Preprint - Accepted to VAST 2013, IEEE TVCG 19(12)

Explainers: Expert Explorations with Crafted Projections

Michael Gleicher, Member, IEEE

Abstract— This paper introduces an approach to exploration and discovery in high-dimensional data that incorporates a user’s
knowledge and questions to craft sets of projection functions meaningful to them. Unlike most prior work that defines projections
based on their statistical properties, our approach creates projection functions that align with user-specified annotations. Therefore,
the resulting derived dimensions represent concepts defined by the user's examples. These especially crafted projection functions, or
explainers, can help find and explain relationships between the data variables and user-designated concepts. They can organize the
data according to these concepts. Sets of explainers can provide multiple perspectives on the data. Our approach considers tradeoffs
in choosing these projection functions, including their simplicity, expressive power, alignment with prior knowledge, and diversity. We
provide techniques for creating collections of explainers. The methods, based on machine learning optimization frameworks, allow
exploring the tradeoffs. We demonstrate our approach on model problems and applications in text analysis.

Index Terms—high-dimensional spaces, exploration, support vector machines

1 INTRODUCTION

High dimensional data are typically explored using methods that select
a smaller set of dimensions which are then examined with analytic and
visualization tools amenable to small numbers of dimensions. These
smaller sets are either chosen from the original variables using feature
selection methods or generated by techniques that create new dimen-
sions with mathematically desirable properties. Unfortunately, such
approaches do not consider the background knowledge and preexist-
ing questions about the data that the user may have. An emerging class
of methods permits viewers to use their prior knowledge to organize
the data. However, these methods do not help in understanding the
connection between the results and data.

In this paper, we explore an analytical approach that supports explo-
ration and discovery in high-dimensional spaces guided by the user’s
knowledge and questions of the data. The core idea is to enable the
user to craft sets of projection functions that reflect their expert knowl-
edge and fit their needs by making simple annotations of the data.
Central to our approach is to consider the different roles that projec-
tion functions may serve in exploration, the qualities that projection
functions need to have in order to serve these roles, and the kinds of
methods available to create and assess the functions. We term such
crafted projection functions explainers because they encode a user-
comprehensible relationship between properties that the user specifies
and the underlying data. The user specifies relationships among the
data objects, (e.g. certain documents are comedies or one city is more
interesting than another), and the system constructs explanations of
how this is supported in the data.

Projection functions map high dimensional data points into sim-
pler spaces. They may be as simple as selecting one of the original
dimensions (or variables) in the data, or may involve a complex rela-
tionship. Projection functions can serve two main purposes: they orga-
nize the data along an axis, and they describe the connection between
the axis and the variables. When projection functions align with user
knowledge, both roles are enhanced: views are organized in mean-
ingful ways and illuminate connections between variables and known
properties. These correlations between data variables and known facts
provide evidence and theories for explaining knowledge in terms of
the data. Sets of projection functions can provide a diversity of view-
points, or multiple explanations of the same phenomena.

The central contribution of this paper is to introduce a new approach
to the exploration of high-dimensional spaces that allows a viewer

o Michael Gleicher is with the Department of Computer Sciences,
University of Wisconsin - Madison. E-mail: gleicher@cs.wisc.edu.

Author’s preprint version.
This paper will be published by the IEEE, who will hold the copyright to the
final version.

to create sets of projection functions that define dimensions that are
meaningful to them, have useful relationships with the variables, and
work together to provide diversity or agreement as necessary. We pro-
vide a consideration of what qualities may be useful in projection func-
tions for them to serve as explainers and a set of tools crafting them
based on user-specified annotations.

There are tradeoffs in selecting projection functions. Users may
prefer simpler functions (to enhance comprehensibility), better align-
ment with specified annotations, or more diversity among the selected
functions. These tradeoffs, as well as the diversity of user needs and
knowledge, demand an approach that involves the user in crafting the
sets of functions. Because of the multiple challenges in specifying
user goals and computing functions that meet those goals, we use a
“generate and test” approach. Based on initial user specifications, our
techniques generate a collection of candidate functions and provide
options for sorting, filtering and selecting. The methods for candidate
function generation build on techniques from machine learning, while
the sorting and sifting strategy is akin to rank-by-feature methods. Our
approach uses linear functions, as they offer a good tradeoff of expres-
siveness, comprehensibility, and computational efficiency.

Unlike methods that select axis-parallel projections, our approach
can use more complex functions to provide flexibility in the kinds of
dimensions created, allowing it to represent user-defined properties.
Unlike standard dimensionality reduction techniques or random pro-
jections, our approach creates derived dimensions that are aligned with
the user’s specifications, so that they have meaning to the user. Unlike
machine learning approaches, our methods provide a richer output that
is compatible with a wide range of visualization and analytics tools,
and consider tradeoffs in usefulness for understanding.

We follow this introduction with a case study to make the concepts
concrete, allowing a comparison with related work. The paper then
discusses the qualities projections need to succeed in their multiple
roles. We describe techniques to generate collections of projection
functions, as well as ranking and filtering techniques to create inter-
esting sets from these larger collections. We conclude with case stud-
ies exploring collections of historical texts. Further details on all ex-
amples in the paper and additional case studies are provided on the
accompanying web page'.

1.1 Case Study: City Livability

A toy dataset provides an example to make our approach concrete.
Other case studies are provided in §6. The city livability data set [5]
rates 140 cities on 40 categories; each city is represented by a point
in a 40 dimensional space. We refer to these dimensions of the data
as variables, and in this case they are measurements of quantifiable
aspects of the cities, such as crime rate and quality of health care.

"http://www.cs.wisc.edu/graphics/Vis/Explainers

max

new york miami seattle boston chicago
cleveland detroit los angeles milan london =
lisbon budapest pitisburgh san francisco houston
rome. washington dc atianta wellington frankfurt

johannesburg tokyo toronto

manchester sydney.

melbourne tio de janeiro buenos aires vancouver pretoria

prague amsterdam paris honolulu sa0 paulo

munich vienna minneapolis belgrade berlin

montreal moscow madrid montevideo st petersburg

sofia Kiev lexington yon oslo

osaka santiago luxembourg perth hong kong

2urich calgary brussels copenhagen brisbane

barcelona dublin dusseldorf stockholm auckiand

[
E—

bahrain geneva athens almaty hamburg

adelaide | asuncion amman san juan warsaw

beiing bogota quito panama city mexico city

reykjavik shanghai taipei istanbul tashkent

kuala lumpur singapore caracas tel aviv helsinki

colombo Karachi bangkok seoul cairo

mumbai damascus bratisiava tripoli muscat

American-ness

san jose guatemala city jeddah agiers al khobar

tianjin tehran tunis abidjan qingdao

abu dhabi baky bucharest casablanca dakar

dalian dhaka doha douala dubai

ho chiminhcity | harare mania port moresby

nairobi lagos lima

jakarta guangzhou nouma

bandar seri begawan] riyadh shenzhen suzhou

(0.847% nth 0.45 mcc 1 q)
Healthcare indicators:-1
Availability of well known sports events:-1
Availability of public healthcare:1

Fig. 1. A visualization of a projection of the city data that ex-
plains “American-ness” in terms of livability indices. The function is:
x| —xp —x3, where x; is availability of public health care, x, is availabil-
ity of sporting events, and x3 is a measure of healthcare quality (lower
numbers are better). The function is correct quite often (scoring well
on the metrics in §3.1). The visualization (described in §5.2) shows the
rank order list of cities (in reading order), the mapping from cities to the
projected dimension (thin lines connect from a rank scale to the value
scale, which is highly quantized due to the data), a stacked histogram
with uniform bin size, and box plots of the whole data (gray) and the two
classes (USA and not). Blue cities have been marked as in the U.S.

