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Abstract

The grand tour and projection pursuit are two methods for exploring multivariate data.
We show how to combine them into a dynamic graphical tool for exploratory data analysis,
called a projection pursuit guided tour. This tool assists in clustering data when clusters are
oddly shaped and in finding general low-dimensional structure in high dimensional, and in
particular, sparse data. An example shows that the method, which is projection-based, can
be quite powerful in situations which may cause methods based on kernel-smoothing grief.
The projection pursuit guided tour is also useful for comparing and developing projection
pursuit indices and illustrating some types of asymptotic results.

1 Introduction

In this paper we show that two graphical methods for exploring high (say p) dimen-
sional data, the grand tour (Asimov, 1985; Buja and Asimov, 1986), a dynamic tool,
and projection pursuit (Kruskal, 1969; Friedman and Tukey, 1974; Huber, 1985), a
static tool, naturally complement each other and can be combined to enhance each’s
performance in detecting low dimensional structure. A grand tour attempts to provide
the viewer with an overview of a multivariate point scatter by presenting a continu-
ous (dynamic) sequence of low (d, usually = 1,2,3) dimensional projections, which,
within time constraints, are representative of all possible projections of the data. In
contrast, projection pursuit seeks out only low dimensional projections that expose
interesting features of the high dimensional point cloud. It does this by optimizing a
criterion function, called the projection pursuit index, over all possible d-dimensional
(d-d) projections of p-dimensional (p-d) data. Projection pursuit results in a num-
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ber of static plots of projections which are deemed interesting, in contrast to the
dynamic movie of arbitrary projections that is provided by a grand tour. Unfortu-
nately, static plots suffer from a lack of context because they have been removed
from their neighborhood in the projection space, and while a grand tour provides the
neighborhood context it has a tendency to spend too much time away from, or indeed
never visit, the interesting projections. The two methods combined in an interactive,
dynamic framework provide powerful tools for exploring high-dimensional data using
projections. In particular, when the data is sparse in relation to its dimensionality,
methods based on projections have advantages over those based on kernel-smoothing.
The work discussed in this paper fills gaps in research on exploring high-dimensional
data.

In the last decade most projection pursuit indices (for example, Jones and Sibson,
1987; Friedman, 1987; Hall, 1989; Morton, 1989; Cook et al., 1993a; Posse, 1994)
have been anchored on the premise that to find the structured projections one should
search for the most non-normal projections. Good arguments for this can be found
in Huber (1985) and Diaconis and Freedman (1984). (We should point out that
searching for the most non-normal directions is also discussed by Andrews et al.
(1971) in the context of transformations to enhance normality of multivariate data.)
This clarity of purpose makes it relatively simple to construct indices which “measure”
how distant a density estimate of the projected data is from a standard normal density.
(Note that the data is usually sphered before beginning projection pursuit to remove
mean and variance effects from the search, and in this sense the comparison with
a standard normal density is justified.) The projection pursuit index, a function
of all possible projections of the data, invariably has many “hills and valleys” and
“knife-edge ridges” because of the varying shape of underlying density estimates from
one projection to the next. To accommodate the optimization of such a function
Friedman (1987) proposes a projection pursuit algorithm which entails an initial rough
global search for relatively high values of the function from which to, secondly, start
derivative-based searches to find the global maximum.

In the last few years, with the assistance of powerful desktop computing hardware,
research on the grand tour has concentrated on user interaction. The tools for user
interaction, suggested to date, take the form of motion alteration and restriction, such
as a facility to retrace the tour path and restriction of movement to subspaces, such as,
principal component, canonical correlation or discriminant coordinate space (Hurley
and Buja, 1990). We now add to this bag of tricks, projection pursuit guidance. The
grand tour is used to move the viewing plane arbitrarily through the projection space,
which acts to provide random starting points for derivative-based optimization of the
projection pursuit index. The actual time point at which the optimization is initiated
may be determined by the viewer, or in an automated implementation by some pre-
determined initiation mechanism. In our implementation we have concentrated on
the former, to provide a highly interactive user controlled interface.

