
Grand Tour and Projection PursuitDianne Cook�, Andreas Bujay,Javier Cabreraz, and Catherine HurleyxAbstractThe grand tour and projection pursuit are two methods for exploring multivariate data.We show how to combine them into a dynamic graphical tool for exploratory data analysis,called a projection pursuit guided tour. This tool assists in clustering data when clusters areoddly shaped and in �nding general low-dimensional structure in high dimensional, and inparticular, sparse data. An example shows that the method, which is projection-based, canbe quite powerful in situations which may cause methods based on kernel-smoothing grief.The projection pursuit guided tour is also useful for comparing and developing projectionpursuit indices and illustrating some types of asymptotic results.1 IntroductionIn this paper we show that two graphical methods for exploring high (say p) dimen-sional data, the grand tour (Asimov, 1985; Buja and Asimov, 1986), a dynamic tool,and projection pursuit (Kruskal, 1969; Friedman and Tukey, 1974; Huber, 1985), astatic tool, naturally complement each other and can be combined to enhance each'sperformance in detecting low dimensional structure. A grand tour attempts to providethe viewer with an overview of a multivariate point scatter by presenting a continu-ous (dynamic) sequence of low (d, usually = 1; 2; 3) dimensional projections, which,within time constraints, are representative of all possible projections of the data. Incontrast, projection pursuit seeks out only low dimensional projections that exposeinteresting features of the high dimensional point cloud. It does this by optimizing acriterion function, called the projection pursuit index, over all possible d-dimensional(d-d) projections of p-dimensional (p-d) data. Projection pursuit results in a num-0* Assistant Professor, Department of Statistics, 323 Snedecor Hall, Iowa State University, Ames,IA 50011-1210, dicook@iastate.edu0y Member of the Technical Sta�, AT& T Bell Labs, Room 2C2-61,600 Mountain Ave, P O Box636, Murray Hill, NJ 07974-06360z Associate Professor, Department of Statistics, Hill Center, Busch Campus, Rutgers University,New Brunswick, NJ 089030x Assistant Professor, Department of Statistics, George Washington University, Washington DC20052-00010This work was done while the �rst author was with Bellcore and Rutgers University, and secondauthor was with Bellcore. 1



ber of static plots of projections which are deemed interesting, in contrast to thedynamic movie of arbitrary projections that is provided by a grand tour. Unfortu-nately, static plots su�er from a lack of context because they have been removedfrom their neighborhood in the projection space, and while a grand tour provides theneighborhood context it has a tendency to spend too much time away from, or indeednever visit, the interesting projections. The two methods combined in an interactive,dynamic framework provide powerful tools for exploring high-dimensional data usingprojections. In particular, when the data is sparse in relation to its dimensionality,methods based on projections have advantages over those based on kernel-smoothing.The work discussed in this paper �lls gaps in research on exploring high-dimensionaldata.In the last decade most projection pursuit indices (for example, Jones and Sibson,1987; Friedman, 1987; Hall, 1989; Morton, 1989; Cook et al., 1993a; Posse, 1994)have been anchored on the premise that to �nd the structured projections one shouldsearch for the most non-normal projections. Good arguments for this can be foundin Huber (1985) and Diaconis and Freedman (1984). (We should point out thatsearching for the most non-normal directions is also discussed by Andrews et al.(1971) in the context of transformations to enhance normality of multivariate data.)This clarity of purpose makes it relatively simple to construct indices which \measure"how distant a density estimate of the projected data is from a standard normal density.(Note that the data is usually sphered before beginning projection pursuit to removemean and variance e�ects from the search, and in this sense the comparison witha standard normal density is justi�ed.) The projection pursuit index, a functionof all possible projections of the data, invariably has many \hills and valleys" and\knife-edge ridges" because of the varying shape of underlying density estimates fromone projection to the next. To accommodate the optimization of such a functionFriedman (1987) proposes a projection pursuit algorithm which entails an initial roughglobal search for relatively high values of the function from which to, secondly, startderivative-based searches to �nd the global maximum.In the last few years, with the assistance of powerful desktop computing hardware,research on the grand tour has concentrated on user interaction. The tools for userinteraction, suggested to date, take the form of motion alteration and restriction, suchas a facility to retrace the tour path and restriction of movement to subspaces, such as,principal component, canonical correlation or discriminant coordinate space (Hurleyand Buja, 1990). We now add to this bag of tricks, projection pursuit guidance. Thegrand tour is used to move the viewing plane arbitrarily through the projection space,which acts to provide random starting points for derivative-based optimization of theprojection pursuit index. The actual time point at which the optimization is initiatedmay be determined by the viewer, or in an automated implementation by some pre-determined initiation mechanism. In our implementation we have concentrated onthe former, to provide a highly interactive user controlled interface.Figure 1 shows a window dump of the implementation of a projection pursuit guided2



