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Abstract

A complete mathematical treatment is given for describing
the topographic primal sketch of the underlying gray tone
intensity surface of a digital image. Each picture element
is independently classified and assigned a unique descriptive
label, invariant under monotonically increasing gray

tone transformations from the set (peak, pit, ridge, ravine,
saddle, flar, and hillside), with hillside having subcategories
(inflection point, slope, convex hill, concave hill, and saddle
hill). The topographic classification is based on the first
and second directional derivatives of the estimated image-
intensity surface. A local, fucet model, two-dimensional,
cubic polvnomial fit is done to estimate the image-intensity
surface. Zero-crossings of the first directional derivative
are identified as locations of interest in the image.

1. Introduction

Representing the fundamental structure of a digital
image in a rich and robust way is a primary problem
encountered in any general robotics computer-vision
system that has to ‘‘understand” an image. The
richness is needed so that shading, highlighting, and
shadow information, which are usually present in
real manufacturing assembly line situations, are en-
coded. Richness permits unambiguous object match-
ing to be accomplished. Robustness is needed so
that the representation is invariant with respect to
monotonically increasing gray tone transformations.
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The Topographic
Primal Sketch

Current representations involving edges or the primal
sketch as described by Marr (1976; 1980) are im-
poverished in the sense that they are insufficient for
unambiguous matching. They also do not have the
required invariance. Basic research is needed to

. (1) define an appropriate representation, (2) develop

a theory that establishes its relationship to properties
that three-dimensional objects manifest on the image,
and (3) prove its utility in practice. Until this is done,
computer-vision research must inevitably be more
ad hoc sophistication than science.

The basis of the topographic primal sketch con-
sists of the classification and grouping of the under-
lying image-intensity surface patches according to
the categories defined by monotonic, gray tone, in-
variant functions of directional derivatives. Exam-
ples of such categories are peak, pit, ridge, ravine,
saddle, flat, and hillside. From this initial classifica-
tion, we can group categories to obtain a rich, hier-
archical, and structurally complete representation
of the fundamental image structure. We call this
representation the topographic primal sketch.

Why do we believe that this topographic primal
sketch can be the basis for computer vision? We
believe it because the light-intensity variations on an
image are caused by an object’s surface orientation,
its reflectance, and characteristics of its lighting
source. If any of the three-dimensional intrinsic sur-
face characteristics are to be detected, they will
be detected owing to the nature of light-intensity
variations. Thus, the first step is to discover a robust
representation that can encode the nature of these
light-intensity variations, a representation that does
not change with strength of lighting or with gain
settings on the sensing camera. The topographic
classification does just that. The basic research issue
is to define a set of categories sufficiently complete
to form groupings and structures that have strong
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relationships to the reflectances, surface orientations,
and surface positions of the three-dimensional ob-
jects viewed in the image.

1.1. THE INVARIANCE REQUIREMENT

A digital image can be obtained with a variety of
sensing-camera gain settings. It can be visually en-
hanced by an appropriate adjustment of the camera’s
dynamic range. The gain setting or the enhancing,
point operator changes the image by some mono-
tonically increasing function that is not necessarily
linear. For example, nonlinear, enhancing, point
operators of this type include histogram normaliza-
tion and equal probability quantization.

In visual perception, exactly the same visual inter-
pretation and understanding of a pictured scene oc-
curs whether the camera’s gain setting is low or high
and whether the image is enhanced or unenhanced.
The only difference is that the enhanced image has
more contrast, is nicer to look at, and is understood
more quickly by the human visual system.

This fact is important because it suggests that
many of the current-low-level computer-vision tech-
niques, which are based on edges, cannot ever hope
to have the robustness associated with human visual
perception. They cannot have the robustness, be-
cause they are inherently incapable of invariance
under monotonic transformations. For example,
edges based on zero-crossings of second derivatives
will change in position as the monotonic gray tone
transformation changes because convexity of a gray
tone intensity surface is not preserved under such
transformations. However, the topographic cate-
gories peak, pit, ridge, valley, saddle, flat, and hill-
side do have the required invariance.

1.2. BACKGROUND

Marr (1976) argues that the first level of visual pro-
cessing is the computation of a rich description of
gray level changes present in an image, and that all
subsequent computations are done in terms of this
description, which he calls the primal sketch. Gray
level changes are usually associated with edges, and

Marr’s primal sketch has, for each area of gray level
change, a description that includes type, position,
orientation, and fuzziness of edge. Marr (1980) illus-
trates that from this information it is sometimes pos-
sible to reconstruct the image to a reasonable de-
gree. Unfortunately, as mentioned earlier, edge is
not invariant with respect to monotonic image trans-
formations; besides, it is not a rich enough structure.
For example, difficulty has been experienced in
using edges to accomplish unambiguous stereo
matching.

The topographic primal sketch we are discussing
as a basis for a representation has the required rich-
ness and invariance properties and is very much in
the spirit of Marr’s primal sketch and the thinking
behind Ehrich’s relational trees (Ehrich and Foith
1978). Instead of concentrating on gray level changes
as edges as Marr does, or on one-dimensional ex-
trema as Ehrich and Foith, we concentrate on all
types of two-dimensional gray level variations. We
consider each area on an image to be a spatial distri-
bution of gray levels that constitutes a surface or
facet of gray tone intensities having a specific sur-
face shape. It is likely that, if we could describe the
shape of the gray tone intensity surface for each
pixel, then by assembling all the shape fragments we
could reconstruct, in a relative way, the entire sur-
face of the image’s gray tone intensity values. The
shapes that we already know about that have the
invariance property are peak, pit, ridge, ravine,
saddle, flat, and hillside, with hillside having non-
invariant subcategories of slope, inflection, saddle
hillside, convex hillside, and concave hillside.

