
Music Generation with Relation Join

Xiuyan Ni, Ligon Liu, and Robert Haralick

The Graduate Center, City University of New York
Computer Science Department
New York, NY, 10016, U.S.A

{xni2,lliu1}@gradcenter.cuny.edu

{rharalick}@gc.cuny.edu

http://gc.cuny.edu/Home

Abstract. Given a data set taken over a population, the question of how can we
construct possible explanatory models for the interactions and dependencies in
the population is a discovery question. Projection and Relation Join is a way of
addressing this question in a non-deterministic context with mathematical rela-
tions. In this paper, we apply projection and relation join to music harmonic se-
quences to generate new sequences in a given composer or genre style. Instead of
first learning the patterns, and then making replications as early music generation
work did, we introduce a completely new data driven methodology to generate
music. Then we discuss exploring the difference between the original music and
synthetic music sequences using information theory based techniques.

Keywords: music generation, projection, relation join

1 Introduction

Could a computer compose music sequences that are indistinguishable from the work
of human composers to average human listeners? Different models have been applied
by researchers trying to answer this question.

Early work in music generation use a pattern matching process to identify different
styles of music. The pattern matching process first designs a pattern matcher to locate
the patterns inherent in the input music corpus, stores the patterns in a dictionary, and
then makes replications according to the patterns[1]. Cope’s Experiments in Musical
Intelligence incorporates the idea of recombinancy. He breaks music pieces into small
segments and then recombines them under certain music constraints to generate new
music in a given style. The music constraints are learned using an augmented transition
network (ATN). ATN is a type of graph theoretic structure widely used in Natural Lan-
guage Processing to parse complex natural language and generate new sentences[2,3].
The pattern matching algorithm used by Cope matches intervals instead of pitch, that
is, (C, E,G) can be matched to (D, F#, A), or any of the major triads[2]. Manaris et al.
(2007)[4] employ genetic programming to music generation, which uses artificial mu-
sic critics as fitness functions[5,6]. Walter and Merwe (2010) use Markov Chains and
Hidden Markov Models (HMM)[7] to generate music. They use a certain style of music
as training data, then apply the LearnPSA algorithm[8] to produce a prediction suffix

http://gc.cuny.edu/Home

2 Xiuyan Ni, Ligon Liu and Robert Haralick

tree to find all strings with a statistical significance. The relation between a hidden and
an observed sequence is then modeled by an HMM. After the whole learning process,
they sample from the distributions learned to generate new music sequences in the same
style as the training data[7]. An HMM is also used to classify folk music from differ-
ent countries[9]. These sampling methods, however, have drawbacks that they may get
stuck in local optimal.

Some other music generation methods do not use music pieces as input. They gen-
erate music based on certain rules either from music theory, or principles from artificial
intelligence algorithms. Ebcioglu (1986)[10] codes music rules in certain styles in a
formal grammar to generate a specific style of music, which means musical knowl-
edge related to specific style is needed to make new music. Al-Rifaie (2015)[11] ap-
plies Stochastic Diffusion Search (SDS), a swarm intelligence algorithm, to new music
generation. This method generates music based on input plain text and the interaction
between the algorithm and its agents. It maps each letter or pair of letters in a sentence
to the MIDI number of a music note, and then calculates the pitch, the note duration
and the volume of music notes based on parameters of SDS. The output music does not
have any specific style.

In general, the previous music generation methods either depend on music knowl-
edge, or use machine learning techniques that have to estimate the probability of a music
sequence. In the second case, they have to learn the probability of one element given a
previous number of elements in a sequence. In this paper, we use a completely differ-
ent methodology to generate music specific to a certain composer or genre. We break
each piece in our music corpus into overlapping small segments and use relation join
to generate synthetic musical sequences. The relation join replaces the probabilities in
methods like Markov Chains, and HMMs.

Consider the Markov Chain method as an example to compare a probability based
method to our method. A first order Markov Chain assumes that P(xt |xt−1, . . . , x1) =

P(xt |xt−1), where < x1, x2, . . . xt > is a sequence of states (a state can be a chord or a
note). Changes in state are called transitions. The Markov model estimates those prob-
abilities of transitions given a music corpus and then generates music sequences based
on the probabilities by linking up the transitions. While in our method, we first break
the music sequences into small segments of given length and number of overlapping
notes (chords). Then we reconstruct music sequences using the set of segments.

We call each sequence or segment of musical chords a tuple (See definition 5).
For example, we have a tuple sequence < x1, x2, . . . xt >, and we can set the tuple
length of each segment to 4 consecutive chords, and overlapping number to 2. We first
break the tuple sequence into a set of tuples {< x1, x2, x3, x4 >, < x2, x3, x4, x5 >, <
x3, x4, x5, x6 >, < x5, x6, x7, x8 >, . . .}. If we repeat the first step for all sequences, we
will get a dataset that contains all possible 4-tuples with overlap of 2 for a given music
corpus which contains sequences of chords. Then we generate a chord sequence by
randomly selecting one 4-tuple from the set that contains all 4-tuples from the music
corpus, then look at the last two chords of the selected tuple, and select another 4-tuple
from the subset that contains all 4-tuples starting with the last two chords from previous
4-tuple until we reach a certain length. If the process gets stuck because there is no
possible consistent selection, the process backtracks in a depth first tree search manner.

Music Generation with Relation Join 3

Thus, in our method, there is no need to estimate probabilities. For any 4-tuple (not
the first or the last) in a generated sequence, the 4-tuple in the generated sequence is
consistent with the 4-tuple that precedes it and that follows it in the generated music
sequence. Our music generation method is like a solution to a constraint satisfaction
problem[21]. It can therefore be posed in a rule-based mode as well.

Our method can be used without musical knowledge of different styles, and we do
not need to learn music theoretic patterns or parameters from input music pieces either.
We use the idea of recombination (first breaking the input music into small segments,
and then recombine them to generate new music sequences), but we do not have to
estimate the probabilities. The idea of this method is that the progressions inherent in
music sequences carry the composer patterns themselves.

We then discuss a technique to distinguish between original music and synthetic
music. We use the information based distance based on mutual information and en-
tropy of random variables, and visualize the results the auto similarity function for both
original and synthetic music sequences.

