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ABSTRACT

A scatterplot displays a relation between a pair of variables. Given
a set of v variables, there are v(v — 1)/2 pairs of variables, and
thus the same number of possible pairwise scatterplots. Therefore
for even small sets of variables, the number of scatterplots can be
large. Scatterplot matrices (SPLOMs) can easily run out of pixels
when presenting high-dimensional data. We introduce a theoreti-
cal method and a testbed for assessing whether our method can be
used to guide interactive exploration of high-dimensional data. The
method is based on nine characterizations of the 2D distributions of
orthogonal pairwise projections on a set of points in multidimen-
sional Euclidean space. Working directly with these characteriza-
tions, we can locate anomalies for further analysis or search for
similar distributions in a “large” SPLOM with more than a hundred
dimensions. Our testbed, ScagExplorer, is developed in order to
evaluate the feasibility of handling huge collections of scatterplots.

Index Terms: 1.5.2 [Pattern recognition]: Design Methodology—
Pattern analysis

1 INTRODUCTION

Because paper and computer screens are limited to two dimen-
sions, graphical display of multivariate data is intrinsically diffi-
cult. To visualize multivariate data, we often project a higher-
dimensional point cloud of data onto the plane. Consequently, it
is essential to select projections that reveal important characteris-
tics of the data. In the simplest of cases, projections can be se-
lected using linear maps such as multiple regression or principal
components. These are popular and easy to compute. By contrast,
a more data-driven approach is to examine scatterplots of variables
for unusual distributional features such as convexity, compactness,
or outliers. Arranging these plots in a Trellis display or scatterplot
matrix (SPLOM) allows one to explore individual scatterplots in-
teractively.

Previous researchers have applied data-driven approaches to
moderate-sized collections of scatterplots [26, 27, 13]. The scale of
these efforts has been constrained by display limits and computa-
tional complexity. In this paper, we develop an alternative approach
in order to deal with the scalability problem for SPLOMs in terms
of data sets larger than one hundred dimensions. Our goal is to be
able to organize these plots into meaningful subsets in reasonable
time and to present these plots to users in a rich exploratory envi-
ronment.

Our contributions in this paper are:

e We have proposed a way to retrieve similar scatterplots to a
plot of interest-based euclidean distance in scagnostics space.
e We have implemented the leader algorithm [14] to cluster sim-
ilar scatterplots. We have developed a dynamic algorithm that
leverages force-directed graph methods to cluster the leader
scatterplots. This cluster layout provides a comprehensive
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summary of the 2D relations of variables in a dataset. Users
can then select a leader to investigate for further details.

e We have proposed a method for filtering scagnostics using
parallel coordinates to refine subsets of scatterplots sharing
common features.

The paper is structured as follows: We describe related work in
the following section. Then we introduce our ScagExplorer testbed
and illustrate it on real datasets. We present test results of ScagEx-
plorer in Evaluation. In our Conclusion, we argue that our approach
makes it possible to explore huge datasets without resorting to ba-
sic statistical summaries (means, standard deviations, correlations,
etc.). By going beyond classic statistical summaries, we are able to
deal with unusual distributions, mixtures of distributions, outliers,
and other important features found in real datasets.

2 RELATED WORK
2.1 Scagnostics

Graph-theoretic scagnostics was introduced by Wilkinson [26],
based on an unpublished idea of John and Paul Tukey. The im-
plementation of scagnostics are described in detail in [27].

Scagnostics measures depend on proximity graphs that are all
subsets of the Delaunay triangulation: the minimum spanning tree
(MST), the alpha complex [10], and the convex hull. Figure 1
shows an example of the three geometric graphs generated on the
same set of data points.
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Figure 1: Graphs for computing scagnostics measures.

Figure 2 shows some example scatterplots and their scagnostics.
In particular, the scatterplots with a low score on the associated
scagnostic are on the left while the scatterplots with a high score on
the associated scagnostic are on the right.

2.2 Feature-based Approaches

Seo and Shneiderman [22] computed statistical summaries (means,
standard deviations, correlations, etc.) on univariate and bivari-
ate distributions and then ranked them in order to identify similar
distributions. Their Rank By Feature tool helps a viewer to nav-
igate through a relatively large corpus of statistical data. Other
researchers have developed scagnostics-type measures for parallel
coordinates [9], pixel displays [21], 3D scatterplots [11], and other
graphics [23, 2].

