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Empirical Guidance on Scatterplot and Dimension Reduction
Technique Choices
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Abstract—To verify cluster separation in high-dimensional data, analysts often reduce the data with a dimension reduction (DR)
technique, and then visualize it with 2D Scatterplots, interactive 3D Scatterplots, or Scatterplot Matrices (SPLOMs). With the goal
of providing guidance between these visual encoding choices, we conducted an empirical data study in which two human coders
manually inspected a broad set of 816 scatterplots derived from 75 datasets, 4 DR techniques, and the 3 previously mentioned
scatterplot techniques. Each coder scored all color-coded classes in each scatterplot in terms of their separability from other classes.
We analyze the resulting quantitative data with a heatmap approach, and qualitatively discuss interesting scatterplot examples. Our
findings reveal that 2D scatterplots are often ‘good enough’, that is, neither SPLOM nor interactive 3D adds notably more cluster
separability with the chosen DR technique. If 2D is not good enough, the most promising approach is to use an alternative DR
technique in 2D. Beyond that, SPLOM occasionally adds additional value, and interactive 3D rarely helps but often hurts in terms of
poorer class separation and usability. We summarize these results as a workflow model and implications for design. Our results offer

guidance to analysts during the DR exploration process.

Index Terms—Dimensionality reduction, scatterplots, quantitative study

1 INTRODUCTION

High-dimensional data analysis is a common challenge amongst ex-
perts from many application domains such as science, engineering or
finance. When conducting visual analysis of high-dimensional data,
one typical approach is to transform the original dataset using a di-
mensionality reduction (DR) technique to create a lower-dimensional
version that preserves as much information as possible from the orig-
inal, and then visually encode only the reduced data [34]. Many DR
techniques exist [45]; the most commonly used for visual data analysis
include Principal Component Analysis (PCA) [22] and many variants
of Multidimensional Scaling (MDS) [5, 16]. The most common visual
encoding (VE) technique for showing the dimensionally reduced data
is scatterplots. The three major variants are static 2D scatterplots (ab-
breviated here as 2D), interactive 3D scatterplots (i3D for short), and
static 2D scatterplot matrices (SPLOMSs) showing axis-aligned views
for every possible pair of reduced dimensions.

A significant amount of previous research has focused on provid-
ing broad guidance for high-dimensional data analysis [1, 36, 38, 53],
and some has focused more narrowly on guidance for DR in particu-
lar [20]. However, there is insufficient empirical guidance on how to
visually encode dimensionally reduced data. Although the use of scat-
terplots for non-reduced data has been extensively studied [29, 31],
these findings focus on their use for judging correlation and thus do
not generalize to their use with dimensionally reduced data because
the new, synthetic dimensions are typically not correlated [34]. While
2D scatterplots have been shown to be more effective than landscapes
for both visual search [40] and visual memory [41] tasks with dimen-
sionally reduced data, the different scatterplot variants have not been
compared to each other for different types of datasets.

We conducted an empirical study to investigate the interplay be-
tween visual encoding and dimensionality reduction techniques. We
compared the three scatterplot VE variants (2D, i3D, and SPLOM)
over 75 datasets reduced with four different DR techniques: PCA [22],

o Michael Sedlmair is with the University of Vienna. E-mail:
michael.sedlmair@univie.ac.at.

o Tamara Munzner is with the University of British Columbia. E-mail:
tmm@cs.ubc.ca.

o Melanie Tory is with the University of Victoria. E-mail: mtory@cs.uvic.ca.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.

For information on obtaining reprints of this article, please send

e-mail to: tveg@computer.org.

1077-2626/13/$31.00 © 2013 IEEE

robust PCA [39], Glimmer MDS [21], and t-SNE [44]. In contrast to
a typical user study collecting the judgements of a large number of
people over a small number of datasets, we conducted a data study to
collect judgements over a very broad set of data from a small number
of trained coders [35]. Two coders judged the class separation of 5460
color-coded classes across 816 scatterplot visualizations.

We then engaged in generating a workflow model that can guide
scatterplot choices in the DR exploration process. The workflow
model reflects the main findings and implications of our study that
2D is often ‘good enough’; that is, i3D and SPLOM do not notably
improve visual class separability. If 2D is not good enough, the most
promising approach is to keep the same visual encoding but to try an-
other DR technique. Switching to a SPLOM as a next step does occa-
sionally help. Switching to i3D, however, rarely helps and often hurts;
that is, it has higher time costs and often provides less class separabil-
ity, even for artificial datasets specifically designed for 3D.

This work is part of a larger project investigating questions at the
intersection of DR and visualization. Our understanding of this inter-
section is informed by a previous field study of DR and visualization
usage across multiple application domains, leading to a better under-
standing of DR-related visual analysis tasks [34]. Here, we focus on
the task of visual cluster verification, one of several core tasks iden-
tified in that work. The most direct precursor to this work was a tax-
onomy of factors that contribute to visual cluster separation in scat-
terplots with DR data [35]. The study presented here was conducted
in parallel with the previous data study. It is based on the same set
of 816 scatterplots and was conducted by the same two coders. De-
spite these commonalities, however, the two studies are fundamentally
different: we gathered different data, used other analysis techniques,
and pursued different research goals. For the cluster separation tax-
onomy, we collected and analyzed qualitative characteristics, with the
goal of identifying how interactions between classes occurred within a
single scatterplot. For this work, we collected and analyzed quantita-
tive judgements of class separation to compare between the scatterplot
variants of 2D, i3D, and SPLOM.

The primary contribution of this paper is the results of a data study
across 816 scatterplots, featuring the comparison of three scatterplot
visual encoding techniques and four dimension reduction techniques.
The secondary contribution is implications for design and usage of
scatterplots in visual data analysis with dimensionally reduced data,
and an iterative workflow model to guide this use.

Published by the IEEE Computer Society
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2 2D, 3D, SPLOM: JUSTIFICATIONS AND ASSUMPTIONS

Our study focuses on three scatterplot techniques: 2D, interactive
3D, and scatterplot matrices. Reducing to 2 dimensions and using a
static 2D scatterplot is a very common practice [34]. However, an-
other surprisingly frequent practice is reducing to three dimensions
and visually encoding with 3D scatterplots that are interactively in-
spected [12, 13, 23], despite the known perceptual disadvantages of
visualizing non-spatial, abstract data in 3D [9]. Our own previous
work has advocated the use of SPLOMs in conjunction with reducing
to a moderate number of dimensions rather than assuming that either
two or three dimensions suffices for the reduced dimensionality [20].

A typical justification for the use of 3D scatterplots is that the in-
trinsic dimensionality of a dataset is likely to be greater than 2; that is,
that it would take more than just 2 dimensions to closely approximate
the information in the dataset. The scree plot analysis technique [20],
where the fidelity of the reduced data to the original is plotted against
the number of dimensions used, is a visual representation of exactly
this property: the intrinsic dimensionality of a dataset is estimated by
finding a knee in this curve.