Figure 1 shows a window dump of the implementation of a projection pursuit guided
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Figure 1: Implementation of projection pursuit guided tour in XGobi



tour in XGobi (Swayne et al., 1991), which is a software system that is publicly avail-
able from StatLib. [To get started using StatLib, send the one-line e-mail message
send index to statlib@lib.stat.cmu.edu. A program will read your request and
send further instructions. StatLib can also be accessed by FTP, Gopher, and WWW.
The e-mail reply from StatLib will contain instructions for the other methods of ac-
cess.] XGobi is designed for analysis of high dimensional data through manipulation
of scatterplots. It offers such plotting techniques as textured dot plots (Tukey and
Tukey, 1990), pairwise plots and 3-d rotation as well as the tour, and includes inter-
active operations on the data such as scaling, linked brushing and identification of
points. It is written in C and uses the X Window System (trademark of MIT). Al-
though it is possible to construct a projection pursuit guided tour for any projection
dimension, the implementation in XGobi only uses 2-d projections, which is natural
for 2-d display devices.

To give some familiarity with the graphical appearance of the XGobi guided tour
see Figure 1. Two windows are shown. The main window displays a paused grand
tour (in principal component space) surrounded by many controls and the bottom
window displays the projection pursuit index which has been plotted over time as
the tour progressed. At the top of the main window is a line of mode buttons where
it can be seen that tour mode is highlighted. Associated with the tour mode is the
panel of controls to the left of the plot window which includes tools for interacting
with a grand tour and controls for the projection pursuit guidance. To the right of
the plot window is a collection of circles and labels representing the variables of the
data set.

The next section discusses implementing a projection pursuit guided tour, using the
example of XGobi, and the tools that we have found naturally assist user interaction.
The third section gives examples of both exploring data and viewing functions with
the projection pursuit guided tour.

2 Implementation

2.1 Basic ideas - optimization adaptation of tour movement

The grand tour is defined as a continuous 1-parameter (time, usually) family of d-d
projection planes which is dense in the set of all d-d planes in p-space (d < p). The
space of all unoriented d-d planes through the origin in Euclidean p-space is called a
Grassman manifold, which we denote as Gy ,_4. In contemplating an implementation
of a grand tour this definition lends itself to a variety of interpretations. One ap-
proach depends on the construction of a filling curve which systematically traverses
Gap—da. (See Asimov, 1985 for a discussion of some attempts at constructing good
deterministic paths, which is, as yet, an unresolved problem.) Alternatively, a ran-
dom sampling of Gy ,_4 combined with the construction of a continuous path between
pairs of sampled planes can be used.

The second approach is the simplest and most easily adaptable grand tour con-



struction. It is the method that we concentrate on and we call it an interpolation
tour. The construction procedure is described in detail in Buja et al. (1989), but
in simple terms there are two basic steps which are iterated. Initialization is from a
predetermined starting plane, V(:

(1) Sample, randomly, for a d-d plane in p-space, which we call the target
plane, V(1y. (To do this generate d vectors in IR? by orthonormalizing d p-d
standard normal vectors, for example. This results in a random orthonormal
basis, denoted w(y), for a random plane.)

(2) Interpolate from the starting plane, V), to the target plane, V), set
this to be the new starting plane, and return to (1). (The interpolation is
implemented in discrete steps which appear continuous to the eye, and the
size of the steps can be adjusted to simulate apparent speed changes. We
call the starting planes and target planes basis planes. Knowing the basis
plane sequence allows the tour path to be reconstructed. The orthonormal
basis for V(o) is denoted as wu(g).)

As indicated earlier (end of first paragraph of Introduction) however, this type of
grand tour may not provide the user with a view of any interesting projections - a
problem that becomes worse as p increases. The objective is to use the derivatives of
the projection pursuit index to select the new target plane in a more judicious manner
- this adaptation of step (1) generates the projection pursuit guided tour which we
now explain in more detail. Let z be a p-d random vector, with 0 mean, and identity
covariance matrix, €= (x1,...,24) =u’'z, where u is an orthonormal basis for an
arbitrary d-plane in p-space, and [(«) be a d-dimensional projection pursuit index.
(1 is a function of the projected data matrix and the domain is all possible projections.
For our purposes we have restricted ourselves to continuously differentiable functions,
but it is possible to relax this condition if appropriate optimization methods are used.)
Using this notation, the target plane V(y), characterized by the orthonormal basis uy),
is chosen as the result of orthonormalization of

dl(x) O

oxr Ju w

U (o) +k

where k is the step size parameter of the optimization. In terms of dynamic graphics,
k is a path length parameter because it determines the distance to the next target
plane. We consider the maximum of the index [ to be reached when its value no
longer increases by further movement in the derivative direction, that is, in practical
terms, the difference between the index values of the previous interpolation step and
the current is below a tolerance value.

