every-
where, ZOL™? = 1. Thus,

TOLT'oT=10T=T.

But LQE'oT=T and the
ToXloTe Timply ZoZ'0T="T.

(3) Supposc TOE'OT< T. Let (d c)eD x C and
i€~ ! (d). Either T~ '(d)n T~ (c) = ¢ or not. If so then

supposition

T NHAT e)=¢ I not then there cxists a
weE~ (d)n T~ (o). :
Hence

(&, DeZ, (d, weZ™ ! and (u, c)eT.
This implieé
(& c)Z QI 'CT.
By supposition, ZOZ™' O TE T so that
(@, cye T or de T™'(c).

{4) Suppose {d, c)eD x C implies L7 }d) = T~ Y(c) or
DT He)— ¢ Let (c.H)e(E'QTY 'C(E™'oOT).
Then there exists ¢, and uye U and deD such that

(e, u)eT ™, (uy, d)eE, {d, uz)eX™'
and (u,, Qe T.
Hence,
o T
) R He) # &

But by supposition TNy = T~ 1(c:) or & ‘(d)n T~ Ye) =
¢. Since TN T Y)#¢, TTHDHEST (c) Now
u,€L " '{d). Hence

uel”

s0 that ™

u;_ET_ l(C).
Now T being single-valued and (u;,&)e T and (uy,c)eT
imply & = c. Therefore, (¢, &) = (¢,é)e Tand 7' O T is single-

valued.
Lemma 4. Let  Z,cU,xD Z&Z=slUxD
T, cU, x C T,eTelUxC and SUppose

$0Z 'oTe T. Then T(U)
only f Z7'oT,=Z"'0T.

Proof. Suppose T, and I, are onto. Let (d. c)¢Z 'O T,
Then 3 uel/a{d,weX~! and (u,c)eT Since Z(U)} =D
A, e, (u, djeZ, € L. But (4, d)eZ and (u, d)eZ imply
(U, ) eZ0Z™ Y And {u,u)eZOX™! combined with
(u,c)eT  imply (u,c)eZOZ”"OQT. By assumption
ZoE 'oT = Tsothat (u,)eT.

Since T, is defined everywhere, 3¢ C (u,{)eT,. But
T,= T so that (u,8)eT. Now, (u,c)eT, (u,8)eT and T
single-valued imply ¢ = é. Hence (1, é)e T,

=Cand Z{U) =D, if and
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Finally, (u,.c)e T, *and (u.d)eZ, imply (d.0)eZ 'OT,
s0 that Z'QTE L,0T, Also, I, ' 0T, £7'OT since
LEX T,eT Henee, 7' 0T, =X 'oT

Suppose £7'C T, =Z7'OT. Let ceC be given, Since
T isonto C, 3 uel/ 3 (i, c)e T. Since I is defined every-
where 3 deD 3 (u, d)¥. Hence (d, c¢Z~' © T But
I'OT=%5"0T, so that (d.c)eZ™'GT,. So Juel,>
(u,, d)e Z, and (u,, c)e T,. Therefore T, is onto C.

Now let deD be given. Since I is onto D, 3 uelU s (u,
d)eL. Since Tis defined everywhere 3 ceC 3 (1, ¢)eT. Hence
(d.c)eZ™'OT But L 'OT=X'OT, so that (d,
eIV O T,. So Fuwel, a(u,, 4%, and (i, ckT. Therefore
L, is onto D.

Lemma 5. Let T be defined everywhere. fA2 £°'0 T,
then £E0A=T.