Although estimating intrinsic dimensionality is a useful step in the
DR analysis process, we focus on a somewhat different task: exam-
ining the visual separation of clusters after visually encoding the re-
duced data. We have observed that reducing to far fewer dimensions
than the dataset’s intrinsic dimensionality often suffices to make clus-
ters clearly visible after visually encoding. For example, a dataset
with an intrinsic dimensionality of 10 might have all of its clusters vi-
sually separated even if it is reduced to 2 dimensions and shown with
a single 2D scatterplot. We thus reaffirm Kruskal’s long-ago sugges-
tion that the idea of appropriate dimensionality might be more useful
than intrinsic dimensionality [25]. Our data study thus focuses on the
question of the interplay between reducing to an appropriate dimen-
sionality, and the VE technique used to show that reduced data.

A different rationale for the use of 3D scatterplots is that a choice of
reducing the original dataset to three dimensions dictates the choice of
visually encoding that data using 3D. However, SPLOMs are an alter-
native VE technique that can encode three dimensions of data into two
spatial dimensions by trading off space for time; that is, they require
more screen real estate than a single scatterplot, rather than requiring
that the user spend time interacting with them. Moreover, they can be
used for more than three dimensions of data.

The idea that interaction imposes significant time cost has been
noted by many previous authors [26, 46]. We similarly argue that there
are different time costs to using the three scatterplot variants of 2D,
i3D and SPLOMs. A single static 2D scatterplot has a very low time
cost: all of the information is directly visible in one region without the
need to interact with the representation or mentally relate the views.
A SPLOM has medium cost: there is no interaction, but a user must
switch visual attention between regions and mentally relate the infor-
mation in different views [26]. To our knowledge, the costs of using a
SPLOM have not been studied empirically, but we conjecture that this
cost increases as the number of views within the SPLOM increase.
The time cost of an interactive 3D scatterplot is high because the user
must spend significant time rotating the view to see the structure from
different angles in order to see relationships hidden by occlusion in
any single viewpoint. We conjecture that these interaction costs in 3D
are substantially higher than view-change costs in SPLOMs.

One obvious question is whether a SPLOM might also incur a time
cost if a viewer needs time to mentally reconstruct overall shape from
axis-aligned projections; in this case, the interaction support of i3D
would probably reduce the cognitive load, and thus the total time cost,
compared to a non-interactive SPLOM. We argue that shape recon-
struction is similar to correlation: important for the general case of
non-reduced data but not for the special case of reduced data. That is,
it is not an important aspect for analysts engaged in the task of visual
cluster separation with dimensionally reduced data.

These cost assumptions are based on an extensive body of work
that suggests the superiority of 2D visualizations over 3D ones for
non-spatial data [6, 8, 10, 30, 40, 41, 51]. We summarize this related
work in Section 3.1.
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Based on this reasoning, we were skeptical that i3D would be a
valuable visual encoding technique for DR data. We hypothesized that
the less costly 2D and SPLOM VE techniques would be good enough
for the majority of cases; that is, they would show the class structure in
a sufficient way. Our analysis approach is based on the idea that when
multiple VE techniques are good enough, the one with least time cost
is the best alternative.

3 RELATED WORK

We review related work on empirical evidence about 3D vs. 2D visu-
alizations, and empirical studies and guidelines for high-dimensional
data analysis involving DR.

3.1 3D vs. 2D: Empirical Evidence

Our work relies on the assertion that 3D scatterplots incur much higher
interaction costs than 2D ones. We do not test this assertion directly; it
is based on a substantial body of empirical evidence about the appro-
priateness of 2D and 3D representations for different tasks, of which
we describe some below:

Three-dimensional visualizations, particularly 3D scatterplots, suf-
fer from several limitations: occlusion of objects by other objects in
the scene [6, 37], scene complexity [6], depth ambiguity [30], perspec-
tive distortion of distances and angles [37], and difficulty of interact-
ing and navigating in 3D [30, 6, 51]. Clouds of disconnected points
are perhaps one of the worst possible cases for 3D, since depth cues
such as shadows and shape from shading [49] cannot be used.

2D and 3D visualizations have been experimentally compared for
a wide variety of tasks and data types. For 3D spatial data and tasks,
most empirical evidence suggests that interactive 3D visualizations of-
ten outperform 2D projections [32, 37]. In terms of non-spatial data,
however, there exists an extensive body of previous work that suggests
that 2D visualizations are superior to interactive 3D [8, 10, 40, 41].
DR data falls in the latter category of non-spatial data.

Our work specifically focuses on scatterplots. For scatterplots of
non-DR data, there is some limited evidence that 3D may be help-
ful for questions requiring integrated knowledge of 3 dimensions [52].
(The data set used in this study was tiny by modern standards, with
only six data points.) However, we are interested only in scatterplots
of DR data, where there is substantial empirical evidence that 3D scat-
terplots are ineffective. In a usability study of 3D DR scatterplots
(with no comparison to 2D), Newby [30] reported that people could
manage to use the 3D scatterplot representation to navigate an infor-
mation space, but had difficulty judging distances between items and
became disoriented when navigating through 3D space. Chalmers [6]
similarly reported that a 3D point cloud representation of a document
space suffered from occlusion, and users found it difficult to orient
themselves and navigate. In a direct comparison between 2D and 3D
scatterplots of DR data, Westerman and Cribbin [51] found that 2D
outperformed 3D for a search task. In fact, they reported that 2D was
as good or better than 3D even when the data variance accounted for
by the 2D representation was only 50-70% of that of the 3D repre-
sentation. Similarly, Fabrikant [14] demonstrated that 3D DR scat-
terplots were ineffective compared to 2D DR scatterplots and 2D or
3D information landscapes, for distance judgment and spatial arrange-
ment tasks. A later study by Westerman et al. [50] on a browsing task
was less conclusive, but showed that people needed to do significantly
more navigation in 3D compared to 2D, and were able to complete a
more exhaustive search in 2D within approximately the same amount
of time as 3D.

This paper provides complementary evidence that 3D scatterplots
are not suitable for cluster verification with DR data, from the per-
spective of a data study rather than a user study.

3.2 DR: Studies and Guidance

There is very little related work regarding empirical studies comparing
human judgement of projections produced by different DR techniques.
One notable exception is Lewis et al., who compared how experts and
novices judged the quality of 2D scatterplot projections from different
DR [28]. In a study with 36 participants, seven datasets and nine
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DR techniques, they found that experts agreed in their DR judgements
but novice users did not. While the focus of this study was on DR
techniques, user differences and a generic quality judging task, we
specifically focus on visual encodings of the data, on the breadth of
datasets, and the interaction between VE and DR choices for visual
cluster separation tasks.

