ICCVG 2002 Zakopane, 25-29 Sept. 2002

David Auber

LaBRI-Universie Bordeaux 1, 351 Cours de la Efation, 33405 Talence, France
auber@Ilabri.fr

USING STRAHLER NUMBERS FOR REAL TIME VISUAL
EXPLORATION OF HUGE GRAPHS

Abstract

This paper studies the problem of real time navigation in huge graphs. When size
of data is becoming too large, computers are not enough powerful to enable inter-
active navigation without loosing the relevant part of the graph. Here, we present
a method to solve this problem. This solution is based on combinatorial properties
of graphs. We first introduce the reader to our generalization to rooted maps of the
so-called Strahler number[22]. Subsequently we present a way to use this parame-
ter in order to display relevant part of the graph during the navigation. Finally we
give experimental results of our method.

keywords: Information visualization, clustering, interaction, navigation

1 INTRODUCTION

Visualization of graphs has came to the fore during the last ten years. The huge amount
of linked data on the Web as well as genome’s research are some of the factors of this research
domain evolution. One can refer to Munzer |[16] for use of graphs in web analysis and to
Robinson|[18] or Guelzim|9] for their use in bioinformatics.

In this paper we focus on an efficient way to enable visual exploration of huge graphs.
Visual data exploration is a very general concept, it includes: usual movements in two and three
dimensional space such as zoom, rotate and scale, space distortion used in focus and context
methods such as the fisheye view[21] and also coloration[11] of the graph’s elements which can
be used to highlight relevant part of the data. Thus visual exploration can be summarize to a
stream of visual representations of data transmitted through the screen to the final end user.

To preserve the visual mental map of the final end user the transitions between the initial
and the final frame must each preserve sufficient context that the users perceptual processes can

1

D. Auber

- -
init__ P2 pc
I

aquire_ input__area P2 aquire_ c
|
waiting_ P2 start_
baosic_ P71
-~ ‘.
basicZnorrm_ P71 tr4_ P17
| A
norm_ P1 R2__on_ P1 step4 P11
| ~ o
norrmZbasic_ P1 QZ_Set_off_Pl‘:(rf

R2_ off P1 s

releas

Fig. 1 . The full structure Fig. 2 . Some elementary data

track the movement within the virtual space. For instance, in the figure 1 one can see the entire
structure of a small tree. By zooming, the user can go until the elementary data that we can see
on the figurg P. If we zoom directly from the figUre 1/to 2 we are completely lost in the data.
But if we zoom progressively until the figufg 2 user can keep in mind his/her position in the
data.

The idea of making all change progressively can be generalized to the entire visualization
system. The focus of a fisheye should move progressively to a new position. The layout of a
graph should morph into a new layout as proposed by Carsten[5] or by Yee[27], in this case it
enables the user to learn faster the new map of the data. Colors or shapes of elements can also
follow the same rules. Thus by changing the data mapped on the size of elements one can see
which elements are varying.

Viewing progressively modification of the picture presented to the user implies to display a
large number of image to the user. Research in human perception has shown that the maximum
delay between an action of the user and the displayed result on screen should be less than fifty
milliseconds if one wants the user to believe in a causal link. One can refer ta Ware[24] book
on information visualization to obtain more detail on this subject. Thus we need a real time
system which ensures that the displaying of a picture will take less than fifty milliseconds.

In the following we describe the incremental rendering method proposed by Graham[26]
then we introduce the reader to the using of graphs parameter in order to enhance the result
produce by this method. Subsequently, we introduce and study the computation complexity
of the so called Strahler number[22] and of one of its generalization[8]. Then, we present an
extension of this parameter to pointed map that can be used for graph visualization. Finally we
conclude with experimental results of our method.

2 INCREMENTAL RENDERING

When visualizing huge graphs drawing of all elements on the screen can take more than
fifty milliseconds. Therefore, to manage efficiently user or system interaction a visualization
software must enable to receive new events even during the rendering of the visual representa-
tion of data. To solve this problem the method proposed by Graham[26] is to predict how many
items can be drawn during 50 ms.Then, the system draw items during 50 ms before to check
events. If an eventis received, after executing associated actions, we restart the displaying from
the early start. By this way, the system draw incrementally slices of the graph and ensure in-
teraction in less than 50 ms. One of the advantage of this method is to enable graph rendering
without expensive time checks.