We describe our generation method in detail in Section 2. Section 3 will demonstrate
how this method is applied to music generation. Several experiments are introduced in
Section 4. Section 5 concludes our current work and discusses our future work which
will apply an information based distance to compare original music and synthetic music.

2 Definition

In order to introduce the procedure of applying relation join to music sequences, we
formally define the concepts used in this section[12].

Definition 1. Let X1, ..., XN be the N variables associated with a relation. Let Ln be the
set of possible values variable Xn can take. Let R be a data set or knowledge constraint
relation. Then

R ⊆
N�

i=1

Li

Example 1. When N = 2, and L1 = {a, b}, and L2 = {c, d, e}, R will be a subset of�N
i=1 Li = {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}.

We will be working with many relations associated with different and overlapping
variable sets and therefore over different domains. For this purpose we will carry an
index set along with each relation. The index set indexes the variables associated with
the relation. An index set is a totally ordered set.

Definition 2. I = {i1, ..., iK} is an index set if and only if i1 < i2 < · · · < iK .

Next we need to define Cartesian product sets with respect to an index set.

Definition 3. If I = {i1, ..., iK} is an index set, we define Cartesian product:

�
i∈I

Li =

K�
k=1

Lik = Li1 × Li2 × ... × LiK

4 Xiuyan Ni, Ligon Liu and Robert Haralick

The definition tells us that the order in which we take the Cartesian product
�

i∈I Li

is precisely the order of the indexes in I.
For a natural number N, we use the convention that [N] = {1, ...,N} and |A| desig-

nates the number of elements in the set A.
Now we can define the indexed relation as a pair consisting of an index set of a

relation and a relation.

Definition 4. If I is an index set with |I| = N and R ⊆
�

i∈I Li, then we say (I,R) is
an indexed N − ary relation on the range sets indexed by I. We also say that (I,R) has
dimension N. We take the range sets to be fixed. So to save writing, anytime we have an
indexed relation (I,R) , we assume that R ⊆

�
i∈I Li , the sets Li, i ∈ I, being the fixed

range sets.

Example 2. We continue the example in Example. 1 to illustrate this definition. Let
I = {7, 9}, the L1 and L2 are the same as in Example 1. We know that R is a subset
of

�N
i=1 Li = {(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)}. Let R = {(a, c), (a, d), (a, e), (b, c)},

then (I,R) will be an indexed relation as in Table 1.
Another important concept we need before we define projection and relation join is

tuple and tuple length.

Definition 5. A tuple is a finite ordered list of elements. An n-tuple is a sequence (or
ordered list) of n elements, where n is a non-negative integer. We call n the length of the
n-tuple.

Table 1: Indexed relation (I,R) where I = {7, 9} and R = {(a, c), (a, d), (a, e), (b, c)}. The
1,2,3,4 are indexes for the row in which the tuple appears. We will make use of the row
index to help illustrate how relation join works.

(I,R)
I = {7, 9}
1 (a, c)
2 (a, d)
3 (a, e)
4 (b, c)

We will be needing to define one relation in terms of another. For this purpose,
we will need a function that relates the indexes associated with one relation to that of
another. We call this function the index function.

Definition 6. Let J and M be index sets with

– J =
{
j1, . . . , j|J|

}
– M =

{
m1, . . . ,m|M|

}
– J ⊂ M

Music Generation with Relation Join 5

The index function fJM : [|J|]→ [|M|] is defined by fJM (p) = q where mq = jp. The
index function fJM operates on the place p of an index from the smaller index set and
specifies where – place q – in the larger index set that the index jp can be found; thus
mq = jp. To make this concrete consider the following example. Let I, J and M be index
sets with I ⊆ J ⊆ M, where I = {i1, i2} = {5, 8}, J = { j1, j2, j3, j4} = {2, 5, 8, 9} and
M = {m1,m2,m3,m4,m5,m6} = {2, 4, 5, 6, 7, 8, 9}. Then, fIJ , fJM , and fIM are defined
as in Table 2. The first value in I is i1. It has the value 5. The place where 5 occurs
in the J is the second place. Therefore, fIJ(1) = 2, and j fIJ (1) = 5. The place where 5
occurs in M is the third place. Therefore, fIM(1) = 3 and m fIM (1) = 5.

Table 2: Shows example index sets and the index functions that relate one set to another.

p ip fIJ(p) j fIJ (p)

1 5 2 5
2 8 3 8

p jp fJM(p) m fJM (p)

1 2 1 2
2 5 3 5
3 8 6 8
4 9 7 9

p ip fIM(p) m fIM (p)

1 5 3 5
2 8 6 8

Next we need the concept of projection since it is used in the definition of relation
join. If (J,R) is an indexed relation and I ⊆ J, the projection of (J,R) onto the ranges
sets indexed by I is the indexed set (I, S) where a tuple

(
x1, ..., x|I|

)
is in S whenever for

some |J|-tuple
(
a1, ..., a|J|

)
of R, xi is the value of that component of

(
a1, ..., a|J|

)
in place

fIJ (i).

Definition 7. Let I and J be index sets with I ⊆ J. The projection operator projecting
a relation on the range sets indexed by J onto the range sets indexed by I is defined by
πI (J,R) = (I, S) where

S =

(x1, ..., xI) ∈
�

i∈I

Li | ∃
(
a1, ..., a|J|

)
∈ R, a fIJ (i) = xi, i ∈ I

That is,

πI
(
J,

(
a1, ..., a|J|

))
=

(
I,

(
a fIJ (1), ..., a fIJ (|I|)

))
If I ∩ Jc , ∅, then πI (J,R) = ∅

The operation of projection is overloaded, and if R ⊆
�N

n=1 Ln and I ⊆ {1, . . . ,N},
we define

πI (R) = πI ({1, . . . ,N} ,R)

Our relation join can be thought of as the equijoin or natural join operation in the
data base world.

Example 3. Use the example in Example. 2, and let I′ = {7}, πI (R) will be as in Table
3.

6 Xiuyan Ni, Ligon Liu and Robert Haralick

Table 3: Projection of (I,R) where I = {7, 9} and R = {(a, c), (a, d), (a, e), (b, c)} on
I′ = {7}.

