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Abstract. We discuss a probabilistic graphical model that works for recognizing three types of text patterns

in a sentence: noun phrases; the meaning of an ambiguous word; and the semantic arguments of a verb. The

model has an unique mathematical expression and graphical representation compared to existing graphical

models such as CRFs, HMMs, and MEMMs. In our model, a sequence of optimal categories for a sequence

of symbols is determined by finding the optimal category for each symbol independently. Two consequences

follow. First, it does not need to employ dynamic programming. The on-line time complexity and memory

complexity are reduced. Moreover, the misclassification rate is smaller than that obtained by CRFs, HMMs,

or MEMMs. Experiments conducted on standard data sets show good results. The performance of each task

surpasses or approaches the state-of-art level.
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1 Introduction

Researchers have focused on using probabilistic graphical models, such as HMMs [1], MEMMs [2], or CRFs

[3] to recognize patterns in texts 1. These models are derived from either a joint or conditional probability

function for a sequence of categories and a sequence of symbols (associated with a sentence) under some

conditional independence assumptions. These assumptions might not be the best assumptions for capturing text

patterns in a sentence. Moreover, for these graphical models, the maximum global probability value cannot be

determined until the last symbol of the sequence has been reached and the computation must be done by a

dynamic programming algorithm. Although dynamic programming is an efficient optimization technique, the

1 Text patterns related to this research are NP chunks (noun phrases), the meaning of a polysemous word, and semantic
arguments of a verb.



conditional independence assumptions we have chosen to use lead to an algorithm whose memory requirements

and computational complexity are less than dynamic programming and whose performance is just as good or

better.

The graphical models that lead to an optimization that must dependently thread through the sequence of

class assignments to optimize the joint probability of the class assignment given the measurements, essentially

use an implicit gain function that specifies a gain of one if all the class assignments are correct and zero if one or

more of the class assignments are wrong. No partial credit is given for some correct assignments. This criterion

leads to difficulties where noise in the text data extraction can cause the resulting optimal class assignments to

hallucinate an incorrect yet seemingly coherent result. In effect what happens here is that a noisy or perturbed

symbol at any position in the input sequence can produce a wrong local category then a wrong category path

for part of the sequence.

In this paper, we discuss a probabilistic graphical model that improves this situation. In effect the model

gives partial credit and yet takes class dependencies into account. The model is derived from the probability

function of a sequence of categories given a sequence of symbols by using the information carried on each

current symbol, the association between the current symbol and the preceding measurement, and the association

between the current symbol and the succeeding measurement. The mathematical representation of the model

can be found on Section 2.1 and the graphical representation of the model can be found in Figure 1.

Compared to existing graphical models, such as CRFs [3], HMMs [1], MEMMs [2], our model has an

unique character. That is, even though sequential dependencies from class to measurement are modeled, the

optimal class assignments can be determined independently. Specifically, a sequence of optimal categories for a

sequence symbols is determined by finding the optimal category for each symbol independently in a way which

takes into account the neighborly dependencies. Several benefits result. First, we do not need to compute a set of

category paths and store them in order to determine the optimal category path once the last symbol of a sequence

has been reached. As a consequence, for recognizing a new symbol sequence, the time complexity is reduced

from O(M2N) to O(MN) while the memory complexity is reduced from O(MN) to O(M). Numerical

comparisons are shown on Section 2.5. Furthermore, when we make a mistake on one symbol in a sequence,

it will not effect other correct decisions that have been made or will be made for other symbols. Therefore, the

misclassification rate for the whole sequence of categories can be reduced. Indeed, this is the behavior we have

observed using this kind of model for three different types of text pattern recognition.



We developed three algorithms for recognizing three kinds of text patterns based on this model. These

patterns are noun phrases, the meaning of a polysemous word , and the semantic arguments of a verb in a

sentence. For the first task, the model is used to assign each of word in the sentence with one of the predefined

class labels [4]. Then a block is defined to find noun phrases. For the second task, a polysemous word is

represented by a sequence of context words. The model is used to assign one of the classes (senses of the

polysemous word) to each context symbol. The sense of the ambiguous word is determined by selecting that

sense assigned to more context symbols than any other sense. For the third task, the model is used to extract a

path for each verb node in a labeled rooted tree (parser tree) associating with a sentence. From this path, we can

find a set of roots, each of them associated with a semantic argument of the verb.

The rest of the paper is structured in the following way. The second section presents the proposed method.

The third section describes the three tasks. The fourth section demonstrates the empirical results. The fifth

section reviews the related researches. The sixth section gives a conclusion.

