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ABSTRACT

In this paper, we discuss dimension reduction methods for 2D vi-
sualization of high dimensional clustered data. We propose a two-
stage framework for visualizing such data based on dimension re-
duction methods. In the first stage, we obtain the reduced dimen-
sional data by applying a supervised dimension reduction method
such as linear discriminant analysis which preserves the original
cluster structure in terms of its criteria. The resulting optimal re-
duced dimension depends on the optimization criteria and is of-
ten larger than 2. In the second stage, the dimension is further re-
duced to 2 for visualization purposes by another dimension reduc-
tion method such as principal component analysis. The role of the
second-stage is to minimize the loss of information due to reducing
the dimension all the way to 2. Using this framework, we propose
several two-stage methods, and present their theoretical character-
istics as well as experimental comparisons on both artificial and
real-world text data sets.

Keywords:  dimension reduction, linear discriminant analysis,
principal component analysis, orthogonal centroid method, 2D pro-
jection, clustered data, regularization, generalized singular value
decomposition

Index Terms: H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Theory and methods

1 INTRODUCTION

Within the visual analytics community, various types of informa-
tion content are represented using high dimensional signatures. To
make these signatures useful they often need to be transformed into
a lower dimension (i.e., 2D or 3D) for a variety of visual represen-
tations such as scatter plots. Many researchers in this community
have used a wide assortment of dimension reduction techniques,
e.g., self-organizing map (SOM) [12], principal component analy-
sis (PCA) [11], multidimensional scaling (MDS) [2], etc. However,
it is not always clear why a certain technique has been chosen over
another, especially to the end user. Typically, its goal can be viewed
in terms of two aspects: efficiency and accuracy. Efficiency as de-
fined here is the time to compute the reduction, but accuracy may
not be as simple to quantify. Many would amiably agree to quan-
tify accuracy as a measure of the relationship preservation in the
high dimensional space to the reduced dimensional space. Note that
most techniques either directly or indirectly work on this principle.

There are other properties that are important to those interpreting
the semantics of the reduced space. Specifically, we note that while
local neighbor preservation is important it depends upon the anal-
ysis task. No single reduction technique will provide the complete
view as various properties of the space are obscured or lost. We
have mentioned that typically the primary objective is relationship
preservation. However, there are at least two others: outlier and
macro structure visualization. Outliers are conceptually easy (i.e.,
a variance beyond some threshold), but more difficult to quantify,
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as we do not necessarily know which set of outliers are important
to accentuate to the user. Certain techniques (e.g., PCA) tend to
show outliers more readily, however tend to compress the reduced
space at the expense of showcasing the outliers. Other techniques
(e.g., SOM) maximize space usage well, but do so at the expense
of masking or even hiding those outliers. Likewise, macro struc-
tures of the high dimensional space may be masked or massively
distorted during the reduction. Macro structures are those larger or-
der groupings (e.g., clusters) that exist in the original dimensional
space. We recognize they are important in dimension reduction re-
search and to those in the visual analytics community. However,
few of them focus on data representation especially for visualiza-
tion of the clustered data [20, 13, 3].

We propose theoretical measures for these properties and effi-
cient algorithms which will aid not only the researchers but ul-
timately the users/analysts to better understand which balance of
properties are important and for which analytic tasks.

2 MOTIVATION

The focus of this paper is the fundamental characteristics of dimen-
sion reduction techniques for visualizing high dimensional data in
the form of a 2D scatter plot when the data has cluster structure.
The role of dimension reduction here is to give a 2-dimensional
representation of data while preserving cluster structure as much as
possible. To this end, supervised dimension reduction methods that
incorporate cluster information such as linear discriminant analy-
sis (LDA) [4] or orthogonal centroid method (OCM) [10] can be
naturally considered.

However, one of the issues is that with many dimension reduc-
tion methods designed to preserve the cluster structure in the data,
the theoretically optimal reduced dimension, which is the smallest
dimension that is acceptable with respect to the optimization crite-
ria of the dimension reduction method, is usually larger than 2. For
example, in LDA, the minimum reduced dimension that preserves
the cluster structure quality measure defined as a trace maximiza-
tion problem is one less than the number of clusters in the data in
general [8, 7].

In this case, one may simply choose the two dimensions that
contribute most to such a measure. However, with only two dimen-
sions, such a measure may become significantly smaller than the
original quantity after dimension reduction. This results in loss of
information that hinders visualization in properly reflecting the true
cluster relationship of the data. A similar situation may occur when
using PCA for visualizing the data not having a cluster structure.
Even though PCA finds the principal axes that maximally capture
the variance of the data, when the resulting 2-dimensional repre-
sentation of the data maintains only a small fraction of the total
variance, the relationships of the data in 2 dimension are likely to
be highly inconsistent with those in the original dimension.