Figure 1: Implementation of projection pursuit guided tour in XGobi3



tour in XGobi (Swayne et al., 1991), which is a software system that is publicly avail-able from StatLib. [To get started using StatLib, send the one-line e-mail messagesend index to statlib@lib.stat.cmu.edu. A program will read your request andsend further instructions. StatLib can also be accessed by FTP, Gopher, and WWW.The e-mail reply from StatLib will contain instructions for the other methods of ac-cess.] XGobi is designed for analysis of high dimensional data through manipulationof scatterplots. It o�ers such plotting techniques as textured dot plots (Tukey andTukey, 1990), pairwise plots and 3-d rotation as well as the tour, and includes inter-active operations on the data such as scaling, linked brushing and identi�cation ofpoints. It is written in C and uses the X Window System (trademark of MIT). Al-though it is possible to construct a projection pursuit guided tour for any projectiondimension, the implementation in XGobi only uses 2-d projections, which is naturalfor 2-d display devices.To give some familiarity with the graphical appearance of the XGobi guided toursee Figure 1. Two windows are shown. The main window displays a paused grandtour (in principal component space) surrounded by many controls and the bottomwindow displays the projection pursuit index which has been plotted over time asthe tour progressed. At the top of the main window is a line of mode buttons whereit can be seen that tour mode is highlighted. Associated with the tour mode is thepanel of controls to the left of the plot window which includes tools for interactingwith a grand tour and controls for the projection pursuit guidance. To the right ofthe plot window is a collection of circles and labels representing the variables of thedata set.The next section discusses implementing a projection pursuit guided tour, using theexample of XGobi, and the tools that we have found naturally assist user interaction.The third section gives examples of both exploring data and viewing functions withthe projection pursuit guided tour.2 Implementation2.1 Basic ideas - optimization adaptation of tour movementThe grand tour is de�ned as a continuous 1-parameter (time, usually) family of d-dprojection planes which is dense in the set of all d-d planes in p-space (d < p). Thespace of all unoriented d-d planes through the origin in Euclidean p-space is called aGrassman manifold, which we denote as Gd;p�d. In contemplating an implementationof a grand tour this de�nition lends itself to a variety of interpretations. One ap-proach depends on the construction of a �lling curve which systematically traversesGd;p�d. (See Asimov, 1985 for a discussion of some attempts at constructing gooddeterministic paths, which is, as yet, an unresolved problem.) Alternatively, a ran-dom sampling of Gd;p�d combined with the construction of a continuous path betweenpairs of sampled planes can be used.The second approach is the simplest and most easily adaptable grand tour con-4



struction. It is the method that we concentrate on and we call it an interpolationtour. The construction procedure is described in detail in Buja et al. (1989), butin simple terms there are two basic steps which are iterated. Initialization is from apredetermined starting plane, V(0):(1) Sample, randomly, for a d-d plane in p-space, which we call the targetplane, V(1). (To do this generate d vectors in IRp by orthonormalizing d p-dstandard normal vectors, for example. This results in a random orthonormalbasis, denoted u(1), for a random plane.)(2) Interpolate from the starting plane, V(0), to the target plane, V(1), setthis to be the new starting plane, and return to (1). (The interpolation isimplemented in discrete steps which appear continuous to the eye, and thesize of the steps can be adjusted to simulate apparent speed changes. Wecall the starting planes and target planes basis planes. Knowing the basisplane sequence allows the tour path to be reconstructed. The orthonormalbasis for V(0) is denoted as u(0).)As indicated earlier (end of �rst paragraph of Introduction) however, this type ofgrand tour may not provide the user with a view of any interesting projections - aproblem that becomes worse as p increases. The objective is to use the derivatives ofthe projection pursuit index to select the new target plane in a more judicious manner- this adaptation of step (1) generates the projection pursuit guided tour which wenow explain in more detail. Let z be a p-d random vector, with 0 mean, and identitycovariance matrix, x= (x1; : : : ; xd) =u0z, where u is an orthonormal basis for anarbitrary d-plane in p-space, and I(x) be a d-dimensional projection pursuit index.