Kathmandu

American-Ness: Location is not encoded in the data, it is “expert”
user knowledge. The user can mark the cities in the U.S. and the
system generates derived dimensions that correspond to “American-
ness.” Given the specified binary predicate, the methods of this paper
can generate a set of projection functions that are aligned with it. The
property of American-ness is defined by example in object space: cities
in the US should have more of it than cities elsewhere.

If the functions that determine American-ness from the data are
simple, they can expose relationships between the measured quanti-
ties and the user-specified property. Unfortunately, there is no way to
know a priori how simple a function can be and still adequately cap-
ture the property, nor is there a clear limit of how simple a function
must be to be comprehensible. Our approach generates many alterna-
tives and allows the user to choose the appropriate tradeoffs for their
needs. For the present example, a 3 variable linear function provided
a good tradeoff: one or two variable functions do not achieve good
correctness, while larger numbers of variables provide diminishing re-
turns (the best 7 variable classifier still makes at least one mistake,
despite being hard to understand). To further improve comprehensi-
bility, our approach allows restricting the weights of the linear func-
tion to small integers. While the best (in terms of correctness) of these
three variable functions still misorder some cities, the cities in the US
are almost always scored higher (see Figure 1 for an example). The
“mistakes” are sometimes interesting: for example, San Jose is often a
negative outlier (Figure 2), is it San Jose, Costa Rica, not California?

Crafted projections, such as American-ness, serve two main roles.
First, they help organize the data, providing a nameable axis that can
be used in either standard displays, such as parallel coordinates and
scatterplots, or in specialized views (Figure 1). We can use these to
identify exemplars, outliers, and trends. Second, because the projec-
tion functions are simple, they provide ways to explain the connec-
tion between the property (American-ness) and the variables. Exam-
ining a function (Figure 1), we can see that American cities are dis-
tinguished by having good health care indicators and availability of
sporting events, but poor public health care. Because our approach
can generate many projection functions, we can find multiple expla-
nations of American-ness according to the data (see Figure 2). If the
user’s goal is explanation, they may stress simplicity over correctness.

American-ness —J»

nth:0.769 mcc: 0.34

Avail OTC Drugs:-2 Avail Good Housing:-1
Sports Events:-1 Censorship:-1

Qual Pub Healthcare:1 Avail Pub Healthcare:1

nth:0.771 mec: 0
Qual Priv Healthcare:-2
Avail OTC Drugs:-1
Qual Pub Healthcare:1

nth:0.847 mcc: 0.45 nth:0.775 mec: 0

Healthcare Indic:-1
Sports Events:-1
Avail Pub Healthcare:1

Fig. 2. A parallel coordinates plot showing 5 diverse explainers of
American-ness. The leftmost axis is Figure 1. Cities marked as be-
ing in the U.S. are colored blue. The U.S. city that consistently has the
lowest American-ness (San Jose) is marked in dark blue.

nth:0.892 mec: 0.38
Healthcare Indic:-2
Avail Pub Healthcare:2
Corruption:-1

Another advantage to our approach is that we can create dimen-
sions to meet specifications. We can easily specify different properties
to create (such as “European-ness” or “has-hosted-the-olympics-ness”
or “contrast Western Europe and North America”). We can also add
additional constraints beyond just the groupings, such as insisting that
particular cities appear in specific places in the list. We can create
views of “American-ness” that require New York to be on top.

Exemplars: We can also use our approach to understand exemplars.
For example, to understand “What makes Paris different from other
cities?”” one can define dimensions of “Paris-ness,” where Paris scores
higher than other cities. While no single variable distinguished Paris
well, two and three variable functions perform well, with the diversity
of functions providing a variety of perspectives on what makes Paris
unique. We can also use such “exemplar dimensions” as a redundant
basis for looking at the data. For example, graphing Paris-ness vs.
New-York-ness shows that while the two are correlated (R = .63), the
data still distributes interestingly in a scatterplot (Figure 3). Unlike
other projections (like PCA), the axes of the graph are namable prop-
erties. If orthogonality of axes were important, we could look for cities
whose axes were uncorrelated to define a basis, for example Paris and
Shanghai have axes that are uncorrelated (R = .03), even though Paris
and Shanghai score highly on each other’s scales.

To further understand ‘Paris-ness” we might want to distinguish
what is specific to Paris, versus what is French. As there is one other
French city in the data (Lyon), we can look for explanations of Paris-
ness that score Lyon highly (some projections have Lyon tied with
Paris for the most Parisian city in the world), and explanations that do
not. Examining these simple functions, we see that some explanations
of Paris-ness consider its climate and public transport (which Lyon
does not share according to the data), while others focus on housing
and health care, where Lyon scores similarly.

Approach Summary: Our approach creates explainers, projection
functions crafted to encode the relationship between a user-specified
property and the data variables. The projections are sparse, quantized
linear functions. Our approach generates sets of functions, allowing
the user to make tradeoffs between correctness, simplicity, and diver-
sity. Our methods generate these sets by first creating a large collection
of candidate functions using feature selection to choose sparse subsets
of the variables, computing the best function using each of these sub-
sets, and generating different quantizations of each. The user can then
select appropriate functions by filtering and sorting based on a variety
of properties of these functions. For example, to create the American-
ness example, feature selection (§4.2) generated over 700 3-variable
functions, each of which was quantized (§4.4) to several different lev-
els creating a collection of several thousand functions. These were
filtered (§5.1) to remove ones that did not perform sufficiently well
(§3.1) and then a subset was chosen that included the highest correct-
ness and others that were as uncorrelated as possible (§4.2).

Preprint - Accepted to VAST 2013, IEEE TVCG 19(12)

e o
New York London
-2 o e o o
Mumbai Minneapolis Berlin
Tel Aviv Boston
Chicago
[] [e o o o o
Paris
n -4 e 6 o6 o o o o
8 Auckland
c Melbourne
1
< e o e o o o
o Cairo Oslo
> Shanghai
= Warsaw
o6 @ O e o6 o o
Z
e o6 o o o
Suzhou
-8 [J [
Doula Qingdao
[] [)
-8 -6 -4 -2 0
Paris-ness
Fig. 3. A 2-D projection of the city livability data onto axes of Paris-

ness and New York-ness. Unlike statistical dimensionality reductions,
our approach provides namable axes. Mumbai is very New York and not
very Paris, while Suzhou is Paris but not New York. The quantization of
the source data causes the gridding and overdraw.