Knowing that a pixel’s surface has the shape of a
peak does not tell us precisely where in the pixel
the peak occurs; nor does it tell us the height of the
peak or the magnitude of the slope around the peak.
The topographic labeling, however, does satisfy
Marr’'s (1976) primal sketch requirement in that it
contains a symbolic description of the gray tone
intensity changes. Furthermore, upon computing and
binding to each topographic label numerical descrip-
tors such as gradient magnitude and direction, di-
rections of the extrema of the second directional
derivative along with their values, a reasonable abso-
lIute description of each surface shape can be ob-
tained.
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1.3. FACET MoDEL

The facet model states that all processing of digital
image data has its final authoritative interpretation
relative to what the processing does to the under-
lying gray tone intensity surface. The digital image’s
pixel values are noisy sampled observations of the
underlying surface. Thus, in order to do any pro-
cessing, we at least have to estimate at each pixel
position what this underlying surface is. This re-
quires a model that describes what the general form
of the surface would be in the neighborhood of any
pixel if there were no noise. To estimate the surface
from the neighborhood around a pixel then amounts
to estimating the free parameters of the general
form. It is important to note that if a different gen-
eral form is assumed, then a different estimate of the
surface is produced. Thus the assumption of a par-
ticular general form is necessary and has conse-
quences.

The general form we use is a bivariate cubic. We
assume that the neighborhood around each pixel
is suitably fit by a bivariate cubic (Haralick 1981;
1982). Having estimated this surface around each
pixel, the first and second directional derivatives are
easily computed by analytic means. The topographic
classification of the surface facet is based totally on
the first and second directional derivatives. We clas-
sify each surface point as peak, pit, ridge, ravine,
saddle, flat, or hillside, with hillside being broken
down further into the subcategories inflection point,
convex hill, concave hill, saddle hill, and slope. Our
set of topographic labels is complete in the sense
that every combination of values of the first and
second directional derivative is uniquely assigned
to one of the classes.

1.4. PREVIOUS WORK

Detection of topographic structures in a digital image
is not a new idea. There has been a wide variety of
techniques described to detect pits, peaks, ridges,
ravines, and the like.

Peuker and Johnston (1972) characterize the sur-
face shape by the sequence of positive and negative
differences as successive surrounding points are
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compared to the central point, Peuker and Douglas
(1975) describe several variations of this method for
detecting one of the shapes from the set (pit, peak,
pass, ridge, ravine, break, slope, flat). They start
with the most frequent feature (slope) and proceed
to the less frequent, thus making it an order-depen-
dent algorithm.

Johnston and Rosenfeld (1975) attempt to find
peaks by finding all points P such that no points in
an n-by-n neighborhood surrounding P have greater
elevation than P. Pits are found in an analogous
manner. To find ridges, they identify points that are
either east-west or north-south elevation maxima.
This is done using a ‘‘smoothed’’ array in which
each point is given the highest elevation ina 2 x 2
square containing it. East-west and north-south max-
ima are also found on this array. Ravines are found
in a similar manner.

Paton (1975) uses a six-term quadratic expansion
in Legendre polynomials fitted to a small disk around
each pixel. The most significant coefficients of the
second-order polynomial yield a descriptive label
chosen from the set (constant, ridge, valley, peak,
bowl, saddle, ambiguous). He uses the continuous
least-squares-fit formulation in setting up the surface-
fit equations as opposed to the discrete least-squares
fit used in the facet model. The continuous fit is a
more expensive computation than the discrete fit
and results in a steplike approximation.

Grender’s (1976) algorithm compares the gray
level elevation of a central point with surrounding
elevations at a given distance around the perimeter
of a circular window; the radius of the window may
be increased in successive passes through the image.
His topographic labeling set consists of slope, ridge,
valley, knob, sink, saddle.

Toriwaki and Fukumara (1978) take a totally dif-
ferent approach from all the others. They use two
local features of gray level pictures, connectivity
number, and coefficient of curvature for classifica-
tion of the pixel into peak, pit, ridge, ravine, hillside,
pass. They then describe how to extract structural
information from the image once the labelings have
been made. This structural information consists of
ridge-lines, ravine-lines, and the like.

Hsu, Mundy, and Beaudet (1978) use a quadratic
surface approximation at every point on the image
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surface. The principal axes of the quadratic approxi-
mation are used as directions in which to segment
the image. Lines emanating from the center pixel in
these directions thus provide natural boundaries of
patches approximating the surface. The authors then
selectively generate the principal axes from some
critical points distributed over an image and inter-
connect them into a network to get an approxima-
tion of the image data. In this network, which they
call the web representation, the axes divide the im-
age into regions and show important features such
as edges and peaks. They are then able to extract a
set of primitive features from the nodes of the net-
work by mask matching. Global features, such as
ridge-lines, are obtained by state transition rules.

Lee and Fu (1981) define a set of 3 x 3 templates
that they convolve over the image to give each class
except plain a figure of merit. Their set of labels
includes none, plain, slope, ridge, valley, foot, shoul-
der. Thresholds are used to determine into which
class the pixel will fall. In their scheme, a pixel may
satisfy the definition of zero, one, or more than one
class. Ambiguity is resolved by choosing the class
with the highest figure of merit.

1.5. A MATHEMATICAL APPROACH

From the previous discussion, one can see that a
wide variety of methods and labels has been pro-
posed to describe the topographic structure in a
digital image. Some of the methods require multiple
passes through the image, while others may give
ambiguous labels to a pixel. Many of the methods
are heuristic in nature. The Hsu, Mundy, and Beudet
(1978) approach is the most similar to the one dis-
cussed here.

Our classification approach is based on the esti-
mation of the first- and second-order directional
derivatives. Thus, we regard the digital-picture func-
tion as a sampling of the underlying function f,
where some kind of random noise is added to the
true function values. To estimate the first and sec-
ond partials, we must assume some kind of para-
metric form for the underlying function f. The classi-
fier must use the sampled brightness values of the
digital-picture function to estimate the parameters

and then make decisions regarding the locations of
relative extrema of partial derivatives based on the
estimated values of the parameters.

In Section 2, we will discuss the mathematical
properties of the topographic structures in terms of
the directional derivatives in the continuous surface
domain. Because a digital image is a sampled sur-
face and each pixel has an area associated with it,
characteristic topographic structures may occur any-
where within a pixel’'s area. Thus, the implementa-
tion of the mathematical topographic definitions is
not entirely trivial.

In Section 3 we will discuss the implementation
of the classification scheme on a digital image. To
identify categories that are local one-dimensional
extrema, such as peak, pit, ridge, ravine, and saddle,
we search inside the pixel’s area for a zero-crossing
of the first directional derivative. The directions in
which we seek the zero-crossing are along the lines
of extreme curvature.

In Section 4, we will discuss the local cubic esti-
mation scheme. In Section 35, we will summarize the
algorithm for topographic classification using the
local facet model. In Section 6, we will show the
results of the classifier on several test images.

