
ICCVG 2002 Zakopane, 25-29 Sept. 2002

David Auber

LaBRI-Universit́e Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France
auber@labri.fr

USING STRAHLER NUMBERS FOR REAL TIME VISUAL
EXPLORATION OF HUGE GRAPHS

Abstract

This paper studies the problem of real time navigation in huge graphs. When size
of data is becoming too large, computers are not enough powerful to enable inter-
active navigation without loosing the relevant part of the graph. Here, we present
a method to solve this problem. This solution is based on combinatorial properties
of graphs. We first introduce the reader to our generalization to rooted maps of the
so-called Strahler number[22]. Subsequently we present a way to use this parame-
ter in order to display relevant part of the graph during the navigation. Finally we
give experimental results of our method.

keywords: Information visualization, clustering, interaction, navigation

1 INTRODUCTION

Visualization of graphs has came to the fore during the last ten years. The huge amount
of linked data on the Web as well as genome’s research are some of the factors of this research
domain evolution. One can refer to Munzer [16] for use of graphs in web analysis and to
Robinson [18] or Guelzim[9] for their use in bioinformatics.

In this paper we focus on an efficient way to enable visual exploration of huge graphs.
Visual data exploration is a very general concept, it includes: usual movements in two and three
dimensional space such as zoom, rotate and scale, space distortion used in focus and context
methods such as the fisheye view[21] and also coloration[11] of the graph’s elements which can
be used to highlight relevant part of the data. Thus visual exploration can be summarize to a
stream of visual representations of data transmitted through the screen to the final end user.

To preserve the visual mental map of the final end user the transitions between the initial
and the final frame must each preserve sufficient context that the users perceptual processes can

1



D. Auber

Fig. 1 .The full structure Fig. 2 .Some elementary data

track the movement within the virtual space. For instance, in the figure 1 one can see the entire
structure of a small tree. By zooming, the user can go until the elementary data that we can see
on the figure 2. If we zoom directly from the figure 1 to 2 we are completely lost in the data.
But if we zoom progressively until the figure 2 user can keep in mind his/her position in the
data.

The idea of making all change progressively can be generalized to the entire visualization
system. The focus of a fisheye should move progressively to a new position. The layout of a
graph should morph into a new layout as proposed by Carsten[5] or by Yee[27], in this case it
enables the user to learn faster the new map of the data. Colors or shapes of elements can also
follow the same rules. Thus by changing the data mapped on the size of elements one can see
which elements are varying.

Viewing progressively modification of the picture presented to the user implies to display a
large number of image to the user. Research in human perception has shown that the maximum
delay between an action of the user and the displayed result on screen should be less than fifty
milliseconds if one wants the user to believe in a causal link. One can refer to Ware[24] book
on information visualization to obtain more detail on this subject. Thus we need a real time
system which ensures that the displaying of a picture will take less than fifty milliseconds.

In the following we describe the incremental rendering method proposed by Graham[26]
then we introduce the reader to the using of graphs parameter in order to enhance the result
produce by this method. Subsequently, we introduce and study the computation complexity
of the so called Strahler number[22] and of one of its generalization[8]. Then, we present an
extension of this parameter to pointed map that can be used for graph visualization. Finally we
conclude with experimental results of our method.

2 INCREMENTAL RENDERING

When visualizing huge graphs drawing of all elements on the screen can take more than
fifty milliseconds. Therefore, to manage efficiently user or system interaction a visualization
software must enable to receive new events even during the rendering of the visual representa-
tion of data. To solve this problem the method proposed by Graham[26] is to predict how many
items can be drawn during 50 ms.Then, the system draw items during 50 ms before to check
events. If an event is received, after executing associated actions, we restart the displaying from
the early start. By this way, the system draw incrementally slices of the graph and ensure in-
teraction in less than 50 ms. One of the advantage of this method is to enable graph rendering
without expensive time checks.



