|

JACOBS
UNIVERSITY

Visualizing High-density Clusters

in Multidimensional Data
Tran Van Long

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

Approved, Thesis Committee:

Prof. Dr. Lars Linsen (supervisor)
Prof. Dr. Adalbert F. X. Wilhelm
Prof. Dr. Daniel Keim

Date of Defense: December 11, 2009

School of Engineering and Science

To my parents

Abstract

The analysis of multidimensional multivariate data has been studied in various re-
search areas for many years. The goal of the analysis is to gain insight into the
specific properties of the data by scrutinizing the distribution of the records at large
and finding clusters of records that exhibit correlations among the dimensions or
variables. As large data sets become ubiquitous but the screen space for display-
ing is limited, the size of the data sets exceeds the number of pixels on the screen.
Hence, we cannot display all data values simultaneously. Another problem occurs
when the number of dimensions exceeds three dimensions. Displaying such data
sets in two or three dimensions, which is the usual limitation of the displaying tools,
becomes a challenge.

To overcome these two limitations, this dissertation proposes a framework that
can help analyzers to understand the distribution of multidimensional multivariate
data sets. It supports discovering clusters, patterns, outliers, and relationships.

The main approach consists of two major steps: clustering and visualizing. In
the clustering step, we examine the structure of the multidimensional multivariate
data sets by their density distributions. Based on the density distribution of a data
set, we propose two clustering algorithms to construct hierarchical density clusters.
In the visualizing step, we propose two methods to visually analyze the hierarchical
density clusters. An optimized star coordinates approach is used to project high-
dimensional data into the (two- or three-dimensional) visual space, in which the leaf
clusters of hierarchical density clusters (well-separated in the original data space)
are projected into visual space with minimizing the overlapping. Each cluster is
displayed by an enclosing contour or surface. The second method, we developed to
visualize the hierarchical density cluster tree, combines several information visual-
ization techniques in linked and embedded displays: radial layout for hierarchical
structures, linked parallel coordinates, and embedded circular parallel coordinates.

By combining cluster analysis with star coordinates or parallel coordinates, we
extend these visualization techniques to cluster visualizations. We display clusters
instead of data points. The advantage of this combination is scalability with both
the size and dimensions of data set.

Acknowledgements

[want to express my thank to all people who supported me during three years while
I have been working on my thesis studying.

First of all, I want to give my most grateful to Professor Dr. Lars Linsen who
creates favorable conditions for studying at Jacobs University, Bremen, Germany.
I would like to thank him, my advisor, for his fruitful scientific guidance, useful
discussions, comments, and suggestions.

[am grateful to my colleages Sherin Al-Shbat, Steffen Hauth, Tetyana Ivanovska,
and Paul Rosenthal for creating a pleasant working atmosphere. Special thanks
go to Paul Rosenthal for his cooperation in visualization contest 2008 and useful
discussions.

I am also thankful to my friends Tran Manh Ha, Tran Que Tien, Tran Hong
Minh at Jacobs University Bremen, and Dang Duc Hanh, Huynh Anh Huy, Nguyen
Manh Thang at University Bremen, who make my life more fun and less boring.

Finally, T would like to express my gratefullness to my wife for her love and
patience.

Tran Van Long
Bremen, October 2009

Contents

1 Introduction

1.1 Data visualization
1.2 Multidimensional data visualization
1.3 Goals
1.4 Overview e

1.4.1 Construction of hierarchical density clusters

1.4.2 Visualization of hierarchical density clusters
1.5 Contributions
1.6 Structure

2 Related work
2.1 Information visualization
2.1.1 Concepts and terminology
2.1.2 Visualization techniques
2.1.3 Star coordinates
2.1.4 Parallel coordinateso
2.2 Cluster analysis
2.2.1 Hierarchical clustering
2.2.2 Hierarchical density clusters
2.3 Visualization of hierarchical clustering results
2.3.1 Visualizing hierarchical structures
2.3.2 Visualizing hierarchical density clusters

3 Hierarchical density clusters
3.1 Nonparametric density estimation
3.1.1 Nonparametric estimation criteria
3.1.2 Multivariate histogram density estimation
3.1.3 Multivariate kernel density estimation
3.2 Hierarchical density clusters
3.2.1 Hierarchical density clusters using histograms
3.2.2 Hierarchical density clusters using kernels
3.2.3 Discussions and comparisons

4 Nested level set visualization of hierarchical density clusters
4.1 Optimized star coordinates
4.2 Cluster enclosure

11
11
11
12
16
19
23
24
28
30
30
31

1

CONTENTS

6

4.2.1 Euclidean minimum spanning tree 60

4.2.2 Density field functionso L 61

4.2.3 Enclosing point clouds oo L 63
4.3 Results and discussions 65
Interactive visual exploration of hierarchical density clusters 75
5.1 Radial layout of density cluster hierarchy 75
5.2 Linked views with parallel coordinates 78
5.3 Integrating circular parallel coordinates 83
5.4 Casestudy 86
Conclusion and future work 95

References 99

Chapter 1

Introduction

The large amount of information available today bears an enormous potential. Thus,
it gets more and more important to find ways to determine and present sets of
data, which are relevant for a specific task. Card et al. [CMS99] give the following
definition:

Information visualization is the use of computer-supported, interactive, visual
representations of abstract data to amplify cognition.

Information visualization deals with the general problem of representing abstract
data. The goal of presentations is to help users understanding the data. The data is
transformed into an image, it is mapped to screen space. The image can be changed
by users as they proceed working with it. This interaction is important as it allows
for constant redefinition of goals when new insight into the data has been gained.

1.1 Data visualization

Data visualization differs little from information visualization. The data in data
visualization does not consist of abstract information, it is usually a real world situ-
ation. Data visualization is the process of using graphical presentation to represent
complex data in a way that provides the viewer with a qualitative understanding of
its information contents, turning complicated sets of data into visual insights.

Data visualization solutions bring clarity to numerical data through visual rep-
resentation helping to reveal insights and trends that might otherwise be unnoticed.
The challenge is to find a suitable visualization technique to give more insight into
the data. The major goals of data visualization are presentation, confirmative anal-
ysis, and explorative analysis [Kei97].

Presentation If everything is known about the data, the first important data vi-
sualization goal is to present the data. In this case, data visualization serves
for communication of the results. For example, Figure 1.1 shows the terrible
fate of Napoleon’s army in Russia [Tuf83|. Beginning at left, the thick tan
flow-line shows the size of the Grand Army. The width of this band indicates
the size of the army at each place on the map. The path of Napoleon’s retreat
from Moscow is depicted by the darker, lower band. This figure display sev-
eral variables: the size of the army, its location on a two-dimensional surface,

2 1.1 Data visualization

direction of the army’s movement, and temperature on various dates during
the retreat from Moscow.

Carte Fguralive. se cersions i o 20 0T
: | Mimered, daouire €

Napoleon's March to Moscow The War of 1812

S
"

Figure 1.1: Minard’s map of Napoleon’s Russian campaign.

Exploration analysis Data visualization can be used to create hypotheses. Typi-
cally, we know a prior very little about the data. In this case, data visualization
helps searching for structures, trends, and outliers. For example, Figure 1.2
is plotted by Snow [Tuf83] that shows the locations of death from cholera in
central London on September 1854. Deaths were marked by dots. Examining
the scatter over the surface of the map, Snow observed that cholera occurred
almost entirely among those who lived near the Broad Street water pump.
Exploratory data analysis [NIS03] is an approach/philosophy for data analysis
that employs a variety of techniques (mostly graphical) to

e maximize insight into a data set,
e uncover underlying structure,
e extract important variables,
e detect outliers and anomalies,
e test underlying assumptions,
e develop parsimonious models, and
e determine optimal factor settings.
Confirmative analysis If there are hypotheses about the data, data visualization

can be used for examination. The goal is to verify or to disprove these hy-
potheses. This also includes quality control of simulations and measurements.

1. Introduction 3

Yards
L¥i] o g o (Lt roa
s H i 1 J

X Pump o Deaths from chalera

Figure 1.2: A map of cholera deaths in London, 1840.

1.2 Multidimensional data visualization

Multidimensional multivariate visualization is an important subfield of data visual-
ization that focuses on multidimensional multivariate data sets. Multidimensional
multivariate data can be defined as a set of observations X, where the ith element
x; consists of a vector with m variables, z; = (x;1,...,2Zu,). Each variable may be
independent or dependent on one or more other variables. Independent variables
are referred to multidimensional variables and dependent variables are referred to
multivariate [WB97].

Visual exploration of multidimensional multivariate data is of great interest in
both statistics and information visualization. It helps the user to find trends, pat-
terns, outliers, and relationships among variables. When visualizing multidimen-
sional multivariate data, each variable may map to some graphical entity or at-
tribute. According to the different ways of dimensionality manipulation, we can
broadly categorize the display techniques as:

e Axis reconfiguration techniques map directly each multidimensional data point
to a glyph, such as parallel coordinates [Ins85, Weg90] and glyphs [And72,

4 1.2 Multidimensional data visualization

CheT3].

e Dimensional embedding techniques present subspace of multidimensional data
space in a hierarchical fashion, such as dimensional stacking [LWW90] and
worlds within worlds [FB90].

e Dimensional subsetting techniques map the attributes to Cartesian coordi-
nates, such as scatterplot matrix [Cle93], hyperslide [vWvL93] and hyper-
box [ACI1].

e Dimensional reduction techniques map multidimensional data into a space of
lower dimensions with preserving relationships of the multidimensional data,
such as multidimensional scaling [BGO05], principal component analysis [Jol86],
and self-organizing maps [Koh95].

The most common visualization techniques to present multidimensional data
are the scatterplot matrix and parallel coordinates. We present these visualization
techniques with a well known data set, called iris data set. The iris data set contains
150 data points with four attributes: sepal length, sepal width, petal length, and
petal width. The iris data set consists of 50 observations from each of three species
of iris flowers: iris setosa, iris virginica, and iris versicolor. Figure 1.3 shows this
data set with a scatterplot matrix and Figure 1.4 shows this data set with parallel
coordinates. In both scatterplot matrix and parallel coordinates, we can identify
group setosa well separated from the two other groups. The two groups virginica
and versicolor are highly mixed with two attributes: sepal length and sepal width
and less mixed with the two other attributes: petal length and petal width. The
group virginica has larger values for the attributes petal length and petal width than
the group versicolor.

. - X : o~

it ¥ ii;i,.'.!", .

Sepal.Length & %oty 7t N L olefo el ¢
“.ga.' A \i‘ o ;’. I

B ..?.' oy,) o e o s o om
s Jote ot 57O o Sepal Width N = . . 2N

3 L Pa— o
Ay et s
%; o oo b gl
o o, o o
;i"" "iﬁ:&.p Petal.Length i.'!!ﬁ:"‘
sdh e .y]ﬂ.rl:‘..- *a.,
e — e
R I SRS A g
N R if{g‘" .::.{
- _.,.._39; R Petal Width
|l gl B

5555555

Figure 1.3: Scatterplot matrix presents the iris data set.

1. Introduction 5)

Iris data set (red-setosa, green-versicolor, blue-virginica)

Sepal Length Sepal Width Petal Length Petsl %

Figure 1.4: Parallel coordinates represent the iris data set.

We also consider a synthetic data set with a few hundreds of data points and
high dimensionality. This data set consists of 480 data points with ten dimensions
and contains 14 clusters. Figure 1.5 shows this data set using a scatterplot matrix.
There are a large number of scatterplots. In each scatterplot, we can only identify
five clusters, some clusters are overlapping. We cannot display 14 clusters with a
scatterplot matrix. Additionally we display this data set with parallel coordinates,
Figure 1.6 shows 14 clusters, but only the middle cluster is obvious. Because of
overplotting in parallel coordinates, it is difficult to see the other clusters.

x1 x2 x3 x4 x5 xb6 x7 xB8 x9 x10

x1

e o » - [- . - -
x2

* ’ * > w4 * » " *
x3

* ¥ I b bl -” * Ld »
x4

® * * s | ¥ - * » *
5 & * * * % & £y O E)
6

- - - - - - - - -
=T

& + * + vk s ® ® 4
%8

® 2 ¥ # vk * 7 ° »
x5

w » * e » | * 3 4 E J
x10

L - * * .| 5 -+ - * bl

Figure 1.5: A synthetic data set is displayed in the scatterplot matrix.

As large data sets become more and more common, it has become clear that
most existing multidimensional multivariate techniques lose their effectiveness when
more than a few hundred or thousand data points are displayed. The reason is that
the available screen space is limited. As a result, the clutter problem becomes a
serious issue in the visualization of large multidimensional multivariate data sets.

6 1.2 Multidimensional data visualization

Figure 1.6: A synthetic data set is displayed in parallel coordinates.

For example, Figure 1.7 shows the parallel coordinates visualization of one of the
most popular data sets: the out5d data set containing 16384 data points with five
dimensions. The data set contains five clusters, but we cannot see any clusters in
this figure.

Figure 1.7: Outbd data set is visualized in parallel coordinates.

Multidimensional data sets are often dealing with huge size and high dimen-
sionality. It is difficult to visualize such data in a single visual space. One major
challenge of multidimensional data visualization is to display intuitive structures of
the data set with all attributes simultaneously, but avoid cluttering, i.e., overlapping.

1. Introduction 7

1.3 Goals

Clustering enables researchers to see overall distribution patterns, identify interest-
ing unusual patterns, and spot potential outliers. Cognition of the clustering results
can be amplified by dynamic queries and interactive visual representation methods.
Understanding of the clustering results is transformed to another important data
mining task - exploratory data analysis. Interactive information visualization tech-
niques enable users to effectively explore clustering results and help them to find
the informative clusters that lead to insights.

Nonparametric density estimations have been successfully applied in exploratory
data analysis for one- and two-dimensional data. For example, it is possible to de-
tect modes by inspection of one- and two-dimensional density estimates. For higher-
dimensional data the difficulties with visualizing density estimates have often hin-
dered the application of nonparametric density estimation. We construct methods
for visualization of multivariate functions, which amplify usefulness of multivariate
density estimates in exploration and mining of multidimensional multivariate data.

When dealing with large data sets with many observations, clustering has proven
to be extremely useful. Clustering is a partition method of a data set into subsets of
similar observations. Each subset is called a cluster, which consists of observations
that are similar within themselves and dissimilar to observations of other clusters.
Cluster analysis tasks for multidimensional data have the goal of finding areas where
the observations group together to form a cluster.

The structure of a data set is reflected by its density function. In this thesis,
we use a definition of the multidimensional multivariate data cluster based on a
multivariate density function. Hartigan [Har75, Har81] defined the concept of a
high density cluster: a high density cluster at level A in a population with density
function p(z) is defined as a maximal connected set of points z with p(x) > A,
where \ is constant and positive. For various levels A, we obtain the collection of
high density clusters T, that has a hierarchical structure: for any two high density
clusters A and B in T, we have A C B or B C A or AN B = (). This hierarchical
structure is summarized by the high density cluster tree of the probability density
function p(x). Leaf nodes of the hierarchical density cluster are corresponding to
clusters that are homogeneous, i.e., contain only one mode, and internal nodes of
the hierarchical density cluster are corresponding to clusters that are heterogeneous,
i.e., contain more than one mode.

The basic goals of this thesis are to:

e present the concept of high density clusters and hierarchical high density clus-
ters,

e develop hierarchical clustering algorithms to construct hierarchical density
clusters for large high dimensional data sets,

e visualize hierarchical density clusters by nested density level sets, and

e build a system that integrates a hierarchical structure visualization with mul-
tidimensional multivariate visualization techniques.

8 1.4 Overview

1.4 Overview

A hierarchical density cluster of a multidimensional multivariate data set reflects the
mode structures of the density function, as the different subtrees of the hierarchical
density cluster correspond to distinct regions that contain distinct modes.

1.4.1 Construction of hierarchical density clusters

A hierarchical density cluster of a given data set is created based on density esti-
mation. The density estimator is computed based on a grid partitioning in multi-
dimensional data space (histogram methods, i.e., the multidimensional data space
is quantized into a finite a number of cells that form a grid structure) or adaptive
intersecting partitioning of the multidimensional data space (kernel methods).

A level set of a density function p(z) at a given density value A is a set {x : p(z) >
A}. The set {z : p(x) > A} can partition into several connected components. The
connected components are clusters at the density value A\. The complex data set is
reduced recursively by increasing level of density values and by clustering the data
set in multidimensional space to form a hierarchical structure. The hierarchical
structure forms a tree, where the root node of the tree is corresponding to the
density value A = 0. The leaf nodes represent homogeneous clusters, i.e., clusters
contain only one mode of the density distribution and the internal nodes represent
heterogeneous clusters, i.e., clusters contain more than one mode of the density
distribution. At each level set, clusters form maximally connected components of
that level of density and clusters are separated by regions of lower level of density.

1.4.2 Visualization of hierarchical density clusters

One of the commonly used methods to cope with high dimensionality is to use low-
dimensional projections. Since human eyes and minds are effective in understanding
one-dimensional data with histogram representations, two-dimensional data with 2D
scatterplot representations, and three-dimensional data with 3D scatterplot repre-
sentations, these representations are often used as a starting point. Users can begin
by understanding the meaning of each dimension and by examining the range and
distribution of the values in the histogram. Users can explore two-dimensional or
three-dimensional relationships by studying 2D or 3D scatterplots. Collections of
2D or 3D projections have been widely used as representations of the original multi-
dimensional data. This is imperfect since some features may be hidden, but at least
users can understand what they are seeing and obtain some insights.

We propose a method to project multidimensional data sets to a 2D or 3D visual
space. The projection method uses an optimized star coordinates layout. The
optimization procedure minimizes the overlap of projected homogeneous clusters
in the hierarchical density clusters. This projection is a linear and contracting
mapping. The star coordinates visualization allows for an interactive analysis of
the distribution of clusters and comprehension of the relations between clusters
and the original dimensions. Clusters in visual space can be displayed by extracting
contours or surfaces enclosing the set of points inside these clusters. The hierarchical

1. Introduction 9

density clusters are visualized by nested sequences of density level sets leading to
a quantitative understanding of information content, patterns, and relationships.
This approach is presented in [LLRRO08, LL0O9b].

Studies on multidimensional data analysis led us to design and implement an
interactive visualization tool called MultiClusterTree [LLR09, LL09%]. MultiClus-
terTree supports interactive exploration of hierarchical density clusters to enable
users to build a good description understanding of the data sets. MultiClusterTree
explores multidimensional data sets by visualizing high density clusters using a ra-
dial layout, providing linked views of the radial cluster tree with parallel coordinates
and an integrated view of the radial cluster tree and circular parallel coordinates.

1.5 Contributions

This thesis addresses the problem of visual analysis of multidimensional multivariate
data. Our approach is based on the analysis of the data’s density distribution. We
describe an interactive exploration system for multidimensional multivariate data
analysis ranging from density computation over an automatic hierarchical density
cluster computation to an optimized projection method into the visual space based
on star coordinates, where clusters of the hierarchical density clusters are rendered
using nested contours or surfaces. We also describe another approach to visualize
the hierarchical density clusters with the concept of a radial layout of the hierar-
chical structure. Based on the radial layout of the hierarchical density clusters, the
clusters can be explored interactively using parallel coordinates when being selected
in the hierarchical density clusters. Furthermore, we integrate circular parallel co-
ordinates into the radial layout of hierarchical density clusters, which allows for an
understanding of both the overall cluster distribution and characteristics of these
clusters.
The individual contributions of this thesis include:

1. Computing hierarchical density clusters in a multidimensional data space,
which ensures that all clusters can be identified and separated.

2. Coupling an automatic multidimensional clustering based on

(a) efficient grid computation, or
(b) efficient intersecting partitioning
of the multidimensional space with the concept of the hierarchical density clus-

ters, which leads to an automatic computation of multidimensional hierarchical
density clusters without manual adjusting of level set thresholds.

3. Projection of hierarchical density clusters into visual space with an optimized
star coordinates layout such that

(a) the overlap of clusters well separated in multidimensional data space is
minimized, and

10 1.6 Structure

(b) the shape, compactness, and distribution of clusters are maintained as
much as possible.

4. Visualizing hierarchical density clusters as nested bounding contours in a star
coordinates layout, which

(a) shows the distribution of all clusters, and

(b) allows to correlate the clusters to the original dimensions.

5. Visualizing hierarchical density clusters based on a 2D radial layout with an
automatic color coding.

6. Linking the hierarchical density clusters visualization to other views including
parallel coordinates where interaction mechanisms operate on cluster nodes
and for correspondence. The simultaneous display of selected clusters in par-
allel coordinates allows for a comparison of clusters with respect to the given
dimensions.

7. Integrating circular parallel coordinates into the hierarchical density cluster
visualization, also supporting a focus + context technique. This integrated
view allows for an understanding of the entire data set without overplotting,
such that both the individual clusters with respect to the given dimensions
and the overall cluster distribution are easily comprehensible.

1.6 Structure

This thesis is organized as follows. Chapter 2 covers related work in multidimen-
sional multivariate visualization techniques, hierarchical density clustering, and vi-
sualizing hierarchical density clusters. Chapter 3 introduces two algorithms to create
hierarchical density clusters. First, hierarchical density clusters are created in a top-
down approach based on histogram density estimation. Second, hierarchical density
clusters are created with a bottom-up approach based on kernel density estimation.
Chapter 4 presents a method visualizing hierarchical density cluster based on op-
timized star coordinates and clusters wrapping by contours or surfaces. Chapter 5
proposes a radial layout method for the hierarchical density clusters, linked views
with parallel coordinates, and integration with circular parallel coordinates. This
dissertation concludes with possible future works and contributions in Chapter 6.

Chapter 2

Related work

In this chapter, we provide a broad overview of work related to with this dissertation.
We discuss information visualization techniques, cluster analysis, and visualizing hi-
erarchical clustering. In particular, the concepts of star coordinates and parallel
coordinates are discussed in the subsection on information visualization. The con-
cept of hierarchical clustering is discussed in the subsection on cluster analysis and
data visualization techniques for visualizing hierarchical structures are discussed in
the subsection on visualizing hierarchical clustering.

2.1 Information visualization

As technology progresses, the amount of data increases rapidly. Data become ubiqui-
tous on modern lives and works. Several sources of data include biotechnology about
human genomes, financial about stock markets, information consumers, image anal-
ysis, and engineering (multidimensional data sets are generated by measurements
and/or simulations). This is going to cover the whole research in modern science
and is a true challenge for data analysis. Most of the data contains valuable and
useful information. How can one extract the valuable information hidden in the
data?

Human beings look for structures, trends, anomalies, and relationship in the
data. Visualization supports this by representing the data in various forms of dif-
ferent kinds of interactions. A visualization can provide a qualitative overview of
large complex data sets, can summarize data sets, and can assist in identifying re-
gions of interest and appropriate parameters for more focused quantitative analysis
[FGWO02]. The idea is to combine cognition and perception with the computational
power of computers.

2.1.1 Concepts and terminology

Multidimensional data is encountered in various kinds of analysis and data comes
in many formats; for convenience, the data needs to be transformed into abstracted
relations. We consider it as being given in a form of a usual data matrix, i.e., a

12 2.1 Information visualization

rectangular array of real values with n rows and m columns

11 T12 ... Tim
To1 T22 ... X9

X = o,
Tnl Tp2 -. Tpm

where n is the size of the data set, m is the number of attributes, and x;; is a real
value.

Rows represent different observations or records and columns represent different
dimensions or attributes. For example, in gene expression data the ith row represents
a gene and the jth column represents an experiment condition, and entry element
x;; is a real value representing the gene expression level of the ith gene under the
jth condition. We consider n records as n independent observations from a random
vector in m-dimensional space X = (X,..., X,,).