On the other hand, there is a substantial body of previous work
providing guidelines for how to explore high-dimensional data using
scatterplots. Recent advances in the visualization literature specifi-
cally have focused on finding interesting 2D scatterplots by computing
and comparing a score for each 2D projection [36, 38, 53]. Wilkinson
et. al., for instance, specified nine measures to judge 2D projections,
such as stringy, outlying or clumpy. More recently, similar approaches
have been proposed that were specifically designed for cluster verifi-
cation tasks, that is, to find 2D projections that nicely separate points
of given classes [1, 36, 38]. While these efforts focus on designing
measures, our work aims to develop a workflow model to help users
choose among DR and VE techniques. In that sense, our work is sim-
ilar in spirit to DimStiller [20], a system that provides workflows to
guide steps in the high-dimensional data analysis process including
choices on selecting and parameterizing DR techniques.

4 METHODS

To empirically evaluate visual encodings for DR data, we conducted
a data study, where two trained coders inspected 816 scatterplot vi-
sualizations and judged the visual separability of color-coded classes
of these datasets. The study was conducted together with a previous
data study which was based on the same 816 scatterplots inspected by
the same two coders [35]. In our previous work, we reported on data
that we collected for qualitatively assessing class separation factors
and for evaluating automatic separation measures. Here, we analyze a
different set of data we gathered, for which the two coders judged and
quantified visual class separability.

We first explain how our research interest led to the methodological
choice of a data study. We then describe the data study in terms of our
guiding hypothesis, the 816 scatterplots, the data we gathered based
on these scatterplots, and how we analyzed this data.

4.1 Method Rationale

Our methodological choice to conduct a data study was informed by a
long and thorough exploration of other evaluation methods.

Initially, we planned to conduct a user study in order to compare 2D,
i3D and SPLOMs for DR data. However, we found that a user study
was not the right methodological approach for this research question;
a pilot user study with five participants, six datasets and one DR tech-
nique, revealed that the results strongly depended on the characteris-
tics of the data as viewed in the scatterplots and not on differences
between participants. This finding suggested that it is imperative to
include a broad set of dataset characteristics to make generalizable
claims; subjective differences and timing costs, as mainly tested in
traditional user studies with many users and few datasets, are only of
marginal interest for studying class separability across DR and VE
choices.

Judging class separability on a very broad set of datasets, DR tech-
niques, and VE choices requires a significant amount of work. We
therefore sought automatic class separation measures to conduct these
class separability judgements. Such quality measures have gained re-
cent attention [4] and researchers have proposed using them for eval-
uation purposes [3]. We used two state-of-the-art measures to judge
class separability for our study [36, 38], however, we found that they
produced unreliable results. By comparing these automatic measures
to our human judgment, we identified strong discrepancies in class
separation judgments for half of our 816 scatterplots [35]. These fail-
ure rates are not acceptable for our purposes.

Since reliable automatic separation measures were not available, we
decided to conduct a data study in which class separation is judged by
a small number of trained human coders. This decision is supported
by recent empirical evidence that humans are consistent in their visual
cluster evaluation tasks, especially if they are trained experts as in our
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case [27]. Consistency among expert coders, or inter-coder reliability,
is a crucial precondition for the methodological approach we took.
While conducting such studies with one coder is not uncommon,
we followed the recommended practice of using two coders and as-
sessing objectivity through inter-coder reliability. Given the significant
workload of such studies, more than two coders would be unusual.

4.2 Guiding Hypothesis

Our data collection and analysis was informed by a guiding hypothe-
sis. We call it guiding to mean that it expressed our intuitions at the
beginning of this project, and not to reflect unambiguous and testable
cause-effect relations. Our guiding hypothesis was that:

e 2D is often good enough for showing visible class structure;

e SPLOM sometimes adds more information;

e 13D rarely provides additional benefits in real-world datasets,

but sometimes does for specifically designed synthetic datasets;

e sometimes none of these visual encodings reveals visible class

structure.

The major goals of our study were to get a better understanding of
how often these four situations occur, that is, the quantification of “of-
ten”, “sometimes”, and “rarely”, and of how they change under differ-
ent circumstances, such as choosing between different DR techniques
or for datasets with different characteristics.

4.3 Scatterplot samples

The basis for the quantitative judgements of the coders was the same
set of 816 scatterplot samples that we generated for previous work
in which coders made qualitative judgements about them [35]. These
samples resulted from the combination of 75 datasets reduced with 4
DR techniques (PCA, Robust PCA, Glimmer MDS, and t-SNE) and
visualized with 3 scatterplot VE techniques (2D, i3D, and SPLOM).
We call them scatterplot samples to emphasize that while the SPLOM
contains many individual scatterplots as subcomponents, we count the
entire SPLOM as a single scatterplot sample rather than separately
adding each subcomponent to the total. We summarize the generation
process briefly here and provide further details in the supplemental
material.

We used a set of 75 datasets divided into four different cate-
gories: 31 real datasets from our colleagues and collaborators [19,
36, 38] or online data repositories [17, 33, 42, 47, 48]; 16 synthetic-
gaussian datasets with 3 to 5 randomly distributed gaussian clusters;
24 synthetic-entangled datasets with higher-dimensionally entangled
classes; and 4 synthetic-grid datasets that are simply regular high-
dimensional grids, to provide a baseline of known and highly regu-
lar dataset structure. Figure 5 shows examples of entangled datasets;
these were specifically designed so that they could not be untangled
with linear DR techniques, and were intended to be the best possible
case for 3D scatterplots.

These four categories are ordered from very realistic to highly artifi-
cial, and are presented in this order throughout the paper. The datasets
ranged from 77 to 43,500 points (median=500), from 3 to 159 original
dimensions (median=7), and between 2 and 53 classes (median=5).
All datasets were pre-classified, either in our generation process, by
using clustering algorithms, or as provided with the data.

We carefully selected a set of four representative DR techniques to
reduce these 75 datasets: The venerable PCA [22] technique, which
finds linear projections based on variance, is the first choice of many
analysts in the real world [34]. As PCA is known to be vulnerable to
outliers, we included another linear technique, Robust PCA [39] that
has been found to be tolerant of outliers. Given the limitations of linear
DR techniques, we additionally included two non-linear techniques:
Glimmer MDS [21] is a representative of the well-known family of
multidimensional scaling techniques that seek to optimally map point
distances from the high-dimensional space into a low-dimensional
projection. The recent approach of t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [44] is a non-linear DR approach specifically
designed to separate clusters well—the task we are interested in.

The result of running these 4 DR techniques on the 75 datasets was
272 dimension reduction operations rather than 300; in the remaining
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28 cases, the computations did not complete because the technique
assumptions were not met by the dataset characteristics. All computa-
tions were done in R.