Using Strahler numbers for real time visual exploration of huge graphs

Using this method in visualizing graphs representing file system or chemical reactions we
have noticed that in case of huge graphs the rendering process could take more than 2 seconds
and then we must split it in 40 parts. Thus, when user explores the graph and sends actions to
the system at high frequency the graph rendering process never end. For instance, if the user
move the focus of a fisheyes every fifty milliseconds, the system will only display a part of the
elements of the graph. One of the problem in this case is that the displayed part of the graph
must always be the same to avoid the image to shake during user interaction.

During experimentation on semantic network graph visualization[4], we have noticed that
choosing randomly the set of elements to display first can produce quite bad results. For in-
stance, when visualizing huge tree such as the one presented in the figure 13, if we can display
only five thousand elements in fifty milliseconds , according to our choice, the picture presented
to the user during animation can be completly different of the final one, and may actually display
elements that the user is not interested in.

Therefore, when using incremental rendering, one must find efficient way to order the set
of edges and the set of nodes. Several possibilities are available for solving this problem. One of
them is to use the layout of the graph, by this method we can obtain result which is quite similar
to the original one. However such a method becomes very hard to set up when one wants to use
3D visualization, space deformation, or layout morphing. One of the major reason is that the
order depends of the graph drawing and thus each time the node’s or edge’s coordinates change
one must recompute the order.

Using extrinsic parameter can also be an efficient way to produce an order. For instance,
when visualizing web graph[1, 20] we can use the number of hits obtained by each page and
each link to build the order. Such a method can give results in term of information visualization
because it enables to take into account the user center of interest. For instance, in case of web
graph, if the user wanted to see pages which are the most visited this solution seems to be
appropriate. However, if the user gooal is to find pages which are difficult to access it doesn’t
seem to be the best approach.

Another way to treat the problem is to work on the graph structure. Such an approach
is widely used in graph clustering algorithms [13, 6, 2]. Here, at the opposite of the method
introduced above, we use intrinsic parameters to compute the ordering. Thus one must find
graph parameters which provide an efficient ordering of elements. Simple parameter such as
degree of nodes (number of edges connected to a node) enable to compute easily the needed
order. In practice, we observe that the degree of nodes is bounded by a constant. For instance,
trees coming from parallel compiler have a degree bounded by the number of processors. Then,
when size of such trees is huge, it becomes equivalent to the using of a random order. Others
parameters such as the activation metric proposed by Marshall[15] or the clustering measure[25]
can produce more useful results, however, for both of them, they are not efficient for trees and
directed acyclic graphs, and their complexity isO(n2) that means that they don’t scale well in
relation with data scale or that efficient using requires parallelization.

Our research focuses on a parameter called Strahler. This parameter enables to catch struc-
tural properties of graphs that is, in case of graph visualization, the information that we try to
find. Furthermore its complexity enables to use it on huge graphs without using of expensive
hardware that is one of our objective. One other interesting features of this parameter is that
by thresholding it, we can retain an overall impression of the geometric structure of the graph
which is useful for supporting awareness of spatial position while manipulating the graph.



D. Auber

3 STRAHLER NUMBERS

We introduce here the first version of the Strahler number [22] which is defined on bi-
nary trees, subsequently we present a first extension proposed by Fedou[8] that generalizes this
parameter to general trees and to directed acyclic graphs. In the following, the theorems and
properties of these parameters are briefly given and proven in order to show that the algorithm
complexity isO(n) orO(n log(n)) and therefore will scale better than parameters like spreading
activation.

3.1 Strahler number on binary trees

The Strahler number on binary trees has been introduced in some work about the morpho-
logical structure of river networks[22]. It consists in associating an integer value to each node
of a binary tree. These values give a quantitative information about the complexity of each sub-
tree of the original tree[23]. Furthermore, if we consider an arithmetical expressionA and its
evaluation binary treeT Ershov[7] has proved that the Strahler number ofT increased by one
is exactly the minimal number of registers needed to computeA. Computation of the Strahler
numbers is given by algorithm 1; figure 3 shows an example of the result.

Theorem 1 The complexity of the algorithm 1 is linear.