An item of the data is composed of variables. When such a data item is defined
by more than one variable it is called a multivariable data item. Variables are
frequently classified into two categories: dependent and independent. Statisticians
use the term “response” for dependent variables and “predictor” for independent
variables.

In mathematics, a function is defined as a relation between two terms called
variables. If every value of x is associated with exactly one value of y, then y is said
to be a function of x. The variable x is called the independent variable, and the
variable y is called the dependent variable because its value depends on the value of
x.

In many data mining data sets, it is unknown whether a particular variable or
attribute or feature is dependent or independent of any other attributes. The depen-
dent variable is called variate, and data containing more than one variate is called
multivariate. The independent variable is called dimension, and data containing
more than one dimension is called multidimensional. The more appropriate term is
“multidimensional multivariate” in the field of information visualizations [WB97].

2.1.2 Visualization techniques

A classification of visualization techniques is not straightforward. Some techniques
are combining several ideas and others are very specific to a certain application. In
this subsection, we describe three taxonomies of visualization techniques. We look
at an overview on taxonomies by Wong and Bergeron [WB97], Card et al. [CMS99],
and we discuss more about visualization techniques through the taxonomy by Keim
[Kei02].

Taxonomy of visualization techniques by Wong and Bergeron

Wong and Bergeron [WB97] classified multidimensional multivariate visualization
techniques based on bivariate displays, multivariate displays, and animations.

Techniques based on bivariate displays include the fundamental bivariate dis-
plays and simultaneous views of bivariate displays. One of the most popular

2. Related work 13

multidimensional multivariate visualization techniques is the scatterplot ma-
trix which presents all combination pairs of all dimensions and organizing them
by a matrix [Cle93]. In a scatterplot matrix, every variate is treated identi-

cally. The idea of pairwise adjacencies of variables is also a basis for the hy-
perbox [AC91], the hierarchical axis [MGTS90], and the hyperslide [vWvL93].

Multivariate displays are the basis for many recently developed multidimen-
sional multivariate visualization techniques, most of which use colorful graph-
ics created by high-speed graphics computations. These techniques can broadly
be categorized into five sub-groups:

Brushing allows direct manipulation of a multidimensional multivariate
visualization display. This technique is described for scatterplot matri-
ces [Cle93].

Panel matriz involves pairwise two-dimensional plots of adjacent variates.
These techniques include hyperslide [vWvL93] and hyperbox [AC91].

Iconography uses variates to determine values of parameters of small
graphical objects. The mappings of data values to graphical parameters
are usually chosen to generate texture patterns that hopefully bring in-
sight into the data. Some icongraphic techniques are Chernoff face [Che73|
stick figure icon [PG88], autoglyph [Bed90], and color icon [Lev91].

Hierarchical displays map a subset of variates into different hierarchical
levels of the display. Hierarchical axis [MGTS90|, dimensional stack-
ing [LWW90], and world within world [LWW90] visualization techniques
belong to this group.

Non-Cartesian displays map data into non-Cartesian axes. They include
parallel coordinates [Ins85, ID90, Weg90] and visdb [KK94].

Animation is a powerful method for visualizing multidimensional multivariate sci-
entific data. Various movie animation techniques on multidimensional multi-
variate data, and a scalar visualization animation model is presented. The
most popular animation technique is the grand tour technique, in which mul-
tidimensional multivariate data is projected into two dimensional planes.

Taxonomy of visualization techniques by Card et al.

Card et al. [CMS99] introduced four ways to encode abstract data, a common oc-
currence in information visualization:

1D, 2D,

3D refers to orthogonal visualization that encodes information by posi-

tioning marks on orthogonal axes.

Multiple dimensions refer to the harder problem of multidimensional visualiza-
tion where the data has so many variables that an orthogonal visual structure
is not sufficient. Typical tasks that must be supported by such environments
involve getting knowledge from the data, like finding patterns, relationships,

14 2.1 Information visualization

clusters, gaps, and outliers, or finding specific items using interaction, such as
zooming, filtering, and selection.

Trees refer to using connection and enclosure to encode relationships among cases.

Networks refer to using connections to encode relationships among cases.

Taxonomy of visualization techniques by Keim

Keim [Kei02] classifies information visualization techniques by their basic visualiza-
tion principle: geometric projection, iconographic, pixel-oriented, hierarchies, graph-

based and hybrid.

Geometric projection techniques support users in the task of finding information
projections of multidimensional multivariate data. In this way, a high number
of dimensions can be visualized. Typical examples here are star coordinates
and parallel coordinates, which are discussed in detail later in this chapter,
and techniques included in the following Table 2.1:

Category Visualization technique | References

Scatterplot matrices [Cle93]

Andrews’ plots [And72]

Projection pursuit [FT74, Hub85]

Parallel coordinates [Ins85, ID90, Weg90]
Geometric projection | Prosection views [FB94]

Landscapes [Wri95]

Hyperslice [vWvL93|

Radviz [HGM*97]

[

Star coordinates

Table 2.1: Geometric projection techniques of visualization techniques.

Iconographic display techniques map each multidimensional data item to an icon
(or glyph) whose visual features vary depending on the data values. The
number of displayable dimensions is not limited with this approach.

Category Visualization technique | References
Stick figures [Pic70, PGS8S|
Iconographic | Chenoff faces Che73, Tuf83]

[
Shape coding [Bed90]
Color icons [Leval]

Table 2.2: Iconographic techniques of visualization techniques.

However, they are not used very often for high-dimensional data sets, since a
quick information exploration is problematic. The iconographical techniques
are given in the Table 2.2.

2. Related work 15

Pixel-oriented In pixel-based techniques, a pixel is used to represent data values.
Pixels are grouped according to the dimension, the item it belongs to, and
are arranged on the screen appropriate to different purposes. In general, one
pixel is used per data value, so the number of displayable values is rather
high. The techniques are further categorized as “query independent” or “query
dependent”. In the query independent techniques, the arrangement of the
pixels in the subwindows is fixed, independently of the data values themselves.
In the query dependent techniques, a query item is provided and distances from
the data values to the given query value are computed using some metrics.
The mapping of colors to pixels is based on the computed distances for each
attribute and pixels in each subwindow are arranged according to their overall
distances to the query data item. The Table 2.3 shows the pixel-oriented

techniques.
Category Visualization technique References
Circle segment [AKK96]
Pixel-oriented | Spiral and axes techniques | [KK94]
Recursive pattern [KKA95]

Table 2.3: Pixel-oriented techniques of visualization techniques.

Hzierarchical techniques subdivide the m-dimensional data space and represent

subspaces in a hierarchical fashion. The hierarchical techniques are shown in
the Table 2.4.

Category Visualization technique References
Dimensional stacking [LWW90]
Worlds within worlds (n-vision) | [FB90]

Hierarchies | Conetrees [RMC91]
Treemap [Shn92, Joh93]
Infocube [RGI3]

Table 2.4: Hierarchical techniques of visualization techniques.

Graph-based techniques visualize large graphs using specific layout algorithms,
query languages, and abstraction techniques to convey their meaning clearly
and quickly. The graph-based techniques are given in the Table 2.5.

Category Visualization technique | References
Graph-based | Hiernet [EW93]
Narcissus [HDWB95]

Table 2.5: Graph-based techniques of visualization techniques.

16 2.1 Information visualization

2.1.3 Star coordinates

The method of star coordinates was introduced by Kadogan [Kan00, KanO1]. In
star coordinates, each dimension is represented as a vector radiating from the center
of a unit circle in a two-dimensional plane. Initially, all axes have the same length
and are uniformly placed on the circle. Data points are scaled to the length of the
axes, with the minimum being mapped to the origin and the maximum to the other
end of the axes on the unit circle.

DB DB

D7

Figure 2.1: Calculation of data point location for an eight-dimensional data set.

In mathematics, the Cartesian coordinate system is used to determine each point
uniquely in a plane through two numbers, usually called the z-coordinate and the
y-coordinate. A point P = (x,y) in the plane can be represented by a vector

P =0 + zi + yj,

where i = (1,0),j = (0, 1) are the two basis vectors of the Cartesian coordinates and
O = (0,0) is the origin.

A multidimensional point is represented in a plane similar to the Cartesian co-
ordinates. The 2D star coordinates system is used for representing a point in m
dimensions including m vectors in a plane

V={v1,...,um}

271 271
Here v; = (vig,viy) = (cos—7sin— is representing the ith dimension, i =
m m
1,...,m, and the origin is O = (O,,0,). A mapping of a point (p1,...,pm) to a
point P = (P,, P,) in two-dimensional Cartesian coordinates is determined by the
sum of basic vectors v; = (vjs, vsy) on each axis multiplied by the value of the point.
More precisely, the formula is given by:

P=0+ f:pﬂ)i,
i=1

2. Related work 17

or
Px - O:c + sz‘viz,
i=1
Py = Oy + Zpﬂ)iy.
i=1
In Figure 2.1, the star coordinates system has eight axes Dy, ..., Dg represent the

eight dimensions. These axes represent for basic vectors of the Cartesian coordinates

that evenly placed on a unit disk. The point P in the two-dimensional space is on

representation of the point in eight dimensions (pi,...,ps). We can also explain
m

geometrically how to find the point P = O + > p;v;: we start at the origin O of a

circle, moving along the axis Dy with length plz, (lzontinue moving parallel to the axis

Dy with length py, and so on. The end point of this process is the point P.

All coordinates systems are given by an origin and some vectors. Typically, the
vectors are linearly independent, e.g., Cartesian coordinates, and a point is uniquely
represented. In the star coordinates system, the vectors are linearly dependent, and
the representation of a point is not unique.

In general, the mapping from multidimensional space into a low-dimensional
space is not unique. Only with an aid of interactive dynamic transformations such
as rotations and translations one can make sense of the data representation. Star
coordinates basically attempts to extend this idea to higher dimensions. Clusters,
trends, and outliers in a data set are preserved in the projected multidimensional
data visualization and interactions help to confirm this. Traditional star coordinates
originally included rotation and scaling [Kan00] and Kandogan later extends it to
include range selection, marking, histograms, footprints, and sticks [Kan01].

Artero and Oliveira introduced Viz3D that projects multidimensional data into
a 3D display space [AdO04]. Similar to star coordinates, the basic system of Viz3D
is obtained from the basic system of star coordinates by adding 1 to the third
coordinates, that means the basic system of Viz3D is given by:

2w . 2m .
v;=(cos—,sin— 1),e=1,...,m
m m

and the mapping from multidimensional data space into a 3D visual space is formu-
lated as:

(1 211
+m E pcosm

1 . 2m

Py :Oy—f—E E piSIHF

\ =1

Artero et al. [AdOLO06] introduced axes arrangement for exhibition that keeps highly
similar attributes close together, which may be achieved by computing information
on the attributes similarity from the data set.

18 2.1 Information visualization

Coorprider and Burton [CB07] proposed an extension of star coordinates into
three dimensions. The authors add a third dimension to traditional star coordi-
nates, which allows for interaction in the third dimension, but it maintains the
two-dimensional display. Three-dimensional star coordinates extend the traditional
two-dimensional star coordinates in several ways:

e Stars distribute in a volume instead of a plane, giving users more space to
exploit.

e Depth cues allow users to include more meaningful variables simultaneously
in an analysis.

e Transformations are extended to three dimensions.
e System rotation is introduced as a powerful new transformation.

Shaik and Yeasin [SY06] presented an algorithm for an automated way of finding
the best configuration when high-dimensional data points are projected into a 3D
visual space. The best configuration of star coordinates is found among some random
star coordinates configurations based on self-organizing maps clustering algorithm
in visual space to measure quality of the star coordinates display. Shaik and Yeasin
[SY07] proposed another algorithm for automatically finding the best configuration
of star coordinates based on the minimization of a multidimensional scaling object
function (stress function).

Chen and Liu [CL04] introduced VISTA mappings. The VISTA maps multidi-
mensional data points into 2D visual space while providing the convenience of visual
parameter adjustment:

C m
P, = Ox+—§ i cos 0;,
mi:lp

¢ i
P,= O,+ o Z;p,-a,- sin 6;.

where o = (v, ...,) are the dimension adjustment parameters in [—1, 1], angles

2
0 = (0y,...,0,) are set to 0, = il initially and can be adjusted, and ¢ is the

scaling of the radius of the diSplaTyn area. VISTA is an extension of traditional
star coordinates that allows for more interactive exploration of multidimensional
data. Also, Toeh and Ma [TMO03] introduce starclass that allows interactive star
coordinates for visual classification.

Sun et al. [STTXO08] introduced advanced star coordinates that use the diameter
instead of the radius as the dimensions, axis, such that data points in multidimen-
sional space are mapped into visual space preserving attribute values with orthogonal
distance from the visual point to the diameter. The diameters configuration strategy
is based on correlations. The advanced star coordinates visualizes the clusters and
structure of multidimensional data.

2. Related work 19

Dhillon et al. [DMS98, DMS02] proposed a method for projecting multidimen-
sional data based on class-preserving projection. The authors presented an algo-
rithm for finding the best two-dimensional plane that preserves inter-class distances.
The mapping is a linear dimension reduction method, in which an optimized two-
dimensional subspace is selected maintaining the distance between means of classes.
In their paper, the authors did not discuss the relation with star coordinates.

2.1.4 Parallel coordinates

Parallel coordinates is one of the most popular visualization techniques for multidi-
mensional multivariate data sets. Parallel coordinates are introduced by Inselberg
[Ins85] and are developed for visualizing multidimensional geometry [ID90]. Par-
allel coordinates are based on a system of parallel coordinates, which includes a
non-projective mapping between multidimensional and two-dimensional sets.

Parallel coordinates On the plane with Cartesian coordinates, and starting on
the y-axis, m copies of the real line, labeled X7, X», ..., X,,, are placed equidistant
and perpendicular to the z-axis. Typically, the X; axe perpendicular to the z-
axis lies at positions ¢ — 1, for ¢« = 1,...,m. They are the axes of the parallel
coordinates system for the Euclidean m-dimensional space R™ all having the same
positive orientation as the y-axis. A point P = (p1,...,pmn) is represented by the

polygonal line whose m vertices are at (i — 1, p;) on the X; axes for i = 1,...,m, see
Figure 2.2. In effect, a one-to-one correspondence between points in R™ and planar
polygonal lines with vertices on X, ..., X,, is established.

A b

H1
pm

Figure 2.2: A polygonal line P represents a point P = (py,. .., pm).

20 2.1 Information visualization

F y Fy Fy xz
¢ 0
0 AN X 0 \ x
X4 Xz

Figure 2.3: The dual line and point in parallel coordinates.

T

La jl

T
AL X2 A x4 =5 Zli =7 L] 2] pATH

Figure 2.4: Parallel coordinates display an interval of a line in R!°.

The fundamental duality We consider the X; X5 parallel coordinates as well as
the Ox1xy Cartesian coordinates that are shown in Figure 2.3. In the Cartesian
coordinates Oxyx9, we draw a line (1) that is described by the following equation:

(l): x9=max; +0.

Each point (z1, 25 = mz; + b) lying on the line (/) in the Cartesian coordinates is
displayed by a segment line with endpoints (0, z1) and (1,29 = mxy + b) in parallel
coordinates. Hence the points on (1) which are represented in parallel coordinates
form an infinite family of lines. If m # 1, the family of lines has a common point:

- 1 b
0 (Lt
1—-m1-m
The point () in parallel coordinates represents the line (1) in Cartesian coordinates.
In the case m = 1, the family of lines has a common point at infinity with direction

2. Related work 21

(1,b).

Each point in two-dimensional Cartesian coordinates is represented by a line
in parallel coordinates and each point in parallel coordinates, which can be under-
stood as a family of lines that intersect at this point, represents a line in Cartesian
coordinates. This property is called a duality between line and point.

Multidimensional lines A line (/) in R™ can be described by m — 1 linearly
independent equations of the form:

(l) xiH:mixi—l—bi,i:l,...,m—l.

The line () is represented in parallel coordinates by m — 1 indexed points in the
X;X,.1 parallel coordinates. In Figure 2.4 the points [correspond to adjacent vari-
ables.

In the remaining of this subsection, we describe some applications of parallel
coordinates for exploration data analysis.

Parallel coordinates in data analysis Wegman [Weg90] introduced a method
to analyze data using parallel coordinates. In his paper, the author proposed two
methods called density plots and color histograms. For density plots, the algorithm is
based on Scott’s notion of the Average Shifted Histogram (ASH) to visualize density
plots with parallel coordinates. The author used contours to represent the two-
dimensional density. Parallel coordinates density plots have the advantage of being
graphical representations of data that are simultaneously high-dimensional and very
large. In color histograms, the idea is to code the magnitude of an observation along
a given axis by a color bin. The diagram is drawn by choosing an axis, and sorting
the observations in ascending order. The author also introduced a permutation
algorithm of the axes for pairwise comparisons.

Multiresolution view with parallel coordinates Fua et al. [FWR99] devel-
oped a multiresolutional view of the data via hierarchical clustering and use a vari-
ation on parallel coordinates to convey aggregation information for the results.

Novotny and Hauser [Nh06] introduced focus + context visualization in parallel
coordinates. Each pair of adjacent axes representing a pair of dimensions, in a two-
dimensional subspace is divided into b x b bins, which create a frequency-based and
output-oriented representation of the original data.

Artero et al. [AdOLO04] developed frequency and density-based visualizations.
The basic idea of the algorithm is to create two-dimensional frequency histograms
for each pair of adjacent attributes in parallel coordinates. A two-dimensional region
between a pair of adjacent axes in parallel coordinates is divided into w x h bins,
where w is the number of horizontal bins and A is the number of vertical bins.
The value of frequency is stored in matrix F' = (Fj;)yxn. For each data point in
multidimensional data sets, a line segment is drawn with the Bresenham algorithm,
if the line segment goes through the (7, j)th bin, they add 1 to the value of Fj;. For
the density plot, matrix frequencies F' = (Fj;)uxs are linearing scaled into [0, 255].
For the frequency plot, they used a 3 x 3 averaging filter applied to the Fyy g matrix.

22 2.1 Information visualization

Johansson et al. [JLJC05, JLJC06] introduced a high-precision texture that can
be used to reveal different types of cluster information. This visualization method
can be used to analyze exclusive, overlapping, and hierarchical clusters. For dis-
playing clusters in parallel coordinates, the authors used a transfer function on the
intensity value which allows non-linear as well as user-defined mappings.

Generalization of parallel coordinates Perhaps the earliest multidimensional
data visualization was introduced by Andrews [And72], in which each multidimen-
sional data point © = (xy,...,2,,) is represented by a function of the form
fo(t) = % + xosin(t) + wgcos(t) + ...+

and this function is plotted on the range [—m,7]. Some useful properties of the
Andrews’ plots are preservation of means and distances. Theisel [The00] presented
a free-form curve such that the space between two adjacent axes can be efficiently
exploited to encode more information of the axes, which can help to detect cor-
relations among more than two dimensions. Graham and Kennedy [GKO03] used
smooth curves to allow users to discern an individual path through the curves’
nodes. Moustafa and Wegman [MWO06] used a smooth plot between two adjacent
axes. While in traditional parallel coordinates, a line segment can be understood
as a linear interpolation, the authors introduced a new family of smooth functions
using smooth interpolation. Zhou et al. [ZYQ708] used curved lines to form visual
bundles for clusters in parallel coordinates. The visual clustering is improved by
adjusting the shape of the edges while keeping their relative order.

Dimension ordering in parallel coordinates Dimension ordering, spacing, and
filtering can improve the parallel coordinates layout and facilitate data exploration.
Ankerst et al. [ABK98] clustered data dimensions according to their similarity, then
data dimensions are rearranged such that dimensions showing a similar behaviour
are positioned next to each other. Yang et al. [YWRO03] proposed a hierarchical
approach to improve the interactivity of dimension reordering, spacing, and filtering.
Peng et al. [PWRO04] defined a visual clutter measure as the ratio of outlier points to
the total data points. The optimized dimension order is then computed to minimize
the proposed clutter measure.

Interacting with parallel coordinates Hauser et al. [HLDO02] used angular
brushing to pick out data subsets with specific trends between adjacent axes. Si-
irtola and Raiha [SR06] directly manipulated parallel coordinates by dynamically
summarizing a set of polylines and interactively visualizing correlation between poly-
line subsets. These brushing and interactive techniques are considered very effective
tools in exploring the structures within the clusters.

Integration with parallel coordinates Johansson et al. [JTJ04] used the self-
organizing map in conjunction with parallel coordinates, in which clusters are repre-
sented instead of data points, which helps to see an overview and details in parallel

2. Related work 23

coordinates. Bertini et al. [BAS05] proposed the tight coupling between radviz and
parallel coordinates called springview. In springview, the user can select a 2D area
on the radviz representation getting the corresponding elements highlighted in the
parallel coordinates cluttering. The color coding on the radviz (based on a 2D
color-map to a rectangular board) is automatically computed, which allows for au-
tomatically clustering the parallel coordinates polylines, exploiting their similarity
and their distances.

2.2 Cluster analysis

Clustering is the process of grouping the data into classes or clusters, that objects
within a cluster have high similarity but are very dissimilar to objects in other
clusters [HK06]. Clustering is a challenging field of research in which its potential
applications pose their own special requirements. The following are typical require-
ments of clustering in data mining: scalability, arbitrary shape, ability to deal with
noisy data, high dimensionality. In general, the major clustering methods can be
classified into the following categories: partitioning methods, hierarchical methods,
density-based methods, and grid-based methods.

Partitioning methods A partitioning method constructs k£ partitions of the data
sets. It classifies the data set into k£ groups, which together satisfy the following
requirements:

e cach group must contain at least one object,

e cach object must belong to exactly one group.

The most well-known and commonly used partitioning methods are k-means, and
k-medoids [HKO06].

Hierarchical methods A hierarchical method creates a hierarchical decomposi-
tion of a given set of data objects. A hierarchical method can be classified as being
either agglomerative (bottom-up) or divisive (top-down). The bottom-up approach
starts with each object forming a separate group. It successively merges the objects
or groups that are close to each other, until all the groups are merged into one,
or until a termination condition holds. The top-down approach starts with all the
objects in the same cluster. In each successive interaction, a cluster is split into two
sub-clusters, until eventually each object is in one cluster, or until a termination
condition holds.

Density-based methods Most partitioning methods cluster objects based on the
distance between objects. Such methods can find only spherical-shaped clusters and
encounter difficulty at discovering clusters of arbitrary shapes. Other clustering
methods have been developed based on the notion of density. Their general idea is
continued growing the given cluster as long as density in high in the neighborhood.
Such a method can be used to filter out noise (outliers) and discover clusters of
arbitrary shape.

24 2.2 Cluster analysis

Grid-based methods Grid-based methods quantize the object space into a fi-
nite number of cells forming a grid structure. All the clustering operations are
performed on the grid structures. The main advantage of this approach is its low
processing time, which is typically independent of the number of data objects and
only dependent on the number of cells in each dimension of the quantized space.

2.2.1 Hierarchical clustering

A hierarchical algorithm divides a data set into a sequence of nested partitions. Hier-
archical algorithms are divided into agglomerative hierarchical algorithms (bottom-
up) and divisive hierarchical algorithms (top-down). Both agglomerative and di-
visive clustering methods organize data into hierarchical structures based on the
similarity matrix.

Bottom-up The most common bottom-up hierarchical clustering algorithm is
AGNES (AGglomerative NESting). Initiallyy, AGNES places each object into a
cluster of its own. The clusters are merged step-by-step according to some crite-
ria. Differences between methods arise because of the different ways of defining the
distance (or similarity) between clusters.

