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Abstract

In this paper we provide a brief background to data visualization
and point to key references. We differentiate between high-
dimensional data visualization and high-dimensional data
visualizations and review the various high-dimensional
visualization techniques. Our goal is to define metrics that identify
how visualizations deal with n dimensions when displayed on the
screen. We define intrinsic dimensionality metrics that assess
these techniques and closely analyze selected high-dimensional
visualizations’ display of data.
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1 INTRODUCTION

A visualization is a visual representation of data. Data is mapped
to some numerical form and translated into some graphical
representation. The term ‘“high-dimensional data visualization”
and  “high-dimensional visualization” are often used
interchangeably. However, a visualization of high-dimensional
data is different than a high-dimensional visualization. In the first
the term “high” refers to data whereas in the second it refers to
visualization. This paper defines some simple metrics for high-
dimensional visualization.

We assume the data is n-dimensional where 7 is an integer. In this
paper we focus on high-dimensional data visualizations and more
specifically visualizations that can present a large number of
dimensions or parameters of the data. We attempt to identify what
constitutes a high-dimensional visualization.

All visualizations basically still end up on a display surface (soft
or hardcopy). There are a few 3D-displays and much of what
follows still apply to these. One interpretation therefore is that all
visualizations project the n-dimensional data down to 2
dimensions. Although this is correct we wish to differentiate
between the dimensionality of the physical medium (2
dimensions) and the logical representation of the data that may be
higher. An example can be given by considering a 3D scatterplot.
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Here the data is n-dimensional, 3 axes are selected and laid out on
the plane (the physical medium). The n-dimensional points are
projected on the 2D surface. Hence this is a 3-dimensional
visualization on the 2D surface. Note that we could also consider
the dimensionality of the data represented. By using color and
shape we could argue that a 3D scatterplot is a 5-dimensional
representation of n-dimensional data on a 2D surface. In such a
display there are perceptual ambiguities resulting from the
occlusion of points. These can be resolved by providing various
tools, including interactive ones. For example the user can rotate
such a display to see hidden points.

We can thus classify visualizations based on the intrinsic
dimensionality of the logical representation as well as its potential
dimensionality by adding in additional data attributes. Since the
additional data attributes can often be applied to most
visualizations, we will only consider the intrinsic dimensionality.

2 VISUALIZATION BACKGROUND

Visualization is used increasingly in the data exploration process
but still not to the extent possible. In its early years it was mostly,
if not only, used to convey the results of statistical computation or
data mining algorithms [7], [49], [10]. Over the last decade it has
been used in the data massaging and cleansing process, and
somewhat in the data management process. It is still not being
used in the computational steering processes within the data
exploration pipeline except for some research systems.

2.1 Visualization Taxonomies

There are numerous visualizations and a good number of valuable
taxonomies [45].

Historically static displays, most of which have been extended to
support probing and even more dynamic interactions, include
histograms, scatterplots, and numerous of their extensions. These
can be seen in most commercial graphics and statistical packages.

We focus on tables of numerical data (rows and columns)
although many of the techniques apply to categorical data.
Looking at the taxonomies the following stand out as high-
dimensional visualizations:

2D and 3D scatterplots
Matrix of scatterplots
Heat maps

Height maps

Table lens

Survey plots
Iconographic displays



Dimensional stacking (general logic diagrams)
Parallel coordinates

Line graph, multiple line graph

Pixel techniques, circle segments
Multi-dimensional scaling and Sammon plots
Polar charts

RadViz

PolyViz

Principal component and principal curve analysis
Grand Tours

Projection pursuit

Kohonen self-organizing maps

Several of these are quite similar and related. We give a brief
description and visualization for each, along with key references
(see [23], [19], [13]). We use the Fisher Iris flower data set [15] or
the car data set from UC Irvine Machine Learning Repository,
whenever possible. The Iris flower data set contains 50 specimens
from each of the three species of Iris flowers: Iris setosa, I
Versicolor, and I. Virginica. The dimensions of the data set are
sepal length, sepal width, petal length and petal width, measured
in millimeters.