Proof 1 The algorithm 1 can be resume to a depth first search algorithm. So it is linear.

Theorem 2 Let T be a tree having n nodes, an upper bound of the Strahler number value is
dlog2(n)e.

Proof 2 The Strahler value of a node is greater than its children if and only if its children have
the same value. So, one can deduce that the maximal value is reached when the tree is well
balanced. In this case an upper bound of the tree depth isdlog2(n)e. The Strahler number can
increase at most of one between two layers of a binary tree, thus an upper bound of its value is
dlog2(n)e.

Lemma 1 The maximal number of different values with the Strahler valuation on a treeT is
bounded bydlog2(n)e, where n is the number of nodes ofT .

Proof 3 Direct from the theorem 2.

Algorithm 1 Strahler algorithm.
binaryStrahler(nodeη of a binary treeT )
begin
if η is a leaf ofT return 1
let ηleft andηright be respectively the left and the right child ofη
if binaryStrahler(ηleft) is equal to binaryStrahler(ηright)
return binaryStrahler(ηleft) + 1

else
return max(binaryStrahler(ηleft),binaryStrahler(ηright))

end binaryStrahler



Using Strahler numbers for real time visual exploration of huge graphs

3.2 Strahler number on general trees

Jean-Marc Fedou[8] has proposed an extension of the Strahler numbers to general trees.
The idea is to consider n-ary operators instead of binary operators. Under this hypothesis, the
Strahler number is defined as the minimal number of registers necessary to compute an n-ary
expression. Knowing that any general trees can be viewed as an n-ary expression, the extended
Strahler number is defined on all trees, we denote it bySext. The algorithm 2 summarizes the
computation of this parameter and the figure 4 shows an instance of its valuation on a general
tree.

Note that, in case of a binary tree, the Extended-Strahler number gives the same valuation
as the original Strahler number.

Fig. 3 .Arithmetical expression tree. Fig. 4 .N-ary expression tree.

Theorem 3 LetT be a tree having n nodes, for all nodeη of T , Sext(η) ≤ n.

Proof 4 By construction, it is easy to prove that it is true for trees which contains one to three
nodes. Suppose that it is true for trees untiln nodes. Let us build a treeT with n+1 nodes. The
proposed algorithm ensures that the value of a node is less or equal to the sum of the values of
its children plus one. Then, knowing that each subtree ofT has less thann + 1 nodes we can
write that the sum of children’s values of the root of T is less or equal thann. So, the maximal
value of the root ofT is n + 1.

Theorem 4 Let T be a tree having n nodes, an upper bound of the complexity of the given
algorithm isO(n log(n)).

Proof 5 The proposed algorithm sorts all the children of a node in order to compute its valu-
ation. Then it makes several operations which are linear in the number of children. Thus, the
computation complexityCη of a nodeη is bounded by the complexity of a sort which is in the
general caseO(n log(n)).
Letdeg+(η) be the out-degree of a nodeη(ie, number of children) we have:

Cη ∼ deg+(η) log(deg+(η))

If we consider the valuation of all nodes, the complexity is :

C ∼
∑
η∈T

deg+(η) log(deg+(η))



D. Auber

Letdeg+
max(T ) be the maximal out-degree of the nodes of the treeT . We have :

C ∼ log(deg+
max(T ))

∑
η∈T

deg+(η)

Furthermore, we have: ∑
η∈T

deg+(η) = n− 1 and deg+
max(T ) < n

So, we can deduce that an upper bound of the algorithm isO(n log(n)).

Theorem 5 Let T be a tree having n nodes, an upper bound of the number of different values
of the Strahler number on aT is d

√
ne ∗

√
2.

Proof 6 The proof of this theorem use a lot of combinatorial constructions and thus will be
describe in an other paper.

Theorem 6 Under the therorem 1, the extended-Strahler number can be computed in linear
time according to the number of nodes.

Proof 7 A number of different values bounded byd
√

ne ∗
√

2 and a range of value bounded by
n makes linear the sort complexity. So, using the above proof we get a linear complexity.

