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Abstract 
 
In this paper we provide a brief background to data visualization 
and point to key references. We differentiate between high-
dimensional data visualization and high-dimensional data 
visualizations and review the various high-dimensional 
visualization techniques. Our goal is to define metrics that identify 
how visualizations deal with n dimensions when displayed on the 
screen. We define intrinsic dimensionality metrics that assess 
these techniques and closely analyze selected high-dimensional 
visualizations’ display of data. 
 
Keywords: visualization techniques overview, evaluation, high-
dimensional data visualization, metrics  
 

1 INTRODUCTION 
 
A visualization is a visual representation of data. Data is mapped 
to some numerical form and translated into some graphical 
representation. The term “high-dimensional data visualization” 
and “high-dimensional visualization” are often used 
interchangeably. However, a visualization of high-dimensional 
data is different than a high-dimensional visualization. In the first 
the term “high” refers to data whereas in the second it refers to 
visualization. This paper defines some simple metrics for high-
dimensional visualization. 

 
We assume the data is n-dimensional where n is an integer. In this 
paper we focus on high-dimensional data visualizations and more 
specifically visualizations that can present a large number of 
dimensions or parameters of the data. We attempt to identify what 
constitutes a high-dimensional visualization. 
 
All visualizations basically still end up on a display surface (soft 
or hardcopy). There are a few 3D-displays and much of what 
follows still apply to these. One interpretation therefore is that all 
visualizations project the n-dimensional data down to 2 
dimensions. Although this is correct we wish to differentiate 
between the dimensionality of the physical medium (2 
dimensions) and the logical representation of the data that may be 
higher. An example can be given by considering a 3D scatterplot.  
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Here the data is n-dimensional, 3 axes are selected and laid out on 
the plane (the physical medium). The n-dimensional points are 
projected on the 2D surface. Hence this is a 3-dimensional 
visualization on the 2D surface. Note that we could also consider 
the dimensionality of the data represented. By using color and 
shape we could argue that a 3D scatterplot is a 5-dimensional 
representation of n-dimensional data on a 2D surface. In such a 
display there are perceptual ambiguities resulting from the 
occlusion of points. These can be resolved by providing various 
tools, including interactive ones. For example the user can rotate 
such a display to see hidden points. 
 
We can thus classify visualizations based on the intrinsic 
dimensionality of the logical representation as well as its potential 
dimensionality by adding in additional data attributes. Since the 
additional data attributes can often be applied to most 
visualizations, we will only consider the intrinsic dimensionality. 
 

2 VISUALIZATION BACKGROUND 
 
Visualization is used increasingly in the data exploration process 
but still not to the extent possible. In its early years it was mostly, 
if not only, used to convey the results of statistical computation or 
data mining algorithms [7], [49], [10]. Over the last decade it has 
been used in the data massaging and cleansing process, and 
somewhat in the data management process. It is still not being 
used in the computational steering processes within the data 
exploration pipeline except for some research systems. 
 

2.1 Visualization Taxonomies 
 
There are numerous visualizations and a good number of valuable 
taxonomies [45].    
 
Historically static displays, most of which have been extended to 
support probing and even more dynamic interactions, include 
histograms, scatterplots, and numerous of their extensions. These 
can be seen in most commercial graphics and statistical packages.   
 
We focus on tables of numerical data (rows and columns) 
although many of the techniques apply to categorical data. 
Looking at the taxonomies the following stand out as high-
dimensional visualizations:  
 

• 2D and 3D scatterplots  
• Matrix of scatterplots 
• Heat maps 
• Height maps 
• Table lens 
• Survey plots  
• Iconographic displays 



• Dimensional stacking (general logic diagrams) 
• Parallel coordinates 
• Line graph, multiple line graph 
• Pixel techniques, circle segments  
• Multi-dimensional scaling and Sammon plots 
• Polar charts 
• RadViz  
• PolyViz 
• Principal component and principal curve analysis 
• Grand Tours 
• Projection pursuit 
• Kohonen self-organizing maps 

 
Several of these are quite similar and related. We give a brief 
description and visualization for each, along with key references 
(see [23], [19], [13]). We use the Fisher Iris flower data set [15] or 
the car data set from UC Irvine Machine Learning Repository, 
whenever possible. The Iris flower data set contains 50 specimens 
from each of the three species of Iris flowers: Iris setosa, I. 
Versicolor, and I. Virginica. The dimensions of the data set are 
sepal length, sepal width, petal length and petal width, measured 
in millimeters.  
 

3 HIGH-DIMENSIONAL DATA 
VISUALIZATIONS 

3.1 2D and 3D Scatterplots  
 
A scatterplot is a point projection (usually affine) of the data into 
a 2D or 3D dimensional space represented on the screen in classic 
(X, Y) or (X, Y, Z) format. This is the most commonly utilized 
data visualization method.  

 

 
Figure 3.1: 2D and 3D scatterplots of the Iris data set 

Numerous mappings or transformations can be applied to it. The 
displayed points can have numerous attributes such as color, size, 
shape, texture, motion and even sound (when interacted with). To 
interpret the 3D projection interaction, it is necessary to resolve 
ambiguities, although other techniques have been used 
(animation). In its most general form this method is related to 
iconographic and pixel displays. Figure 3.1 displays the Iris 
Flower data set as 2D and 3D scatterplots. 
 