πI (R)
I′ = {7}

1 a
2 b

Definition 8. Let (I,R) and (J, S) be indexed relations, let K = I ∪ J and Lk be the
range set for variable k ∈ K. Then the relation join of (I,R) and (J, S) is denoted by
(I,R) ⊗ (J, S), and is defined by

(I,R) ⊗ (J, S) =

t ∈
�
k∈K

Lk | πI (K, t) ∈ (I,R) and πJ (K, t) ∈ (J,R)

An example of relation join is given in Example. 4.

Example 4. Shows an example for relation join. If we have two indexed relations, (I,R)
and (J, S) as in Table 4, the relation join for the two relations will be as in Table 5.

Table 4: Values for indexed relation (I,R) and (J, S)
(I,R) (J, S)

I = {1,4,7,9 } J = {2,4,6,7}
1 (a, b, e, d) 1 (e, e, a, d)
2 (b, d, e, a) 2 (d, c, b, a)
3 (e, c, a, b) 3 (a, d, b, e)
4 (c, e, d, a) 4 (b, b, c, e)

Definition 9. Let (I,R) be an indexed relation with R ⊆
�

i∈I Li. Let J ⊆ I and a ∈�
j∈J L j. Then the restriction of (I,R) to (J, a) is denoted by (I,R)|(J,a) and is defined by

(I,R)|(J,a) = (I, {r ∈ R | πJ(I, r) = (J, a)})

Example 5. If we have an indexed relation (I,R), where I = {1, 2}, R = {(1,m), (1, n),
(2,m), (3, p), (4, q), (5, p)}, J = {2}, and a = m, (I,R)|(J,a) = {(1,m), (2,m)}. �

Music Generation with Relation Join 7

Table 5: Shows the relation join results of indexed relation (I,R) and (J, S). The first
column of K indicates which row rows are joined from Table. 4. The first number is
the row number of the relation (I,R) and the second number is the row number of the
relation (J, S). For example, (1, 4) means the first row of (I,R) and the fourth row of
(J, S) can be joined. However, the first row of (I,R) and the first row of (J, S) can not
be joined because for index 4 of I, the component of the tuple on the first row of (I,R)
has the value b. But for index 4 of J, the component on the first row of (J, S) has the
value e.

(K,T) = (I,R) ⊗ (J, S)
1,2,4,6,7,9

(1, 4) (a, b, b, c, e, d)
(2, 3) (b, a, d, b, e, a)
(3, 2) (e, d, c, b, a, b)
(4, 1) (c, e, e, a, d, a)

Definition 10. Let (K,R) be an indexed relation and {I, J,M} a non-trivial partition of
K. We say conditioned on M, I has no influence on J if and only if

∪(M,c)∈πM (K,R)πI((K,R)|(M,c)) ⊗ (M, c) ⊗ πJ((K,R)|(M,c)) ⊆ (K,R)

If {I, J} constitutes a partition of K, then we say I has no influence on J if and only
if

πI(K,R) ⊗ πJ(K,R) ⊆ (K,R)

The no influence concept for relations is analogous to the conditional independence
concept in probability distributions. For example, in a Markov chain < x1, . . . , xN >
of order 1, xi+2 is conditionally independent of xi given xi+1, i = 2, . . . ,N − 1. In the
example of Figure 1, 3 has no influence on 1 given 2. Here we use the index i rather
than the variable xi to simplify our writing.

Figure 1 shows an example of the no influence concept. 1.

8 Xiuyan Ni, Ligon Liu and Robert Haralick

(I,R) ⊗ (J, S) =
⋃

(M,c)∈πM (I,R)∩πM (J,S)

πI−M(I,R)|(M,c) ⊗ (M, c) ⊗ πJ−M(J, S)|(M,c)

(I,R)

1 2
1 a
1 b
2 a
3 c
4 b
5 d

(J, S)

2 3
a α
a β
a γ
b α
b β
b δ
c ε
c λ
e ε

(I,R) ⊗ (J, S)

1 2 3
1 a α
1 a β
1 a γ
2 a α
2 a β
2 a γ
1 b α
1 b β
1 b δ
4 b α
4 b β
4 b δ
3 c ε
3 c λ

I = {1, 2}
J = {2, 3}
M = I ∩ J = {2}

I − M = {1}
J − M = {3}
π2(I,R) = {a, b, c, d}
π2(J, S) = {a, b, c, e}

π2(I,R) ∩ π2(J, S) = {a, b, c}

Fig. 1: From the above table, we can see that (M, c), the value corresponding to index
M in a tuple, does not give us any information about the relations between πI−M(I,R)
and πJ−M(J, S), since given a value corresponding to any index in M, all possible values
corresponding to any index of I −M pair with all possible values of any index of J−M.
That is, I − M has no influence on J − M given (M, c).

The relation join process also applies to the case when we have more than two
relations to join. If we have N indexed relations to join, (I1,R1), . . . , (In,Rn), we write

(K, S) = ⊗N
n=1(In,Rn).

3 Music Generation through Projection and Relation Join

Section 2 introduced the definition of projection and relation join which are the core
techniques we will use in the music generation. In this section, we will introduce how
the techniques can be applied to music sequences (note or chord sequences). Before
that, we need to introduce the mathematical definition we use for music terms.

Definition 11. A note is a small bit of sound with a dominant fundamental to introduce
the frequency and harmonics sound. For the sake of simplicity, this domain includes all
the notes on a piano keyboard. We define a set of notes N as:

N = {A0, B0,C1,C#1,D1, . . . , B7,C8}

The number after each note represents the octave the note in. The frequency of one note
is the frequency of the previous note multiplied to 12√2. Figure 2 shows the note name
versus the frequency of the twelve notes in the octave Middle C in.

Music Generation with Relation Join 9

Fig. 2: Each note shown has a frequency of the previous note multiplied by 12√2. Image
from https : //en.wikipedia.org/wiki/Musical note.

In music, a chord is a set of notes that is heard sounding simultaneously.

Definition 12. A chord is a set of notes. That is, for any chord c, c ⊆ N.

Now we can define a music sequence such as an harmonic sequence.

Definition 13. Let C be a collection of all chords, the harmonic sequence of a musical
piece of length L is then a tuple h ∈ CL, where CL = C ×C × . . . ×C︸ ︷︷ ︸

L times

A music corpus can be represented as a set H of Z Harmonic Sequences. H =
{
hz ∈ CLz

}Z

z=1
,

where Lz is the length of the tuple hz.
An example of an harmonic sequence with 8 chords is as in Figure 3.