3 HIGH-DIMENSIONAL DATA
VISUALIZATIONS

3.1 2D and 3D Scatterplots

A scatterplot is a point projection (usually affine) of the data into
a 2D or 3D dimensional space represented on the screen in classic
(X, Y) or (X, Y, Z) format. This is the most commonly utilized
data visualization method.
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Figure 3.1: 2D and 3D scatterplots of the Iris data set

Numerous mappings or transformations can be applied to it. The
displayed points can have numerous attributes such as color, size,
shape, texture, motion and even sound (when interacted with). To
interpret the 3D projection interaction, it is necessary to resolve
ambiguities, although other techniques have been used
(animation). In its most general form this method is related to
iconographic and pixel displays. Figure 3.1 displays the Iris
Flower data set as 2D and 3D scatterplots.

3.2 Matrix of Scatterplots

A matrix of scatterplots is an array of scatterplots displaying all
possible pairwise combinations of dimensions or coordinates. For
n-dimensional data this yields n(n—1)/2 scatterplots with shared
scales, although most often #° scatterplots are displayed. The
scatterplots can also be positioned in a non-array format (circular,
hexagonal, etc.). One can visually link features of one scatterplot
with features on another, which greatly increases its power.
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Figure 3.2: Matrix of scatterplots

This technique has been in use long before its publication [3], [7].
Several variations on the theme of a matrix of scatterplots have
since been developed: the hyperslice [50], N-vision [14],
prosection [47], hyperbox [2], just to name a few. The hyperslice
is a matrix of panels where “slices” of multivariate function are
shown at a certain focal point of interest. The method is similar to
N-vision, where the matrix panel accommodates for interactive
exploration of a multivariate function. Prosection is a method
more suitable for data mining, since it does not project all points
onto the scatterplot matrix, but rather projects only points within a
certain range of each dimension, similar to brushing and dynamic
queries [1]. The hyperbox uses the same pairwise projections of
the data, but projects onto panels of an n-dimensional box. Each
of the panels has a different orientation and the dimensions can be
cut in order to show histograms on the panels, according to ranges
of the dimensions being cut.

3.3 Heat Maps

This is an array of cells where each cell is colored based on some
data value or function on the data. The method is a generalization
of a scatterplot where the points are grid cells and each cell is
colored. There are many named variants (clustered image map,
heatmaps, patchgrid).



Figure 3.3: Heat map of a random data set
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Figure 3.4: Heat map of the Iris data set
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3.4 Height Maps

A height map is a further extension of a heat map with the grid
represented as a height field instead of by color. Making the cell
size small can generate an almost continuous map. An example is
ThemeView™ [54], where the topics or themes within a set of
documents are shown as a relief map of natural terrain.

Figure 3.5: Height map of document themes
Source: Pacific Northwest National Laboratory

In Figure 3.5 the mountains indicate themes within the documents
with the peak heights as the relative strengths of the topics. The
layout of the themes depends on a similarity metric. This
visualization is similar to self-organizing maps (SOMs), described
below.

3.5 Table Lens

The table lens takes a spreadsheet and allows each cell to be
displayed optionally using a line whose length depends on the
numerical value of the cell and whose color can represent some
other attribute of the data [42]. This provides for both a symbolic
and graphical representation of data within a single table. This can
be viewed as an intermediate view of data between a pure
spreadsheet and a heat map where each item is represented as a
number.

Figure 3.6: Table lens with selected rows of a sales data set
Source: Inxight Software, http.//inxight.com

3.6 Survey Plots

A survey plot is a 2D or 3D point projection of the data [36] and
generally consists of n rectangular areas, each representing one
dimension in a data matrix. A point in a line graph (like a bar
graph) is extended down to an axis. A line (or a rectangle,
depending on the number of records and the size of the output
area) is used to represent the data for each dimension, with its
length proportional to the dimensional value it represents. The
method gives insight to correlation between any two variables
(especially when the data is sorted by a dimension) and can find
exact rules in a machine learning dataset.

Figure .7: Survey plot of atmospheric data
Source: Geophysical Institute, University of Alaska Fairbanks

3.7 Iconographic Displays

An iconographic display is a graphical representation visualizing
high-dimensional data by letting each coordinate dimension of a
record drive some parameter or attribute of an entity (pixel, icon



or glyph) and displaying a number of these entities (records) at
once on the screen. These displays integrate several dimensions at
once and thus can represent high-dimensional data sets [3], [8],
[41], [35].