Another product of Shneiderman’s lab, Time Searcher [15], in-
troduced a suite of features designed to detect recurring or unusual
patterns in time series data. Some of these features, such as sud-
den increases and decreases in amplitude, proved useful for scan-
ning relatively long financial series. Shape Search Edition of Time
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Figure 2: Example scatterplots and their scagnostics measures.

Searcher [12] provides a set of shapes and the attributes by which
time series can identified, compared, and ranked.

Yang et al.[28] proposed a Value and Relation (VaR) technique
explicitly conveying the relationships among the dimensions of a
high dimensional dataset based on the data values in each dimen-
sion. Data values are first normalized and binned within each di-
mension. Then, the distance matrix is computed on binned data.
The VaR technique helps users grasp the associations among di-
mensions (similar to the Monotonic measure) as depicted in Fig-
ure 3(a). However, this technique fails to capture more complicated
relations as depicted in Figure 3(b) and Figure 3(c) that can be cap-
tured by the Stringy and Striated measure.
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Figure 3: a) Monotonic distribution b) Stringy distribution c) Striated
distribution.

TimeSeer [8] uses scagnostics for organizing multivariate
time series and for guiding interactive exploration through high-
dimensional data. TimeSeer consists of 2 systems: a SPLOM
viewer and a time series viewer. The SPLOM viewer provides guid-
ance for selecting interesting pairs of variables. Then, the time se-
ries viewer can graph scagnostics time series of up to 10 selected
pairs of variables in a single display.

2.3 Subspace Analysis

To deal with the the “Curse of Dimensionality”, subspace analy-
sis techniques examine subsets of dimensions instead of the en-
tire space. This comes from the expectation that data patterns are
prominent only in a few dimensions for most high-dimensional
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data. Consequently, many subspace analysis techniques sacrifice
completeness for simplicity (to obtain sub-linear time complexity).

Subspace clustering [1] is an extension of feature selection that
aims to detect clusters and a set of relevant dimensions for each
cluster. A review on various subspace clustering algorithms can be
found in [20]. More recent subspace analysis approaches have been
designed for users to navigate through the subspaces [24], to find
interesting low-dimensional projections [4], to interpret the result
of subspace clustering [25], and to analyze subspace cluster char-
acteristics in-depth [6].

3 SCAGEXPLORER OVERVIEW

ScagExplorer is a testbed we developed in order to evaluate the fea-
sibility of handling huge collections of scatterplots. Unlike the orig-
inal application outlined in [27], we designed ScagExplorer to deal
with a large scatterplot space spanning thousands of scatterplots.
Furthermore, ScagExplorer does not require the use of a scatterplot
matrix. Instead, it uses a novel force-directed layout of scatterplots
plus brushing, linking, and details on demand to organize a much
larger number of scatterplots than can be handled in a SPLOM or
Trellis display. We accomplish this by introducing a method for
processing exemplar scatterplots that reduces the number of plots
that must be considered.

3.1

Why is scatterplot similarity a relevant and important concept
and/or starting point when exploring data?

Answer 1: Figure 4 shows life expectancy of male vs. female
in three years from 1982 to 1984. Each data point is a country.
The three outliers in these plots are Iran in red, Iraq in blue, and El
Salvador in purple. The Iran-Iraq war (First Persian Gulf War) low-
ered the life expectancy of males because men were needed for the
war. A similar situation happened to El Salvador because this was
the time period inside the Salvadoran Civil War (1979-1992). The
three scatterplots are similar in terms of scagnostics: high Mono-
tonic and high Outlying. Looking at these distributions, one might
wonder if there are other years for which that situation happened
again or if there were other economic/social factors that also were
affected by the wars in the same years. Inspecting scagnostics fea-
tures, we can easily identify similar situations (similar scatterplots).
This is especially important in a real-time environment when a lot
of data come in batches, such as credit card fraud.
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Figure 4: Three scatterplots of life expectancy of male vs. female in
1982,1983, and 1984.

Answer 2: Having the similarity measure, we can group similar
scatterplots and then create an abstract picture of the huge scatter-
plot collection. This is also the main purpose of using the similarity
measure in this paper.