3.2 Matrix of Scatterplots 
 
A matrix of scatterplots is an array of scatterplots displaying all 
possible pairwise combinations of dimensions or coordinates. For 
n-dimensional data this yields ( ) 21−nn  scatterplots with shared 
scales, although most often n2 scatterplots are displayed. The 
scatterplots can also be positioned in a non-array format (circular, 
hexagonal, etc.). One can visually link features of one scatterplot 
with features on another, which greatly increases its power. 
 

 
Figure 3.2: Matrix of scatterplots 

 
This technique has been in use long before its publication [3], [7]. 
Several variations on the theme of a matrix of scatterplots have 
since been developed: the hyperslice [50], N-vision [14], 
prosection [47], hyperbox [2], just to name a few. The hyperslice 
is a matrix of panels where “slices” of multivariate function are 
shown at a certain focal point of interest. The method is similar to 
N-vision, where the matrix panel accommodates for interactive 
exploration of a multivariate function. Prosection is a method 
more suitable for data mining, since it does not project all points 
onto the scatterplot matrix, but rather projects only points within a 
certain range of each dimension, similar to brushing and dynamic 
queries [1]. The hyperbox uses the same pairwise projections of 
the data, but projects onto panels of an n-dimensional box. Each 
of the panels has a different orientation and the dimensions can be 
cut in order to show histograms on the panels, according to ranges 
of the dimensions being cut. 
 
3.3 Heat Maps 
 
This is an array of cells where each cell is colored based on some 
data value or function on the data. The method is a generalization 
of a scatterplot where the points are grid cells and each cell is 
colored. There are many named variants (clustered image map, 
heatmaps, patchgrid). 



 
Figure 3.3: Heat map of a random data set 

 

 
Figure 3.4: Heat map of the Iris data set 

 
3.4 Height Maps  
 
A height map is a further extension of a heat map with the grid 
represented as a height field instead of by color. Making the cell 
size small can generate an almost continuous map. An example is 
ThemeViewTM [54], where the topics or themes within a set of 
documents are shown as a relief map of natural terrain.  
 

 
Figure 3.5: Height map of document themes 

Source: Pacific Northwest National Laboratory 
 
In Figure 3.5 the mountains indicate themes within the documents 
with the peak heights as the relative strengths of the topics. The 
layout of the themes depends on a similarity metric. This 
visualization is similar to self-organizing maps (SOMs), described 
below. 
 
 

3.5 Table Lens 
 
The table lens takes a spreadsheet and allows each cell to be 
displayed optionally using a line whose length depends on the 
numerical value of the cell and whose color can represent some 
other attribute of the data [42]. This provides for both a symbolic 
and graphical representation of data within a single table. This can 
be viewed as an intermediate view of data between a pure 
spreadsheet and a heat map where each item is represented as a 
number. 
 

 
Figure 3.6: Table lens with selected rows of a sales data set 

Source: Inxight Software, http://inxight.com 
 
3.6 Survey Plots 
 
A survey plot is a 2D or 3D point projection of the data [36] and 
generally consists of n rectangular areas, each representing one 
dimension in a data matrix. A point in a line graph (like a bar 
graph) is extended down to an axis. A line (or a rectangle, 
depending on the number of records and the size of the output 
area) is used to represent the data for each dimension, with its 
length proportional to the dimensional value it represents. The 
method gives insight to correlation between any two variables 
(especially when the data is sorted by a dimension) and can find 
exact rules in a machine learning dataset. 
 

 
Figure 3.7: Survey plot of atmospheric data 

Source: Geophysical Institute, University of Alaska Fairbanks 
 
3.7 Iconographic Displays 
 
An iconographic display is a graphical representation visualizing 
high-dimensional data by letting each coordinate dimension of a 
record drive some parameter or attribute of an entity (pixel, icon 



or glyph) and displaying a number of these entities (records) at 
once on the screen. These displays integrate several dimensions at 
once and thus can represent high-dimensional data sets [3], [8], 
[41], [35].  
 
There are two types of glyph and icon visualizations; the first are 
displays where certain dimensions of the n-dimensional data set 
are mapped to certain features of the glyph or icon. These include: 
Chernoff faces [8], where data dimensions are mapped to facial 
features; star glyphs (plots) [7], where the dimensions are 
represented as equal angualr spokes radiating from the center of a 
circle. The second type of glyph and icon visualizations have 
glyphs or icons packed together in a dense display, with textures 
representing features of the dataset [41]. Some other icon 
visualizations are shape coding [5], color icons [35], [27], [12] 
and tilebars [21].     
 

 
 
 

       

 
Figure 3.8: An icon and an integrated iconographic display of 5 
satellite images of the Great Lakes region 
 
3.8 Dimensional Stacking (General 

Logic Diagrams) 
 
Dimensional stacking is a 2D or 3D point projection of the data 
where dimensions are embedded within other dimensions. It was 
initially used only to visualize binary data [37]. The method was 
later extended to discrete categorical values and binned ordinal 
values, and used for general data exploration [52]. The stacking 
divides a 2D grid into sets of embedded rectangles, representing 
categorical dimensions or attributes of the data. Two outer 
dimensions are placed along the X and Y axes, and each 
additional pair of dimensions is embedded into the outer level 
rectangles, until all dimensions are incorporated.       
 