Single linkage clustering: dpin(A, B) = Ilauan d(a,b)
ac S

Complete linkage clustering: d.x(A, B) = max d(a,b)
acA,be

Average linkage clustering: d,.(A, B) | A|| Z d(a,b)

aEA beB

The AGNES algorithm can be summarized by the following procedure:

1. Start with n singleton clusters. Calculate the similarity matrix for the n
clusters,

2. In the similarity matrix, find the minimal distance d(C;, C;) = rr;iln d(C, Cy),
where d(.,.) is the distance function discussed above, and combine cluster C;

and Cj to form a new cluster Cjj,

3. Update the similarity matrix by computing the similarity between the new
cluster C;; and the other clusters,

4. Repeat steps 2 and 3 until only one cluster remains.

When the algorithm uses dpmin(A, B) it is also called a nearest-neighbor hierar-
chical clustering algorithm, and when the algorithm uses dy.x(A, B) it is called a
farthest-neighbor hierarchical clustering algorithm.

2. Related work 25

Top-down Divise clustering techniques are hierarchical in nature. The main dif-
ference with the bottom-up methods is that they proceed in the inverse order. At
each step, a divisive method splits up a cluster into smaller ones, until finally all
clusters contain only a single element. The divisive algorithm based on the same
principle would start considering all divisions of the data set into two non-empty
subsets, which amounts to 2"~! — 1 possibilities, where n is the size of the cluster
to split. A complete enumeration approach is infeasible for large n.

Nevertheless, it is possible to construct divisive methods that do not consider all
divisions. The most common top-down hierarchical clustering algorithm is DIANA
(Dlvisive ANAlysis). Assuming a cluster X has n objects, the cluster X splits into
two subsets X, and X;. Initially, we set X, as an empty set and X; as the entire set
X. Next, we find the object = as

T = arg nggl(d({y},Xl \ {y}).

If the set X, is empty, we move object x from X; to X,. If the set X, is not empty,
the object = is a candidate object. The candidate object x is moved to X, if this
object is more similar to X, than similar to X; \ {z}, i.e., if

d({r}, Xo) < d({a}, Xi\ {z}).

Eventually, the cluster splits into two subgroups X, and X;. The algorithm is
recursively applied to each subgroup.
The DIANA algorithm is summarized in the following procedure:

1. Initialization: Start with C' equal to C; = C and C, = () as an empty cluster.
2. First iteration:

(a) For each data object x € C' computes its average distance to all other

objects:
d(z, O\ {z}) =
yGC\{x}
(b) Moving the data object = that achieves the maximum value max d(z,C'\
xe
{z}) to C,.

3. Remaining iteration loop:

(a) For each data object x € C' computes the difference between the average
distance to C; and the average distance to C.:

d(x,Cy\ {z}) — d(z,C,) = |Cl Z d(z,y) —

yGC \{z} yGC

(b) If the maximum difference max d(z,Cy\ {x}) —d(z, C,) is greater than 0

then moving the data object x that achieves maximum difference to C.
and repeats the remaining iteration loop. Otherwise, the cluster C' stops
splitting.

26 2.2 Cluster analysis

DIANA

step 4 —+ ——step 0

step 3— —| step 1

step 2—1— ——step 2

step 1— ——step 3

step 0—— —“—step 4
AGNES

Figure 2.5: Agglomerative and divise hierarchical clustering on data objects

{a,b,¢,d,e}.

Figure 2.5 shows the application of AGNES algorithm and DIANA algorithm to
a data set of five data objects, {a, b, c,d,e}. In AGNES, each object is placed into a
cluster of its own. In the first step, two clusters {a} and {b} merge into the cluster
{a,b}. In the second step, two clusters {d} and {e} merge into the cluster {d,e}
and this cluster is combined with the cluster {¢} to the cluster {c, d, e} in the third
step. Finally, two clusters {a,b} and {c,d, e} merge into one cluster {a,b,c,d,e}.
In DTANA, all of objects are used to form one initial cluster {a,b, ¢, d,e}. The first
step of DIANA algorithm splits this cluster into two clusters {a,b} and {c,d,e}.
The cluster {a, b} is splitted into the two clusters {a} and {b}. The cluster {c,d, e}
is splitted into the two clusters {¢} and {d, e} and the cluster {d, e} is splitted into
the two clusters {d} and {e}.

Recent advances The common criticism for classical hierarchical clustering algo-
rithms is high computational complexity, which is at least O(n?). This high compu-
tational burden limits their application to large-scale data sets. In order to address
this problem and other disadvantages, some new hierarchical clustering algorithms
have been proposed, such as BIRCH [ZRL96], CURE [GRS98], and CHAMELEON
[KHK99].

BIRCH uses a hierarchical data structure called CF-tree for partitioning the in-
coming data points in an incremental and dynamic way. The CF-tree is a
height-balanced tree, which stores the clustering features and is based on two
parameters: branching factor B and threshold 7. The branching factor B
refers to the maximum number of children per internal node and the thresh-
old T refers to the maximum radius of the cluster (the average distance from
points in the cluster to the centroid) or the maximum diameter of the cluster
(the average pairwise distance within the cluster). A leaf node of the CF-tree

2. Related work 27

contains at most L data points.

A CF-tree is built as the data is scanned. When reading a new data point
the CF-tree is traversed starting from the root, it recursively descends the
CF-tree by choosing the closest child node to the new data point according to
a distance metric between two clusters (centroid or average distance).

When the closest leaf node for the current data point is finally identified, a
test is performed to see whether adding the data item to the candidate cluster
if without violating the threshold conditions or the leaf node is splitted. The
leaf node splitting is done by choosing the farthest pair of data points, and
partitioning the remaining data points based on the closest criteria.

BIRCH applies an agglomerative hierarchical clustering algorithm to cluster
the leaf nodes of the CF-tree, which removes spare clusters as outliers and
merges dense clusters into larger ones.

BIRCH may not work well when clusters are not spherical because it uses the
concept of radius or diameter to control the boundary of a cluster.

CURF Instead of using a single centroid to represent a cluster, a constant number
of representative points is chosen to represent a cluster. The number of points
chosen is governed by a parameter c.

The similarity between two clusters is measured by the minimum distance be-
tween the representative points of these clusters. Like AGNES algorithm, at
each step the closest pair of clusters is merged to form a new cluster. Represen-
tative points of the new cluster are computed by iteration: the farthest point
from the centroid of the new cluster is chosen as the first scattered point and
in each iteration, a point from the new cluster is chosen by the farthest point
from the previously chosen scattered points. The points are shrunk toward
the centroid by a fraction parameter a.

Unlike centroid /medoid based methods, CURE is capable of finding clusterings
of arbitrary shapes and sizes, as it represents each cluster via multiple repre-
sentative points. Shrinking the representative points toward the centroid helps
CURE in avoiding the problem of a noise present in the single link method.
However, CURE cannot be applied directly to large data sets.

CHAMELFEON finds clusters in data sets by using a two-phase algorithm. In the
first step, it generates a k-nearest neighbor graph that contains links only be-
tween a point and its k-nearest neighbors. In the second step, CHAMELEON
uses a graph-partitioning algorithm to cluster the data points into a large
number of relatively small sub-clusters. The similarity between two clusters
is determined according to their relative interconnectivity and relative close-
ness [GRS98|. During the second phase, it uses an agglomerative hierarchical
clustering algorithm to find the genuine clusters by repeatedly combining to-
gether these sub-clusters. No cluster may contain less than a user specific
number of instances.

28 2.2 Cluster analysis

2.2.2 Hierarchical density clusters

High-density clusters are defined on a population with a density function p(x) in m
dimensions to be the maximal connected set of form {z : p(x) > A} at a level set A
[Har75].

Wong [Won82] presented a hybrid clustering to construct high density clusters.
First, the data set is partitioned into k clusters by a partitioning method (k-means).
Second, a single linkage clustering technique is applied to the distance matrix based
on the mean of the k clusters.

Wong and Lane [WL83] developed the kth-nearest procedure to build a high
density cluster. First, a density function of the data set is estimated based on the
k nearest neighbors. The distance between two objects is defined as the average of
the inverse of the density distribution:

d(z,y) = %<Y%l’)+]%y)>

The single linkage clustering is applied to the distance matrix D to obtain the sample
tree of high-density clusters.

Stuetzle [Stu03] constructed a high density cluster based on analyzing the mini-
mal spanning tree (MST). The author defined the runt size for an edge e of the MST:
breaking all MST edges that have length greater than the length of e into subtrees,
the runt size of the edge e is the smallest number of nodes of those subtrees. The
idea of runt pruning considers a split of the MST into two connected components
to be significant if both children contain a sufficiently large number of observations.
Each node N of a cluster represents a subtree T'(N) of the MST and an associated
with a density level A(N). The root node of the cluster tree represents the MST of
the entire data and density level A = 0. The cluster tree is recursively constructed.
For each node N, the longest edge e in MST(N) with the runt size larger than a
threshold parameter is chosen. If there is no such edge then N is a leaf node of
the cluster tree. Otherwise, breaking all the edges of M ST(N) with length grater
or equal the length of e results in a subgraph of M ST (N) and n’lchese subgraphs are

children of the node N associated with density level A = where n is the

nV||el|™’
size of the data set, m is the dimension of the data set, V is tlueufolume of the unit
sphere in m dimensional space, and ||e|| is the length of the edge.

Ester et al. [EKSX96] proposed DBSCAN (Density Based Spatial Clustering of
Applications with Noise) to discover arbitrarily shaped clusters. DBSCAN requires
the setting of two parameters: Eps to define density for data points and MinPts to
define core points. A data point z is called a core point if there are at least MinPts
data points that fall inside the ball B(z, Eps). A cluster is a connected region that
can be represented by a union set of balls with centers at the core points and radius
Eps. Border points are data points that belong to clusters and are not core points.
The clustering result is sensitive to the choice of the parameter Eps. DBSCAN
may not handle data sets that contain clusters with different densities. Ankerst
et al. [ABKS99| introduced the OPTICS (Ordering Points To Identify the Clus-
tering Structure) algorithm that detects meaningful clusters in data with varying

2. Related work 29

densities. To overcome the limitation of DBSCAN, the authors used two concepts:
core-distance and reachability-distance. The core-distance of a core point x is the
smallest distance Eps’ such that x is a core point with respect to Eps’. Otherwise,
the core-distance is undefined. The reachability-distance of a data point x with
respect to a core point y is the smallest distance such that x belongs to the MinPts
nearest neighbors of y. Thus, the reachability-distance of x with respect to y is the
maximum of the core-distance of y and the distance between x and y. If y is not a
core point, the reachability-distance of x with respect to y is undefined. OPTICS
creates an ordering of a data set by sorting with respect to the core-distance and
a suitable reachability-distance for each data point. Clusters are identified in the
OPTICS approach by a reachability-distance plot.

Hinneburg and Keim [HK98, HKO03] proposed a general approach to clustering
based on kernel density estimation called DENCLUE (DENsity-based CLUstEring).
The density estimation is defined as the sum of kernel functions of all data points:

f<x>=#§njf<(x;xi),

where {z; € R™ : 1 <i < n} are n data points in an m-dimensional space, K (z) is
a kernel function, and h is a smoothness parameter.

The DENCLUE algorithm works in two steps. The first step efficiently approxi-
mates the density function. The data space is divided into hypercubes with an edge
length of 2h, and only populated hypercubes are determined. Two hypercubes ¢;

and ¢y are said to be connected if D(mean(cl), mean(cg)) < 4h, where mean(c) is

the barycenter of all data points inside hypercube ¢ and DA(-, -) is a distance between
two m-dimensional points. The local density estimation f(z) is

- ¥ K(Y)

yEnear(x)

where y € near(x) if D(z,y) < 4h. The second step is the clustering step using
a hill-climbing procedure. It is guided by the gradient V f(z) of the local density
function. The density attractor for a point x is computed iteratively as

0 iy s Vf(fl) '
[V f(z)]]

The ¢ is a parameter of the hill-climbing procedure that controls the speed of conver-
gence. The hill-climbing procedure stops when f(a:’““) < f(xk) and takes z* = z*
as a new density attractor. If f(z*) > & (€ a threshold density parameter), then x
is assigned to the cluster belonging to x*.

It is interesting to point out that DENCLUE provides a generalization of differ-
ent cluster paradigms: partition-based, density-based single linkage, and hierarchical
clustering. In hierarchical approaches, the authors propose using different smooth-
ness level to generate a hierarchy of clusters. When starting DENCLUE with a small
value for h (), one may obtain N clusters. With increasing h, certain point den-
sity attractors start to merge and one obtains the next level of the hierarchy. If one

30 2.3 Visualization of hierarchical clustering results

further increases h, more and more density attractors merge and, finally, only one
density attractor representing the root of the hierarchy is left.

2.3 Visualization of hierarchical clustering results

A hierarchical clustering can be represented by either a picture or a list of abstract
symbols. A picture of hierarchical clustering results is much easier for humans
to interpret. A list of abstract symbols of a hierarchical clustering may be used
internally to improve the performance of the algorithm. A hierarchical clustering is
generally represented by a tree diagram.

2.3.1 Visualizing hierarchical structures

The dendrogram is a graphical representation of the results of hierarchical cluster
analysis. This is a tree-like plot where each step of the hierarchical clustering is
represented as a fusion of two branches of the tree into a single one. The branches
represent clusters obtained in each step of the hierarchical clustering. Figure 2.6
shows a dendrogram of a data set of five data objects, {a,b,c,d,e}.

éé@é

Figure 2.6: Dendrogram representation of hierarchical clustering results.

The classical hierarchical view is based on the algorithms developed by Reingold
and Tilford [RT81]. The algorithm computes independently the relative positions
of subtrees and then joins them in a larger tree by placing these subtrees as close
together as possible. It can be adapted to produce top-down as well as left-to-right
tree layouts, and can also be set to output grid-like positioning. The algorithm is
simple, fast, and predictable.

Treemaps were introduced by Johnson and Shneiderman [JS91]. In the treemaps,
the hierarchical structure is mapped to nested rectangles. Treemap is constructed
by recursive subdivision, i.e., a node is divided into some rectangles based on the
children’s size of this node. The direction of subdivision alternates, a rectangle is
subdivided in one direction (for instance, horizontally), and for the next level this

2. Related work 31

direction alternates. Treemaps provide a compact visual representation of complex
hierarchical data.

Another technique for visualizing hierarchical data sets is the so-called Inter-
Ring [YWRO02], which displays nodes of a hierarchy by ring segments. All child
nodes are arranged on concentric circles; the further they are away from the root
node, the deeper their level within the hierarchy. For each node, all respective an-
cestor nodes can be found in between the ring segment representing the considered
node, and the center of the InterRing.

A radial drawing [TBET99] is a variation of a layered drawing where the root of
the tree is placed at the origin and layers are concentric circles centered at the origin.
In radial drawings, a subtree is usually drawn within an annulus wedge. Teoh and
Ma [TMO02] introduced a technique for visualizing large hierarchies: RINGS, a node
and its children are placed in a circle. FOXI [CKO06] is an approach to achieve the
ability to display infinite hierarchy size in a limited display area.

Another research focused on using planar methods to display hierarchies, as any
tree can be drawn in 2D without intersecting edges. One possibility to display a
hierarchy is the hyberbolic tree [LRP95]. This visualization technique enables focus
+ context visualizations by taking advantage of a hyperbolic projection which scales
nodes according to their proximity to the focal point.

Information visualization has contributed with helpful ideas for displaying hier-
archies. One of them is the conetree [RMCO91]|, a 3D visualization that orders child
nodes on a circle below or next to their parent node. When the links between parent
and child nodes are drawn, cone-like structures appear.

Information cube [RG93] uses semi-transparent nested boxes or nested cubes to
represent the hierarchical information. It represents the parent-child relationships
by recursively placing child cubes inside their parent cubes. The outermost cube is
the top level of data. All the cubes are transparent so that the nested subtree can
be viewed inside the cube.

2.3.2 Visualizing hierarchical density clusters

Most visualization systems rely upon a two-dimensional representation and use a
fixed layout algorithm. The use of a three-dimensional representation through which
users can navigate provides a much richer visualization. The Narcissus system was
introduced by Hendley et al. [HDWB95]. The spatial layout of objects is based
upon physical systems with rules defining forces that act between the objects in a
3D visual space. These forces cause the objects to move in space. Objects migrate
through space so that they are spatially close to those objects with which they are
semantically related. High-similarity objects merge into one compound object. The
compound objects are formed by placing a translucent surface around the cluster so
that from a distance it appears as one distinctive object, but as it is approached,
the internal structure becomes more apparent and the user can be smoothly moved
from a high-level view to one in which all the details are available.

Sprenger et al. [SBGO00] introduced the h-blob system, which groups and visual-
izes cluster hierarchies at multiple levels of detail. The h-blob includes two steps, a
cluster tree is computed making use of an edge collapse clustering and visualizes the

32 2.3 Visualization of hierarchical clustering results

5 clusters

1 cluster

10 clusters 20 clusters

Figure 2.7: Cluster hierarchies are shown for 1, 5, 10 and 20 clusters.

clusters by computing a hierarchy of implicit surfaces. The most significant feature
of hierarchical blobs is not only to provide the overview of the entire data set, but
also to give a detailed visual representation of clusters. The high visual complexity
of the two stages of blob graph formation makes them unsuitable for being applied
in cluster visualization of very large data sets. Another limitation of h-blob is that
the hierarchical clustering is executed in visual space, i.e., it does not cluster the
original data set. Figure 2.7 shows nested blobs with many levels of detail.

|- l=lx

BB File 6t Clustering Tool View Window Help

SH| MEMNAQ DS
=)

IRow-by-Row normalization by Standardization (Mean and Stdev)
|verage Linkage

[Euciidean

(322 tems

17 Variables

ol

Color Maprino | [~| *

@ 3Coos 1 Colr

#of ltems Left = 321
=0.819 # of Clusters =9 _# of Alones = 1

==

¥ Show Min Similaiy Bar

™ Show Color Scale Bar
I Shawltem Names

I Enatle Mouse Move Update ~
v

[&] Control
|| [P Detal | [E[Evaluation]
Thiesholds
ylioon |Medsbased

H Pearson's 1 -
Pin This Result
e
—

Consider A1 Proi
I

Y :
; wl
S —
ERRoss Clear SLL

Profie Scarch [[G] Gene Ontology | [K] Kameans

"] Color osseo | 8 Toble view | (&) 1=

Figure 2.8: Hierarchical clustering explorer for interactive exploration of multidi-

mensional data.

Seo and Shneiderman [SS02, SS05] introduced a Hierarchical Clustering Explo-
ration (HCE), which integrates four interactive features: overview of the entire data
set, dynamic query controls, coordinated displays that enforce a bidirectional link
from the overview mosaic to two-dimensional scattergrams, and cluster comparisons.

2. Related work 33

HCE uses agglomerative hierarchical clustering with different kinds of distances, the
hierarchical clustering is displayed with a traditional dendrogram. HCE uses a sim-
ilarity bar that controls a similarity value and the hierarchical clustering cuts off all
similarity edges that are smaller than the value of the similarity bar indication and
the hierarchical clustering is divided into some clusters (cut the dendrogram and
derive clusters). Figure 2.8 displays HCE for interactive exploration of multidimen-
sional data. Nine clusters are obtained by cutting the dendrogram at the similarity
value 0.819. HCE is a good method to display hierarchical clustering as it provides
an intuitive and easily understood visual presentation. However, HCE has some
limitation: clusters are not automatically identified from hierarchical clustering,
i.e., clusters are dependent on the value of the similarity bar and the dendrogram is
very complex for large data set.

34

2.3 Visualization of hierarchical clustering results

Chapter 3

Hierarchical density clusters

The goal of this chapter is to present a criterion for nonparametric density estimation
and a hierarchical density cluster construction based on nonparametric density esti-
mation. We propose two variants of efficient nonparametric density estimation. The
first variant uses a traditional multivariate histogram method. The second estimates
the density function with a kernel method. Corresponding with the two methods of
density estimation, we propose two algorithms to create hierarchical density clus-
ters using a bottom-up and a top-down strategy, respectively. The main advantage
of our approach to build hierarchical density clusters is the direct identification of
clusters without any threshold parameter of density level sets.

3.1 Nonparametric density estimation

3.1.1 Nonparametric estimation criteria

In the case of parametric density estimation, a parametric density family p(z|6) is
given (for example, the two-parameter normal distribution family N(u,o0?) where
0 = (11,02)). The objective is to obtain the best estimator 6 of 6. In the case
of nonparametric density estimation, the emphasis is directly on obtaining a good
estimate p(z) of the entire density function p(x). In this section, we present some
estimation criteria for nonparametric density estimation.

Unbiasedness Let Xi,..., X, be independent and identically distributed random
vector variables in R” with an unknown continuous density p(x), i.e.,

p(z) >0, /p(x)dl’ =1

RmM

The problem of nonparametric density estimation is to estimate p(z) based on
observations X7,...,X,. Rosenblatt [Ros56] shows that, if the estimator p(z) =
p(z; Xy, ..., X,) is an estimation of the density function p(z), the estimator p(x) is
not unbiased, i.e.,

Elp(x)] # p(x),

36 3.1 Nonparametric density estimation

where E[p(z)] is the expectation over the random variables X7, ..., X,,. Although
the estimator of the density function is not unbiased, the estimation needs to be
asymptotically unbiased, i.e.,

lim E[p(z)] = p(z).

n—oQ

Consistency There are other measures of discrepancy between the theoretical
density function and its estimate. The mean squared error (MSE) is defined by

MSE(p(z)) = E[p(z) — p(x)]*.
The above equation can be written as
MSE(p(z)) = Elp(x) - p(x)]”
plw) — Elp()))

>

+

(=

(@) ()]

where V[p(x)] = E[p(x) — Ep(z)]? is the variance and B[p(z)] = E[p(z)] — p(x) is
the bias.
A global measure of accuracy is given by the integrated squared error (ISE)

ISEG) = [15() — pl) s

and by the mean integrated squared error (MISE) which represents an average over
all possible data sets

M15E() = E([1o6e) = p@)?) = [Viplde + [(Blote)) dn. @)

R™ R™ Rm™

We use the above criterion to find an estimate for the density function that minimizes
MISE(p) among some special class of estimator density functions.

3.1.2 Multivariate histogram density estimation

The histogram method is perhaps the oldest method of nonparametric density esti-
mation. It is a classical method by which a probability density is constructed from
a set of observations.
In one dimension, the real line R is partitioned into a number of equally-sized
cells and an estimator of a univariate density function at a point z is taken to be
L

p(fE) = E>

3. Hierarchical density clusters 37

where n; is the number of samples in the cell of width A that straddles the point
x and n is the size of the data set. Figure 3.1 displays an example of a univariate
histogram. Similarly, in two dimensions the plane R? is partitioned into a number
of equally-sized cells. Let the length and the width of the cells be denoted by h;
and he. An estimator of a bivariate density function at any point z = (x1, z2) inside
a cell B; is defined by .

nhlhg’

where n; is the number of points falling inside the cell B;. Figure 3.2 shows a
bivariate histogram.

ﬁ(xlaxQ) —

Figure 3.1: Univariate nonparametric density estimation using the histogram
method.

Figure 3.2: Bivariate nonparametric density estimation using the histogram method.