2. The Mathematical Classification of
Topographic Structures

In this section, we formulate our notion of topo-
graphic structures on continuous surfaces and show
their invariance under monotonically increasing gray
tone transformations. In order to understand the
mathematical properties used to define our topo-
graphic structures, one must understand the idea of
the directional derivative discussed in most advanced
calculus books. For completeness, we first give the
definition of the directional derivative, then the defi-
tions of the topographic labels. Finally, we show
the invariance under monotonically increasing gray
tone transformations.

2.1. THE DIRECTIONAL DERIVATIVE

In two dimensions, the rate of change of a function
fdepends on direction. We denote the directional
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e,

derivative of f at the point (7, ¢) in the direction B
by fa(r, c). It is defined as

filr, ¢) = lim R e i g +hh* cos B) — f(r, c).
h—0

The direction angle 8 is the clockwise angle from the
column axis. It follows directly from this definition
that

’ _of ; af
fﬂ(rac)_g(rac)*sullﬁ_'-ac(rsc)*COSB-
We denote the second derivative of f at the point

(r, ¢} in the direction 8 by fi(r, ¢), and it follows that

2 2
"

o
i T

* sin B * cos 3

&
+ ke cos? 3.

The gradient of f is a vector whose magnitude,

F:) 2 3 2y 1/2
(&) - G)
at a given point (r, ¢) is the maximum rate of change
of f at that point, and whose direction,

of
o
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dc

tan™?!

is the direction in which the surface has the greatest
rate of change.

2.2. THE MATHEMATICAL PROPERTIES

We will use the following notation to describe the
mathematical properties of our various topographic
categories for continuous surfaces. Let

vf = gradient vector of a function f;

A = gradient magnitude;

w® = unit vector in direction in which second
54

directional derivative has greatest mag-

nitude;

o® = unit vector orthogonal to w'?;

A = value of second directional derivative
in the direction of w'V;

Az = value of second directional derivative

in the direction of w'®;

value of first directional derivative in

the direction of ; and

Vf - o = value of first directional derivative in
the direction of w®.

Vf w(]) -

Without loss of generality, we assume |\;| > = |Ay.

Each type of topographic structure in our classi-
fication scheme is defined in terms of the above
quantities. In order to calculate these values, the
first- and second-order partials with respect to r and
¢ need to be approximated. These five partials are
as follows:

aflor, ofloc, 8%f/ar?, d*flac?, &*f/ar ac.

The gradient vector is simply (af/ar, df/dc). The
second directional derivatives may be calculated by
forming the Hessian where the Hessian is a 2 x 2
matrix defined as

_ | 8%flar®

3*fior oc
= *floc or

a*flac?

Hessian matrices are used extensively in nonlinear
programming. Only three parameters are required
to determine the Hessian matrix H, since the order
of differentiation of the cross partials may be inter-
changed. That is,

d*flor 9c = % /ac or.

The eigenvalues of the Hessian are the values of
the extrema of the second directional derivative, and
their associated eigenvectors are the directions in
which the second directional derivative is extrem-
ized. This can easily be seen by rewriting f; as the
quadratic form

sin B

fi = (sin Bcos B) * H * cos
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Fig. I. Right circular
cone.

Thus

HoW = \o®, and Ho® = Ao?.

Furthermore, the two directions represented by the
eigenvectors are orthogonal to one another. Since
H is a 2 x 2 symmetric matrix, calculation of the
eigenvalues and eigenvectors can be done efficiently
and accurately using the method of Rutishauser
(1971). We may obtain the values of the first direc-
tional derivative by simply taking the dot product
of the gradient with the appropriate eigenvector:

Vf m{l}
Vf m(E)‘

There is a direct relationship between the eigen-
values A, and A, and curvature in the directions '
and »®: When the first directional derivative Vf -
w® = 0, then A/(1 + (Vf - Vf))¥? is the curvature in
the direction o™, i = 1 or 2.

Having the gradient magnitude and direction and
the eigenvalues and eigenvectors of the Hessian, we
can describe the topographic classification scheme.

2.2.1. Peak

A peak (knob) occurs where there is a local maxima
in all directions. In other words, we are on a peak if,
no matter what direction we look in, we see no point
that is as high as the one we are on (Fig. 1). The
curvature is downward in all directions. At a peak
the gradient is zero, and the second directional de-
rectional derivative is negative in all directions. To
test whether the second directional derivative is
negative in all directions, we just have to examine
the value of the second directional derivative in the
directions that make it smallest and largest. A point
is therefore classified as a peak if it satisfies the fol-
lowing conditions:

V] = 0, A < 0, Ag < 0.

2.2.2. Pit

A pit (sink, bowl) is identical to a peak except that
it is a local minima in all directions rather than a
local maxima. At a pit the gradient is zero, and the
second directional derivative is positive in all direc-
tions. A point is classified as a pit if it satisfies the
following conditions:

VAl = 0, Ay > 0, A2 > 0.

2.2.3. Ridge

A ridge occurs on a ridge-line, a curve consisting of
a series of ridge points. As we walk along the ridge-
line, the points to the right and left of us are lower
than the ones we are on. Furthermore, the ridge-
line may be flat, slope upward, slope downward,
curve upward, or curve downward. A ridge occurs
where there is a local maximum in one direction,

as illustrated in Fig. 2. Therefore, it must have nega-
tive second-directional derivative in the direction
across the ridge and also a zero first-directional de-
rivative in that same direction. The direction in
which the local maximum occurs may correspond to
either of the directions in which the curvature is
“extremized,’’ since the ridge itself may be curved.
For nonflat ridges, this leads to the first two cases
below for ridge characterization. If the ridge is flat,
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Fig. 2. Saddle surface.
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then the ridge-line is horizontal and the gradient is
zero along it. This corresponds to the third case.
The defining characteristic is that the second direc-
tional derivative in the direction of the ridge-line is
zero, while the second directional derivative across
the ridge-line is negative. A point is therefore classi-
fied as a ridge if it satisfies any one of the following
three sets of conditions:

VAl # 0, Ay <0, ¥F - w® = 0

or

VAl # 0, Ae <0, VF- 0@ =0
or

INfll = 0, Ay < 0, Az = O.
56

A geometric way of thinking about the definition
for ridge is to realize that the condition Vf - o = 0
means that the gradient direction (which is defined
for nonzero gradients) is orthogonal to the direction
o of extremized curvature.

