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Abstract—Information theory provides a theoretical framework for measuring information content for an observed variable, and has
attracted much attention from visualization researchers for its ability to quantify saliency and similarity among variables. In this paper,
we present a new approach towards building an exploration framework based on information theory to guide the users through the
multivariate data exploration process. In our framework, we compute the total entropy of the multivariate data set and identify the
contribution of individual variables to the total entropy. The variables are classified into groups based on a novel graph model where
a node represents a variable and the links encode the mutual information shared between the variables. The variables inside the
groups are analyzed for their representativeness and an information based importance is assigned. We exploit specific information
metrics to analyze the relationship between the variables and use the metrics to choose isocontours of selected variables. For a
chosen group of points, parallel coordinates plots (PCP) are used to show the states of the variables and provide an interface for the
user to select values of interest. Experiments with different data sets reveal the effectiveness of our proposed framework in depicting
the interesting regions of the data sets taking into account the interaction among the variables.

Index Terms—Information theory, framework, isosurface, multivariate uncertainty

1 INTRODUCTION

Exploration of multivariate data sets is an integral part of scientific vi-
sualization as in most real world phenomena, there exist multiple fac-
tors associated with the complex interactions of different variables. To
gain an in-depth understanding of a scientific process, the relationship
among the variables needs to be thoroughly investigated. However, ex-
ploration of several variables simultaneously can be both tedious and
confusing. In a univariate system, displaying isocontours is a popu-
lar tool for data exploration for its ability to reveal the regions of the
same scalar value. The identification of salient isocontours for a sin-
gle scalar field has been a well researched topic. For single variable
data sets, isocontour selection has been done previously based on the
shape [3, 14, 34], topology [7, 46], and geometry [27] of the contours.
For multivariate data sets, this non-trivial problem of isocontour selec-
tion becomes more challenging. In the multivariate scenario, as there
can be interdependences among multiple variables, isocontours of se-
lected variables can reveal information about the associated variables
and how they interact. Identification of such informative isocontours is
an important aspect of multivariate data exploration. To date, a guide-
line for exploring specific values of different variables, and studying
the relationship among them is mostly missing.

In this paper, we introduce an information-aware framework that
guides the users in multivariate data exploration. In our framework,
we use an information-theoretic approach to guide the user at each
step of the exploration process and help towards in-depth analysis of
the data sets when multiple variables are involved. In this work, the
mutual information among the variables is decomposed into specific
information metrics which are used to facilitate the identification of
informative isocontours. Since this metric takes advantage of infor-
mation overlap between variables, we make use of the mutual infor-
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mation to create subgroups of the variables according to their informa-
tion overlap. Inside the subgroup, since not all the variables involved
in that subsystem contribute equally towards the joint entropy of the
subgroup, conditional entropy measure is used to calculate the relative
importance of the variables. This step is non-trivial as selecting vari-
ables based solely on their entropy may not suffice as there can be vari-
ables with high information but also sharing a large amount of mutual
information with other variables. In this case, selecting one variable
can reveal a significant amount of information about a subgroup. After
the individual variables are selected, to explore the relationship among
the variables, the specific information is used to calculate the informa-
tiveness of each scalar value based on how it is related to the values of
other variables. Isocontours of the selected variables can be identified
which provide the uncertainty information about the other variables at
the same locations. We provide an intuitive interface which allows user
interaction through the whole exploration process. Using our frame-
work, the users receive interactive step-by-step exploration guidance
to examine multivariate data sets.

Our contributions in this work are threefold:

1. We use specific information to classify the isocontours of vari-
ables based on the relationship of one variable with the others,
and effectively provide simultaneous visualization of the related
variables.

2. We use a novel graph-based approach to analyze and cluster a
system of variables and analyze the interaction among the clus-
ters and within the clusters.

3. We introduce a new framework for multivariate data exploration
which guides the users at each step of the exploration process by
providing an intuitive and interactive interface.

This paper is organized as follows: in Section 2, we review re-
search works that are related to the topic of this paper. In Section
3, we provide a brief overview of our system. Section 4 discusses our
information-aware exploration system in detail, and Section 5 presents
the results of applying our framework to a few multivariate data sets.
In Section 6, we present domain experts’ feedback on our system
components. Parameter choice, performance of our proposed system,
and comparison with existing multivariate analysis techniques are dis-
cussed in Section 7. We provide the conclusion and future work in
Section 8.
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2 RELATED WORKS

In this section, we provide a brief review about the areas of research
which are directly related to the topic of this paper: information theory
and its applications, multivariate data analysis and Parallel Coordinate
Plots, and salient isocontour selection.

In visualization and computer graphics, information theory [10] has
been widely used to solve a variety of problems. An entropy-based so-
lution was presented by Gumbhold [17] for placing light sources in a
scene for different camera parameters. Information theory has been
a popular choice for view point selection [36, 4, 37]. Feixas et al.
[15] analyzed the scene visibility and radiosity complexity using an
information-theoretic approach. For volumetric time varying data,
Wang et al. [39] proposed an importance driven approach for time-
varying data visualization. In this work, they conducted a block-wise
analysis to find important features from time-varying data. In another
work, Chen and Jénicke [8] provided evidence that information theory
can explain numerous events in visualization. Xu et al. [43] proposed
an information-theoretic framework for flow visualization. Consider-
ing visualization as a visual communication channel, they evaluated
the effectiveness of visualization by measuring how much information
in the original data is being communicated to the users. Rigau et al.
[32] presented entropy-based aesthetics measurement for paintings.