(I is a function of the projected data matrix and the domain is all possible projections.For our purposes we have restricted ourselves to continuously di�erentiable functions,but it is possible to relax this condition if appropriate optimization methods are used.)Using this notation, the target plane V(1), characterized by the orthonormal basis u(1),is chosen as the result of orthonormalization ofu(0) + k � @I(x)@x :@x@u�����u(0)where k is the step size parameter of the optimization. In terms of dynamic graphics,k is a path length parameter because it determines the distance to the next targetplane. We consider the maximum of the index I to be reached when its value nolonger increases by further movement in the derivative direction, that is, in practicalterms, the di�erence between the index values of the previous interpolation step andthe current is below a tolerance value.This is exactly steepest ascent optimization with respect to each component vectorof u. (It is also possible to use conjugate gradient methods by a simple adaptationof the de�nition of the target plane, and, of course, other methods by more radical5



Figure 2: Monitoring window for projection pursuit guided tour in XGobiadaptations.) At some time point the local maximum will be reached, which meansthat the tour must stop because the target plane is identical to the starting plane. Tocontinue motion when this happens we propose to revert the target plane selectionprocedure back to random sampling, for some period of time before engaging inoptimization again. The e�ect is analogous to performing steepest ascent optimizationfrommultiple random starting points. The di�erence, of course, is that here the entireoptimization procedure is visualized, and the viewer may determine the starting pointsfor the optimization by using visual cues. We call the real-time process of periodicallyswitching the target plane selection between random sampling and derivative-basedselection, a projection pursuit guided tour.Intrinsic to an interactive and dynamic implementation of a projection pursuitguided tour are a number of tools which are discussed in the next few sections. Recallthat a global picture of the controls of the projection pursuit guided tour in XGobiis shown in Figure 1.2.2 Monitoring windowA vital accompaniment of the projection pursuit guided tour is a monitoringwindow (Figure 2). This window keeps a running plot of the projection pursuit indexvalues for the sequence of projections displayed in the main tour window of Fig 1over time. This involves storing a vector of index values and in our implementationthe vector has a �xed length which depends on the size of the monitoring window.During on-screen motion, as the vector becomes �lled, old values are replaced by newones, and thus a shifting window of the most recent index values is maintained. Theplot also rescales itself vertically when a new index value is above or below previousmaximum and minimum values because it is assumed that global extreme values arenot known a priori.Along the horizontal axis (time) are a number of \landmarks", short vertical lines6



above the axis and triangles below the axis. The short vertical lines indicate whena new target plane is chosen. The triangles indicate the time point when optimizeis either turned on or o�. During optimization the index values increase with time.In the �gure optimization was turned on at the leftmost triangle, so the index valueincreases until the second triangle when it was turned o�. It was turned on againat the third triangle and o� at the fourth. (From the plot, it may appear thatusing a projection pursuit guided tour to search for interesting projections of highdimensional data is a \heat up/cool down" process, such as simulated annealing, for�nding maxima of an index. However Figure 2 is a record of a real-time user-controlledprocedure and simulated annealing is an example of an automated procedure whichis a possible alternative when real-time computations are not feasible.)Marking the time of the two local maximumindex values are two bitmaps. These arecopies of the projection displayed in the tour window at the time the local maximumindex values were reached, as indicated by the stabilizing of the index value. Theirpresence assists in mental reconstruction of the tour path by recording importantfeatures. In XGobi a bitmap can be generated at any time during a projection pursuitguided tour by a simple \button click", but we have found it to be most useful torecord local maxima.2.3 Bitmap interfaceThere are two important additional uses of the bitmaps. The �rst is to direct thetour to return to the particular view provided by a bitmap accessed through a leftmouse click on the bitmap of interest. (In fact this facility was incorporated afterobserving that people using the projection pursuit guided tour exhibited a naturaltendency to want to return the tour to the previous bitmap views.) This behavior,though, depends on the bitmap remaining visible in the monitor window, which itwill only do for the length of time represented by the width of the window. Thereis