2 The Method

In the rest of the paper, depending on the task, a symbol can be a word, a word plus its speech tag, or a node in

a parse tree.

2.1 Defining the Task

Let S =< s1, . . . , sN > be a sequence ofN symbols associated with a sentence. LetC be a set ofM categories,

C = {C1, . . . , CM} 2. The task is to find a sequence of categories < c∗1, . . . , c
∗
N >, c∗n ∈ C, that best describes

S =< s1, . . . , sN > in the sense that

< c∗1, c
∗
2, ..., c

∗
N >= argmax

c1,c2,...,cN

p(c1, c2, . . . , cN |s1, s2, . . . , sN )

In order to find the sequence < c∗1, c
∗
2, . . . , c

∗
N >, we need to compute p(c1, c2, . . . , cN |s1, s2, . . . , sN ). For

this we build a decomposable graphical model.

2 Cm ∈ C will have a different meaning for each of the different tasks



2.2 The Model

In the usual kind of hidden Markov models, there is a dependency in the class sequence. In our model, there

is also sequence dependency. That dependency is between neighboring classes to measurements instead of

between class and neighboring class. In effect the model works because the dependency from neighboring

classes to measurements is greater than the dependency between class and neighboring class.

The conditional independence graph that defines our graphical model is shown in Figure 1. For comparison,

the conditional independence graph that defines the typical Markov dependency in the class sequence is shown

in Figure 2.

s1 s2 s3 sN−2 sN−1 sN

c1 c2 c3 cN−2 cN−1 cN

Fig. 1. The conditional independence graph defining our graphical model.

s1 s2 s3 sN−2 sN−1 sN

c1 c2 c3 cN−2 cN−1 cN

Fig. 2. The usual conditional independence graph for Markov dependencies among the classes.

Our graphical model leads to the following representation for the probability

p(c1, . . . , cN |s1, . . . , sN ) =
∏N

n=1 p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)∑
ck∈C

∏N
k=1 p(sk−1|sk, ck)p(sk+1|sk, ck)p(sk|ck)p(ck)

(1)

2.3 Properties of The Model

Property 1. The Markov blanket for node cn is sn−1, sn, sn+1. Therefore, the Markov blanket property of the

conditional independence graph tells us that class cn is conditionally independent of s1, . . . , sn−2, sn+2, . . . sN

given sn−1, sn, sn+1. Therefore, P (cn|s1, . . . , sN ) = p(cn|sn−1, sn, sn+1)



Property 2. Notice that in our conditional independence graph, all paths between nodes sn−1 and sn+1 must

go through the one of the nodes in sn and cn. This means that sn−1 is conditionally independent of sn+1 given

sn and cn. Hence p(sn−1, sn+1|sn, cn) = p(sn−1|sn, cn)p(sn+1|sn, cn). Therefore,

p(cn|sn−1, sn, sn+1) =
p(sn−1, sn, sn+1, cn)
p(sn−1, sn, sn+1)

=
p(sn−1, sn+1|sn, cn)p(sn, cn)

p(sn−1, sn, sn+1)

=
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

p(sn−1, sn, sn+1)

n = 2, . . . , N − 1

Property 3. Properties 1 and 2 imply that

p(cn|s1, . . . , sN ) = p(cn|sn−1, sn, sn+1) =
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

p(sn−1, sn, sn+1)

n = 2, . . . , N − 1

Property 4. A node si together with its left neighbour si−1 and the node ci forms a clique. A node si together

with its right neighbour si+1 and the node ci forms of a clique.3 Moreover, nodes si and ci form a separator and

nodes si and si+1 form a separator.4

Property 5. For a sequence ofN symbols, our model has a set of 2N−2 cliques and a set of 2N−3 separators.

Property 6. Our model has an unique junction tree G1 = (V1, E1). Each v ∈ V1 is a clique. Each e ∈

E1 is a separator. The junction tree is illustrated in Figure 3, where nodes A = {sN−1, sN , cN}, B =

{sN−2, sN−1, cN−1},C = {s2, s3, c3},D = {s1, s2, c2},E = {sN−1, sN , cN−1},F = {sN−2, sN−1, cN−2},

G = {s2, s3, c2}, H = {s1, s2, c1}.