Multivariate data analysis and visualization is an active research
area and it has numerous applications in diverse fields [12, 41]. Yang
et al. [44] proposed analysis guided multivariate exploration by in-
troducing a Nugget Management System (NMS). NMS first extracts
valuable information hidden in the data based on the interest of users
and from that nugget, other similar nuggets can be discovered. To
facilitate interaction, Martin and Ward [30] added high dimensional
brushing. In a later work, Jénicke et al. [23] transformed high dimen-
sional data into a 2D attribute space where attributes are represented as
a point cloud, which allowed them to analyze the multivariate data in
two dimensions. Rubel et al. [33] constructed a visualization system
for extremely large multivariate data sets. Proposing a statistics-based
framework on existing query driven visualization (QDV), Gosink et
al. [16] improved the utility of QDV for large multivariate analysis.
In another work, Claessen and Van Wijk [9] used flexible linked axes
for multivariate data visualization. Combining Parallel Coordinates
Plot (PCP) and MDS based projection techniques, Guo et al. created a
novel transfer function design interface [18] to facilitate visualization
of multivariate data. In a recent work by Wang et al. [38], informa-
tion theory was used for exploring the causal relationship among the
variables of a time-varying multivariate data set. With the use of trans-
fer entropy, they formulated a complete graph to show the information
transfer among the variables by modulating the size and color of the
nodes. In our work, we apply mutual information metrics to generate a
graph model and obtain an initial clustering of the variables. From the
graph, variables are selected and processed with specific information
metrics which allow us to understand the variability of one variable
with respect to another variable. For visualization purposes, PCP and
isosurfaces have been used.

PCP [22, 21, 20] is well known for multivariate analysis where at-
tributes are represented as parallel vertical axes scaled within their data
range. However, visual cluttering in PCP can pose a significant prob-
lem towards the exploration of relationships between the neighboring
axes. Ordering of the axes in PCP plays an important role in the ex-
ploration process and researchers have looked into this problem in the
past [2, 31, 28, 19]. In PCP, quantification of visual clutter and its re-
duction [24, 11] remain an ongoing research problem. We use mutual
information to reorder the PCP axes and then show the relationship for
the user selected axis by the use of specific information metrics.

Isosurfaces have been well studied in the past. The saliency of iso-
surfaces can be decided based on the data set’s statistical properties
[3, 14, 34]. The topology of isosurfaces can provide important cues
towards understanding the scalar field structures and can be used to
determine the saliency of the isosurfaces as well [7, 46]. In some re-
cent works, geometric properties of isosurfaces such as fractal dimen-
sions [27] and distance transforms [6] have also been used for saliency
analysis of isosurfaces. In our work, color mapped isosurfaces have
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Fig. 1. A schematic representation of the workflow.

been used to show the variability of the color mapped variable on the
surface where the other variables’ value remains constant.

3 SYSTEM OVERVIEW

In this section, a brief overview of our approach is provided. Our high
level goal in this paper is to explore the multivariate data and iden-
tify regions of interest through information analysis. In this paper, we
show that by using the concept of specific information measures, one
can quantify the informativeness of a scalar value in one variable with
respect to the uncertainty of the other variables. The specific infor-
mation is based on the decomposition of the standard mutual informa-
tion. To allow for more effective analysis of correlation in the data
set, the variables under study should have a good information overlap.
To achieve this, we subdivide the variables into smaller groups based
on their mutual information. The subgroups can be selected based on
their total information content which is measured by the joint entropy
of the subsystem. Inside the subgroups, the variables that contain the
most information about the subgroup are identified using conditional
entropy. After selecting the variables, the specific information metrics
are used to identify different scalar values with varying amounts of in-
formation. We present an information-aware multivariate data explo-
ration framework with novel features such as quantitative analysis of
information overlap among the variables, information-driven group-
ing and selection of variables for more systematic correlation study,
and flexible user interface for easy selection and browsing of salient
data. A schematic view of our system is provided in Figure 1, where
isosurfaces have been used for variability visualization.

4 INFORMATION-AWARE FRAMEWORK FOR DATA EXPLO-
RATION

Below we discuss in detail our analysis framework, where
information-theoretic approaches are used to tackle different aspects
of the multivariate data exploration problem.

4.1 Information Overlap in Multivariate Data

In this section, we present our approach for multivariate data explo-
ration by analyzing the degree of information overlap among the vari-
ables. In multivariate analysis, correlation between different variables
has been a well researched topic and there are several metrics avail-
able. In information theory, mutual information between two random
variables is the measure of information overlap or the correlation be-
tween the variables. For two random variables X and Y, mutual infor-
mation /(X,Y) is defined as

=Y pr(w)log%. M

As a correlation metric, mutual information has an advantage over the
correlation coefficient metric as it can measure non-linear relation-
ships as well. Mutual information between two variables measures
the informativeness of one variable about the other variable.

It is also possible to measure the information associated with a spe-
cific scalar value x, x € X, about another random variable Y, which is
termed as specific information. In this case, the variable X is called
the reference variable. In our framework, we utilize the specific infor-
mation of the reference variable to identify salient isocontours, where



the saliency is calculated by how much the uncertainty of one variable
is reduced after observing an isocontour from the reference variable.
There exist several ways to calculate specific information, and we dis-
cuss two of them that were introduced in the works of DeWeese and
Meister [13]. These two specific information metrics were named as
Surprise and Predictability by Bramon et al. [5], all based on a decom-
position of the standard mutual information.