no scroll facility to retrieve invisible bitmaps. The second use is to \stack up"views that have been found in order to \replay" them later. This approach dependson the existence of a history mechanism in the tour. In XGobi this is provided by abacktrack feature in which a running linked-list of basis planes provides a mechanismfor retracing the path of a tour. In addition, a pre-recorded set of basis planes maybe read in to describe a particular path to be travelled. This facility can be combinedwith a recorded list of basis planes that represent the bitmaps, or local maxima ofthe projection pursuit index.2.4 Navigational ToolsWhen a structured projection is found it is important to understand the relationshipbetween the constituent variables. With 3-d data the contribution of variables to aprojection is often represented by a tripodal axis. This readily extends to higherdimensions in which a p-podal axis tree illustrates the linear combination of variablescontributing to a projection. However the disadvantage is that it su�ers from clutter7



as more variables are added. The solution provided by Buja et al. (1988) and Hurleyand Buja (1990) is to take each axis stem out of the p-podal representation and embedit in its own icon, speci�cally a reference unit circle. We call these the variable circlesand the radial bar represents the relative contribution of each variable to the displayedprojection. These are the primary navigational tools. In Figure 1 they can be seento the right of the main plot window. (They also serve a utility function in XGobi inthat clicking on a variable circle adds or removes the variable from the tour.)2.5 Index choices - menu, parameter adjustmentOne of the most powerful features of dynamic graphics is the ability to quickly\twiddle" parameters and make option selections. The menu of indices in XGobiincludes the 2-d Natural Hermite (Cook et al., 1993a), Hermite (Hall, 1989), Legendre(Friedman, 1987), Friedman-Tukey style (Friedman and Tukey, 1974) and Entropy(Jones and Sibson, 1987) indices, as well as three simple template-like indices (Cooket al., 1993a) designed to detect projections with \holes" in the center (Holes index)or concentration of mass in the center (Central Mass index) or skewness (Skewnessindex). For complete information on the di�erent indices the reader is encouraged torefer to the appropriate references.2.6 Impact of spheringIt is usual that the data is sphered before beginning projection pursuit to removethe in
uence of location and scale on the search for structured projections. This isespecially necessary for indices which \measure" the departure of the projected datadensity from a standard normal density because location and scale di�erences maydominate the other structural di�erences. However sphering has an unfortunate sidee�ect. It visibly changes the data. For example, consider points uniformly distributedon a cylinder which has a small length to radius ratio, as in points painted on a shortpiece of tube (Figure 3a). Sphering is analogous to increasing the length of the tube(Figure 3b), resulting in the hole being less visible. Hence sphering is graphicallydistracting because it changes the shape of the data and may in some cases hidefeatures which were previously visible.Nevertheless sphering is essential to the e�ectiveness of the current selection of pro-jection pursuit indices in XGobi so the data is sphered before beginning a projectionpursuit guided tour. However in displaying the procedure one can choose to use thesphered or unsphered data space. Our preference is to show the projection pursuitguided tour on the sphered data, although in XGobi it is possible to also display thecorresponding unsphered data projections using the linked tour facility (see section2.8). (The projection coordinates, u, from the sphered space are \back-transformed"to the corresponding coordinates in the unsphered data space.)8



(a) (b)Figure 3: Visual e�ect of sphering data (a) before sphering - hole is easy to see, (b)after sphering - hole not as easy to see.2.7 Inclusion of user de�ned index functionsThe implementation in XGobi is set up to make it feasible for users to includetheir own index functions with a minimal knowledge of C and X. Essentially twofunctions need to be provided, one for calculating the index value at a particularprojection and another for calculating derivatives. The interested reader should readthe distributional notes of XGobi for further information (see statlib footnote atthe end of the Introduction).2.8 Linked ToursOne solution to the problem of sphering is to show both projections: the projectionof the sphered data and the equivalent projection in unsphered data space. This isfacilitated by linking two XGobis. The XGobi running a projection pursuit guidedtour sends its projection to one showing the data in unsphered data space. (The linkfunction inverts the projection coordinates appropriately.)The linked tour facility can be used to compare di�erent projection pursuit indicesand for cross-validation of data, for example, checking if one interesting projectionproves interesting for both halves of a data set.3 Examples3.1 Finding Low-dimensional Structure in DataThe particle physics data set that we use to illustrate the use of a projection pursuitguided tour was initially used to introduce projection pursuit by Friedman and Tukey(1974). The data is old, and the reaction studied by the data is not interesting tocontemporary physicists, but it is important to statisticians for the reason that theinherent structure has never been completely described. The combination of the grandtour and projection pursuit contributes signi�cantly to revealing the nature of the9