2.2.4. Ravine

A ravine (valley) is identical to a ridge except that
it is a local minimum (rather than maximum) in one
direction. As we walk along the ravine-line, the
points to the right and left of us are higher than the
one we are on (see Fig. 2). A point is classified as a
ravine if it satisfies any one of the following three
sets of conditions:

"vﬂl ?é 0, A.l > O, Vf- 0)(]) =0

or
”Vﬂl ?é 0, }\2 > 0’ Vf. w(2] = {)

or )
va” =0, M > 0, A2 = 0.

2.2.5. Saddle

A saddle occurs where there is a local maximum in
one direction and a local minimum in a perpendicular
direction, as illustrated in Fig. 2. A saddle must
therefore have positive curvature in one direction
and negative curvature in a perpendicular direction.
At a saddle, the gradient magnitude must be zero
and the extrema of the second directional derivative
must have opposite signs. A point is classified as a
saddle if it satisfies the following conditions:

9F]l = 0, Ay * A, < 0.

2.2.6. Flat

A flat (plain) is a simple, horizontal surface, as illus-
trated in Fig. 3. It, therefore, must have zero gra-
dient and no curvature. A point is classified as a
flat if it satisfies the following conditions:

VAl = 0, Ay = 0, As = 0.
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Fig. 3. Hillside.

Given that the above conditions are true, a flat
may be further classified as a foot or shoulder. A
foot occurs at that point where the flat just begins
to turn up into a hill. At this point, the third direc-
tional derivative in the direction toward the hill will
be nonzero, and the surface increases in this direc-
tion. The shoulder is an analogous case and occurs
where the flat is ending and turning down into a hill.
At this point, the maximum magnitude of the third
directional derivative is nonzero, and the surface
decreases in the direction toward the hill. If the third
directional derivative is zero in all directions, then
we are in a flat, not near a hill. Thus a flat may be
further qualified as being a foot or shoulder, or not
qualified at all.

2.2.7. Hillside

A hillside point is anything not covered by the pre-
vious categories. It has a nonzero gradient and no
strict extrema in the directions of maximum and
minimum second directional derivative. If the hill is
simply a tilted flat (i.e., has constant gradient), we
call it a slope. If its curvature is positive (upward),
we call it a convex hill. If its curvature is negative
(downward), we call it a concave hill. If the curva-
ture is up in one direction and down in a perpen-
dicular direction, we call it a saddle hill. A saddle
hill is illustrated in Fig. 2, and the slope, convex
hill, and concave hill are illustrated in Fig. 3.

A point on a hillside is an inflection point if it
has a zero-crossing of the second directional deriv-
ative taken in the direction of the gradient. The in-
flection-point class is the same as the step edge de-
fined by Haralick (1982), who classifies a pixel as a
step edge if there is some point in the pixel’s area
having a zero-crossing of the second directional de-
rivative taken in the direction of the gradient.

To determine whether a point is a hillside, we just
take the complement of the disjunction of the condi-
tions given for all the previous classes. Thus if there
is no curvature, then the gradient must be nonzero.
If there is curvature, then the point must not be a
relative extremum. Therefore, a point is classified
as a hillside if all three sets of the following condi-
tions are true ('—' represents the operation of logical
implication):

M= N=0-—[V#0,
and

A #E 0o Vo #£0,
and

Ao # 0= Vf - 0® # 0.

Rewritten as a disjunction of clauses rather than a
conjunction of clauses, a point is classified as a hill-
side if any one of the following four sets of condi-
tions are true:

Vf-w® £ 0, V0 # 0
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or
Vi o #0, =0
or
Vf-a® #0, =0
or

||Vﬂl ?é 0, )\.1 = 0, A.g =0.

We can differentiate between different classes of
hillsides by the values of the second directional de-
rivative. The distinction can be made as follows:

Slope ifA=X=0
Convex ifx>=x>=0M#0
Concave ifA <=N<=0,1#0

Saddle hill if A; * A, < 0

A slope, convex, concave, or saddle hill is classi-
fied as an inflection point if there is a zero-crossing
of the second directional derivative in the direction
of maximum first directional derivative (i.e., the
gradient).

2.2.8. Summary of the Topographic Categories

A summary of the mathematical properties of our
topographic structures on continuous surfaces can
be found in Table 1. The table exhaustively defines
the topographic classes by their gradient magnitude,
second directional derivative extrema values, and
the first directional derivatives taken in the direc-

tions which extremize second directional derivatives.

Each entry in the table is either 0, +, —, or *. The
0 means not significantly different from zero; +

means significantly different from zero on the posi-
tive side; — means significantly different from zero

on the negative side, and * means it does not matter.

The label **Cannot occur’’ means that it is impos-
sible for the gradient to be nonzero and the first
directional derivative to be zero in two orthogonal
directions.

From the table, one can see that our classifica-
tion scheme is complete. All possible combinations
of first and second directional derivatives have a
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Table 1. Mathematical Properties of
Topographic Structures

IVl AN A Yf-0® V- o®  Label

Peak
Ridge
Saddle
Flat
Saddle
Ravine
Pit
Hillside
Ridge

0 Ridge
Hillside
Hillside
Hillside
, Hillside
s * Hillside
0 # Ravine
* 0 Ravine
Hillside

+ +++++++++++ cooccocoo
+x+++S | | % | +++ o
++roc o+ *» ] +o | o+ o |

|

* ®* O cCoCcoooo
+
|

% *“+ coocococoo

*
*
o
(=]

Cannot occur

corresponding entry in the table. Each topographic
category has a set of mathematical properties that
uniquely determines it.

(Note: Special attention is required for the degen-
erate case Ay = A\, # 0, which implies that »® and
«® can be any two orthogonal directions. In this
case, there always exists an extreme direction w
which is orthogonal to Vf, and thus the first direc-
tional derivative Vf - w is always zero in an extreme
direction. To avoid spurious zero directional deriva-
tives, we choose o'’ and w® such that Vf - o # 0
and Vf - «® # 0, unless the gradient is zero.)