Surprise: Surprise, which is also referred to as /;, was introduced
and analyzed by DeWeese and Meister [13] and it is given as:

R Do p(ylx)
Il(x,Y)fygp(y\ )log o0)

2
I1(x;Y) is always positive as it represents the Kullback-Leibler dis-
tance between p(Y|x) and p(Y). A high [} (x;Y) value indicates that
some infrequent occurrences y € ¥ have become more probable due to
the observation of x which amounts to a surprising result, where x is a
value of the reference variable X. The values of x, for which 7; (x;Y)
is high, are representative of the isovalues which are of interest to us.

Predictability: DeWeese and Meister also introduced the metric
Predictability or /; which is given as:

h(xY)=H(Y)-H(Y|x)

==Y p()logp(y)+ Y p(ylx)logp(ylx) (3
yeY yey

bL(x;Y) gives the amount of reduction in uncertainty about Y after
observing the data value x. It is to be noted that, unlike /;, I can
take negative values which suggests that there are certain observations
x for which our uncertainty about ¥ may increase. The values of x,
for which I (x;Y) is high, are representative isovalues of the reference
variable X that reduce the uncertainty about Y and are of interest to us.
On the other hand, the values of x, for which /> (x; Y) is low or negative,
represent a high uncertainty about the variable Y at the location of the
isocontours, which also prompts us to perform further exploration.

I is an additive metric, which means when [, is measured based on
two observations x and y, it amounts to the sum of /; calculated based
on x, and /5 based on y given that x is already known.

h(x,y;Z) = h(x;Z) + L(y; Z|x).

As additivity is a desirable property of a metric, Bramon et al. [5] and
DeWeese and Meister [13] have considered /; to be more intuitive as
a measure of specific information. In our work, we utilize both /; and
I, for the selection of interesting scalars.

These specific information measures provide us with the tools for
classifying the individual scalars of a variable. Given two variables
of a data set, each of them can be considered as a random variable
and for each scalar value of the reference variable chosen between the
two variables, the /; and I, metrics can be computed. To guide the
exploration of the data set, the scalars which have high /; value are
identified as the surprising ones and are further classified by their I,
values. If a surprising value has higher predictability, then the corre-
sponding isocontour of the variable will reflect a confident state of the
other variable. Conversely, if the predictability is low, then the scalar
value associated with the reference variable will not be able to predict
the state of the other variable with high certainty.

Since the specific information is computed between pairs of vari-
ables at specific values, for the I-metrics to work well, it is desired
that the variables in question have enough information overlap. This
motivates the need to explore the relationships among all the variables
and group closely related variables together. In addition, to use the
specific information measures, a reference variable is needed to be
picked which ideally should be the variable that contains more infor-
mation within a group. In the next section, we describe a graph-based
approach for grouping and reference variable selection, based on the
information overlap to facilitate multivariate analysis.

(a) Cloud vs Qlce. (b) V-vel vs U-vel. (c) Precip vs QGraup.

(d) Pressure vs QRain.

(e) QCloud vs QGraup.

(f) W-velocity vs QSnow.

Fig. 2. Scatter plots between different variables showing different de-
grees of correlation.

4.2 Mutual Information Based Grouping of Variables

From an information-theoretic point of view, each variable in a mul-
tivariate data set carries a certain amount of information that is also
shared by other variables, which can be characterized by the mutual
information measure. An experiment with the Isabel Hurricane data
set (discussed in Section 5.2) reveals that there exist variables in the
system which show strong correlation with some variables but not so
much with others. In Figure 2, we show different instances of relation-
ship among the variables of the system. From the scatter plots shown
in Figure 2a, 2b, and 2c, it is observed that a stronger relationship
exists between the variables under study. A quick comparison of the
scatter plots shown in Figure 2d, 2e and 2f, on the other hand, reveals
that the correlations between those variables are not as strong. This
study of variable relationship allows us to perform a more systematic
analysis of the variables using the specific information metrics.

For each pair of variables, we measure the distance between the
variables as the inverse of the mutual information between them. Con-
sidering all the variables of the system, a graph G(V,E) is constructed
which delineates our system of variables. Each node v € V represents
a variable, and each undirected edge e € E represents the mutual infor-
mation between the two variables. A hierarchical clustering is applied
on this graph to decompose it into different groups. In a bottom-up
clustering approach, each node represents a leaf of the cluster tree and
each of them starts out as a cluster. Then the new groups are formed
via a greedy algorithm which merges the two clusters with most sim-
ilarity to move up the cluster tree one level. For n nodes, the general
complexity of the algorithm is 0(n3) and gives a locally optimal solu-
tion.

As shown in Figure 4a, the dendrogram representation of the clus-
tered graph is presented which reveals the hierarchy of the clusters. It
is evident from the figure that there exist three major subgroups which
form clusters according to the information overlap. In Figure 4b, an
alternative graph view of the system is provided. The layout of the
graph is generated by a force-directed algorithm where the attractive
force is given as the mutual information between the nodes and the re-
pulsive force is the inverse of the mutual information. Here we see that
the force-directed layout matches our hierarchical clustering results.

After subdividing the variables in the whole system into subgroups,
the subgroups need to be classified according to their information con-
tent. Also, the variables contained inside the subgroups, need to be
analyzed for their importance. We apply information theory to pro-
ceed with the data exploration and we discuss it in the next section.

4.3 Information Based Variable Selection

Information theory provides us with a method for quantifying the in-
formation content of a random variable by using Shannon’s entropy
calculation. For a random variable X, Shannon’s entropy H(X) is de-
fined as

H(X)=-Y p(x)logp(x). )

xeX
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(a) Uncertainty remaining in the
variables before selection.

(b) Uncertainty remaining in the
variables after selection of Sec-
ond Gradient.