Property 7. By the theorem for decomposable graphical model, the product of the probabilities for the cliques

divided by the product of the probabilities for the separators is the joint probability p(c1, . . . , cN , s1, . . . , sN )

p(c1, . . . , cN , s1, . . . , sN ) =
∏N−1

n=2 p(sn+1|sn, cn)p(sn−1|sn, cn)p(sn|cn)p(cn)∏N−1
m=1 p(sm, sm+1)

×p(s2|s1, c1)p(s0|s1, c1)p(s1|c1)p(c1)

×p(sN+1|sN , cN )p(sN−1|sN , cN )p(sN |cN )p(cN )

3 A clique is a maximal complete set of nodes. Let G = (V,E) be a graph, s.t E ⊆ V × V . Λ ⊆ V is a clique if and only
if λ1, λ2 ∈ Λ, λ1 6= λ2, imply {λ1, λ2} ∈ E and there is no set that properly contains Λ with this property.

4 Γ = {Γ1, ..., ΓM} is a set of separators, where Γk = Λk ∩ (Λ1 ∪ ...,∪Λk−1) and Λ1, ..., ΛK is a running set of cliques.



=
∏N

n=1 p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)∏N−1
m=1 p(sm, sm+1)

Property 8. By property 7, the conditional probability can be obtained by:

p(c1, . . . , cN |s1, . . . , sN ) =
p(c1, . . . , cN , s1, . . . , sN )∑

c1,...,cN
p(c1, . . . , cN , s1, . . . , sN )

=
∏N

n=1 p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)∑
c′n∈C

∏N
n=1 p(sn−1|sn, c′n)p(sn+1|sn, c′n)p(sn|c′n)p(c′n)

2.4 Finding < c∗
1, . . . , c∗

N >

Property 9. By property 7 and property 8, to find a sequence of categories < c∗1, . . . , c
∗
N > for a sequence of

symbols< s1, . . . , sN >, we only need to find c∗n for sn individually. Note, the denominator in (1) is a constant.

Therefore, it does not effect a decision making for assigning ci to si.

< c∗1, c
∗
2, ..., c

∗
N > =

N∏
n=1

argmax
cn∈C

p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

=
N∏

n=1

argmax
cn∈C

Psn−1,sn,sn+1,cn (2)

2.5 Complexities

Time Complexity. For each symbol sn in equation (2), we need to assign a cn, s.t.

max{Psn−1,sn,sn+1,cn
|cn ∈ C} = max{p(sn−1|sn, cn) p(sn+1|sn, cn)p(sn|cn) p(cn) | cn ∈ C}

The computation for Psn−1,sn,sn+1,cn
, requires four multiplications. To obtain the maximum probability value

max {Psn−1,sn,sn+1,cn |cn ∈ C}, we must make M − 1 comparisons. In the case of a sequence of N symbols,

we need

Tc = 4 ∗N ∗ (M − 1) = O(N ∗M)

Memory Complexity. Because the global maximum probability is determined by each local maximal proba-

bility, for a sequence of N symbols, we only need to store the information of the current node. That is, we need
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Fig. 3. The junction tree shows the cliques in running order and the separators between them. The product of the
probabilities for the cliques divided by the product of the probabilities for the separators is the joint probability
p(c1, . . . , cN , s1, . . . , sN ). a = {sN−2, sN−1, cN−2}, b = {sN−2, sN−1, cN−1}, c = {sN−1, sN , cN−1},
d = {sN−1, sN , cN}, e = {s1, s2, c1}, f = {s1, s2, c2}, g = {s2, s3, c2}, h = {s2, s3, c3} .

only store M probability values in order to find the maximal probability value. Therefore,

Mc = M = O(M)

Comparisons. HMMs orCRF s employ dynamic programming to obtain a sequence optimal of categories for

a sequence of symbols by computing a joint probability p(s1 . . . sn c1 . . . cN ) or or a conditional probability

p(c1 . . . cN | s1 . . . sn). By dynamic programming, an optimal category for the current symbol is obtained

based on an optimal category of the previous symbol. Therefore, the optimal category for the last symbol is

determined after the last symbol has been reached. The optimal category sequence needs to be determined by

tracing back from the last optimal category to the first optimal category. For each sequence index, information

for M categories needs to be stored. Hence, for a sequence of N symbols, the time complexity is O(M2N) and

the memory complexity is O(M ∗N).

Ratio of Time Complexity.
NM

M2N
=

1
M



Ratio of Memory Complexity.
M

M ∗N
=

1
N

We compute ratios of time complexity and memory complexity of our model to HMMs and CRF s to see

the differences. By observing these two ratios, we have noticed that if we need to recognize a sequence of N

symbols with M categories, our model only takes 1
M time and 1

N memory space of HMMs or CRF s. For

example, if the cardinality of C is (M = 8), for a sequence of thirty symbols (N = 30), our method only needs

to have 1
8 time and 1

30 memory space of a HMM or a CRF to recognize this sequence.