The dissimilarity of two scatterplots is computed as the squared
Euclidean distance in feature space. The most obvious benefit of
our parameterization is to reduce the complexity of comparing for
two scatterplots from O(n) to O(1) where n is the number of data
points. That is, if we can characterize a scatterplot with 9 scagnos-
tic measures (monotonicity, clumpiness, etc.), then we can make



Table 1: Characteristics of datasets used for testings and demonstra-
tions in the following sections.

Datasets # Instances  # Attributes  # Scatterplots
Breast Cancer 569 32 496
University ranking 127 33 528
US employment 144 44 946
Sonar 208 60 1,770
US money 64 79 3,081
Libras 360 91 4,095
Subway 423 104 5,356
Communities 1,994 128 8,128
Madelon 1,042 500 124,750
Arcene 900 3,000 4,498,500

comparisons directly on these measures (instead of point to point
comparisons). The tradeoff here is, of course, that we might lose
details of scatterplots.

We confine our model at this point to 2D scatterplots. There is
nothing preventing us from computing most scagnostics in higher
dimensions, but display issues come into play as the dimensional-
ity increases. We believe that analysts are more familiar with 2D
scatterplots than with more exotic displays, but that is a belief that
requires testing in the future.

3.2 Datasets

We will review the issues involved in the ScagExplorer testbed
mainly through examples. We use datasets retrieved from the UCI
Repository [7] and other sources to demonstrate the performance
of ScagExplorer. Table 1 summarizes prominent aspects of these
datasets ordered by the number of attributes.

The US employment data comprise monthly statistics on various
aspects of the US economy over 12 years from 2000 to 2011. There
are 44 variables represented in the dataset: Employment Rate of
major economy sectors such as Construction, Manufacturing, Fi-
nancial Activities, etc. Data and variable descriptions can be found
at http://www.bls.gov/data/. There are 144 data points
in each scatterplot (144 months of 12 years) to examine.

The National Research Council (NRC) ranking data comprise
university rankings in Mathematics in 2006. There are 33 variables
represented in the dataset: R-Rankings, S-Rankings, ranking fac-
tors and information on 127 universities in the US. For S-Rankings,
programs are ranked highly if they are strong in the criteria that
scholars say are most important. For R-Rankings, programs are
ranked highly if they have similar features to programs viewed by
faculty as top-notch. Overall, we have 528 scatterplots with 127
data points (127 universities) to examine.

4 SCAGEXPLORER COMPONENTS

This section explains our approach in detail.
schematic overview:

Figure 5 shows a

1. Processing: Our approach computes nine scagnostics mea-
sures of each scatterplot in the input SPLOM. Then, scatter-
plots are clustered based on scagnostics space. At the end of
Processing, we have a list of leader plots and a collection of
followers (or children) for each leader.

2. Visualization: The leader plots in each cluster are displayed
in the force-directed layout.

3. Interaction: Users can select a leader to see all similar plots
in that cluster or filter scatterplots by their features.

Information visualization systems should allow one to perform
analysis tasks that largely capture people’s activities while employ-
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ing information visualization tools for understanding data [3]. The
ScagExplorer implements four basic analysis tasks:

e Clustering: group scatterplots using their scagnostics mea-
sures (see Section 4.1 and Section 4.2 ).

e Brushing: select a leader plot to expand all similar plots in
that cluster (see Section 4.3).

e Sorting: sort scatterplots based on their relevance to the leader
scatterplot (see Section 4.3).

e Filtering: find scatterplots satisfying filtering conditions on
their scagnostics (see Section 4.4).

4.1

The scatterplot matrix is a useful tool for displaying the correlation
between a pair of variables. However, it is easy to run out of space
as the number of variables increases. There are several solutions to
deal with this scalability problem:

Clustering Algorithm

e Dimension reduction: preselect a subset of dimensions. The
advantage of this approach is that we downsize the SPLOM.
However, information loss is a disadvantage of this approach.

e An alternative strategy is lensing [8]. However, to obtain an
overview of the whole data, this approach is time consuming.

e SPLOM reordering approaches: Wilkinson et al.[27] sort the
variables in the raw data SPLOM using the size of the load-
ings on the first principal component of the scagnostic mea-
sures. However, features sorting suggests clusters but it is not
a clustering procedure. In other words, it does not guarantee
that the two adjacent plots are similar. Lehmann et al.[19]
used a heuristic optimization algorithm to reorder dimensions
based on a scagnostics measure. This reordering method con-
centrates on the best plots in different regions, based on the
similarity of the dimensions. Therefore, the number of rele-
vant regions is arbitrary. Due to these limitations, we allow
the scatterplots to break out of the SPLOM to form clusters.