<{’A4’, ’E4’, ’C4’, ’A3’}, {’B4’, ’E4’, ’B3’, ’G#3’}, {’C5’, ’E4’, ’A3’}, {’C5’, ’E4’, ’A3’, ’A2’},
{’C5’, ’E4’, ’A3’}, {’D5’, ’G4’, ’B3’, ’G3’}, {’E5’, ’G4’, ’C4’}, {’E5’, ’G4’, ’C4’, ’C3’} >

(a) The harmonic sequence written as in tuple form

(b) The harmonic sequence written in a sheet music

Fig. 3: A harmonic sequence with 8 chords

We know that there exist certain dependencies in chord progressions to make a
harmonic sequences sound consistent. To take advantages of those dependencies, we
need to design index sets for the sequences to project on.

10 Xiuyan Ni, Ligon Liu and Robert Haralick

Definition 14. A collectionI (m, n) of K length m sets with uniform overlap of n (0 < n < m)
is represented as:

I (m, n) =
⋃

i∈{1,...,n−1}

Ii (m, n) ,

where

Ii (m, n) =
{
Ii
k | I

i
k = {(m − n) · k + 1 − i, . . . , (m − n) · k + m − i}

}K−1

k=i
, i = {0, . . . , n − 1}

If m = 4 and n = 2, and i = 0, the tuple sets are shown in Figure 4. When m and n are
calculated, we suppress the (m, n), and write I : I = I(m, n).

I0
0 = {1, 2, 3, 4}

I0
1 = {3, 4, 5, 6}

I0
2 = {5, 6, 7, 8}

...

I0
K−1 = 2 · (K − 1) + 1, 2 · (K − 1) + 2, 2 · (K − 1) + 3, 2 · (K − 1) + 4

(a) The tuple sets when i = 0

I1
0 = {2, 3, 4, 5}

I1
1 = {4, 5, 6, 7}

I1
2 = {6, 7, 8, 9}

...

I1
K−1 = 2 · (K − 1) + 1 − 1, 2 · (K − 1) + 2 − 1, 2 · (K − 1) + 3 − 1, 2 · (K − 1) + 4 − 1

(b) The tuple sets with i = 1

Fig. 4: Shows the sample tuple sets when m = 4, and n = 2. All tuple sets are as in
I (4, 2) =

{
I0
0 , I

0
1 , . . . , I

0
K−1, . . . , I

K−1
0 , IK−1

1 , . . . , IK−1
K−1

}
.

We can now collect data sets from music sequences based on the tuple sets. Take
Bach Chorales bmw26.6 as an example, Figure 5 shows part of the original music piece
from Bach Chorales bmw26.6. If we set m = 4, and n = 2, we can get tuples as shown
in Figure 6, and we will get tuples as in Figure 7 if we set m = 5, and n = 3.

Music Generation with Relation Join 11

Fig. 5: The first line of Bach Chorales bwm26.6

Fig. 6: Sample tuples from Bach Chorales bmw26.6 when m = 4, and n = 2. The top
three sample tuples are generated when i = 0, the bottom three tuples are generated
when i = 1.

12 Xiuyan Ni, Ligon Liu and Robert Haralick

Fig. 7: Sample tuples from Bach Chorales bmw26.6 when m = 5, and n = 3. The top
three sample tuples are generated when i = 0, the bottom three tuples are generated
when i = 1.

Definition 15. Let I = I (m, n) be a collection of K length m sets with uniform overlap
of n, let h be a harmonic sequence, the set Rh of all m-tuples with overlap n from h is
defined by ⋃

I∈I

πI (h)

If H is set of harmonic sequences, the indexed set (I,R) is then

(I,R) =
⋃
h∈H

⋃
I∈I

πI (h) .

The following Figure 8 shows two short sequences, each one contains 8 chords. Fig-
ure 9 shows the results of joining the 4-tuples extracted from the two short sequences
from Figure 8.

Now we can define the relation join for harmonic sequences.

Definition 16. If R is a set of m-tuples produced from all projections with index set
I = I (m, n), and if I ∈ I is an index set, (I,R) becomes an indexed relation with
tuples of length m. Let J = ∪I∈II, we then can get a set of new harmonic sequences by
computing

(J, S) = ⊗I∈I(I,R)

where ⊗I∈I(I,R) is a set of |J| − tuples.

Music Generation with Relation Join 13

<{’B4’, ’E4’, ’D4’, ’G3’}, {’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’, ’C#4’, ’E3’, ’A3’},
{’A5’, ’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’, ’D4’,

’A3’, ’D3’}, {’E5’, ’F#4’, ’D4’, ’A3’, ’D3’}, {’D5’, ’F#4’, ’D4’, ’A3’, ’D3’, ’F#3’} >

(a) First short sequence written in tuple form

(b) First short sequence written in musical notation

<{’D5’, ’E4’, ’D4’, ’B3’, ’G3’, ’G2’}, {’C#5’, ’E4’, ’D4’, ’G3’}, {’B4’, ’E4’, ’D4’, ’G3’}, {’A4’,
’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’},

{’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’, ’D4’, ’A3’, ’D3’} >

(c) Second short sequence written in tuple form

(d) Second short sequence written in music notation

Fig. 8: Shows two short sequences from Bach chorales.

The above procedure can be applied to harmonic sequences with and without corre-
sponding time duration. But there is no intentional control of key of harmonic sequences
in this procedure.

Definition 17. Let K be the set of all possible keys in music, then

K = {C,Db; D; Eb; E; F; Gb; G; Ab; A; Bb, B}

Enharmonic keys are counted as one key, that is, C# = Db; D# = Eb; F# =

Gb; G# = Ab; A# = Bb; Cb = B.
When we say a piece is in a certain ‘key’, it means the piece is formed around the

notes in a certain scale which, in music, is a set of notes ordered by certain frequency
or pitch. For example, the C Major Scale contains C, D, E, F, G, A, B, and C. A piece
based on the key of C will (generally) use C, D, E, F, G, A, B, and C.

Now we could do key constraint relation join.