The dimensionally reduced data was then visually encoded with
three scatterplot techniques: 2D, i3D and SPLOMs. Points in all scat-
terplot samples were color-coded based on the given class structure.
For 2D scatterplots we reduced the data to two dimensions, and for
i3D to three dimensions. For SPLOMs, we generated a set of n-way
SPLOMs per dataset, where n is the number of dimensions shown
in the SPLOM. The value of n ranged from 3 to dj;4y, a maximum
value determined by a combination of the original dimensionality of
the dataset and the values of class separation measures [36], with a cap
of 15 dimensions as the upper limit. We introduced this cap to keep the
study manageable in terms of time costs for the coders. From this set
of SPLOMs, each coder individually selected one SPLOM for the data
collection process, by making a judgement about when adding more
dimensions to the SPLOM stopped providing any benefits in terms of
class separation. The outcome of this process was a set of 816 scatter-
plot samples.

4.4 Data Collection

The data collection was conducted by the same two trained coders!
and in parallel with the study in our previous work [35]. For the study
reported here, the coders used their in-depth manual inspection of 816
scatterplot samples to rate how visually separable each of the color-
coded classes were within these scatterplots. Data gathering took two
months, with a total of approximately 80 hours of coding time for
each person. In the first six weeks, the coders met two to four times
a week to discuss many scatterplot samples and iteratively adapt the
coding schemes and strategies, re-coding samples as necessary as the
schemes changed. This iterative development of the coding scheme is
a lengthly process but is crucial for scientific rigor [7, 18].

With the number of classes being variable across datasets, each
coder made a total of 5460 classwise ratings. Each of these classes
was given a score between 1 and 5, where 1 means the class is not
separated at all and 5 means the class is nicely separated. Initially, we
had only three categories, but in the iterative coding process we found
that a 3-point scale did not provide enough depth for representing the
separability of clusters.

Figure 1 shows examples of different classes and how they were
judged by the coders. The coders’ definition of visual class separabil-
ity followed our previously proposed taxonomy of visual cluster sep-
aration factors [35]. The most important separability factors we took
into account were the amount of spatial overlap between classes and
factors related to connectedness between points of a class. A class
of points that is connected to each other and that has no overlap with
any other class, for instance, gets a “5”. Larger spatial overlaps and
disconnectedness of points reduce the score. Our manual coding was
also robust with respect to a variety of factors that are not reliably
testable with state-of-the-art separation measures, such as the shape
of a class, the variance of size, point count or point density between
classes. That is, as long as a class is connected and without overlay,
its shape, size, point count, or density had no negative impact on its
rating score. Classes with only 1 point were not judged because the
separation of a one-point class is not meaningful. The supplemental
material contains a full set of all examples and ratings.

To asses the objectivity of these class-wise ratings, we computed
the inter-coder reliability using Krippendorff’s alpha. In contrast to
other inter-coder measures, Krippendorft’s alpha can be used for any
number of coders, is robust to missing values, and works with dif-
ferent data types such as nominal, ordinal or ratio; for our classwise
ratings Krippendorft’s alpha was 0.858 for ordinal data; a score of .8
or greater is considered acceptable in most situations [24].

We also recorded other data that we intended to use to address our
research questions. In particular, the coders additionally recorded their
subjective preference of (a) which combinations of DR and VE they

'One of the coders is the first author of this paper, as is standard practice
with the methodological approach we took.
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(a) max sep: (5,5,5) (c) mixed: (4,3,2,1)

(b) no sep: (1,1,1)

Fig. 1. 2D scatterplot samples and class codings from the data study.
(a) entangled3-m-3d-smallOverlap reduced with PCA represent-
ing three classes that were each coded as 5, nicely separated; (b)
gauss-n100-5d-3largeCl reduced with Glimmer MDS represent-
ing three classes that were each coded as 1, not separated at all. (c)
entangled2-4d-overlap reduced with robust PCA showing an ex-
ample in between these: the green class got a 4, the red class a 3, the
blue class a 2, and the black class, which is completely mixed with the
other classes, a 1. Both coders agreed on all these ratings. As with all
following scatterplot figures, point sizes have been increased for easier
readability in the paper.

considered the best for each dataset, and (b) which VE they found
most helpful for a dataset x DR combination?. However, this data
showed effects of personal preference, with Krippendorff’s alpha for
(a) being 0.32 and for (b) 0.461. In particular, we found that one coder
tended to subjectively pick 3D scatterplots, and the other one tended
to prefer 2D and SPLOM. We therefore excluded this data from our
analysis. However, as shown above, the low-level classwise ratings
were resistant to such subjective biases and provide therefore reliable
and un-biased data for our methodological approach.

4.5 Data Analysis

‘We undertook extensive exploratory analysis of the collected data. We
report only the most interesting results here.

The analysis in Sections 5.1 through 5.3 is primarily presented
using heatmaps that either directly show the classwise ratings or
show derived data about differences between VE and DR techniques.
Heatmaps in the paper show averaged ratings of both coders; the sup-
plemental material contains larger and labeled versions of these aver-
aged heatmaps, as well as separate heatmaps for each coder. We used
these representations for our own exploratory analysis and found them
very useful. They make visible as many of the class-wise ratings as
possible, and allow readers to make their own judgements about the
data at both overview and detail levels. Moreover, we also did not
want to impose our own opinion of what constitutes ‘better’. For in-
stance, is a ‘better’ VE one where at least one class is more separable,
or one where more classes improve than decline? To allow for such
differing interpretations, we decided to show the rating data that we
gathered in as much detail as possible.

We complemented the heatmap analysis with inferential statistics.
Because our rating data are ordinal and not normally distributed, we
used the non-parametric Wilcoxon signed rank test (two tailed). Bon-
ferroni correction was applied within each group of tests.

We used the results of the quantitative analysis to select a set of
interesting example scatterplots for further qualitative discussion; the
supplemental material again contains more of these examples. Our
data analysis is thus in the spirit of mixed methods approaches [11].

5 RESULTS AND DISCUSSION

We first present the base data from the averaged classwise ratings. We
then present the within-DR analysis of the data for each of the four DR
techniques separately, followed by the cross-DR analysis across all of
them together. After a quantification of results into the four bins given
by our guiding hypothesis, we briefly discuss secondary results on the
usage of SPLOMs that support our usability assumption.

2(a) was collected as nominal data, and (b) as ordinal rankings.
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4 DR _techniques
PCA robust PCA +-SNE

glimmer MDS
one
Scatterplot

each cell
represents
one class

real

Averaged
ratings

75 datasets
gaussian

15

entangled

grid

(a) 2D
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robust PCA _, glimmer MDS robust PCA

glimmer MDS

(b) i (c) SPLOM

Fig. 2. Base data showing classwise ratings for each scatterplot variant, shown as heatmaps. (a) 2D scatterplots, annotated to show the meaning
of the visual representation. (b) Interactive 3D scatterplots. (c) SPLOM. Ratings range from 1 (not separated at all) to 5 (nicely separated).