We use the leader algorithm [14] to cluster scatterplots. The in-
puts to this algorithm are the list of all scatterplots and an initial
threshold r (radius around a cluster’s center). Here is the summary
of the algorithm:

1. We initialize the leader list L = 0.
2. For each scatterplot S;, we find the nearest leader (center) in
L which has the squared Euclidean distance to S; < r.

3. If we could not find a nearest leader satisfying this condition,
we make S; a new leader and add S; into L.

. Otherwise, we add S; to the follower list of the nearest leader.

. Repeat steps 2-4 for all scatterplots S;.

. Now we have a compete leader list L, we repeat step 2 and step
4 once for all scatterplots S; to avoid the mistakes of finding
the nearest leader when L is incomplete. We do not need to
repeat step 3 because we are simply reassigning followers in
case closer leaders emerged in the first pass through the data.
This reassignment is similar to the iterative reassignments in
the k-means algorithm [14], but we do only one more pass
through the data. Thus, the computational complexity of the
leader algorithm is considerably less than that for k-means, as
[14] demonstrates.

AN A~

Why not directly use many other well-known clustering algo-
rithms like K-Means? First, the leader algorithm is rather a pre-
processing step producing a small number of leader scatterplots
that can represent a huge collection of scatterplots. Therefore, it
is not sensitive to the actual number of clusters in the data. Sec-
ond, the complexity of the leader algorithm is O(p) (where p is the
number of scatterplots). This means in principle that the leader al-
gorithm can handle higher-dimension datasets. In contrast, other
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Figure 5: Schematic overview of ScagExplorer.

well-known clustering algorithms require at least polynomial time
complexity.

Too many leaders makes the visualization too busy while too few
leaders over-summarizes the data set. We therefore limit the size of
the leader list L from logs p to 2log, p to avoid these problems. For
a smaller dataset of 50 dimensions, we expect from 10 to 20 leader
plots. For a larger dataset of 1,000 dimensions, we expect from 18
to 36 leader plots. This means that we might need to adjust the
threshold ¢ and repeat steps 1-6 a few times to get the right number
of leaders.

How to select the initial threshold r? The distribution of squared
Euclidean distances is approximately a noncentral Chi-square vari-
able, assuming the distances themselves are roughly normal [16].
However, we chose an empirical method on real data in order to re-
lax the normality assumption. From results on 20 different datasets
of various sizes retrieved from the UCI repository [7], the threshold
r that produced approximately 20 clusters varied from 0.5 (for small
datasets with thousands of scatterplots) to 2.0 (for large datasets
with millions of scatterplots) on a possible range of 0 to 9. There-
fore, we initialize r = 2.0.

After each iteration, we check if the leader algorithm has pro-
duce the expected number of leaders. If not, we need to adjust r
and repeat steps 1-6. Binary search is a quick way to get to the
right threshold r for log, p to 2log, p leaders. According to our ex-
periments, Binary search can get to the right threshold r in fewer
than 5 iterations on most of our test datasets.

4.2 Displaying the leader scatterplots

After having clusters and their leader plots, we now use the force-
directed layout to place them on a 2D view. An alternative to this
presentation is Multidimensional Scaling (MDS) [18] to project
nine-dimensional scagnostics space to positions in 2D space. In the
VaR technique [28], the glyph positions generated by MDS [18]
are based on a distance matrix that records the correlation between
each pair of dimensions in the dataset. However, it is impossible to
get an optimal solution to this problem since there are many differ-
ent correlation measures [17, 5]. Another drawback of MDS is that
it produces overlapped scatterplots for similar distance measures,
which makes it difficult to visualize cluster sizes. In force-directed
layout, every plot is a physical object which repels other overlapped
plots.

The advantages of force-directed layouts are intuitiveness, flex-
ibility, and interactivity. The main disadvantage is high running
time. Since for every plot, we have to compute the attraction or
repellant against all other plots, the running time at each iteration
is O(I%) (where [ is the number of leader scatterplots). Since, we
limit / in the range from /og, p to 2log; p, the running time at each
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iteration is O(logs p?).