Algorithm 2 Extended Strahler algorithm.
ExtendedStrahler(nodeη of a general treeT )
begin
if (η is a leaf ofT ) then return 1
freeRegisters = 0
usedRegisters = 0
for all childrenηi of η in decreasing order induced by their treeStrahler values
begin
if (ExtendedStrahler(ηi) > freeRegisters) then freeRegisters=treeStrahler(ηi)
usedRegisters=usedRegisters+1
freeRegisters=freeRegisters-1

end for
return (freeRegisters+usedRegisters)

end ExtendedStrahler

The generalization to directed acyclic graphs needs no modification of the algorithm. In fact,
if we consider that no result are shared in the evaluation of an expression, we can transform a
DAG in a forest and then compute the extended-Strahler number on each tree of the forest. In
this case, under the theorem 5, the algorithm is linear according to the number of edges in the
DAG.



Using Strahler numbers for real time visual exploration of huge graphs

4 STRAHLER NUMBER ON ROOTED MAPS

In the following we denote byG(V, E) a graph having a set of vertices (ie nodes)V and a
set of edges (ie arcs)E. A rooted map is an embedding of the graph in the plane having a set of
pointed vertices.
The idea of the Strahler number introduced above, is to view trees and directed acyclic graphs
as n-ary expressions. To build a similar parameter on graphs, we consider that any graphs can
be viewed as a sequential program. In a program:

• Registers are used to compute expressions. In our case, a spanning DAG enables to view
a graph as an expression.

• Stacks are used to manage recursive calls. In our case, Cycles in the graph are interpreted
as recursive calls in the program.

Thus, we define a two dimensional parameter on rooted maps. The first dimensionρ rep-
resents the number of registers needed to evaluate the program, the second dimensionσ gives
the number of necessary stacks (or nested call to the stack).

To computeσ we consider that edges which induce cycles in the graph represent recursive
calls. However, for a given graphG(V, E), finding a minimum set of edgesEf ⊂ E such that
the graphG(V, E/Ef ) is acyclic is well known as the feedback arc set problem. It has been
proved[10][14] that it is a NP-Hard problem. Thus, given two isomorphic graphs, we couldn’t
ensure to produce the same valuation of nodes. In case of rooted maps, the problem of finding
a unique set of edgesEu which verify the property (a) and (b) becomes linear.

• (a)G(V, E/Eu) is acyclic.

• (b) ∀ε ∈ Eu G(V, E/Eu ∪ {ε}) contains at least one cycle.

So, we consider the parameter only on such structures and we call it rooted map Strahler
number, denoted bySrm. In the following, we assume that the order of edges around nodes
gives the execution order of the associated sequential program and that the root is its starting
point.

For the purpose of graphs visualization, the use of rooted maps enables us to compute
different valuations of the same graph depending on the user goal. For instance, by selecting a
node, the user can choose the starting point of the algorithm. It also allows to take into account
extrinsic parameters. For instance, we can use the map induced by the graph drawing or by
edges weight.

In the following, we detail the construction of the rooted map Strahler number. For short,
we will denote a rooted map byGS(V, E) assuming that the graph is already embedded in the
plane and S is the root.

4.1 Edge decomposition

To computeSrm, one must decompose the set of edges in four parts. Given a spanning tree
T of a rooted mapGS(V, E) these four sets are defined as following:

• Tree edge setET = {e ∈ E | e ∈ T}

• Descent edge setED= {e = (u, v) ∈ E | e 6 ∈T, ∃ a path from u to v inT}

• Return edge setER= {e = (u, v) ∈ E | e 6 ∈T, ∃ a path from v to u inT}



D. Auber

• Cross edge setEC= {e ∈ E | e 6 ∈ET ∪ ED ∪ ER}

This decomposition is used in some proofs of the strong component decomposition algorithm
and can be done in linear time by using a depth first search algorithm for the spanning tree
building.(fig 5)

Fig. 5 .Edge decomposition. Fig. 6 .Temporary DAG.