Using Strahler numbers for real time visual exploration of huge graphs

Using this method in visualizing graphs representing file system or chemical reactions we
have noticed that in case of huge graphs the rendering process could take more than 2 seconds
and then we must split it in 40 parts. Thus, when user explores the graph and sends actions to
the system at high frequency the graph rendering process never end. For instance, if the user
move the focus of a fisheyes every fifty milliseconds, the system will only display a part of the
elements of the graph. One of the problem in this case is that the displayed part of the graph
must always be the same to avoid the image to shake during user interaction.

During experimentation on semantic network graph visualization[4], we have noticed that
choosing randomly the set of elements to display first can produce quite bad results. For in-
stance, when visualizing huge tree such as the one presented in thé figure 13, if we can display
only five thousand elements in fifty milliseconds , according to our choice, the picture presented
to the user during animation can be completly different of the final one, and may actually display
elements that the user is not interested in.

Therefore, when using incremental rendering, one must find efficient way to order the set
of edges and the set of nodes. Several possibilities are available for solving this problem. One of
them is to use the layout of the graph, by this method we can obtain result which is quite similar
to the original one. However such a method becomes very hard to set up when one wants to use
3D visualization, space deformation, or layout morphing. One of the major reason is that the
order depends of the graph drawing and thus each time the node’s or edge’s coordinates change
one must recompute the order.

Using extrinsic parameter can also be an efficient way to produce an order. For instance,
when visualizing web graph[1, 20] we can use the number of hits obtained by each page and
each link to build the order. Such a method can give results in term of information visualization
because it enables to take into account the user center of interest. For instance, in case of web
graph, if the user wanted to see pages which are the most visited this solution seems to be
appropriate. However, if the user gooal is to find pages which are difficult to access it doesn’t
seem to be the best approach.

Another way to treat the problem is to work on the graph structure. Such an approach
is widely used in graph clustering algorithms [13/ 6, 2]. Here, at the opposite of the method
introduced above, we use intrinsic parameters to compute the ordering. Thus one must find
graph parameters which provide an efficient ordering of elements. Simple parameter such as
degree of nodes (number of edges connected to a node) enable to compute easily the needed
order. In practice, we observe that the degree of nodes is bounded by a constant. For instance,
trees coming from parallel compiler have a degree bounded by the number of processors. Then,
when size of such trees is huge, it becomes equivalent to the using of a random order. Others
parameters such as the activation metric proposed by Mafshall[15] or the clustering measure[25]
can produce more useful results, however, for both of them, they are not efficient for trees and
directed acyclic graphs, and their complexity($n?) that means that they don’t scale well in
relation with data scale or that efficient using requires parallelization.

Our research focuses on a parameter called Strahler. This parameter enables to catch struc-
tural properties of graphs that is, in case of graph visualization, the information that we try to
find. Furthermore its complexity enables to use it on huge graphs without using of expensive
hardware that is one of our objective. One other interesting features of this parameter is that
by thresholding it, we can retain an overall impression of the geometric structure of the graph
which is useful for supporting awareness of spatial position while manipulating the graph.

D. Auber

3 STRAHLER NUMBERS

We introduce here the first version of the Strahler number [22] which is defined on bi-
nary trees, subsequently we present a first extension proposed by/Fedou[8] that generalizes this
parameter to general trees and to directed acyclic graphs. In the following, the theorems and
properties of these parameters are briefly given and proven in order to show that the algorithm
complexity isO(n) or O(n log(n)) and therefore will scale better than parameters like spreading
activation.