In the force-directed layout, we first put all leader plots ran-
domly in the output panel and we then allow them to interact
to find relevant leader plots based on their scagnostics measures.
Consequently, relevant leaders are grouped together based on their
scagnostics features. This makes it easier to interpret the clustering
results. Here is the summary of the force-directed algorithm:

1. For each pair of leader scatterplots S; and S;, we compute
a dissimilarity measure as the squared Euclidean distance in
feature space.

2. We get the dissimilarity cut D initialized as r 4 0.2 where r is
the radius of the clustering algorithm. We then define D;; =
Dissimilarity(S;,S;) — D.

3. We compute LT,; as the unit vector from S; to ;.

4. If D;; <0, IT; is the attraction between §; and §; computed by
the following equation:

= =
Fij = Dij*Uij (€]
_> . .
5. If Djj > 0, F;j is the repulsion of S; on S;.
—
= D,‘j*U,‘j @)

= Distance(S;,S )

6. The force applied on S; is the sum of forces by all scatterplots
on S; (I is the number of leader scatterplots):

F=YF 3)

i=1
7. Repeat steps 3-6 for all leader scatterplots ;.

The algorithm can be stopped manually when users feel happy
with the configuration or automatically when there is no more im-
provement (all similar leaders are close to each other). User can
also increase D to form fewer but larger clusters and vice versa.
Notice that in Equation 1, the attraction between §; on S; does not
depend on their distance. This assures that similar plots can come
close to each other no matter where they are in the display.

Figure 6 shows how we display the leader plots of four dif-
ferent datasets in the forced-directed layout. In particular, each
frame summarizes thousands of scatterplots in each dataset. The
datasets are Sonar (60 attributes or 1,770 scatterplots), Communi-
ties (128 attributes or 8,128 scatterplots), Madelon (500 attributes
or 124,750 scatterplots), and Arcene (3,000 attributes or 4,498,500
scatterplots). The size of each leader plot is computed based on
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Figure 6: Visualizing the leader scatterplots in the Sonar, Communi-
ties, Madelon, and Arcene data.
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its cluster size (or the number of scatterplots in each cluster). The
Kelvin temperature color scale is adopted to highlight Monotonicity
(red plots are high Monotonic, blue plots are low Monotonic).

Users can select a different scagnostics measure from a list box
to highlight and/or align leader plots. In Figure 7, we aligned the
leader plots on X-axis based on scagnostics measures. Unlike the
layout in Figure 6 grouping plots based on all nine scagnostics mea-
sures, this layout groups plots based on only one measure (the se-
lected measure). This alignment reveals the density distribution of
scatterplots on the selected measure. In this alignment, the leader
plots are pulled to their scagnostics locations on the X-axis (the
plots might be pulled a bit to the left or right of its intended loca-
tion due to the collisions with other plots sharing similar values on
the selected measure). The Y-axis shows the concentration of scat-
terplots at the specific values on the X-axis. In Figure 7, we aligned
the leader plots of three different datasets on Striated, Stringy, and
Outlying respectively. The datasets are Breast Cancer (32 attributes
or 496 scatterplots), US employment (44 attributes or 946 scatter-
plots), and Subway (104 attributes or 5,356 scatterplots). Notice
that we have requested to display circles instead of rectangles to
present scattetplots in Figure 7(b). This option creates a better ef-
fect on displaying density compared to rectangle shapes. In Figure
7(c), we have requested to display the number of scatterplots in
each cluster on top of each leader plot.

\

Striated

Breast Cancer

US employment

Subway

. S

Figure 7: Visualizing the Breast Cancer, US employment, and Sub-
way data. The leader plots in each dataset are colored and aligned
by Striated, Stringy, and Outlying respectively.



Why not use a histogram for showing the density distributions
of a particular scagnostic measure? As depicted in Figure 7(c), the
Subway data are very highly Outlying. A histogram showing the
density distributions of Outlying is a quick way to come up with
the same conclusion. However, there are many configurations of
data points in a scatterplot containing outliers. Users can not navi-
gate through more than five thousand scatterplots to understand all
Outlying configurations in the Subway data. ScagExplorer helps
users to achieve this task by embedding the typical scatterplots (the
leader plots with different sizes showing their popularities) into the
density distribution graph. Moreover, it takes only 0.1 second to
run the leader algorithm in this case. Since the leader algorithm
is linear to the number of scatterplots, it is as fast as the binning
process of histograms.