Such loss of information is inevitable in that the dimension has to
be reduced to 2. Our main motivation is to deal with such loss more
carefully by separating the loss-introducing stage from the origi-
nal dimension reduction methods. Based on this idea, we propose
the two-stage framework of dimension reduction for visualization.



In this framework, a supervised dimension reduction method is ap-
plied in the first stage so that the original dimension is reduced to
the minimum dimension achievable while preserving the quality of
cluster measure as defined in a dimension reduction method. The
reduced dimension achieved in the first stage is often larger than
2. Thus in the second stage, we find another dimension reducing
transformation that minimizes the loss introduced in further reduc-
ing the dimension all the way to 2. This two-stage framework pro-
vides us with a means to flexibly apply different types of dimension
reduction techniques in each stage and to systematically analyze
their effects, which provides understanding the effects of the over-
all dimension reduction methods for visualization of clustered data.
The issues then are the design of the most appropriate dimension
reduction methods, the modeling of optimization criteria, and the
corresponding solution methods.

In this paper, we present both theoretical and empirical answers
to these issues. Specifically, we propose several two-stage methods
utilizing linear dimension reduction methods such as LDA, orthog-
onal centroid method (OCM), and principal component analysis
(PCA), and we present their theoretical justifications by modeling
the optimization criteria for which each method provides the opti-
mal solution. Also, we illustrate and compare the effectiveness of
the proposed methods by showing empirical visualization on syn-
thetic and real-world data sets.Although nonlinear dimension re-
duction methods such as MDS or other manifold learning methods
such as isometric feature mapping [16] and locally linear embed-
ding [14] may also be utilized for the effective 2D visualization of
high dimensional data, our focus in this paper is on linear methods.
The linear methods are computationally more efficient in general,
and unlike most of the manifold learning methods, they also provide
dimension reducing transformations that can be applied to map and
visualize unseen data points in the same space where the existing
data are visualized.

Our approach to successively apply two dimension reduction
methods should be discerned from the previous works [18, 19,
21] in that they usually aim for improving computational effi-
ciency, scalability, or applicability of a certain dimension reduction
method, e.g., LDA.

The rest of this paper is organized as follows. In Section 3, LDA,
OCM, and PCA are described based on a unified framework of the
scatter matrices and their trace optimization problems. In Section 4,
we formulate two-stage dimension reduction methods, and in Sec-
tion 5, several two-stage methods for visualization are proposed and
compared along with their criteria. Experimental comparisons are
given using artificial and real-world data sets in Section 6, and con-
clusion and future work are addressed in Section 7.

3 DIMENSION REDUCTION AS TRACE OPTIMIZATION
PROBLEM

In this section, we introduce the notions of scatter matrices used
in defining cluster quality and optimization criteria for dimension
reduction.

Suppose a dimension reducing linear transformation G7 € R/
maps an m-dimensional data vector x to a vector z in an [-
dimensional space (m > [):

Gl ixeR™! 7= GTx e R, 1)

Suppose also that a data matrix A = [aj ay -+~ a,] € R™" is given
where the columns aj, j =1, ..., n, of A represent n data items in
an m-dimensional space, and they are partitioned into k clusters.
Without loss of generality, for simplicity of notations, we further
assume that A is partitioned as

k
Ay, where A; € R™™ and Z"i =n.
i=1

A=[A; Ay

Let .4; denote the set of column indices that belong to cluster i,
and n; the size of .4;. The i-th cluster centroid ¢ and the global
centroid c are defined, respectively, as
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The scatter matrix within the i-th cluster Sié), the within-cluster
scatter matrix S, the between-cluster scatter matrix Sj, and the
total (or mixture) scatter matrix S; are defined [9, 15], respectively,
as
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Note that the total scatter matrix S; is related to Sy, and S}, as [9]
Sy =Sw+Sp. ®)]

When GT in Eq. (1) is applied to the matrix A, the scatter matrices
Sw, Sp, and S; in the original dimensional space are reduced to the
[ x [ matrices

G'S,G,G'S,G, and G' G,

respectively. By computing the trace of the scatter matrices as
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trace(S;) =

we obtain values that can be used to measure the cluster quality.
Note that from Egs. (7) and (8), trace(S;) can be viewed as the
squared sum of the pairwise distances between cluster centroids as
well as that of the distances between each centroid and the global
centroid.