 
Figure 3.9: Dimensional Stacking of the Iris data set 

3.9 Parallel Coordinates 
 
Parallel coordinates use parallel axes instead of perpendicular to 
represent dimensions of a multidimensional data set [25], [26]. A 
vertical line is used for the projection of each dimension or 
attribute, with the maximum and minimum values of each 
dimension usually scaled to the upper and lower boundaries on 
those vertical lines. A polyline made up of n-1 lines at the 
appropriate dimensional values connects the axes to represent an 
n-dimensional point. 
   

 
Figure 3.10: Parallel coordinate display of the Iris data set 

 
3.10 Line Graph, Multiple Line Graph 
 
Line graphs display single-valued or piecewise continuous 
functions of one dimension. To accommodate multi-dimensional 
data sets, multiple line graphs are displayed in a multi-line graph. 
Often, the ordering of the data is correlated to one of the 
dimensions of the data, such as time. The dimensions are 
distinguished using different colored lines, and/or types of 
continuous lines (dashed, dotted). 
 

 
Figure 3.11: Multiple line graph of the car data set 

 
3.11 Pixel Techniques, Circle Segments 
 
Pixel techniques represent a generalization of heat maps, 
extending them to very large multi-dimensional data sets. These 
visualizations arrange the data into an area, starting from some 
origin, according to the size and number of dimensions, using 
various techniques including recursive, spiral, and circle 
segments. The interpretation of the (X, Y) position of the cell 
depends on the mapping. In VisDB [27] the goal is to show 



similarities between attributes of the data. Various similarity 
functions may be used and their values represented as colors. 
 
For circle segments each arc on the circle represents a data value 
of one dimension. Originally, the arc would represent many data 
values, one for each pixel in the arc, but variations now use 
straight lines. 

 
Figure 3.12: Pixel display of an eight-dimensional data set of 
1,000 records using 2D arrangement 
Source: VisDB, [27] 
 
3.12 Multi-Dimensional Scaling and 

Sammon Plots 
 
An analytic or graphical representation that maps a data set into a 
space of lower dimensionality is considered a projection method. 
In most cases some invariants are preserved or closely preserved 
(such as distance). This is a classic technique, well over 50 years 
old [57], [48], [33], [11], [55], [56].  
 

 
 

 
Figure 3.13: 2D and 3D Sammon Plots of the Iris data set 

 

The goal of Multi-Dimensional Scaling (MDS) techniques is to 
identify meaningful underlying dimensions that could explain 
similarities or dissimilarities in the data. MDS typically preserves 
the distance metric. Most often the projection space is 2-
dimensional. Other techniques attempt to preserve some degree of 
structure. The result is a 2D or 3D display in which points close to 
each other are close in the original n-dimensional space. 
 
There are numerous variations and in all cases a dissimilarity 
matrix is built (based on the selected metric) with various cost 
functions and other parameters. Bentley and Ward presented 
extensions to MDS to enhance visualizations of high-dimensional 
data, such as animation, stochastic perturbation and flow 
visualization techniques [6]. The most frequently used variation of 
MDS is Sammon plot, a non-linear MDS mapping [44]. 
 

3.13 Polar Charts 
 
A polar chart is a circular graph for plotting polar coordinates. 
Polar coordinates map data onto a 2D surface using the angle and 
radius, creating a “wrap-around” version of a line graph. Polar 
charts bridge the limitation of line graphs, which are used only for 
displaying single valued or piecewise continuous functions of one 
dimension. These can be considered circular representations of 
parallel coordinates and thus can reduce the limiting effect of a 
large number of dimensions. However, the size of the data point 
representations depends on the closeness to the center.     
 

 
 

 
Figure 3.14: Polar line and polar glyph plot of the Iris data set 
 



3.14 RadViz 
 
RadViz is a display technique that places dimensional anchors 
(dimensions) around the perimeter of a circle [22]. Spring 
constants are utilized to represent relational values among points - 
one end of a spring is attached to a dimensional anchor, the other 
is attached to a data point. The values of each dimension are 
usually normalized to 0 to1 range. Each data point is displayed at 
the point where the sum of all spring forces equals zero. The 
position of a data point depends largely on the arrangement of 
dimensions around the circle. 
 

 
Figure 3.15: RadViz visualization of the Iris data set 

 

3.15 PolyViz 
 
The PolyViz visualization extends the RadViz method with each 
of the dimensions anchored as a line not just a point. Spring 
constants are utilized along the dimensional anchor (the line) that 
corresponds to all the values the dimension has. Each data point is 
positioned as in RadViz. The position of the point in the display 
depends as in RadViz on the arrangement of the dimensions. 
PolyViz provides more information than RadViz by giving insight 
into the distribution of the data for each dimension. 

 
Figure 3.16: PolyViz visualization of the Iris data set 

 
 
 

3.16 Principal Component and Principal 
Curves Analysis 

 
Principal component analysis (PCA) is an analytic technique often 
coupled with a visual representation that identifies a lower 
dimensional space preserving variance (spread) in the data [24]. 
Numerous implementations exist, including neural networks [40], 
[9]. Self-organizing Maps (described below) can produce a PCA. 
PCA does not handle non-linearity well since it identifies linear 
subspaces. If the data set is non-linear then extensions must be 
used. 

 
 

 
Figure 3.17: 2D and 3D principal component analysis of the Iris 
data set 
 
Principal curves analysis [20] identifies smooth curves which 
represent the mean of all projected data points [39], [43], 
generalizing linear principal component analysis.  
 