3 Three Tasks

In the previous section, we compared the complexity of our model and other probabilistic graphic models

such as HMMs and CRF s. Starting from this section, we will discuss three tasks. They are to identify noun

phrases (NP chunking), to identify the meaning of a polysemous word (word sense disambiguation WSD), and

to identify semantic arguments (semantic role labeling SRL) of a verb in a sentence. A symbol sequence in

each task associates with different objects. In NP chunking, it associates with a sentence; in WSD, it associates

with the context of a polysemous word; in SRL, it associates with a path in a parse tree. Moreover, a set of

class categories in each task also has different representations. In NP chunking, it is a set of locations of a word

relating a noun phrase; in WSD, it is a set of predefined senses of the ambiguous word; in SRL, it is a set of

choices from the current node to its neighbours. The model is applied to find an optimal category sequence for

each symbol sequence. NP chunks are formed by finding blocks in the optimal category sequence; the meaning

of a polysemous word is determined by selecting the most frequently appearing category in the optimal category

sequence; and semantic arguments of a verb are determined by finding a set of subtrees from the optimal path.

3.1 Task 1: Identification of Noun Phrases

Let S be a sequence of symbols associated with a sentence, s.t. S =< s1, ..., si, ..., sN >, s.t. si is a pair

consisting of a word and its speech tag. Let C be a set of categories, C = {C1, C2, C3}, where C1 represents

a symbol inside a noun phrase, C2 represents a symbol not in an noun phrase, and C3 represents a symbol that

starts a new noun phrase.



Building Blocks. B is a block if and only if:

1. For some i ≤ j, B = < (si, ci), (si+1, ci+1), . . ., (sj , cj) >

2. ci ∈ {C1, C3}

3. cn = C1, n = i+ 1, . . . , j

4. For some B′, if B′ ⊇ B and B′ satisfying 1, 2, 3→ B′ ⊆ B

Formulating the Task: Identifying Noun Phrases

– Finding a sequence of categories < c∗1, . . ., c∗N >, s.t.

< c∗1, . . . , c
∗
N >= argmax

c1,...,cN

p(c1, . . . , cN |s1, . . . , cN )

– Finding {B1, . . . , BM}, each Bm is a block satisfying the definition of B.

An Example

– The sentence: Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

– The input sequence: Pierre/NP Vinken/NP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN

as/IN a/DT nonexecutive/JJ director/NN Nov./NN 29/CD ./.

– The category sequence: C1C1C2C1C1C1C2C2C2C1C1C2C1C1C1C3C1C2

– The blocks:

B1︷ ︸︸ ︷
C1C1 C2

B2︷ ︸︸ ︷
C1C1C1 C2C2C2

B3︷ ︸︸ ︷
C1C1 C2

B4︷ ︸︸ ︷
C1C1C1

B5︷ ︸︸ ︷
C3C1 C2

– The NPs:

• Pierre Vinken

• 61 years old

• the board

• a nonexecutive director

• Nov. 29

3.2 Task 2: Word Sense Disambuation

Let S =< s1, .., st, .., sN > be a sequence of symbols associated with a sentence, st ∈ S be a word that needs

to be disambiguated . Let C = {Cm|M = 1, ...,M}, Cm ∈ C, where C is a set of predefined senses of st.



Defining Contexts. The Context of an ambiguous symbol st is a k − tuple, represented by Tt. Each element

in Tt is a symbol in S, Tt = (t1, ..., tK), tk ∈ S, and K ≤ N .

Formulating the Task: Identifying Word Senses

– Find the context Tt for st.

– Find a sequence of categories < c∗1, . . ., c∗K > for Tt = (t1, ..., tK), s.t.

< c∗1, . . . , c
∗
K >= argmax

c1,...,cK

p(c1, . . . , cK |t1, . . . , tK)

– Assign st to Cj if and only if

ct = max{#{ck = Cj |Cj ∈ C, k = 1, ...,K}}

An Example

– The sentence: Yields on money-market mutual funds continued to slid, amid signs that portfolio managers

expect further declines in interest rates.

– st: interest

– C = {C1, C2, C3} = {money paid for the use of money, a share in a company, readiness to give attention }

– The context of st is a 6− tuple: (yields money-market funds portfolio manager rates)

– The category sequence: C1C1C1C3C2C1

– Assign C1 to interest

3.3 Task 3: Semantic Role Labeling

Let T = (V,E, r,A, L) be a labeled rooted tree associated with a sentence, where V is a set of vertices, E is a

set of edges, E ⊆ V × V , r is the root, A is an alphabet defined by [5], and L is a labeling function L : V → A

that assigns labels to vertices. T is a form for a parse tree of the sentence. Let π be a set of labels, s.t. π ⊆ A.