The cluster structure quality can be defined by analyzing how
well each cluster can be discriminated from each other. High qual-
ity clusters usually have small trace(S,,) and large trace(Sp), re-
lating to the small variance within each cluster and the large dis-
tances between clusters. Subsequently, dimension reduction meth-
ods may be intended to maximize trace(G’ S,G) and minimize



trace(GTSWG) in the reduced dimensional space. This simultane-
ous optimization can be approximated to a single criterion as

Ty (G) = maxtrace((G" 5,G) (G 5,G)), (10)

which is the criterion of LDA. In addition, one may focus on maxi-
mizing the distances between clusters, which can be represented as
the criterion of OCM, i.e.,

Jy(G) = Gl;lgiltrace(GTS,,G). (11)

On the other hand, regardless of cluster dependent terms, S, and
Sp, the trace of the total scatter matrix S; can be maximized as

Ji(G) = max trace(G' $,G), (12)
GTG=I
which turns out to be the criterion of PCA. In Eqgs. (11) and (12),
without the constraint, GT G = I, J,(G) and J;(G) can become ar-
bitrarily large.
In what follows, LDA, OCM, and PCA are discussed based on
such maximization criteria, and their properties relevant to visual-
ization are identified.

3.1 Linear Discriminant Analysis (LDA)

Conceptually, in LDA, we are looking for a dimension reducing
transformation that keeps the between-cluster relationship as re-
mote as possible by maximizing trace(G” S, G) while keeping the
within cluster relationship as compact as possible by minimizing
trace(G” S,,G). As shown in Eq. (10), the criterion of LDA can be
written as

Jyw(G) = maxtrace((G” $,,G) ' (G 5,G)). (13)
It can be shown that for any G € R"*! where m > [,
trace((G' 5,,G) (G $,G)) < trace(S;,'S},), (14)

meaning that the cluster structure quality measured by trace(S;,'S,)
cannot be increased after dimension reduction [4]. By setting the
derivative of Eq. (13) with respect to G to zero, which gives the
first order optimality condition, it can be shown that the solution
of LDA, where we denote it as Gypa, has the columns which are
the leading generalized eigenvectors u of the generalized eigenvalue
problem,

Spu = AS,u. (15)

Since the rank of Sj, is at most k — 1, LDA achieves the upper bound
of trace((G” S,,G) ™' (GT S,G)) in Eq. (14) for any [ such that [ >
k—1,1ie.,

trace((G} ppSwGrpa) ™ (GLpaSsGrpa))
= trace(S,,'S)) for I > k—1, (16)

which indicates trace(S;, 1Sb) is preserved between the original
space and the reduced dimensional space obtained by Gy py.

3.2 Orthogonal Centroid Method (OCM)

Orthogonal centroid method (OCM) [10] focuses only on maximiz-
ing trace(G7 S, G) under the constraint of GT G = I. The criterion
of OCM is shown as

Jp(G) = Gglgiltrace(GTS,,G). a7)

It is known that for any G € R™*! where m > [ such that GT G =
I,
trace(G' S, G) < trace(S), (18)

which means the cluster structure quality measured by trace(S))
cannot be increased after dimension reduction. The solution of Eq.
(17) can be obtained by setting the columns of G as the leading
eigenvectors of Sj. Since S, has at most k — 1 nonzero eigenvalues,
the upper bound of trace(G” S,G) in Eq. (18) can be achieved for
any [/ such that/ > k—1, i.e.,

trace(G §;,G) = trace(S},) for [ > k— 1. (19)

Eq. (19) indicates trace(S},) is preserved between the original and
the reduced dimensional spaces.

An advantage of OCM is that it achieves an upper bound of
trace(G” S, G) more efficiently by using QR decomposition, avoid-
ing the eigendecomposition. The algorithm of OCM is as fol-
lows. First the centroid matrix C is formed so that each col-
umn of C is composed of each cluster’s centroid vector, i.e., C =
[ c1 Ck } . Then the reduced QR decomposition [5] of

C is computed for C = QiR where Q) € R™*K with Q,{Qk =/ and
R € R¥K is upper triangular. The solution of OCM, Gocyy, is found
as

Gocm = Ok-
Note that the columns of Gpcys are composed of the orthogonal

bases for the subspace spanned by the centroids, and / = k in this
case. Finally, OCM achieves

trace(GgCMS;,GOCM) = trace(S)), where [ = k.

By using the equivalence between Egs. (3) and (3), one can
prove that each pairwise distance between cluster centroids is also
preserved in the reduced dimensional space obtained by OCM.