Users can now select from a list box to see the density distribu-
tions on different measures. It takes a few seconds for the transi-
tions. The forced-directed layout makes transitions between differ-
ent alignments smoothly. We only have to tell the leaders where
they should go, then the leader plots fit themselves into the display
area and avoid overlappings between them.

4.3 Exploring similar scatterplots

After having an overall idea of all scatterplots in the data, one may
want to request the details in each cluster. This can be done by a
simple click on a leader plot. Figure 8(a) shows an example for the
Libras data. In particular, scatterplots are colored by their Mono-
tonicity. The selected leader is in the center surrounded by scatter-
plots in its cluster. On the right, we link where they are in SPLOM.
The same effect is shown in 8(b) with a different leader. The linked
SPLOMs reveals the monotonic pattern: the closer to the diagonal,
the higher Monotonicity. This is because variables in input data
have been ordered so that highly correlated variables locate close to
each other.

Figure 8: Expanding all scatterplots of a cluster in the Libras data.

4.4 Filtering Scagnostics

Another way to drill-down the large collection of scatterplots is fil-
tering by scagnostics measures. Unlike the previous sections, we
work (filter) directly on every scatterplot in the data (not the leader
plots) in this section. In addition, we don’t use the force-directed
layout here. Figure 9(a) shows an example of filtering scagnostics
by parallel coordinates. The data are NRC university rankings in
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Mathematics. Each coordinate corresponds to a scagnostic mea-
sure. Colors are used to differentiate scagnostics. All scagnostics
are in a common range from 0 (left) to 1 (right). There are 528
scatterplots in the NRC university ranking data, and thus the same
number of polylines in parallel coordinates. The symmetric graph
on each coordinate shows the density distribution of scatterplots in
the entire search space according to each measure. When we are fil-
tering a measure, ScagExplorer updates the density graphs on other
measures showing only the remaining plots satisfying the filtering
conditions. This guides users on making interactive scagnostic se-
lections. Figure 9(b) shows another example of the US money data.
The density distribution of scatterplots indicates that the data have
very high Skewness and Monotonicity.

University ranking US money

Outlying Outlying —e==

Clumpy

Striated

Stringy

Monotonic Monotonic

3

(b)

Figure 9: Density distribution of scatterplots by each scagnostic.

Figure 10(a) shows an example when this filter is applied on
Monotonicity (Monotonicity > 0.5). When we filter plots on one
scagnostic, other graphs showing the distribution of selected scat-
terplots are updated. The right frame shows 31 plots satisfying
the condition. We can obtain correlated variables from these high
Monotonic scatterplots. After viewing pairs of variables that are
highly correlated, one can request to see the variable relationship
graph. Figure 10(b) shows the variable relationship graph of 31
monotonic plots in Figure 10(a). Each node in this graph repre-
sents a variable and each edge exists if a pair of variables exists in
Figure 10(a). Red edges connect highly correlated variables. No-
tice that Research Activity is the main variable involved with both
R Rankings and S Rankings. Other variables which have moder-
ate influence on rankings are percent of faculty with grants, citation
per publication, average number of PhD Students graduated, and
publication per allocated faculty.

5 EVALUATION

ScagExplorer is not meant to be an end-user application, but rather
a testbed for evaluating the feasibility of this approach. Conse-
quently, we are not prepared at this time to conduct a comprehen-
sive user study that employs analysts investigating real datasets. By
contrast, we focus here on evaluating the performance of these al-
gorithms. We need to assess 1) whether the computations are prac-
tical on large datasets, particularly with regard to running times,
2) whether the leader algorithm yields suitable exemplars, and 3)
whether the force-directed clustering can produce clear clusters on
well-structured test data.
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Figure 10: Filtering high Monotonic scatterplots (Monotonicity > 0.5)
in the NRC university ranking data.