Let C = {C1, C2} be a set of class categories, where C1 represents that a path will be extended from the current

node to an adjacent node; C2 represents that a path will not be extended from the current node to an adjacent

node.



Defining Labeled Rooted Forests. A labeled rooted forest is a set of labeled rooted trees, s.t.

F = {Ti|i = 1, ..., N}, Ti is a labeled rooted tree.

Formulating the Task: Identifying Semantic Arguments

– Form a path P(x) = τ1,→ . . . ,→ τK , x ∈ V , L(x) ∈ π, and x is not a node in P ′(y), P ′(y) is a path that

has been already formed previously.

< τ1, . . . , τK >= argmax
b1,...,bK

p(c1, . . . , cK , b1, . . . , bK)

Note, ck ∈ C, bk ∈ V , bk−1bk ∈ E.

– Form a set of roots R(x) = {ri|i = 1 . . .M} from P(x), where ri ≤ τk.

• For all siblings of τk, find z, s.t. L(z) 6∈ π and z 6∈ {τk|k = 1, . . . ,K}, R(x)← R(x) ∪ {z}

• For all children of τk, find y, s.t. L(y) 6∈ π and y 6∈ {τk|k = 1, . . . ,K}, R(x)← R(x) ∪ {y}

– Find a rooted forest F (x) = {Ti|i ∈ {1, .., I}},

• Each Ti is induced from the root ri by all its codependents.

• For each Ti ∈ F (x), the leaves {l1i , ..., lKi } are corresponding to one of the semantic arguments of x.

An Example

– The sentence: Mrs. Hills said that the U.S. is still concerned about ”disturbing developments in Turkey and

continuing slow process in Malaysia”.

– The labeled rooted tree T for this sentence is in Figure 4.

– A path for verb x = concern is in Figure 5.

– A labeled rooted forest F (x) = {T1, T2, T3} is in Figure 6, Figure 7, and Figure 8.

– The semantic arguments of verb concern are:

• still;

• the U.S.;

• about ”disturbing developments in Turkey and continuing slow process in Malaysia”



Fig. 4. The parse tree of the sentence: Mrs. Hills said that the U.S. is still concerned about ”disturbing devel-
opments in Turkey and continuing slow process in Malaysia”.

VP

VBZ ADJP-PRD

VBN

Fig. 5. All the semantic arguments of the verb concern can be extracted from this path.

4 Empirical Results

4.1 Experimental Set Up

In order to verify our methods, we have tested the first task on WSJ data from the Penn TreeBank [6] and

CoNLL-2000 Shared Task [7], the second task on data developed by [8] [9], and the third task on WSJ data

from the Peen TreeBank and the PropBank [5]. Our reasons for using these data sets are that they have been

studied by multiple researchers and many results have been published over the years. The evaluation metrics

designed for testing the first and the third tasks were Precision , recall, f-measure (F1) and for testing the
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Fig. 6. Labeled rooted tree T3 associating with one of the semantic arguments of verb concern

NP-SBJ
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Hills

Fig. 7. Labeled rooted tree T1 associating with one of the semantic arguments of verb concern

ADVP-TMP
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still

Fig. 8. Labeled rooted tree T2 associating with one of the semantic arguments of verb concern

second task were accuracy. The reason of selecting different evaluation methods was based on the design of

class categories described in sections 3.1, 3.2, and 3.3 5. One of categories was not needed to be evaluated in

task one and three while all categories were needed to be evaluated in task two. All our experimental results use

a 10-fold cross validation technique for obtaining an result in all experiments. The reason of not using 10-fold

cross validation was that we had a larger number of instances in the data set [6].

5 There was a ’NOT’ category (representing none of these categories) in the first task and third task while every category
was a distinct sense in the second task.



4.2 Results on the First Task

Three types of symbols were designed for identifying NP chunks on CoNLL-2000 Shared Task data set. They

were the lexicon of a word, the POS tag of a word, and the lexicon and the part of speech (POS) tag of a word.

The results are shown in the second row of Table 1. By comparing the results, we notice from column four (F-

measure) that if the model was built only on the lexical information, it had the lowest performance 89.75%. The

model’s performance improved 3% if it was constructed by POS tags. The model achieved the best performance

of 95.59% if both lexicon and POS tags were included.