Another important property of OCM is that by projecting data
into the subspace spanned by the centroids, the order of similarities
between any particular point and centroids are preserved in terms
of Euclidean norm and cosine similarity measure [10, 7]. In other
words, for any vector ¢ € R”*! and cluster centroids ¢ and (),
we have
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3.3 Principal Component Analysis (PCA)

PCA is a well-known dimension reduction method that captures the
maximal variance in the data. The criterion of PCA can be written
as

Ji(G) = max trace(G'S,G). (20)

GT'G=I

For any G € R™*! where m > I such that GT G = I, we have
trace(G' $;G) < trace(S;), (21)

which means trace(S;) cannot be increased after dimension reduc-
tion. The solution of Eq. (20), where we denote it as Gpca, can
be obtained by setting the columns of G as the leading eigenvec-
tors of S;. Since the rank of S; is at most min(m, n), PCA achieves
the upper bound of trace(G” S;G) in Eq. (21) for any / such that
[ > min(m, n), i.e.,

trace(GheySiGpca) = trace(S;) for [ > min(m, n).



Table 1: Comparison of dimension reduction methods. It is assumed S, and S; are full rank.

| 1 LDA

[ OCM [ PCA

Optimization Criterion

. Jb/w(G):
()CE Rmxl (Ly c Rlxl)

maxtrace((G” S,,G) 1 (GT $,G))

Jp(G) = Grpgiltrace(GTSbG) J:(G) = Grpgiltrace(GTStG)

Algorithm

generalized eigendecomposition

QR decomposition symmetric eigendecomposition

Smallest dimension achieving

the criterion upper bound k=1

k min(m, n)

In many applications of PCA, however, [ is usually chosen as a
fixed value less than the ranke of S; for the purpose of dimension
reduction or noise reduction. This noisy subspace corresponds to
the smallest eigenvectors of S;, and they are removed by PCA for
better representation of the data.

Although §; is related to S, and S,, as in Eq. (5), S; as it is
does not contain any information on cluster labels. That is, unlike
LDA and OCM, PCA ignores the cluster structure represented by
Sp and/or S),, which is why PCA is considered as an unsupervised
dimension reduction method.

Usually, PCA assumes that the global centroid is zero by sub-
tracting the empirical mean of the data from each data vector.
The centered data can be represented as A — ce!, where ¢ is n-
dimensional vector whose components are all 1’s.

PCA has a unique property that, given a fixed /, it produces the
best reduced dimensional representation that minimizes the differ-
ence between the centered matrix A — ce! and its projection to the
reduced dimensional space GGT (A — ce”') where G has orthonor-
mal columns, i.e.,

G —arg min ||GGT(A—ce’)—(A—ce’ ,
PcA gG"GTG:I’H ( )= ( )l

where the matrix norm || - || is either a Frobenius norm or a Eu-
clidean norm.
The three discussed methods are summarized in Table 1.

4 FORMULATION OF TWO-STAGE FRAMEWORK FOR VISU-
ALIZATION

Suppose we want to find a dimension reducing linear transforma-
tion VT € R>*™ that maps an m-dimensional data vector x to a vec-
tor z in a 2-dimensional space (m > 2):

VvIixe R o =y Tx e RZX, (22)

Further assume that it is composed of two stages of dimension re-
ductions as follows. In the first stage, a dimension reducing linear
transformation G € R’ maps an m-dimensional data vector x to
a vector y in the /-dimensional space (I < m):

Gl ixeR™! oy =GTxe RX, (23)

where / is fixed as its minimum optimal dimension by the first-stage
criterion. When / < 2, we have no further dimension reduction to
do after the first step. However, an optimal / in many methods and
for many data sets is larger than 2, and so we assume that [ > 2.

In the second stage, another dimension reducing linear transfor-
mation H” € R?*! maps an [-dimensional data vector y to a vector
z in the 2-dimensional space(/ > 2):

HT iy e R & 7= HTy e R?¥1, (24)
Such consecutive dimension reductions performed by G7 fol-
lowed by HT can be combined, resulting in a single dimension re-

ducing transformation V7 as

vl =HTGT. (25)

In the next section, discussion will be focused on various ways
for choosing the first stage dimension reducing transformation G
and the second stage dimension transformation A with a purpose
to construct combined dimension reducing transformation V7 =
HTGT for 2-dimensional visualization according to various opti-
mization criteria.