We can easily extend this method to multivariate histograms. Let {Xi,..., X, }
be a random vector of variable observations from an unknown density function p(z)

38 3.1 Nonparametric density estimation

in R™. The bounding region of the data set is divided into hyperrectangles of size
hi x ... X hy, i.e., the length of each hyperrectangle of the jth dimension is h; for
all j = 1,...,m. If n; observations fall into a hyperrectangular cell B;, then the
multivariate histogram estimator has the form

. 1

P = o (3:2)
for any point x = (z1,...,z,,) belonging to the cell B;.

The best estimation of the bandwidth Ay, ..., h,, such that the MISFE is mini-
mized in Equation (3.1) is a critical problem in nonparametric density estimation.
We start with considering the first term of M ISFE(p), the variance of the multivari-
ate histogram.

Let pi be the probability of the cell By, i.e.,

Pr = /P(l')df-

Thus, the distribution of n,, the number of observations in the cell B, has the
binomial distribution B(n,px) and we have

V(ng) = npr(1 — pr).
The variance of p(z) is constant over the cell By and it is given by

Ving) npp(1—pr)

VI = G e = Tad

for all € By. Integrating the variance over the cell By and using Y pp = 1, we

By
have
[Vit =n.. hZ”p‘“l_p’“= O). (33)
p ' o TR P T T S
Rm

Next, we consider the second term in Equation (3.1), the bias of the multivari-
ate histogram. To do so, we estimate the probability p, by using the standard
multivariate Riemannian integration approximation,

By,

where h = 11<m<n h; and ¢y, is the center of the cell By,. Thus, the expression B[p(z)]
<j<m

over the cell By is given by
Blp(z)] = E[p(x)] — p(z) = p(cr) — p(x) + O(h?)

and
Blp(x)] = —(z —) Vp(cx) + O(h?).

3. Hierarchical density clusters 39

The integrated squared bias over the cell By is

J B = 35302 [t o0

By, = By,
0
where p;(z) = gix),j =1,...,m. Summing over all cells yields
j

/ (Blp(2)])2dz = 1—12 ; 2 / P (@)dz + O(h). (3.4)

R™ R™

The MISE(p) of the multivariate histogram for density estimation is obtained
from Equation (3.3) and Equation (3.4):

m

N 1 1 2 2]_

Jj=1 R™

)+ O(hY).

The asymptotic MISE approximation (AMISE) (the leading terms in the expression
of MISE) is given by

m

1 1
AMISE(hy, ... hy) = ————+ —Zh? /pf(x)dx (3.5)

Jj=1 R™

The cell widths that minimize AMISE [Sco92] are thus

m 1
mt2 PRI N
ny = (6L Imulle) ™ llpslls"n =5 = 1.....m,
7j=1

where [l = [#3(a)do i = 1.....m.

Rm
If the reference distribution is multivariate normal and the different variables

being independent with possibly different standard deviations ;. Scott [Sco92]
shows the optimal choice for the cell widths as

hj = 3.5an_ﬁ”,j = 1, oo,

3.1.3 Multivariate kernel density estimation

The multivariate kernel density estimation is defined as

plx) = # i K(* _hX) , (3.6)

where K (x) is a multivariate kernel density function in R™ such that

K(z) >0, / K(z)dz = 1, / 2K (z)dz = 0, and / vt K (x)dz = po(K) I,

R™ R™ RrR™

40 3.1 Nonparametric density estimation

(po(K) is a constant and I, is the identity matrix), and h is the bandwidth or
smoothing parameter. A common approach for multivariate density function es-
timation is to construct the multivariate kernel density function as a sum of the
product of univariate kernel density functions

P) = o ZHK (2 ”) (3.7)

=1 j=1
where hq,...,h, are bandwidth parameters and Ki,..., K,, are univariate kernel
density functions. Usually, K,..., K,, are taken to be of the same form. In general,

the multivariate kernel density estimation can be written as:

p(z) = ndet ZK X)) = %ZKH(x—Xi), (3.8)

where H is the parameter matrix and Ky (x) = 3 t(H_)K(H_lzzc).
e

One of the problems with multivariate kernel density estimation is the choice of
the smoothing parameters. Let’s consider the formulation in Equation (3.6). If A is
too small, the density estimator is a collection of n sharp peaks, positioned at the
sample points. If h is too large, the density estimation is smoothed and structure in
the probability density estimation is lost. An optimal choice of h depends on several
factors. Obviously, it depends on the data, i.e., on the number of data points and
their distribution. It also depends on the choice of the kernel function and on the
optimal criterion used for its estimation.

We evaluate M 1SE(p) given in Equation (3.1) for the multivariate kernel density
estimation in Equation (3.8). For the bias term, we derive

Elp(x)] = /KH r —u)p(u)du
= /K(w)p(x+Hw)dw

1
)+ w'H'Vp(z) + thHtVQp(x)Hw] dw

X
T—
N

~ p(r)+ %/@(K)tr (HtVQp(x)H>

where Vp(x) is the gradient vector of p(z), V2p(z) is the Hessian matrix of p(x),
and tr(-) denotes the trace of a matrix. Therefore,

Blp(z)] ~ %MQ(K)tr<HtV2p(x)H). (3.9)

For the variance term, we obtain

Vip /K2 T — u)p)du—l(E[A(w)]f

n

3. Hierarchical density clusters 41

Q

/ ﬁ([_])KZ(w)p(x + Hw)dw

Rm

/@K%w) p(x) —I—thth(x)] dw

Rm™

Q

- p(x) 2

where ||K|[3 = [K?(z)dx. Hence, we obtain the AMISE [Sco92]
Rm™m

AMISE[H] _iug(m / [tr(Htv2p(x)H)]2dx+mHKH; (3.10)

Rm
Case H = hl,,: The AMISE can be written as

AMISE(h) = iug(K)h“/ [tr(VQp(x)ﬂde + #HKHS. (3.11)

Rm

The bandwidth parameter h that minimizes AMISE(h) is thus h = O(n_m%rﬁi).
We have to find the value of h that minimizes the mean integrated squared error
between the density and its approximation. For a radially symmetric normal kernel,
Silverman [Sil86] suggested

4 N\
h = U(m——|—2) - n_%ﬂ (312)

where a choice for o is

m
9 1
0" == s
m

i=1

and sj; are the diagonal elements of the sample covariance matrix.

Case H = diaglhy,...,h,): The AMISE can be written as,

J

AMISE(hy, ... hy) = iug(K)ih;%/ <V2p(x)>

1
d K|2. (3.1
, vt [(3.13)
.]:1 Rm

hi...

In the simplest case, we consider the density function p(z), that have the normal dis-
tribution with the diagonal matrix covariance > = diag(o?,...,02,). Scott [Sco92]
suggested

h; = nfm%rllaj,j =1,...,m. (3.14)

42 3.2 Hierarchical density clusters

3.2 Hierarchical density clusters

Given a multivariate density function p(z) of a random vector of variables in R™.
In density-based clustering, clusters can be understood as regions of high density of
data points in the multidimensional space that are separated from other regions by
regions of low density, i.e., the density of data points within a cluster is higher than
the density of data points around the cluster. In statistics, a mode of the density
function p(z) is a point « where p(z) has a local maximum. Thus, a mode of a given
distribution is more dense than its surrounding area. A cluster which contains only
one mode of the density function is called a homogeneous cluster and a cluster that
contains more than one mode of the density function is called a heterogeneous clus-
ter. One heterogeneous cluster can contain heterogeneous clusters and homogeneous
clusters. Therefore, the homogeneous clusters and the heterogeneous clusters form
hierarchical density clusters. The goal is to find these clusters and the hierarchical
structure. We can understand the hierarchical structure of density clusters of the
multivariate density function through level sets.

Figure 3.3: Hierarchical density clusters.

Let 0 < A < sup p(x). We are considering regions of the sample space where
reR™
values of p(x) are greater than or equal to A. The A-level set of the density function

p(z) denotes the set
S(p,A) ={z € R™: p(z) = A}

The set S(p,A) consists of ¢ numbers of connected components S;(p, \) that are
pairwise disjoint, i.e.,

5.2 = U sir.)

with S;(p, A\) N S;(p,A) = 0 for i # j . The subsets S;(p, \) are called A-density
clusters (A-clusters for short). For various levels A\, we obtain a collection of A-
clusters that have a hierarchical structure: for any two A-clusters A and B we have
either A C Bor B C Aor ANB = (). The hierarchical structure is called hierarchical
density clusters. The hierarchical density clusters is represented by a high density
cluster tree. Each node of the high density cluster tree represents a A-cluster. The

3. Hierarchical density clusters 43

high density cluster tree is determined recursively. The root node represents the
O-cluster (entire data set). Children of a A-cluster are determined by finding the
lowest level p such that © > A and A-cluster has more than two p-clusters. If we
cannot find the value p the A-cluster is the leaf of the high density cluster tree.
Otherwise, we can find ¢ p-clusters within the A-cluster, and we create ¢ children
of the A-cluster. Figure 3.3 shows the hierarchical density clusters of a bivariate
density function. In Figure 3.3 (left), A is O-cluster, B is 2-cluster, C and D are
3-clusters, E, F, and G are 5-clusters. In Figure 3.3 (right) we show the hierarchical
density clusters of the bivariate density function that summarizes the structure of
the bivariate density function.

In this section, we present two algorithms for computing hierarchical density
clusters corresponding to the two methods for estimating the multivariate density
function. The hierarchical density clusters are computed automatically without the
need to choose any thresholds for the density level sets.

3.2.1 Hierarchical density clusters using histograms

Let the data set X={X; = (Xj1,...,Xim) : 1 < i < n} have n data points in m
dimensions. We transform the data into a unit hypercube [0, 1]¢ such that the scaled
values X;; of X;; all lie in the interval [0, 1]:
- X;; — min;
Xij:”—,], j=1,....m;i1=1,...,n,
max; — min;
where min; = min{Xj;; : 1 <i <n}, max; =max{X;;: 1 <i<n},j=1,...,m.
We partition the data space [0,1]™ into a set of cells. Each dimension can be
divided into the same number of intervals. As the data set was transformed into the
unit interval, we divide each dimension into N equally-sized portions. Hence, the

size of the portions is
h—
=5
which is the edge length of the grid cells. Alternatively, one could omit the scaling
step and operate with different bandwidths for the different dimensions.
As we showed in Section 3.1.2, the choices of the bandwidth parameter h ensure
that

h — 0 and nh"™ — oo,

which is consistent with the above criteria for a well-defined approximation of a
density estimation. Unfortunately, we know little about the data set, i.e., the density
function is unknown. The bandwidth that minimizes the AMISE in Equation (3.5)
does not help to get the bandwidth h. A well-known method is Sturges’ rule [Sco92]
for selecting the size of cells in an univariate histogram case. The rule postulates
range of samples

1+ log,(n)

which for multidimensional data grids extend to
1

m+\4/ﬁ :

h:

44 3.2 Hierarchical density clusters

We use this estimate as an indicator for our approach, but we also allow for manual
adjustment.

The multivariate density function is estimated by Equation (3.2). As the area
is equal for all cells, the density of each cell is proportional to the number of data
points lying inside the cell. Without loss of generality, we can describe the density
by the number of data points within each m-dimensional cell.

Each cell is given by

Cir, .. im) = C(i1) X -+ x Clin), i;=0,....N—1,j=1,....m,

where
[i h, (i +1) h) ifi=0,... N—2
C(i) =
[@' h,(i+1) h} ifi=N—1.
and indexed by a unique index C'(iy, ..., 1q).

Because of the “curse of dimensionality”, the data space is very sparse. The
multivariate histogram density estimation is simple. However, in practice, there are
several problems with this approach for high-dimensional data. In one dimension,
there are N cells; in two dimensions, there are N2 cells, and for data samples z € R™
there are N™ cells. This exponential growth of the number of cells means that in
high-dimensional spaces a very large amount of data is required to estimate the
density. Typically, the sizes of data sets are significantly smaller than the numbers
of grid cells generated. Therefore, there are many empty cells. In our approach, we
do not store empty cells such that the amount of cells we are storing and dealing
with is less than the size of the data set. Hence, operating on the grid instead of
using the points does not increase the amount of storage but typically decreases it.

To create the nonempty cells, we use a partitioning algorithm that iterates
through all dimensions. Assuming that we partition the kth dimension of the hy-
perrectangle R = I X ... x I,,, (where in the first £ — 1 dimensions the edges of
R have length h and the edges in the remaining dimensions have length 1) into
smaller hyperrectangles. Let Xix,..., X, € R denote values on the kth dimen-
sion of the n points inside the hyperrectangle R. These values fall into p (p < N)
non-empty intervals I{,j = 1,...,p, whose length are equal to h. Then, the hyper-
rectangle R is partitioned into N small hyperrectangles, of which p hyperrectangles
Ry =1 x.. .x[,f; X... X1y, =1,...,pare non-empty. We only store the non-empty
ones. We apply this algorithm for each dimension to partition the data set into a
set of non-empty cells of size h™. Figure 3.4 shows partitioning in two dimensions.
In Figure 3.4 (left), the first dimension is divided into N = 4 intervals. We obtain
three non-empty rectangles, and one empty rectangle. Each non-empty rectangle
is divided into N = 4 intervals as displaying in Figure 3.4 (right). We obtain 6
non-empty cells.

Optionally, this step of the algorithm can be adopted to deal with data sets
containing noise by storing only those cells containing a number of data points
larger than a noise threshold.

The time complexity for partitioning the data space into non-empty cells is
O(mn), i.e., the time complexity is linear in both the size of the data set and

3. Hierarchical density clusters 45

Figure 3.4: Memory-efficient partitioning of multidimensional space.

Figure 3.5: Neighborhood of the red cell for the two-dimensional space.

the number of dimensions. Hence, this algorithm is suitable for large-scale data sets
of high dimensionality.

Given the partitioning into cells, we define that two cells C(iy,...,4,) and
C(j1,---,Ja) are neighbors, if |iy — jx| < 1 for all k =1,...,m. Figure 3.5 shows all
the neighbors of the red cell for the two-dimensional space. A cluster is represented
by a connected region consisting of the union set of non-empty cells. We define a
cell is a neighbor of a cluster if the cell is a neighbor of at least one cell belonging
to the cluster. Two clusters are neighbors if there exists one cell belonging to one
cluster that is a neighbor of another cell belonging to the other cluster.

We define a graph where the vertices represent the cells and the edges represent
neighborhood information. Therefore, a cluster can be understood as a connected
component of the graph. We apply the breadth first search (BFS) method to find
connected components of the graph [CLRS01]. The procedure BFS(V, E,v,C) con-
siders the graph G = (V, F) with set of vertices V' and set of edges F, and finds the
connected component C' of G contains the vertex v € V.

46 3.2 Hierarchical density clusters

Procedure BFS(V, E,v,C)
1C={v}
2 push v into a queue)
3 mark(v)= visited
4 while @) is not empty

5 v «— pop front @
6 for each vertex u € V' such that (u,v) € E
7 if mark(u)=not-visited
8 push u into the queue @)
9 mark(u)=visited
10 C— CU{u}
11 endif
12 endfor

13 endwhile

The procedure ConnectedComponents(V, E,C' = {}) finds connected components
of a graph G = (V, E).

Procedure ConnectedComponents(V, £, C' = {})

1l:=1

2 for each vertex v € V

3 if mark(v)=not-visited
4 BFS(V,E,v,C)
5 C— CU{C}
6 1=1+1

7 endif

8 endfor

In order to find higher-density clusters within the detected clusters, we can apply
a divisive hierarchical clustering method [HKO06], where each cluster is split accord-
ing to the density values. Given a detected cluster C, we remove all those cells
from cluster C' that contain the minimum number of data points. Then, we apply
the graph-based cluster search algorithm from above to find again connected compo-
nents in the reduced graph. The connected components represent the higher-density
clusters within cluster C'. If the number of higher-density clusters within C'is ¢ > 2,
we create ¢ new clusters (subclusters of C') and proceed with these (higher-density)
clusters in the same manner. If ¢ = 1, we iteratively remove further cells with a
minimum number of data points. If we cannot find multiple higher-density clusters
within a cluster, we call this cluster a mode cluster.

This procedure automatically generates a collection of density clusters T that
exhibit a hierarchical structure: for any two density clusters A and B in 7T, we have
AC Bor BC Aor AN B = (). This hierarchical structure is summarized by the
density cluster tree (short: cluster tree). The root of the cluster tree represents all
sample points.

Figure 3.6 (left) shows the histogram of a bivariate density estimation. The
root node of a cluster tree contains all non-empty cells and finds the number of
connected components of this node. We obtain two connected components. The

3. Hierarchical density clusters 47

Density

Figure 3.6: Cluster tree of density visualization with four modes shown as leaves
of the tree. Left: Partitioning of the two-dimensional space. Right: A hierarchical
density clusters.

two connected components are represented by two children of the root node (cyan
and yellow). The yellow cluster is a homogeneous cluster. For the cyan cluster,
we remove all cells that have minimum density (cyan cells). This cluster is still
connected. We continue removing all cells that have minimum density (green cells).
We obtain three connected components: the red, the blue, and the pink clusters.
The three clusters are children of the cyan node. The three clusters are homogeneous
clusters while the cyan cluster is a heterogeneous cluster. Figure 3.6 (right) shows
a cluster tree with four mode clusters represented by the tree’s leaves.

The cluster tree visualization provides a method to understand the distribution
of data by displaying regions of modes of the multivariate density function. Each
cluster contains at least one mode. The leaf nodes of the cluster tree are the mode
clusters.

3.2.2 Hierarchical density clusters using kernels

Let the data set X={X; = (X;1,...,Xin) : 1 < i < n} have n data points in m
dimensions. We recall the multivariate density function formula in Equation (3.7)

o) = ZHK(% h, J)’

moi=1 j=1

for each x € R™.

We consider a kernel function K (z) with compact support supp(K) = [—1,1].
For a point x, the density value p(z) in Equation (3.7) is obtained by summing up
the contribution of all points X; with z; — X;; € [=h;, h;] for all j =1,...,m. We
define the support of a point = as follows:

B(z) = B(x;hy, ... hy) = [x1 — by, + ha] X oo X [T — By Ty +] (3.15)

48 3.2 Hierarchical density clusters

The A-level set of the density function p(x) can be estimated by a union of
support of data points X; such that p(X;) > A:

Se:N = |J BXihi..o).

This formula is derived from estimating the support of the conditional function
pa(z) = p(x|S(p, \)), i.e., the closed set S(py) = {z € R™ : py(x) > 0}, where A is
the closure of the set A. The support of py(x) can be expressed as a union of small
closed regions around the sampling observations of the conditional function py(x).
The sampling observations of p, () is not available, we use the observations X; from
the sampling observations of p(x) such that p(X;) > X as the sampling observations
of px(z).

This A-level set can be partitioned into some connected components and each
connected component can be understood as a A-cluster. A hierarchical density clus-
ter is constructed based on the multivariate kernel density estimation and support
of points. The three steps of our approach are given in the following:

e Multivariate kernel density estimation,
e Creating support of points,

e Clustering processes.

Kernel density estimation The value of the density function at point x is eval-
uated according to the formula in Equation (3.7). Because of the compact support
of the kernel function, this formula can be written as:

o = e 3 TL(2).

™ X;eB(z) j=1

For example, the simplest kernel function is constant over its support (uniform
kernel)

1
- —1<t<1
K(t)=1< 2 - =
0 otherwise.
In this case, the density value of x can be estimated by the following

|B(x; hy, .. b))

plz) = nvolume(B(z; hy, ..., hy))’

(3.16)

where |B(x; hq, ..., hy)| is the number of observations in the region B(x; hy, ..., hy).

We use a kdtree data structure and a range search algorithm for finding all data
points in a hyperrectangle B(X;;hq,...,h,) and computing the density value. A
kdtree is a data structure for sorting a finite set of points from a multidimensional
space [dBCvKOO8]. We can construct a kdtree with the recursive procedure de-
scribed below. In the procedure Build-kdtree(X,d), X is the set of data points, m
is the dimension of the data set X, and d is the current splitting dimension.

3. Hierarchical density clusters 49

Procedure Build-kdtree(X,d)
1 if X contains only one point
2 then return a leaf storing this point
3 else
4 split X at the median ¢ of the dth coordinate of the points in X.
let Xier, Xrigne be the set of points below and above /.
Viet <— Build-kdtree(Xjeft, (d + 1) mod m)
Upight <— Build-kdtree(X,ignt, (d + 1) mod m)
create a node v storing ¢ with v, and v,ign: are being the left and
the right child of v.
9 return v.

o0 =3 O Ot

To find data points that fall in a hyperrectangular region, we use the procedure
Range-Search-kdtree(v,R), where v is the kdtree and R is the region.

Procedure Range-Search-kdtree(v,R)

lifvis a leaf

2 then report the point stored at v if it lies in the range R
3 else if region|le ftchild(v)] is fully contained in R

4 then report subtree(leftchild(v))

5 else if region|le ftchild(v)] intersects R

6 then Range-Search-kdtree(le ftchild(v),R)

7 if region|rightchild(v)] is fully contained in R

8 then report subtree(rightchild(v))

9 else if region|rightchild(v)] intersects R

0

1 then Range-Search-kdtree(rightchild(v),R)

Creating support of points The value p(X;) of the density function is computed
for each data point z; in the data set. The procedure to create the support of points
is given in the following:

Procedure Creating-Supports(X = {X1,..., X, },h1, ..., hn)
1 while X is not empty

2 find the maximum X; = argmax{p(X;) : X; € X}
3 create the support of data point X, B(Xj;h,. .., hy)
5 endwhile

This procedure generates a set of support points from highest to lowest density. The
number of supports that are generated is smaller than the number of data points.

Clustering processes In the last step, we only consider the support points that
are generated in the creating support points step. The order (according to the
density value of the center point of the support) is automatically given. Without
loss of generality, let B(Xy), ..., B(X%) be the supports of the data points used in

50 3.2 Hierarchical density clusters

the preceding step with p(X;) > ... > p(X}) and k < n. Now, let’s assume that
the clusters (1, ..., C, have already been generated when considering the support
B(X;).

o If B(X;) is not intersecting with any cluster C; € {C},...,Cy}, we create a
new cluster Cy; :

Con = {B(X)).

e If there is exactly one cluster C; € {C},...,Cy} with B(X;) N C; # 0, then
we merge B(X;) with C;:

e If there are £ clusters Cy,...,Cy (¢ < q) with B(X;)NC; #0,5=1,...,¢, the
region B(X;) is a valley in the density function that connects the ¢ clusters
Ci,...,Cp. We create a new cluster that contains the ¢ clusters and B(Xj;):

Cq+1 = (O CJ) U B(XZ)

7=1
Cluster Cy4q contains ¢ clusters Cf, ..., Cy (hierarchical structure), which do
not need to be further considered during the algorithm. The updated list of
clusters contains Cpyq,...,Cq, Cyyr.

Procedure Clustering(B(X3), ..., B(Xy), C ={})
1 initialize ¢ = 1, C; = {B(X3)}, and add C; to C
2 for i =2 to k do
3 intersects=()

3 for j =1 to q do
4 it B(X;)NC; 0
5 intersects «— intersects U{j}
6 endfor
7 if intersects=(
8 create a new cluster Cyy1 = {B(X;)},¢ = ¢+ 1, and
add Cyyq1 to C
9 else if intersects={j; }
10 Ojl A Cj1 U {B(Xz)}
11 else intersects={j1,..., 5}, (¢ > 2)
12 create a new cluster Cy,, = ((j C'j> U{B(X,)}
j=
13 remove Cj,,...,C;, from C, ¢ =q—1+1, and
add Cep to C.
14 endfor

Figure 3.7 illustrates the clustering processes using a 2D example. First, a set
of support of points are generated in Figure 3.7 (left), the blue support contains 5

3. Hierarchical density clusters 51

Figure 3.7: Cluster tree of density visualization with 4 modes shown as leaves of the
tree.

points, the magenta support contains 4 points, the red support contains 3 points, the
yellow support contains 2 points, and the green support contains 1 point. Second,
we take the support with the highest density (blue), and we create a cluster that
contains this support. Next, we take the second largest density support (magenta).
It does not intersect with previous clusters, such that we create a new cluster that
contains the magenta support. Similarly, we create a new cluster that contains the
red support. Next, we take the largest density support among the remaining sup-
ports (the yellow support) this support connects the blue support with the magenta
support. Hence, the two clusters that contain these supports are merged into a new
cluster (cyan clusters), as we can see in Figure 3.7 (right). We continue the procedure
with the remaining supports and finally obtain a hierarchical density cluster.