variable relationships in 7 dimensions. Recently, Koschat and Swayne (1992a, 1992b),have used the projection pursuit guided tour in XGobi to explore telecommunicationsdata, and indeed found previously undetected structure.3.1.1 7-D Particle Physics dataThe 7-d particle physics data (often called \prim7") contains 500 observations takenfrom a high energy particle physics scattering experiment which yields four particles.The reaction can be described completely by 7 independent measurements. (For thisreaction, �+b pt ! p�+1 �+2 ��, the following measurables (squared invariant mass) wereused: X1 = �2(��; �+1 ; �+2 );X2 = �2(��; �+1 );X3 = �2(p; ��);X4 = �2(��; �+2 );X5 =�2(p; �+1 );X6 = �2(p; �+1 ;�pt);X7 = �2(p; �+2 ;�pt). Here, �2(A;B;�C) = (EA +EB � EC)2 � (PA + PB � PC)2 and �2(A;�B) = (EA � EB)2 � (PA � PB)2, whereE and P represent the particle's energy and momentum, respectively, as measuredin billions of electron volts. The notation (p)2 represents the inner product P/P. Theordinal assignment of the two �+'s was done randomly. The data is originally fromBallam et al. (1971) which contains a more complete description of the reaction.)Important features of the data are short-lived intermediate reaction stages whichappear as clusters or clumpiness along low-dimensional linear subspaces (\arms").Figure 4 shows the pairwise plots of the 7 measurements. It is clear there aresome linear relationships between the variables because of the clumpiness along thecoordinate axes and diagonals. There are also three aberrant points visible in theplot of X1 vs X6, X1 vs X7, and X3 vs X6.Figure 5(a) shows a plot of the �rst two principal components. This view indicatesthe presence of structure, perhaps three clusters, but it is not lucid enough to dis-tinguish between them. In their original projection pursuit-based analysis, Friedmanand Tukey (1974) found a projection in which the points lie on a \Z" shape (similarto the projection in Figure 5(b)). With a projection pursuit index based on Fisherinformation, Jee (1985) found a projection in which the points lie on a triangle, withheavier concentrations at the vertices (Figure 5(c)). Although they are interesting,these three views do little to divulge the basic shape of the point cloud. Using theprojection pursuit guided tour the data points appear to form a very simple pattern:a basic triangle with two linear, or wedge-shape, structures extending from each ver-tex. We relate the interactive procedure which led to this description, in the nextfew paragraphs. Although the session is summarized by the plots in Figure 6, whichare in a left-to-right sequence beginning at the top left and ending at bottom rightplot, we must emphasize that these plots only represent instantaneous snap-shots ofprojections obtained during the projection pursuit guided tour. In reality, of course,the user experiences a movie-like representation of the evolving projections along thetour path. (Video footage of the projection pursuit guided tour on the particle physicsdata is available in Cook et al., 1993b.)In the top left plot is the projection corresponding to a local maximum of the Holesindex, showing the triangle with two wrapped arms. We painted the two arms as10
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Figure 5: 7-d particle physics data: (a) First two principal components, (b) projectionsimilar to that found by Friedman and Tukey (1974), and (c) projection found by Jee(1985).crosses and rectangles, and identify them as arms CS and OR, respectively. (Notethat, color may also be used to further enhance the identi�cation of the arms.) Thejob of classifying points in the intersection is made easier by the on-screen motion,the sense of which cannot be adequately portrayed by these 
at sheets of paper,as indicated in the previous paragraph. In the on-screen environment a 3-d senseaccompanies the movement of these arms: the tips of the arms rock against eachother as the maximum is approached. This view, as mentioned above, is a localmaximum and, interestingly, the projection given by the global maximum is not veryinformative! This is not altogether unexpected. Although the Holes index is successfulin detecting the arms it is theoretically maximized by points distributed on a unitcircle. In the process of projection pursuit the optimal index value corresponds tothe projection which best approximates this extremal distribution. The view given inthe top left plot doesn't approximate the extremal distribution very well so it is notsurprising that there is another projection of this data which has a higher index value.The Holes index is sensitive to a very speci�c type of structure, whereas the moreomnibus-type indices, such as those based on non-normality measures, are sensitiveto a much broader range of structure, and when using these indices this situation willbe more common.The top right plot is the projection given by the global maximum of the CentralMass index, and one can now see several new structures in the data: two more armsand three aberrant points. The bottom left plot is the same projection magni�ed tofocus more on the previously unseen arms, painted as circles (arm CC) and plusses(arm P). The bottom right plot shows a projection corresponding to a local maximumof the Central Mass index. One more arm (small solid rectangles, arm SR) is visible,although di�cult to see clearly in the view because the points also lie along arm OR.