This is exactly steepest ascent optimization with respect to each component vector
of w. (It is also possible to use conjugate gradient methods by a simple adaptation
of the definition of the target plane, and, of course, other methods by more radical
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Figure 2: Monitoring window for projection pursuit guided tour in XGobi

adaptations.) At some time point the local maximum will be reached, which means
that the tour must stop because the target plane is identical to the starting plane. To
continue motion when this happens we propose to revert the target plane selection
procedure back to random sampling, for some period of time before engaging in
optimization again. The effect is analogous to performing steepest ascent optimization
from multiple random starting points. The difference, of course, is that here the entire
optimization procedure is visualized, and the viewer may determine the starting points
for the optimization by using visual cues. We call the real-time process of periodically
switching the target plane selection between random sampling and derivative-based
selection, a projection pursuit guided tour.

Intrinsic to an interactive and dynamic implementation of a projection pursuit
guided tour are a number of tools which are discussed in the next few sections. Recall
that a global picture of the controls of the projection pursuit guided tour in XGobi
is shown in Figure 1.

2.2 Monitoring window

A vital accompaniment of the projection pursuit guided tour is a monitoring
window (Figure 2). This window keeps a running plot of the projection pursuit index
values for the sequence of projections displayed in the main tour window of Fig 1
over time. This involves storing a vector of index values and in our implementation
the vector has a fixed length which depends on the size of the monitoring window.
During on-screen motion, as the vector becomes filled, old values are replaced by new
ones, and thus a shifting window of the most recent index values is maintained. The
plot also rescales itself vertically when a new index value is above or below previous
maximum and minimum values because it is assumed that global extreme values are
not known a priori.

Along the horizontal axis (time) are a number of “landmarks”, short vertical lines



above the axis and triangles below the axis. The short vertical lines indicate when
a new target plane is chosen. The triangles indicate the time point when optimize
is either turned on or off. During optimization the index values increase with time.
In the figure optimization was turned on at the leftmost triangle, so the index value
increases until the second triangle when it was turned off. It was turned on again
at the third triangle and off at the fourth. (From the plot, it may appear that
using a projection pursuit guided tour to search for interesting projections of high
dimensional data is a “heat up/cool down” process, such as simulated annealing, for
finding maxima of an index. However Figure 2 is a record of a real-time user-controlled
procedure and simulated annealing is an example of an automated procedure which
is a possible alternative when real-time computations are not feasible.)

Marking the time of the two local maximum index values are two bitmaps. These are
copies of the projection displayed in the tour window at the time the local maximum
index values were reached, as indicated by the stabilizing of the index value. Their
presence assists in mental reconstruction of the tour path by recording important
features. In XGobi a bitmap can be generated at any time during a projection pursuit
guided tour by a simple “button click”, but we have found it to be most useful to
record local maxima.

2.3 Bitmap interface

There are two important additional uses of the bitmaps. The first is to direct the
tour to return to the particular view provided by a bitmap accessed through a left
mouse click on the bitmap of interest. (In fact this facility was incorporated after
observing that people using the projection pursuit guided tour exhibited a natural
tendency to want to return the tour to the previous bitmap views.) This behavior,
though, depends on the bitmap remaining visible in the monitor window, which it
will only do for the length of time represented by the width of the window. There
is no scroll facility to retrieve invisible bitmaps. The second use is to “stack up”
views that have been found in order to “replay” them later. This approach depends
on the existence of a history mechanism in the tour. In XGobi this is provided by a
backtrack feature in which a running linked-list of basis planes provides a mechanism
for retracing the path of a tour. In addition, a pre-recorded set of basis planes may
be read in to describe a particular path to be travelled. This facility can be combined
with a recorded list of basis planes that represent the bitmaps, or local maxima of
the projection pursuit index.