3.2.3 Discussions and comparisons

We have been presenting two hierarchical density cluster algorithms based on non-
parametric density estimations. Both algorithms can be applied to large-scale and
high dimensional data sets. One main advantage of the two hierarchical density
clusters is to automatically identify density clusters without any threshold density
level set parameters. Another advantage of the two hierarchical density clusters is
that it is suitable for data sets containing noise. Both algorithms are very intuitive
and easy to implement.

In the hierarchical density clusters using histograms, the multidimensional data
space is partitioned into non-overlapping cells, while the hierarchical density clusters
uses kernels to divide the multidimensional data space into overlapping supports of
data points. The hierarchical density clusters using histograms apply a top-down
strategy, while the hierarchical density clusters using kernels apply a bottom-up
strategy. In our experiments, the number of support of data points generated by
kernel method is smaller than the number of non-empty cells in histogram method.
In general, experiments on the size of cells and support of points are desirable. The
hierarchical density clusters using kernels can be applied to gene expression data,
while the hierarchical density clusters using histograms cannot generate density

52 3.2 Hierarchical density clusters

clusters for such data.

Our partitioning of the multidimensional data space into non-overlapping regions
in the histogram method seems to be similar to the hybrid clustering method [Won82].
The author uses the k-means algorithm to partition the multidimensional data set.
The data set is reduced to the k£ mean data points of the k clusters. A single-linkage
clustering algorithm is applied using matrix distances (the distance between two
nearest mean points is determined by the inverse of the density of the middle point
of the two points). Clusters are identified by the maximal sets of the k clusters
whenever the distance is smaller than a threshold parameter. However, it is hard
to interpret the density level sets of the clusters. Moreover, the clusters are not
automatically determined and the density estimation is not consistent.

Wong and Lane [WL83] improved the hybrid clustering by using the k nearest
neighbors for density estimations. Similar to the hybrid clustering, a single-linkage
clustering algorithm is applied using matrix distances (the distance between two
neighbors is defined by summing the inverse of the density values of the two points).
However, the density level sets of clusters are not obvious in this hierarchical struc-
ture and the algorithm is not practicable for large-scale data sets.

Stuetzle [Stu03] constructs high density clusters based on runt size of the minimal
spanning tree. Clusters are automatically identified and density level sets of clusters
are very intuitive. The disadvantage of this algorithm is that the density estimation
is not consistent, as the nearest neighbors are used for density estimation. Also, the
computational costs for the minimal spanning tree for large-scale high-dimensional
data are high.

Figure 3.8: Clustering result for data set t4.8k.dat. Upper left: Original data set.
Upper right: DBSCAN clustering result. Lower left: Histogram-based clustering
result. Lower right: Kernel-based clustering result.

3. Hierarchical density clusters 53

fo R LA E

o
o
8

Figure 3.9: Clustering result for data set t7.10k.dat. Upper left: Original data set.
Upper right: DBSCAN clustering result. Lower left: Histogram-based clustering
result. Lower right: Kernel-based clustering result.

In this section, we evaluate the performance of our histogram-based method and
kernel-based method and compare the results with the DBSCAN approach [EKSX96]
(using the implementation embedded in the system R). Synthetic data sets are used
in the experiments: t4.8k.dat and t7.10k.dat [KHK99]. As DBSCAN cannot extract
cluster hierarchies, we chose data where no such hierarchies are present. The clus-
tering results for ¢4.8k.dat and t7.10k.dat are shown in Figure 3.8 and Figure 3.9.
Different colors are used to indicate the different clusters and clusters are repre-
sented by connected regions. Clusters with different sizes, shapes, and densities are
identified.

Both data sets were transformed into the unit square [0,1] x [0,1] in a pre-
processing step. DBSCAN produces the clustering results that are shown in Fig-

1
ure 3.8 (upper right) and Figure 3.9 (upper right) with Eps = 5 and MinPts = 10.
The histogram-based method produces the clustering results shown in Figure 3.8
(lower left) and Figure 3.9 (lower left) by dividing each dimension into N = 50
intervals and removing all cells containing less than 10 points. The kernel-based
method produces the clustering results shown in Figure 3.8 (lower right) and Fig-
ure 3.9 (lower right) with the kernel size h = — and removing all supports of points

that contain less than 10 points. Figure 3.8 and Figure 3.9 show that both the
histogram-based method and the kernel-based method can detect arbitrary shapes

54 3.2 Hierarchical density clusters

of clusters as DBSCAN algorithm. The clustering results are sensitive with re-
spect to the parameters Eps in the DBSCAN algorithm, number of bins N in the
histogram-based method, and kernel size h in the kernel-based method.

mode clusters mode clusters

S/ S
R

15
N /\/
5 ._/‘ \—H_
: : | | —

0 RS aar 0 am a1 a1l 012 a3 LRTY 015
number of bins size of kernel function

Figure 3.10: The sensitivity of clustering results with respect to the grid size in the
histogram-based method (left) and the kernel size in the kernel-size method (right).

The histogram-based method depends on the grid size and the kernel-based
method depends on the kernel size. Figure 3.10 (left) shows the relationship of
the number of bins and the number of homogeneous clusters for the “Outbd” data
set. Figure 3.10 (right) shows the relationship of the kernel sizes and the number
of homogeneous clusters for the “Outbd” data set. In practice, a good choice for
the parameters can be determined emperically by simple running the algorithms
multiple times with different parameters. Those parameters are selected when the
number of homogeneous clusters start exhibiting slight differences only. The red
lines in Figure 3.10 is good values for the grid size and the kernel size.

time in seconds
200
1000 =
Data sizes| 10k 20k 30k | 40k | 50k | 60k a0
}/ —— histogram
dbscan 23 9 213 | 404 | 672 | 1019 600 —a— dbscan
0 karne|
kernel 54 115 166 | 211 | 291 | 367
N
histogram | 1 1 2 2 2 2 ol .,
i i i data sizes
10 20k 30 40k 50k B

Figure 3.11: Computation times (in seconds) of DBSCAN, histogram-based method,
and kernel-based method for different data sizes.

Our experiments were performed on a Linux system with 4GB RAM memory
and a 2.66 GHz processor. The computation times are shown in Figure 3.11. The
computation times of the histogram-based method are much better than those of the
DBSCAN and the kernel-based method. For small data sizes (up to 20.000 points),
DBSCAN and the kernel-based method are in the same range, but for large data
sizes, the kernel-based method is more efficient than the DBSCAN method.

Chapter 4

Nested level set visualization of
hierarchical density clusters

In this chapter, we present a method for projecting multidimensional data into visual
space (two or three dimensions) with optimized star coordinates. The optimized
star coordinate system minimizes the overlap of separated mode clusters in the
hierarchical density clusters described in Chapter 3. The star coordinates encoding
displays the multidimensional data as point clouds that contain the hierarchical
structure of the clusters. The large amount of displayed data points make it difficult
to detect the hierarchical structure. We propose to visualize the hierarchical density
clusters such that each cluster is enclosed by a contour or a surface with minimum
volume. Therefore, the hierarchical density clusters are visualized by nested contours
or nested surfaces.

4.1 Optimized star coordinates

A standard method of visualizing multidimensional data is to reduce its dimensional-
ity to two or three dimensions. Dimensionality reduction can be seen as the process
of transforming data from a high-dimensional space to a low-dimensional subspace
in such a way that the transformation ensures the maximum possible preservation of
information or minimum reconstruction error. The dimensionality reduction prob-
lem can be formulated as follows:

Dimensionality reduction Let X = {z1,...,x,,} be a set of n data points in an
m-~dimensional space, i.e., x; € R™, then a dimensionality reduction technique
tries to find a corresponding output set of patterns Y = {y1,...,y,} in a d-
dimensional space, i.e., y; € R where d < m and Y provides the most faithful
representation of X in the lower dimensional space.

Dimensionality reduction techniques can be classified into linear methods and non-
linear methods.

Linear methods These methods reduce dimensionality by performing linear trans-
formations on the input data and trying to find a globally defined flat subspace.

56 4.1 Optimized star coordinates

These methods are most effective if the input patterns are distributed more or less
throughout the subspace. Some linear dimension reduction methods [GKWZ07] are
independent component analysis (ICA), principal component analysis (PCA), factor
analysis (FA), and projection pursuit (PP).

Non-linear methods When the input patterns lie on or near a low-dimensional
sub-manifold of the input space the structure of the data set may be highly nonlin-
ear, and linear methods are likely to fail. Non-linear methods, on the other hand, try
to find the locally defined flat subspace by non-linear transformations. Non-linear
dimension reduction methods [GKWZ07] include kernel principal component analy-
sis (KPCA), principal curves and surfaces, locally linear embedding (LLE), Hessian
LLE, Laplacian eigenmaps (LE), latent tangent space alignment (LTSA), ISOMAP,
multidimensional scaling (MDS), self-organizing map (SOM), and generative topo-
graphic mapping (GTM).

The linear dimension reduction method can be reformulated as follows: we want
to find a best d-dimensional subspace for representing high-dimensional data set in
some sense. We assume that the basis of the d-dimensional subspace is given by

v = <U117U127"'7U1m)
: (4.1)
Vg = (Udla Vazy - - - 7Udm)

and a linear transformation corresponding to this basis can be understood as a

mapping .
P: R — R

xr +— Pxr= ((x, V1), ..., (T, vd>> (42)
where (x,y) = x;y; denotes the scalar product. This mapping can be rewritten
=1
as: ’
Pa) = (@) @)
= (ijvlj,...,zycjvdj)
j=1 J=1
= Z‘Ij(vljv e ,Udj),
j=1
or .
P(z) =Y zja;, (4.3)
j=1
where

a; = (7111,1)21, e >Ud1),
: (4.4)

Ay, = ('Umlavm% cee 7Umd>-

4. Nested level set visualization of hierarchical density clusters 57

The m vectors {as,...,ay,} in d-dimensional space are called star coordinates.

The linear mapping in Equation (4.3) is contractive, i.e., the Euclidean distance
between two points in visual space is always smaller than the Euclidean distance
between the two points in multidimensional space. Therefore, two points in the
multidimensional space are projected to visual space preserving the similarity prop-
erties of clusters. In other words, the mapping does not break clusters. Still, clusters
may overlap. In star coordinates, the m vectors {a, ..., a;} in d-dimensional space
are represented for m dimensions of multidimensional data sets. That allows us to
interpret the results, i.e., if the value x; of a point in multidimensional data is high
then the mapping of the point will close to the vector a;.

The standard 2D star coordinates system [Kan00] for visualizing m-dimensional
points is given by:

2n(i—1) . 2w(i—1)

a; = (cos ,sin), i=1,...,m.
m m

and the standard 3D star coordinates [AdO04] is an extension of 2D star coordinates
to

a; = (cos 27T<Zm_ 1),sin 2m(i — 1>, 1), i=1,...,m.

In order to visualize the high density clusters in a way that allows clusters to
be correlated with all m dimensions, we need to use a coordinate system that in-
corporates all m dimensions. Such a coordinate system can be obtained by using
star coordinates. In star coordinates the result of a linear transformation is plotted,
which maps multidimensional data to the d-dimensional subspace.

Assume that a hierarchy of high-density clusters has ¢ mode clusters, which do
not contain any higher-level densities. Let m; be the mean or barycenter of the
points within the ith cluster, : = 1,...,q. Our objective is to choose a linear trans-
formation that maintains distances between the ¢ mode clusters. In the described
linear transformation, two points in multidimensional space are projected to star
coordinates preserving the similarity properties of clusters. In other words, the
mapping of multidimensional data to a low-dimensional space determined by Equa-
tion (4.2) does not break clusters. The additional goal of optimized star coordinates
is to separate mode clusters as much as possible.

Let {vy,...,v4} be an orthonormal basis of the candidate d-dimensional subspace
of a linear transformation. The mean m; is mapped to a point z;,

zi = P(m;) = ((my,v1),...,(my,vq), i=1,...,q.

The desired choice of a star coordinate layout is to maximize the distance of the
q points zi,..., %z, This can be obtained by picking d vectors {vi,...,vq} of the
d-dimensional subspace such that the objective function

D lla—zlP= D0 IVmi = V| = trace(V'SV)
1<i<j<q 1<i<j<gq

is maximized, where V' = [vy,...,v4]" and S is the covariance matrix

S = Z (m; —my)(m; —m;)" = QZ(mi —m)(m; —m)"

1<i<j<q

58 4.1 Optimized star coordinates

1 q
with m = — Z m; being the mean of the ¢ barycenters of the mode clusters.
453
Hence, the d vectors vy, ...,v, are the d unit eigenvectors corresponding to the
d largest eigenvalues of the matrix S. The optimized star coordinates {a1, ..., a,}
are obtained from {vy,...,v4} as in Equation (4.4) and the multidimensional data
points are mapped into visual space as in Equation (4.3).

Figure 4.1: Visualization of the “outbd” data set with 2D star coordinates. (Left)
Standard 2D star coordinates. (Right) Optimized 2D star coordinates.

Figure 4.2: Visualization of the “outbd” data set with 3D star coordinates. (Left)
Standard 3D star coordinates. (Right) Optimized 3D star coordinates.

We show star coordinate representations for visualizing the well-known data set
“outbd” that contains 16,384 points with five dimensions. Figure 4.1 presents 2D
star coordinates visualizing the multidimensional data. Figure 4.1 (left) shows the
standard 2D star coordinates and Figure 4.1 (right) shows the optimized 2D star
coordinates. Similarity, Figure 4.2 (left) shows the standard 3D star coordinates
and Figure 4.2 (right) shows the optimized 3D star coordinates. In both figures,
the optimized star coordinates reveal more intuitive representations of clusters than
standard star coordinates. However, we still have difficulties to identify hierarchical

4. Nested level set visualization of hierarchical density clusters 59

density clusters. Clusters are extracted by contours in 2D and by surfaces in 3D
conveying the hierarchical density cluster structure of the multidimensional data
sets.

4.2 Cluster enclosure

When large multidimensional data sets are projected to star coordinates and plotted
as point clouds, it is difficult to detect clusters in the point cloud. To support
the understanding of hierarchical density clusters, we propose to visualize clusters
as connected regions in visual space. A region of a cluster contains all points in
this cluster, it has a minimal area or volume, and regions of clusters maintain the
hierarchical structure of clusters.

Consider a cluster described by a set of points

P:{pi:(pi17~--;pid>3i:1,...,n}

in 2D or 3D visual space e.g. d =2 or d = 3. To find a connected and compact region
that contains all points in P, we consider points in P as independent observations
of an unknown density function, and describe the region as the support of this
density function. A support of the density function can be estimated based on its

observations pi,...,p, as
n

S(r)=JB(pir), (4.5)
i=1
where r is a positive parameter and B(p;,r) = {p: ||p — pi|| < r} is the closed ball
centered at p; with radius 7. The parameter r is estimated such that S(r) is still
connected, i.e.,

7 = inf {7" >0:8(r)= UB(pi,r) is a connected set}.
i=1

The value 7 is a half of the length of the longest edge of the Euclidean minimum
spanning tree (EMST) of P. However, the boundary of the set S(r) is not smooth.

We use density field functions to approximate S(r) = |J B(p;,r) by a region with
i=1

smooth boundary.

The basic idea is that each spherical region B(p;,r) is generated by a density field
function. The density field function has its maximum at the point and decreases
around the point. The density field function only influences the region within the
radius R = 2r. An implicit function is given by the sum of all density field functions
and S(r) is approximated by choosing an iso-value of the implicit function and
taking the region bounded by the respective contour. Figure 4.3 shows the process
of approximating S(r) for two points. Figure 4.3 (left) shows the two density field
functions, Figure 4.3 (middle) shows the implicit function and a line representing the
iso-value, and Figure 4.3 (right) shows a contour that approximates the boundary

of S(r).

60 4.2 Cluster enclosure

:5 SR S

g E 1]
o. 04 02
04
o6
o8

3 2 E] o 1 3 33 2 E] i 3 3

Figure 4.3: The process of approximating S(r) for two points. Left: The two density
field functions. Middle: The implicit function. Right: The region approximation of
S(r).

4.2.1 Euclidean minimum spanning tree

A spanning tree of a graph G is a subgraph T that is connected and acyclic. The
Euclidean minimum spanning tree (EMST) is a minimum spanning tree of a set
of points, where the weight of the edge between each pair of points is the distance
between those two points. An EMST connects a set of points using edges such that
the total length of all the edges is minimized and any points can be reached from
any other by following the edges. The EMST of a set P with n points is a connected
graph having (n — 1) edges.

Euclidean minimum spanning tree A spanning tree 7' = (P, E) of the set of

points P is an EMST of P if " |[p; — p;|| is minimized over all spanning
(pipj)eE
trees of P.

Kruskal’s algorithm is an algorithm in graph theory that finds a minimum span-
ning tree for a connected weighted graph. We apply this algorithm to a complete
graph of the set of points P to find the EMST. First, edges of the complete graph
are sorted by weight (distance). Second, we iteratively take and remove one edge
from a queue that stores all edges in the given order. Next, we use a disjoint-set
data structure to keep track of which vertices are in which components. Using this
data structure, we can decide whether the current edge is an edge of the EMST.
The time complexity of Kruskal’s algorithm is O(n?logn) to find the EMST of n
points. This algorithm is given in the following:

Procedure Kruskal (G = (P, E))
for each point p; in P do
define an elementary cluster C'(p;) = ¢
sort edges in a queue Q
define tree T' «— ()
while T" has fewer than (n — 1) edges do
e = (i) — Q.front)
if C(py) # C(py) then
add the edge e = (p;,p;) to T’
C(pi) = C(p;) «— min(C(p;), C(p;))
return 7.

O © 00O Tk W+~

—_

4. Nested level set visualization of hierarchical density clusters 61

4.2.2 Density field functions

The most commonly used visualization of the implicit function is the sum of a
spherically decreasing density field around points. Most of the effort in constructing
these primitives goes into creating a flexible distance function. The properties of
the distance function will determine the shape of primitives and how they blend
together. The implicit function can be written in the following form:

fp) = ZD(”)’

where r; = ||p — p;|| is the distance from point p to a location at the point p;, and
D(r) is a density field function.

Blobby models Blinn [Bli82] introduced a point-based implicit model. The den-
sity field is a Gaussian function centered at each point. The parameters a and b
be used the standard deviation and the height of the function respectively. The
influence of the point is

Di(r) = bexp(—ar?).

Metaball models A variation of Blinn’s model is the metaball model. The meta-
ball model uses a piecewise quadratic instead of an exponential function.

2
o 1f0§r§§
DQ(T’): 3(T>2 . R
—(1—- = f=<r<
o\l~x) tgsr=k
0 otherwise

where R is the maximum distance that the control primitives contribute to the
density field function.

Soft objects Wyvill et al. [WMW86] simplified the calculation somewhat by defin-
ing a cubic polynomial based on the radius of influence for a particle and the distance
from the center of the particle to the field location. The key is that the influence
must be 1 when the distance r is 0, and 0 when the distance is equal to the radius
R of influence. A function which satisfies these requirements is

o - {2 o) 0

otherwise.

The computation of this equation is somewhat slow, due to the square root cal-
culation in the distances. The authors replaced the density field function Ds(7)

by
Dy(r) = ;%(%)3+§(%)2—%(%) 1 frs R

otherwise.

62 4.2 Cluster enclosure

For simplicity, we use the density function given by

r 2 .
- <
Ds(r) = (1 E) ifr <R

0 otherwise
or
-7y itr<n
Dyr)=q Vo) s
otherwise.

Figure 4.4: The density field functions.

Figure 4.4 shows different kinds of density field primitives. All the density func-
tions are smooth. The support of the Gaussian function D;(r) is not compact, while
the support of the other density field functions is compact. The compact support
of the density field function is advantageous for the computation of the implicit
function.

An implicit contour can be described by a set of generator points P, where each
generator point p; € P has aradius of influence R. The influence of a single generator
point p; at a point p is described by a density function D(r;) = D(||p — ps||). The
summation of all the density functions for all generator points form the density field
f(p). Thus, a level set of the implicit function f(p) = ¢ is defined as those points
p where the sum of the density values of all generators are equal to the threshold
value ¢ > 0. We choose the two parameters describing the radius of influence R and
the iso-value ¢ such that we can guarantee that

S(R,c)={p: f(p) > ¢}

is connected, contains all points in P, and has an area or volume of minimum
extension.

4. Nested level set visualization of hierarchical density clusters 63

Let p; and p; denote two points, which are connected by the longest edge in the
EMST of the set of points P as in Subsection 4.2.1. We choose the radius of influence
by R = ||p; — p;|| and the iso-value can be selected such that S(R,c) contains the
line segment

pi,pjl ={p=1tpi + (1 =1)p; : 0 <t < 1},

which ensure that S(R,c) is connected. This leads to

pi+pj pi+pj pi+p; R
FEE) = D(IPZE — pill) + (IR —pill) = 20(3).

R
and the iso-value ¢ can be selected as 2D(§>.

4.2.3 Enclosing point clouds

In this subsection, we describe a method to enclose point clouds by a connected
domain in two or three dimensions. A linear blend is defined by summing distance
functions to each point element. The blending equation for a set of primitive point
elements p; is

£®) =3 Dlllp = pl).

We compute a bounding box of all points in a cluster that contains the set of
points P = {p; = (zs1,...,%4): ©=1,...,n}. We denote this bounding box by

B = [al,bl] X ... X [ad,bd].

We divide the bounding box B into a number of cells with the length of each
bi — Q;

dimension being equal to h, and set n; = [1, i =1,...,d. We compute

the value at each grid (iy,...,%q), 4, =1,...,n;, j=1,...,d, of the function f(p).
Initially, the value of f(iy,...,14) is zero.

Procedure Computing(f(i1,...,iq))
1 for each point element p; do
2 find support region of D(||p — pi||)
3 for each grid point that is indexed (i1, ...,4) belonging to
the support of D(|[p — pil|)

4 fGusiad = D(la+ ik, g+ iah) = pill)

Marching squares FEach vertex is marked inside if the value of the vertex is
greater or equal than the iso-value and marked outside if the value of the vertex is
smaller than the iso-value. A square has four vertices, each vertex has two cases
(inside or outside), and we have 2* = 16 cases of squares as shown in Figure 4.6.
Each square is indexed by

index(v) :] Uy \ U3 \ Uy \ U1 ‘

64 4.2 Cluster enclosure

(24) (=2)

vl (e1) w2

Figure 4.5: The index of a square.