Fig. 3. Change in uncertainty of the variables due to the variable selec-
tion.

This is a measure of the uncertainty about the given random variable.
For a collection of random variables X, ..., X, the total information
content among the variables can be expressed by the calculation of
joint entropy which is defined as

H(Xy,... Xp) = — Z Z p(x1, . xn)logp(xg, o). (5)
x1eX)  xeX,

For univariate data sets, Shannon’s entropy has been previously used
to quantify the uncertainty of variables. The histogram of a variable is
used as the probability mass function to calculate the total uncertainty
of that variable using Equation 4. As discussed in the previous sec-
tion, in the multivariate data sets, the variables can be grouped based
on their correlation, and the joint entropy can now be applied to mea-
sure the total uncertainty within each group using Equation 5 where
the joint probability distribution of the variables is used. This allows
us to compute the relative importance of the groups based on their un-
certainty. The groups can be selected depending on their uncertainty
and the individual variables inside the selected group now need to be
analyzed.

In information theory, given a group of variables, conditional en-
tropy is used to quantify the information gain about the system when
some of its variables are known. From n variables X1, ..., X}, if m vari-
ables X, ..., Xk, are known, then the amount of uncertainty left in the
system is given by

H(Xl 9 "’7Xn‘Xk17”'7ka) = H(Xl bl "'7Xl‘l) _H(Xk17 7ka) (6)

This provides a useful measure to identify variables inside subgroups
that have a larger contribution towards the total uncertainty of a group.
Also, this metric allows us to select some of the variables such that
those variables represent the uncertainty of the whole subgroup by
their information content.

An experiment with four fields of the Plume data set is used as a
motivating example of how the selection of one variable can reduce the
uncertainty about other variables. Plume is a simulation of the thermal
downflow plumes on the surface of the sun with 126 x 126 x 512 grid
points. Figure 3 shows that if we want to explore the higher uncertain
variables first, then just by looking at their individual entropies, the
order of selection would be Second Gradient, Gradient, Y Velocity
and Q Criterion as shown in Figure 3a. But, if Second Gradient field
has been selected, it will now have impact on our knowledge about the
other variables and as shown in Figure 3b, the second variable to be
chosen will be Y Velocity as the uncertainty about Gradient field has
been reduced due to the selection of Second Gradient field.

The objective of our variable selection methodology is to maximize
the information gain about the subsystem after every variable selec-
tion. The selected variables also become the candidates for reference
variables used to compute the I-metrics mentioned in section 4.1. It
is likely that a variable of high information content, i.e., high entropy,
will carry more information shared by other variables, and therefore,
a good candidate to be used as a reference variable. In this sequential
selection process, variables are selected and the residual information
content of the remaining variables is updated to reflect the current state
of the subsystem. Variables can be selected within a group and also
across groups. While selecting variables across the groups, for each
group, a variable can be identified which represents that subgroup and
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Fig. 4. A view of the system when applied on the Isabel Hurricane data
set.

these representative variables can now be candidates for selection. For
exploration within the group, the dynamic ordering of importance can
be followed to guide the selection process.

4.4 The Information-aware Data Exploration Framework

In this section, we combine all the previously described components
together to design our framework that facilitates the exploration of
multivariate data sets. In our interface, as graphs are intuitive and
easier for interaction, they are chosen to represent the clustering of
the variables drawn by a force-directed graph layout similar to the ex-
ample shown in Figure 4b. For generating the graph layout, we have
used the algorithm proposed in [26] which relates the graph layout as a
dynamic spring system and the layout is generated by minimizing the
total energy of the system. For variables i and j, the attractive force
between the two nodes is represented as

F 1
ij><

J dizj

where d;; is the distance between the two nodes. We take d;; as the
inverse of the mutual information between the variables i and j for
our analysis. A similar force-directed graph was also used by Zhang
et al. [45] for network construction and finding an ordering in their
PCP plot of the high dimensional data. In our experiments, we found
that the hierarchical clustering of the variables based on all pair mu-
tual information is reflected closely by the force-directed graph layout.
The users are provided the option of selecting the number of clusters
interactively and this change is automatically reflected in the graph
layout by showing the individual variables colored by the colors of the
clusters. The users are able to color the nodes by the joint entropy or
the information content of the respective groups. Inside the groups,
the information-based importance is reflected by the size of the nodes.
For each group of variables, the most representative variable is high-
lighted for easy identification. Depending on the user’s selection of
variables (nodes), the relative importance of the other variables of a
group is updated and shown on the display for the user to make the
next selection. As shown in Figure 4b, the state of the graph shows
the initial display of the system with thirteen variables of the Isabel
data set. It depicts a scenario where the thirteen variables are clustered
into three groups, and each group is represented by a separate color
which represents its group entropy: red as high, blue as low and green
in between. In each of the three groups, the representative variables
are earmarked. Now if the user makes a selection of node 1, as shown



in Figure 4c, the importance of the other variables is updated and the
new representative variable is highlighted as node 8.

115

-70

Fig. 5. Simultaneous display of multivariate system using Parallel Coor-
dinates Plots. The user selected axis is color mapped t0 Lcerr = 1/ I>.-

In addition to using graphs to represent the relationships among the
variables, in our framework we provide the users with two different
ways to explore the data: 1) Exploration in the data domain using
Parallel Coordinate Plots (PCPs), and 2) Exploration in the spatial do-
main using isosurfaces. For the exploration in data domain, PCPs can
be effectively used to visualize the system of variables. In PCP, the
ordering of the variables is an important aspect for providing a useful
visualization. Since the variables are clustered into groups based on
the mutual information, we use this grouping information to control
the display and to find the ordering for the PCP, as described below.