2.4 Navigational Tools

When a structured projection is found it is important to understand the relationship
between the constituent variables. With 3-d data the contribution of variables to a
projection is often represented by a tripodal axis. This readily extends to higher
dimensions in which a p-podal axis tree illustrates the linear combination of variables
contributing to a projection. However the disadvantage is that it suffers from clutter



as more variables are added. The solution provided by Buja et al. (1988) and Hurley
and Buja (1990) is to take each axis stem out of the p-podal representation and embed
it in its own icon, specifically a reference unit circle. We call these the variable circles
and the radial bar represents the relative contribution of each variable to the displayed
projection. These are the primary navigational tools. In Figure 1 they can be seen
to the right of the main plot window. (They also serve a utility function in XGobi in
that clicking on a variable circle adds or removes the variable from the tour.)

2.5 Index choices - menu, parameter adjustment

One of the most powerful features of dynamic graphics is the ability to quickly
“twiddle” parameters and make option selections. The menu of indices in XGobi
includes the 2-d Natural Hermite (Cook et al., 1993a), Hermite (Hall, 1989), Legendre
(Friedman, 1987), Friedman-Tukey style (Friedman and Tukey, 1974) and Entropy
(Jones and Sibson, 1987) indices, as well as three simple template-like indices (Cook
et al., 1993a) designed to detect projections with “holes” in the center (Holes index)
or concentration of mass in the center (Central Mass index) or skewness (Skewness
index). For complete information on the different indices the reader is encouraged to
refer to the appropriate references.

2.6 Impact of sphering

It is usual that the data is sphered before beginning projection pursuit to remove
the influence of location and scale on the search for structured projections. This is
especially necessary for indices which “measure” the departure of the projected data
density from a standard normal density because location and scale differences may
dominate the other structural differences. However sphering has an unfortunate side
effect. 1t visibly changes the data. For example, consider points uniformly distributed
on a cylinder which has a small length to radius ratio, as in points painted on a short
piece of tube (Figure 3a). Sphering is analogous to increasing the length of the tube
(Figure 3b), resulting in the hole being less visible. Hence sphering is graphically
distracting because it changes the shape of the data and may in some cases hide
features which were previously visible.

Nevertheless sphering is essential to the effectiveness of the current selection of pro-
jection pursuit indices in XGobi so the data is sphered before beginning a projection
pursuit guided tour. However in displaying the procedure one can choose to use the
sphered or unsphered data space. Our preference is to show the projection pursuit
guided tour on the sphered data, although in XGobi it is possible to also display the
corresponding unsphered data projections using the linked tour facility (see section
2.8). (The projection coordinates, u, from the sphered space are “back-transformed”
to the corresponding coordinates in the unsphered data space.)
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Figure 3: Visual effect of sphering data (a) before sphering - hole is easy to see, (b)
after sphering - hole not as easy to see.

2.7 Inclusion of user defined index functions

The implementation in XGobi is set up to make it feasible for users to include
their own index functions with a minimal knowledge of C and X. Essentially two
functions need to be provided, one for calculating the index value at a particular
projection and another for calculating derivatives. The interested reader should read
the distributional notes of XGobi for further information (see statlib footnote at
the end of the Introduction).

2.8 Linked Tours

One solution to the problem of sphering is to show both projections: the projection
of the sphered data and the equivalent projection in unsphered data space. This is
facilitated by linking two XGobis. The XGobi running a projection pursuit guided
tour sends its projection to one showing the data in unsphered data space. (The link
function inverts the projection coordinates appropriately.)

The linked tour facility can be used to compare different projection pursuit indices
and for cross-validation of data, for example, checking if one interesting projection
proves interesting for both halves of a data set.

3 Examples

3.1 Finding Low-dimensional Structure in Data

The particle physics data set that we use to illustrate the use of a projection pursuit
guided tour was initially used to introduce projection pursuit by Friedman and Tukey
(1974). The data is old, and the reaction studied by the data is not interesting to
contemporary physicists, but it is important to statisticians for the reason that the
inherent structure has never been completely described. The combination of the grand
tour and projection pursuit contributes significantly to revealing the nature of the



variable relationships in 7 dimensions. Recently, Koschat and Swayne (1992a, 1992b),
have used the projection pursuit guided tour in XGobi to explore telecommunications
data, and indeed found previously undetected structure.