2 BACKGROUND AND RELATED WORK

Visualization has a long history of methods for dealing with high di-
mensional data; see [48] for a historical perspective. Current meth-
ods (e.g. scatterplot matrices, parallel coordinates) do not scale past a
handful variables and are usually coupled with analytic approaches to
scale. Here we survey approaches that inspire and contrast with ours.
Feature Selection: Feature selection is a tool for dealing with high-
dimensional data by selecting the subset of variables (or features) that
are most relevant, see [19] for a survey of the issues and approaches.
Many modern methods use sparse optimization to simultaneously find
relationships and select features. Interactive approaches to feature se-
lection use visual presentations to aid the user in identifying redundant
variables to remove [2, 18, 50] or related variables [34]. Our approach
integrates feature selection as one of many factors in exploring the
high-dimensional data.
View Selection: Projection pursuit [16] provides a framework for
exploring high dimensional spaces by choosing interesting dimen-
sions. Indices score projections in terms of their interestingness and
sequences of projections are generated to optimize a selected index.
Pursuit indices seek statistically interesting distributions. An excep-
tion is the Targeted Project Pursuit approach [13] that tries to align the
dimensions with a goal distribution. Our approach fits into the projec-
tion pursuit framework, although we use indices that capture a variety
of aspects of projections. Unlike pursuit procedures, our methods do
not seek orthogonal dimensions: we allow redundancy as it may be
useful, for example to provide alternative viewpoints or explanations.
A newer variant of projection pursuit is the rank-by-feature frame-
work where pursuit index style ranking is applied to the variables
themselves. The idea was introduced by Seo and Schneiderman [39]
and subsequently enhanced in [15,25,33,36]. A variant of ranking,
called Scagnostics, was introduced by Wilkinson et al. [44,45] based
on historical ideas. It treats each variable pair (or scatterplot) as a
point in a new high-dimensional space, where the dimensions are the
different metrics of interestingness. Anand et al. [1] improve the scal-
ability of Scagnostics to higher numbers of dimensions by applying
it to random projections, rather than the axis parallel projections used
previously. Our approach builds on the ranking framework, but it con-

siders a richer class of projections and a wider range of indices.

Other approaches determine views (projections) of high dimen-

sional data that make subclasses of the data distinguishable. Sips et
al. [40] and Sedlmair et al. [38] consider what kinds of views make
such separations most visible. Techniques to find separating are intro-
duced by Gnandesikan et al. [17] and Dhillon et al. [9]. These works
maximize the separation of the class means. Our approach considers
class separation with a wider variety of metrics, information beyond
class separation, non-orthogonal viewpoints, and tradeoffs with other
user goals such as explanatory power.
Dimensionality reduction: Dimensionality reduction (DR) is an
approach that creates latent dimensions that summarize a number of
dimensions in the data. The various methods, including the well
known Principal Components Analysis (PCA), create new dimensions
that are statistically optimal, in that they describe the data as well as
possible. This leads to a difficult interpretation problem as the new
dimensions do not necessarily align with user’s existing knowledge or
questions. Ingram et al. [23] consider the workflow of applying DR,
while Lewis et al. [31] consider the perceptual issues in interpreting
DR results and Lespinats and Aupetit [30] introduce methods for vi-
sual assessment. While Koren et al. [29] consider extensions to PCA
that tune weights such that pairwise relationships may influence the
results, DR typically does not consider the user’s existing knowledge
and goals. Our approach creates projection functions that can consider
a wider range of goals than the descriptive optimality sought by DR.

User-driven dimensionality reduction allows the user to position
some anchor points, and the system produces a projection that meets
these constraints. Tejada et al. [42] introduced an early technique,
and Paulovich et al. [35], Endert et al. [11], and Joia et al. [26] have
proposed subsequent refinements, including interaction paradigms for
user exploration. The result of a user-driven dimensionality reduction
is a projection that is more likely to have meaning to the user, because
it places critical data elements in desired places. However, while such
projections serve to organize data, they do not show the connections
between variables and concepts (although, [27] considers using anno-
tation to show them). In contrast, our approach defines namable axes
with interpretable projections. Methods for interactively building clas-
sifiers, such as [21], resemble user-driven dimensionality reduction,
and offer potential interaction paradigms for our approach.

Factor Analysis: Factor Analysis (FA) is a statistical technique that
seeks to find latent variables that express the variation in data. Unlike
DR, FA uses these derived dimensions for statistical tests of a known
model (see [12] for a contrast between FA and DR). FA seeks to find
latent variables that best describe a model, although some of our other
usability concerns (like sparseness) can be accommodated using fac-
tor rotation techniques [4]. Our approach is akin to Factor Analysis,
however we provide a richer set of methods to propose dimensions
and allow for tradeoffs in the various possible goals that derived di-
mensions may achieve.

Machine Learning: Machine learning has a similar goal to our
work: to understand the connection between data variables and prop-
erties. We build upon their rich literature and traditions. However, our
goals are descriptive, whereas, machine learning tries to be inferential
(although, description is sometimes a secondary goal [47]). Machine
learning seeks generalization: how well a predictor (such as a pro-
jection function) works on data it was not trained on. However, for
crafting projection functions, our primary goal is to explain the data
that we have seen, that is, to meet the specification. Generalization is
still useful in crafting projection functions as it can allow fewer facts
to be specified. This difference in emphasis between prediction and
explanation applications is less important in practice: while the goals
may be different, the practical ramifications often are not. The heuris-
tics for good classifiers, such as sparsity and margin size, are often
useful for explanation, albeit with different motivations.

The machine learning literature provides a myriad of techniques for
creating classifiers (see [47] for a survey), many of which could be
the basis for crafting projection functions. In our approach, we choose
support vector machines (SVMs) because they provide numerical scor-
ing functions, are tunable for various tradeoffs, offer extensibility for

various constraints, integrate well with feature selection, are widely
studied, and have excellent implementations available. Other candi-
date approaches, such as logistic regression or random forests, do not
appear to offer all of these advantages.

Exemplars: The idea of exemplar SVMs, which inspire our exem-
plarity functions, was first developed by Malisiewicz et al. [32]. Their
exploration of the visual uniqueness of Paris [10] inspired our Paris
example. This work points out the advantages of exemplar classifiers,
over the more obvious approaches (such as measuring the distance
from the example). These advantages include not needing a good dis-
tance metric and allowing the exemplar not to be the extrema (e.g. a
city could be more Parisian than Paris).