L £ o O L £ o O
o 0 0 o
0 1 s 3
o - o o
o o] 0 =
4 5 5] 7
el i) 1o] 1)
o s) o8
& 9 10 i1
0 —s 0 O
iz 13 i4 15

Figure 4.6: The 16 case intersection of contour with square.

where v; = 1 if vertex v; is marked inside and v; = 0 if vertex v; is marked outside.
An edge intersection of a square is indexed by index(e).

index(e) :’ €4 ‘ es3 ‘ € ‘ ey ‘

where e; = 1 if the edge e; is intersecting with the boundary and e; = 0 if the

edge e; lies inside or outside the domain. Figure 4.5 shows the indexed vertices and

edges of a square. An intersection point of the edge with the boundary is computed

using linear interpolation: Considering edge (vy,v) with fi = f(v1) < fiso and

fo = f(va) > fiso, the intersection point is given by v = (1 — t)vy + tvy, where
2 7 Jiso

f =12 e

f=f

Marching cubes Similar to marching squares, marching cubes finds intersections
of the surface with a cube. There are 2° = 256 ways the surface may intersect the
cube, and the symmetries reduce those 256 cases to 15 patterns, see Figure 4.7. We
use a lookup table for 256 cases for surface intersection with the edges of the cube.

4. Nested level set visualization of hierarchical density clusters 65

Figure 4.7: The 15 basic intersection topologies.

4.3 Results and discussions

We applied our methods to five data sets. The first data set is one of the most
well-known data sets in pattern recognition literature, the so-called Iris data set.
We have chosen this data set, as it can be compared to existing results from pattern
recognition. The Iris data set has 150 points in only four dimensions. The four
dimensions represent the four features sepal length (SL), sepal width (SW), petal
length (PL), and petal width (PW). Previous analyses have found out that there are
three categories in the data set, namely the iris setosa, the iris versicolor, and the
iris virginica, each having 50 patterns or points. We divide each dimension of the
data space into N = 10 steps leading to a grid size of 10*. We obtain 110 non-empty
cells and compute the high density areas as described in Section 3.2.1.

Figure 4.8 shows our results when visualizing nested density clusters with 2D
star coordinates. Figure 4.9 (left) shows our results when visualizing nested density
clusters with 3D star coordinates. For the lowest density, the data visualization
shows two clusters. The first cluster includes the versicolor and virginical group,
while the setosa group has been separated. The setosa group is homogeneous, i.e., it
does not exhibit subclusters. For higher density, the versicolor and virginical group
is split into three groups (two versicolor groups and one virginical group) such that
one can observe the groups represented in the data set. Figure 4.9 (right) shows
the setosa group in parallel coordinates, which demonstrates the homogeneity of the
extracted cluster. The visualization of this group exhibits high values in dimension
SW and low values in all other attributes. This correlation to the dimensions also
becomes obvious in the star coordinates layout. Hence, we observe that the groups
known from prior analyses were also separated by our approach and this separation
is intuitive using our visualization method. Moreover, we noticed that the versicolor
and virginical groups are more closely related than the setosa group. The individual

66 4.3 Results and discussions

Figure 4.8: Visualization of four-dimensional Iris data. Nested density cluster visu-
alization based on the hierarchical density cluster tree using our 2D star coordinates.

Figure 4.9: Visualization of four-dimensional Iris data. Left: Nested density cluster
visualization based on the cluster tree using our 3D star coordinates. Right: Se-
tosa group cluster (right cluster) is selected and its homogeneity is evaluated using
parallel coordinates. In both pictures, the relation between the setosa group cluster
with the dimension can be observed.

modes can be distinguished easily in 2D, there is a significant overlap of the cyan
and the magenta cluster, and the shapes of the surfaces represent the shapes of the
projected clusters, enclosing all projected cluster points in a narrow fashion. We

4. Nested level set visualization of hierarchical density clusters 67

can observe that the versicolor and virginical groups are the least distant ones.

Figure 4.10: Visualization of ten-dimensional synthetic data with optimized 2D star
coordinates.

The second data set, we have been investigating to evaluate our methods is a
synthetic data set with 480 records in a 10-dimensional space. Again, we divide
each dimension of the data space into N = 10 steps leading to a grid size of 10%.
We obtain 468 non-empty cells and compute the high density areas as described in
Section 3.2.1. Figure 4.10 shows the high density cluster visualization in 2D star
coordinates and Figure 4.11 (left) shows the high density cluster visualization in
3D star coordinates. The distribution of the clusters is rather spread, while the
density at the modes is similar throughout the data set. In Figure 4.11 (right),
we show the high density visualization using standard 3D star coordinates. It can
be observed that several clusters overlap when using standard 3D star coordinates,
while our optimized layout manages to avoid overlaps. The star coordinates display
14 clusters obviously, while Figure 1.5 only shows five clusters in scatterplot matrix
and Figure 1.6 only shows one cluster in parallel coordinates.

Figure 4.12 shows the 3D star coordinates visualizing another synthetic data set.
This data set has 38,850 observations in a 20-dimensional space, of which 14,831
observations define 8 clusters and the remaining 24,019 observations produce noise
with a uniform distribution. We divide each dimension of the data space into N = 10

68 4.3 Results and discussions

?""’

Figure 4.11: Visualization of ten-dimensional synthetic data. Left: Nested density
cluster visualization based on the cluster tree using our optimized 3D star coordi-
nates. Right: Nested density cluster visualization based on the cluster tree using
standard 3D star coordinates. The standard approach does not avoid overlapping
clusters.

Figure 4.12: Visualization of 20-dimensional synthetic data using optimized 3D star
coordinates.

steps leading to a grid size of 10%°. We obtain 1075 non-empty cells after removal of
all noisy cells (i.e. the ones containing only one point) and compute the high density
areas as described in Section 3.2.1. The data shows eight clusters of sizes 2107, 1038,
2085, 1312, 1927, 1329, 1581 and 1036, respectively.

In Figure 4.13 (left), these clusters are rendered by contours of groups of points

4. Nested level set visualization of hierarchical density clusters 69

Figure 4.13: Visualization of twenty-dimensional synthetic data using star coordi-
nates. Left: The high density cluster visualization using our optimized 2D star
coordinates. Right: The high density cluster visualization using our optimized 3D
star coordinates.

in a two-dimensional space. The groups are non-overlapping and homogeneous. In
Figure 4.13 (right), we show these clusters by wrapping surfaces using our 3D star
coordinates. In both 2D and 3D star coordinates, we can identify eight clusters.

- k‘\.

Figure 4.14: Visualization of five-dimensional outbd data using an optimized 2D
star coordinates.

70 4.3 Results and discussions

Figure 4.15: Visualization of five-dimensional outbd data using an optimized 3D
star coordinates.

The fourth data set, we consider is a real data set called “outbd”. It contains
16,384 data points with 5 attributes: spot (SPO), magnetics (MAG), potassium
(POS), thorium (THO), and uranium (URA). We divide each dimension of the data
set into N = 10 equally-sized intervals and only keep the non-empty cells that
contain more than 50 points. For the lowest level of density, we obtain four clusters,
One of the clusters is homogeneous, while each of the other clusters contain two
higher density clusters. In Figure 4.14, we show the hierarchical density clusters
by nested contours with the optimized 2D star coordinates. Using only two visual
dimensions, not all clusters could be separated. The subclusters of the yellow cluster
overlap. In Figure 4.15, we show the respective 3D result. Using three visual
dimensions there are no overlapping clusters. Figure 1.7 shows this data set in
parallel coordinates, we cannot identify any clusters. Figure 4.1 displays this data
set with 2D star coordinates and Figure 4.2 displays this data set with 3D star
coordinates. In both figures, we can identify some clusters of the data set. However,
the hierarchical density clusters are lost.

The last data set, we consider is an astronomy data set of a White Dwarf obtained
by a multi-field smoothed particle hydrodynamics simulation. The simulation makes
use of seven elements. Each particle stores the mass fractions of the seven chemical
elements Helium, Carbon, Oxygen, Neon, Magnesium, Silicon, and Iron. The size
of the data set is about 500,000 points. We divide each dimension of data space into
N = 10 steps without prior scaling (as mass fraction values should be preserved). In
Figure 4.16 (left), we visualize the clusters of the astronomical data set at time ¢ = 45
using 3D star coordinates. We obtain a cluster tree with three mode clusters. The
optimized 3D star coordinates indicate immediately that only Helium (red), Silicon
(black), and Carbon (green) play a significant role in the simulation. The use of the
star coordinates allow us to correlate the data to the dimensions. The first mode
cluster is highly dependent on Helium, the second mode cluster is highly dependent
on Silicon, and the smaller third mode cluster lies between them. The last two
clusters are more closely related, which is indicated by the lower-density cluster

4. Nested level set visualization of hierarchical density clusters 71

that includes them. In Figure 4.16 (right), we show the astronomical data set at
another time step ¢ = 5. At this earlier time step, the cluster tree has the same
topology but Oxygen (blue) still plays a more important role. These observations
were all feasible to the domain scientists.

Figure 4.16: Visualization of seven-dimensional astrophysical data using the opti-
mized 3D star coordinates. Left: time step 45. Right: time step 5.

We have presented a method to visualize the hierarchical density clusters using
optimized star coordinates. The hierarchical density clusters are constructed in the
multidimensional data space. The multidimensional data sets are projected into
visual space by linear mapping. The advantage of linear mapping keeps the hierar-
chical structure of clusters. We obtained the hierarchical density clusters in visual
space. Clusters are connected regions in multidimensional data. In visual space, the
clusters are display as connected regions. The connected regions are extracted by
using the minimal spanning tree of all points within the clusters. The regions rep-
resent the multidimensional clusters containing all points within the clusters while
having minimal areas or volumes. An implicit function is used to extract the re-
gions’ boundary as contours or surfaces. The implicit function is a summation of
all spherical density field functions of points within the cluster. The iso-value of
the implicit function is selected such that the region where the implicit function is
greater than the iso-value contains the longest edge of the minimal spanning tree.
This assures that cluster regions are connected. The advantage of using the minimal
spanning tree for this purpose is that it allows to represent any shape of the cluster.
The generated contours or surfaces adapt to the spatial distribution of the points
within the clusters. However, the computation of the minimal spanning tree is high.

The Narcissus system [HDWB95] encloses clusters in visual space by spheres.
Hence, the points’ distribution within the clusters is not very well represented. H-
blob [SBGO00] combines clustering and visualizing a hierarchical structure. In the
visualizing step, a cluster is extracted by an implicit function. The implicit function
of this cluster is considered a summation of ellipsoidal density field functions, i.e.,
subclusters of this cluster are represented by ellipsoids. The iso-value of the implicit

72 4.3 Results and discussions

function is computed by the minimal field value of the interconnecting lines between
the outliers and the cluster center, i.e., it is likely to be star-shaped. In the clustering
step, single linkage hierarchical clustering is used. Therefore, the implicit function is
a summation of two ellipsoidal density field functions. The assumption of ellipsoidal
shape for the subclusters is a limitation of the h-blob. However, the computation of
the iso-value and the surface extraction is fast.

Star coordinates [SY06, SY07, CL04, TM03, STTXO08]are used for projecting the
multidimensional data into a visual space and clusters are identified in the visual
space. This is different from our approach, clusters are identified in the multi-
dimensional space. The optimized star coordinates is similar with class-preserving
projection [DMS98, DMS02], but the star coordinates was not mentioned in [DMS98,
DMS02].

Figure 4.17: The 4D data set. Upper left: 2D standard star coordinates. Upper
right: 2D optimized star coordinates. Lower left: 3D standard star coordinates.
Lower right: 3D optimized star coordinates.

In this section, we evaluate our optimized star coordinates and compare the re-
sults with those obtained by standard star coordinates with optimal order of the co-
ordinates axes. We consider the synthetic 4D data set with four attributes. The 4D
data set contains six clusters with cluster centroids (1, 1,0,0), (1,0, 1,0), (1,0,0, 1),
(0,1,1,0), (0,1,0,1), and (0,0,1,1). Figure 4.17 (upper left) shows the data set in

4. Nested level set visualization of hierarchical density clusters 73

2D standard star coordinates and Figure 4.17 (lower left) shows the data set in 3D
standard star coordinates. With any reordering of standard star coordinates, two
of the six clusters are still overlapping. With 2D optimized star coordinates (Fig-
ure 4.17 upper right) and 3D optimized star coordinates (Figure 4.17 lower right),
we can obviously see all the six clusters.

Next, we consider a method for measuring the quality of views on multidimen-
sional data sets. Given a data set X = {x; € R™ : 1 < i < n} and a cluster
structure C'(X) = {1,...,q} defining ¢ clusters. Let ¢; be the centroid of the ith
cluster (1 < < q), and let z € X with a cluster label label(z) = i that indicates that
x belongs to the ith cluster. Sips et al. [SNLH09] introduced the Centroid Distance
(CD) to measure the compactness and separation of clusters in a multidimensional
data space. A low-dimensional embedding capturing this basic property should also
show separated clusters. CD describes the property of cluster members that the
distance dist(z, ¢;) to its cluster centroid should always be minimal in comparison
to the distance to all other cluster centroids, thus:

dist(z,c;) < dist(z,c;) 1<j<4q,j#1,

where dist is the Euclidean distance. C'D(z,¢;) = true denotes that the centroid
property for x and its centroid ¢; is fulfilled. Let X’ = {2} € R?: 1 <i <n} be a
projection of X into a visual space (d = 2 or d = 3). Distance Consistency (DSC)
is defined as

B #{z": OD(&', ¢y n)) = true} 1

DSC(X") .

00,

where 2’ is the projection of the data point x and ¢, is the centroid of the ith
cluster in the visual space. Table 4.1 shows the DSC for two synthetic data sets,
called 5D and 6D, comparing all reordering of 2D (3D) standard star coordinates
to find the best DSC and 2D (3D) optimized star coordinates. The 5D data set
has five clusters with five attributes and the 6D data set has 14 clusters with six
attributes. Figure 4.18 and Figure 4.19 show the best reordering with 2D standard
star coordinates (upper left), 2D optimized star coordinates (upper right), the best
of reordering with 3D standard star coordinates (lower left), and 3D optimized star
coordinates (lower right). Table 4.1 shows that the optimized star coordinates are
superior to finding the optimal reordering with standard star coordinates, as the
DSC values obtained with optimized star coordinates are always higher (or equal, if
the standard star coordinates achieve a perfect separation).

Data | Best 2D reordering | 2D optimized | Best 3D reordering | 3D optimized
5D 95.62 97.86 97.88 98.75
6D 82.71 100 100 100

Table 4.1: Distance consistency measure to compare the quality of the projection
with the best reordering of the standard star coordinates and optimized star coor-
dinates. Optimized star coordinates obtain better values.

74 4.3 Results and discussions

Figure 4.18: The 5D data set. Upper left: The best reordering of 2D standard
star coordinates. Upper right: 2D optimized star coordinates. Lower left: The
best reordering of 3D standard star coordinates. Lower right: 3D optimized star
coordinates.

Figure 4.19: The 6D data set. Upper left: The best reordering of 2D standard
star coordinates. Upper right: 2D optimized star coordinates. Lower left: The
best reordering of 3D standard star coordinates. Lower right: 3D optimized star
coordinates.

Chapter 5

Interactive visual exploration of
hierarchical density clusters

In this chapter, we present an interactive tool for the visual exploration of hier-
archical density clusters. To visually represent the cluster hierarchy, we present a
2D radial layout that supports an intuitive understanding of the distribution and
structure of the multidimensional multivariate data set. Individual clusters can be
explored interactively using parallel coordinates when being selected in the clus-
ter tree. Furthermore, we integrate circular parallel coordinates into the radial
hierarchical cluster tree layout, which allows for the analysis of the overall cluster
distribution. We apply an automatic coloring scheme based on the 2D radial layout
of the hierarchical cluster tree using hue, saturation, and value of the HSV color
space.

5.1 Radial layout of density cluster hierarchy

Based on the hierarchical density clusters using histograms or kernels in Chapter 3,
we present a layout for visualizing the resulting cluster tree. Of course, the visual-
ization techniques that are described in this section and the subsequent ones can be
applied to any hierarchical clustering result of multidimensional multivariate data.

Our visualization is based on drawing the hierarchical tree structure in a radial
layout. A radial drawing is a variation of a layered drawing where the root of the
tree is placed at the origin and layers are represented as concentric circles centered
at the origin [TBET99].

Let n be the number of leaves and m + 1 be the depth of the hierarchical tree
structure. The fundamental idea for our tree drawing is as follows: Considering a
unit circle, the leaf nodes are placed evenly distributed on that unit circle, the root
node is placed at the origin of the circle, and the internal nodes are placed on circular
layers (with respect to the same origin) whose radii are proportional to the depth
of the internal nodes. Hence, all mode clusters are represented by nodes placed on
the unit circle. These clusters are homogeneous. All other clusters are represented
by nodes placed on layers within the unit circle. These clusters are heterogeneous.

For the placement of internal nodes of the cluster tree, we use the notation

76 5.1 Radial layout of density cluster hierarchy

Figure 5.1: Radial layout of a cluster tree. (Left) An annulus wedge domain W =
(r,a, 8). (Middle) Splitting the annual wedge for placing three subtrees. (Right)
Placing internal nodes of cluster tree.

of an annulus wedge. Given a polar coordinate representation, an annulus wedge
W = (r,a, 3) denotes an unbounded region that lies outside a circle with a center
at the origin and radius r and is restricted by the two lines corresponding to angles
a and 3. Figure 5.1 (left) shows an annulus wedge W = (r, a, 3) (restricted to the
unit circle).

Let tree T' be the subtree of our cluster tree that is to be placed in the annulus
wedge W = (r, «, 3). The radius r denotes the distance of the root of 7" to the origin.

d
If the root of T" has depth d in the entire cluster tree, then »r = —. Moreover, we use

m
the notation £(7T) for the number of leaves of a tree T'. Now, let T7,. .., T} be those
subtrees of tree T', whose root is a child node of T'. For each subtree T}, we compute

the annulus wedge W; = (r;, oy, 5;), where r; = is the radius for placing the

root node T;,
B 0T 2
a; =+ Z (T5)—
1<
and 5
i
Bi = a; + U(T;)—.
n
Figure 5.1 (middle) shows how an annulus wedge is split for a tree 7" with three
subtrees T7,T5,T3. This iterative splitting of the annulus wedge is started at the
root node of the cluster tree, which is represented by an annulus wedge (0, 0, 27).
Finally, we can position all internal nodes of the cluster tree within the respective
annulus wedge. Considering subtree T" with the corresponding annulus wedge W =

+ 0 a+ [
2

«
(r,a, 3), we place the node at position (7" cos , T sin with respect to

the polar coordinate system. Figure 5.1 (right) shows the placement of nodes for
the annulus wedges shown in Figure 5.1 (middle).

The 2D radial layout above can suffer from edges crossing problems. To avoid
this problem, we reposition the interior nodes of the tree structure. Assume that

5. Interactive visual exploration of hierarchical density clusters 7

o

Figure 5.2: Radial layout of hierarchical structure without edge crossing.

the root of a subtree T has the position p in a unit circle and lies on the circle with

d
radius » = —. Moreover, let T; be a subtree whose root is a child of the root of T'.

m
The position p; of the root of subtree T; is the intersection of the circle with radius

d+1
T =

and a line segment from p to the middle point of the positions of the leaf

nodes Tgf subtree T; on the unit circle. Figure 5.2 (left) shows the subtree 7" and its
child T; . The root node of T is displayed on the radial layout by the position p
and then its child 7; by p; in Figure 5.2 (right). Starting with the root node at the
origin of the unit circle, we find the position of each interior node recursively.

Figure 5.3: Color of hierarchical density clusters.

For drawing the nodes of the hierarchical density clusters, we use circular disks
with an automatic size and color encoding. The size of the nodes are determined
with respect to the size of the respective cluster that is represented by the node. We

78 5.2 Linked views with parallel coordinates

use a logarithmic scaling to encode the size. Let o be the radius of the circular disk

log n;
of the root node. Then, the radius of each node N; is determined by r; = r 10 gn

ogn
where n; is the size of the cluster that is represented by the node N; and n isgthe
size of the data set.

The color of the nodes is determined with respect to the position in the radial
layout. Color encoding is done using the HSV (Hue, Saturation, and Value) color
space. Hue H encodes the angle in our radial layout and saturation S encodes the
radius (distance to the origin), while value V' is constant (set to 1). Hence, the
applied coloring scheme can be regarded as a slice at V' = 1 through the HSV color
space. Figure 5.3 shows a visualization of the hierarchical density cluster. The size
and color of nodes shown in this figure intuitively encode the size and the hierarchical
structure of the respective clusters.

5.2 Linked views with parallel coordinates

The cluster tree visualization also serves as a user interface for interaction with
linked views. We support the linked view with a parallel coordinates layout.

In parallel coordinates, we have m parallel axes and each data point is displayed
as a polyline that intersects the parallel axes at the respective value of the repre-
sented attributes, where m is the number of attributes. One limitation of parallel
coordinates is that they suffer from over-plotting. We display clusters by drawing
a band that contains all polylines of the data points belonging to the respective
cluster.

Colors are induced by the cluster tree visualization and indicate, to which clus-
ter the drawn polyline belongs. More precisely, the colors of the multidimensional
multivariate data points are assigned based on the radial layout of the hierarchical
density clusters. The color for each data point is defined by the color that was
assigned to the node of the cluster of the highest depth containing that data point.

When drawing the band of polylines for a cluster, this band uses the colors of the
contained data points and gets assigned an opacity value that is proportional to the
density of the polylines in the parallel coordinates display. The opacity is used to
enhance high density and to diminish low density of polylines. More precisely, the
opacity function maps a multidimensional data point to the opacity interval [0, 1]

by:

a(z;) = (pi)ﬁ (5.1)

pmax

where p; is the density value at the multidimensional data point x;, pmax = lrga<x Di
<i<n

is the global maximum, and § > 0 is a scaling parameter. Figure 5.4 shows the
impact of parameter to reduce clutter in parallel coordinates: higher values of (3
emphasize high densities of polylines and diminish low densities of polylines.
Although the opacity function can help to reduce clutter in the parallel coordi-
nates, it is difficult to identify clusters. Hence, we combine coloring based on the
radial layout of a density cluster hierarchy and an opacity function to reduce clut-
ter and to show clusters in parallel coordinates. User interaction is performed by

5. Interactive visual exploration of hierarchical density clusters 79

Figure 5.4: Transfer function based on density. (Upper left) 3 = 0. (Upper right)
B =1. (Lower left) 5 = 5. (Lower right) 3 = 10.

clicking at the clusters of interest in the cluster tree visualization.

We demonstrate the functionality of our approach by applying it to two well-
known data sets. The first data set is, again, the “outbd” data set. It contains
16384 data points with five attributes (spot, magnetics, potassium, thorium, and
uranium). We divide each dimension of the data set into N = 10 equally-sized
intervals. We obtain 3661 non-empty cells and compute the hierarchical density
clusters using histograms. The depth of the tree is ten, and it contains 21 leave
nodes (mode clusters) and 13 internal nodes.

The hierarchical density cluster tree is displayed in Figure 5.5 (left) and its
linked parallel coordinates view in Figure 5.5 (right). The cluster tree visualization
exhibits an overview of the distribution of the multidimensional multivariate data,
whereas parallel coordinates show clearly the values of data point attributes and
their domain. The parallel coordinates allow for the exploration of individual clus-
ters as well as the correlation between some selected clusters. Homogeneous clusters
appear in a unique color in the parallel coordinate layout, while heterogeneous clus-
ters exhibit multiple colors. Figure 5.5 (right) shows three heterogeneous clusters
chosen by selecting three nodes in the cluster tree that are shown by the red dots.
The cluster’s attributes are high in magnetics, low in potassium, and medium in
other attributes. Moreover, the cluster partitions into three subclusters based on
the attributes magnetics and uranium.