3.1.1 7-D Particle Physics data

The 7-d particle physics data (often called “prim7”) contains 500 observations taken
from a high energy particle physics scattering experiment which yields four particles.
The reaction can be described completely by 7 independent measurements. (For this

reaction, m; p; — pmyms 77, the following measurables (squared invariant mass) were

used: Xy = p?(n=, 7,78 ), Xo = p2(n, 7)), Xz = pi2(p,77), Xy = p(n~, 7)), X5 =
2 (pymi), Xe = (P (p, 7, —po), Xo = p2(pymf, —pi). Here, (A, B, £C) = (E4 +
EB + Ec)2 — (PA + PB + Pc)2 and /,LQ(A,:EB) == (EA + EB)2 — (PA + PB)Q, where
E and P represent the particle’s energy and momentum, respectively, as measured
in billions of electron volts. The notation (p)* represents the inner product P/P. The
ordinal assignment of the two 71’s was done randomly. The data is originally from
Ballam et al. (1971) which contains a more complete description of the reaction.)
Important features of the data are short-lived intermediate reaction stages which
appear as clusters or clumpiness along low-dimensional linear subspaces (“arms”).

Figure 4 shows the pairwise plots of the 7 measurements. It is clear there are
some linear relationships between the variables because of the clumpiness along the
coordinate axes and diagonals. There are also three aberrant points visible in the
plot of X1 vs X6, X1 vs X7, and X3 vs X6.

Figure 5(a) shows a plot of the first two principal components. This view indicates
the presence of structure, perhaps three clusters, but it is not lucid enough to dis-
tinguish between them. In their original projection pursuit-based analysis, Friedman
and Tukey (1974) found a projection in which the points lie on a “Z” shape (similar
to the projection in Figure 5(b)). With a projection pursuit index based on Fisher
information, Jee (1985) found a projection in which the points lie on a triangle, with
heavier concentrations at the vertices (Figure 5(c)). Although they are interesting,
these three views do little to divulge the basic shape of the point cloud. Using the
projection pursuit guided tour the data points appear to form a very simple pattern:
a basic triangle with two linear, or wedge-shape, structures extending from each ver-
tex. We relate the interactive procedure which led to this description, in the next
few paragraphs. Although the session is summarized by the plots in Figure 6, which
are in a left-to-right sequence beginning at the top left and ending at bottom right
plot, we must emphasize that these plots only represent instantaneous snap-shots of
projections obtained during the projection pursuit guided tour. In reality, of course,
the user experiences a movie-like representation of the evolving projections along the
tour path. (Video footage of the projection pursuit guided tour on the particle physics
data is available in Cook et al., 1993b.)

In the top left plot is the projection corresponding to a local maximum of the Holes
index, showing the triangle with two wrapped arms. We painted the two arms as
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Figure 4: Pairwise plots of 7-d particle physics data.
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Figure 5: 7-d particle physics data: (a) First two principal components, (b) projection
similar to that found by Friedman and Tukey (1974), and (c) projection found by Jee
(1985).

crosses and rectangles, and identify them as arms CS and OR, respectively. (Note
that, color may also be used to further enhance the identification of the arms.) The
job of classifying points in the intersection is made easier by the on-screen motion,
the sense of which cannot be adequately portrayed by these flat sheets of paper,
as indicated in the previous paragraph. In the on-screen environment a 3-d sense
accompanies the movement of these arms: the tips of the arms rock against each
other as the maximum is approached. This view, as mentioned above, is a local
maximum and, interestingly, the projection given by the global maximum is not very
informative! This is not altogether unexpected. Although the Holes index is successful
in detecting the arms it is theoretically maximized by points distributed on a unit
circle. In the process of projection pursuit the optimal index value corresponds to
the projection which best approximates this extremal distribution. The view given in
the top left plot doesn’t approximate the extremal distribution very well so it is not
surprising that there is another projection of this data which has a higher index value.
The Holes index is sensitive to a very specific type of structure, whereas the more
omnibus-type indices, such as those based on non-normality measures, are sensitive
to a much broader range of structure, and when using these indices this situation will
be more common.

The top right plot is the projection given by the global maximum of the Central
Mass index, and one can now see several new structures in the data: two more arms
and three aberrant points. The bottom left plot is the same projection magnified to
focus more on the previously unseen arms, painted as circles (arm CC) and plusses
(arm P). The bottom right plot shows a projection corresponding to a local maximum
of the Central Mass index. One more arm (small solid rectangles, arm SR) is visible,
although difficult to see clearly in the view because the points also lie along arm OR.
(In XGobi it is very easy to mask out the arm OR to brush points on underlying

12
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Figure 6: Analysis of 7-d particle physics data; top left: local mazimum of Holes
index, top right, bottom left: global mazimum of Central Mass index, bottom right:

local mazimum of Central Mass index

13



20
20
20

X1
X2
X3

20
|
20
|
X6

|
ko
0

|

o
< A
h
o
N 0
x X
o
~
x
o
A

Figure 7: Textured dotplot of vartables with points in the base triangle region high-
lighted. The plots suggest that the triangular relationship s formed from variables 3
and 5

14



arm.) With further exploration another arm (call it U for unbrushed at this point!)
can be seen.