There are two types of glyph and icon visualizations; the first are
displays where certain dimensions of the n-dimensional data set
are mapped to certain features of the glyph or icon. These include:
Chernoff faces [8], where data dimensions are mapped to facial
features; star glyphs (plots) [7], where the dimensions are
represented as equal angualr spokes radiating from the center of a
circle. The second type of glyph and icon visualizations have
glyphs or icons packed together in a dense display, with textures
representing features of the dataset [41]. Some other icon
visualizations are shape coding [5], color icons [35], [27], [12]
and tilebars [21].
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Figure 3.8: An icon and an integrated iconographic display of 5
satellite images of the Great Lakes region

3.8 Dimensional Stacking (General
Logic Diagrams)

Dimensional stacking is a 2D or 3D point projection of the data
where dimensions are embedded within other dimensions. It was
initially used only to visualize binary data [37]. The method was
later extended to discrete categorical values and binned ordinal
values, and used for general data exploration [52]. The stacking
divides a 2D grid into sets of embedded rectangles, representing
categorical dimensions or attributes of the data. Two outer
dimensions are placed along the X and Y axes, and each
additional pair of dimensions is embedded into the outer level
rectangles, until all dimensions are incorporated.

e .

w295 5l5.55-6.15

sl6 15+

s .

95-335 §15.95-6.15

e n

51-5.55

wiAS+ 51555-6.15
sl6.15+

Pl-245 L2454 fU75+ 1245 pL2AS-4 pM.7S+ pl-245 pl24S-4 pld.T5+

pw-08 pwO8-175 Pl TS+

Figure 3.9: Dimensional Stacking of the Iris data set

3.9 Parallel Coordinates

Parallel coordinates use parallel axes instead of perpendicular to
represent dimensions of a multidimensional data set [25], [26]. A
vertical line is used for the projection of each dimension or
attribute, with the maximum and minimum values of each
dimension usually scaled to the upper and lower boundaries on
those vertical lines. A polyline made up of n-1 lines at the
appropriate dimensional values connects the axes to represent an
n-dimensional point.
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Figure 3.10: Parallel coordinate display of the Iris data set

3.10 Line Graph, Multiple Line Graph

Line graphs display single-valued or piecewise continuous
functions of one dimension. To accommodate multi-dimensional
data sets, multiple line graphs are displayed in a multi-line graph.
Often, the ordering of the data is correlated to one of the
dimensions of the data, such as time. The dimensions are
distinguished using different colored lines, and/or types of
continuous lines (dashed, dotted).
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Figure 3.11: Multiple line graph of the car data set
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3.11 Pixel Techniques, Circle Segments

Pixel techniques represent a generalization of heat maps,
extending them to very large multi-dimensional data sets. These
visualizations arrange the data into an area, starting from some
origin, according to the size and number of dimensions, using
various techniques including recursive, spiral, and circle
segments. The interpretation of the (X, Y) position of the cell
depends on the mapping. In VisDB [27] the goal is to show



similarities between attributes of the data. Various similarity
functions may be used and their values represented as colors.

For circle segments each arc on the circle represents a data value
of one dimension. Originally, the arc would represent many data
values, one for each pixel in the arc, but variations now use
straight lines.

Figure 3.12: Pixel display of an eight-dimensional data set of
1,000 records using 2D arrangement
Source: VisDB, [27]

3.12 Multi-Dimensional Scaling and
Sammon Plots

An analytic or graphical representation that maps a data set into a
space of lower dimensionality is considered a projection method.
In most cases some invariants are preserved or closely preserved
(such as distance). This is a classic technique, well over 50 years
old [57], [48], [33], [11], [55], [56].
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Figure 3.13: 2D and 3D Sammon Plots of the Iris data set

The goal of Multi-Dimensional Scaling (MDS) techniques is to
identify meaningful underlying dimensions that could explain
similarities or dissimilarities in the data. MDS typically preserves
the distance metric. Most often the projection space is 2-
dimensional. Other techniques attempt to preserve some degree of
structure. The result is a 2D or 3D display in which points close to
each other are close in the original n-dimensional space.