For the results in Figure 5.5, we used the hierarchical density clustering using
histograms (see Section 3.2.1). We compare this to the hierarchical density clustering
using kernels (see Section 3.2.2) shown in Figure 5.6. We use bandwidth parameters

80 5.2 Linked views with parallel coordinates

Figure 5.5: Linking hierarchical density cluster using histogram with parallel co-
ordinates. (Left) Radial layout of the hierarchical density cluster tree. (Right)
Interactively selected clusters are visualized in parallel coordinates.

max; — min;

hj = —2———2 5 = 1,...,5, where max; = max{z;;,1 < i < n}, min; =
min{z;;,1 <i <n}, and N = 10. We obtain 816 number of support of points, and
the hierarchical density cluster is shown in Figure 5.6 (left). The depth of the tree is
four, it contains six mode clusters (one of them only contains two points). Figure 5.6

(right) shows six mode clusters that are selected and highlighted in Figure 5.6 (left).

255 255 255 128 166

EFOT MAG POTAE THOR UERA

Figure 5.6: Linking hierarchical density cluster using kernel with parallel coordi-
nates.

With the same size of cells in the hierarchical density clusters using histogram and
support of points in the hierarchical density clusters using kernel, the hierarchical
density cluster results are different. Some clusters in the hierarchical density clusters

5. Interactive visual exploration of hierarchical density clusters 81

using kernel can be identified in the hierarchical density clusters using histograms.
The red cluster in Figure 5.6 cannot be identified in the hierarchical density clusters
using histograms. If we change the size of support of points, all clusters in the
hierarchical density clusters using kernel can be identified in the hierarchical density
clusters using histograms. Figure 5.7 (upper) shows the hierarchical density clusters
using histograms with N = 10. Figure 5.7 (lower) shows the hierarchical density
clusters using kernel with N = 12. Figure 5.7 shows the same cluster results in
parallel coordinates, but the hierarchical structure is not identity.

Figure 5.7: Comparison of hierarchical density cluster results using histograms and
kernels. (Upper) Hierarchical density cluster results using histograms. (Lower)
Hierarchical density cluster results using kernels.

Our approach can also be used for the visual analysis of multi-field spatial data
sets. The feature space is a multidimensional multivariate data space, to which we
apply our methods. In addition to the parallel coordinates view, we provide another
linked view that shows the distribution of the data points (belonging to the selected
clusters) in volumetric object space (physical space).

The second data set, we used is such a multi-field spatial data set and comes from
the 2008 IEEE Visualization Design Contest [WNO08]. We uniform-randomly sample
the object space to obtain 1,240,000 data points with eleven feature attributes,
namely total particle density, gas temperature, abundances of H mass, H, mass, He
mass, He, mass, He,, mass, H_ mass, Hy mass, and Hy, mass, and the magnitude
of turbulence.

82 5.2 Linked views with parallel coordinates

13856 6 74807 07599 07597 034 034 018509 1 59725e-07 7.01385e-03 14293903 16302 2

15,7143 72.16 0.000308673 §.777e-05 1.6688:-11 0 0 209312 1.1143Fe-13 5.872¢-15 o
density temperatire H mass H+ rmass He mass He+ mass He++ mass H- mass H_roass H_3+mass turbulen

Figure 5.8: Linking cluster tree visualization with parallel coordinates and object
space rendering. (Upper) Selected clusters in parallel coordinates (feature space).
(Left) Radial layout of the hierarchical density cluster tree. (Right) Selected cluster
in volumetric object space (physical space).

Figure 5.8 shows the selection of three clusters using the cluster tree interface
and displaying their attributes in parallel coordinates with different colors as well
as their location in physical space. The physical space rendering displays all data
points that belong to the selected cluster in the respective color of the node that
represents the cluster in radial layout of the hierarchical density clusters. All three
selected clusters show a high magnitude of turbulence. In addition, the red cluster
shows high H, and He,,; mass and low H and He mass, while the blue cluster
shows low H, and He,, mass and high H and He mass, and the green cluster
shows medium values for H,, He, ., H, and He mass. Interestingly, in physical
space the red cluster lies between the blue and green cluster, which is not true when
observing the attribute values in feature space.

The linked views between 2D radial layout of the hierarchical density clus-
ters with parallel coordinates display the hierarchical structure of density clus-
ters and clusters on parallel coordinates. Clusters are displayed on parallel coor-
dinates by combining color encoding and opacity. The advantage of our approach
shows both homogeneous and heterogeneous clusters. In hierarchical parallel coordi-
nates [FWR99], clusters are visualized by opacity bands, and we cannot distinguish

5. Interactive visual exploration of hierarchical density clusters 83

leaf or interior clusters of the hierarchical clustering. The opacity of polylines in par-
allel coordinates is similar with high-precision texture techniques [JLJCO05, JLJCO06],
but the authors did not discuss the high-precision texture for hierarchical clustering.

5.3 Integrating circular parallel coordinates

Parallel coordinates display successfully multidimensional multivariate data, but for
large data sets they suffer from clutter due to overplotting polylines and clusters.
The linked view presented in the previous section avoids overplotting by selecting
individual clusters. If one is interested in observing the entire data set with all
(hierarchical) clusters simultaneously, one has to choose a different visualization. We
propose to integrate circular parallel coordinates into our cluster tree visualization
approach. The main idea is to display the attributes of each cluster in a local
circular parallel coordinates system that is placed at the node positions in the radial
layout. Hence, our system integrates multiple circular parallel coordinate views and
hierarchical density cluster visualizations in one layout. This radial layout supports
both the comprehension of the cluster distribution and a similarity/dissimilarity
comparison of all clusters with respect to their attribute values.

Figure 5.9: Integrated circular parallel coordinates in cluster tree visualization for
data set with 14 mode clusters.

In circular parallel coordinates, the dimensions of the data sets are displayed as
axes that emanate from the origin. The range of the axes is scaled and starts with
its minimum values next at the origin and ends with its maximum values at the
unit circle. As for standard parallel coordinates, each data point is represented as a
polyline that intersects the axes at its values for the attributes. This visualization
is also referred to as star glyph plots. One of the advantages of circular parallel
coordinates is the efficient use of display space. To demonstrate the functionality
of our visual analysis system, we apply the integrated view to a synthetic data set

84 5.3 Integrating circular parallel coordinates

containing 480 data points with ten attributes and the “outbd” data set described
in Section 5.2.

Figure 5.9 shows the integrated view applied to the synthetic data set. The data
set exhibits 14 clusters, which are all mode clusters. The circular parallel coordinates
view in the center displays the entire data set. Because of overplotting, we cannot
see how many clusters are contained and what their distribution is. Using our cluster
tree visualization with integrated circular parallel coordinates, the user can easily
observe the value distributions of the individual clusters and how the clusters relate
to and differ from each other. Figure 1.6 shows this data set in parallel coordinates.
Clusters are not visible.

Figure 5.10: Integrated circular parallel coordinates in cluster tree visualization for
data set with hierarchical clusters.

Figure 5.10 shows the integrated view applied to the “outbd” data set. This
data set contains a hierarchical structure, which can be easily observed due to the
cluster tree layout. Moreover, the different attribute ranges of all clusters can be
investigated simultaneously.

In case of a data set with a large hierarchical structure, i.e., many clusters and
high clustering depth, the available screen space for rendering each circular parallel
coordinates layout may be too small to see all the details. We address this issue
by providing a focus+context technique. When the user drags the cursor over the
display, the current cursor position is the center of a circular focus. The focus’ size
is the size of one circular parallel coordinates layout. The focus region is blown up
linearly by a magnification factor, which can also be adjusted interactively. The
context regions are linearly down-scaled. For the linear scaling, the current cursor
position is chosen as a center and the linear scaling is applied to all rays emerging
from that center. Hence, both focus and context are fully shown but at different
scales. Figure 5.11 (left) shows a focus region that is expanded as in Figure 5.11
(right).

5. Interactive visual exploration of hierarchical density clusters 85

R R/
0 X

Figure 5.11: Focus + context technique. Focus region displays by green region.
Context region displays by yellow region.

e

#

A

Figure 5.12: Focus+context technique for integrated visualization with cluster tree
and circular parallel coordinates.

Assuming a context region within a circle with center O and radius R and a focus

R
region within the circle with the same center O and radius T the focus region is

3R
expanded to a region with center O and radius e A mapping FC' from Figure 5.11
(left) to Figure 5.11 (right) is given by:

OX' = FO(OX) = mag(||5)?||)5)? (5.2)
where mag(r) is the magnification function,

3r fo<r<
mag(r) = 3 4 op
3

Figure 5.12 shows our integrated view with cluster tree and circular parallel
coordinates when applying the focus+context technique. The cluster in the focus

i
4’ (5.3)

if%ST’SR

86 5.4 Case study

can be easily investigated. It exhibits small ranges and high values for the attributes
potassium and uranium, a small range and medium values for the attribute thorium,
a small range and low values for the attribute magnetics, and a large range in the
attribute spot. The cluster also exhibits multiple colors, which indicates that the
cluster is heterogeneous.

The 2D radial layout of the hierarchical density cluster tree provides more com-
pact views and more flexible navigation and interactive techniques than the standard
dendrogram tree layout. The more compact representation allows us to assign the
available screen space more efficiently when incorporating the circular parallel coor-
dinates glyphs.

5.4 Case study

In this section, we applied our methods for visual analysis of gene expression data.
A gene expression data set can be represented by a real-valued expression matrix

G = (gij)nxm as

g1 G912 ' Gim
921 G22 - G2

a=| "7 7 . (5.4)
9n1 Gn2 *°° Gnm

where n is the number of genes and m is the number of samples (conditions, time
steps). In the expression matrix GG, the rows form the expression patterns of genes
and the element g;; represents the measured expression level of the i¢th gene in the
jth sample. In gene-based clustering, genes are treated as objects while samples
are treated as attributes, and the goal of gene clustering is to identify co-expressed
genes that indicate co-function and co-regulation.

Euclidean distance and Pearson’s correlation coefficient are common ways to
identify co-expressed genes. In addition, Euclidean distance can be more appropriate
for log-ratio data, while Pearson’s correlation coefficient can be better for absolute-
valued data.

Euclidean distance Before using Euclidean distance of genes, each gene is stan-
dardized with zero mean and variance one. For each gene ¢; = (g1, .., gim) the
mean value p; and the variance o; are given by:

Z ik
k=1

Hi =)

m
(5.5)

Z (gik - Mz')z
k=1

o; =

m
Therefore, gene g; is transformed to g; = (gi1, - - -, Gim) With
~ Jike — i

gir = —— k=1,...,m.

7

5. Interactive visual exploration of hierarchical density clusters 87

Without loss of generality, we assume that each gene g; is standardized with zero
mean and variance one such that

||9z‘|| =

Hence, all genes lie on the surface of a hypersphere with radius R = y/m, and the
Euclidean distance is given by

lgi — g;l| = R\/2<1 —cos(gi,gj))

Pearson’s correlation coefficient Pearson’s correlation coefficient between two
genes g; and g; is defined as

5 (9o — 1) (g — 1)
P(Qz‘,gj) = mkzl = .
\/kzl@zk - u@-)Q\/kEl(gjk - /M;)2

We transform gene g; to g; = (g1, - - -, Gim) With

(5.6)

Gik — =1

Z (gz'k - Mi)2
k=1

Jik = .

We have ||g;|| = 1 and p(g;, 9;) = p(di, 95) = > GixGix = c0s(Gi, Gj)-
k=1
In both cases, we assume that the gene expression data lie on a unit hyper-

sphere. Moreover, Euclidean distance and Pearson’s correlation coefficient relate to
each other as follows

lg: = g511* = 2(1 = cos(gi,5;)) = 2(1 = plgi.9,)). (5.7)

We apply the hierarchical density clustering using kernel algorithm in Section 3.2.2.
We define that two genes g; and g; are co-expressed if and only if p(gi, 9;) > po.
where pyg is a threshold parameter. This is equivalent with ||g; — g;)|| < 79, where
ro = v/2(1 — po) as a threshold distance. First, for each gene g; we find all genes
that are co-expressed with g; and generate support of points. Second, two support
of points B(g;,ro) and B(g,,ro) are intersecting if cos(g;, g;) > cos2(arccos pg) or
llg: — 95)|| < rov/(4 —1r3), respectively.

The gene expression data set, we are using is called the “Serum” data set. The
data set contains 2,467 genes, each of which is described by twelve time steps. We
set the threshold parameter py = 0.90. The hierarchical density cluster tree of the
data set is presented in Figure 5.13 (left), and Figure 5.13 (right) displays all six

88 5.4 Case study

0933033 0944000 0833403 00KIT4 DI76001 DJ63606 0.805ddd 0BEISG0 0BGG4T 004G 0880004 0.6388

S07OTEL 0043 -DBISES 06233 _0FTI0ST 0856001 -07EN4S1 001413 -0627085 -0051204 075733 0755

11 u2 u3 x4 5 e x? 8) =i ety et

Figure 5.13: Linked views “Serum” data set. (Left) Hierarchical density clusters.
(Right) All mode clusters display on parallel coordinates.

Figure 5.14: Visualizing “Serum” data set with optimized 3D star coordinates.
Mode clusters are well separated. Two views are shown.

mode clusters using linked parallel coordinates. The mode clusters displayed on the
parallel coordinates are very cluttered. Figure 5.14 shows the mode clusters with
3D optimized star coordinates. The mode clusters are well separated.

The other gene expression data set, we are using is called the “Yeast cell cycle”
data set in [CCW*98]. The data set contains 6600 genes over 17 time steps. This
data set measure absolute values. The threshold parameter is chosen for this data
set po = 0.86. The hierarchical density cluster tree is shown in Figure 5.15 (left).
It contains five homogeneous clusters. A node in the hierarchical density cluster
tree is selected. The homogeneous cluster corresponding to this node is represented
in parallel coordinates in Figure 5.15 (right). All genes in the cluster are similar
patterns. Figure 5.16 (right) shows all homogeneous clusters in optimized 3D star
coordinates. The clusters are well separated in visual space. The hierarchical den-
sity clusters using histogram cannot apply for gene expression data set. The gene
expression data is transformed before clustering. All genes are placed in a small

5. Interactive visual exploration of hierarchical density clusters 89

S

W/
MW

NN
N X S

-

Figure 5.15: Linked views “Yeast cell cycle” data set. (Left) Hierarchical density
clusters. (Right) A selected mode clusters display on parallel coordinates.

®l xE x3 x4 xE w6 wF k@ k@ xl0 xll xl3 x13 x4 w15 w16 wIF

cone region of a unit hyper-sphere.

Our system is helpful for biologists. Our system can automatically identify clus-
ters of genes, which express similar patterns in the data. Clustering results are
visualized in our system. In the radial layout of the hierarchical density clusters,
researchers get an overview of the distribution of the clusters. If researchers select
a cluster on the radial layout view, all genes in the cluster are shown in the parallel
coordinates view. In the parallel coordinates view, researchers can see the pattern
of the cluster, i.e., the cluster has high or low expression levels over all samples,
as shown in Figure 5.15. To compare the correlation and differences between two

Figure 5.16: Visualizing “Yeast cell cycle” data set with optimized 3D star coordi-
nates. Mode clusters are well separated.

clusters, researchers can select the two clusters using the radial layout. All genes
in the two clusters are shown in parallel coordinates view and researchers can see

90 5.4 Case study

the different expression levels of the two clusters over all samples. Because of the
overplotting in parallel coordinates, many clusters shown simultaneously in parallel
coordinates does not support to visual comparison of the difference between these
clusters. Figure 5.13 shows five highly cluttered of clusters. The optimized star co-
ordinates can simultaneously visualize multiple clusters. Figure 5.14 and Figure 5.16
show five clusters. In the star coordinates view, researchers also see the pattern of
clusters. However, it shows the expression level less accurately than the parallel
coordinates view, as the projection introduces ambiguity.

Figure 5.17: Visualizing the hierarchy of co-expressed gene clusters in “Serum”data
set.

The dendrogram is a traditional method for visualizing gene expression data
set. The dendrogram is representing the hierarchical clustering using single linkage
clustering. For large-scale gene expression data, the dendrogram is very complex and
clusters are not identified automatically [SS02]. In our approach, the hierarchical
structure is reduced and clusters are automatically determined. Users can select
nodes in radial layout of the hierarchical density clusters and all genes in these
clusters are displayed in parallel coordinates or star coordinates. Figure 5.17 shows
the hierarchy of co-expressed gene clusters in the “Serum” data set. The integrated
circular parallel coordinates into 2D radial layout of the hierarchical density clusters
supports to display the hierarchy of clusters simultaneously.

For gene expression data, heatmaps are more common than the use of parallel
coordinates. To provide the display that is familiar to the biologists, we replace
the circular parallel coordinates by a heatmap. The heatmap is also embedded in
the 2D radial layout. However, the heat map does not display the individual genes

5. Interactive visual exploration of hierarchical density clusters 91

Figure 5.18: Linked heatmap view for the “Serum” data set. (Left) Hierarchical
density clusters with embedded heatmaps for the means. (Right) A cluster is
displayed with all genes and attributes in the heatmap view. The two subclusters
markes as “1” and “2” can easily be observed. Genes belonging to the selected
cluster but not to any of the two subclusters are displayed in between.

but the mean of clusters. Figure 5.18 (left) shows the mean of the clusters of the
“Serum” data set. The values of the genes are mapped into colors. The color scale
range that is used is the one that is familiar to the biologists. It maps the hues green
to yellow to log ratios —3 to 0 and the hues yellow to red to log ratios 0 to 3. The
advantage of color encoding the mean clusters is that it shows the difference between
clusters. Showing the heatmap for all genes within the clusters would not scale well.
Therefore, we support a linked view, in addition, where the heatmap of all genes
within a selected cluster is shown. Figure 5.18 (right) shows a linked view of the 2D
radial layout with a heatmap view. In the heatmap, genes in homogeneous clusters
(leaf nodes) are ordered randomly and genes in heterogeneous clusters (internal
nodes) are ordered by inorder traversal of the hierarchical density cluster tree. In
Figure 5.18 (left), a cluster (internal node) is selected in the 2D radial layout. All
genes within the cluster are displayed in the heatmap view in Figure 5.18 (right). We
can easily identify the two subclusters within the selected cluster. They appear to
the left and the right of the heatmap, respectively. Genes belonging to the selected
cluster but not belonging to the two subclusters, are displayed between the two
subclusters. The example also shows that the random order within a homogeneous
cluster is a valid choice, as the attributes exhibit a high similarity.

Figure 5.19 shows the hierarchical clustering structure of the “Serum” data set
using the Hierarchical Clustering Explorer (HCE) version 3.5 [SS02]. When the
similarity bar indicates value 0.537, one gets six clusters. All clusters are shown in
the heatmap and linked views with profiles. Comparing visually with Figure 5.19,
clusters can more intuitively been observed in Figure 5.17 and the gene expression
level of clusters are also identified more intuitively using embedded circular parallel
coordinates than using heatmaps. We made a user study with ten participants to
compare visual explorations using the two systems. We refer to the systems as

92 5.4 Case study

& Hierarchical Clustering Explorer - HCE i
£A File Edit Clustering Tool View Window Help [-]&]x]
S| MEMAGT I BES T

HCES —_—nix

ithout Normalization

{wverage Linkage Color M. -|*
Pearson's r: Centered, Unabsolute olor Mapping | (N ~| ©
2467 ltems

12 Variables

4 of hems Left = 2467 o ‘
Minimum Similarity = 0.544 # of Clusters = 6 % of Alones = 0 2

1183 T

1’ mﬂ] | 1 [Ad\uslBarHel;hlj
Lk 'Mﬁﬂ%h’w ﬂhl‘ i “'""‘“ il ¥ Shaw Min Similarty Bar
¥ Show Detail Si ar
[V Show Clustering Informatian
[V Show v
I~ Show mes

Modetbased -
jo-801 Pearson's 1 -

Pin This Resul
Consider &1 Profiles
[¥ show sthouette

Delete

— Delte |
Clear ALL

"I Cobor Mosaic] JEH] Table View] Ju] Histogram Ordering | [E<] Scalterpiot Ordering) Profie Search [|G] Gene Ontology | [K] K-means

Figure 5.19: Hierarchical Clustering Explorer of the “Serum” data set.

HCE and CPC (Circular Parallel Coordinates). We asked the test persons four
questions, checked the correctness of the results, and measured the time it took
them to complete the tasks. The questions were the same for both systems. Half of
the test persons first fulfilled the tasks using the HCE system and afterwards using
the CPC system. The other half did it vice versa. The four exploration tasks were
specified by the following four questions:

1. What is the average variability within a selected group?
2. Which attribute has the highest variability within the group?
3. How many attributes have a variability larger than 20 %?

4. What other group is the most similar to the group?

HCE | CPC | HCE CPC
20 % | 30 % | 205 (s) | 12.8 (5)
80 % | 100% | 10.0 (s) | 6.4 (s)
(s)
(s)

60% | 50% | 11.2 135 (s)
30% | 20% | 45.8 19.2 (s)

IS NGUIN NI

Table 5.1: Comparison between HCE and CPC on gene expression data: Correctness
(in percent) and timings (in seconds).

Table 5.1 presents percentage of the right answers and average duration to give the
answers (in seconds). For the HCE system, we first tried to provide the test persons

5. Interactive visual exploration of hierarchical density clusters 93

with the heatmaps and the dendograms only. They were not able to give an answer
to Questions 1-3. So, we also provided them with the linked parallel coordinates,
which basically reduced the comparison to comparing standard parallel coordinates
with circular parallel coordinates. As expected, there was no obvious preference that
could be documented for the results of Questions 1-3. For Question 4, one needs
to compare different clusters, i.e., it goes beyond just looking at a single cluster.
When asking for the cluster closest to the blue mode cluster in Figure 5.17, all test
persons would immediately find the right solution (the green mode cluster), as this is
indicated by the cluster hierarchy. So, for the numbers given in Table 5.1, we made
the task more difficult and asked for the mode cluster closest to the orange one. The
percentage of right answers in HCE and CPC are rather low and exhibit a slight
difference only the duration to answer the questions using HCE are significantly
longer than when using CPC. The interpretation of the user study would be that
heatmaps are significantly harder to evaluate quantitatively than parallel coordinates
and that linked parallel coordinates require significant user interaction, which can be
avoided using embedded circular parallel coordinates. Moreover, embedded circular
parallel coordinates provide an intuitive means for visual data exploration tasks.

94

5.4 Case study

Chapter 6

Conclusion and future work

We have presented a framework for visual analysis of multidimensional multivariate
data based on hierarchical cluster visualization. Our system incorporated automatic
computations of hierarchical density clusters using efficient grid-based algorithms,
visualization of the hierarchical density cluster tree using an optimized star coor-
dinates with a nested level set visualization for density clusters, a 2D radial layout
with linked views to parallel coordinates rendering, and the integration of circular
parallel coordinates into the radial layout cluster tree layout.

Chapter 3 introduced two algorithms to create hierarchical density clusters.
First, a hierarchical density cluster was created by a top-down approach based on
histogram density estimation. The traditional histogram density estimation was
simple, but it was not efficient for high dimensional space. By combining it with a
new partitioning in high dimensional space, we developed a method that is efficient
and scalable with both the size and the dimensions of the data set. Second, a hierar-
chical density cluster was created by a bottom-up approach based on kernel density
estimation. We proposed another effective method for partitioning high-dimensional
space and a more accurate estimation of density in which the data set is partitioned
into support of points (intersecting partition). The advantages of the two algorithms
were fast, capable any shapes of density clusters, and can handle noise of the data
sets.