Proof. Let (u, c)eT. Since I is defined cverywhere, there
cxists a d such that {u, d)eX. Hence (d, c)eZ~'© 7. But
IO TE A so that (d, c)eA. Now, (u, d)eZ and (d, c)eA
imply (1, c)eZ O A

Lemma 6. If Z and T are single-valued, and defined
cverywhere, then #(Z0OAN T — #(EOA)ATS

=y [ Y P(d,c) - #A(d) Z P, c):[
e ced{d)
where P(d, ¢) = ey ZT )

Proof.
#EOA)NT = #{(u,¢)} for some u, d, ¢, (u, a‘)e}:
(d,c)e A, and (1, cYe T} '

= Z #1{(u, c)| for some d, ¢, (u, d)e £,
1%

¢« {d,c)eZ, and (u,c)e T}
=% ¥V #{(ue)forsomed,¢

c'eC wT-Lc") .
(u,dye X, (d,cye A and (i, c)e T}
=2 b3 # {(u, o)l

€' C T~ (AT - L)

for some d, (1, )€ Z, (d, ¢) € A}.

Since T is single valued, ue T~ }¢') T !(c) implies ¢’ = ¢
so that

#EQANT =3 ¥ #{{uc) for some d,

€C neT-1(cy

(u, dye %, (d, c)e A}
Since X is single-valued,

#ZOA)NT =3 ¥

€C e D) we T - 10} NE- 1 (d)

=3 3 # Ay )

el et T - 1{)NI-1{d) . b

=2 2 #T 4)nz” @

#{{u, ) (d, c)e A}

deD ced{d)
Letting P(d, ¢) = “ e} 27 Yd), we obtain
#ECANT = ¥ P c).
&) e Aid)
#(EOA)n T = #{{u, c)| for some u,d, ¢, (n,d) e Z,

(d,c)e A, and (u, )¢ T} -
=Y, #{(u, <) for some d,c,(t';, d)e L
wel)

s

(d c)e A, and (u, )¢ T} ;
=3 Y #{{uc) for some d,c,

0e'C weT - L'}
(u, d)e E, (d;c)e A, and (1, )¢ T}
=¥ ¥ #{{u, o)

€0 U T2 )= T o)

for some d, (u, d)e Z, (d, ) A},

.T.lien Atd) =
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Butue T '(¢') » T~ (¢} if and only if ¢’ # c.

#FECANT =
e el weT-1(c")
c#Ee

fu,d)eX, (d,cle A}

=2 X1

¥ ¥ Y #{{uc) for somed,

eC ol & UeT- 10T 1)

c#e

#{(u c)| d c)eA}

=L XX

el oC ki wT-1ic")NE-
cFe

#Ald) m {c}
=Y Y 2 #T ')

&D c’€C occAid)
eFc

=I5 T Ao

D c'eC cehid)
Toc#e
21

z Z P(d,c")
<4

kD el

#(TOA) AT =

= 3 ¥ P ey #(Ad) -

&*D c'«C

)

N7

{ch)

=YY Pdc)#(Ad - {c})

nlk_D ceAd)
+2
deD 'eA(dy

= L [#8@) -
+ E # Ad)”

)»r

ceA{d)e
= L AN L P -
Finally '
#EZOANT - #@oMmW

deD ceA(d)

—szﬂ

delr celd(d)

=2% ¥ Pidc)

D ceAld)
Lemma 7. Suppose

1
Pld,c) < -
2 c'eC -
¢ if and only if
T2 ¥ P(d ) —
ceA{d)
is maximal.
Proof . The largest’
2 Pld,0)
ceAdd)
can be is

¥ P, c) #(Ad) —
1 2 Pd, c)
(d,

ieh

4]

Z ¥ Pld.c)

D neA(d)

_[E #Ad) Y, P(d, c),
D xC )

- #A(d)ZP(d.c)
ey cEC
Y Pld,c) ceC.

#Ad) T P, o)
el

' ‘min{ﬂ(dwmtd), 5 P é)}

where P d) max P(d, c) Since

maxl

P(d,c) < < 5 Z F(d, c)Vce c, P(d) <= Z P, c').