3.17 Grand Tour and Projection Pursuit 
 
Projections of the data using a scatterplot matrix (or any other 
static representation of data) do not necessarily guarantee the best 
insight into the data. The most insight might be gained by some 
projection that allows a linear discrimination of two or more 
classes of data. In the grand tour method [4], sequences of 2D or 
3D projections are displayed. The grand tour is most often applied 
to a single 2D or 3D scatterplot with the coordinate axes, moving 
through a sequence of projections that cover almost all of the n-
dimensional space. In the classic grand tour a step and space-
filling curve are defined. A plane is moved along this curve and 
the data projected.  



The grand tour can be interpreted as an unguided exploratory 
projection pursuit. After a particular goal is identified, a guided 
projection pursuit is utilized. This produces projections of the data 
where a particular goal drives the projections, such as 
discrimination of two data classes. Linear projections are selected 
which attempt to identify and bring out the data deviating from 
normal distribution as much as possible. Projection pursuit can 
handle some non-linearity but it too is not general enough [16], 
[17]. Depending on the utilized display techniques and when a 
useful projection is found, it is not always clear how to extract 
useful information from the linear combinations of dimensions. 
 
3.18 Kohonen Self-Organizing Maps 

(SOM) 
 
The Self-Organizing Map (SOM) combines an analytic and 
graphical technique to group data in order to reduce its size. It is a 
summarization technique that attempts to reduce the complexity 
of the data set by displaying clusters of the data in a grid. 
 
The self-organizing map (SOM) [29], [30], [31], [32] is a neural 
network algorithm that has been used to cluster in an unsupervised 
fashion and generate a visual representations of the clusters. 
SOMs both cluster and reduce the dimensionality of the data by 
projecting the clusters typically onto a 2-dimensional space. The 
Kohonen SOM is similar to a k-means clustering algorithm, 
extending it by providing a topological structure and placing 
similar objects in neighboring clusters. Numerous SOM 
algorithms and extensions have been developed in a multitude of 
fields which include engineering applications and neural networks 
(see [32], [38], [28], [51] and [53]). 
 
 

 
Figure 3.18: Self-organizing map of the Iris data set 

 

3.19 Remarks 
 
There are many systems incorporating a number of the techniques 
described above. Along with traditional static sorts of displays 
such as histograms, scatterplots, and parallel coordinates, most 
software packages provide interactive and dynamic querying of 
data. Currently, most PC or workstation-based tools are used to 
view multivariate data. These tools display 3D graphics on a 
traditional computer monitor. However, extensions using virtual 

reality devices offer the capability to display graphics in 
stereoscopic 3D, allowing the user to better perceive depth 
information. To date, there have been little commercial virtual 
reality data exploration environments. 
 
A number of interactive techniques can also be provided to alter 
each of these visualizations. For example display transformations 
such as hyperbolic mappings and other distortion mappings can be 
applied to the resulting images to provide non-linear expansions 
of the data ([46], [18], [2], [34], [42]). 
 

4 INTRINSIC DIMENSIONALITY 
 
We now define precisely intrinsic dimensionality. The goal is to 
define metrics that identify how visualizations deal with n 
dimensions when displayed on the screen. The main problems are 
that points may overlap and that coordinate data may be lost in the 
projection. With probing one can get all the coordinate values of a 
single point.  
 
We will consider two extreme cases: the set of n-dimensional unit 
vectors in ℜℜℜℜ

n
, where one coordinate (dimension) is 1 and all 

others 0, and a set of n-dimensional binary vectors, where each 
coordinate is 1 or 0. 
 

4.1 Intrinsic Dimension   
 
Given an n-dimensional space, the intrinsic dimension (ID) of a 
visualization is defined to be the largest k, nk ≤ , for which a set 
of k unit vectors in that n-dimensional space can be uniquely 
identified (perceived) in the visualization. 
 
The intrinsic dimension of a 2D scatterplot is 2: the n unit vectors 
project to 3 points, (0, 0) and either (0, 1) or (1, 0), only two of 
which obviously come from unique points. 
 

4.2 Intrinsic Record Ratio   
 
Given an n-dimensional space, the intrinsic record ratio (IRR) of 
a visualization is defined to be k/n, where k is the largest value for 
which the set of 2n binary vectors with all 0’s and 1’s in that n-
dimensional space can be uniquely identified (perceived) in the 
visualization. It represents the percentage of records that can be 
distinguished, if one had reasonably distributed records. We can 
more precisely define this ratio using Monte Carlo techniques. 
 
We have 2n points (binary vectors) that represent values  
[0,…,(2n-1)]. If all are discernible then the intrinsic record ratio is 
1. The 2n binary vectors project to 4 points, (0, 0), (0, 1), (1,0) and 
(1, 1), and the intrinsic record ratio is 4/2n. As n gets large, the 
intrinsic record ratio decreases and approaches 0. 
 
4.3 Intrinsic Coordinate Dimension 
 
Given a n-dimensional space, the intrinsic coordinate dimension 
(ICD) of a visualization is defined to be the largest k, k ≤ n for 
which k-coordinates of any vector in that n-dimensional space can 
be uniquely identified in the visualization.  