Different from the first experiment, the second experiment on the WSJ data from Penn Treebank used only

one type of symbol: the lexicon and the POS tag of a word. The main reason for using this data set was that we

wanted to see whether the performance of our model could be improved when it was built on more data. In this

case, the training set was seven times larger than the CoNLL-2000 shared task training data set. The test results

was shown in the third row of Table 1. Data inside parentheses in the table represented standard deviation.

Compared with the results on these two data sets, we noticed that the average precision was improved about

2.74% from 95.15% to 97.89% . The average recall was improved about 2.24% from 96.05% to 98.29%. The

average F-measure was improved about 2.50% from 95.59% to 98.09% as the training sets expanded into seven

times larger. This suggested that a tradeoff needs to be considered between the sizes of training sets and the

performances of the method.

Table 1. The test results on the CoNLL-2000 and WSJ data

Data Symbol type Precision Recall F-measure
% % %

CoNLL-2000 Shared Task Data
Lexicon + POS 95.15 96.05 95.59

POS 92.27 93.76 92.76
Lexicon 86.27 93.35 89.75

WSJ from Penn Treebank Lexicon + POS 97.89 98.29 98.09
(0.62) (0.57) (0.58)

Comparisons Table 2 shows the best performances of related methods on the CoNLL-2000 shared task data.

The F-measures are ordered in descending order. Among of them, the role based learning achieves the worst

F-measure performance and our method achieves the best F-measure performance.



Table 2. Comparisons for different methods on the CoNLL-2000 data set

Method Recall Precision F-measure
% % %

Role Based Learning [10] 92.03 91.05 91.54
HMM [1] 93.52 93.43 93.48
MEMM [11] − − 93.70
Voted perceptrons [12] 93.29 94.19 93.74
CRF [11] − − 94.38
SVM [13] 94.38 94.52 94.45
our method [14] 95.31 96.36 95.74

4.3 Results on the Second Task

We tested our method for identifying the sense of a word on the data sets line, hard, serve, and interest. The

senses’ descriptions and instances’ distributions can be found in [8] and [9]. In these data sets, line and interest

are polysemous nouns, hard is a polysemous adjective, and serve is a polysemous verb. In our experiment, line

had 6 senses, serve 4 senses, hard 3 senses, and interest 3 senses (3 other senses were omitted due to insufficient

number of instances). The test metric that we use is accuracy.

We formed the context of each given target word by including the left four open class words and the right

four open class words combining with the left word and the right word for each of these words. The test results

were indicated in Table 3.

Table 3. The second algorithm on line, serve, hard, interest data

Ambiguous Senses Accuracy Standard Maximum Minimum
word % deviation % %

line (noun) 6 81.16 1.92 84.50 78.0
3 85.25 2.13 91.70 81.05

serve (verb) 4 79.80 1.90 82.92 76.88
hard (adjective) 3 82.88 3.10 87.03 78.11
interest (noun) 3 92.10 2.21 95.50 86.00

By analyzing our errors, we found that the misclassified instances are primarily generated by the ambiguity

of context words. For example in Table 3, comparing with three sense noun interest and three sense noun

line obtained by selecting three senses at each time from six senses and examining all twenty combinations,

we found that the accuracy of the word interest was almost 9% higher than the accuracy for the word line.



Moreover, by examining accuracies generated from each combination for the word line, we found that some

combination (S1S2S4) has the highest average accuracy: 91.7% while some combination (S1S3S5) has lowest

average accuracy: 77.1%. The difference is almost 20%. By carefully checking these misclassified instances,

we learned that if two senses are similar to each other, there were more chances that their contexts consisted of

the same words. As a consequence, the misclassification rate had to increase.

From the results in Table3, if we average the results from the ambiguous nouns, the ambiguous adjective,

and the ambiguous verb, our model achieves an average of accuracy 83.5184%. This result is encouraging and

surpasses the results published by other researchers [8] and [15]. Moreover, by observing the outputs of two

polysemous nouns line and interest, we find that as number of senses of a polysemous noun increases, the

accuracy decreases. This suggests that nouns with a larger number of senses are more difficult to recognize

than nouns with small number of senses by our model. Furthermore, by observing the mean in column three,

we notice that nouns were relatively easier to identify than adjectives or verbs. From the standard deviation in

column four, we see that the accuracy produced by our model on adjectives has a larger variance than that on

nouns or verbs.