(In XGobi it is very easy to mask out the arm OR to brush points on underlying12
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Figure 6: Analysis of 7-d particle physics data; top left: local maximum of Holesindex, top right, bottom left: global maximum of Central Mass index, bottom right:local maximum of Central Mass index 13
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arm.) With further exploration another arm (call it U for unbrushed at this point!)can be seen.At this stage we can say there are 6 arms extending from the triangular region andarms CS and OR arise from separate vertices of the triangle. The relative locationof the others can be found by switching o� projection pursuit guidance and watchingthe data touring, with the features identi�ed, over an extended period of time. Themotion provides a \gestalt" sense of the proximity of points (and hence features). Itis easy to see that arms CC and P extend together from the remaining vertex, andthe short arm SR extends from the same vertex as the arm OR, and that U and CSextend from the third vertex.Return to examining the plots in Figure 6. These indicate that each arm is ap-proximately 1-d. Before making conclusions, solely on these plots, though rememberthat these are each 2-d projections of 7-d data meaning there are 5 hidden \back"-dimensions. Consider some facts about 2-d projections of solid 7-d geometric shapes:(1) a point (0-d object in IR7) always projects to a point, (2) a line (1-d) projectsas line or a point (0-d), (3) a plane (2-d) projects as a plane, line or a point, and(4) a 3-d subspace projects as a plane, a line or a point. These are solid shapes butserve the purpose of showing that the arms, as �nite samples (including error) fromthe geometric shapes, may be higher than 1-d. (For more discussion of projectionsof geometric shapes see Furnas and Buja, 1993.) Conclusions may be drawn if allpossible projections are seen. Watching the data in a grand tour for an extendedperiod of time is an approximation to all possible projections, and provides empiricalinformation about each arm in the data. Each of the arms appears close to 0- or 1-din most views shown by the grand tour suggesting to us that the relationship betweenthe points in each arm is 1-d. The points in the triangle on the other hand alwaysappear as approximately a triangle, a line or a point. There are never more than threeobvious vertices visible which excludes higher dimensional shapes from consideration.So we conclude that these points do indeed lie close to a 2-d triangle in IR7.From a physicist's perspective the next step is to relate the structure back to theoriginal variables. As an example of the interpretation we concentrate just on thepoints in the base triangle, but note that points in the other regions can be exam-ined in a similar manner. The points in the triangle are highlighted and examinedin comparison to all the points in the univariate projections along the coordinateaxes (Figure 7). The triangle only has breadth in variables X3 and X5, that is, thesquared invariant mass for a proton and a negative �-meson (�2(p; ��)), and the pro-ton and a positive �-meson (�2(p; �+1 )), respectively. The interpretation is that theseobservations represent interactions between the particles p; ��; �+1 .3.2 Viewing FunctionsIn this section we convey our experience with using the projection pursuit guidedtour for gaining intuition about functions de�ned on projections of p-space. An im-mediate use is in the comparison of di�erent projection pursuit indices. The second15



example that we show is an illustration of asymptotic results for 2-dimensional pro-jections, given in Diaconis and Freedman (1984).3.2.1 Comparing Projection Pursuit IndicesWith the �rst implementation of projection pursuit into the dynamic frameworkof the grand tour we included simply the Legendre (Friedman, 1987) and Hermite(Hall, 1989) indices. Hall's original motivation for proposing the Hermite index wasbased on an asymptotic argument that the Legendre index was shown to be overlysusceptible to outliers. We didn't observe this, in practice, but rather we noticedthat the Hermite index has a tendency to uncover projections of the data that havea \hole" in the center, which is quite a useful feature. The Legendre index also doesthis but to a lesser extent and seems more attracted to skewness. Di�erences suchas these can be detected quickly by eye and used to