At this stage we can say there are 6 arms extending from the triangular region and
arms CS and OR arise from separate vertices of the triangle. The relative location
of the others can be found by switching off projection pursuit guidance and watching
the data touring, with the features identified, over an extended period of time. The
motion provides a “gestalt” sense of the proximity of points (and hence features). It
is easy to see that arms CC and P extend together from the remaining vertex, and
the short arm SR extends from the same vertex as the arm OR, and that U and CS
extend from the third vertex.

Return to examining the plots in Figure 6. These indicate that each arm is ap-
proximately 1-d. Before making conclusions, solely on these plots, though remember
that these are each 2-d projections of 7-d data meaning there are 5 hidden “back”-
dimensions. Consider some facts about 2-d projections of solid 7-d geometric shapes:
(1) a point (0-d object in IR") always projects to a point, (2) a line (1-d) projects
as line or a point (0-d), (3) a plane (2-d) projects as a plane, line or a point, and
(4) a 3-d subspace projects as a plane, a line or a point. These are solid shapes but
serve the purpose of showing that the arms, as finite samples (including error) from
the geometric shapes, may be higher than 1-d. (For more discussion of projections
of geometric shapes see Furnas and Buja, 1993.) Conclusions may be drawn if all
possible projections are seen. Watching the data in a grand tour for an extended
period of time is an approximation to all possible projections, and provides empirical
information about each arm in the data. Each of the arms appears close to 0- or 1-d
in most views shown by the grand tour suggesting to us that the relationship between
the points in each arm is 1-d. The points in the triangle on the other hand always
appear as approximately a triangle, a line or a point. There are never more than three
obvious vertices visible which excludes higher dimensional shapes from consideration.
So we conclude that these points do indeed lie close to a 2-d triangle in IR".

From a physicist’s perspective the next step is to relate the structure back to the
original variables. As an example of the interpretation we concentrate just on the
points in the base triangle, but note that points in the other regions can be exam-
ined in a similar manner. The points in the triangle are highlighted and examined
in comparison to all the points in the univariate projections along the coordinate
axes (Figure 7). The triangle only has breadth in variables X3 and X5, that is, the
squared invariant mass for a proton and a negative m-meson (u*(p,7~)), and the pro-

ton and a positive m-meson (u?(p, 77)), respectively. The interpretation is that these

observations represent interactions between the particles p, 7=, 7.

3.2 Viewing Functions

In this section we convey our experience with using the projection pursuit guided
tour for gaining intuition about functions defined on projections of p-space. An im-
mediate use is in the comparison of different projection pursuit indices. The second
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example that we show is an illustration of asymptotic results for 2-dimensional pro-
jections, given in Diaconis and Freedman (1984).

3.2.1 Comparing Projection Pursuit Indices

With the first implementation of projection pursuit into the dynamic framework
of the grand tour we included simply the Legendre (Friedman, 1987) and Hermite
(Hall, 1989) indices. Hall’s original motivation for proposing the Hermite index was
based on an asymptotic argument that the Legendre index was shown to be overly
susceptible to outliers. We didn’t observe this, in practice, but rather we noticed
that the Hermite index has a tendency to uncover projections of the data that have
a “hole” in the center, which is quite a useful feature. The Legendre index also does
this but to a lesser extent and seems more attracted to skewness. Differences such
as these can be detected quickly by eye and used to direct further analytical work
(Cook et al., 1993a).

3.2.2 Illustrative Intuition of Fundamental Concepts

In analyzing multivariate data fundamental to the use of projections are theories as
to the nature of projections from high dimensions down to low dimensions. For pro-
jection pursuit one fundamental underpinning is that for many high dimensional data
sets most low dimensional projections look approximately Gaussian (*). So to find
the revealing, unusual projections one should search for the least Gaussian-looking
projections. This is the premise on which many projection pursuit indices have been
based (see Section 1). We argue that this should not be the only premise on which
indices should be based and follow with an example (Figure 9) illustrating this. Nev-
ertheless the premise is a good starting point and worth illustrating graphically as
well as numerically.