Definition 18. Let Ck be a set of chords who are in the key of k, and Cm be the set of
m-tuples of chords. Rb

k ⊆ R contains all m-tuples of chords in which the first chord is in
the key of k, ′b′ means begin. Similarly, Re

k ⊆ R contains all m-tuples of chords in which
the last chord is in the key of k, ′e′ means end. That is,

Rb
k = {(c1, c2, . . . , cm) ∈ Cm | c1 ∈ Ck}

14 Xiuyan Ni, Ligon Liu and Robert Haralick

<{’B4’,’E4’, ’D4’, ’G3’}, {’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’,’C#4’, ’E3’, ’A3’}, {’A5’,
’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’}>, <{’G4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’,

’C#4’,’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’,’D4’, ’A3’, ’D3’}>, <{’G5’,
’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’, ’D4’, ’A3’, ’D3’}, {’E5’, ’F#4’, ’D4’, ’A3’, ’D3’},

{’D5’,’F#4’, ’D4’, ’A3’, ’D3’, ’F#3’}>, <{’D5’, ’E4’, ’D4’, ’B3’, ’G3’,’G2’}, {’C#5’, ’E4’, ’D4’,
’G3’}, {’B4’, ’E4’, ’D4’, ’G3’},{’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}>, <{’G4’, ’E4’, ’C#4’, ’E3’,
’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’,

’D4’, ’A3’, ’D3’}>

(a) Shows the five 4-tuple generated from the two short sequences when m = 4 , n = 2 and i = 0
in tuple form

(b) Tuple 1 (c) Tuple 2 (d) Tuple 3 (e) Tuple 4 (f) Tuple 5

Fig. 9: Shows the 5 4-tuples generated from the two short sequences in Figure 8 when
m = 4, n = 2, and i = 0. Given m = 4, n = 2, and i = 0, sequence (b) of Figure 8 has
3 4-tuples, sequence (d) of Figure 8 has 3 4-tuples. The indexed relation formed by the
corpus of sequences (b) and (d) could have 6 4-tuples, but in this case, two of them are
identical. So there are only 5 4-tuples in the indexed relation produced by the two short
sequences of Figure 8.

Re
k = {(c1, c2, . . . , cm) ∈ Cm | cm ∈ Ck}

Then key constraint relation join means computing

(J, S) =
(
I0,Rb

k

)
⊗K−2

i=1 (Ii,R) ⊗
(
IK−1,Re

k

)
(J, S) is the results of relation join constrained by using chords in the key of k that begin
and end the piece.

We could also do scale constraint relation join.

Definition 19. A scale, in music, is a set of notes ordered by certain frequency or pitch.
For example, the C Major Scale contains C, D, E, F, G, A, B, and C.

Let RS ⊆ R be a set of tuples of chords in which all chords are in scale S. Then we
can get new harmonic sequences in which all chords are in scale S by computing

(J, S) = ⊗I∈I(I,RS)

Previous music generation methods try to generate music sequences (x1, x2, . . . , xN)
such that the probability that (x1, x2, . . . , xN) is generated is equal to P (x1, x2, . . . , xN).
That is,

{(x1, x2, . . . , xN)|P (x1, x2, . . . , xN) > 0} .

Music Generation with Relation Join 15

They use machine learning techniques to estimate a product decomposition of the joint
probability. The joint product produced by a Markov Chain is P(x1, x2, . . . , xN) =

P(x1)
∏N

n=2 P(xn|xn−1) . This is a special case of the more general form:

P (x1, x2, . . . , xN) =

K∏
k=1

fk (xi : i ∈ Ak)

for all x1, . . . xN ∈
�N

i=1 Li, where Li are the space of music elements (such as chords),
N is the length of each sequence, Ak is a set of index tuples.

Only those music sequences with P (x1, x2, . . . , xN) > 0 will be generated. So they
have to estimate fk (xi : i ∈ Ak).

In this paper, we use a completely different methodology to generate music spe-
cific to certain composers called projection and relation join. Instead of estimating the
probabilities, we calculate the relation join of (Ak,Rk) for all k, in which

(Ak,Rk) = (Ak, {(xi, i ∈ Ak) | fk (xi, i ∈ Ak) > 0})

Thus, in our method, fk (xi : i ∈ Ak) > 0 is ensured for any k, but we do not need to
estimate the function fk. Our method requires neither expert level domain knowledge
nor learning patterns and parameters from input music pieces. The method is based
on the idea of recombination, but without estimating any probabilities. The idea of
this method is that the progressions inherent in music sequences themselves carry the
patterns of music of different composers.

4 Experiments

In this section, we apply the techniques introduced in Section 2 and 3 to a music corpus
from Music211.

4.1 Experiment 1: Harmonic Sequence

There are five steps in this experiment.
Firstly, extract chords. We extract chords from 202 music sequences of Bach Chorales

from the database of Music21. Every sequence is a list including several tuples. Every
tuple represents a chord, which contains all the notes in the chord. As an example,

< {′F4′,′C4′,′ A3′,′ F3′}, {′G4′,′C5′,′C4′,′G3′,′ E3′}, {′C4′,′C5′,′G3′,′ E3′}, ... >

is an harmonic chord sequence.
Secondly, we transform chords into integer indexes. We make a dictionary(mapping)

for all the chords, the key of the dictionary is each chord itself, the value is the integer
index from index set {0, 1, 2, ...D − 1}, where D is the number of distinct chords. Then,
we transform the chords in each sample into the integer indexes according to the dictio-
nary.

1 Music 21 is a toolkit for computer-aided musicology. See http://web.mit.edu/music21/.

16 Xiuyan Ni, Ligon Liu and Robert Haralick

Thirdly, we compute all tuples of chord from music pieces in the corpus. In this
experiment, we set I = I (4, 2), that is, m = 4, n = 2, K = 14, K is set to 14 to ensure
the length of each output sample is 32, which is a reasonable length of a harmonic
sequence. We only use the tuple sets when i = 0 in this experiment. Then we compute⋃

h∈H

⋃
I∈I

πI (h)

There are 8731 4-tuples extracted from the music sequences in this experiment.
Fourthly, we compute the relation join on the projected index relations, that is, we

compute
(J, S) = ⊗I∈I(I,R)

Finally, we create mp3 files from the sequences generated.
The relation join procedure with m = 4 and n = 2, if done completely, generates

over 24.12 million harmonic sequences in this experiment. We generate harmonic se-
quences using a random tree search method. We randomly pick one tuple from R, and
then pick the next tuple that can join onto it. If there are no tuples can join onto it,
then the procedure backtracks in a tree search manner. In this way, we can get certain
number of synthetically generated sequences.