3.1 Strahler number on binary trees

The Strahler number on binary trees has been introduced in some work about the morpho-
logical structure of river networks[22]. It consists in associating an integer value to each node
of a binary tree. These values give a quantitative information about the complexity of each sub-
tree of the original tree[23]. Furthermore, if we consider an arithmetical expredsao its
evaluation binary tre&” Ershovl7] has proved that the Strahler numbei ahcreased by one
is exactly the minimal number of registers needed to comdut€omputation of the Strahler
numbers is given by algorithp 1; figuré 3 shows an example of the result.

Theorem 1 The complexity of the algorithp 1 is linear.
Proof 1 The algorithnj]l can be resume to a depth first search algorithm. So it is linear.

Theorem 2 LetT" be a tree having n nodes, an upper bound of the Strahler number value is

[log,(n)].

Proof 2 The Strahler value of a node is greater than its children if and only if its children have
the same value. So, one can deduce that the maximal value is reached when the tree is well
balanced. In this case an upper bound of the tree depflvjs,(n)|. The Strahler number can
increase at most of one between two layers of a binary tree, thus an upper bound of its value is

[log,(n)].

Lemma 1 The maximal number of different values with the Strahler valuation on aftrise
bounded bylog,(n)], where n is the number of nodesTof

Proof 3 Direct from the theorern|2.

Algorithm 1 Strahler algorithm.
binaryStrahler(node of a binary tre€l")
begin
if nis a leaf ofT" return 1
let .+ andn,.;4: be respectively the left and the right childpf
if binaryStrahler(,. ;) is equal to binaryStrahleyf;,.)
return binaryStrahlerf. ;) + 1
else
return max(binaryStrahley ;.),binaryStrahlen, ;,.))
end binaryStrahler

Using Strahler numbers for real time visual exploration of huge graphs

3.2 Strahler number on general trees

Jean-Marc Fedou[8] has proposed an extension of the Strahler numbers to general trees.
The idea is to consider n-ary operators instead of binary operators. Under this hypothesis, the
Strahler number is defined as the minimal number of registers necessary to compute an n-ary
expression. Knowing that any general trees can be viewed as an n-ary expression, the extended
Strahler number is defined on all trees, we denote ifhy. The algorithnj 2 summarizes the
computation of this parameter and the figure 4 shows an instance of its valuation on a general
tree.

Note that, in case of a binary tree, the Extended-Strahler number gives the same valuation
as the original Strahler number.

Expr=Op2(Opl(b c a) /(+(c d) g) aa)

Four registers are necessary —>

To compute this N-ary expression

(atb)*cH(erfrd)g 2 / i 2
—> ¢ b

3 registers are necessary
to compute this

Fig. 3 . Arithmetical expression tree. Fig. 4 . N-ary expression tree.

Theorem 3 LetT be a tree having n nodes, for all nogef T, S..,(n) < n.

Proof 4 By construction, it is easy to prove that it is true for trees which contains one to three
nodes. Suppose thatitis true for trees untilodes. Let us build a tréE with n + 1 nodes. The
proposed algorithm ensures that the value of a node is less or equal to the sum of the values of
its children plus one. Then, knowing that each subtre€ bhs less tham + 1 nodes we can

write that the sum of children’s values of the root of T is less or equal th&®o, the maximal

value of the root of " isn + 1.

Theorem 4 Let T" be a tree having n nodes, an upper bound of the complexity of the given
algorithm isO(nlog(n)).

Proof 5 The proposed algorithm sorts all the children of a node in order to compute its valu-
ation. Then it makes several operations which are linear in the number of children. Thus, the
computation complexitg’, of a nodern is bounded by the complexity of a sort which is in the
general case&(nlog(n)).

Letdeg™(n) be the out-degree of a nodéie, number of children) we have:

Cy ~ deg™(n)log(deg™(n))

If we consider the valuation of all nodes, the complexity is :

C ~ Zdeg)log(deg™(n))

neT

D. Auber

Letdeg . (T) be the maximal out-degree of the nodes of the fre®@/e have :

C ~ log(degh,,(T)) Y _ deg™ ()

neT

Furthermore, we have:

Z degt(n) =n —1and deg,,.(T) <n

neT

So, we can deduce that an upper bound of the algorithn(islog(n)).