Comparisons Our results are better than the results reported by other WSD researchers [15] and [8]. Our

method achieves the average accuracy 81.12% for identifying the six sense noun line using 2450 training

context words while the method proposed by [8] achieves the average accuracy 73% using 8900 training context

words. Moreover, the experiment of Latent Semantic Analysis method conducted by [15] achieves an average

accuracy of 75% for identifying only three senses of line. The comparisons are shown in Table 4

Table 4. line Results Comparisons

Accuracy Accuracy # of Context words in Training Set Base Line
3 senses 6 senses 6 senses 6 senses

% % k %
LSA [15] 75
Bayesian [8] 76 71 8.9 16.67
Context Vector [8] 73 72 8.9 16.67
Neural Network [8] 79 76 8.9 16.67
This Method 85.25 81.12 2.45 19.09



4.4 Results on the Third Task

The data set, the section 00 of WSJ from Penn Treebank and PropBank [5], was used for testing the third task.

A total of 223 sentences was placed in files 20, 37, 49, and 89. Associated with each of these sentences, is

a parse tree provided by Penn Treebank. The Penn Treebank parse tree has been evaluated and found to have

an average accuracy of 95.0%. Among these sentences, there were 621 verbs. Each verb had an average of

three semantic arguments. Hence about 2000 semantic arguments were used. These semantic arguments were

provided by PropBank tagged by human processed labels.

Among 621 verbs, about 560 verbs were used for obtaining probability values while about 60 verbs were

used to form paths based on these probability values. Some of the paths were listed on Table 5. They were

obtained based on the procedure described in Section 3.3. We observe that 86% of the paths fall into the first

three patterns.

Table 5. Six Types of Paths

NO % Path
1 62.1 V BZ(V BD, V BG, V BP, V BN, V B)→ V P
2 14.2 MD(TO)→ V P → V P → V B
3 10.1 V BP (V BZ, V BD)→ V P → V P → V BN
4 4.2 V BD(V BZ, V BN)→ V P → RB → V P → V B
5 2.4 TO → V P → V P → V B → V P → V BN
6 2.2 MD → V P → RB → V P → V BP (V B)→ V P → V BN

After forming a path for a verb in test instances, a set of roots were found. From these roots, a set of labeled

rooted subtrees, whose leaves were associating with semantic arguments of the verb, was formed. The test

results were shown in Table 6. On the average, each time among 1
10 of the semantic arguments were classified,

about 93% semantic arguments were correctly identified and 7% semantic arguments were classified wrong.

By checking these classified instances, we found that our method was very effective in the case of a semantic

argument being a sequence of consecutive words. However, if a semantic argument consisted of two or more

word fragments, separated by some phrases, our algorithm was less effective. The reason was that these phrases

were parts of leaves of a tree induced from a root determined by our algorithm. This suggests us that in order to

exclude phrases from a semantic argument, we need to develop a method so that a set of subroots needs to be



found. Each of them corresponds to a fragment of a semantic argument. Moreover, other misclassified instances

are generated by errors carried in the Penn Treebank parse trees.

Table 6. The Third Task on WSJ data

Files Precision Recall F-Measure
20, 37, 49, 89 % % %

Average 92.335 94.1675 93.2512
Standard Deviation 0.6195 0.5174 0.4605

5 Related Research and More Comparisons

Different Graphical Representations. The graphical models used by most researchers are HMMs [2] [1],

MEMMs[2], and CRFs[3] [11]. These models are built to obtain an optimal sequence of N categories c =<

c1, . . . , cN > from a sequence of N symbols s =< s1, . . . , sN > by finding the maximum value of the

joint probability p(c, s) or the conditional probability p(c|s). The conditional independence graphs for these

graphical models are shown in Figure 9. While HMMs and MEMMs are directed graphical models, CRFs and

our model are undirected graphical models. While others have a link from ci−1 to ci, our model links between

ci and si+1 and between ci and si−1. We believe that ci can be better predicated from si−1 and si+1 rather than

ci−1 when the symbols contain several types of information. For example, in the case of NP chunking, the POS

tag information carried on a symbol is more useful than the category of the previous symbol.

ci−1 ci ci−1 ci ci−1 ci

(1) si (2) si (3) si si−1 si si+1

ci (4)

Fig. 9. (1): a HMM model, (3): a MEMM model, (4): a CRF model, and (5): the model presented by this paper

Different Assumptions. In the graphical model representation, si, i = 1, ..., N and ci, i = 1, ..., N are nodes.

We have 2N nodes in total. If no assumption is made, there is a link between every pair of nodes. The degree



of each node should be 2N − 1. Some assumptions are made for the graphical models represented in Figure 9.