The following example shows how we generate a harmonic sequence of length 16
using tree search.

Example 6. The first three steps are the same as in the above experiments. The re-
sults after the three steps are all tuples of chords from the given music pieces. For the
fourth step, instead of doing relation join as in experiment 1, we randomly pick a tuple
from π{1,2,3,4}(I,R). The (I,R) we use in the following are extracted from Bach chorales.
For example, we picked ({F#4,D4, B3}, {G4,D4, B3}, {A4,D4, A3, F#3}, {B4,D4,G3}).
This tuple contains the first four chords of our synthetic sequence. Then we search over
π{3,4,5,6}(I,R) to find a tuple that starts with the last two chords of the first tuple, that
is chord {A4,D4, A3, F#3}, and chord {B4,D4,G3}. If we find a tuple that matches
like ({A4,D4, A3, F#3}, {B4,D4,G3}, {A4,D4, F#3,D3}, {A4,D4,G3, E3}), we join the
two tuples we found into a 6-tuple ({F#4,D4, B3}, {G4,D4, B3}, {A4,D4, A3, F#3},
{B4,D4,G3}, {A4,D4, F#3,D3}, {A4,D4,G3, E3}) , then we search over π{5,6,7,8}(I,R)
and find the next matched tuple, until we have 16 chords in the synthetic sequence. A
sample synthetic sequence is as in Figure 10.

Fig. 10: A sample synthetic music sequence generate using tree search, the duration is
set to be quarter length as default.

Another way to pick the sample is to randomly select from the results of a full
relation join. This can be very time consuming, because we need to generate all the

Music Generation with Relation Join 17

results before sampling. After we have some samples, we can make them into mp3 files
that can be listened to.

4.2 Experiment 2: Harmonic Sequence with Rhythm

In this experiment, instead of only extracting information of the chords, we include the
information of rhythm for each chord. Thus, each chord comes with its time duration.
There are 8773 4-tuples with overlap of 2 extracted in the third step in this experiment.
Similarly to Experiment 1, we only use the tuple sets when i = 0 in this experiment.

In the first step, we extract harmonic sequence samples from given Bach chorales. A
sample sequence is as following: < {′F4′, ′C4′, ′A3′, ′F3′, 0.5}, {′G4′, ′C5′, ′C4′, ′G3′,
′E3′, 0.5}, {′C4′, ′C5′, ′G3′, ′E3′, 1.0}, ... > . The number at the end of each chord is the
time duration in quarter length, 1.0 represents a quarter, 0.5 represents a eighth, and so
on.

The other four steps are almost the same as in experiment 1 except that we need
to match the rhythm of the chords when doing relation join, while in experiment 1,
we only need to match the chords. The relation join generates more than 1.67 million
sequences in this experiment.

4.3 Experiment 3: Harmonic Sequence in Specific Key and Scale

In the above experiments, there is no intentional control of the key of harmonic se-
quences and the scale the chords in. We want to see if the harmonic sequences sound
better when we specify the key and scale. So we do two constraint relation join exper-
iments based on each of the above two experiments, which will generate four combi-
nations of experiments. The number of harmonic sequences each experiment generated
are summarized in Table 6.

Table 6: The number of sequences generated with key and scale constraint while m = 4
and n = 2

type with key constraint with scale constraint
chord 65648 577602

chord with rhythm 4958 867977

Since relation join generates new sequences using existing harmonic sequences, it
relies on the transitions of chords of existing sequences. In addition, machine generated
sequences will have the same length, while the human generated sequences have more
sequential features of longer length.

4.4 Experiment 4: Redo the Experiments with m=5, n=3

We also do another set of experiments with m = 5, n = 3. We extract 8797 and 8813
5-tuples from the 202 Music21 sequences respectively for tuples with only chord and
tuples including both chord and rhythm. The results are summarized in Table 7.

18 Xiuyan Ni, Ligon Liu and Robert Haralick

Table 7: Shows the number of sequences generated with key and scale constraint while
m = 5 and n = 3.

type no constraints with key constraint with scale constraint
chord 63262 266 365

chord with rhythm 571 119 1

Some samples from these experiments are also posted to the website: http://
haralick.org/music/music.html. We also include some sample synthetic pieces
in the Appendix B that could be played with.

5 Conclusion and Future Work

In this paper, we introduced a new music generation method based on relation join. We
first break the input music into small segments, and then recombine them to generate
new music sequences using relation join. Therefore, we do not have to estimate any
probabilities or parameters from input music pieces. The idea behind our method is
that the patterns of music sequences are carried in the progressions of them. Compared
to other music generation methods, our method does not require any knowledge about
music styles. Readers who are interested in hearing some of the generated sequences in
midi format can find them on http://haralick.org/music/music.html.

In the future, we will try to generate music sequences of different composers and
genres. We can also try to generate music sequences of mix-genres or mix-composers.
For example, we can generate music sequences using the segments from Bach chorales
and Beethoven’s sonatas. With the information distance and similarity introduced, we
are even able to generate music sequences with a certain level of similarities. For ex-
ample, we can generate music that is very much like Bach chorales, which means the
similarity is close to the original Bach chorales. It will also be interesting to see the
most unlikely sequences that can be generated in a Bach style.

In order to do something like this, we will need to compute auto-similarity function
for any harmonic sequences. In the following subsections, we describe how to do this
voice by voice. One of the dimensions of similarity between harmonic sequences will
be the cross similarity function, which we can define as the similarity between their
respective auto-similarity functions.

5.1 Entropy

Under information theory context, entropy measures the information embedded within a
random variable. Consider a categorical random variable X with probability distribution
p(x), the entropy can be calculated using the formula:

H(X) = −
∑
x∈X

p(x) logb p(x)

http://haralick.org/music/music.html
http://haralick.org/music/music.html

Music Generation with Relation Join 19

where X is the set of possible values of X, and b is the base of logarithm. This formula
is proposed by Shannon (1984) [13]. As a measure of uncertainty of a given event, it
can also be extended to continuous random variable [14].