2.3. THE INVARIANCE OF THE
ToroGRAPHIC CATEGORIES

In this section, we show that the topographic labels
(peak, pit, ridge, ravine, saddle, flat, and hillside),
the gradient direction, and directions of second di-
rectional derivative extrema for peak, pit, ridge,
ravine, and saddle are all invariant under monotoni-
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cally increasing gray tone transformations. We take
monotonically increasing to mean positive deriva-
tive everywhere.

Let the original underlying gray tone surface be
f(r, c). Let w be a monotonically increasing gray
tone transformation, and let g(r, c) denote the trans-
formed image: g(r, ¢) = w(f(r, ¢)). It is directly de-
rivable that

gi(r, ) = w'(f(r, ) * falr, ©),

from which we obtain that

galr, c) =w'(f(r, ) * f5(r, c) + w'(falr, €)) * falr, c)*.

Let us fix a position (r, ¢). Since w is a mono-
tonically increasing function, w' is positive. In par-
ticular, w' is not zero. Hence the direction g8 which
maximizes g; also maximizes f3, thereby showing
that the gradient directions are the same. The cate-
gories peak, pit, ridge, ravine, saddle, and flat all
have in common the essential property that the first
directional derivative is zero when taken in a direc-
tion that extremizes the second directional deriva-
tive. To see the invariance, let 8 be an extremizing
direction of . Then for points (r, ¢) having a label
(peak, pit, ridge, ravine, saddle, or flat), fs(r, ¢) = 0,
and df;(r, c)/aB = 0. Notice that

dgs 4 fa w"

—==w s fi+ 25w # + (fs)? —.

3B L fa fe B
Hence for these points, gs(r, ¢) = 0, and

agalr, c)ap = 0,

thereby showing that at these points the directions
that extremize fj are precisely the directions that
extremize gz, and that gz will always have the same
sign as f3. A similar argument shows that if 8 ex-
tremizes gj and satisfies g = 0, then 8 must also ex-
tremize fj and satisfy f; = 0. Therefore, any points
in the original image with the labels peak, pit, ridge,
saddle, or flat retain the same label in the trans-
formed image and, conversely, any points in the
transformed image will have the same label in the
original image.

Any pixel with a label not in the set (peak, pit,
ridge, ravine, saddle, and flat) must have a hillside
label. Thus, a point labeled hillside must be trans-
formed to a hillside-labeled point. However, the
subcategories (inflection point, slope, convex hill,
concave hill, and saddle hill) may change under the
gray tone transformation.

2.4. RIDGE AND RAVINE CONTINUA

Although the definitions given for ridge and ravine
are intuitively pleasing, they may lead to the unex-
pected consequence of having entire areas of a sur-
face classified as all ridge or all ravine. To see how
this can occur, observe that the eigenvalue A = A(r, c)
satisfies

2.
Ar, ©) =E g—r{(r, c) + f(r c)
||
* dar dc r, C)
2 2] 1/2
+ ‘ arj; {5 B C{ (#; €}

For there to be a ridge or ravine at a point (r, c),
the corresponding eigenvector w(r, ¢) must be per-
pendicular to the gradient direction. Therefore,

Vf - w = 0. If this equation holds for a point (r, ¢)
and not all points in a small neighborhood about

(r, ¢), there is a ridge or ravine in the commonly un-
derstood sense. However, if this equation holds for
all points in a neighborhood about (r, ¢), then we
have a ridge or ravine continuum by the criteria of
Sections 2.2.3 and 2.2.4.

Unfortunately, there are ‘‘nonpathologic’ surfaces
having ridge or ravine continuums. Simple, radially
symmetric examples include the inverted right cir-
cular cone defined by

flr, ) = (r* + )12,
the hemisphere defined by
flr.e) =

or, in fact, any function of the form A(r* + ¢?). In

(k2 — ’.2 —_ 62)11'2,
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the case of the cone, the gradient is proportional
to (r, ¢), and the unnormalized eigenvectors corre-
sponding to eigenvalues

Ar,c) =2+ ¢®) " and 0

are (—c, r) and (r, ¢) respectively. The eigenvector
corresponding to the nonzero eigenvalue is orthog-
onal to the gradient direction. The entire surface of
the inverted cone, except for the apex, is a ravine.
Other, nonradially symmetric examples exist as well.

The identification of points that are really ridge or
ravine continuums can be made as a postprocessing
step. Points that are labeled as ridge or ravine and
that have neighboring points in a direction orthog-
onal to the gradient that are also labeled ridge or
ravine are ridge or ravine continuums. These con-
tinuums can be reclassified as hillsides.

3. The Topographic Classification Algorithm

The definitions of Section 2 cannot be used directly
since there is a problem of where in a pixel’s area
to apply the classification. If the classification were
only applied to the point at the center of each pixel,
then a pixel having a peak near one of its corners,
for example, would get classified as a concave hill
rather than as a peak. The problem is that the topo-
graphic classification we are interested in must be a
sampling of the actual topographic surface classes.
Most likely, the interesting categories of peak, pit,
ridge, ravine, and saddle will never occur precisely
at a pixel’s center, and if they do occur in a pixel's
area, then the pixel must carry that label rather than
the class label of the pixel’s center point. Thus one
problem we must solve is to determine the dominant
label for a pixel given the topographic class label
of every point in the pixel. The next problem we
must solve is to determine, in effect, the set of all
topographic classes occurring within a pixel’s area
without having to do the impossible brute-force com-
putation.

For the purpose of solving these problems, we
divide the set of topographic labels into two subsets:
(1) those that indicate that a strict, local, one-dimen-

sional extremum has occurred (peak, pit, ridge, ra-
vine, and saddle) and (2) those that do not indicate
that a strict, local, one-dimensional extremum has
occurred (flat and hillside). By one-dimensional, we
mean along a line (in a particular direction). A strict,
local, one-dimensional extremum can be located by
finding those points within a pixel's area where a
zero-crossing of the first directional derivative occurs.
So that we do not search the pixel's entire area for
the zero-crossing, we only search in the directions
of extreme second directional derivative, o'’ and
. Since these directions are well aligned with
curvature properties, the chance of overlooking an
important topographic structure is minimized, and,
more importantly, the computational cost is small.
When A, = A # 0, the directions o' and »® are
not uniquely defined. We handle this case by search-
ing for a zero-crossing in the direction given by
H™! * Vf. This is the Newton direction, and it points
directly toward the extremum of a quadratic surface.
For inflection-point location (first derivative ex-
tremum), we search along the gradient direction for
a zero-crossing of second directional derivative. For
one-dimensional extrema, there are four cases to
consider: (1) no zero-crossing, (2) one zero-crossing,
(3) two zero-crossings, and (4) more than two zero-
crossings. The next four sections discuss these cases.