5 Two-STAGE METHODS FOR 2D VISUALIZATION

All the proposed two-stage methods start from one of the super-
vised dimension reduction methods such as LDA or OCM that are
designed for clustered data. In the first stage (by G € R in
Eq. (23)), the dimension is reduced by LDA or OCM to the small-
est dimension that satisfies Eq. (16) or (19), respectively. There-
fore in the first stage, the cluster structure quality measured either
by trace(S;;'S),) or trace(S),) is preserved. Then we perform the
second-stage dimension reduction (by H T eR2%! jp Eq. (24)) that
minimizes the loss of information either by applying the same cri-
terion used in the first stage or by using J; in Eq. (20), i.e., that of
PCA. As seen in Section 3.3, Eq. (20) gives the best approxima-
tion of the first-stage results that minimize the difference in terms
of Frobenius/Euclidean norm.

In what follows, we describe each of the two-stage methods in
detail, and derive their equivalent single-stage methods (by V7 €
RZ*™ in Eq. (22)) in case they exist.

5.1 Rank-2 LDA

In this method, LDA is applied in the first stage, and trace(S},'S},)
is preserved in the /-dimensional space where [ = k — 1. In the
second stage, the same criterion Jp,, (H) is used to reduce the /-
dimensional first-stage results to 2-dimensional data.

The criterion of the second-stage dimension reducing matrix H
can be formulated as

Hyjy = max trace((H” (GI psSwGrpa)H) !
(H" (GLpASyGroa)H)). (26)

Assuming the columns of Gypa, which are generalized eigenvec-
tors of Eq. (15), are in decreasing order of their corresponding gen-
eralized eigenvalues, i.e., Gipa = [ 1 ua -~ gy | where
A > Ay > -+ > A1, the solution of Eq. (26) is

Hb/w = [ ) ]7

where e¢; and e, are the first and the second standard unit
vectors, ie, e = [1 0 0 ]T e R¥1 and e, =

[ 01 0 0 } T ¢ RI¥1. This solution is equivalent to
choosing two dimensions with the most leading generalized eigen-
values from the first stage result, and the resulting two-stage method
can be represented as a single-stage dimension reduction method by
V € R™<2 which directly maximize Jj, Jws 1€,

Vb/w = ag V?ﬂ@gﬁxz‘]b/w(v)

= arg max trace((VTS, V)" (VTs,V)). (27
V eRmx2




Table 2: Summary of the optimization criteria of the two-stage dimension reduction methods.

l l

Rank-2 LDA [

LDA +PCA |

OCM+PCA [ Rank-2PCAonS, |

Stage 1: Preservation

T
()CGRle (i)y GRZXI)

trace((GT $,,G) ™1 (GT S,G)) = trace(S;, ' S)

trace(G” S, G) = trace(Sp)

Stage 2: Maximization

v trace((H” (G' S,,G)H)™!
(yERZX] ILZGRZXI)

T(qT

trace (HT (GTS;G)H) | trace (HT (G S,G)H)
HTH=I HTH=I

The solution of Eq. (27) becomes
Viyw=GrpaHpy = [ w1 wa ],

where ujand up are the leading generalized eigenvectors of Eq.
(15). This solution is also known as reduced-rank linear discrim-
inant analysis [6].

5.2 LDA followed by PCA
In this method, LDA is applied in the first stage, and trace(S;,'S},) is

w
preserved in the /-dimensional space where / =k — 1. In the second
stage, PCA 1is applied in order to obtain the best approximation of
the [-dimensional first-stage results in terms of Frobenius/Euclidean
norm.

The second-stage dimension reducing matrix H is obtained by
solving

H; = arg max trace(HT(GZDAStGLDA)H), (28)

HERD2 HTH=]

where the solution is the two leading eigenvectors of the total scatter
matrix of the first-stage result, G{D 4StGLDA-
From Eq. (5), we have

Gl paSiGrpa = GLpa(Sp+Sw)Grpa. (29)

Since LDA conceptually maximizes trace(G” S,G) and minimizes
trace(G” S,,G), the result is expected to satisfy

trace(GT pySpGrpa) > trace(G 14 SwGrpa)),
which means that GZDAS, Gy pa is dominated by GZDAS;,GLDA, ie.,

Gl pa(Sp+8w)Grpa ~ G paSpGrpa.

In this case, the principal axes that PCA gives in the second stage
better reflect those of the between-cluster matrix of the first-stage
result, G{D 435G LpA, and they may in turn discriminate the clusters
clearly in the 2-dimensional space. In this sense, LDA followed by
PCA achieves a clear cluster structure as well as a good approxima-
tion of the first-stage result.

5.3 OCM followed by PCA

In this method, OCM is applied in the first stage, and trace(S}) is
preserved in the /-dimensional space where / = k. In the second
stage, PCA 1is applied in order to obtain the best approximation of
the /-dimensional first-stage results in terms of Frobenius/Euclidean
norm.