5.1

Figure 2(a) shows an annotated heatmap with 75 rows, representing
the average score of both coders on 2D Scatterplots. Each row rep-
resents one dataset. The columns are organized into four sections,
one per DR technique, ordered as PCA, then Robust PCA, followed
by Glimmer MDS, and finally t-SNE. Within these sections one row
reflects one scatterplot, in this case 2D, with k cells representing the
number of classes of this dataset. The length of these within-section
rows vary, as not all datasets have the same number of classes. This en-
coding enables the visibility of (almost) all classes, and makes datasets
with many classes more visually salient. As the task of cluster verifica-
tion indeed becomes more difficult as the number of classes increases,
we decided to normalize the amount of screen space used to classes
rather than datasets. These encoding choices should be taken into ac-
count when interpreting the heatmaps.

Within a cell, the average rating of a class is encoded with a white-
to-green color ramp, with 1 (not separable) in light green, to 5 (nicely
separable) in dark green. Yellow cells indicate that this class consisted
of only 1 point. The heatmaps cap the number of classes to 16 to
maintain legibility. The two topmost rows are the only two datasets
that have more than 16 classes; we deemed that the additional infor-
mation was not crucial for the analysis, as both have consistently low
classwise scores for all VEs and DRs.

The rows are sorted by dataset classification, starting with real at
the top, then synthetic-gaussian, synthetic—entangled
and finally synthetic-grid at the bottom, reflecting our ordering
from very realistic to highly artificial. Within each category, rows are
further sorted by the number of classes.

Figures 2(b) and 2(c) show the base data for 3D scatterplots and
SPLOMs encoded in the same way. All subsequent heatmaps also use
the same spatial encoding. Intuitively, this visual representation is a
4 x 4 matrix, with the four different dataset categories on the vertical
axis, and the four DR techniques on the horizontal axis.

We will use the following naming convention as notation for de-
scribing heatmaps and the sections within them:

o ve, with ve € {2d, 3d, splom}, refers to the three visual encoding

heatmaps in Figure 2(a), 2(b), and 2(c) respectively;

e ve:dr,with dr € {pca,rob,mds,tsne}, refers to the vertical DR-

technique sections within these heatmaps, e.g. 2d : pca;
e ve : type, with type € {real,gauss,entangled,grid}, refers
to the horizontal dataset-category sections in the heatmaps,
e.g. 2d : real;

e ve:dr xtype thus refers to one of the 16 sections of the matrix,
e.g. 2d : pca X real.

Visually comparing the base data of 2D, i3D, and SPLOM reveals
some interesting insights. We can observe situations where all classes
of a dataset are nicely separable, reflected by only dark green cells

Base Data

(e.g., 2d : tsne x entangled); situations with only un-separable classes,
only light green cells; and situations where some classes are sepa-
rable and some classes are not, a mix of dark and light green. The
2d : pca X entangled section contains an example of the latter. There
is also a noticable difference between the three VE techniques. For in-
stance, comparing the different ve : pca x entangled across the three
heatmaps reveals that in general the cells in this section are darker for
i3D and SPLOM than for 2D. Finally, there are also notable differ-
ences between DR choices that we can see by comparing the four DR
sections along a particular row. Consider again the 2D : entangled
datasets in Figure 2(a): while in the PCA, robust PCA and Glimmer
MBDS sections we can see many light cells, in the rightmost t-SNE sec-
tion there are mainly dark green cells indicating that this DR technique
performed well on nearly all of these datasets.

We continue by deriving A-heatmaps that directly show the differ-
ences between heatmaps, revealing further results and implications in
a way that is perceptually easier to interpret than simply visually com-
paring the base maps side by side.

5.2 Scatterplot Choices: Within-DR

We first compare the class separation performance of the three visual
encoding techniques for each DR technique separately. Our analysis
is based on the cost assumptions discussed in Section 2, that 2D is
less costly than SPLOM, which is in turn less costly than i3D. We
thus analyze our results as two comparisons of the base heatmaps: the
difference between SPLOM and 2D, and the difference between i3D
and the best of those two.

5.2.1 Within-DR: SPLOM

We first show the difference between the SPLOM and 2D classwise
ratings for each DR technique separately. Visually speaking, we show
a cell-wise subtraction of Figure 2(c) (SPLOM) and Figure 2(a) (2D).
This comparison shows both how many classes scored better in the
SPLOM compared to 2D within a specific DR technique, and how
much better they scored. Using the notation specified above, we for-

mally specify this first data derivation AW as:

Al = splom —2d
The mathematical operator “~” refers to a cell-wise subtraction. We
omit line and column indices for notational simplicity and clarity, in
this and all following formulae.

The resulting range of cell values val from this A-computation is
val € {—4,-3.5,...,4}. The fractional values arise because these
scores are averaged between the two coders. In our discussion, we
further classify this scale into three bins: when val > 3 we call the
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Fig. 3. Within-DR differences. Heatmap layout is identical to Figure 2(a). (a) A(") = splom—2d. (b) A®) = 3d —max(2d, splom). (c) Diverging blue/red
color ramp for all A heatmaps. Differences are binned into categories of marginal, noticeable, and substantial. Blue = better, Red = worse (e.g. in

(a): a certain class in the SPLOM is better/worse than in 2D).

difference in separability substantial; if 3 > val > 2 we call the differ-
ence notable; if val < 2 we call the difference only marginal. We call
a VE technique good enough when the difference between it and the
next one is marginal; we consider that upgrading to a more costly scat-
terplot technique, such as from 2D to a SPLOM, is only worthwhile
for notable or substantial differences.

Figure 3(a) shows A All of the A heatmaps use the diverging
color ramp shown in Figure 3(c). In this case, blue cells show that a
class was better in SPLOM, with the saturation of blue encoding how
much better. Red cells indicate that 2D was better than SPLOM, and
white indicates that they were equally good.

Inspecting Figure 3(a) reveals several scatterplots with saturated
blue boxes. In these cases, we argue that changing to the more costly
SPLOM would be worthwhile, since some classes are either substan-
tially or notably more separable than in 2D. Two examples in which
SPLOM scored better than 2D from the same DR technique are shown
in Figure 4. In Figure 4(a), the 2D scatterplot (identical to first 1x2
view) nicely separates the green and the red class, yet the black, blue
and cyan are mixed together. All five of these classes can be seen
separably by showing more of the principal components in a SPLOM:
black can be seen in the 2x3 view, blue in the 3x4 view, and cyan in
the 1x3 view. In Figure 4(b), no class is visually separable in the 2D
plot (equivalent to the 1x2). But the 2x3 view in the SPLOM shows
reasonable separation. The classes appear as adjacent strings that are
not visible in the 2D PCA projection. In contrast to Figure 4(a), here
a single view in the SPLOM provides the benefit over 2D.