3.1. Case ONE: No ZERO-CROSSING

If no zero-crossing is found along either of the two
extreme directions within the pixel’s area, then the
pixel cannot be a local extremum and therefore must
be assigned a label from the set (flat or hillside). If
the gradient is zero, we have a flat. If it is nonzero,
we have a hillside. If the pixel is a hillside, we clas-
sify it further into inflection point, slope, convex hill,
concave hill, or saddle hill. If there is a zero-crossing
of the second directional derivative in the direction
of the gradient within the pixel’'s area, the pixel is
classified as an inflection point. If no such zero-
crossing occurs, the label assigned to the pixel is
based on the gradient magnitude and Hessian eigen-
values calculated at the center of the pixel, local
coordinates (0, 0), as in Table 2.
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Table 2. Pixel Label Calculation for Case One:
No Zero-Crossing

Table 3. Pixel Label Calculation for Case Two:
One Zero-Crossing

%A1 M As Label [1vA M Az Label
0 0 0 Flat 0 — — Peak
+ - - Concave hill 0 - 0 Ridge
+ - 0 Concave hill 0 - + Saddle
+ - + Saddle hill 0 + - Saddle
+ 0 0 Slope 0 + 0 Ravine
+ - - Saddle hill 0 + + Pit
+ + 0 Convex hill
+ + + Convex hill

3.2. Case Two: ONE ZERO-CROSSING

If a zero-crossing of the first directional derivative is
found within the pixel's area, then the pixel is a
strict, local, one-dimensional extremum and must

be assigned a label from the set (peak, pit, ridge,
ravine, or saddle). At the location of the zero-cross-
ing, the Hessian and gradient are recomputed, and if
the gradient magnitude at the zero-crossing is zero,
Table 3 is used.

If the gradient magnitude is nonzero, then the
choice is either ridge or ravine. If the second direc-
tional derivative in the direction of the zero-crossing
is negative, we have a ridge. If it is positive, we
have a ravine. If it is zero, we compare the function
value at the center of the pixel, f(0, 0), with the
function value at the zero-crossing, f(r, ¢). If f(r, ¢) is
greater than £(0, 0), we call it a ridge, otherwise we
call it a ravine.

3.3. CasE THREE: Two ZERO-CROSSINGS

If we have two zero-crossings of the first directional
derivative, one in each direction of extreme curva-
ture, then the Hessian and gradient must be recom-
puted at each zero-crossing. Using the procedure
described in Section 3.2, we assign a label to each
zero-crossing. We call these labels LABEL1 and
LABEL?. The final classification given the pixel is
based on these two labels and is given in Table 4.

If both labels are identical, the pixel is given that
label. In the case of both labels being ridge, the pixel

Table 4. Final Pixel Classification, Case Three:
Two Zero-Crossings

Resulting
LABELI1 LABEL2 Label
Peak Peak Peak
Peak Ridge Peak
Pit Pit Pit
Pit Ravine Pit
Saddle Saddle Saddle
Ridge Ridge Ridge
Ridge Ravine Saddle -
Ridge Saddle Saddle
Ravine Ravine Ravine
Ravine Saddle Saddle

may actually be a peak, but experiments have shown
that this case is rare. An anlogous argument can be
made for both labels being ravine. If one label is
ridge and the other ravine, this indicates we are at or
very close to a saddle point, and thus the pixel is
classified as a saddle. If one label is peak and the
other ridge, we choose the category giving us the
“‘most information,”” which in this case is peak. The
peak is a local maximum in all directions, while the
ridge is a local maximum in only one direction. Thus,
peak conveys more information about the image
surface. An analogous argument can be made if the
labels are pit and ravine. Similarly, a saddle gives

us more information than a ridge or valley. Thus,

a pixel is assigned saddle if its zero-crossings have
been labeled ridge and saddle or ravine and saddle.
It is apparent from Table 4 that not all possible
label combinations are accounted for. Some combi-
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nations, such as peak and pit, are omitted because
of the assumption that the underlying surface is
smooth and sampled frequently enough that a peak
and pit will not both occur within the same pixel’s
area. If such a case occurs, our convention is to
choose arbitrarily one of LABEL1 or LABEL? as
the resulting label for the pixel.

3.4. Case Four: MORE THAN
Two ZERO-CROSSINGS

If more than two zero-crossings occur within a
pixel’s area, then in at least one of the extrema di-
rections there are two zero-crossings. If this hap-
pens, we choose the zero-crossing closest to the
pixel's center and ignore the other. If we ignore the
further zero-crossings, then this case is identical

to case 3. This situation has yet to occur in our ex-
periments.

4. Surface Estimation

In this section we discuss the estimation of the pa-
rameters required by the topographic classification
scheme of Section 2 using the local cubic facet model
(Haralick 1981). It is important to note that the clas-
sification scheme of Section 2 and the algorithm of
Section 3 are independent of the method used to
estimate the first- and second-order partials of the
underlying digital image-intensity surface at each
sampled point. Although we are currently using the
cubic model and discuss it here, we expect that a
spline-based estimation scheme or a discrete-cosines
estimation scheme may, in fact, provide better esti-
mates.

4.1. LocarL Cusic FACET MODEL

In order to estimate the required partial derivatives,
we perform a least-squares fit with a two-dimensional
surface, f, to a neighborhood of each pixel. It is re-
quired that the function f be continuous and have
continuous first- and second-order partial derivatives
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with respect to r and c in a neighborhood around
each pixel in the rc plane.

We choose f to be a cubic polynomial in r and ¢
expressed as a combination of discrete orthogonal
polynomials. The function fis the best discrete least-
squares polynomial approximation to the image data
in each pixel's neighborhood. More details can be
found in Haralick’s paper (1981), in which each co-
efficient of the cubic polynomial is evaluated as a
linear combination of the pixels in the fitting neigh-
borhood.