Theorem 5 Let T be a tree having n nodes, an upper bound of the number of different values
of the Strahler number on@ is [/n] * v/2.

Proof 6 The proof of this theorem use a lot of combinatorial constructions and thus will be
describe in an other paper.

Theorem 6 Under the therorem 1, the extended-Strahler number can be computed in linear
time according to the number of nodes.

Proof 7 A number of different values bounded[ayn] = v/2 and a range of value bounded by
n makes linear the sort complexity. So, using the above proof we get a linear complexity.

Algorithm 2 Extended Strahler algorithm.
ExtendedStrahler(nodgof a general tred")
begin
if (n is a leaf ofT") then return 1
freeRegisters =0
usedRegisters = 0
for all childrenn; of n in decreasing order induced by their treeStrahler values
begin
if (ExtendedStrahler(n;) > freeRegisters) then freeRegisters=treeStrahig)(
usedRegisters=usedRegisters+1
freeRegisters=freeRegisters-1
end for
return (freeRegisters+usedRegisters)
end ExtendedStrahler

The generalization to directed acyclic graphs needs no modification of the algorithm. In fact,
if we consider that no result are shared in the evaluation of an expression, we can transform a
DAG in a forest and then compute the extended-Strahler number on each tree of the forest. In
this case, under the theorémn 5, the algorithm is linear according to the number of edges in the
DAG.

Using Strahler numbers for real time visual exploration of huge graphs

4 STRAHLER NUMBER ON ROOTED MAPS

In the following we denote by:(V, F) a graph having a set of vertices (ie nodésand a
set of edges (ie arcg). A rooted map is an embedding of the graph in the plane having a set of
pointed vertices.
The idea of the Strahler number introduced above, is to view trees and directed acyclic graphs
as n-ary expressions. To build a similar parameter on graphs, we consider that any graphs can
be viewed as a sequential program. In a program:

e Registers are used to compute expressions. In our case, a spanning DAG enables to view
a graph as an expression.

e Stacks are used to manage recursive calls. In our case, Cycles in the graph are interpreted
as recursive calls in the program.

Thus, we define a two dimensional parameter on rooted maps. The first dimension
resents the number of registers needed to evaluate the program, the second dimgnssn
the number of necessary stacks (or nested call to the stack).

To computes we consider that edges which induce cycles in the graph represent recursive
calls. However, for a given gragh(V, £), finding a minimum set of edges; C E such that
the graphG(V, E/Ey) is acyclic is well known as the feedback arc set problem. It has been
proved[10][14] that it is a NP-Hard problem. Thus, given two isomorphic graphs, we couldn’t
ensure to produce the same valuation of nodes. In case of rooted maps, the problem of finding
a unique set of edges, which verify the property (a) and (b) becomes linear.

e ()G(V,E/E,) is acyclic.
e (b)Ve e E, G(V,E/E, U{e}) contains at least one cycle.

So, we consider the parameter only on such structures and we call it rooted map Strahler
number, denoted by,,,. In the following, we assume that the order of edges around nodes
gives the execution order of the associated sequential program and that the root is its starting
point.

For the purpose of graphs visualization, the use of rooted maps enables us to compute
different valuations of the same graph depending on the user goal. For instance, by selecting a
node, the user can choose the starting point of the algorithm. It also allows to take into account
extrinsic parameters. For instance, we can use the map induced by the graph drawing or by
edges weight.

In the following, we detail the construction of the rooted map Strahler number. For short,
we will denote a rooted map b¥s(V, E') assuming that the graph is already embedded in the
plane and S is the root.

4.1 Edge decomposition

To computes,.,,, one must decompose the set of edges in four parts. Given a spanning tree
T of a rooted mai-s(V, F) these four sets are defined as following:

e Treeedgeseb;={c€ E|eecT}
e Descent edge séip= {e = (u,v) € F | e £T,3apathfromutovirl'}
e Return edge setr={e = (u,v) € E | e £T,3apathfromvtouirf}

D. Auber

e Crossedgesdic={e € F'|e £ErUEpU ER}

This decomposition is used in some proofs of the strong component decomposition algorithm
and can be done in linear time by using a depth first search algorithm for the spanning tree

building. (fig[3)

[_ —===-== Descent Edges]

------- Return Edges

—

Tree Edges]
] [Cross Edges

Fig. 5 . Edge decomposition. Fig. 6 . Temporary DAG.