The joint entropy H(X, Y) of a pair of discrete random variables with a joint distri-
bution p(x, y) is defined as:

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) logb p(x, y)

where Y is the set of possible values for random variable Y .
The conditional entropy H(Y |X) quantifies the information required for describing

Y given X, that is, the average entropy of Y conditional on the value of X, averaged over
all possible values of X. Let H(Y |X = x) be the entropy when X = x,

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x) = −
∑
x∈X

p(x)
∑
yinY

p(y|x) logb p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) logb
p(x, y)
p(x)

.

.

5.2 Mutual Information

In information theory, mutual information (MI) is a measure of mutual dependence of
two given random variables, that is, MI quantifies the information revealed by one ran-
dom variable through the other variable. If the two random variables are independent,
MI is equal to 0. MI is closely related to the entropy of random variables. The MI of
random variables X and Y is can be viewed as the information reduced if one random
variable is given, that is,

I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X).

The formal definition for MI is as following:

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

5.3 Information Based Distance and Similarity

With the definition of mutual information and entropy, we can define the distance be-
tween two random variables. A distance function d : X × Y → R+ is a metric if it
satisfies the metric the following three conditions [19,20,15]:

– (A) Identity. d(X,Y) = 0 if and only if X = Y
– (B) Symmetry. d(X,Y) = d(Y, X)
– (C) Triangle inequality. d(X,Z) + d(Z,Y) ≥ d(X,Y)

20 Xiuyan Ni, Ligon Liu and Robert Haralick

Several information based distance measures have been proposed [15,16,17,18].

d1(X,Y) = H(X,Y) − I(X; Y) (1)

d′1(X,Y) = 1 −
I(X; Y)

max{H(X),H(Y)}
(2)

d2(X,Y) = H(X,Y) − min{H(X),H(Y)} (3)

d3(X,Y) =
H(X,Y) − min{H(X),H(Y)}

max{H(X),H(Y)}
(4)

It can be proved that these each of four distance metric satisfy the three conditions. The
proofs are in Appendix A.

The similarity s(X,Y) can then be defined as:

s(X,Y) = 1 − d(X,Y) (5)

5.4 Difference between Original Music and Synthetic Music

A note under music context is a small bit of sound with a dominant fundamental to
introduce the frequency and harmonics sound, and can also be used to represent pitch
class. A set of notes without scale is as following:

N = {C,C#,D,D#, E, F, F#,G,G#, A, A#, B}

From Section 3, we know that a music piece can then be represented by a tuple: M =

<N1,N2, . . . ,Nτ, . . . ,NT>, Nτ ⊆ N , i = 1, 2, . . . ,T . Each element in the tuple is a chord,
which is a subset of N . Each chord has voices. We denote by Nv

t voice v of chord Nt.
The random variables in music are possible notes in the music piece. The joint

probability can be written as:

pv
τ(x, y) =

#{t|x ∈ Nv
t , y ∈ Nv

t+τ}

T − τ
,

where t ∈ {1, . . . ,T }. The marginal of each random variable:

pv
τ(x) =

#{t|x ∈ Nv
t }

T − τ

The mutual information can be calculated as:

Iτ(X; Y) =
∑
x∈X

∑
y∈Y

pv
τ(x, y) log

pv
τ(x, y)

pv
τ(x)pv

τ(y)

Then we can calculate the distance using Equation 1, Equation 2, Equation 3, or Equa-
tion 4. For each τ, we can calculate similarity using Equation 5. So we can calculate a
sequence of similarities from each piece. We call the sequence of similarities an auto
similarity function.

Music Generation with Relation Join 21

References

1. Papadopoulos,G.,Wiggins,G.: AI Methods for Algorithmic Composition: A survey, a Critical
View and Future Prospects. In: AISB Symposium on Musical Creativity, Edinburgh, UK, 110-
117 (1999)

2. Cope, D.: Computer Modeling of Musical Intelligence in EMI. Computer Music Journal, 69-
83 (1992)

3. Winograd, T.: Language As a Cognitive Process: Volume 1: Syntax. (1983)
4. Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L. and Romero, J.: A Corpus-

based Hybrid Approach to Music Analysis and Composition. In Proceedings of the National
Conference on Artificial Intelligence (Vol. 22, No. 1, p. 839). Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999 (2007)

5. Romero, J., Machado, P., Santos, A., Cardoso, A.: On the Development of Critics in Evolu-
tionary Computation Artists. In: Applications of Evolutionary Computing, 559-569, Springer
(2003)

6. Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: The Art
of Artificial Evolution, 381-415, Springer (2008)

7. Schulze, W., Van der Merwe, B.: Music Generation with Markov Models. IEEE MultiMedia
(3) 78-85 (2010)

8. Ron,D.,Singer,Y.,Tishby,N.: The Power of Amnesia: Learning Probabilistic Automata with
Variable Memory Length. Machine learning 25(2-3), 117-149 (1996)

9. Chai,W.,Vercoe,B.: Folk Music Classification Using Hidden Markov Models. In:Proceedings
of International Conference on Artificial Intelligence. Volume 6., Citeseer (2001)

10. Ebcioglu, K.: An Expert System for Harmonization of Chorales in the Style of JS Bach.
(1986)

11. Al-Rifaie, A.M., Al-Rifaie, M.M.: Generative Music with Stochastic Diffusion Search. In:
Evolutionary and Biologically Inspired Music, Sound, Art and Design, 1-14, Springer (2015)

12. Haralick, R.M., Liu, L., Misshula, E.: Relation Decomposition: the Theory. In: Machine
Learning and Data Mining in Pattern Recognition, 311-324, Springer (2013)

13. Shannon, C. E.: A mathematical theory of communication. Bell System technical Journal 27:
379-423 and 623-656. Mathematical Reviews (MathSciNet): MR10, 133e (1948)

14. Cahill, Nathan D.: Normalized measures of mutual information with general definitions of
entropy for multimodal image registration. International Workshop on Biomedical Image Reg-
istration. Springer Berlin Heidelberg (2010)

15. Meila, Marina: Comparing clusterings an information based distance. Journal of multivariate
analysis 98.5: 873-895 (2007)

16. Vinh, Nguyen Xuan, Julien Epps, and James Bailey. ”Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance.” Jour-
nal of Machine Learning Research 11.Oct: 2837-2854 (2010)

17. Wikipedia.org/wiki/Mutual information
18. Horibe, Yasuichi. ”Entropy and correlation.” IEEE transactions on systems, man, and cyber-

netics 5: 641-642 (1985)
19. Vitanyi, Paul MB, et al: Normalized information distance. Information theory and statistical

learning. Springer US, 45-82 (2009).
20. Xu, Zeshui: Distance, similarity, correlation, entropy measures and clustering algorithms for

hesitant fuzzy information. Hesitant Fuzzy Sets Theory. Springer International Publishing,
165-279 (2014).