Compared to these graphical models, we find that for each si, the degree of our model is three while the others

have degree two. This indicates that our model has less assumptions. By analysis, a HMM is built under two

conditional independence assumptions. First, given its previous category, the current category is independent

of other categories. Moreover, given its current category, the symbol is independent of other categories and

symbols. A MEMM is built under one conditional independence assumption. Given its previous category and

the current symbol, the current category is independent to other categories and symbols. A CRF is built under

the same two conditional assumptions as a HMM . The model presented on this paper makes one conditional

independence assumption. Given the current, the preceding, and the succeeding symbol, the current category is

independent of other categories and symbols.

Joint Probability Decompositionl Expressions. The joint probabiity decomposition associated with directed

graphic models can be read directly from its graphical representation. The joint probability decomposition for

undirected graphical models can be derived by taking the product of the cliques divided by the product of

separators. In Figure 9, the HMM and the MEMM are directed models while the CRF and our model are

undirected models. The joint or conditional probability decompositions of these models are as follows.

– HMMs:

p(c, s) =
N∏

i=1

p(si|ci)p(ci|ci−1)

– MEMMs:

p(c|s) =
∏N

i=1 p(ci|ci−1si)∑
cn∈C

∏N
n=1 p(cn|cn−1sn)

– CRF s:

p(c|s) =
∏N

i=1 p(si|ci)p(ci|ci−1)∑
cn∈C

∏N
n=1 p(sn|cn)p(cn|cn−1)

– Our model:

p(c|s) =
∏N

i=1 p(si−1|si, ci)p(si+1|si, ci)p(si|ci)p(ci)∑
cn∈C

∏N
n=1 p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

Comparing the numerators for p(c|s), MEMM has one term, CRF has two terms, and our model has four

terms in a numerator. In all the other models, ci and ci−1 appear together in some term. In our model ci and

ci−1 never appear together in the same term.



Comparisons Related To The Three Tasks. A numbers of methods for NP chunking [16] [17] [1] [18] [13],

word sense disambiguation [19] [20] [8] [21] [22], and semantic role labelling [23] [24] [25] [26] [27] have

been developed over the years. We adopted some ideas from these methods. For instance, in NP chunking, we

follow Ramshaw’s idea [17] of designing three categories for a word in a sentence to determine whether the

word is inside a NP chunk, outside a NP chunk, or the start a new NP chunk. However, most methods for this

task use HMMs [2] [1], MEMMs[2], and CRFs[3] [11]. In contrast to these methods, we have created a new

method whose graphical model uses a different set of conditional independence assumptions.. Our model is fast,

uses less memory, and works well for text data.

In the WSD task, in contrast with other WSD methods, the polysemous word is represented by a sequences

of context symbols, each symbol is an ordered pair of the lexicon and the POS tag of a word. Each symbol is

represented by it’s left symbol and right symbol. Moreover, in semantic argument identification task, most ex-

isting methods transform a syntactic tree into a sequence of constituents. Each argument of a verb is represented

by a set of constituents. Each constituent is represented by a set of features. These features are extracted based

on linguistic knowledge and local knowledge of the tree structure. Finally, sophisticated classifiers such as sup-

port vector machines or maximum entropy classifiers have been employed to identify the semantic arguments of

each verb. In contrast to these methods, our method is based on the idea that if a sentence has a correspondent la-

beled rooted tree, a semantic argument of a verb in the sentence will be associated with a labeled rooted subtree.

Hence, all semantic arguments of a verb in the sentence will be represented by a set of labeled rooted subtrees.

For each verb node v, there exists a path, from which, all roots of the subtrees will be extracted. Obviously, the

unique feature, which is a path, represents all semantic arguments of a verb. We find such a path for each verb

in a labeled rooted tree associated with a sentence by the probabilistic graphical model.

6 Conclusions

We have discussed a new probabilistic graphical model. The joint probability for obtaining a sequence of cat-

egories from a sequence of symbols has a decomposition as a product of marginal and conditional probability

functions. It does not need to employ dynamic programming for obtaining a sequence of optimal categories. As

a consequence, it requires less computing time and less memory space then existing graphical models. More-

over, because a sequence of optimal categories for a sequence of symbols is determined by finding the optimal

category for each symbol independently, the misclassification rate is reduced. The performance of our model



on three different types of text pattern recognition: noun phase identification, word sense disambiguation, and

semantic arguments of a verb classification, is better than or equal to that compared to other state of the art

algorithms, thereby demonstrating its superiority and effectiveness.
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