The intrinsic dimension of a 2D scatterplot is 2 and its intrinsic 
coordinate dimension is 2. The intrinsic dimension for the 3D 
scatterplot is 3 whereas its intrinsic coordinate dimension is 2 (the 
projected point may come from several ones projecting to a line in 
3D). Note that in many cases the intrinsic coordinate dimension is 
smaller than the intrinsic dimension since we know the vectors 
being examined in the first case whereas in the second we look to 
identify coordinates of any vector. Using rigid transformations 
such as rotate, pan and zoom, one can often increase the number 
of coordinates determined. 
 

5 ANALYSIS 
 
There are a number of factors that can affect the result. Color, size 
and shape of the points will make a difference. Perception is 
dependent on the viewer and the environment. Screen resolution 
and size have a significant bearing on the evaluation of intrinsic 
dimensions since the metric involves perception of unique points 
or values.  
 
For more than a certain number of records or dimensions the 
screen/dot ratio becomes the limiting factor. In all visualizations it 
is either the linear dimensions of the screen (e.g., the axes in a 
scatterplot) or the surface dimensions (e.g., the points in a 
scatterplot) that limit the perception of data. 
 
In order to avoid all these perceptual problems and issues we look 
to the first two definitions as theoretical. That is, what is the best 
that one could do having an arbitrarily large screen with infinite 
resolution. We look to the last definition to handle perceptual 
issues by permitting interaction to resolve size problems. The 
intrinsic dimension and coordinate dimension require being able 
to pull out coordinate interpretations whereas the intrinsic record 
ratio pulls out records. In all cases we assume that the selected 
color and shape of the points or tick marks is reasonable. 
 
We now look at some examples of the visualizations described 
above and their intrinsic dimensions. In order to get a sense of the 
high dimensionality of the various visualizations we analyze the 
different visualizations into three classes as follows: 
 
1. 10 - 100 intrinsic dimensions 
2. 100 - 1000 intrinsic dimensions 
3. 1000 or more intrinsic dimensions. 
 
In this paper, we show several sample visualizations and their 
intrinsic properties for both 10- and 100-dimensional spaces (in 
some cases) and discuss the 1000 ones. 
 

5.1 2D and 3D Scatterplot 
 
We project 10 and 100 unit vectors in 2D and 3D to produce 
scatterplots of 10- and 100-dimensional space (Figure 5.1). The 
scatterplots for the 100-dimensional unit and binary vectors are 
identical to the scatterplots of the 10-dimensional unit and binary 
vectors, respectively. 
 

 
 

 
Figure 5.1: 2D and 3D scatterplots of the 10-dimensional and 
100-dimensional unit vectors 
 
Only two and three data records, respectively, are uniquely 
identifiable. Thus the intrinsic dimension is 2 for a 2D scatterplot 
and 3 for the 3D scatterplot. 
 

 
Figure 5.2: 2D scatterplot of the 10-dimensional binary vectors 

 



 
   
Figure 5.3: 3D scatterplot of the 10-dimensional binary vectors 
 
The intrinsic record ratio for the 10-dimensional binary dataset is 
therefore 4/1024 = 1/256 as a 2D scatterplot and 8/1024 = 1/128 
as a 3D scatterplot.  
 
The intrinsic coordinate dimension for the 10-dimensional and 
100-dimensional data sets is 2. 
 

5.2 2D and 3D Sammon Plot 
 
The Sammon plot representation of the 10- and 100-dimensional 
unit vectors is displayed in Figure 5.4 through Figure 5.6.  
 
While the points are all visible, it is impossible to identify the 
values associated with them. Therefore, the intrinsic dimensions 
for both datasets are 0. 
 

 
Figure 5.4: 2D Sammon plot of the 10-dimensional unit vector 
data set 

 
Figure 5.5: 3D Sammon plot of the 10-dimensional unit vector 
data set 
 
In Figure 5.6 we display the 100 points (unit vectors). These are 
well distributed in the rendering space. The intrinsic dimension is 
0 as points are not distinguishable. Here, too, the intrinsic record 
ratio is approximately 1, depending on the Sammon plot output 
and the number of points. 
 

 
 

 
Figure 5.6: 2D and 3D Sammon plot of the 100-dimensional unit 
vector data set 
 
Thus we find that the ID and IRR are dimension independent. 
 



 
 

 
Figure 5.7: 2D and 3D Sammon plot of the 10-dimensional 
binary vectors 
 
When we display the 1024 10-dimensional points (binary vectors) 
using the Sammon plot (Figure 5.7), we cannot easily determine 
the number of points in the display and so the intrinsic record ratio 
cannot be precisely determined visually. Estimate yields an 
intrinsic record ratio of ≈ 0.2 (2D) and ≈ 0.9 (3D). Note that 
repeated application of the Sammon plot algorithm may yield 
different intrinsic record ratios.  
 

5.3 Parallel Coordinates 
 
Parallel coordinates representing the 10- and the 100-dimensional 
unit vector datasets are displayed in Figure 5.8. The specific unit 
vector (polyline) is identifiable by the coordinate with value equal 
to 1. The intrinsic dimensions thus are respectively 10 and 100.  
 
Since we assume that we are dealing with a perfect display of 
unlimited resolution, these limitations do not affect the intrinsic 
dimension but will effect its perception. 
 