We note that most of the substantial differences appear for the linear
DR techniques PCA and robust PCA, and many of them can be found
in the topmost section representing the real datasets. We also note that
for these linear techniques, SPLOM is never notably or substantially
worse than 2D; there are almost no red cells in these columns. This
finding is hardly surprising, as in these cases the first 1x2 view in the
SPLOM is exactly the 2D plot: both are showing the first principal
components. We consider the marginal differences to be uninteresting
artifacts of our data collection process.

For the non-linear techniques, switching to SPLOM is not helpful
as often, underscoring the conventional wisdom that these techniques
have more power to create meaningful embeddings with fewer dimen-
sions that the linear techniques require. In one of the t-SNE instances,
2D is actually noticeably better than SPLOM, shown with a black ar-
row in Figure 3(a); this situation arises both because t-SNE is a non-
deterministic technique that produces different embeddings for every
computation and because t-SNE is specifically designed to work well
in lower dimensions [43].

We statistically compared the set of classwise AWM values for each
DR technique to a theoretical value of zero, thereby testing the null

1x2

. . . 1x3| . ' 2x3
(a) (b)

Fig. 4. Within-DR examples where SPLOMs were better than 2D. In
both cases, the 1x2 view at the top left is identical to the 2D scatter-
plot. (a) 4-way SPLOM is better than 2D, with the synthetic-gaussian
dataset gauss-n100-10d-5smallCl reduced by robust PCA. (b) 3-
way SPLOM is better than 2D, with the real dataset industryIndices
reduced by PCA. Red boxes mark the views that were judged to best
separate specific classes.

hypothesis that there is no overall difference between SPLOM and
2D. Later statistical analyses use this same approach. Wilcoxon tests
showed a significant effect in all cases (V >9221, p <0.001 for each
DR technique). In other words, SPLOM was overall significantly bet-
ter than 2D for all DR techniques, though our heatmap analysis shows
that 2D was good enough for many individual datasets.

5.2.2 Within-DR: i3D

In the case where neither 2D nor SPLOM are good enough, an analyst
might hope that the highest cost interactive 3D Scatterplot could reveal
class separability more effectively. To investigate whether 3D might be
a fruitful strategy within-DR, we show the difference of 3D classwise
ratings compared to the maximum of the 2D classwise ratings and

SPLOM classwise ratings. Formally, A®) can be noted as:
A®) = 34 —max(2d, splom)

Visually speaking, we show a cell-wise subtraction of Figure 2(b)
(i3D) and the maximum of Figure 2(c) (SPLOM) and Figure 2(a) (2D).
In our exploratory analysis, we found that the 3d — max(2d,splom)
subtraction is only marginally different from 3d — splom, providing
evidence that our cost assumptions hold. The results of this subtraction
are shown in Figure 3(b).
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(a) (b) (© () (e) ®

Fig. 5. (a)-(d): Screenshots of the entangled dataset entangledl-3d-3cl-separate designed to show the most possible benefits for i3D.
(a),(b) two viewpoints of the same i3D PCA scatterplot. An accompanying video shows the full 3D rotation. (c) 2D PCA projection. (d) t-SNE
untangles this class structure in 2D. (e)-(f): 2D scatterplots of the reduced entangled2-15d-adjacent dataset which we designed to have a
ground truth entangled class structure in 15D. (e) Glimmer MDS cannot untangle the classes, neither can PCA and robPCA (see supplemental

material). (f) t-SNE nicely untangles and separates the ground truth classes in 2D.
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(¢) 13D — max (SPLOM, 2D from all DRs)

Fig. 6. Cross-DR differences. Red = another configuration is better, Blue = this configuration is best. (a) 2D compared to all other DRs in 2D. (b)
SPLOM compared to all DRs in 2D. (c) i8D compared to SPLOM and all DRs in 2D.

Inspecting Figure 3(b) reveals that i3D rarely helps compared to
the best of 2D and SPLOM, and sometimes actually hurts. That is,
13D shows less class structure, visible as red cells with notable or sub-
stantial saturation levels, but has higher usage costs. The only notable
blue cells are with the highly artificial entangled and grid datasets,
reflecting our main hypotheses that i3D would work well for these
specifically designed datasets.

Figure 5(a)-(b) shows a simple example of one of our artificial en-
tangled datasets in 3D. The dataset was specifically designed for 3D
and has three oblong and thin classes that cannot be fully distinguished
with any linear 2D projection. Figure 5(c) shows the 2D PCA Scatter-
plot of this dataset. We note that even in this example the 2D Scatter-
plot contains only minimal overlap of the classes, and the clear shape
of the clusters makes the classes easy to tell apart.

Wilcoxon tests showed that A was significantly different from
zero only for t-SNE (V = 2514, p <0.001). In this case, 13D was
overall significantly worse than 2D and SPLOM for t-SNE.

5.3 Scatterplot Choices: Cross-DR

The analysis presented thus far has focused on scatterplot choices
within a certain DR technique. We now investigate how the three
scatterplot techniques perform cross-DR; that is, how choosing among
different DR techniques influences the VE performance. For that pur-
pose, we first compare how 2D reduced scatterplots compare among
the four DR techniques. We then analyze whether SPLOM or i3D add
additional benefit in such cross-DR explorations.

5.3.1 Cross-DR: 2D

We are interested in understanding whether one DR technique adds no-
table or substantial benefits over all others when analyzing a dataset.
For this purpose, we compare the 2D classwise ratings of one DR tech-
nique to the maximum 2D classwise ratings of the remaining three DR

technique. Formally, this A®) derivation can be written as follows. Let

DR = {pca,rob,mds,tsne}, then

3)
Vdr € DR: A, = 2dg, — max (2d;)
gt

Visually speaking, we show a cell-wise subtraction between the
four vertical DR sections—the set of columns per DR technique—in
Figure 2(a). For all four DR techniques, we take their respective DR
section and subtract the maximum of the remaining three DR sections.
The results are shown in Figure 6(a), using the same color ramp as
before. Red cells indicate that for this class there is another DR that
better separates it. Blue cells indicate that the specific DR technique
separates this class better than all other techniques. White indicates
that there are no differences across all or a subset of DR techniques.

Interpreting Figure 6(a) reveals a number of datasets for which pick-
ing a different DR technique indeed makes a substantial difference for
many of their classes. This finding is reflected by the high number of
dark red cells indicating the superiority of another DR technique. In
some of these cases, one DR technique is substantially better than all
others, which can be seen by the blue boxes. The most noticeable pat-
tern is that t-SNE has superior performance for many of the entangled
datasets, seen in the A : entangled section. Figure 5(e)-(f) gives an
example of a dataset with 15 ground truth classes entangled in 15 di-
mensions. Neither PCA, robust PCA, nor Glimmer MDS, as shown in
Figure 5(6)3, reveals this entangled class structure. In contrast, t-SNE
clearly untangels 15 separable classes as shown in Figure 5(f). Figure
5(d) shows how t-SNE performs on the previously discussed example
of Figure 5; again, t-SNE clearly untangles the classes.