4.2 Computation of the number of registers,ρ.

In order to compute theρ parameter on a rooted mapGS(V, E), one must build a temporary
directed acyclic graph. This DAGD is obtain by unfolding the graph G of one step. The
construction process is the following:

• Add all nodes ofG in D.

• Add all edgesei from ET ∪ ED ∪ EC in D.

• For all edgese = (ui, vi) from ER add a new nodeηi in D and a new edge(ui, ηi) in D.
This new node allows to store in a register the result of a recursive call.

The figure 6 shows the DAG which has been built in order to compute theρ parameter on the
graph from the figure 5. The values ofSext are given in the figure 6.

4.3 Computation of the number of necessary stacksσ.

In the following we present an algorithm which enables to compute theσ parameter. This
algorithm uses three integers functions which are:

• Free:V → N: Number of free stacks, these stacks were used in previous evaluation and
can be reused in others evaluations.

• Used:V → N: Number of used stacks used in the current evaluation.

• ToFree:V → N: Number of stacks to free after a node’s child evaluation.



Using Strahler numbers for real time visual exploration of huge graphs

Fig. 7 .Tree edge processing. Fig. 8 .Cross edge processing.

The figure 7 gives a view of the valuation of these three functions when one evaluates the node
A after the node B. In the figure 7, large arrows represent sets of edges. To compute the used
and free values of a nodeη we build a temporary list of integer-pairs(a,b). Each pair takes into
account the value of a childηi according that we access to it by the edgeε(η, ηi). Four cases
arrise :

• If ε ∈ ET (fig.7), the value ofσ(η) is at leastσ(ηi). In thisσ(ηi) stacks we can reuse those
which are already free inηi plus those which were necessary to compute the recursive
calls which end inη. Thus, we add the pair [Free[ηi]+ToFree[η],Used[ηi]-ToFree[η]] to
the temporary list.

• If ε ∈ EC (fig.8), the value ofσ(η) is at leastσ(ηi). But, because the execution or-
der is induced by the embedding of the graph, the value ofηi is already computed and
so, its used stacks have already been free. Thus, we add to the temporary list the pair
[Free[ηi]+used[η],0].

• If ε ∈ ED, it is the same as for a cross edge. However, computing [Free[ηi]+used[ηi],0]
doesn’t change the result forσ(η) becauseηi have already been treated by a tree edge.
Thus, this case doesn’t need to be computed.

• If ε ∈ ER, here it is a new recursive call. So, to computeη we need at least one stack and
this stack will still used until that theηi evaluation is finished. Thus, we add one to the
number of stacks to free inηi and we add the pair[0, 1] in the temporary list.

Fig. 9 . [Free(η), Used(η)] = σ(η)

Given the temporary list of pairs we can now computeσ(η). To compute the minimal number of
necessary stacks, we first sort the list such thatCi = (ai, bi) < (aj, bj) = Cj if ai > aj. Then,



D. Auber

Algorithm 3 Algorithm to compute Free,Used and ToFree.
FreeUsedToFree(nodeη)
begin
Let L a list of pair, (i,j) withi ∈ N, j ∈ N .
for all out going edgesεi of η do begin
ηi=target(εi)
caseεi ∈ of :

tree-edge set :
ToFree[η]=0
FreeUsedToFree(ηi)
L.insert([Free[ηi]+ToFree[η],Used[ηi]-ToFree[η]])

cross-edge set :
L.insert([Free[ηi]+Used[ηi],0])

return-edge set:
ToFree[ηi]=ToFree[ηi]+1
L.insert([0,1])

end case
end for
Used[η]=Free[η]=0
Sort L in the decreasing order induces by the first dimension.
for all elementCi = [ai, bi] in L do begin
Used[η]=Used[η]+bi

Free[η]=max(Free[η],ai + bi)-bi;
end for

end FreeUsedToFree

we treat each pair in this order to compute the new used and free value ofη. The principle is
to compare theai + bi value to the current number of free stacks inη. If ai + bi is greater than
Free(η) then we need more stacks to computeη. In theai +bi stacksai can be reused andbi still
used. So, we update Free(η) and Used(η) and then we treat an other pair. At the end we have:

σ(η) = Used(η) + Free(η)

Algorithm 3 summarized the method described above; Figure 9 shows the values computed
by this algorithm on a given graph. The used map is the one induced by the drawing and the
starting node is the one located at the top of the figure.