direct further analytical work(Cook et al., 1993a).3.2.2 Illustrative Intuition of Fundamental ConceptsIn analyzing multivariate data fundamental to the use of projections are theories asto the nature of projections from high dimensions down to low dimensions. For pro-jection pursuit one fundamental underpinning is that for many high dimensional datasets most low dimensional projections look approximately Gaussian (*). So to �ndthe revealing, unusual projections one should search for the least Gaussian-lookingprojections. This is the premise on which many projection pursuit indices have beenbased (see Section 1). We argue that this should not be the only premise on whichindices should be based and follow with an example (Figure 9) illustrating this. Nev-ertheless the premise is a good starting point and worth illustrating graphically aswell as numerically.Diaconis and Freedman (1984) formalized the basis on which the premise (*) is rea-sonable. We show an example which illustrates (*) on a sequence of data which con-forms to Diaconis and Freedman's constraints. A multivariate data set is constructedby placing a point on each vertex of a cube. Three such data sets are created: one3-d, one 5-d and one 9-d (n grows at the rate 2p). Each data set is viewed in a tour:a segment displaying the sequence of index values is shown in Figure 8 (top plot:3-d cube; middle plot: 5-d cube; bottom plot: 9-d cube). The plotted index is theNatural Hermite (0), index which is theoretically minimized by a Gaussian density.When the dimension is 3 almost every projection (a sample of these is shown in thebitmaps below the index plot) is revealing, but when the dimension is 9 almost everyprojection is not revealing in the sense of being close to Gaussian: the index plot ismuch 
atter and close to the minimum value that would be obtained for a similarsample from a Gaussian distribution. As an aside it is interesting to note that visuallythe data set is clearly not Gaussian because it is far too regular, the points alwayslie in gridded, angular patterns. Nevertheless the most revealing projections are theones that expose the method of construction which in this case are the projectionsalong the marginal axes showing points on the vertices of a square (= 2-d cube).16
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And projection pursuit using an index minimized by a Gaussian density serves thepurpose of �nding these revealing projections, amongst an increasing proportion ofnear-Gaussian views as p increases.An example where one of Diaconis and Freedman's restrictions (the vectors' lengthbeing proportional to p) is violated can be found by taking samples from a multivari-ate Cauchy distribution. Figure 9 shows segments of a tour displaying the NaturalHermite (0) index on a sample of size 8 from a 3-d cauchy, 32 from a 5-d Cauchy and512 from a 9-d Cauchy. In this case there is no 
attening out of the index functionas p increases. Projection pursuit with an index sensitive to non-normality does notassist in determining the nature of this multivariate data set.4 DiscussionIn this paper we have introduced exploring high dimensional data using the pro-jection pursuit guided tour. The work is motivated by the desire to understand highdimensional relationships in data and builds on graphical methods that have beendeveloped in recent years. We have used XGobi as a development platform for thenew tools. Although developing code in C is more cumbersome than using S (Beckeret al., 1988) or Lispstat (Tierney, 1991), for example, the computational e�ciencyallows more 
exibility for implementing computationally intensive methods such asthose that we have examined. In the Examples section, we have liberally used manyof the other tools available in XGobi, thus illustrating the symbiotic nature of thesetools for exploring data.The implementation in XGobi uses exclusively 2-d projection pursuit indices. Theseare desirable for �nding fully 2-d relationships, for example a 2-d spiral amidst noisedirections. Extensions to 1-d and 3-d indices and grand tours would prove usefulfor �nding structures of these dimensions. We have restricted ourselves to smooth,di�erentiable projection pursuit indices, but many others exist which are not smoothalthough they seem useful. For example, the fractal index (Cabrera and Cook, 1992)shows particular promise in detecting structure lying on low dimensional non-linearmanifolds. The simple-minded use of derivative-based optimization precludes theinclusion of such an interesting index, because derivatives of the fractal index arenot available. Some excellent work to improve this situation has been done by Posse(1993) who proposes an e�cient optimization algorithm for 2-d projection pursuitindices, based on the algorithm for 1-d indices given in Huber (1990), which doesnot require derivatives. In his paper is also a very promising index based on the chi-squared distance of the observed bivariate data density and the expected bivariatenormal density. This index requires derivative-free optimization also. Each of theseconsiderations would greatly enhance the current implementation.19
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