To express the procedure precisely and without
reference to a particular set of polynomials tied to
neighborhood size, we will canonically write the
fitted bicubic surface for each fitting neighborhood as

fr, ¢) = ki + kar + ksc
+ kyt? + kgre + kgc?
= k-ﬂ'ﬂ =+ k3r2C T kgrcz + kloCa,

where the center of the fitting neighborhood is taken
as the origin. It quickly follows that the needed par-
tials evaluated at local coordinates (r, ¢) are

af/or = ky + 2ksr + ksc + 3kqr? + 2kgre + koc?
af/ ac = kg + ksr + 2kgc + kgr? + 2kgrc + 3kyoc?
*fiar: = 2ky + Oker + 2kge
0% flac? = 2kg + 2kor + 6kyoc

azf/ar dc = kﬁ + Zkgr En 2kgC.

It is easy to see that if the above quantities are
evaluated at the center of the pixel where local co-
ordinates (r, ¢) = (0, 0), only the constant terms will
be of significance. If the partials need to be evalu-
ated at an arbitrary point in a pixel’s area, then a
linear or quadratic polynomial value must be com-
puted.

4.2. AN OBSERVATION ABouT Cusic FITs

A two-dimensional cubic polynomial includes an
arbitrary quadratic polynomial, and thus features like
pit, peak, and saddle can be replicated exactly. For
other surface features like ridges or ravines, cubics
are either exact or fairly decent approximations. It is
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Fig. 4. Cubic fit of step
edge that causes ravine
and ridge to occur.

Fig. 5. Cubic fir (dashed
line) of step edge (solid
line) with inflection
point outside window.

ir -
B e - Cubic Fit___ —
: ~ ==
L P - Original
oy 0 - 1 0 1
Original w r i
Cubic Fit i i

frequently possible to classify surface characteristics
correctly even though the surface is not like any
polynomial. For example, the center of the step edge
shown in Fig. 4 can be accurately predicted by the
inflection point of the cubic fit, which is quite good.
However, there are smooth surfaces that (over the
window being used) simply do not look like cubic
polynomials, and feature classifications based on the
best least-squares cubic polynomial approximation
will be incorrect. For example, in Fig. 4, the cubic
fit shows a prominent ravine at the foot of the slope,
and the foot pixel would be (incorrectly) labeled a
ravine pixel. Figure 5 shows a steplike edge whose
cubic fit has an inflection point outside the entire
window!

5. Summary of the Topographic
Classification Scheme

The scheme is a parallel process for topographic
classification of every pixel, which can be done in
one pass through the image. At each pixel of the

image, the following four steps need to be performed.

1. Calculate the fitting coefficients, &; through
kiq, of a two-dimensional cubic polynomial

in an n-by-n neighborhood around the pixel.
These coefficients are easily computed by
convolving the appropriate masks over the
image.

2. Use the coefficients calculated in step 1 to
find the gradient, gradient magnitude, and
the eigenvalues and eigenvectors of the Hes-
sian at the center of the pixel’s neighbor-
hood, (0, 0).

3. Search in the direction of the eigenvectors
calculated in step 2 for a zero-crossing of the
first directional derivative within the pixel’s
area. (If the eigenvalues of the Hessian are
equal and nonzero, then search in the New-
ton direction.)

4. Recompute the gradient, gradient magnitude,
and values of second directional derivative
extrema at each zero-crossing. Then apply
the labeling scheme as described in Sections
3.1-3.4.

6. Examples
In this section, we show the results of the topo-

graphic primal sketch on several test images, three
of which are simply described mathematical surfaces
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Fig. 6. A. Saddle surface.
B. Topographic labeling
of saddle surface.

and two of which are real images. We will also ex-
amine how the size of the window affects the results

of the classifier.

SADDLE SURFACE

A perfect saddle surface of size 64 x 64 having no
noise can be generated by the equation

f@r,c)=1r —ct

Taking the origin at image coordinates (32, 33), the
surface plot is as illustrated in Fig. 2, and the gray-
level image of the saddle surface is as illustrated in
Fig. 6A. The results of the classifier are shown in
Fig. 6B. Each number in the figure represents the
label assigned the pixel by the classifier. As ex-
pected, a ridge-line one pixel in width was found
running north-south, and, orthogonal to the ridge-
line, a ravine-line one pixel in width was found. The
center pixel of the surface was correctly classified
as a saddle point. All other pixels on the surface
were correctly classified as saddle hillsides.
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Inflection

Next, we add Gaussian noise to the saddle sur-
face. The noise has a mean of 0.0 and standard devi-
ation of 4.0. The results of the classifier using dif-
ferent sized windows (5 X 5,7 X 7,9 x 9, 11 x 11)
on the noisy surface are shown in Fig. 7. As the
window size increases, the results of the classifier
improve dramatically. The classification resulting
from the 11 X 11 window is almost identical to the
classification done on the original, perfectly smooth
surface. This would seem to suggest using as large
a window size as possible, but in the next example
we will show that this is not always a good idea.

6.2. RIDGES AND VALLEYS

A series of ridges and valleys can be generated across
the column direction by the following equation:
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Fig. 7. Neighborhood ravine (white). A. 5 X 5
topographic labeling of window. B. 7 X 7 window.
noisy saddle surface C. 9 x 9window. D. 11 X
showing ridge (black) and 11 window.
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window. C. Labeling with
9 x 9 window. D. Labeling
with 13 % 13 window.

Fig. 8. Image and topo-
graphic labeling of sine
waves. A. Image. B. Topo-
graphic labeling with 5 x 5

1 22362282363282363282363282346328+ !
1 22346328236328236328236328236328+ !
1 22363282363282362328236328236328+ !
1 22363282343282346328236328236328%+ !
1 22363282363282363282363282363284+ !
1 22363282363282363282346328236328+ !
' 2234632823463282346328236328236328% !
' 2236328236328236328236328236320% !
' 2236328236328236328236328236328% !
1 2236328236328236328236328236328 !
' 2236328236328236328236328236328% !
1223632823463282363282363282346328+ !
' 22362282363282363282363282346328% !
!223632823632823&32823632823&328*!
1 22363282346328236328236328236328+ !
'223&3“8“363”8”363”8”363“8“3&328*'

e et e e e e o e +
8b
lifcol=1,7
_J2ifcol=2,6
fr, ) =135t col = 3, 5
4 if col = 4
where col = mod(c — 1,7) + 1.