Distance Metrics: Projection functions, which map high-
dimensional to lower dimensional points, are different from distance
functions, which measure the distance between a pair of points. There
is an emerging field of metric learning that is developing method for
determining these functions from specifications, see Yang et al. [51]
for a survey. Brown et al. [3] use metric learning to provide an interac-
tive dimensionality reduction. Our approach is useful for determining
distance metrics indirectly, as will be discussed in §5.3.

3 PROPERTIES OF EXPLAINER FUNCTIONS

For any given specification, there are an infinite variety of projection
functions that might be considered. This section enumerates these var-
ious tradeoffs, and provides our metrics for assessing projection func-
tions according to them. Subsequent sections introduce methods that
generate collections functions that span these tradeoff and filtering and
sorting methods that use the metrics to select appropriate ones.

3.1 Correctness

A core idea of explainers is that they are generated based on user-
specified annotations of the data, used to convey prior knowledge and
questions of interest. The primary form that these specifications take
is the differentiation between two groups, such that members of one
group have more of the resulting property than members of the other
(e.g. defining “American-ness”). The ability to choose sets provides a
flexible mechanism to specify prior knowledge and comparison ques-
tions. The sets may be partially specified (some elements are unspec-
ified). Specifications may also include other types of constraints that
relate objects. For example a user may specify that an element has the
most or least of a value (e.g. New York is more American than other
cities), or relate objects (e.g. Boston is more American than Miami).
In the future, we hope to consider other ways to specify properties.

The property of correctness measures how well a function repre-
sents the specified property. There are many ways to assess the cor-
rectness of a projection function. In general, it is difficult to capture
the performance of the function over the range of the data in a single
number, see [47] for a survey of the issues. For the binary set prop-
erty definitions, we might begin with the definition that elements of
the positive set (denoted &) should have higher values than elements
of the negative set (.4"), so

VieaVjen fi) > f())-

For a given classifier, we can compute the percentage of time this is
correct over the data (out of the i*j possible), which we call the Non-
Threshold Metric (nth).

Most correctness metrics involve a threshold. That is, V;c o f (i) >
thand Ve _y f(i) < th. When considered this way, the projection func-
tion serves as a classifier: it can predict for any data element which set
itis in. The choice of threshold affects the error profile. For prediction
applications, determining the classification threshold is a subtle deci-
sion as it must weigh the costs of false positives and negatives in the
unseen data. For data explanation applications, we can choose the op-
timal threshold by examining the data. Generally, we set the threshold
for a classifier by finding the value that achieves the highest accuracy.

Once the threshold is set, there are a variety of ways to quantify
performance [37]. Basic metrics such as accuracy, precision, recall
and F1 do not capture the error profile, and are problematic when the

sets have different sizes. While we provide all of these options to the
user, the most often used is the Matthews correlation coefficient (mcc)
which accounts for the relative sizes of the classes to measure how
much better a classifier is than chance.

The metrics mentioned so far are binary: they only consider
whether each decision is made correctly, counting the number of true
and false results. Metrics can consider how bad the mistakes are — the
loss — by accumulating the amount of error (either sum of squares or
sum of absolute values). While such metrics are central to determin-
ing projection functions, they are less useful for interpretation. For the
examples in this paper, loss functions are considered only internally to
the optimization algorithms for determining projection functions.

Achieving perfect correctness is not always possible, or desirable.
The data may not actually provide sufficient information to distinguish
the groups, or tradeoftfs with other qualities may make it advantageous
to sacrifice some correctness in order to achieve other goals. Getting
some portion of things wrong is often not a problem: indeed, we find
that classification “mistakes” are often interesting data elements to ex-
amine (e.g. San Jose in the example).

Unlike machine learning, which seeks to make predictions about
unseen data, our approach seeks to explain the given data. Therefore,
correctness metrics are applied data itself, rather than using schemes
such as cross-validation to predict performance on unseen data.

3.2 Simplicity and Explanatory Power

While simplicity is an intuitive property of a function, basically mea-
suring how complicated it is to represent or compute, it is difficult to
measure precisely.

Simplicity of projection functions takes many forms. First, is the
class of function. We limit our approach to linear functions. Such
functions are easy to interpret and afford efficient algorithms. Not all
linear functions are equally simple. We consider three factors: spar-
sity, quantization, and familiarity of the variables. Sparsity describes
how many variables the linear combination has. Linear combinations
of smaller number of variables are simpler than those with more. Spar-
sity is measured by the number of non-zero weights. Quantization
considers the complexity due to the weights themselves. A simple
combination of weights is easier to interpret (e.g. x -+ y — 2z rather
than 3.654x 4 3.234y — 6.43z). We prefer weights to be integers and
small. We measure the quantization of a linear combination as the
largest absolute value of a weight when the linear combination is rep-
resented with integer coefficients. Familiarity considers that not all
variables are equally easy for the viewer to understand. Our collabora-
tors repeatedly make statements like “I’d rather see two variables [am
familiar with than one that I am not.” Our methods allow familiarity
metrics by adding user-specified weighting to the sparsity metric.

Simpler classes of functions are less expressive than more complex
ones. Therefore, choosing a simpler function may cost the ability to
accurately meet a specification but provides two key benefits. First, the
loss of expressive power may be gained in explanatory power. Simpler
functions are easier for a viewer to understand, allowing them to make
inferences and build theories from the observed correlations. Second,
requiring simple functions are a way to avoid over-fitting. As a suffi-
ciently expressive class of functions can encode any relationship, the
existence of a complex relationship between a property and the data
may say little about that relationship.

Seo and Schneiderman [39] argue that linear functions (beyond sin-
gle variables) are too complicated for viewers to interpret. However,
the choice is not binary (single variables vs. arbitrary linear combina-
tions), as they suggest. Sparse and quantized linear combinations pro-
vide useful tradeoffs of simplicity and complexity. The ability to ex-
press useful, viewer specified concepts make the tradeoff worthwhile.

3.3 Statistical Distributions

A function that provides a perfect classifier, returning 1 or -1 for each
data element, may not be useful for organizing data. If our goal is to
organize the data, projection functions that spread the elements along
the dimension are valuable. The idea of using the quality of the dis-
tribution as a measure of interestingness is central to the projection

Preprint - Accepted to VAST 2013, IEEE TVCG 19(12)

Vi

Comedicness ————————»»
\ \ AR \ \ "
[
[

th(0.95) mc(0.76) margin(-0.2)

nth(1) mec(1) margin(0)
(c) MoveBody:-100
Metadiscourse:31
AbstractConcepts:-3

nth(0.95) mcc(0.82) margin(-0.3)
Inclusive:-1
Metadiscourse:1 Curiosity:1

Inclusive:-1

O Comedies O Histories O Tragedies O Late plays

nth(1) mec(1) margin(0.36)
() Definition:-140.15 f)
MatureProcess:39.38

nth(1) mec(1) margin(0.5)
Definition:-113.19
MatureProcess:48.94
Contested_Citation:-19.38
Self_Promise:15.92
and 18 others.

nth(1) mec(1) margin(0.2)
(d) Example:51.33
Acknowledge:10.79
Metadiscourse:10.01
PredictedFuture:8.9
and 7 others.