Note that, in case of general tree,σ is always equal to zero andρ = Sext.

Theorem 7 LetGS a rooted map having m edges, an upper bound of the time-complexity of the
algorithm which computesSrm onGS is O(m log(m)).

Proof 8 The algorithm is composed of three parts, the first one is the edge decomposition which
can be done in linear time. subsequently we build a temporary DAG, this operation is linear
according to the number of edgesm. Then we compute theSext parameter inO(m log(m))
using the theorem 4. Finally, using the same proof as for the theorem 4 one can prove that
the complexity ofσ computation isO(m log(m)). Thus, an upper bound of the complexity the
algorithm isO(m log(m)).



Using Strahler numbers for real time visual exploration of huge graphs

The given algorithm is a simplification of the final one. In fact, the three above steps can be
merged together, by this way we do not change the theoretical complexity of the algorithm but,
in practice, it reduces the constant term in the time and space complexity of the algorithm. One
of the trick is that we don’t need to build the temporary DAG in order to computeSext on it. An
open source implementation of this algorithm is given as a plug-in in the Tulip software[3].

5 STRAHLER NUMBERS FOR REAL TIME NAVIGATION.

It is well known that we can automatically extract important information about relational
data by only using the structure of graphs. For instance, in software reverse engineering one
can automatically detect modules or components of a program by analyzing the graph structure
induced by the source file inclusion [19]. However, to our knowledge, using it in incremental
rendering has not been studied yet. Here, we discuss about how to use the Strahler numbers
introduced above for it.

First of all we project the two dimensional parameterSrm into a one dimensional space.
This projection is done by computing the euclidian norm of[σ, ρ] noted:

β(η) =
√

σ2(η) + ρ2(η)

We have chosen the euclidian norm in order to preserve the original value of Sthraler numbers
in case of trees, and to reduce the differences between components which are almost acyclic
(σ ∼ 0) or almost only cycles(ρ ∼ 1) and those which are the both(ρ ∼ σ).

Then, we assign to each edge the value:

φ(ε) = min(β(source(ε)), β(target(ε)))

By using the minimum value between source and target we ensure to give higher values to
edges between important elements. For instance, when computingSrm on the graph of hu-
man metabolism, the node representing water receives a high value forSrm as it is involved
in comparatively many of the chemical reactions. However, during visualization the schematic
graph must only display links between water and elements which take place into complex reac-
tions else too many edges are displayed. In practice, the results with other methods such as the
average between source and target don’t give better approximation of the final drawing.

The idea of this heuristic is that the more registers and stacks we use to evaluate a node (or
a a sub-program) the more relevant the node should be. And so, by displaying first the more
complex part of the graph we should display the more important part of it. Thus, we order the
set of nodes such that :

ηi < ηj if β(ηi) < β(ηj)

and the set of edges such that:
εi < εj if φ(εi) < φ(εj)

Then, during the navigation we use these two ordered sets for the incremental rendering of the
graph.

In terms of time complexity, this method can be used to draw huge graphs (500K nodes)
on standard PC hardware. For trees and directed acyclic graphs all the process can be done in
linear time using the theorem 5 and for the general graphs it can be done inO(m log(m)) time.
One must notice that with real data, the time used in order to sort elements is almost linear with
general graphs.

During visualization, we can compute the order of elements at the early start and then use
always the same. It is not necessary to rebuild the order after each actions. However, in order



D. Auber

Fig. 10 .4,600 elements Fig. 11 .16,400 elements

to take into account the user operations we can recompute this order during navigation. For
instance, we can use the nearest node of the fish eyes center as starting node of the Strahler
parameter. The computation complexity of the method allows such operations even with huge
graphs.