As in Section 5.2, the second-stage dimension reducing matrix
H is obtained by solving

H, = arg max trace(HT (G(T)CMS, Gocm)H), (30)

HeR*2 HTH=]

where the solution is the two leading eigenvectors of the total scatter
matrix of the first-stage result, GECMSf Gocum-
From Eq. (5), we have

GLerSiGocn = Ghen (Sp +Sw)Gocu- 31)

Unlike LDA, OCM does not minimize trace(G” $,,G) as shown in
Eq. (17). Therefore the following may not be the case:

trace(GgCMSh Gocm) > trace(G(T)CMSWGOCM )

which means that GgCMSbGOCM does not necessarily dominate
GSCMStGOCM. Then the two principal axes of GgCMStGOCM ob-
tained by PCA in the second stage tend to fail to reflect those of
GSCMSbGOCM, which may rather scatter the data points within
each cluster, eventually preventing the visualization results from
showing a clear cluster structure.

5.4 Rank-2 PCAon S,

In this method, OCM is applied in the first stage, and trace(S,) is
preserved in the /-dimensional space where / = k. In the second
stage, the same criterion J, (H) is used to reduce the /-dimensional
first-stage results to 2-dimensional data.

The second-stage dimension reducing matrix H is obtained by
solving

Hj, = arg max

trace(HT (GL .S, G H), 32
HEeRX2 HT H—] (H" (GocuSpGocm)H) (32)

where the solution is the two leading eigenvectors of the between-
scatter matrix of the first-stage result, GSCMSbGQCM. The cqlumns
of Gocy form the subspace spanned by centroids, and this sub-
space includes the range space of S,. Accordingly, one can easily
show that the eigenvector ’41)'/ e RI*1 of chMSbGOCM is related to

eigenvectors u; € R™<1 of S, as
Y _ AT .
uj = Gocpli

with their corresponding eigenvalues matched as well, i.e., ll-Y =A.
Hence, the solution of Eq. (32) can be written as

Hy=[ uf ”g}:GSCM["l uy |. (33)

Using Eq. (33) and the relationship shown in Eq. (25), the single-
stage dimension reducing transformation V), can be built as

T
u
Vi = i Ghow=| ' | GocuGhe
T
u
= |t ] (34)
{ u
= arg max Jp(V
gVG]R”’XZ b( )
= arg max trace(VS,V). (35)
V eRmx2

Eq. (34) holds since the eigenvectors of Sj, 1] and uy, are in the
range space of Gpcy. The criterion of Eq. (35) has been used in
one of the successful visual analytic systems, IN-SPIRE, for 2D
representation of document data [17].

The discussed two-stage methods are summarized in Table 2.

6 EXPERIMENTS

In this section, we present visualization results using the proposed
methods for several data sets, especially focusing on undersam-
pled text data visualization where the data item is represented in
m-dimensional space and the number of the data items n is less
than m (m > n).



Table 3: Description of data sets.

| [ GAUSSIAN | MEDLINE | NEWSGROUPS | REUTERS |

Original dimension, m 1100 22095 16702 3907
Number of data items, n 1000 500 770 800
Number of clusters, & 10 5 11 10

6.1 Regularization on LDA for undersampled data

In undersampled cases, the LDA criterion shown in Eq. (13) can-
not be applied directly because S, is singular. In order to over-
come this singularity problem, Howland et al. proposed a univer-
sal algorithmic framework of LDA using the generalized singular
value decomposition (LDA/GSVD) [8, 7]. Specifically, for the case
when m > n > k, which is usual for most undersaml%led prob-
lems, LDA/GSVD gives the solution for G such that G* S,,G =0
while maintaining the maximum value of trace(G” S,G). This so-
Iution makes sense since LDA criterion is formulated to minimize
trace(GTSWG). However, it means that all of the data points be-
longing to a specific cluster are represented as a single point in the
reduced dimensional space, which lessens the generalization abil-
ity for classification as well as for visualizing the individual data
relationship within each cluster.

On the contrary, the fact that LDA makes GTS,,G =0 can be
viewed as an advantage for visualization purposes since LDA has
the capability to fully minimize trace(G” S,,G). By means of regu-
larization on S,, one can control trace(G' S,,G), which determines
the scatter of the data points within each cluster. In regularized LDA
which was originally proposed to avoid the singularity of S,, in clas-
sification context, S,, is replaced by a nonsingular matrix S,, + ¥/
where [ is an identity matrix, and Y is a control parameter. In gen-
eral, as 7 is increased, the within-cluster distance, trace(GTSWG),
also becomes larger with data points being more scattered around
their corresponding centroids. As ¥ is decreased, the within-cluster
distance becomes smaller, and the data points gather closer around
their centroids. Such manipulation of y can be exploited in a vi-
sualization context because one can choose an appropriate value of
7 so that the second-stage method such as PCA, which maximizes
trace(G' S;G) = trace(G' S,G + G' S,,G), does not focus too much
on trace(G S,,G). The results that follow are based on such choices
of 7.