It is easy to see from the above equation that every
row will be the same with a ridge occurring every
sixth pixel beginning in column 4, and a ravine oc-
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curring every sixth pixel beginning in column 7. The
gray level plot of the 16 x 32 image is shown in
Fig. 8A. As expected, the ridges and ravines are
correctly identified. The results of the classifier using
window sizes 5 X 5,9 x 9, and 13 x 13 are found
in Figs. 8B, C, and D respectively. As the window
size increases, the results of the classifier become
less accurate. This result is exactly the opposite of
what happened on the saddle surface. The reason

is that this surface is much more ‘‘busy’’ than the
saddle surface. The larger window size on this par-
ticular surface results in too many complexities for
the cubic fit to handle.

The conclusion is that the window size used should
be a function of the noise and the complexity of the
image surface. One should use as big a window size
as possible without allowing the complexity of the
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Fig. 9. Surfuce of revolu-
tion. A. Surface plot.

B. Ravine ridge (black)
and ravine (white) label-
ing of the surface.

surface to degrade the cubic fit to any significant
degree.

6.3. SURFACE OF REVOLUTION

A surface of revolution of size 64 X 64 with no noise
can be generated by the equation

f(r, ¢) = k *sin (0.5 * (r* + c?)),

with origin at image coordinates (32, 32). The surface
plot is illustrated in Fig. 9A. The topographic label-
ing on this surface shows some surprising results.

A continuum of ridges and a continuum of ravines
are found on the surface (see Fig. 9B). The reasons
for these ridge and ravine points were discussed in
Section 2.4. Also, the local cubic fits are very poor
on this surface of revolution. This leads to some

unexpected results, such as the peaks found on the
rim of the surface where the ridges and ravines come
together. The pixels labeled saddle on the image
occur at locations where both a ridge and ravine
were detected within the same pixel.

Notice that the labelings produced are not per-
fectly symmetric, as one would expect on a radially
symmetric surface. The reason for this is that the
cubic surface estimation is done with rectangular
windows, which produces different cubic approxi-
mations at the same radial distance from the axis of
revolution and hence radially unsymmetric labeling.
Symmetric labeling would be produced by using a
circular window, but choosing a particular window
shape requires a priori knowledge of the nature of
the image surface.

6.4. REAL IMAGE

In this section, we show the results of the classifier
on two real images. The results on the top left cor-
ner of a chair image are illustrated in Fig. 10B. The
results on the upper middle section of the bin of

machine parts are illustrated in Fig. 11B. The van-
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Fig. 10. Results of the C. Ridges (black) and
classifier on a real ravines (white). D. Hill-
image. A. Chair. B. Upper side (white).

left corner of chair.

10a 10c
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Fig. 11. A. Screw. B. Ridges
(black). C. Ravines (white).
D. Convex hillside (white).
E. Concave hillside (black).
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Fig. 12. A. Machine parts.

B. Upper left corner show-

ing subimage ridges (black)
and ravines (white). C.

70

Center showing subimage
ridges (black) and ravines
(white).

ous nonflat labels in the backgrounds of the images
are caused by very slight dips and rises in the cubic
surface fit. These may be cleaned up by requiring
the eigenvalues to be above a certain threshold to be
considered nonzero (see Fig. 10C). Figure 12 shows
the labeling on an image of manufacturing parts.
Notice how the highlighting can occur depending

on the positioning of the parts. The ridge labels are
quite useful for determining where the highlighting
occurs.

7. Conclusions

In this paper, we have given a precise mathematical
description of the various topographic structures
that occur in a digital image and have called the
classified image the topographic primal sketch. Our
set of topographic categories is invariant under gray
tone, monotonically increasing transformations and
consists of peak, pit, ridge, ravine, saddle, flat, and
hillside, with hillside being broken down further into
the subcategories inflection point, slope, convex hill,

The International Journal of Robotics Research



concave hill, and saddle hill. The hillside subcate-
gories are not invariant under the monotonic trans-
formations.

The topographic label assigned a pixel is based on
the pixel’s first- and second-order directional deriv-
atives. We use a two-dimensional cubic polynomial
fit based on the local facet model to estimate the
directional derivatives of the underlying gray tone
intensity surface. The calculation of the extrema of
the second directional derivative can be done effi-
ciently and stably by forming the Hessian matrix
and calculating its eigenvalues and their associated
eigenvectors. Strict, local, one-dimensional extrema
(such as pit, peak, ridge, ravine, and saddle) are
found by searching for a zero-crossing of the first
directional derivative in the directions of extreme
second directional derivative (the eigenvectors of the
Hessian). We have also identified another direction
of interest, the Newton direction, which points to-
ward the extremum of a quadratic surface. The clas-
sification scheme was found to give satisfactory
results on a number of test images.

7.1. DIRECTIONS FOR FURTHER RESEARCH

Further research on the topographic primal sketch
needs to be done to (1) develop better basis func-
tions, (2) make use of fitting error, (3) find a solution
for the ridge (ravine) continuum problem, and (4)
develop techniques for grouping of the topographic
structures. Basis functions worth considering include
trigonometric polynomials, polynomials of higher
order, and piecewise polynomials of lower order
than cubic. The basis functions problem is to find a
set of basis functions and an associated inner prod-
uct for least-squares approximation that can cor-
rectly replicate all common image surface features
and be simultaneously computationally efficient and
numerically stable.

Fitting error needs to be used in deciding into
which class a pixel falls. Noise causes the fitting
error to increase, and increased fitting error increases
the uncertainty of the labeling. Also, global knowl-
edge of how the topographic structures fit together
could be used to correct the misclassification error

caused by noise. The way the neighborhood size
affects the surface fitting error and the classification
scheme needs to be investigated in detail.

The ridge (ravine) continuum problem needs to be
solved. It may be that there is no way to distinguish
between a true ridge and a ridge continuum using
only the values of partial derivatives at a point. The
solution may require complete use of the partial
derivatives in a local area about the pixel.

Most important for the use of the primal sketch in
a general robotics computer vision system is the de-
velopment of techniques for grouping and assembling
topographically labeled pixels to form the primitive
structures involved in higher-level matching and
correspondence processes. How well can stereo cor-
respondence or frame-to-frame time-varying image
correspondence tasks be accomplished using the
primitive structures in the topographic primal sketch?
How effectively can the topographic sketch be used
in undoing the confounding effects of shading and
shadowing? How well will the primitive structures
in the topographic sketch perform in the two-dimen-
sional to three-dimensional object-matching process?
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