4.2 Computation of the number of registersp.

In order to compute the parameter on a rooted méfy(V, E), one must build a temporary
directed acyclic graph. This DA® is obtain by unfolding the graph G of one step. The
construction process is the following:

e Add all nodes of~ in D.
e Add all edges; from £ U Ep U Egin D.

e For all edges = (u;, v;) from Er add a new node; in D and a new edgéu;, ;) in D.
This new node allows to store in a register the result of a recursive call.

The figurg 6 shows the DAG which has been built in order to compute fleameter on the
graph from the figurg]5. The values 8f,, are given in the figurg|6.

4.3 Computation of the number of necessary stacks.

In the following we present an algorithm which enables to compute thaameter. This
algorithm uses three integers functions which are:

e Free:V — N: Number of free stacks, these stacks were used in previous evaluation and
can be reused in others evaluations.

e Used:V — N: Number of used stacks used in the current evaluation.

e ToFree:V — N: Number of stacks to free after a node’s child evaluation.

Using Strahler numbers for real time visual exploration of huge graphs

‘\ -
Used — ToFree
B
\
v
; - Sa
e .
.
\

Fig. 7 . Tree edge processing. Fig. 8 . Cross edge processing.

The figurg ¥ gives a view of the valuation of these three functions when one evaluates the node
A after the node B. In the figufg 7, large arrows represent sets of edges. To compute the used
and free values of a nodewe build a temporary list of integer-pairs(a,b). Each pair takes into
account the value of a chilgl according that we access to it by the edgeg »;). Four cases

arrise :

o If ¢ € Er (figl7), the value of(n) is atleast(n;). In thiso(,) stacks we can reuse those
which are already free in; plus those which were necessary to compute the recursive
calls which end im. Thus, we add the pair [Freg[+ToFree}],Used});]-ToFreef]] to
the temporary list.

o If ¢ € E¢ (fig[g), the value ofr(n) is at leasts(r;). But, because the execution or-
der is induced by the embedding of the graph, the valug of already computed and
S0, its used stacks have already been free. Thus, we add to the temporary list the pair
[Freel;]+usedp],0].

e If ¢ € Ep, itis the same as for a cross edge. However, computing [Fieaged});],0]
doesn’t change the result fot(n) because); have already been treated by a tree edge.
Thus, this case doesn’t need to be computed.

e If € € Fg, hereitis a new recursive call. So, to compyitee need at least one stack and
this stack will still used until that the; evaluation is finished. Thus, we add one to the
number of stacks to free i and we add the pajf), 1] in the temporary list.

[0.0]=0 [0.0]=0

[0,01=0|

[0,01=0|

Fig. 9 .[Free(n), Used(n)]

a(n)

Given the temporary list of pairs we can now compug). To compute the minimal number of
necessary stacks, we first sort the list such that (a;,b;) < (a;,b;) = C; if a; > a;. Then,

D. Auber

Algorithm 3 Algorithm to compute Free,Used and ToFree.
FreeUsedT oFree(noden)
begin
Let L a list of pair, (i,j) withi € N,j € N.
for all out going edges; of do begin
ni=targetg;)
caset; € of :
tree-edge set :
ToFreep]=0
FreeUsedToFree(n;)
L.insert([Freef;]+ToFreep],Used});]-ToFreep]])
cross-edge set :
L.insert([Freef;]+Used};],0])
return-edge set:
ToFreel;]=ToFreel;]+1
L.insert([0,1])
end case
end for
Usedp]=Freely]=0
Sort L in the decreasing order induces by the first dimension.
for all elementC; = [a;, b;] in L do begin
Usedp]=Used}]+b;
Freepl=max(Freef],a; + b;)-b;;
end for
end FreeUsedToFree

we treat each pair in this order to compute the new used and free valueldie principle is
to compare the; + b; value to the current number of free stacks)inf a; + b; is greater than
Free() then we need more stacks to compuitén thea; + b; stacksz; can be reused arig still
used. So, we update Fregand Used() and then we treat an other pair. At the end we have:

o(n) = Used(n) + Free(n)

Algorithm[3 summarized the method described above; Figure 9 shows the values computed
by this algorithm on a given graph. The used map is the one induced by the drawing and the
starting node is the one located at the top of the figure.