6.2 Data Sets

The data sets tested are composed of one artificially-generated
Gaussian-mixture dataset (GAUSSIAN) and three real-world text
data sets (MEDLINE, NEWSGROUPS, and REUTERS) that are
clustered based on their topics. All the text documents are encoded
as term-document matrices where each dimension corresponds to a
particular word, and the value of a certain dimension represents the
frequency of the corresponding word shown in the document. Each
data set is set to have an equal number of data per cluster, and have
a mean of zero which is attained by subtracting the global mean.
(See Section 6.3.)

The descriptions of data sets, which are also summarized in Ta-
ble 3, are as follows.

The GAUSSIAN data set is a randomly generated Gaussian mix-
ture with 10 clusters. Each cluster is made up of 100 data vectors,
which add up to 1000 in total, and the dimension is set to 1100,
which is slightly more than the number of the data items. In its vi-
sualization shown in Fig. (1), the clusters are labeled using letters
as

e ’a’,’b’,...,and ’j’.

The MEDLINE data set is a document corpus related to medical
science from the National Institutes of Health!. The original di-
mension is 22095, and the number of clusters is 5, where each clus-

Uhttp://www.cc.gatech.edu/ hpark/data.html

ter has 100 documents. The cluster labels that correspond to the
document topics are shown as

e heart attack ("h’), colon cancer (’c’), diabetes (’d’), oral cancer

(’0’), and tooth decay (’t’),
where the letters in parentheses are used in the visualization shown
in Fig. (2).

The NEWSGROUPS data set [1] is a collection of newsgroup
documents, and originally composed of 20 topics. However, we
have chosen 11 topics for visualization, and each cluster is set to
have 70 documents. The original dimension is 16702, and the clus-
ter labels are shown as

® comp.sys.ibm.pc.hardware (’p’), comp.sys.mac.hardware (’a’),

misc.forsale (’f’), rec.sport.baseball (’b), scicrypt (y’),
sci.electronics (’e’), sci.med (’d’), soc.religion.christian (’c’),
talk.politics.guns (’g’), talk.politics.misc ("p’), and talk.religion.misc
Cr),
where the letters in parentheses are used in the visualization shown
in Fig. (3).

The REUTERS data set [1] is the document collection that ap-
peared in the Reuters newswire in 1987, and originally composed
of hundreds of topics. Among them, 10 topics related to economic
subjects are chosen for visualization, and each cluster has 80 doc-
uments. The original dimension is 3907, and the cluster labels are
shown as

e carn (’e’), acquisitions (’a’), money-fx ('m’), grain ('g’), crude (’r’),

trade (’t’), interest (’i’), ship (’s”), wheat ("w’), and corn (’c’),
where the letters in parentheses are used in the visualization shown
in Fig. (4).

6.3 Effects of Data Centering

Fig. 5 is the example of applying OCM+PCA to the MEDLINE
data set with and without data centering. Once the MEDLINE data
set is encoded as a term-document matrix, every component has a
non-negative value, which results in the global centroid that is sig-
nificantly far from the origin. Then performing PCA without data
centering might give the first principal axis as the one reflecting the
global centroid rather than that discriminating clusters. If we con-
sider projecting the data onto each of the horizontal and the vertical
axes in Fig. 5, the former, which corresponds to the first princi-
pal axis, does not help in showing the cluster structure clearly, and
only the vertical axis, which corresponds to the second principal
axis from PCA, discriminates clusters. We have found that such
undesirable behavior is common in many cases without data center-
ing, which is why we assume that data is centered throughout this
paper. Accordingly, all the results shown in Figs 1-4 are obtained
after data centering.

6.4 Comparison of Visualization Results

The results of four two-stage methods for the tested data sets are
shown in Figs.1-42.

In all cases, LDA-based methods show cluster structures more
clearly than OCM-based methods. This proves the effectiveness
of LDA that considers both within- and between-cluster measures
while OCM only takes into account the latter. Due to this differ-
ence, OCM generally produces a widely-scattered data representa-
tion within each cluster. As a result, in the NEWSGROUPS dataset,
such a wide within-cluster variance significantly deteriorates the

Those figures can be arbitrarily magnified without losing the resolution
in the electronic version of this paper.



cluster structure visualization even if OCM still attempts to max-
imize the between-cluster distance.