There are numerous variations and in all cases a dissimilarity
matrix is built (based on the selected metric) with various cost
functions and other parameters. Bentley and Ward presented
extensions to MDS to enhance visualizations of high-dimensional
data, such as animation, stochastic perturbation and flow
visualization techniques [6]. The most frequently used variation of
MDS is Sammon plot, a non-linear MDS mapping [44].

3.13 Polar Charts

A polar chart is a circular graph for plotting polar coordinates.
Polar coordinates map data onto a 2D surface using the angle and
radius, creating a “wrap-around” version of a line graph. Polar
charts bridge the limitation of line graphs, which are used only for
displaying single valued or piecewise continuous functions of one
dimension. These can be considered circular representations of
parallel coordinates and thus can reduce the limiting effect of a
large number of dimensions. However, the size of the data point
representations depends on the closeness to the center.

Figure 3.14: Polar line and polar glyph plot of the Iris data set



3.14 RadViz

RadViz is a display technique that places dimensional anchors
(dimensions) around the perimeter of a circle [22]. Spring
constants are utilized to represent relational values among points -
one end of a spring is attached to a dimensional anchor, the other
is attached to a data point. The values of each dimension are
usually normalized to 0 tol range. Each data point is displayed at
the point where the sum of all spring forces equals zero. The
position of a data point depends largely on the arrangement of
dimensions around the circle.
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Figure 3.15: RadViz visualization of the Iris data set

3.15 PolyViz

The PolyViz visualization extends the RadViz method with each
of the dimensions anchored as a line not just a point. Spring
constants are utilized along the dimensional anchor (the line) that
corresponds to all the values the dimension has. Each data point is
positioned as in RadViz. The position of the point in the display
depends as in RadViz on the arrangement of the dimensions.
PolyViz provides more information than RadViz by giving insight
into the distribution of the data for each dimension.
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Figure 3.16: PolyViz visualization of the Iris data set

3.16 Principal Component and Principal
Curves Analysis

Principal component analysis (PCA) is an analytic technique often
coupled with a visual representation that identifies a lower
dimensional space preserving variance (spread) in the data [24].
Numerous implementations exist, including neural networks [40],
[9]. Self-organizing Maps (described below) can produce a PCA.
PCA does not handle non-linearity well since it identifies linear
subspaces. If the data set is non-linear then extensions must be
used.
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Figure 3.17: 2D and 3D principal component analysis of the Iris
data set

Principal curves analysis [20] identifies smooth curves which
represent the mean of all projected data points [39], [43],
generalizing linear principal component analysis.

3.17 Grand Tour and Projection Pursuit

Projections of the data using a scatterplot matrix (or any other
static representation of data) do not necessarily guarantee the best
insight into the data. The most insight might be gained by some
projection that allows a linear discrimination of two or more
classes of data. In the grand tour method [4], sequences of 2D or
3D projections are displayed. The grand tour is most often applied
to a single 2D or 3D scatterplot with the coordinate axes, moving
through a sequence of projections that cover almost all of the n-
dimensional space. In the classic grand tour a step and space-
filling curve are defined. A plane is moved along this curve and
the data projected.



The grand tour can be interpreted as an unguided exploratory
projection pursuit. After a particular goal is identified, a guided
projection pursuit is utilized. This produces projections of the data
where a particular goal drives the projections, such as
discrimination of two data classes. Linear projections are selected
which attempt to identify and bring out the data deviating from
normal distribution as much as possible. Projection pursuit can
handle some non-linearity but it too is not general enough [16],
[17]. Depending on the utilized display techniques and when a
useful projection is found, it is not always clear how to extract
useful information from the linear combinations of dimensions.

3.18 Kohonen Self-Organizing Maps
(SOM)

The Self-Organizing Map (SOM) combines an analytic and
graphical technique to group data in order to reduce its size. It is a
summarization technique that attempts to reduce the complexity
of the data set by displaying clusters of the data in a grid.