Note that, in case of general treeis always equal to zero and= S.,;.

Theorem 7 LetGs a rooted map having m edges, an upper bound of the time-complexity of the
algorithm which computes,,,, on G is O(mlog(m)).

Proof 8 The algorithm is composed of three parts, the first one is the edge decomposition which
can be done in linear time. subsequently we build a temporary DAG, this operation is linear
according to the number of edges. Then we compute th€,.,, parameter inO(m log(m))

using the theore|4. Finally, using the same proof as for the thepfem 4 one can prove that
the complexity ofr computation isD(m log(m)). Thus, an upper bound of the complexity the
algorithm isO(mlog(m)).

Using Strahler numbers for real time visual exploration of huge graphs

The given algorithm is a simplification of the final one. In fact, the three above steps can be
merged together, by this way we do not change the theoretical complexity of the algorithm but,
in practice, it reduces the constant term in the time and space complexity of the algorithm. One
of the trick is that we don’t need to build the temporary DAG in order to comfSuteon it. An
open source implementation of this algorithm is given as a plug-in in the Tulip software[3].

5 STRAHLER NUMBERS FOR REAL TIME NAVIGATION.

It is well known that we can automatically extract important information about relational
data by only using the structure of graphs. For instance, in software reverse engineering one
can automatically detect modules or components of a program by analyzing the graph structure
induced by the source file inclusion [19]. However, to our knowledge, using it in incremental
rendering has not been studied yet. Here, we discuss about how to use the Strahler numbers
introduced above for it.

First of all we project the two dimensional parametgy, into a one dimensional space.

This projection is done by computing the euclidian nornfvop| noted:

B(n) = v a*(n) + p*(n)

We have chosen the euclidian norm in order to preserve the original value of Sthraler numbers
in case of trees, and to reduce the differences between components which are almost acyclic
(o ~ 0) or almost only cyclegp ~ 1) and those which are the both ~ o).

Then, we assign to each edge the value:

o(€) = min(B(source(e)), f(target(e)))

By using the minimum value between source and target we ensure to give higher values to
edges between important elements. For instance, when comgjtingn the graph of hu-

man metabolism, the node representing water receives a high valge, fas it is involved

in comparatively many of the chemical reactions. However, during visualization the schematic
graph must only display links between water and elements which take place into complex reac-
tions else too many edges are displayed. In practice, the results with other methods such as the
average between source and target don't give better approximation of the final drawing.

The idea of this heuristic is that the more registers and stacks we use to evaluate a node (or
a a sub-program) the more relevant the node should be. And so, by displaying first the more
complex part of the graph we should display the more important part of it. Thus, we order the
set of nodes such that :

mi < mjif Bn:) < B(ny)
and the set of edges such that:

€ < € if ple) < dle;)
Then, during the navigation we use these two ordered sets for the incremental rendering of the
graph.

In terms of time complexity, this method can be used to draw huge graphs (500K nodes)
on standard PC hardware. For trees and directed acyclic graphs all the process can be done in
linear time using the theorelm 5 and for the general graphs it can be déHeiitog(m)) time.

One must notice that with real data, the time used in order to sort elements is almost linear with
general graphs.

During visualization, we can compute the order of elements at the early start and then use
always the same. It is not necessary to rebuild the order after each actions. However, in order

D. Auber

f

Fig. 10 .4,600 elements Fig. 11 .16,400 elements

to take into account the user operations we can recompute this order during navigation. For
instance, we can use the nearest node of the fish eyes center as starting node of the Strahler
parameter. The computation complexity of the method allows such operations even with huge
graphs.