In the MEDLINE and the REUTERS data sets, all of the four
methods produce relatively similar results. However, we have
controlled the within-cluster variance in LDA-based methods us-
ing the regularization term 7y/. In addition, the fact that rank-2
LDA and LDA+PCA produce almost identical results indicates that
GZDAS, Gy pa is dominated by GZDASbGLDA after LDA is applied in
the first stage as we expected.

Rank-2 LDA represents each cluster most compactly by mini-
mizing the within-cluster radii both in the first and the second stage.
However, it may reduce the between-cluster distances as well be-
cause Jj,/,, maximizes the conceptual ratio of two scatter measures.
As can be seen in the two LDA-based methods applied to the NEW-
GROUPS data set, while rank-2 LDA minimizes the within-cluster
radii, it also places the centroids closer to each other as compared
to those in LDA+PCA. Due to this effect, which one is preferable
between rank-2 LDA and LDA+PCA depends on the data set to be
visualized.

Overall, OCM+PCA and Rank-2 PCA on §;, show similar re-
sults. It means G S, G ~ G S;G in that the difference between two
methods lies in whether PCA is applied to G S, G or G S;G in the
second stage. Since performing PCA on G7S,G is computation-
ally more efficient than PCA on GTS,G, Rank-2 PCA on Sp, can be
a good alternative to OCM+PCA in case efficient computation is
important.

Finally, these visualization results reveal the interesting clus-
ter relationships underlying in the data. In Fig. (2), the clusters
for colon cancer (’c’) and oral cancer (Co’) are shown close to
each other. In Fig. (3), the clusters of soc.religion.christian (’c’)
and talk.religion.misc (’r’), those of comp.sys.ibm.pc.hardware
(’p’) and comp.sys.mac.hardware (’a’), and those of sci.crypt ('y’)
and sci.med (’d’) are closely located respectively in LDA-based
methods. In addition, the two clusters, misc.forsale (’f’) and
rec.sport.baseball (’b’), are shown to be the most distinctive, which
makes sense because those topics are quite irrelevant to the others.
In Fig. (4), the clusters of grain (’g’), wheat (‘w’), and corn (’c’)
as well as those of money-fx ("'m’) and interest (’i’) are visualized
very close.

7 CONCLUSION AND FUTURE WORK

According to our results, LDA-based methods are shown to be
superior to OCM-based methods since both within- and between-
cluster relationships are taken into account in LDA. Especially,
combined with PCA in the second stage, LDA+PCA achieves a
clear discrimination between clusters as well as the best approx-
imation of the results of LDA when the distance between data is
measured in terms of Frobenius/Euclidean norm.

However, many classes except for few of them that are clearly
unrelated tend to be overlapped especially when dealing with large
numbers of data points and clusters. This is inherently due to the
nature of the second-stage dimension reduction in which only the
two axes are chosen so that the classes which contribute most to
the second stage criteria can be well-discriminated. Such behavior
can exaggerate the distances between particular clusters, and more
elaboration towards new criteria that fits in visualization is required.
In the MEDLINE and the REUTERS datasets, visualization results
seem to have a tail-shape along specific directions. We often found
this phenomenon to occur in many other data sets. It is still unclear
as to what causes this and how it affects the visualization, e.g. char-
acteristics of information loss in the second stage. Finally, in order
to determine how much loss of information is introduced by each
method, more rigorous analysis based on various quantitative mea-
sures such as pairwise between-cluster distance and within-cluster
radii should be conducted.
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(a) Rank-2 LDA

Figure 1: Comparison of the two-stage methods in the GAUSS data set.

(b) LDA+PCA

(c) OCM+PCA

(d) Rank-2 PCA on S,
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Figure 2: Comparison of the two-stage methods in the MEDLINE data set.
(a) Rank-2 LDA (b) LDA+PCA (c) OCM+PCA (d) Rank-2 PCA on S,
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Figure 3: Comparison of the two-stage methods in the NEWSGROUPS data set.

(b) LDA+PCA

(c) OCM+PCA

(d) Rank-2 PCA on S,

Figure 4: Comparison of the two-stage methods in the REUTERS data set.
(a) Rank-2 LDA (b) LDA+PCA (c) OCM+PCA (d) Rank-2 PCA on S,
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Figure 5: Example of effects of data centering in the MEDLINE data set.
(b)OCM+PCA without data centering

(a)OCM+PCA with data centering
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