Because the groups represent variables with higher correlation, the
variables can be shown groupwise in the PCP. Inside the group, we find
an ordering of the variables such that the mutual information is high-
est between the neighboring axes of the PCP, so that user can more
easily understand the relationships among the multiple variables. To
order the variables into a sequence of PCP axes, our goal is to maxi-
mize the total amount of information presented in the plot. With our
graph model, this ordering can be solved by finding a Hamiltonian
path inside the subgraph that minimizes sum of the edge weights. As
the edge weights are inverse of the mutual information, the minimum
weight Hamiltonian path maximizes the total information presented
along the sequence of PCP axes. Although finding an optimum Hamil-
tonian path in a graph is an NP-complete problem, for relatively small
graphs, the brute force method works well. For larger graphs, an ap-
proximated solution minimizing the inter-cluster crossings yields suf-
ficiently good results [42]. Figure 5 shows the ordering of the seven
variables of the Plume data set that maximizes the mutual information
in PCP.

To supply data to the PCP interface, the users can choose to ex-
plore the volumetric multivariate data set in slices, multiple slices or
the whole volume. However for large volume data, as the number of
points grows larger, the PCP can get cluttered. Brushing is a popular
technique in visualization to interactively select the regions of interest.
We allow brushing of points according to the scalar values and also ac-
cording to the specific information values. Since the specific informa-
tion metric I represents the uncertainty or predictability factor and /;
describes the “surprise” of the scalar value, to show the scalar values
which correspond to higher uncertainty in the other variable, a derived
metric Icers 18 formulated such that

Iuncert = Il /12~ (7)

Lincers 1dentifies the higher I} and lower I, values. Similarly, for
the scalar values which correspond to lower uncertainty in the other
variable, another derived metric /..,s is generated which is given as

Leere =11 % D> (8)

Icers identifies the higher /; and higher /, values. As shown in Figure
5, the PCP plot shows the /. metric on the user selected axis FTLE
computed against Z-velocity for the Plume data set.

To facilitate exploration of volume data in the spatial domain, we
incorporate the idea of specific information mentioned above. The user
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Fig. 6. Combustion data set with 5 variables: hierarchical clustering
based on mutual information and a force-directed graph layout.

selects two variables X and Y from the graph. The /; (x;Y) and I (x;Y ),
x € X, are computed and a 2D scatter plot representing mapping of the
scalars of X to the I/, space is generated, as shown in Figure 4e.
In this figure, each point represents an (/1, ;) pair computed from a
specific scalar value of X. In this map, different scalars of X are color
mapped according to their value which makes it easier for users to see
any relationship patterns. Users are provided with an option to select a
point or a region from the ;I scatter plot with a rectangular window,
and the corresponding scalar values are selected. The selected values
are then used to draw the isosurfaces on the variable X which are color
mapped by the scalars of ¥ as shown in Figure 4f. To identify the
regions where the isosurface of X faithfully represents the value of Y,
the higher /; and higher I, values are selected. Conversely, to identify
the regions where the isosurface of X has high variation in values of Y,
the higher /7 and lower I, values are needed to be selected. The Figure
4e shows the 7}, map of Pressure calculated with U-velocity from the
Isabel data set. The x-axis represents /1 and y-axis represents /. The
green rectangular region selects the scalars from the Pressure field that
have less variability in U-velocity values. Conversely, the blue region
selects the values which have much more variability. Figure 4f shows
the two examples of isosurfaces as a result of user’s selection. The
isosurface corresponding to Pressure value -700 comes from the blue
rectangular region and it has high variability in the U-velocity. The
isosurface for Pressure value 130 is selected from the green rectangular
region has much less variability in U-velocity.

5 RESULTS

In this section, we show the results of our framework in exploring data
sets with multiple variables. The experiments were conducted on a
Linux machine with an Intel core i7-2600 CPU, 16 GB of RAM and
an NVIDIA Geforce GTX 560 GPU with 2GB texture memory. For
the calculation of information-theoretic measures 256 histogram bins
were used. The force directed graph layout was generated by the Boost
Graph Library [35].

5.1 Combustion Data set

This data set is a turbulent combustion simulation data which is a time
varying volume data set having five scalar variables: Mixture Frac-
tion (MIXFRAC), Vorticity (VORT), Mass Fraction of Hydroxyl (OH)
radical, Heat Release Rate (HR) and Scalar Dissipation Rate (CHI)
in turbulent flames. The data set is made available by Dr. Jacque-
line Chen at Sandia Laboratories through US Department of Energy’s
SciDAC Institute for Ultrascale Visualization. Each time step of this
data set contains 480 x 720 x 120 grid points. The mixture fraction
denotes the proportion of fuel and oxidizer mass and this value gen-
erally provides the location of the flame where the chemical reaction
rate exceeds the turbulent mixing rate. But there can be regions where
the mixing rate dominates the chemical reaction rate and the flame is
partially extinguished or weakly burning. To have a detailed under-
standing of the combustion phenomenon, only analyzing the mixture
fraction may not be enough and multivariate analysis is needed for this
complex process. Time step 41 from the data set was selected for our
experimental purposes.