The intrinsic record ratio under perfect conditions (unlimited 
resolution) is 0, as it is not possible to identify a single unique 
point in the display and thus we cannot determine the number of 
points. The intrinsic coordinate dimension is equal to the number 
of dimensions in the data set, as we can uniquely identify each of 
the coordinate values. 

 
 

 
Figure 5.8: Parallel coordinates of the 10- and 100-dimensional 
unit vectors 
 

 
Figure 5.9: Parallel coordinates of the 10-dimensional binary 
vectors 
 

5.4 Pixel Display 
 
A pixel display of a 10-dimensional unit vector data set is shown 
in Figure 5.10. 
 

 
Figure 5.10: Pixel display of the 10-dimensional unit vector data  
 
The intrinsic dimension is 10 as one can identify each coordinate 
directly from the multiple grids. For the 10-dimensional binary 



vectors data set, the pixel display would consist of 10 rectangles, 
each containing 2n cells. Each record is uniquely identifiable and 
the intrinsic record ratio is 1.0. The intrinsic coordinate dimension 
is not precisely determinable as the coordinate value is 
represented by a color, which depends on the color map as well as 
the viewer’s perceptual capabilities. 
 

5.5 RadViz 
 
RadViz displays of the 10- and 100-dimensional unit vector data 
sets are shown in Figure 5.11, followed by a display of the 10-
dimensional binary vectors data set (Figure 5.12). 
 

 
 

 
Figure 5.11: 10- and 100-dimensional unit vector data sets 
rendered using RadViz algorithm 
 

 
Figure 5.12: RadViz display of the 10-dimensional binary vectors 
data set 
 

The intrinsic dimension is 10 and 100 respectively. The intrinsic 
record ratio is 1 and intrinsic coordinate dimension is not 
determinable in general if the point is not on the boundary of the 
circle. 
 

5.6 PolyViz 
 
PolyViz display of the 10-dimensional unit vector data sets is 
shown in Figure 5.13. 

 
Figure 5.13: PolyViz display of the 10-dimensional unit vectors 
data set colored by the first dimension 
 
The intrinsic dimension for this data set is 10 and for the 100 unit 
vectors it would be 100. The intrinsic record ratio is 1 and 
intrinsic coordinate dimension is d as each coordinate for a single 
record can be discerned. 
 

5.7 Kohonen Self-Organizing Map (SOM) 
 
Figure 5.14 and Figure 5.15 display a SOM of an arbitrary size for 
the 10- and 100-dimensional unit vector data sets.  
 
The intrinsic dimension is 0. 
 

 
Figure 5.14: 10x10 SOM of the 10-dimensional unit vectors 
 
 
 



 
Figure 5.15: 10x10 SOM of the 100-dimensional unit vectors  
 
Looking at Figure 5.16 we find that the intrinsic record ratio is 1.0 
if the number of grids is large enough and that the intrinsic 
coordinate dimension is 0. 
 

 
Figure 5.16: 10x10 SOM of the 10-dimensional binary vectors 
 

6 SUMMARY 
 
These visualizations are just a few of many possible examples. 
Table 1 provides a summary of intrinsic properties for 
visualizations discussed above. Both 10- and a 100-dimensional 
unit vector datasets were used for this task. Since an ideal display 
(of unlimited size and resolution) is used, there is no difference 
between the 10- and the 100-dimensional dataset. 
 

Visualization 
Intrinsic 
Dim. 

Intrinsic Record 
Ratio 

Intrinsic Coord. 
Dim. 

2D Scatterplot 2 4/2d 2 
3D Scatterplot 3 8/2d 2 
2D Sammon Plot 0 ≈ 0.2 0 
3D Sammon Plot 0 ≈ 0.9 0 
Parallel Coord. d  0.0 d  
Pixel Display d  1.0 Indeterminate 
RadViz d  1.0 Indeterminate 
PolyViz d  1.0 d  
SOM 0 1.0 0 

Table 1: A summary of intrinsic properties for selected 
visualizations 
d = dimensionality of the data set 
 

It is clear that some of the computations for the IRR require a 
precise determination of the number of distinguishable points, 
since this applies to both Sammon plots (and other visualization 
techniques not listed). Perceived separation determination with 
automatic computation with Monte Carlo techniques is necessary. 
 
These definitions were used to begin to try to identify intrinsic 
metrics for high-dimensional visualizations. We see that several 
visualizations deal with high dimensions quite well. These include 
Pixel Displays, RadViz and PolyViz. Realistically, the limitations 
of screen resolution and color perception do have a bearing. These 
problems can be resolved through multiple linked visualizations 
or with interactions and tools that increase the intrinsic coordinate 
dimensions.  
 
Acknowledgements: We thank Dr. Patrick Hoffman for his 
detailed critique and help in generating some of the images. 
 

References 
 
[1] C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic 

Queries for Information Exploration: an Implementation 
and Evaluation,” presented at ACM CHI, 1992. 

[2] B. Alpern, “Hyperbox,” presented at IEEE Visualization 
'91, San Diego, CA, 1991. 

[3] D. F. Andrews, “Plots of High-Dimensional Data,” 
Biometrics, vol. 29, pp. 125-136, 1972. 

[4] D. Asimov, “The Grand Tour: A tool for Viewing 
Multidimensional Data,” DIAM Journal on Scientific and 
Statistical Computing, vol. 61, pp. 128-143, 1985. 