. el
Hence,
f__min {# AP, (d), Z P(d, c)}
. = min{#A(d E P(d c), E P4, c)}
. eeC

<ET PO if #Ad) =
2

< T Pdc) i #AMD)=2
. mc -

=0 if #Ald)=

c!C

-
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Now,
2 Y Pldc)— #AdD Y Pldo) = ?.(l 5 P(d, c))
reA(d) ot 2 e
— Y Pldc) if #Ad) =
xC
L2 Pldc)— #Ad Y Pd,e) il #Ald) =2
ceC e

=0 if
so that

#Ad) =0

2 ¥ Pld,ch~ #Ad) Y Pid,c) < 0.
) e

ceA(d

= IfAd) = ¢, then #A(d)=0

and
2 %P(d&) - #¢ 3, Pld,c)
[.d el

=022 Y Pldc)— #Ad) Y Pid, )
N el

oeA(d)
for ali A(d).
<Suppose 2 Y Pid,c) — #Md) Y P{d,c)
ceAld) el
is maximal, then ‘
022 % Pdc)— #Ad Y Pldc)
ceA{d) e
=2 Z P(d,c) — #A{d) Y, P(d, ¢}
ced’{d) . el
for any A'(d).
0 Is the least upper bound and is achievable when
Ad) = ¢. The question is whether A(d) = ¢ uniquely
provides this upper bound. The answer is yes if

0=2 5 Pdc)— #Ad) Y P c)
ceC

eld)
for then .
#AA) Y Pdc)=2 Z Pld, e)
=C cedld)
or
2. Pl

# Ald)

) t
2 S Py T
el

so that # Ad) < 2. If #A(d) = 1 the largest

2 Pdc)
ceA(d)
can be is P__ (d) so that
2% Pido) - #Ad)Y P(d.c)
€A (d) oxC

=2P_ (- Y Pdo)
L1s

which is less than zero by assumption. If #A(d) = 2 the
largest .

> Pldc)
ceA(d)
can be is 2 P, (d). Hence,
2 Y Pldc)— #Ad)Y, Pldc) < 2P, (d)
oed{d) e

—2) Pldc)< 2[21’,“,(:1) -2, P, c)}
®C e

which is less than zero by assumption.
Lemma 8. Suppose

1
deePld,c> = Y Pldc)
2 c'eC )
for some ce C. Then over all possible subsets A(d) of C,
Ta=2 Y Pldc)— #Ad) E P(d, )
ceA(d) (L1

is maximal if and only il
Ald) = {e| P(d, ) = P(d, c'Wc' e CY,

Proof. Define A(d) = {c|P(d, c) = P(d,c')¥¢' € C}. Then
P(d, ¢) must be maximal for any category in A(d); that is,
for any c e A(d),

Pid,c) = P_,(d} = max P(d, ¢\
c'eC
Since
1
Je3P(d c) > 3 Y P, ), P[4 =Pdc
c'eC
and ¢ is unique. Hence #A(d) = 1.

Now,

Ta = 24 MP,,(d) — #Md) T P(d, )
e C

) [2P",,x(d) -y rd c)}.
o
= ZPm“(d) - Z P(d, ¢).
fa {8

Define for any subset § of C
Ts=2Y Pldc) — #5 Y P, c).
.3} ceC .
Ty — Ty > Oforany subset S of C other than A(d) if and only
il Md) uniquely maximizes 7,. Let § be any subsct of C.
Consider T, — Ts.
Ty —Ts=2P,(d — ¥ Pld,c)— 25 P(d, ¢)
eeC €8
+ #5 % P(d,c).
ceC
Either § is empty or not. If § is empty Tg = Oand
Ta — Ts = 2P, (d) — 3 P(d,c)
Xl

which is greater than zero since

P ld) > l ¥ P(d,c).
2 o=l

Hence empty § will not maximize Ty.
Now suppose § is not empty. Certainly,

Y Pld,ch= ¥ P c).
Ta-Ts = ZPm:(fi) -7 P(d‘jsc) - 2% Pid,c}
+#S Y P‘(tdi )z 2Pm,x(:; — ¥ P(d.c)
-2 Zcf;’c(d, &)+ #5Y Pld,c) :zpmax(d)
- 3;P(d,c) + #S:zzp(d, ez “ZCP(LI,(:)