Using our framework, the all pair mutual information is calculated
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(f) Mixture Fraction iso-
surface colored by the
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certainty about Temper-
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and then the graph layout is generated for user interaction as shown
in Figure 6. After mutual information based grouping, Mixture Frac-
tion, Heat Release Rate, Vorticity and OH mass fraction are placed in
the same subgroup and this subgroup has higher entropy compared to
the subgroup consisting of Scalar Dissipation Rate as reflected by the
color of the subgroups in the graph layout. Then, we proceed to the
exploration of the individual variables. In the process of variable se-
lection within the subgroup, the first two variables suggested by our
framework are Heat Release Rate and Mixture Fraction. The corre-
sponding /1, map of the reference variable Mixture Fraction is shown
in Figure 7a. Selecting the points which correspond to high /; and
high I, it is observed that isosurfaces of very low and very high Mix-
ture Fraction values all have very high Heat Release Rate, as shown
with the two selected isosurfaces in Figure 7b and Figure 7c. But
for the Mixture Fraction values between 0.3 to 0.55, the Heat Release
Rate values are varying widely. As mentioned in [1], the stoichio-
metric mixture fraction for this mixture is 0.42 which corresponds to
the flame. From our results, it is observed that the Heat Release Rate
is not stable on or around the flame which suggests that some com-
plex interaction around the flame is happening. To get more insight,
the next variable to be analyzed is Vorticity or the flow turbulence, as
suggested by our graph layout. The Figures 7e,7f and 7g present the
results of isosurfaces drawn on the reference variable Mixture Fraction
color mapped with Vorticity. From the results, it is to be understood
that near the flame, the turbulence is higher, which is causing higher
uncertainty in the region. Similar deductions can be made from the
Figures 7h, 7i, and 7j where we show the results of Vorticity and Heat
Release Rate. The more certain Heat Release Rate values occur where
the reference variable Vorticity is much lower. As the Vorticity or the
turbulence increases, the Heat Release Rate becomes more uncertain.
Finally we present the results of the analysis of Mixture Fraction and
Mass fraction of OH radical in the Figures 7k, 71 and 7m with Mixture
Fraction as the reference variable. From the resulting isosurfaces, it is
apparent that the OH mass fraction is not constant around the stoichio-
metric mixture fraction as noted in [1].

5.2 Hurricane Isabel Data Set

Next, we show the exploration results from the Hurricane Isabel data
set. Hurricane Isabel data was produced by the Weather Research and
Forecast (WRF) model, courtesy of NCAR and the U.S. National Sci-
ence Foundation (NSF). This data set consists of thirteen variables and
the resolution of the data set is 500 x 500 x 100 for a single time step.
We have selected time step 20 for our experiments.

For this data set, the initial force-directed graph layout was pre-
sented in Figure 4b. When clustering the graph into three groups,
the highest entropy group consists of Pressure, TC, U Vel, V Vel,
W Vel, and QVAPOR as reflected by the color of this group shown
in the graph layout. From this group, choosing the variables Tem-
perature and QVAPOR, with QVAPOR as the reference variable, we
constructed the 71/, map as shown in Figure 7n. From this map, the
QVAPOR values are selected which correspond to less variability in
Temperature as shown in 70. On this isosurface, which is generated by
QVAPOR value 0.0188, nearly the same and relatively high Temper-
ature values are observed. Whereas, we can also identify isosurfaces
as in the Figure 7p, where the variability in the Temperature value on
the surface is much higher for QVAPOR value close to 0.0004. Figure
4 shows the result of selecting Pressure and U velocity for analysis,
where Pressure is the reference variable. The 71/, map is presented in
4e which is used to select certain and uncertain isosurfaces on Pres-
sure corresponding to U velocity. Figure 4f shows examples of two
such isosurfaces. In this figure, the Pressure isosurface for isovalue
130 has much less variation in U Velocity whereas, as we move closer
to the Hurricane eye region where the Pressure goes down, there is
much more variation in U Velocity as represented by the isosurface of
Pressure value around -700.

For a downsampled version of Isabel data, we use PCP to highlight
informative scalars for Pressure and Temperature in Figure 8 where
Pressure is used as the reference variable for specific information cal-
culation. In this figure, we only show the variables of the selected
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5.3 lonization Front Instability Simulation Data Set

In our next case study, we use the data set presented in the IEEE 2008
Visualization Design Contest [40]. In this data set, researchers have
intended to explore the relationships of the ionization front instabili-
ties with the formation of the first stars of the universe. This data set
contains the relative abundancies of eight chemical species, tempera-
ture, density and the velocity field. The data set size is 600 x 248 x 248
and we have selected time step 99 for exploration purposes. One of the
tasks of the contest was to investigate the reasons of turbulence. We
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of the chemicals to show our exploration results.

The initial clustering result and layout of the force-directed graph is
presented in Figure 9a and Figure 9b. To see the relationship between
Curl and H, the corresponding /;/, map was generated as shown in
Figure 9d using H as the reference variable. In this case, we find that,
the low and high species number densities of H correspond to more
certain regions in Curl. Figure 9e shows an isosurface at a low value of
H. The uncertain regions occur in the intermediate values of H species
density where there is more variability in Curl values, shown in Fig-
ure 9f. From our framework, if the node representing Curl is selected,
then Temperature becomes the next candidate for selection. The cor-
responding results are shown in Figures 9g, 9h, and 9i. In this case,
lower temperature values correspond to more certain Curl values and
with the increase in Temperature, the Curl values become more uncer-
tain as shown by the two isosurfaces. If Curl and Temperature nodes
are selected, then the next candidate node suggested by our system is
H+. The Figures 9j, 9k, and 91 represent results where lower values
of H+ have more uncertain Curl values, whereas the higher H+ values
correspond to more certain Curl values.