Reassure:-24.81
MoveBody:-19.65
and 13 others.

Complexity

Fig. 4. A set of different explainers for comedicness in Shakespeare’s plays (§6.1) visualized as described in §5.2 or Figure 1. Some very simple
functions with 2 or 3 unit weights get good performance (a,b) and make “interesting” mistakes. Perfect correctness can be achieved with 3 variables
(c), requiring very specific weights. Support vector machines can generate larger margins (d,e,f), but more complicated functions.

pursuit concept [16]. Various notions of interestingness are provided
by the ranking frameworks [25, 39, 44]. These metrics can be used
together with the other kinds of metrics we discuss in this section.

When working with collections, there is often a desire to identify
individuals that can summarize the collection. Having a meaningful
projection function allows us to identify epitomes (the elements that
have the most of the property), the typical (e.g. the mean, median, or
mode), and limits (the elements that define class boundaries).

3.4 Diversity

The property of diversity measures how similar functions are. Having
a diverse set of projections, allowing for some measure of redundancy,
provides alternative viewpoints, suggests different theories, and can
improve robustness. We consider two major types of diversity between
projection functions: diversity of inputs (variables each consider), and
diversity of outputs (the distribution of values produced when the func-
tion is applied to the data set). The two are independent: it is possible
to obtain the same outputs with different inputs, and two functions can
combine the same variables in different ways to achieve very different
outputs. To measure the difference in outputs of two functions, we use
the correlation coefficient (Pearson’s R). To measure the difference in
the inputs of two functions, we compute a variable overlap metric: the
portion of each classifier’s variables that are used by the other.

4 GENERATING PROJECTION FUNCTIONS

We seek methods that create a variety of functions that allow for con-
trol of the tradeoffs among correctness, simplicity, statistical interest,
and diversity. We first consider how to create correct functions, and
then examine how to use this machinery to create a range of tradeoffs.
Because it is difficult to provide exact control of some of the proper-
ties, we instead prefer techniques that sample the space of functions:
producing collections of functions each representing different trade-
offs. Given this collection, we can apply sorting and filtering methods
to select appropriate ones.

In our approach, projections are linear functions denoted as f(x) =
w - X+ b, where X is a vector containing a data element with m vari-
ables. The function is encoded by a weight vector w and a scalar off-
set b. We will sometimes write this using homogeneous coordinates,

concatenating a 1 to the x vector and the offset to the w vector, e.g.
f(x) = w-X. We denote data element i as X;.

4.1 Function Creation as Constrained Optimization

The basic form of explainer specification gives a binary predicate of
some elements being in the positive set &7 and others to be in the neg-
ative set .#". The machine learning literature provides a wide variety
of methods for determining classification functions for such problems.
We build on the well-known Support Vector Machine (SVM) method
(for an introduction, see books such as [47] or [41], or tutorials such
as [20]). We provide a brief review here to allow us to introduce nota-
tion so we can discuss issues later.

An explainer function can be shifted such that O divides the classes,
leading to a constraint on each data element i:

View f(xi) > 0and Vic 4 f(x;) <O0.)]

For notational convenience, we define a label vector y, such that y; is
the label associated with object i. We use the convention that 1 means
it is in the &2, -1 if it is in ./, and O if the item is unlabeled. This
allows re-writing Equation 1 as:

yi W-X; > 0.)

Of the possible solutions for W, the smallest one is chosen (for rea-
sons below). Minimizing the L1 (sum of absolute values) norm of W
or the L2 norm both lead to optimization problems that can be solved
efficiently. The L1 norm is often used as an approximation to the L0
(number of variables) norm, and leads to sparse solutions.

The linear inequalities allow the trivial solution (W = 0) to the min-
imization. To avoid this, rather than simply require that the classes be
separate, we try to create a non-zero margin between them by replac-
ing the 0 in Equation 2 with a 1. This gives the minimization problem

w = argmin |w|" subject to y; W-X; >= 1 3)
where r is the regularization norm (1 or 2). This minimization is

known as a Support Vector Machine (SVM). Because SVMs attempt
to minimize w, they also minimize the range of the resulting values.

Because the absolute size of the margin is fixed, its relative size (to the
overall range) is maximized. SVMs are maximum margin classifiers.
Figure 4 illustrates a range of margins.

Allowing for some error in the constraints makes them always fea-
sible, and permits controlling a tradeoff in the amount of error. We add
to each constraint an error term e;, yielding

yiw-Xj+e > 1,)

and add constraints to enforce e¢; > 0. The magnitude of these errors
is called the loss and should be minimized. The complete SVM is
therefore

W= argmina\w|’+[3|e\2 subjectto y; W-Xj+e; >=1,¢; >0 (5)

Weighting terms @ and 3 allow for a tradeoff between keeping the
weights small and keeping the errors small. As written, this provides
a single knob, as it is the ratio of the two that controls the tradeoff
between correctness and (a form of) simplicity. We denote this param-
eter as ¢, where ¢ = 3 /a. We avoid exposing these parameters to the
user, selecting them automatically (§4.2).

Solving: Equation 5 is a quadratic program. Standard SVM solvers
(our implementation uses LibLinear [14]) can solve these problems
efficiently by using specialized techniques.

If other relationships between between data elements are specified,
these too can be posed as linear inequalities (e.g. f(x;) > f(x;)) and
added to Equation 5. However, this is no longer a standard SVM, and
requires using a general purpose quadratic programming solver (our
system uses the CVXOPT module for Python). In our experience, such
solvers are considerably slower and less robust than the specialized
SVM solvers. All examples in this paper use LibLinear.

The SVM provides the offset (b) that centers the margin. How-

ever, because we seek to optimize performance on the known data
(rather than generalization), we can re-compute it to produce an opti-
mal result. After computing W, we replace the offset with the value
that achieves the highest possible accuracy. This can be done in a
linear scan of the sorted data. All examples in this paper do this post-
hoc optimization of accuracy, although we typically prefer to use non-
threshold metrics so the offset does not matter.
Families of Functions: Central to our approach is to create sets of
functions that capture different tradeoffs. Using the SVM (or equiva-
lent) machinery, the two primary ways we generate families of func-
tions are to vary the parameter (c, as discussed in the section on L1
feature selection below), or to select different subsets of the columns
of the data matrix and compute SVMs for each (as used in the section
on exhaustive feature selection, below). A related approach is to apply
a projection pursuit style algorithm: computing a linear function, fac-
toring it out of the data matrix, and then repeating the process on the
rank-reduced matrix. We term such a method support vector pursuit.
In practice, we find it ineffective. First, orthogonality of the functions
generated is rarely a principal goal. Second, finding good functions in
the increasingly rank-deficient matrices becomes poorly conditioned.
Third, SVMs are most effective if the data matrix is whitened, which
can undo the rank reduction. Instead, we almost always use the feature
selection methods below to generate a family of classifiers, and then
filter this list to remove redundancy.