6 EXPERIMENTATION

We give here practical results of our method. The experimentation has been made with
the Tulip program[B]. The samples are directed graphs. To computg. thparameter on the
samples we have automatically chosen the starting nodes by using the alggrithm 4. The idea
of this automatic selection is that if a node have no incoming edge it should be an entry in
the network, and if it doesn’t exist such a node, we hope that nodes with maximum degree are
important nodes in the network. Figufeg 10 t¢ 17 are snapshots of the images displayed to the
screen at different stages of the incremental rendering.

Algorithm 4 Automatic selection of input nodes
while (all nodes are not computed)
Begin
if it exists uncomputed source of the graph(with an in-degree=0) use it as entry nodes and
run the algorithm
else use the uncomputed node with the greater out degree.
End

The figures$ 10 tp 13 show the incremental drawing of a binary tree with 520,000 elements.
The layout has been generated automatically by using the Reingold and Tilford[17] tree drawing
algorithm. One can see on this sample that even with 4600 nodes (less than 1% of the entire
graph), there is an impression that the abstracted graph retains some elements of the overall
shape of the full graph. The hope is (and this would require empirical evaluation to evaluate) that
sufficient structure is maintained to preserve the mental map of the user during graph navigation
operations. During experimentation we have compare this results with other tree parameters, in
all cases the results don’t seem better than the ones obtain with the Strahler parameter.

The figure$ T4 tp 17 show the incremental rendering of a general graph. The sample is the
graph of the structure of our laboratory web site. The 3D layout has been generated with a spring

Using Strahler numbers for real time visual exploration of huge graphs

Fig. 12 .66,000 elemenst Fig. 13 .520,000 elements

Fig. 14 .200 elements Fig. 15 .600 elements

electrical algorithm[12]. As for the previous sample the first picture with only 200 elements
(less than 6.5 % of the entire graph) gives a good abstraction of the final one. Furthermore,
during the experimentation on such graphs, the heuristic has given good result by displaying
first the relevant part of the graph. On the figuré 14 the displayed graph is the most important
part of our web-site. By most important we mean the kernel of our web site.

7 CONCLUSION AND FUTURE WORK.

Presented results are directly usable and encourage the use of such methods for graph visu-
alization. Future works will be to identify others intrinsic parameters which improves the result
of this heuristic and to put a special emphasis on evaluation method of this kind of navigation.

The experimentation has shown that the part of data with the greater value is not without
sense. More precisely we are currently working on clustering algorithm which use the Strahler
number introduce above. Even if the clustering methods will be slower than the one presented
above, first results on interaction protein graph are pretty good.

All the features proposed in this article are available through our graph visualization soft-
ware called Tulig[d]

Tulip, software is under GPL license and is available/attp : //www.tulip — software.org

D. Auber

Fig. 16 .1,000 elements Fig. 17 .3,200 elements

REFERENCES

[1] F. Maghoul A. Broder and R. Kumagraph structure in the weliProc. 9th International
World Wide Web Conference, Computer Networks, vol. 33, 2000, pp. 309-320.

[2] C. J. Alpert and A. B. KahngRecent directions in netlist partitioning: A survegtegra-
tion: The VLSI J.19(1995), 1-18.

[3] David Auber,Tulip, Proc. 9th Symp. Graph Drawing, GD (Sebastian Leipert Petra Mutzel,
Mickael Junger, ed.), Lecture Notes in Computer Science, LNCS 2265, Springer-Verlag,
2001, pp. 335-337.

[4] D.Auber B.LeBlanc, D.Dion and G.MelancorGonstitution et visualisation de deux
réseaux d'associations verbalesctes du colloque Agents Logiciels, Caamation, Ap-
prentissage et Activit Humaine (ALCAA), 2001, pp. 37-43.