Statistical analysis supported the superior performance of t-SNE.
Wilcoxon tests showed that AG®) was significantly different from zero
for PCA, robust PCA, and Glimmer MDS (V >1990, p <0.001 in all

3Screenshots of PCA and robust PCA are in the supplemental material.
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cases), that is, another DR technique was better overall. There was no
significant difference for t-SNE (V = 15790, p <0.74).

Although t-SNE provides a benefit for the artificial entangled
datasets, and this finding is reflected in the aggregated statistical anal-
ysis, for the real datasets seen in the top A®) : real section, there is no
clear preference for one DR technique. Red boxes can be found across
all four DR techniques, indicating differences between DR techniques
but also that there is no one-and-only DR solution. While changing
from linear techniques to non-linear techniques was fruitful for some
datasets, for others the reverse change was also beneficial.

5.3.2 Cross-DR: SPLOM and 3D

One question that remains is how much SPLOMs and i3Ds help in
cross-DR explorations. To investigate this question, we provide two
comparisons. First, in AW we compare, for each DR-technique, how
much a SPLOM is better than the 2D scatterplots of all four DR tech-
niques. Second, we investigate the question of how much i3D adds on
top of that. Based on our cost arguments, for A®) we compare i3D
of a certain DR technique first to the SPLOM of the same technique.
We then compare it to the 2D scatterplots from all four DR techniques.
Formally, let DR = {pca, rob,mds,tsne}, then

4)

Vdr € DR : AY) = splom,, — 2d;
r dr = Sptomg, vriréabxk( )

Vdr € DR : Aflsr) =3dg — max(splomdr,vng(R(Zdi))
4SS

Figure 6(b) shows the cross-DR performance of SPLOMs A®, and
Figure 6(c) shows it for i3D A,

Interestingly, there are very few blue boxes, indicating that chang-
ing the visual encoding technique rarely helps on top of cross-DR ex-
ploration. Wilcoxon tests supported this claim, with A®) being signif-
icantly less than zero for all DRs (V >1676, p <0.001) and the same
for A®) (V >578, p <0.001). In other words, switching to another DR
is a better overall strategy than changing from 2D to SPLOM or i3D.

One of the few examples where a SPLOM added notable class sep-
arability is the industryIndices real dataset that is marked with a
black arrow in 6(b) and shown in Figure 4(b). For this dataset instance,
the structure of adjacent clusters was revealed by the 2nd and 3rd prin-
cipal components, which apparently could not be brought forward by
non-linear techniques.

In general, there are also fewer red boxes and more white boxes
for SPLOMs as compared to a pure 2D cross-DR comparison 6(a).
This change of pattern indicates that in many cases a SPLOM of one
DR technique shows the same cluster separability information as a
2D scatterplot created with another DR technique. Nevertheless, there
are many notable and substantial red boxes visible, indicating that a
2D plot from another DR technique is better than a SPLOM with this
particular one.

For 13D, we note that there is no single class in the tested datasets
where 13D would add any notable or substantial difference in a cross-
DR exploration scenario. There are also many saturated red cells,
showing that 13D often performs worse than the 2D encodings of other
DR techniques or the SPLOM of the same DR technique; that is, it
‘hurts’ in terms of having less class separability.

5.4 Quantification

Following our main guiding hypothesis, we were interested in learn-
ing about the quantities on how often 2D is good enough, how often
SPLOM adds further class separability, how often i3D adds further
class separability, and how often none of these visual encoding tech-
niques reveal visible class structure. To get a better understanding of
these quantities, we assigned numbers to the four bins based on the
results presented above. We use a conservative measure where, for a
given dataset, its visual encoding a is better than b if at least one class
in a is notably (> +2) better than in b. Visually speaking, this measure
means that at least one cell is encoded with a saturated blue. Using this
conservative measure avoids any potential bias towards 2D.
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Fig. 7. Blue bars reflect how often 2D was good enough; green show
how often SPLOM was notably better than 2D for at least for one class;
yellow shows how often i3D was better than that; and red indicates that
neither 2D, SPLOM, nor i3D revealed any class that scored higher than
two. Gray indicates the 28 cases when R could not compute the di-
mension reduction. Top four rows = within-DR analyses, Bottom row =
cross-DR. Note that for t-SNE and for cross-DR i3D never added any
notable or substantial benefit for any class in our study.

Figure 7 shows counts for within-DR (top four rows) and cross-DR
results (last row). We consider that ‘no visual encoding (VE) showed
classes’ if all average class scores for all VEs were < 2.

Following up on our main hypothesis, we found that our intuitions
about 2D, SPLOM and i3D choices were largely reflected in within-
DR situations, in particular, those of the linear PCA and robust PCA
techniques. These analyses reflect hypothetical situations in which
an analyst sticks with one DR technique and does not try any other
ones. As we hypothesized, in those cases 2D is “often” good enough,
SPLOM “sometimes” adds more visible class structure, i3D does not
add on top of that except for some artificial datasets, and “sometimes”
none of these visual encoding techniques reveals any class structure.

However, this impression changes if we look at non-linear tech-
niques, and especially if we look at cross-DR exploration scenarios.
For cross-DR, 2D “almost always” is good enough, SPLOM “only
occasionally” adds on top of that, and i3D “never” adds.

We note that our dataset collection is not perfectly representative.
Some interesting cases could have been missed, and our quantitative
results should be interpreted with this in mind. However, we made ev-
ery endeavor to give i3D the best possible chance, by creating artificial
datasets specifically designed for 3D. It is worth noting that i3D still
very rarely helped even under these conditions.

5.5 SPLOM Usage

The usability assumption behind our data analysis is that SPLOMs are
less costly in terms of usability than interactive 3D scatterplots, as we
discuss in Section 2. However, this assumption only holds true if the
dimensionality of SPLOM does not increase in an unbounded way.

To verity this assumption, both coders also tracked the dimensional-
ity of the SPLOMs they chose, and the number of views that they used
for the class verification tasks. We excluded SPLOMs that just repli-
cated 2D (e.g., all classes visible with the first two principal compo-
nents) to avoid a bias towards lower dimensional SPLOMs and fewer
views. We found that the maximum SPLOM dimensionality was 7,
with a mean of 4.1. The average number of used views was only 2.7,
and the maximum was 11 views (only for one case). In 88% of the
cases, 1-4 views revealed the necessary class structure. These find-
ings indicate that when using SPLOMs for cluster verification with
DR data, their size is limited and thus they are indeed usable. In par-
ticular, our usability cost assumptions are not violated. Further details
can be found in the supplemental material.

6 DESIGN IMPLICATIONS AND WORKFLOW MODEL

Based on our findings, we formulate a workflow model, and derive
implications for making scatterplot choices in the DR exploration pro-
cess. The workflow model, presented in Figure 8, provides sequences
of concrete steps in the analysis process, as well as decision support
for visual encoding choices.