4.2 Feature Selection

The problem of finding w can be viewed as having two parts: selecting
which weights will be non-zero (e.g. which variables will participate),
and then determining the values of these weights. The former task is
known as feature selection. See [19] for a survey of the issues and
main approaches.

To provide control over the tradeoff between simplicity (in terms
of sparsity) and correctness, we use the different results of feature
selection, and compute the weights that achieve the best correctness
given each set of variables. This step can be accomplished by solving
the SVM with a subset of the variables (i.e. selecting a subset of the
columns of the data matrix).

We have found that the naive strategy of computing dense functions
and choosing a subset of variables by picking the ones with the highest
loadings performs poorly. Instead, we employ two other strategies for
feature selection to produce collections of candidate feature sets. The
first is to select features as part of the SVM solution. The second is to
exhaustively create candidate feature sets, and then solve an SVM over
each of these to determine the candidate functions. These methods
have complementary advantages, so we usually combine their results.
L1 SVMs: As mentioned previously, when we use L1 (r = 1), low val-
ues of ¢ will tend to produce sparser results, at the expense of greater
error and smaller margins. Our strategy samples a variety of values of
¢ to generate a collection of functions that have different tradeoffs. We
use a binary search to find different values of ¢ that produce functions.
We begin by bracketing ¢ with the minimum value (0, which produces
the “null” function of zero variables) and some large value. Intervals
of ¢ are recursively subdivided if the functions generated for the up-
per and lower levels are different, or a specified recursion depth limit
is reached. After computing each SVM to determine the active vari-
ables, we solve a second SVM over the reduced set of variables with
a larger value of c¢ to find correctness levels at the same level of sim-
plicity. This technique, known as debiasing [49], improves the results.
Because this second solution occurs over a smaller set of variables, its
computational cost is low.

The repeated use of L1 SVMs generates a family of functions with a

tradeoff between simplicity and correctness/margin. This can be use-
ful in determining how many variables are required to adequately ex-
press a specification. However, it suffers from two major flaws. First,
it provides only a single function for a given level of sparsity. Second,
while the varying c is usually effective at helping to find sets of vari-
ables capable of achieving high levels of correctness (potentially using
many variables), empirically, it is less effective for extreme tradeoffs
where we are willing to accept larger amounts of error to achieve very
sparse classifiers. This is related to the fact that the L1 norm is only a
heuristic approximation for our L0 goal. The next method is good for
finding small feature sets.
Exhaustive Search: To complement the searching ¢ approach to
feature selection, we also use an approach with complementary fea-
tures: exhaustive search of the combinations of variables. Because we
are often interested exploring the entire space of linear functions with
small numbers of variables, such a brute force approach can be attrac-
tive. While such an approach may need to solve a very large number
of SVM problems (to determine the weights for each combination of
variables), each of these problems is very small (just a few variables)
and can be solved quickly. The examples from §1.1 (cities in the USA)
have 40 variables, so there are (430) = 9880 sets of variables to try. This
takes about 30 seconds on a Dell XPS12 Laptop in our non-optimized
Python implementation.

The combinatorial explosion precludes using the totally exhaustive
approach for data with more variables, or if we want to consider func-
tions with more then 3 variables. We therefore use a heuristic to make
the search more tractable. We apply a greedy approach: to combine the
simplest functions that perform best. For example, rather than consid-
ering all 40 variables to combine, we consider only the 20 that perform
best as single variable functions to create 20%19=380 pairs. In creat-
ing triples, rather than adding to all of these pairs, we consider only the
top 40 of them, combining them with the 20 best variables to create ap-
proximately 800 three variable functions (the number is approximate
since there will be redundancy - the 20 variables already appear in the
2 variable functions). Our default settings use the top 25 variables to
determine the best pairs, and the top 30 pairs and 30 variables to de-
termine the triples to consider. These settings were not chosen in a
principled way and may need to be adapted for problems with differ-
ent numbers of variables (we have tried it on examples with between
40 and 150). We use the nth metric to select the “best” functions.

The greedy heuristic does not guarantee the optimal solution [19]
as weak variables can combine to make good combinations. We jus-
tify our use of the greedy approach in several ways. First, we are not
necessarily seeking the optimal combination of variables, but rather, to
find a diverse sampling of good classifiers. Second, while weak func-

Preprint - Accepted to VAST 2013, IEEE TVCG 19(12)

tions (or variables) may combine in ways that perform well in terms
of correctness, this is often counter-intuitive or involves less familiar
variables, and therefore may be more challenging in terms of explana-
tory power (although, there is an argument for exposing a viewer to
variables they may not have thought about).

Empirically, this method works well, even without any tuning of the
default parameters. For the American-ness example, heuristic culling
considers 706 three variable functions (rather than 9880), and takes
about a second. The best function achieves a 92.3% nth score, while
the exhaustive approach is able to find one with a 92.9% score. The
function found by our approach is the second best one found exhaus-
tively. However, the greedy approach allows us to explore explainers
with more variables, finding a 4 variable function scoring over 96%, a
5 variable function scoring over 98%, and several 7 variable functions
that score over 99%. Computing all these functions (up to 7 variables)
takes about as long as the fully exhaustive search, but has the advan-
tage that it also produces the best classifiers with smaller numbers of
variables in the process, allowing the user to make a decision as to
how much of a tradeoff to make between correctness and simplicity.
All examples in this paper with 3 or fewer variables use this approach
with the default parameters, unless specified.

The greedy heuristic only works for a few variables. The SVMs
have more variables so performance becomes an issue, and it exhausts
its supply of useful variables. However, for these more complex clas-
sifiers, the L1 methods above work well.

4.3 Additional Constraints

Additional constraints, such as requiring a particular element to have
the highest value, can be handled in two ways. First, they can be
treated as hard constraints and added to Equation 5. This gives the
additional constraints priority over everything else. However, this ap-
proach has a number of disadvantages. First, it provides no way to
relax the constraints to provide tradeoffs with other aspects, including
the correctness of the other parts of the specification. For instance,
it could be that allowing the element to be the second highest value
(rather than the highest) can be accomplished with a far simpler func-
tion. Second, this approach produces a single function, not a diversity
of solutions. Third, this approach requires the use of a general opti-
mization solver, rather than the specialized SVM solvers.

A second approach to the additional constraints is to use them as
soft constraints. We generate a collection of possible functions, and
then either choose those that best satisfy the constraints, or use a
threshold to cull those that do not meet the constraints well enough.
This approach has complementary properties to the first: while there
is no guarantee that it will find a function that meets the constraints ex-
actly, it can find multiple functions that meet the constraints in various
ways, and it is agnostic to the way the initial functions are generated.

4.4 Quantization

The quantization level of a linear function offers another simplicity
tradeoff. As we restrict the range of values we permit for the weights,
the potential expressivity of the functions becomes smaller, and the
correctness performance may decrease accordingly. We are unaware
of any practical method for directly optimizing integer weights as part
of the SVM computation. Therefore, our strategy is to compute func-
tions with continuous variables, and then to try a variety of different
quantization levels.