The self-organizing map (SOM) [29], [30], [31], [32] is a neural
network algorithm that has been used to cluster in an unsupervised
fashion and generate a visual representations of the clusters.
SOMs both cluster and reduce the dimensionality of the data by
projecting the clusters typically onto a 2-dimensional space. The
Kohonen SOM is similar to a k-means clustering algorithm,
extending it by providing a topological structure and placing
similar objects in neighboring clusters. Numerous SOM
algorithms and extensions have been developed in a multitude of
fields which include engineering applications and neural networks
(see [32], [38], [28], [S1] and [S3]).
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Figure 3.18: Self-organizing map of the Iris data set

3.19 Remarks

There are many systems incorporating a number of the techniques
described above. Along with traditional static sorts of displays
such as histograms, scatterplots, and parallel coordinates, most
software packages provide interactive and dynamic querying of
data. Currently, most PC or workstation-based tools are used to
view multivariate data. These tools display 3D graphics on a
traditional computer monitor. However, extensions using virtual

reality devices offer the capability to display graphics in
stereoscopic 3D, allowing the user to better perceive depth
information. To date, there have been little commercial virtual
reality data exploration environments.

A number of interactive techniques can also be provided to alter
each of these visualizations. For example display transformations
such as hyperbolic mappings and other distortion mappings can be
applied to the resulting images to provide non-linear expansions
of the data ([46], [18], [2], [34], [42]).

4 INTRINSIC DIMENSIONALITY

We now define precisely intrinsic dimensionality. The goal is to
define metrics that identify how visualizations deal with »n
dimensions when displayed on the screen. The main problems are
that points may overlap and that coordinate data may be lost in the
projection. With probing one can get all the coordinate values of a
single point.

We will consiﬁler two extreme cases: the set of n-dimensional unit
vectors in R, where one coordinate (dimension) is 1 and all
others 0, and a set of n-dimensional binary vectors, where each
coordinate is 1 or 0.

4.1 Intrinsic Dimension

Given an n-dimensional space, the intrinsic dimension (ID) of a
visualization is defined to be the largest £, k& <n, for which a set
of k unit vectors in that n-dimensional space can be uniquely
identified (perceived) in the visualization.

The intrinsic dimension of a 2D scatterplot is 2: the » unit vectors
project to 3 points, (0, 0) and either (0, 1) or (1, 0), only two of
which obviously come from unique points.

4.2 Intrinsic Record Ratio

Given an n-dimensional space, the intrinsic record ratio (IRR) of
a visualization is defined to be k/n, where k is the largest value for
which the set of 2" binary vectors with all 0’s and 1’s in that n-
dimensional space can be uniquely identified (perceived) in the
visualization. It represents the percentage of records that can be
distinguished, if one had reasonably distributed records. We can
more precisely define this ratio using Monte Carlo techniques.

We have 2" points (binary vectors) that represent values
[0,...,(2"-1)]. If all are discernible then the intrinsic record ratio is
1. The 2" binary vectors project to 4 points, (0, 0), (0, 1), (1,0) and
(1, 1), and the intrinsic record ratio is 4/2". As n gets large, the
intrinsic record ratio decreases and approaches 0.

4.3 Intrinsic Coordinate Dimension

Given a n-dimensional space, the intrinsic coordinate dimension
(ICD) of a visualization is defined to be the largest k, £ < n for
which k-coordinates of any vector in that n-dimensional space can
be uniquely identified in the visualization.



The intrinsic dimension of a 2D scatterplot is 2 and its intrinsic
coordinate dimension is 2. The intrinsic dimension for the 3D
scatterplot is 3 whereas its intrinsic coordinate dimension is 2 (the
projected point may come from several ones projecting to a line in
3D). Note that in many cases the intrinsic coordinate dimension is
smaller than the intrinsic dimension since we know the vectors
being examined in the first case whereas in the second we look to
identify coordinates of any vector. Using rigid transformations
such as rotate, pan and zoom, one can often increase the number
of coordinates determined.

5 ANALYSIS

There are a number of factors that can affect the result. Color, size
and shape of the points will make a difference. Perception is
dependent on the viewer and the environment. Screen resolution
and size have a significant bearing on the evaluation of intrinsic
dimensions since the metric involves perception of unique points
or values.