5.1 Running Times

We investigated the performance of our ScagExplorer testbed on
huge data in terms of n (number of observations) and p (number of
scatterplots). All tests were performed on a 2.3 GHz Intel Core i5,
Mac OS X Version 10.7.5, 4 GB RAM running Java 1.6 and Pro-
cessing 1.5.1. The graphs in Figure 11 show computation time bro-
ken down into the time to bin the n data points (observations), com-
pute scagnostics, run the leader algorithm, and organize the leader
scatterplots in the force-directed layout. Here are some observa-
tions from empirical analysis:

e Running the leader algorithm and organizing the force-
directed layout do not depend on n since they work on
scagnostics space. Moreover, computing scagnostics is al-
most independent of n since proximity graphs are generated
on binned data. Only the stage of binning the data points is
linearly dependent on n (more details can be found [26]).

e The bottleneck of our approach is at the stage of computing
scagnostics. However, this stage is completely parallelizable.
An alternative to ameliorate this problem is to sample the in-
put data.

e The complexity of the leader algorithm is O(p) and the com-
plexity of the force-directed clustering is O(loga p?).

Overall, computation time of the ScagExplorer is roughly O(np).

5.2 The Leader Algorithm

We next tested our algorithms using a Monte Carlo structured
dataset. In particular, we generated nine groups of 50 scatterplots
with high values on nine scagnostics measures (the scatterplots on
the right of Figure 2). The scatterplots in each group were perturbed
with a uniform[-.1, .1] random variable. The leader algorithm cor-
rectly generates nine clusters of 50 scatterplots. Figure 12 shows
Outlying, Skinny, and Stringy clusters. Leader plots are in the cen-
ters of each cluster.
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Figure 12: Three clusters in the Monte Carlo test dataset.

5.3 The Force-directed Layout

The second test on the Monte Carlo test dataset is whether the
force-directed layout can produce clear clusters on well-structured
test data. Figure 13 shows that the force-directed layout correctly
groups similar scatterplots into the same clusters and separates the
clusters based on their inter-cluster dissimilarities.

6 CONCLUSIONS

The performance of our ScagExplorer testbed on real datasets and
on the Monte Carlo test datasets suggest that the algorithms out-
lined in the paper could be used to embed scagnostics analytics in
platforms designed to handle high-dimensional datasets.

ScagExplorer highlights the usefulness of examining raw data
distributions rather than reductive statistical summaries or aggrega-
tions (as in OLAP cubes). As we have seen in the real examples,
pairwise displays are rarely Gaussian or otherwise well-behaved.
Furthermore, ScagExplorer makes it possible to examine pairwise
scatterplots in a coherent framework. While parallel coordinates
and other multivariate displays (glyphs, projections, profiles, etc.)
have their uses, it is helpful to have a tool that allows a user to
explore data in the familiar form of the scatterplot.

We note that the the time for comparing two scatterplots is O(1)
compared to O(n) because we are searching on nine scagnostics,
not on individual points (where n is the number of data points).
Therefore, the benefit of our approach is the enormous compres-
sion we achieve by collapsing similarity searches from O(pn) to
O(p) through the use of scagnostics. Moreover, we implemented a
quick clustering algorithm [14] with the complexity O(p) or O(v?)
compared to the greedy variable reordering algorithm [19] which
requires O(v3) (where v is the number of variables in the data). This



Figure 13: Force-directed layout produces nine clusters in the Monte
Carlo test dataset. Scatterplots are colored by their Monotonicity.

provides ScagExplorer with the scalability to handle huge datasets
up to thousands of dimensions.

But there is also a drawback of the approach: one problem of
the forced-directed layout is that random initial layout would yield
different clusters of coherent plots. Therefore, different runs end
up with different configurations. However, the final configurations
of the same data are consistent because relevant leaders are grouped
together. This provides a comprehensive summary of the input data.
An alternative to ameliorate this problem is to use MDS to assign
the initial positions for the leader plots. MDS helps to bring similar
leaders together in the initial layout, and so the final configurations
are not so different on different runs.

What does this mean for visual analysis? This paper proposes a
testbed for visualizing high dimensional data where the number of
scatterplots is too large to be visualized by a ordinary SPLOM. The
greater runtime efficiency allows ScagExplorer to provide a quick
and comprehensive summary of the input data. Then, we can drill-
down in the data by inspecting a cluster or filtering using a target
scagnostics measure.
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