Chapter 4 presented a method for visualizing hierarchical density clusters based
on optimized star coordinates. The optimized star coordinate system was defined
such that it maintains distances between two barycenters of mode clusters when
high-dimensional data was projected into visual space. We introduced both 2D
and 3D optimized star coordinates. In 2D optimized star coordinates, clusters were
visualized by enclosing contours, and in 3D optimized star coordinates, clusters were
visualized by enclosing surfaces. A nested level set visualization for the high density
area with respect to different density levels allowed for an interactive exploration of
the hierarchical clusters and to correlate the clusters to the original dimensions.

Chapter 5 presented a system for the visual analysis of multidimensional mul-
tivariate data based on hierarchical cluster visualization. Our system incorporated
visualization of the hierarchical density cluster tree using a 2D radial layout, linked
views to parallel coordinates and object space renderings, and the integration of
circular parallel coordinates into the radial cluster tree layout. The 2D radial lay-

96

out of the hierarchical density cluster tree supported an intuitive visualization to
summarize the distribution structure of the data set (clusters with different density
levels). The colors were assigned automatically by mapping the HSV color space
to the radial layout and allowed for intuitive linking. The combination of color and
opacity supported an intuitive visualization of selected clusters in a linked parallel
coordinates view. The integration of circular parallel coordinates can solve the over-
plotting problem for large data by displaying clusters in multiple views embedded
into the cluster tree layout. The linked object-space view was important in the
context of spatial multi-channel data.

There are some limitations of the presented approaches that are left for future
work.

e As the hierarchical density clusters are based on continuous density distribu-
tion of multidimensional data sets, the clustering algorithms do not handle
data set that contain category attributes.

e The density distribution of multidimensional data is estimated based on his-
togram or kernel methods, which depend on some parameters (grid sizes in
histogram method and kernel sizes in kernel method). The clustering algo-
rithms are not automatically selecting these parameters.

e The hierarchical density clusters are created in full dimensions of the data sets.
Therefore, the clustering algorithms are not applied for high dimensionality,
because clusters may not exist with full dimensions.

e When visualizing hierarchical density clusters, the optimized star coordinates
only consider the homogeneous clusters, that do not consider the hierarchical
structure of density clusters.

e Due to our design goal to use linear projection only, clusters that are well-
separated in the multidimensional space may still overlap in visual space.

e The radial layout of the hierarchical density clusters did not support the sim-
ilarity between clusters.

e Our system is capable to handle multidimensional data of up to 20 or even
50 dimensions. A future direction would be to look into data sets with higher
dimensionality, i.e., having hundreds or thousands of dimensions. A common
way to overcome the problem of high-dimensional data is reducing its dimen-
sionality. Feature transformations are commonly used on high-dimensional
data sets that include techniques such as principal component analysis (PCA)
and singular value decomposition (SVD). Hence, high-dimensional data is
transformed into a lower-dimensional space of up to 50 dimensions. Another
common technique of reducing dimensions is feature selection, that selects
a subset of relevant dimensions and removes irrelevant dimensions. In high-
dimensional data sets, clusters can only exist in subspaces. Hierarchical density
clusters can be developed to identify clusters in a subspace, i.e., the hierarchi-
cal density clusters can handle both hierarchical dimensions and hierarchical

6. Conclusion and future work 97

clusters. Hence, a system will need to be developed to handle this situation.
Some specific application areas of high-dimensional data cluster analysis can
be considered such as gene expression data analysis or text documents.

As a consequence, with the advantage of visualizing hierarchical density clusters
was supported both an overview and different levels of detail of the multidimensional
multivariate data sets. We believe the application of our system will be fruitful.

98

References

[ABK98]

[ABKS99]

[ACO1]

[AdO04]

[AdOL04]

[AdOLOG]

[AKK96]

[And72]

[BASO5]

Mihael Ankerst, Stefan Berchtold, and Daniel A. Keim. Similarity
clustering of dimensions for an enhanced visualization of multidimen-
sional data. In Proc. of IEEE symposium on Information Visualiza-
tion, pages 52-60, 1998.

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Joerg
Sander. Optics: Ordering points to identity the cluster structure.
In ACM SIGMOD international conference on Management of data,
pages 49-60, 1999.

Bowen Alpern and Larry Carter. The hyperbox. In Proceeding of the
2nd conference on Visualization, pages 133-139, 1991.

Almir O. Artero and Maria C. F. de Olivira. Viz3d: Effective ex-
ploratory visualization of large multidimensional data sets. Computer
Graphics and Image Processing, 17th Brazilian Symposium on SIB-
GRAPI, pages 340-347, 2004.

Almir O. Artero, Maria C. F. de Oliveira, and Haim Levkowitz. Un-
covering clusters in crowded parallel coordinates visualizations. In
Proceedings of the IEEE Symposium on Information Visualization,
pages 81-88, 2004.

Almir O. Artero, Maria C. F. de Oliveira, and Haim Levkowitz. En-
hanced high dimensional data visualization through dimension reduc-
tion and attribute arrangement. In Information Visualization 2006,
pages 707-712, 2006.

Mihael Ankerst, Daniel A. Keim, and Hans-Peter Kriegel. Circle seg-
ments: A technique for visually exploring large multidimensional data
sets. In Proceedings of Visualization (Hot Topics Session), 1996.

D. F. Andrews. Plots of high-dimensional data. Biometrics, 28:125-
136, 1972.

Enrico Bertini, Luigi Dell” Aquila, and Giuseppe Santucci. Springview:
Cooperation of radviz and parallel coordinates for view optimization
and clutter reduction. Proceedings of the Coordinated and Multiple
Views in Ezxploratory Visualization, pages 22-29, 2005.

100

REFERENCES

[Bed90)

[BGO5)

[Blig2]

[CBO7]

[COW08]

[CheT73]

[CKO06]

[CLO4]

[Cle93]

[CLRS01]

[CMS99]

[dBCvKOO08]

Jeff Beddow. Shape coding of multidimensional data on a microcom-
puter display. In Proceedings of the 1st conference on Visualization,
pages 238-246, 1990.

Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional
Scaling: Theory and Applications (second edition). Springer, New
York, 2005.

James F. Blinn. A generalization of algebraic surface drawing. ACM
Transactions on Graphics, 1(3):542-547, July 1982.

Nathan D. Coorprider and Robert P. Burton. Extension of star co-
ordinates into three dimensions. In Proceedings of the SPIFE, volume
6495, 2007.

Raymond Cho, Michael Campbell, Elizabeth Winzeler, Lars Steimetz,
Andrew Conway, Lisa Wodicka, Tyra Wolfsberg, Andrei Gabrielian,
David Landsman, David Lockhart, and Ronald Davis. A genome-
wide transcriptional analysis of the mitotic cell cycle. Molecular Cell,
2(1):65-73, July 1998.

Herman Chernoff. The use of faces to represent points in k-dimensional
space graphically. Journal of the Maerican Statistical Association,

68(3):361-368, 1973.

Robert Chud and Jaroslav Kadlec. Foxi-hierarchical structure visu-
alization. In Advances in Systems, Computing Sciences and Software
Engineering, pages 229-233, 2006.

Keke Chen and Ling Liu. Clustermap: Labeling clusters in large
datasets via visualization. In Proceedings og the 13th ACM Interna-

tional conference on information and knowledge managenment, pages
285293, 2004.

William S. Cleveland. Visualizing Data. Hobart Press, Summit, New
Jersey, 1993.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. MIT Press and McGraw-Hill,
2001.

Stuart K. Card, Jock Mackinlay, and Ben Shneiderman. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufman,
1999.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Over-
mars. Computational Geometry: Algorithms and Applications (3rd
edition). Springer, 2008.

REFERENCES 101

[DMS98)]

[DMS02]

[EKSX96]

[EW93]

[FB90]

[FBY4]

[FGWO02]

[FT74]

[FWR99)

[GKO3]

[GKWZ07]

Inderjit S. Dhillon, Dharmendra S. Modha, and W. Scott Spangler.
Visualizing class structure of multidimensional data. Proceedings of

the 30th Symposium on the Interface: Computing Science and Statis-
tics, 41:488-493, 1998.

Inderjit S. Dhillon, Dharmendra S. Modha, and W. Scott Spangler.
Class visualization of high-dimensional data with applications. Com-
putational Statistics and Data Analysis, pages 59-90, 2002.

Martin Ester, Hans-Peter Kriegel, Joerg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the second international con-
ference on knowledge discovery and data mining, pages 226-231, 1996.

Stephen G. Fick and Graham J. Wills. Navigating large networks
with hierarchies. In proceedings of the 4th conference on Visualization,
pages 204-209, 1993.

Steven Feiner and Clifford Beshers. Worlds within worlds: Metaphors
for exploring n-dimensional virtual worlds. In Proceedings of the 3rd
annual ACM SIGGRAPH symposium on User interface software and
technology, pages 76-83, 1990.

George W. Furnas and Andreas Buja. Prosection views: dimensional
inference through sections and projections. Journal of Computational
and Graphical Statistics, 3(4):323-385, 1994.

Usama Fayyay, Geoges Grinstein, and Andreas Wierse. Informa-
tion Visualization in Data mining and Knowledge Discovery. Morgan
Kaufman, 2002.

Jerome H. Friedman and John Tukey. A projection pursuit algo-
rithm for exploratory data analysis. I[EFEE Transactions on Comput-
ers, 23(9):881-890, 1974.

Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner. Hier-
archical parallel coordinates for exploration of large datasets. Proceed-
ings of IEEE Symposium on Information Visualization, pages 43-50,
1999.

Martin Graham and Jessie Kennedy. Using curves to enhance parallel
coordinate visualizations. In Information Visualization 2003, Proc.
Seventh International conference, pages 10-16, 2003.

Alexander N. Gorban, Balazs Kegl, Donald C. Wunsch, and Andrei
Zinovyev. Principal manifolds for data visualization and dimension
reduction. Springer, Berlin-Heidenberg-New York, 2007.

102

REFERENCES

[GRSOS]

[Har75]

[Har81]

[HDWBY5]

[HGM*97]

[HK98]

[HKO03]

[HKO6]

[HLDO2]

[Hub85]

[ID90]

[Ins85]

[JLJCO05)

Sudipto Guha, Rajeev Rastogi, and Kyusoek Shim. Cure: An ef-
ficient clustering algorithm for large databases. In Proceedings of
the 1998 ACM SIGMOD international conference on Management of
data, pages 73-84, 1998.

John A. Hartigan. Clustering Algorithm. Wiley, 1975.

John A. Hartigan. Consistency of single linkage for high-density clus-
ters. Journal of the American Statistical Association, 76(374):388-394,
1981.

Robert J. Hendley, Nick S. Drew, Andy M. Wood, and Russell E.
Beale. Narcissus: Visualizing information. In IEEE symposium on
Information Visualization, pages 90-96, 1995.

Patrick Hoffman, Georges Grinstein, Kennedth Marx, Ivo Grosse, and
Eugene Stanley. Dna visual and analytic data mining. Proceedings of
the 8th conference on Visualization, pages 437-441, 1997.

Alexander Hinneburg and Daniel Keim. An efficient approach to clus-
tering in large multimedia databases with noise. In Proceedings of
the fourth international conference on knowledge discovery and data
mining, pages 5865, 1998.

Alexander Hinneburg and Daniel Keim. A general approach to clus-
tering in large databases with noise. In Knowledge and Information
Systems, volume 5, pages 387-415, 2003.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2006.

Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular
brushing of extended parallel coordinates. In Proc. Symposium Infor-
mation visualization, pages 127-130, 2002.

Peter J. Huber. Projection pursuit. The Annals of Statistics,
13(2):435-475, Jun. 1985.

Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: A tool
for visualizing multidimensional geometry. In Proceedings of the 1st
coference on Visualization, pages 361-378, 1990.

Alfred Inselberg. The plane with parallel coordinates. Visual Com-
puter, 1:69-97, 1985.

Jimmy Johansson, Patric Ljung, Mikael Jern, and Matthew Cooper.
Revealing structure within clustered parallel coordinates displays.
Proceedings of the Proceedings of the 2005 IEEE Symposium on In-
formation Visualization, pages 125-132, 2005.

REFERENCES 103

[JLJCO6]

[Joh93]

[Jol86]

[JS91]

[JTJ04]

[Kan00]

[Kan01]

[Kei97]

[Kei02]

[KHK99]

[KKO4]

[KKA95]

[Koh95]

Jimmy Johansson, Patric Ljung, Mikael Jern, and Matthew Cooper.
Revealing structure in visualizations of dense 2d and 3d parallel coor-
dinates. Information Visualization, 5(2):125-136, 2006.

Brian Scott Johnson. Treemaps: Visualizing hierarchical and catego-
rial data. PhD thesis, Department of Computer Science, University
of Maryland, 1993.

lan T. Jolliffe. Principal Component Anylsis (second edition). Springer
Verlag, 1986.

Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling ap-
proach to the visualization of hierarchical information structures. In
Proceedings of the 2nd conference of Visualization '91, pages 284-291,
1991.

Jimmy Johansson, Robert Treloar, and Mikael Jern. Integration of
unsupervised clustering, interaction and parallel coordinates for the
exploration of large multivariate data. Proceedings of the Information
Visualisation, pages 52-57, 2004.

Eser Kandogan. Star coordinates: A multi-dimensional visualization
technique with uniform treatment of dimensions. Proceedings of IEEE
information Visualization Symposium (Hot Topics), pages 4-8, 2000.

Eser Kandogan. Visualizing multi-dimensional clusters, trends, and
outliers using star coordinates. Proc. ACM Int. Conf. Knowledge Dis-
covery and Data Mining, pages 107-116, 2001.

Daniel A. Keim. Visual techniques for exploring databases. In In-
wited tutorial, Int. Conference on Knowledge Discovery in Databases,

KDD97, 1997.

Daniel A. Keim. Information visualization and visual data min-
ing. IEFEE Transactions on Visualization and Computer Graphics,
7(1):100-107, January-March 2002.

George Karypis, Eui Hong Han, and Vipin Kumar. Chameleon: Hier-
archical clustering using dynamic modeling. Computer, 32(8):68-75,
August 1999.

Daniel A. Keim and Hans-Peter Kriegel. Visdb: Database exploration
using multidimensional visualization. Computer Graphics and Appli-
cations, pages 40-49, 1994.

Daniel A. Keim, Hans-Peter Kriegel, and Mihael Ankerst. Recursive
pattern: A technique for visualizing very large amounts of data. In
Proceedings of Visualization, pages 279-286, 1995.

Teuvo Kohonen. Self-Organizing Maps (third edition). Springer, 1995.

104

REFERENCES

[Lev9l]

[LLO09a)]

[LLO9b)]

[LLR09]

[LLRROS]

[LRPY5]

[LWW90]

[MGTS90]

[IMWO6]

[NLO6]

[NIS03]

[PGSS)]

Haim Levkowitz. Color icons: Merging color and texture perception
for integrated visualization of multiple parameters. In Proceeding of
the 2nd conference on Visualization, pages 22-25, 1991.

Tran Van Long and Lars Linsen. Multiclustertree: Interactive visual
exploration of hierarchical clusters in multidimensional multivariate
data. In Furographics IEEE-VGTC Symposium on Visualization 2009,
volume 28, pages 823-830, 2009.

Tran Van Long and Lars Linsen. Visualizing high density cluster in
multidimensional data using optimized star coordinates. Computa-
tional Statistics (submitted), 2009.

Lars Linsen, Tran Van Long, and Paul Rosenthal. Linking multi-
dimensional feature space cluster visualization to multifield surface
extraction. IEEE Computer Graphics and Applications, 29(3):85-89,
2009.

Lars Linsen, Tran Van Long, Paul Rosenthal, and Stephan Rosswog.
Surface extraction from multi-field particle volume data using multi-
dimensional cluster visualization. In IEEE Transactions on Visualiza-
tion and Computer Graphics, volume 14, pages 1483-1490, 2008.

John Lamping, Ramana Rao, and Peter Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large hierarchies.
In Proceedings of the ACM Conference on Human Factors and Com-
puting Systems, pages 401-408, 1995.

Jeffrey LeBlanc, Matthew O. Ward, and Norman Wittels. Explor-
ing n-dimensional databases. In Proceedings of the 1st conference on
Visualization, pages 230-239, 1990.

Ted W. Mihalisin, E. Gawlinski, John Timlin, and John Schwegler.
Visualizing a scalar field on an n-dimensional lattice. In Proceeding of
the 2nd conference on Visualization, pages 255-262, 1990.

Rida E. A. Moustafa and Edward J. Wegman. Multivariate continuous
data - parallel coordinates. In Graphics of Large datasets: Visualizing
a Million, Springer, pages 143-256, 2006.

Matej Novotvy and Helwig hauser. Outlier-preserving focus+context
visualization in parallel coordinates. IEEFE Transactions on Visual-
ization and Computer Graphics, 12(5):893-900, 2006.

NIST/SEMATECH. e-Handbook of Statistical ~ Methods.
http://www.itl.nist.gov/div898 /handbook/, 2003.

Ronald M. Pickett and Georges G. Grinstein. Iconographic displays
for visualizing multidimensional data. In Proceedings Conference on
Systems, Man and Cybernetics, pages 514-519, 1988.

REFERENCES 105

[Pic70]

[PWROA4]

[RGY3]

[RMCO1]

[Ros56]

[RT81]

[SBGOO]

[Sco92]

[Shn92]

[Si186]

[SNLHO9]

[SRO]

Ronald M. Pickett. Visual analyses of texture in the detection and

rrecognition of objects. In in Picture Processing and Psychopictorics,
B. S. Lipkin, A. Rosenfeld, pages 298-308, 1970.

Wei Peng, Matthew O. Ward, and Elke A. Rundensteiner. Cluster
reduction in multidimensional data visualization using dimension re-
ordering. In Proc. of the Symposium on information visualization,
pages 89-96, 2004.

Jun Rekimoto and Mark Green. The information cube: Using trans-
parency in 3d information visualization. In Proceedings of the third
anual Workshop on Information Technologies and Systems, pages 125—
132, 1993.

George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone
trees: animated 3d visualizations of hierarchical information. In Pro-
ceedings of the SIGCHI conference on Human factors in computing
system through technology, pages 189-194, 1991.

Murray Rosenblatt. Remarks on some nonparametric estimates of a
density function. Annals of Mathematical Statistics, 27(3):832-837,
1956.

Edward M. Reingold and John S. Tilford. Tidier drawings of trees.
IEEE Transactioons on Software Engineering, 7(2):223-238, March
1981.

T. C. Sprenger, R. Brunella, and Markus H. Gross. H-blob: a hierar-
chical visual clustering method using implicit surfaces. Proceedings of
the conference on Visualization 00, pages 61-68, 2000.

David W. Scott. Multivariate Density FEstimation: Theory, Practice,
and Visualization. Wiley, New York, 1992.

Ben Shneiderman. Tree visualization with treemaps: A 2d space-
filling approach. In ACM Transactions on Graphics, volume 11, pages
92-99, 1992.

Bernard W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, London, 1986.

Mike Sips, Boris Neubert, John P. Lewis, and Pat Hanrahan. Selecting
good views of high-dimensional data using class consistency. Compute
Graphics Forum, 28(3):831-838, June 20009.

Harri Siirtola and Kari-Jouko Raiha. Interacting with parallel coor-
dinates. In Interacting with Computers, volume 18, pages 1278-1309,
2006.

106

REFERENCES

S502]

SS05]

[STTXO08]

[Stu03]

[SY06]

[SY07]

[TBET99]

[The00]

[TMO02]

[TM03]

[Tuf83)

[vWvLI3|

[WB97]

Jinwook Seo and Ben Shneiderman. Interactively exploring hierarchi-
cal clustering results. IEEE Computer, 35(7):80-86, 2002.

Jinwook Seo and Ben Shneiderman. A knowledge integration frame-
work for information visualization. Lecture Notes in Computer Sci-
ence, 3379:207-220, 2005.

Yang Sun, Jiuyang Tang, Daquan Tang, and Weidong Xiao. Advanced
star coordinates. In Web-Age Information Magagement, 2008. WAIM
08. The Ninth International conference, pages 165-170, 2008.

Werner Stuetzle. Estimating the cluster tree of a density by analyzing
the minimal spanning tree of a sample. Journal of Classification,
20:25-47, 2003.

Jahangheer S. Shaik and Mohammed Yeasin. Visualization of high
dimensional data using an automated 3d star coordinate system. In-
ternational Joint Conference on Neural Networks, pages 1339-1346,
2006.

Jahangheer S. Shaik and Mohammed Yeasin. Selection of best projec-
tion from 3d star coordinate projection space using energy minimiza-
tion and topology preserving mapping. International Joint Conference
on Neural Networks, pages 2604—2609, 2007.

loannis G. Tollis, Giuseppe Di Battista, Peter Eades, and Roberto
Tamassia. Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

Holger Theisel. Higher order parallel coordinates. In Proceedings Vi-
sion, modeling and Visualization 2000, pages 119-125, 2000.

Soon Tee Teoh and Kwan-Liu Ma. Rings: A technique for visualiz-
ing large hierarchies. In Graph Drawing, Lecture Notes in Computer
Science, volume 2528, pages 51-73, 2002.

Soon Tee Toeh and Kwan-Liu Ma. Starclass: Interactive visual clas-
sification using star coordinates. In Proc. 3rd SIAM Intl. Conf. on
Data Mining, 2003.

Edward R. Tufte. The Visual Display of Quantitative Information
(2nd edition). Graphics Press, Cheshire, 1983.

Jarke J. van Wijk and Robert van Liere. Hyperslice: Visualization of
scalar functions of many variables. In Proceedings of the jth conference
on Visualization, pages 119-125, 1993.

Pak Chung Wong and R. Daniel Bergeron. 30 years of multidimen-
sional multivariate visualization. In Scientific Visualization Overviews

REFERENCES 107

[Weg90]

[WL83]

[WMWSG6]

[WNOS]

[Won82]

[Wri95]

[YWRO2]

[YWRO3]

[ZRL9G]

[ZYQT08]

Methodologies and Techniques. IEEE Computer Society Press, pages
3-33, 1997.

Edward J. Wegman. Hyper-dimensional data analysis using parallel
coordinates. Journal of the American Statistical Association, 21:664—
675, 1990.

Anthony Wong and Tom Lane. A kth nearest neighbor clustering
procedure. Journal of the Royal Statistical Society, Series B, 45:362—
368, 1983.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure
for soft objects. The Visual Computer, 2:227-234, 1986.

Daniel Whalen and Michael L. Norman. Competition data
set and description. IEEE Visualization Design Contest,
http:/ /vis.computer.org/Vis Week2008 /vis/contests.html, 2008.

M. Anthony Wong. A hybrid clustering method for indentifying high-
density clusters. Journal of the American Statistical Association,

77(380):841-847, 1982,

William Wright. Information animation applications in the capital
markets. In Proc. Int. Symp. on Information Visualization,, pages
19-25, 1995.

Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. Interring:
An interactive tool for visually navigating and manipulating hierarchi-
cal structures. In Proceedings of the IEEE Symposium on Information
Visualization, pages 77— 84, 2002.

Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. Visual
hierarchical dimension reduction for exploration of high dimensional

datasets. In Proc. of the Symposium on data visualization, pages 19—
28, 2003.

Tian Zhang, Raghu Ramakrishman, and Miron Livny. Birch: An
efficient data clustering method for very large databases. In SIGMOD
conference, pages 103-114, 1996.

Hong Zhou, Xiaoru Yuan, Huamin Qu, Weiwei Cui, and Baoquan
Chen. Visual clustering in parallel coordinates. Computer Graphics
Forum, 27(3):1047-1054, 2008.

108 REFERENCES

Declaration

I hereby declare that this dissertation was done by my own work without any im-
permissible assistance.

Date, Signature