[5] J. Beddow, “Shape Coding of Multidimensional Data on a 
Microcomputer Display,” presented at IEEE Visualization 
'90, San Francisco, CA, 1990. 

[6] C. L. Bentley and M. O. Ward, “Animating 
Multidimensional Scaling to Visualize N-Dimensional Data 
Sets,” presented at IEEE Information Visualization '96, San 
Francisco, CA, 1996. 

[7] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. 
Tukey, Graphical Methods for Data Analysis. New York: 
Chapman and Hall, 1976. 

[8] H. Chernoff, “The Use of Faces to Represent Points in k-
Dimensional Space Graphically,” Journal of the American 
Statistical Association, vol. 68, pp. 361-368, 1973. 

[9] A. Cichocki and R. Unbehauen, Neural Networks for 
Optimization and Signal Processing. Chichester, England: 
John Wiley, 1993. 

[10] W. S. Cleveland and M. E. McGill, Dynamic Graphics for 
Statistics. Belmont, CA: Wadsworth Advanced Books and 
Software, 1988. 

[11] J. de Leeuw and W. Heiser, “Theory of Multidimensional 
Scaling,” in Handbook of Statistics, vol. 2, P. R. Krishnaiah 
and L. N. Kanal, Eds. Amsterdam: North-Holland 
Publishing, 1982, pp. 285-316. 

[12] R. F. Erbacher, D. Gonthier, and H. Levkowitz, “The Color 
Icon: A New Design and a Parallel Implementation,” 
presented at SPIE '95 Conference on Visual Data 
Exploration and Analysis II, San Jose, CA, 1995. 

[13] U. Fayyad, G. Grinstein, and A. Wierse, Information 
Visualization in Data Mining and Knowledge Discovery, 1st 
ed: Morgan-Kaufmann Publishers, 2001. 



[14] S. Feiner and C. Beshers, “Worlds Within Worlds: 
Metaphors for Exploring N-Dimensional Virtual Worlds,” 
presented at UIST '90 (ACM Symp. on User Interface 
Software and Technology), Snowbird, UT, 1990. 

[15] R. A. Fisher, “The Use of Multiple Measurements in 
Taxonomic Problems,” Annals of Eugenics, vol. 7, pp. 179-
188, 1936. 

[16] J. H. Friedman, “Exploratory Projection Pursuit,” Journal 
of the American Statistical Association, vol. 82, pp. 249-
266, 1987. 

[17] J. H. Friedman and J. W. Tukey, “A Projection Pursuit 
Algorithm for Exploratory Data Analysis,” IEEE 
Transactions on Computers, vol. C, pp. 881--889, 1974. 

[18] G. Furnas, “Generalized Fisheye Views,” presented at 
Human factors in Computing Systems ACM CHI '86, 
Boston, MA, 1986. 

[19] G. Grinstein, P. E. Hoffman, S. Laskowski, and R. Pickett, 
“Benchmark Development for the Evaluation of 
Visualization for Data Mining,” in Information 
Visualization in Data Mining and Knowledge Discovery, 
The Morgan Kaufmann Series in Data Managament 
Systems, U. Fayyad, G. Grinstein, and A. Wierse, Eds., 1st 
ed: Morgan-Kaufmann Publishers, 2001. 

[20] T. Hastie and W. Stuetzle, “Principal Curves,” Journal of 
the American Statistical Association, vol. 84, pp. 502-516, 
1989. 

[21] M. A. Hearst, “Tilebars: Visualization of Term Distribution 
Information in Full Text Information Access,” presented at 
ACM CHI '95 Human Factors in Computing Systems, 
Denver, CO, 1995. 

[22] P. Hoffman and G. Grinstein, “Dimensional Anchors: A 
Graphic Primitive for Multidimensional Multivariate 
Information Visualizations,” presented at NPIV '99 
(Workshop on New Paradigmsn in Information 
Visualization and Manipulation), 1999. 

[23] P. E. Hoffman and G. Grinstein, “Multidimensional 
Information Visualizations for Data Mining with 
Applications for Machine Learning Classifiers,” in 
Information Visualization in Data Mining and Knowledge 
Discovery, The Morgan Kaufmann Series in Data 
Managament Systems, U. Fayyad, G. Grinstein, and A. 
Wierse, Eds., 1st ed: Morgan-Kaufmann Publishers, 2001. 

[24] H. Hotelling, “Analysis of a Complex of Statistical 
Variables into Principal Components,” Journal of 
Educational Psychology, vol. 24, pp. 417-441, 498-520, 
1933. 

[25] A. Inselberg, “The Plane with Parallel Coordinates,” 
Special Issue on Computational Geometry: The Visual 
Computer, vol. 1, pp. 69-91, 1985. 

[26] A. Inselberg and B. Dimsdale, “Parallel Coordinates for 
Visualizing Multidimensional Geometry,” presented at 
Computer Graphics International '87, Tokyo, 1987. 

[27] D. A. Keim and H.-P. Kriegel, “VisDB: Database 
Exploration Using Multidimensional Visualization,” IEEE 
Computer Graphics and Applications, vol. 14, pp. 40-49, 
1994. 

[28] S. Klinke and J. Grassmann, Visualization and 
Implementation of Feedforward Neural Networks via 
Multidimensional Scaling in XploRe, 1996. 

[29] T. Kohonen, “Self-Organized Formation of Topologically 
Correct Feature Maps,” Biological Cybernetics, vol. 43, pp. 
59-69, 1982. 