—3Y Pdc)+ #8Y P, o)
oeC ceC
2[2P(d,c}}[#S—2]>0 if #5>2
el

Hence any §3 # 8 > 2 will not maximize Tg. Consider what
happens if #8 = 1. Either ce § implies P(d, ¢) = P, (d) or
ce§ implies P(d,c)< P, (d) If ce§ implics P(d c)
= P_.(d) then § = Ald). If c¢ § implies P{d, c) < P, (d)
then

T, — Ts= 2P, (d) - Y Pldco)—2% Pld )
. L o5
+ #8Y Pl c) > 2P . (d) ~ ¥ P(d,c)
el i1

2P+ ¥ P(H, c) = 0.
e
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Hence such an § will not maximize Ty. Consider what
happens il # 8§ = 2.

Ts=23% Pldc)— #5Y P(d,c)
T oeC

=25 P(d,c)— 25 P(d,c)

-2 Pdc).

w5C
Then,
Ty — Ts= 2P, ()= ¥ Pdc)+ 2 Y. P(d, c).
«C LT

By assumption,

@ > % P, o)
2%

Pmnx

50 that,
2P, ) — 3 Pd,c)= 0
el

Since for any ce C,
Pdc)z=10, 2 Z Pld,c)= 0.
ceSC

Hence Ty — Ts > Oand § #5 = 2 will not maximize Ts.
- Lemma 9. Suppose

1
Jee O3 Pd,¢c) = = E Pid, c').
2 c'eC
Then over all possible subsets A(d) of C,
Ty=2 3 Pldc)— #AdY Pldc)
&l

ced(d)
is maximal if and only il A(d) is any subsct of {¢]P{d,c)
> P(d, c¢Wee C).
. Proof. Let A(d) be any given subset of {c|P(d c)
= P(d,We'eC). Let § be any subset of {c|P(d,c)
= P(d, ¢'W¢ € C}. Consider

Ty—Ts=2 Y Pdc)—

ced(d)

#Ald) ). P(d,c)
el

- {2 S Pdc)— #SY P, c)}
eS8 osC

= [#8 —~ #A(d)] ZiP(d,c) + 2[ Y. P{d,c)

ceA(d)
- L P, c)]
ES

=[#85 — #A(d)] Z P(d, )

+ 2[# AP, (D) — #8P, . d)]
=[#5 - #AW] T, Pd,c)

510
+ 2P, (D[ # Ald) — #5]

= [#8 — #A(d)] [Z Pld, cy —
ceC

max(d)}

But

Pold E Pld, &)

so that

L Pldc) = 2P, (d) = 0.
eeC

Hence Ty — T3 =0 and A(d)} and § are equwalent with
respect to criterion T

Let § be any subset of C not 2 subset of {¢|P{d, c}
= P(d,c'NWe e Ch. Then 3 e 53 P(d, %) < P__(d)so that

max

2 Pld,c) < #8P, (d).
8

Consider
Ta—Ts=2 Z Pid, c) —

ceA(d)

- {2 Y P(dc)— #5Y Pd, c)}
Ta = Ts = 2# AP, (d) — #Ad) T, P(d, )
ceC

#Ad) Y P(d, )
e

- {z 5 Pid.0 - #5 rido)

oS o C
= #A(d) [2me(d) - L Pl C)}
{4

- [2 2 Pldic)— #8Y, P(d, c)}
S ) ' el

> #Ald) [ZPM(J) - Y P, C)]
ceC

- [Z#S‘pmax(d) - #SE P(d, C}}
e

> #A(d) [2Pmax(d) - E P(d’ C):l
e

- #S[:ZPmax(d) - ¥ P, c):'
ceC

[#Ald) — #85] [2}’ madd) — 3 P(d, C}]
*C
But
i
Pmu(‘ﬂ o= '2' Z P(ds C)
eC
50 that
2P, (d) - T P(d,¢) = 0.
c=C
Hence Ty, — Tg > 0.