For more than a certain number of records or dimensions the
screen/dot ratio becomes the limiting factor. In all visualizations it
is either the linear dimensions of the screen (e.g., the axes in a
scatterplot) or the surface dimensions (e.g., the points in a
scatterplot) that limit the perception of data.

In order to avoid all these perceptual problems and issues we look
to the first two definitions as theoretical. That is, what is the best
that one could do having an arbitrarily large screen with infinite
resolution. We look to the last definition to handle perceptual
issues by permitting interaction to resolve size problems. The
intrinsic dimension and coordinate dimension require being able
to pull out coordinate interpretations whereas the intrinsic record
ratio pulls out records. In all cases we assume that the selected
color and shape of the points or tick marks is reasonable.

We now look at some examples of the visualizations described
above and their intrinsic dimensions. In order to get a sense of the
high dimensionality of the various visualizations we analyze the
different visualizations into three classes as follows:

1. 10 - 100 intrinsic dimensions
2. 100 - 1000 intrinsic dimensions
3. 1000 or more intrinsic dimensions.

In this paper, we show several sample visualizations and their
intrinsic properties for both 10- and 100-dimensional spaces (in
some cases) and discuss the 1000 ones.

5.1 2D and 3D Scatterplot

We project 10 and 100 unit vectors in 2D and 3D to produce
scatterplots of 10- and 100-dimensional space (Figure 5.1). The
scatterplots for the 100-dimensional unit and binary vectors are
identical to the scatterplots of the 10-dimensional unit and binary
vectors, respectively.
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Figure 5.1: 2D and 3D scatterplots of the 10-dimensional and
100-dimensional unit vectors

Only two and three data records, respectively, are uniquely
identifiable. Thus the intrinsic dimension is 2 for a 2D scatterplot
and 3 for the 3D scatterplot.
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Figure 5.2: 2D scatterplot of the 10-dimensional binary vectors
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Figure 5.3: 3D scatterplot of the 10-dimensional binary vectors

The intrinsic record ratio for the 10-dimensional binary dataset is
therefore 4/1024 = 1/256 as a 2D scatterplot and 8/1024 = 1/128
as a 3D scatterplot.

The intrinsic coordinate dimension for the 10-dimensional and
100-dimensional data sets is 2.

5.2 2D and 3D Sammon Plot

The Sammon plot representation of the 10- and 100-dimensional
unit vectors is displayed in Figure 5.4 through Figure 5.6.

While the points are all visible, it is impossible to identify the
values associated with them. Therefore, the intrinsic dimensions
for both datasets are 0.
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Figure 5.4: 2D Sammon plot of the 10-dimensional unit vector
data set
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Figure 5.5: 3D Sammon plot of the 10-dimensional unit vector
data set

In Figure 5.6 we display the 100 points (unit vectors). These are
well distributed in the rendering space. The intrinsic dimension is
0 as points are not distinguishable. Here, too, the intrinsic record
ratio is approximately 1, depending on the Sammon plot output
and the number of points.
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Figure 5.6: 2D and 3D Sammon plot of the 100-dimensional unit
vector data set

Thus we find that the ID and IRR are dimension independent.
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When we display the 1024 10-dimensional points (binary vectors)
using the Sammon plot (Figure 5.7), we cannot easily determine
the number of points in the display and so the intrinsic record ratio
cannot be precisely determined visually. Estimate yields an
intrinsic record ratio of = 0.2 (2D) and = 0.9 (3D). Note that
repeated application of the Sammon plot algorithm may yield
different intrinsic record ratios.

5.3 Parallel Coordinates

Parallel coordinates representing the 10- and the 100-dimensional
unit vector datasets are displayed in Figure 5.8. The specific unit
vector (polyline) is identifiable by the coordinate with value equal
to 1. The intrinsic dimensions thus are respectively 10 and 100.

Since we assume that we are dealing with a perfect display of
unlimited resolution, these limitations do not affect the intrinsic
dimension but will effect its perception.

The intrinsic record ratio under perfect conditions (unlimited
resolution) is 0, as it is not possible to identify a single unique
point in the display and thus we cannot determine the number of
points. The intrinsic coordinate dimension is equal to the number
of dimensions in the data set, as we can uniquely identify each of
the coordinate values.