[30] T. Kohonen, “The Self-Organizing Map,” presented at 
IEEE, 1990. 

[31] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 1995. 
[32] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, 

“Engineering Applications of the Self-Organizing Map,” 
presented at IEEE, 1996. 

[33] J. B. Kruskal and M. Wish, Multidimensional Scaling: Sage 
Publications, 1978. 

[34] J. Lamping and R. Rao, “Laying out and Visualizing Large 
Trees Using a Hyperbolic Space,” presented at UIST '94, 
1994. 

[35] H. Levkowitz, “Color Icons: Merging Color and Texture 
Perception for Integrated Visualization of Multiple 
Parameters,” presented at IEEE Visualization '91, 1991. 

[36] H. Lohninger, “INSPECT, a Program System to Visualize 
and Interpret Chemical Data,” Chemometrics and 
Intelligent Laboratory Systems, vol. 22, pp. 147-153, 1994. 

[37] R. S. Michalski, “A Planar Geometric Model for 
Representing Multidimensional Discrete Spaces and 
Multiple-Valued Logic Functions,” University of Illinois at 
Urbana-Champaign, Technical Report UIUCDCS-R-78-
897, 1978. 

[38] N. J. S. Mørch, U. Kjems, L. K. Hansen, C. Svarer, I. Law, 
B. Lautrup, S. Strother, and K. Rehm, “Visualization of 
Neural Networks Using Saliency Maps,” presented at ICCN 
'95, 1995. 

[39] F. Mulier and V. Chrkassky, “Self-organization as an 
Iterative Kernel Smoothing Process,” Neural Computation, 
vol. 7, pp. 1165-1177, 1995. 

[40] E. Oja, Subspace Methods of Pattern Recognition. 
Letchworth, England: Research Studies Press, 1983. 

[41] R. M. Pickett and G. G. Grinstein, “Iconographic Displays 
for Visualizing Multidimensional Data,” presented at IEEE 
Conference on Systems, Man and Cybernetics, Beijing and 
Shenyang, People's Republic of China, 1988. 

[42] R. Rao and S. K. Card, “The Table Lens: Merging 
Graphical and Symbolic Representations in an Interactive 
Focus+Context Visualization for Tabular Information,” 
presented at ACM CHI '94, Boston, MA, 1994. 

[43] H. Ritter, T. Martinetz, and K. Schulten, Neural 
Computation and Self-Organizing Maps: An Introduction. 
Reading, MA: Addison-Wesley, 1992. 

[44] J. W. J. Sammon, “A Nonlinear Mapping for Data Structure 
Analysis,” IEEE Transactions on Computers, vol. 18, pp. 
401-409, 1969. 

[45] B. Shneiderman, “The Eyes Have It: A Task by Data Type 
Taxonomy of Information Visualization,” presented at 
IEEE Symposium on Visual Languages '96, Boulder, CO, 
1996. 

[46] R. Spence, “Data Base Navigation: An Office Environment 
for the Professional,” Behaviour and Information 
Technology, vol. 1, pp. 43-54, 1982. 

[47] R. Spence, L. Tweedie, H. Dawkes, and H. Su, 
“Visualization for Functional Design,” presented at IEEE 
Information Visualization Symposium '95, 1995. 

[48] W. S. Torgerson, “Multidimensional Scaling: Theory and 
Method,” Psychometrika, vol. 17, pp. 401-419, 1952. 



[49] J. W. Tukey, Exploratory Data Analysis. Reading, MA: 
Addison-Wesley, MA, 1977. 

[50] J. J. van Wijk and R. van Liere, “HyperSlice,” presented at 
IEEE Visualization, San Jose, CA, 1993. 

[51] L. G. Vuurpijl and T. Schouten, “Convis, a distributed 
environment for control and visualization of neural 
networks,” presented at International Conference on 
Artificial Neural Networks, Amsterdam, 1993. 

[52] M. O. Ward, J. LeBlanc, and R. Tipnis, “N-Land: A 
Graphical Tool for Exploring N-Dimensional Data,” 
presented at Computer Graphics International Conference, 
Melbourne, 1994. 

[53] P. Wilke, “Visualization of Neural Networks using 
NeuroGraph,” presented at IFIP WG 3.2 Working 
Conference on Visualization in Scientific Computing: Uses 
in University Education, Irvine, CA, 1993. 

[54] J. A. Wise, J. J. Thomas, et al, “Visualizing the Non-Visual: 
Spatial Analysis and Interaction with Information from Text 
Docments,” presented at IEEE Information 
Visualization'95, Atlanta, GA, 1995. 

[55] M. Wish and J. D. Carroll, “Multidimensional Scaling and 
its Applications,” in Handbook of Statistics, vol. 2, P. R. 
Krishnaiah and L. N. Kanal, Eds. Amsterdam: North-
Holland Publishing, 1982, pp. 317-345. 

[56] F. W. Young, “Multidimensional Scaling,” in Encyclopedia 
of Statistical Sciences, vol. 5, S. Kotz and N. L. Johnson, 
Eds. New York: Wiley, 1985, pp. 649-659. 

[57] G. Young and A. S. Householder, “Discussion of a Set of 
Points in Terms of Their Mutual Distances,” 
Psychometrika, vol. 3, pp. 19-22, 1938. 