To quantize a linear function, we begin with the quantization level
one (e.g. each weight must either be 0, 1 or -1), and consider higher
levels of quantization until we reach a level at which the quantized
function achieves the same performance as the real-valued one. This
provides a set of functions with different quantization level vs. correct-
ness tradeoffs. This process is applied to each member of the families
of classifiers produced during the feature selection process.

5 USING PROJECTION FUNCTIONS

The methods of the previous section generate a large collection of
projection functions for a given specification. Combining parameter
search for L1 SVMs, near-exhaustive search of 1- 2- and 3-variable

functions, and possibly solving for several different combinations of
additional constraints, leads to a collection of a few hundred candidate
functions. Quantizing each to several different levels yields up to a few
thousand candidates. While many are very similar, the subtle differ-
ences represent different tradeoffs. From this large collection, smaller
subsets can be selected.

5.1 Filtering and Sorting

Rank-by-feature and scagnostics approaches allow interactive explo-
ration of a large collection of potential views. We apply this approach
with a few alterations. First, we consider more than just the proper-
ties of the distribution, we consider all of the tradeoffs discussed in
Section 3. Each projection function can be ranked by its properties
including the number of variables, the quantization level, as well as
a variety of metrics of correctness (nth, mcc, accuracy, margin, t-test
confidence level). Second, we generally have a much larger number of
projections to consider.

Our tools can create a scagnostics style scatterplot matrix, where
each point is a projection and the variables are the various metrics.
We select a subset of the metrics (to keep the scatterplot matrices rea-
sonable). Such views are useful in determining what tradeoffs need
to be made for a given specification. They allow determining what
quantization levels and numbers of variables are required to achieve
desired levels of performance, and how many different functions are
likely to achieve desired levels. This allows the user to make informed
decisions for filtering and selection.

After viewing the range of possibilities, the typical workflow uses
filtering to restrict the collections to functions that are acceptable. This
new list is then sorted by whatever metric is most important to the user.
Correctness measures are the most common sorting metric, but some-
times ad hoc metrics are valuable, such as the ranking of a particular
data element (e.g. Lyon in the introductory example).

From this ordered list of acceptable projections, our methods select
a set that is as diverse as possible. As mentioned in Section 3.4, we
use one of two metrics: the correlation between projections, or the
overlap between their variable sets. For a selected metric, we apply a
greedy algorithm: selecting the first function in the list (which is the
one rated best according to the current sort); choosing the function that
is most different from the ones selected, determined by summing the
difference metric with all elements of the selected set; and repeating
this process, adding new members to the selection set, until the desired
size is reached. A different greedy algorithm variant selects the first
function on the list, removes all functions considered to be too similar
to it (by thresholding the metric), and then adding the first remain-
ing function to the selection set. This process prefers functions that
score higher on whatever ranking criterion is used, but it does require
choosing a hard threshold for similarity.

5.2 Visualizing Function Sets

Visualizing the projection functions is a standard problem in display-
ing distributions for comparison. We rely on conventional methods in-
cluding scatterplot matrices, heatmaps, and parallel coordinates. One
potentially unique challenge with a crafted projection function is that
we may be interested in the specific items - they are not anonymous
points. While we augment our graphs with mouseover popups, this
does not allow for quick assessment of where particular elements are.
Our standard presentation for inspecting a projection applies a num-
ber of visual encodings (Figures 1, 4). First, we use position to encode
rank, which is useful to get a sense of the ordering given by a pro-
jection, and to assess its correctness (when color coding is applied).
Second, we encode value with position, akin to a parallel coordinates
display. Splines connecting the rank view to the value view give a
sense of the density. Third, we show a histogram of the density, using
stacked bars to give class distinctions. Finally, we add a boxplot to
help convey a sense of how well the classes are separated.
Unfortunately, our standard presentation does not scale: even at the
scale of 140 cities (Figure 1), the list view begins to break down. In
such larger cases, we switch to a colorfield representation where we
use position to encode data element (for example, in sorted order),

O1KingHenryod| O1KingHonry04| O1KingHenryod|

OtKingHenny; | e | B oxemcll W
2ingHennyos aaKingrienryos Oxingrienryos]
2KingHenry a2Kingrenyos; B ozngrenyos]
O3KngHennys a3cngriennyos. | Ll osngHenyosfi L I

a
[|
||
oot ool I
RomeoAnduute RomeoAnduiet
TamingotheShew Tamin
pest Tomvest| | I .
Timonorknensfg))l TimonOtAens; TimonOtAtens
f— fo— fome—
Twertonl) 1 I Tweitnign: Twettign] TweltnNignt u
{ [} |] |]
WintersTae w WintersTae
c: 044 nth:0.998 moc: 0.89

nth:0.949 mcc: 0.67 nth:0.904 mec: 0.44 nth:O0. nth:

C 5 D [@ Reinforce:19.4
Confront:11.39
ConfirmedThght:-10.06
Substitution:-9.7

and 22 others...

Confront:18.21
Consequence:10.93

Confront:9

PrivateThinking:1 Negative_Relation:-1
-1 -1

1
Disclosure:4.3
and 5 others...

Fig. 5. Projection functions for dimensions of “Hamlet-ness” displayed
using a color field visualization. For each of the 5 acts of the 36 plays,
the colored square encodes the value using a purple-green diverging
scale. Shades of green represent positive amounts of Hamlet-ness,
while purples represent negative amounts.

Comedies Histories . Tragedies . Late plays
3
°
2
° %.o &
o Q@ 2
1 o amP
o Q
L]e) ©
[
o e 0® g
o o8 o
o4 8
o
1 ® *o ® o %®e0
© ® o
@ o ©
2 % 2
°
-3
4 2 0 2 4 2 0 2

Fig. 6. Using dervied axes as for a distance metric. Left: a multi-
dimensional scaling (MDS) of the distance matrix (Euclidean in 115-
dimensions) of the original data points in the acts of Shakespeare data
set. Right: an MDS of the distance matrix using the 4 genre dimensions.

and use color to encode value (see Figure 5). Such ordered colorfields
allow for quick location of specific elements. Summary judgments can
be made quickly over colorfields [7].

5.3 Generating Distance Metrics

Creating effective distance metrics for high dimensional spaces is dif-
ficult. Having a large number of dimensions makes a distance am-
biguous, as there are many different directions this distance could be
in. The different dimensions may require different scalings, and cross-
correlations may require scaling as well. We can use our approach as
a user-guided dimensionality reduction to create distance metrics that
reflect the users knowledge.