6 USER EVALUATION

We demonstrated our system to the scientists of the Los Alamos Na-
tional Laboratory to assess the effectiveness of the system for real
world applications. At the beginning of the demonstration, high level
explanation about the system workflow was presented to the scien-
tists. Then we went over the details of each component of the system,
providing some pre-generated results and images for an understand-
ing of how the system helps in the exploration of the multivariate data
sets. As the domain experts gained familiarity with the system, we
presented the Eastern Seaboard and Gulf of Mexico region from the
ocean component (LANL’s POP model) of a fully coupled climate
simulation using the DOE/NSF Community Climate System Model
(CCSM4) with a grid resolution of approximately 1° and resolution
of 320 x 384 x 60. Embedded within the ocean is a model of marine
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feedback.

ecodynamics that includes representations of plankton, nutrients, and
other forms of organic and inorganic matter. This demonstration in-
cluded several variables that described the production ("PROD”) and
sinking ("FLUX-IN") of Particulate Organic Carbon (POC), Silicate
(S102), and Calcium Carbonate (CaCO3), as well as Oxygen (O2) pro-
duction and consumption (CONSUMP), Temperature (TEMP), Salin-
ity (SALT), and the horizontal velocity components (UVEL, VVEL).

In the exploration process, the users initially followed the sugges-
tions made by the system and later on, they explored some of the vari-
ables by themselves. At the beginning, the users interactively selected
the number of clusters of the hierarchical cluster tree to begin the ex-
ploration. Figure 10a shows the hierarchical cluster of the given set
of variables where the number of clusters was 6. This grouping based
on information overlap provides insight into the data. For example,
grouping of SiO2-FLUX-IN, CaCO3-FLUX-IN, POC-FLUX-IN and
02-CONSUMP points to the fact that in the ocean, vertical fluxes of
phytoplanktonic hard parts are often correlated and the particulate or-
ganics exert demand on dissolved oxygen. Then the users could learn
about the information content of the subgroups by observing the node
colors of the graph as shown in Figure 10b. For exploration within a
subgroup, the users initially chose the variables SiO2-FLUX-IN and
POC-FLUX-IN as suggested by the graph in Figure 10b and Figure
10c. The corresponding /11, map was generated as Figure 10d with
SiO2-FLUX-IN as the reference variable. The map shows that the low
and the high values of the reference variable have higher predictability
but the higher values have more surprise. Then from this map, iso-
values were selected according to their Predictability and Surprise for
visualization of the isosurfaces as shown in Figure 10e and Figure 10f
to show the variability of the POC-FLUX-IN. For exploration across
the subgroups, the two representative variables SiO2-FLUX-IN and
TEMP were selected and the corresponding /;/, map was generated

with SiO2-FLUX-IN as the reference variable which is shown in Fig-
ure 10g. From this map, it is evident that larger values of SiO2-FLUX-
IN have higher predictability and surprise compared to its smaller val-
ues. This points to the fact that for this data set, the silica concentra-
tion is higher at the bottom level of the ocean where the cooler and
heavier water is present which gives lower variability in temperature.
Conversely, at the surface level, the silica concentration is lower and
temperature variability is higher. This can be visually analyzed by
generating isosurfaces of SiO2-FLUX-IN and color-mapping it with
TEMP. Figure 10h shows much higher predictability where the se-
lected isovalue is 0.0128 and Figure 10i shows much more uncertainty
about TEMP when a SiO2-FLUX-IN value close to 0 is selected which
gives the surface of the ocean. Apart from the variables suggested by
the system, the scientists also explored some other variables that they
were interested in and they verified the outcomes of our system with
their knowledge base.

After the entire process was completed, we asked for general and
specific feedback about our system. From the feedback provided by
the domain scientists, it is apparent that they are looking for new tools
and are eager to try out systems similar to what we have proposed
in this paper. Given a multivariate data set, exploration of the rela-
tionships among the variables is of prime interest to them. The scien-
tists noted that the initial dendrogram representation tied to the graph
layout provided them with new ways to identify classic expected re-
lationships among the marine systems variables but additionally the
visualizations raised new kinds of research issues which they felt was
very useful. If the data sets do not show the relationship pattern as ex-
pected by the scientists, they can flag this timestep for more analysis
as to whether this anomaly is due to some error in the simulation or
indeed something unexpected has happened. The /;/; map provides
information about the predictability and surprise of the reference vari-
able with respect to the other variable. The final visualization of the
color-mapped isosurfaces can also effectively convey the variability
information of the other variables when compared with the reference
variable. In the scientists’ opinion, this system provides information
about the variables from a new perspective with an interactive inter-
face which they think is useful for multivariate exploration. The scien-
tists concluded that besides existing tools like Matlab and Ferret, they
would like to use our system for multivariate analysis in the future.

The scientists also provided suggestions to improve the system.
They want to see our system integrated with the existing tools like
scatter plot matrices so that it conveys more information. They also
would like to see this exploration system to be extended in temporal
domain for increased effectiveness. Specific to their domain needs,
they would also like to explore in isopycnals (the constant density
slices) that can reveal the mixing in the flow. In the graph layout,
they suggested to add an option to remove the edges as they are liable
to produce visual clutter when the number of variables is high. It was
also apparent from the feedback that sometimes the domain scientists
had some pre-selected variables in mind, like Salt, Temperature etc.,
which they were interested in exploring regardless of their information
content. While sometimes the variables suggested by our initial graph
structure did not match their primary interest, they agreed that for a
large number of unfamiliar variables in the system, the knowledge of
the relative information content is useful in making a choice.

7 DISCUSSION
7.1 Parameter Choice

In this section, we discuss the choice of two parameters in our system.
In the initial hierarchical clustering, the number of clusters k is a non-
trivial choice. Finding the optimum £ is a difficult problem [25] and it
varies according to the data set. As a rule of thumb [29], we initially
use k ~ \/Z , where n is the total number of variables in the system.
The users can interactively change the value of & in their interaction
phase to tune this parameter according to the property of the data sets.