6 EXPERIMENTATION

We give here practical results of our method. The experimentation has been made with
the Tulip program[3]. The samples are directed graphs. To compute theSrm parameter on the
samples we have automatically chosen the starting nodes by using the algorithm 4. The idea
of this automatic selection is that if a node have no incoming edge it should be an entry in
the network, and if it doesn’t exist such a node, we hope that nodes with maximum degree are
important nodes in the network. Figures 10 to 17 are snapshots of the images displayed to the
screen at different stages of the incremental rendering.

Algorithm 4 Automatic selection of input nodes
while (all nodes are not computed)
Begin

if it exists uncomputed source of the graph(with an in-degree=0) use it as entry nodes and
run the algorithm

else use the uncomputed node with the greater out degree.
End

The figures 10 to 13 show the incremental drawing of a binary tree with 520,000 elements.
The layout has been generated automatically by using the Reingold and Tilford[17] tree drawing
algorithm. One can see on this sample that even with 4600 nodes (less than 1% of the entire
graph), there is an impression that the abstracted graph retains some elements of the overall
shape of the full graph. The hope is (and this would require empirical evaluation to evaluate) that
sufficient structure is maintained to preserve the mental map of the user during graph navigation
operations. During experimentation we have compare this results with other tree parameters, in
all cases the results don’t seem better than the ones obtain with the Strahler parameter.

The figures 14 to 17 show the incremental rendering of a general graph. The sample is the
graph of the structure of our laboratory web site. The 3D layout has been generated with a spring



Using Strahler numbers for real time visual exploration of huge graphs

Fig. 12 .66,000 elemenst Fig. 13 .520,000 elements

Fig. 14 .200 elements Fig. 15 .600 elements

electrical algorithm[12]. As for the previous sample the first picture with only 200 elements
(less than 6.5 % of the entire graph) gives a good abstraction of the final one. Furthermore,
during the experimentation on such graphs, the heuristic has given good result by displaying
first the relevant part of the graph. On the figure 14 the displayed graph is the most important
part of our web-site. By most important we mean the kernel of our web site.

7 CONCLUSION AND FUTURE WORK.

Presented results are directly usable and encourage the use of such methods for graph visu-
alization. Future works will be to identify others intrinsic parameters which improves the result
of this heuristic and to put a special emphasis on evaluation method of this kind of navigation.

The experimentation has shown that the part of data with the greater value is not without
sense. More precisely we are currently working on clustering algorithm which use the Strahler
number introduce above. Even if the clustering methods will be slower than the one presented
above, first results on interaction protein graph are pretty good.

All the features proposed in this article are available through our graph visualization soft-
ware called Tulip[3]1.

1Tulip, software is under GPL license and is available at :http : //www.tulip− software.org



D. Auber

Fig. 16 .1,000 elements Fig. 17 .3,200 elements

REFERENCES

[1] F. Maghoul A. Broder and R. Kumar,Graph structure in the web, Proc. 9th International
World Wide Web Conference, Computer Networks, vol. 33, 2000, pp. 309–320.

[2] C. J. Alpert and A. B. Kahng,Recent directions in netlist partitioning: A survey, Integra-
tion: The VLSI J.19 (1995), 1–18.

[3] David Auber,Tulip, Proc. 9th Symp. Graph Drawing, GD (Sebastian Leipert Petra Mutzel,
Mickael Junger, ed.), Lecture Notes in Computer Science, LNCS 2265, Springer-Verlag,
2001, pp. 335–337.

[4] D.Auber B.LeBlanc, D.Dion and G.Melançon,Constitution et visualisation de deux
réseaux d’associations verbales, Actes du colloque Agents Logiciels, Coopération, Ap-
prentissage et Activité Humaine (ALCAA), 2001, pp. 37–43.

[5] Michael E.Houle Carsten Friedrich,Graph drawing in motion ii, Proc. 9th Symp. Graph
Drawing, GD (Sebastian Leipert Petra Mutzel, Mickael Junger, ed.), Lecture Notes in
Computer Science, LNCS 2265, Springer-Verlag, 2001, pp. 220–231.