Diaconis and Freedman (1984) formalized the basis on which the premise (*) is rea-
sonable. We show an example which illustrates (*) on a sequence of data which con-
forms to Diaconis and Freedman’s constraints. A multivariate data set is constructed
by placing a point on each vertex of a cube. Three such data sets are created: one
3-d, one 5-d and one 9-d (n grows at the rate 27). Fach data set is viewed in a tour:
a segment displaying the sequence of index values is shown in Figure 8 (top plot:
3-d cube; middle plot: 5-d cube; bottom plot: 9-d cube). The plotted index is the
Natural Hermite (0), index which is theoretically minimized by a Gaussian density.
When the dimension is 3 almost every projection (a sample of these is shown in the
bitmaps below the index plot) is revealing, but when the dimension is 9 almost every
projection is not revealing in the sense of being close to Gaussian: the index plot is
much flatter and close to the minimum value that would be obtained for a similar
sample from a Gaussian distribution. As an aside it is interesting to note that visually
the data set is clearly not Gaussian because it is far too regular, the points always
lie in gridded, angular patterns. Nevertheless the most revealing projections are the
ones that expose the method of construction which in this case are the projections
along the marginal axes showing points on the vertices of a square (= 2-d cube).
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Figure 8: [lustration of Diaconis and Freedman’s (1984) result: data generated by
placing a point on each vertex of a 3-dimensional (top), 5-dimensional (middle) and
9-dimensional (bottom) cube.
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Figure 9: Projection pursuit guided tour with Natural Hermite Index, order 0, on a
sample from the multivariate Cauchy distribution, 8 points from 3-dimensional (top),
32 points from 5-dimensional (middle) and 512 points from 9-dimensional (bottom).
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And projection pursuit using an index minimized by a Gaussian density serves the
purpose of finding these revealing projections, amongst an increasing proportion of
near-Gaussian views as p increases.

An example where one of Diaconis and Freedman’s restrictions (the vectors’ length
being proportional to p) is violated can be found by taking samples from a multivari-
ate Cauchy distribution. Figure 9 shows segments of a tour displaying the Natural
Hermite (0) index on a sample of size 8 from a 3-d cauchy, 32 from a 5-d Cauchy and
512 from a 9-d Cauchy. In this case there is no flattening out of the index function
as p increases. Projection pursuit with an index sensitive to non-normality does not
assist in determining the nature of this multivariate data set.

4 Discussion

In this paper we have introduced exploring high dimensional data using the pro-
jection pursuit guided tour. The work is motivated by the desire to understand high
dimensional relationships in data and builds on graphical methods that have been
developed in recent years. We have used XGobi as a development platform for the
new tools. Although developing code in C is more cumbersome than using S (Becker
et al., 1988) or Lispstat (Tierney, 1991), for example, the computational efficiency
allows more flexibility for implementing computationally intensive methods such as
those that we have examined. In the Examples section, we have liberally used many
of the other tools available in XGobi, thus illustrating the symbiotic nature of these
tools for exploring data.

The implementation in XGobi uses exclusively 2-d projection pursuit indices. These
are desirable for finding fully 2-d relationships, for example a 2-d spiral amidst noise
directions. Extensions to 1-d and 3-d indices and grand tours would prove useful
for finding structures of these dimensions. We have restricted ourselves to smooth,
differentiable projection pursuit indices, but many others exist which are not smooth
although they seem useful. For example, the fractal index (Cabrera and Cook, 1992)
shows particular promise in detecting structure lying on low dimensional non-linear
manifolds. The simple-minded use of derivative-based optimization precludes the
inclusion of such an interesting index, because derivatives of the fractal index are
not available. Some excellent work to improve this situation has been done by Posse
(1993) who proposes an efficient optimization algorithm for 2-d projection pursuit
indices, based on the algorithm for 1-d indices given in Huber (1990), which does
not require derivatives. In his paper is also a very promising index based on the chi-
squared distance of the observed bivariate data density and the expected bivariate
normal density. This index requires derivative-free optimization also. FEach of these
considerations would greatly enhance the current implementation.
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