21. Mackworth, Alan K. ”Constraint satisfaction problems.” Encyclopedia of AI, 285:293(1992).

22 Xiuyan Ni, Ligon Liu and Robert Haralick

A
Proofs of Distance Metrics

The proofs show that the four distance metrics we use in this paper satisfies the condi-
tions:

– (A) Identity. d(X,Y) = 0 if and only if X = Y
– (B) Symmetry. d(X,Y) = d(Y, X)
– (C) Triangle inequality. d(X,Z) + d(Z,Y) ≥ d(X,Y)

Proof. (A) and (B) are straightforward for all the four metrics give the properties of
the entropy and mutual information . To prove the triangle inequality (C), we can first
assume H(X) ≥ H(Y). Since d(X,Y) is symmetric, the reverse case can be proved easily
if we can prove one of the two cases (H(X) ≥ H(Y) or H(Y) ≥ H(X)).

So we have only three cases left to consider: H(X) ≥ H(Y) ≥ H(Z), H(X) ≥ H(Z) ≥
H(Y), and H(Z) ≥ H(X) ≥ H(Y).

– Case H(X) ≥ H(Y) ≥ H(Z):

• For d1(X,Y), first, we know that

d(X,Y)1 = H(X,Y) − I(X; Y)
= H(X) + H(Y) − 2I(X; Y)
= H(X|Y) + H(Y |X).

then

H(X|Z) + H(Z|Y) ≥ H(X|Y,Z) + H(Z|Y) = H(X,Z|Y) ≥ H(X|Y),

so
d1(X,Z) + d1(Z,Y) = H(X|Z) + H(Z|X) + H(Y |Z) + H(Z|Y)

≥ H(X|Y) + H(Z|X) + H(Y |Z)
≥ H(X|Y) + H(Y |X) = d1(X,Y).

• For d′1(X,Y) = 1 − I(X;Y)
max{H(X),H(Y)} ,

d′1(X,Y) = 1 −
I(X; Y)

max{H(X),H(Y)}

= 1 +
H(X,Y) − H(X) − H(Y)

max{H(X),H(Y)}
.

= 1 +
H(X,Y) − H(X) − H(Y)

H(X)
.

=
H(X,Y) − H(Y)

H(X)
=

H(X|Y)
H(X)

.

Music Generation with Relation Join 23

d′1(X,Z) + d′1(Z,Y) = 1 +
H(X,Z) − H(X) − H(Z)

max{H(X),H(Z)}
+ 1 +

H(Z,Y) − H(Z) − H(Y)
max{H(Z),H(Y)}

= 1 +
H(X,Z) − H(X) − H(Z)

H(X)
+ 1 +

H(Z,Y) − H(Z) − H(Y)
H(Y)

≥ 1 +
H(X,Z) − H(X) − H(Z)

H(X)
+ 1 +

H(Z,Y) − H(Z) − H(Y)
H(X)

≥ 1 +
H(X|Z) − H(X)

H(X)
+ 1 +

H(Z|Y) − H(Z)
H(X)

≥ 1 + 1 +
H(X|Y) − H(X) − H(Z)

H(X)

≥ 1 + 1 +
H(X|Y) − H(X) − H(X)

H(X)

≥ 1 +
H(X|Y) − H(X)

H(X)
=

H(X|Y)
H(X)

= d′1(X,Y).

• For d2(X,Y), we first have I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X), which
means H(X|Y) − H(Y |X) = H(X) − H(Y) > 0, so

d2(X,Z) + d2(Z,Y) = H(X,Z) − min{H(X),H(Z)} + H(Z,Y) − min{H(Z),H(Y)}
= H(X,Z) − H(Z) + H(Z,Y) − H(Z)
= H(X|Z) + H(Y |Z)
≥ H(X|Z) + H(Z|Y)
≥ H(X|Y)
= H(X,Y) − H(Y)
= H(X,Y) − min{H(X),H(Y) = d2(X,Y).

• For d3(X,Y),

d3(X,Z) + d3(Z,Y) =
H(X,Z) − min{H(X),H(Z)}

max{H(X),H(Z)}
+

H(Z,Y) − min{H(Z),H(Y)}
max{H(Z),H(Y)}

=
H(X,Z) − H(Z)

H(X)
+

H(Z,Y) − H(Z)
H(Y)

=
H(X|Z)
H(X)

+
H(Y |Z)
H(Y)

≥
H(X|Z)
H(X)

+
H(Z|Y)
H(Y)

≥
H(X|Z)
H(X)

+
H(Z|Y)
H(X)

≥
H(X|Y)
H(X)

= d3(X,Y).

– Case H(X) ≥ H(Z) ≥ H(Y): Similarly to the case H(X) ≥ H(Y) ≥ H(Z).
– Case H(Z) ≥ H(X) ≥ H(Y): Similarly to the case H(X) ≥ H(Y) ≥ H(Z).

�

24 Xiuyan Ni, Ligon Liu and Robert Haralick

B
Harmonic Sequences in Scale C with 80 in quarterlength time
duration

Fig. 11: Synthetic harmonic sequence based on Bach Chorales with the scales fixed at
C

Music Generation with Relation Join 25

Fig. 12: Synthetic harmonic sequence based on Bach Chorales with the scales fixed at
C

	Music Generation with Relation Join
	Introduction
	Definition
	Music Generation through Projection and Relation Join
	Experiments
	Experiment 1: Harmonic Sequence
	Experiment 2: Harmonic Sequence with Rhythm
	Experiment 3: Harmonic Sequence in Specific Key and Scale
	Experiment 4: Redo the Experiments with m=5, n=3

	Conclusion and Future Work
	Entropy
	Mutual Information
	Information Based Distance and Similarity
	Difference between Original Music and Synthetic Music

	Proofs of Distance Metrics
	Harmonic Sequences in Scale C with 80 in quarterlength time duration