[6] D.Auber and M.Delest,A clustering algorithm for huge trees, Advances in Applied Math-
ematics, Academic press, To appear.

[7] A. P. Ershov,On programming of arithmetic operations, Com, of the A.C.M1 (1958),
no. 8, 3–6.

[8] J.M Fedou,Nombre de strahler sur les arbres géńeraux, ecole jeunes chercheur en algo-
rithmique et calcul formel, gdr alp, bordeaux, may 1999.

[9] Bourgine P Kepes F Guelzim N, Bottani S,Topological and causal structure of the yeast
transcriptional regulatory network., Nature genetics31 (2002), 60–63.

[10] J. Bang-Jensen. G. Gutin,Digraphs: Theory, algorithms and applications, Springer-
Verlag, 2000.

[11] I. Herman, M. Marshall, and G. Melançon,Density functions for visual attributes and
effective partitioning in graph visualization, 2000.



Using Strahler numbers for real time visual exploration of huge graphs

[12] G. Battista. P. Eades. R. Tamassia. Ioannis and G. Tollis,Graph drawing, algorithms for
the visualization of graphs, no. 1, 1999.

[13] A.K. Jain and R.C. Dubes,Algorithms for clustering data, prentice-hall, englewood cliff
s, NJ88 (1988), 1988.

[14] R. Karp.,Reducibility among combinatorical problems., Complexity of Computer Com-
putations (1972), 85–103.

[15] Scott Marshall,Methods and tools for the visualization and navigation of graphs., Ph.D.
thesis, University Bordeaux I, June 2001.

[16] Tamara Munzner,Drawing large graphs with h3viewer and site manager, Proc. 5th Int.
Symp. Graph Drawing, GD, Lecture Notes in Computer Science, LNCS, Springer-Verlag,
1998, pp. 384–393.

[17] Edward M. Reingold and John S. Tilford,Tidier drawings of trees, IEEE Transactions on
Software Engineering7 (1981), no. 2, 223–228.

[18] Alan Robinson,Visualisation of microarray gene expression data, Avaiable in the World
Wide Web athttp://industry.ebi.ac.uk/ alan/ .

[19] C. Rorres Y. Chen E.R. Gansner S. Mancoridis, B. S. Mitchell,Using automatic clustering
to produce high-level system organizations of source code, Intl. Workshop on Program
Comprehension (1998).

[20] Prabhakar Raghavan S. Ravi Kumar and Sridhar Rajagopalan,The web as a graph, Proc.
Symposium on Principles of Database Systems, 2000, pp. 1–10.

[21] Manojit Sarkar and Marc H. Brown,Graphical fisheye views, Communications of the
ACM 37 (1994), no. 12, 73–84.

[22] A. N. Strahler,Hypsomic analysis of erosional topography, Bulletin Geological Society
of America 63 1117-1142. (1952).

[23] Xavier Gerard Viennot,Trees everywhere, Colloquium on Trees in Algebra and Program-
ming, 1990, pp. 18–41.

[24] Colin Ware,Information visualization: Perception for design, Moragn Kaufmann, 2000.

[25] Duncan J. Watts,Small worlds: The dynamics of networks between order and randomness,
1999.

[26] Graham J. Wills,NicheWorks — interactive visualization of very large graphs, Proc. 5th
Int. Symp. Graph Drawing, (Giuseppe Di Battista, ed.), Lecture Notes in Computer Sci-
ence, LNCS, no. 1353, Springer-Verlag, 1997, pp. 403–414.

[27] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti Hearst,Animated exploration
of graphs with radial layout, Proc. IEEE Symposium on Information Visualization, San
Diego, 2001, pp. 43–50.


	Introduction
	Incremental rendering
	Strahler numbers
	Strahler number on binary trees
	Strahler number on general trees

	Strahler number on rooted maps
	Edge decomposition
	Computation of the number of registers, .
	Computation of the number of necessary stacks .

	Strahler numbers for real time navigation.
	Experimentation
	Conclusion and future work.