Lemma 10. Assumming

EC KD T - UONI- L) # Z(u)
#Ald) ~ {c}
#F(ZOANT = —_—
) ;a c;C cg?: weT = e YyE= 1 () # Z{u) -
e e
then
#(EOA)NT — #(ZOANT®
) [2 Y Pldc)— #Ad) Y, PU, c)jl,
&p L Al «C
where
Ad
P(d,c) = LeCaR
T- 1e)nE- L(d) #Lu)
Proof.

#EZOANT &

% X

1
[ 78]
&b i) Luer-1pmz- 1y # E(H

=y ¥ Pdc)

D ceAld)
#E0ANT = 3 ¥ #Adn{c ¥
&D el ceC
CEC
1
- l(:‘)znt-l(da (#E(“))
=) ¥ Y Pdc)
deD ccAld) :!C
. e fe
SN (Z P(d,¢).— P(d, c))
dD ceh(d) \ceC :
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=y ¥ TR =-3 Y P

D eA(d) ceC D redd)

= Y [#A(d) ¥ P, c) —
cEC

de D

Y Pid, e)].

ceA(d}
Hence #(ZQ AN T — #(Z0A N T

) { Y. Pld,e) —[:#A(d)ZéP(d,c)

deD Lwidd)

ceA(d)
=¥ [2 Y Pld,c)— #AW) Y P, c)]
xC

de O ced(d)

Lemma 11.LetR S U x U. T S U x C be single valued
and defined everywhere, £ S U x D, Suppose (u,c)eT
implics # {d e (R O Z}u)] #(R O L) A T e > 4
#(ROZ)"'(d)) > $#(R O Z)u). Define T = {(, c)| # A~
{€) » (R O Z¥u) > $#(R © I)u)}. Then A= {(d. ¢l
#ROZ )~ T~ () > +#(R O EXd)} implies T = T,

Proof. Define A(u} = {(d, ¢)|(d. c)e A and (u, d)e R G T},
Suppose (1, ¢c)e T. Then #A™Y(¢) 7 (R O I¥u) > §#(R O L)
(u). But #A™c) n (R O I)w) = # A(w) ~ (D x {c}). Also
notice that # A(u) £ #(R O Z)n). Hence # A(x) n (D x {c})
> 3#{R O IXu) = §# A(u). This has to imply (4, c)e T for
if not then (u, ¢’} e T and ¢’ # ¢ Since (u, Ve T, # Aw)
A x {¢}) > 4#(R O INu) 2 +#A@w). Thus # Af)
= #Au) (D x {¢, c'}) > # A(u), a contradiction. Hence,
(w c)e T. Suppose (u, c) e T. Then # A@w) n (D x {¢}) > 4
#(ROZNu)or #A™He)n{R OEXu) > $#(R 0 ZXu) so that

(wcye T,
Lemma 12, If
#A(d)~ Tlw)
#T F— ETAT =~ D w'eR()NE~ Lid)
E, Y #Zw)
'R
T (#Ad N Tw)
_ Z del) weRu}NI~ L(d)
! Y #IW) :
u'eR{n}
then

#TT - #T‘ﬁ’f“zZI:Z

&D

Y Pdco) - Y P, c)],
«C

cedid)
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1
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d4'€R (1)
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1
) 5
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[#Ad) A Ty — #AMd) ~ Tw)]

Z 1
*C wT (e Z #Z(u) g;: u'(R(u);Z‘ 1(d}
weRun
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~ I - -1
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weR{u)

1
— —_— o -1
L L T LA # R 0 )
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1
+ ————— #RWn I Hd)
cs§cd) ur-zltc) Y #I)
weR(u}
Letting

1
T #30)

wER{K)

Pdc)= ¥ #R(u) n £ (d).

weT=1(c)

Y, Pldc)

ced(d)

- #Ad) Y P, c):|.
eC
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