At the beginning of the analysis process, an analyst picks a DR tech-
nique and visualizes its output with a 2D Scatterplot, the lowest cost
visual encoding technique. The choice of DR will usually be informed
by the analyst’s previous experience with DR and/or the mathemati-
cal complexity of the DR approach. As the next step the analyst will
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engage in the actual task of visually verifying class separability. The
outcomes of this task depend on the analyst’s prior expectations, and
based on them will be either “good enough” or “not good enough”. It
an analyst considers the visible results “good enough”, s/he is already
done assuming that what s/he sees is a true positive; that is, there is
real class structure in the data.

However, the more common case is that classes are not nicely sepa-
rable. When there is no visible class structure, an analyst is faced with
the challenge of differentiating true negatives from false negatives.
True negatives represent situations where there are really no separable
classes, while false negatives appear when separable classes exist in
higher dimensions but are absent in the lower-dimensional projection.
This situation can be caused by artifacts arising from choices of how to
reduce the data and/or how to visually encode it. In these situations, an
analyst will often engage in an iterative process of investigating class
separability from other DR and visual encoding perspectives [34], with
the goal of building up more confidence in the real high-dimensional
class structure of a dataset step by step. At the end of the process, an
analyst will be able to make a more informed decision about true or
false positives or negatives with respect to the visible class structure.
If the set of tested DRs and visual encodings is large, the confidence
that the result is a true negative will be higher. Our findings suggest
several implications guiding such an iterative exploration process:

Change between DR. Use 2D. Our results indicate that trying dif-
ferent DR techniques with 2D scatterplots is a fruitful approach to in-
vestigate class separability. If a broad set of DR techniques are consid-
ered, other scatterplot techniques only occasionally add value beyond
that exploration. Even if a set of classes is entirely mixed together
in the embedding of one DR technique, another DR technique might
reveal visually separable classes. Trying specific DR techniques with
different parameterizations might also be a promising approach.

There is no one-and-only DR. While trying different DR tech-
niques, it can be useful not only to change from linear to non-linear
DR, but also in the other direction. There is no one-and-only DR tech-
nique that is superior to all others—at least not among the four we
tested. t-SNE performed very well with untangling our artificial en-
tangled datasets, but did not reveal certain structures in real world
datasets, such as adjacent, stringy classes, which were revealed by
the linear PCA techniques. We also noticed that while PCA, Glim-
mer MDS and t-SNE resulted in different and interesting projections,
robust PCA rarely added additional insights on top of those. Note,
however, that our focus was on visual encoding techniques; we do not
claim a complete analysis of strength and weaknesses of the four dif-
ferent DR techniques.

SPLOM occasionally can help. There are two cases where look-
ing at SPLOMs can help in the DR process: first, if the tested set of DR
techniques is small. (Our within-DR analysis is a detailed discussion
of the case where the set is exactly equal to one.) The second case
is when the analyst has a strong hypothesis that existing classes are
not visible in 2D plots of various DR techniques. Our study revealed
one example, shown in Figure 4(b), for which only a PCA SPLOM
revealed the separability of many classes. Our results in Section 5.2.1
suggest that SPLOMS are particularly helpful for linear DR techniques
such as PCA or robust PCA. However, note that as the set of analyzed
DR techniques grows larger, a SPLOM is less likely to reveal more
structure than another DR technique in 2D. Also, trusting in SPLOMs
alone is dangerous: Linear SPLOMs, for instance, cannot help in un-
tangling high-dimensional entangled structures.

Do not use 3D for cluster verification with DR data. Especially
when considered within the context of a cross-DR exploration process,
13D rarely, if ever, adds value on top of the less costly 2D and SPLOM
VE techniques. On the contrary, it often hurts by hiding class structure
that can be seen with other techniques, and by adding higher interac-
tion costs. Even for the highly artificial datasets designed to showcase
the potential of i3D, its benefits were questionable for within-DR anal-
ysis. With cross-DR analysis, t-SNE outperformed all i3Ds for those
datasets, and we found no single example where 13D added value; i3D
does therefore not appear in our workflow model.
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Fig. 8. A workflow model for guiding VE and DR technique choices in
the DR exploration process.
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7 LIMITATIONS AND FUTURE WORK

As with all empirical work, there are limitations to our work stem-
ming from the specific study design we picked and its implementa-
tion. While we intentionally based our data study on a broad set of 75
datasets and four DR techniques, we do not claim all-encompassing
coverage of either. On the one hand, there might be datasets with in-
teresting characteristics that do not follow general trends we observed
here. On the other hand, there are many other DR techniques that we
could have tested such as Linear Discriminate Analysis (LDA) [15]
or Laplacian Eigenmaps [2]. However, based on our focus on visual
encoding and the deliberate breadth of our dataset and DR collection,
we do expect that these trends will hold true for many other situations.

We also specifically tested the task of cluster verification for DR
data. We do not claim that our results generalize to other kinds of
data; most importantly, they do not apply to intrinsically spatial non-
reduced data. In terms of other DR tasks [34], we expect that some of
our findings might generalize to cluster identification tasks, which are
similar to cluster verification. In contrast, tasks related to dimensions
such as naming newly derived dimensions are substantially different;
exploring VEs for such tasks is an interesting topic for future work.

In terms of guiding the DR exploration process, previous work has
focused on providing pre-specified workflows [20]. Our findings sug-
gest that exploring different DR techniques with 2D scatterplots can be
useful. How to provide specific guidance for such cross-DR choices
and exploration is an interesting question for future work.

‘We also argue for more breadth in study approaches, including data
studies. If we had followed our original user study plan, we would
have only focused on visual encoding techniques, thus missing the
crucial influence of dataset characteristics and DR techniques. Con-
sidering visual encoding techniques in a vacuum could lead to find-
ings that are at best incomplete and at worst misleading. Ultimately,
visualization is often only one step in a larger data analysis chain.

8 CONCLUSIONS

We presented a data study comparing class separability of DR data in
2D Scatterplots, interactive 3D Scatterplots and Scatterplot Matrices.
The study was based on a broad set of 816 scatterplot samples and led
to four implications and a workflow model that can be used to guide
explorative high-dimensional data analysis.

As the most promising approach, our results suggest using 2D scat-
terplots to explore output of different DR algorithms. On top of that,
SPLOMSs can occasionally help reveal more class structure. In con-
trast, i3D rarely helps and often hurts, since it often reduces class
separability and nearly always comes with higher interaction costs.
Based on these findings, we recommend avoiding interactive 3D scat-
terplots for DR data, especially for cluster verification tasks. Instead,
we advocate cross-DR exploration with 2D Scatterplots and the use of
SPLOMSs when the set of considered DR techniques is small.

SUPPLEMENTAL MATERIAL
All supplemental material is available at http://www.cs.ubc.
ca/labs/imager/tr/2013/ScatterplotEval/.
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