[5] Michael E.Houle Carsten Friedricigraph drawing in motion iiProc. 9th Symp. Graph
Drawing, GD (Sebastian Leipert Petra Mutzel, Mickael Junger, ed.), Lecture Notes in
Computer Science, LNCS 2265, Springer-Verlag, 2001, pp. 220-231.

[6] D.Auber and M.DelestA clustering algorithm for huge treeAdvances in Applied Math-
ematics, Academic press, To appear.

[7] A. P. Ershov,0On programming of arithmetic operation€om, of the A.C.M1 (1958),
no. 8, 3—6.

[8] J.M FedouNombre de strahler sur les arbreg€iggraux, ecole jeunes chercheur en algo-
rithmique et calcul formel, gdr alp, bordeauxay 1999.

[9] Bourgine P Kepes F Guelzim N, Bottani Bypological and causal structure of the yeast
transcriptional regulatory networkNature genetic81 (2002), 60—-63.

[10] J. Bang-Jensen. G. Gutibigraphs: Theory, algorithms and applicatignSpringer-
Verlag, 2000.

[11] I. Herman, M. Marshall, and G. Melan¢coBensity functions for visual attributes and
effective partitioning in graph visualizatip2000.

Using Strahler numbers for real time visual exploration of huge graphs

[12] G. Battista. P. Eades. R. Tamassia. loannis and G. T@liaph drawing, algorithms for
the visualization of graphso. 1, 1999.

[13] A.K. Jain and R.C. Dubeglgorithms for clustering data, prentice-hall, englewood cliff
s, NJ88(1988), 1988.

[14] R. Karp.,Reducibility among combinatorical problem&omplexity of Computer Com-
putations (1972), 85-103.

[15] Scott MarshallMethods and tools for the visualization and navigation of grapRhk.D.
thesis, University Bordeaux I, June 2001.

[16] Tamara Munznemrawing large graphs with h3viewer and site manageroc. 5th Int.
Symp. Graph Drawing, GD, Lecture Notes in Computer Science, LNCS, Springer-Verlag,
1998, pp. 384-393.

[17] Edward M. Reingold and John S. Tilfordlidier drawings of treeslEEE Transactions on
Software Engineering (1981), no. 2, 223-228.

[18] Alan Robinson\Visualisation of microarray gene expression dataaiable in the World
Wide Web athttp://industry.ebi.ac.uk/ alan/

[19] C.RorresY. Chen E.R. Gansner S. Mancoridis, B. S. Mitchiging automatic clustering
to produce high-level system organizations of source coue Workshop on Program
Comprehension (1998).

[20] Prabhakar Raghavan S. Ravi Kumar and Sridhar RajagopEt@wweb as a graptProc.
Symposium on Principles of Database Systems, 2000, pp. 1-10.

[21] Manojit Sarkar and Marc H. BrownGraphical fisheye viewsCommunications of the
ACM 37(1994), no. 12, 73-84.

[22] A. N. Strahler,Hypsomic analysis of erosional topograplBulletin Geological Society
of America 63 1117-1142. (1952).

[23] Xavier Gerard ViennotJrees everywher&olloquium on Trees in Algebra and Program-
ming, 1990, pp. 18-41.

[24] Colin Ware,Information visualization: Perception for desigMoragn Kaufmann, 2000.

[25] Duncan J. WattsSmall worlds: The dynamics of networks between order and randomness
1999.

[26] Graham J. WillsNicheWorks — interactive visualization of very large grapgPioc. 5th
Int. Symp. Graph Drawing, (Giuseppe Di Battista, ed.), Lecture Notes in Computer Sci-
ence, LNCS, no. 1353, Springer-Verlag, 1997, pp. 403—-414.

[27] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti He&usitnated exploration
of graphs with radial layoytProc. IEEE Symposium on Information Visualization, San
Diego, 2001, pp. 43-50.

	Introduction
	Incremental rendering
	Strahler numbers
	Strahler number on binary trees
	Strahler number on general trees

	Strahler number on rooted maps
	Edge decomposition
	Computation of the number of registers, .
	Computation of the number of necessary stacks .

	Strahler numbers for real time navigation.
	Experimentation
	Conclusion and future work.