The other important factor is the choice of bin size as it affects the
calculation of the information-theoretic metrics. Generally, a higher
number of bins will generate more precise information metrics. In
Figure 11, we show the results when we vary the number of bins using
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Fig. 11. Results with varying bin sizes for the Combustion data set.

128, 256, and 512 and it can be observed that the general pattern of
the results remains the same, although there are some variations.

7.2 Performance

In this section, we discuss the performance of different components in
our proposed framework as shown in Table 1. To create the joint dis-
tributions among multiple variables, instead of creating a large multi-
dimensional array which will be very expensive in terms of the re-
quired storage space, we took advantage of the sparseness property in
the array and used the Map data structure provided by C++ library to
perform the Joint Entropy and all pair Mutual Information (M.I.) cal-
culations. Without including the disk I/O time, the map creation time
shown in the first column is dependent on the total number of data
points for all the variables of the system. In the all pair M.I. calcula-
tion from the generated data map, it is observed that the run time varies
depending on the distribution of the data values in the map. This all
pair ML calculation is used to generate the force-directed layout of the
graph. The run time of the hierarchical clustering and force-directed
layout calculation is not listed here as it is in the order of milliseconds.
Next, we presented the Joint Entropy calculation time within a group
of variables which is required to figure out the relative importance of
the variables. This is dependent on the group size and the distribu-
tion of the values in the data map. In the third column of the table,
we have listed the longest running time which was measured by the
time taken to update the importance of the variables belonging to the
largest group. In our experimental settings, the largest group sizes are
4, 6, and 10 for Combustion, Isabel and Ion Front data set, respec-
tively. Finally, the I/, map is generated from two selected variables
and as shown in the fourth column, according to our current imple-
mentation, the calculation time is linear to the number of points in the
data sets for a fixed number of bins. Generation of the maps, all pair
mutual information and the joint entropy calculations can be done in a
preprocessing stage, so that our framework can run interactively.

Table 1. Running Time for Different Components of the Framework

Map Creation | All Pair M.1. | Joint Entropy | /;/, Map Generation
(Sec.) (Sec.) (Sec.) (Sec.)
Combustion 259 86.5 12.3 10.6
Isabel 38.8 1071.6 539 6.3
Ion Front 43.7 92.5 11.4 8.5

7.3 Comparison

In this section we compare our framework with some of the existing
approaches of multivariate data analysis like scatter plots, scatter plot
matrices, PCPs etc. In our framework, PCP, scatter plots and isosur-
faces have been used to leverage the strengths of these visualization
techniques alongside the information theory based analysis.

The traditional scatter plot is widely used for its ability to show the
trend between two variables. But it is generally difficult to analyze a
large amount of data in a scatter plot because of overlapping of the
data points. Although this plot provides the idea of the spread of one
variable for a given value of the other, the Predictability and Surprise
metrics, which depend on the concept of probability distribution, may
not be obvious from the plot. To remedy this, we initially calculate the
specific information metrics and then use the scatter plot where the two
axes are the Predictability and Surprise. Also, the number of points on
this map only depends on the number of bins, whereas for the original
scatter plot, the total number of points is the size of the data set, which

may require efficient data structures for large data sets to provide the
users with interactive brushing and selecting capabilities.

Scatter plot matrices (SPLOM) extend the idea of traditional scatter
plot by plotting all pairs of scatter plots for all the variables at the
same time. However, as the number of variables increases, SPLOMs
tend to become cluttered. Also, it depends on the user’s interpretation
and memory if the user needs a global view of the system. In our
framework, we present the relationship of the variables in the form of
a hierarchical clustering tree which helps users get the overall structure
of the variables in the tree and get the clustering information based on
the information overlap of the variables. Additionally, the associated
graph layout provides information about the group entropy and relative
importance of these variables.

PCPs are generally regarded as an effective tool to visualize the cor-
relations among multiple variables. But its effectiveness is governed
by the order of the variable axes, the number of variables to be visual-
ized and the total number of data points. While using PCPs, we used
the mutual information based ordering and a downsampled version of
the data sets to overcome the issues. Also, PCPs and SPLOMs pro-
vide information in the data domain disregarding the spatial domain.
Taking this into consideration, alongside PCPs, our framework uses
isosurfaces to show the spatial distribution of the scalars of the se-
lected variable. Compared to the existing isosurface selection works,
which are mostly concerned with univariate data, in the multivariate
scenario we assign the importance to the isosurfaces when it depicts
the variability of the other variables. As presented in this work, spe-
cific information metrics have been used to explore these relationships.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented an information-theoretic approach for the
exploration of multivariate data sets. In our framework, we applied
mutual information for generating an initial grouping of the variables
such that the variables with high information overlap can be placed
in the same group. The importance of the variables within the sub-
groups are identified by the calculation of conditional entropy. The
variables are presented in the form of a force-directed graph layout to
the users for interactive selection of variables. The selected variables
are used to compute the specific information to identify the scalar val-
ues of one variable which are informative about the other variables.
For the exploration in the data domain, the visualization is performed
using Parallel Coordinate Plots. For exploration in the spatial domain,
isosurfaces are generated which are color mapped to other variables to
show the degree of uncertainty about that variable.

In future, we plan to expand our framework for time-varying data
sets for selection of salient time steps and exploring additional types
of data including ensemble data sets. We also plan to incorporate our
framework with other existing multivariate analysis metrics for more
effective exploration.
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