IR
IR 3
a7 r
06
05k
04r
03r
02r

01

a1

[ e e
80 @0 100
Figure 5.8: Parallel coordinates of the 10- and 100-dimensional

unit vectors
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Figure 5.9: Parallel coordinates of the 10-dimensional binary
vectors

5.4 Pixel Display

A pixel display of a 10-dimensional unit vector data set is shown
in Figure 5.10.
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Figure 5.10: Pixel display of the 10-dimensional unit vector data

The intrinsic dimension is 10 as one can identify each coordinate
directly from the multiple grids. For the 10-dimensional binary



vectors data set, the pixel display would consist of 10 rectangles,
each containing 2" cells. Each record is uniquely identifiable and
the intrinsic record ratio is 1.0. The intrinsic coordinate dimension
is not precisely determinable as the coordinate value is
represented by a color, which depends on the color map as well as
the viewer’s perceptual capabilities.

5.5 RadViz

RadViz displays of the 10- and 100-dimensional unit vector data
sets are shown in Figure 5.11, followed by a display of the 10-
dimensional binary vectors data set (Figure 5.12).
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Figure 5.11: 10- and 100-dimensional unit vector data sets
rendered using RadViz algorithm
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Figure 5.12: RadViz display of the 10-dimensional binary vectors
data set

The intrinsic dimension is 10 and 100 respectively. The intrinsic
record ratio is 1 and intrinsic coordinate dimension is not
determinable in general if the point is not on the boundary of the
circle.

5.6 PolyViz

PolyViz display of the 10-dimensional unit vector data sets is
shown in Figure 5.13.
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Figure 5.13: PolyViz display of the 10-dimensional unit vectors
data set colored by the first dimension

The intrinsic dimension for this data set is 10 and for the 100 unit
vectors it would be 100. The intrinsic record ratio is 1 and
intrinsic coordinate dimension is d as each coordinate for a single
record can be discerned.

5.7 Kohonen Self-Organizing Map (SOM)

Figure 5.14 and Figure 5.15 display a SOM of an arbitrary size for
the 10- and 100-dimensional unit vector data sets.

The intrinsic dimension is 0.
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Figure 5.14: 10x10 SOM of the 10-dimensional unit vectors
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Figure 5.15: 10x10 SOM of the 100-dimensional unit vectors

Looking at Figure 5.16 we find that the intrinsic record ratio is 1.0
if the number of grids is large enough and that the intrinsic
coordinate dimension is 0.
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Figure 5.16: 10x10 SOM of the 10-dimensional binary vectors

6 SUMMARY

These visualizations are just a few of many possible examples.
Table 1 provides a summary of intrinsic properties for
visualizations discussed above. Both 10- and a 100-dimensional
unit vector datasets were used for this task. Since an ideal display
(of unlimited size and resolution) is used, there is no difference
between the 10- and the 100-dimensional dataset.

o Intrinsic Intrinsic Record | Intrinsic Coord.

Visualization . . .
Dim. Ratio Dim.

2D Scatterplot 2 4/2¢ 2
3D Scatterplot 3 8/2¢ 2
2D Sammon Plot 0 ~(.2 0
3D Sammon Plot 0 ~0.9 0
Parallel Coord. d 0.0 d
Pixel Display d 1.0 Indeterminate
RadViz d 1.0 Indeterminate
PolyViz d 1.0 d
SOM 0 1.0 0

Table 1: A summary of intrinsic properties for selected
visualizations
d = dimensionality of the data set

It is clear that some of the computations for the IRR require a
precise determination of the number of distinguishable points,
since this applies to both Sammon plots (and other visualization
techniques not listed). Perceived separation determination with
automatic computation with Monte Carlo techniques is necessary.

These definitions were used to begin to try to identify intrinsic
metrics for high-dimensional visualizations. We see that several
visualizations deal with high dimensions quite well. These include
Pixel Displays, RadViz and PolyViz. Realistically, the limitations
of screen resolution and color perception do have a bearing. These
problems can be resolved through multiple linked visualizations
or with interactions and tools that increase the intrinsic coordinate
dimensions.

Acknowledgements: We thank Dr. Patrick Hoffman for his
detailed critique and help in generating some of the images.
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