Figure 6 shows an example of using our approach to generate a
distance metric for the Shakespeare acts data set (§6.1). We begin
with 180 points (36 plays, each with 5 acts) in 115 dimensions. We
create new dimensions that correspond to the four genres of the plays,
and then use Euclidean distance in this space. This effectively creates
a weighting matrix (akin to the Mahalanobis distance), similar to what
a metric learning process would have produced. The distance matrix
from our approach is not simply a diagonal matrix (as in [3]), but has
sparsity (the dimensions that it was built from only consider 3 variables
each). While it should expected that the classes are better separated
with our distance metric, the patterns and outlier that emerge fit with
what is known about the plays, helping to confirm that the differences
in genre are reflected in the data (see §6.1).

6 CASE STuDY

Literary scholarship has been a motivating domain for the develop-
ment of our approach. To “distantly read” a large corpora, scholars
abstract each text as a vector of numbers. This allows analytical tech-
niques to be applied across a corpus. Our collaborators seek to con-
sider the stylistic variation in writing, without regard to the content.
To do this, they process texts with a text tagger that counts the number
of occurrences of words of various types. The particular text-tagging
scheme used in our examples is Docuscope [24, 28], which groups
words into about 100 rhetorical categories. The categories were de-
vised to capture common kinds of writing in the twentieth century. For
example, “sense objects,” “motion,” “positivity,” “argument,” “‘emo-
tion,” “first person,” and “‘common authorities” stand among the list of
Docuscope’s categories. The categories are not precisely rhetorical la-
bels, nor are they precisely all from the same register in the hierarchy
of speech analysis but they distribute words in modern English such
that each word can be said to be belong most strongly to one of these
groupings. We have created our own version of the Docuscope tagger
that is able to operate on larger corpora and longer texts.

The result of Docuscope processing is that any text is represented by
a vector of measurements (115 for the version of Docuscope we use)
that measure the amount of usage of various word types . Many of the
scholarly questions considered involve establishing the relationships
between “high-level” concepts (such as the genre) and the “low-level”
details of word usage. The individual Docuscope variables are not of
direct interest - unless they happen to relate to some high-level concept
of interest. That is, we may be less interested in the low-level measure-
ment like “sense objects” (how often that verbal activity is used), and
would prefer features that are aligned with concepts of interest, such
as genre. Prior work has explored the collections of points in 115 di-
mensions using factor analysis [6], principal component analysis [46],
or clustering [22]. Specific tools have been built for these explorations
(e.g. [8]), but they generally apply standard statistical methods (like
PCA) and focus on workflow issues.

Our approach allows a scholar to use Docuscope data to find con-
nections between high-level concepts (their expert knowledge) and the
word usage statistics, as well as to use the Docuscope data to organize
corpora according to concepts of interest.

6.1 Shakespeare’s Plays

Shakespeare’s 36 plays provide a familiar testing ground for our ap-
proach. Docuscope has proven to be a useful tool in studying them
[22,46]. Concepts in Shakespeare are well known; however, recent
numerical scholarship has attempted to connect this knowledge with
the specific details of word usage, such as the Docuscope data.

The connection between genre? and word usage is a common topic
for numerical scholarship. It is not obvious that different genres would
be written differently: is a tragedy just a comedy with an unhappy
ending? Witmore and Hope [46] have shown that the different genres
have different word usages, but their PCA analysis does not explain
these differences.

To create a dimension of “comedicness” (or another genre), we cre-
ate projection functions where the comedies score higher than the non-
comedies. Several such projections are shown in Figure 4. The sim-
plest classifiers get some plays “wrong” in an interesting way: for
example, Romeo and Juliet scores high on the comedicness scale —
with a different last few pages, Romeo may have awakened giving
a non-tragic ending. Similarly, scholars have noted that Othello is
like a comedy until the murdering begins [46]. These simple projec-
tion functions give specific patterns of rhetorical forms that lead to
comedic-ness, allowing a scholar to develop theories of causality. The
four genres form a non-orthogonal, but interesting, set of basis dimen-
sions for examining the data (Figure 7). Significantly, the projection
functions are simple enough to allow scholars to form causal theories,
and the ability to generate multiple projections (not just one best one)
lets scholars select ones that aid in their theory building.

2Shakespeare’s plays are commonly grouped into 4 genres, comedies, his-
tories, tregedies, and late plays.

Preprint - Accepted to VAST 2013, IEEE TVCG 19(12)

Comedies Histories . Tragedies . Late plays
. . - »
0 ‘e .) e o ® Late play-ness S
»
2 e L] o o %@) V2
. . P .
4 . ’. LI X
6 ' - ® &
! N T Traged 11 ’
ragedy-ness .
0! I & oo geay: r .
1] [] ! (]
-1 e . a® » o .
) [I o« ¢ s s ®
3 L] L] L] L
4
4
2 History-ness
0 L o . .. ; «®
2 L ° o" A% o @ M 4
44 N o* ° . « °
6
1 Comedy-ness
0 L o ' °
4 o * ® e S o 0 ®
1 r 4 o © ., o .
r .
) (4 I o & 1 .
. P . .
2 1 0 1 6 4 202 4 4 3 2 4140 16 4 2 0

Fig. 7. A scatterplot matrix plotting Shakespeare’s 36 plays using the
four genres as dimensions using 2-variable projection functions.

We can also consider the plays broken into their constituent acts.
Does the genre of a play manifest itself in the acts individually? We
can create projection functions designed to map the 180 acts (36 *
5) to their constituent genres. Again, simple functions can perform
well, with outliers that provide food for thought for scholars. Not all
concepts lead to workable explainers. For example, we tried to create
projection functions for specific acts (e.g. are Act 5s distinctive from
other acts). The only projections that our methods were able to find
were far too complex to provide any meaningful insight.

The distance metric example of Figure 6 (§5.3) also illustrates how
the genre is reflected in rhetorical usage. The four projections, cor-
responding to the four genres were used to create the distance met-
ric, so it should not be surprising that the distances reflect the gen-
res. However, in Figure 6 we can observe many facts that were not
provided to the system. For example, the late plays mix elements of
all genres, and tend to cluster towards the center, although some acts
are quite comedic (they are sometimes referred to as tragi-comedies).
The tragedy outliers in the comedy region are the expected acts where
comic events occur (e.g. the courtship of Romeo and Juliet in Act 2).

Our approach allows us to consider the uniqueness of individual
plays. For example, we can define a Hamlet-ness metric by identifying
projections that score the 5 acts of Hamlet above the 175 other acts
(Figure 5). Interestingly, simple projections either score well on the
first acts, or the last act. To create a Hamlet function that is correct
over all acts requires quite a complex function. This suggests that
there is no common distinctiveness to the acts of Hamlet, in terms of
their rhetorical form usage.

6.2 Novels

We applied our system to the results of Docuscope tagging a collection
of 343 18th- and 19th- century novels. One question to ask is whether
the works of a particular author are distinctive in terms of their rhetor-
ical style. For some authors, such as Defoe and Austen, there are
3-variable, quantized functions that achieve perfect correctness. For
Charles Dickens, even the best 3-variable classifiers put a few novels
as being “more Dickensian than Dickens.” Examining these outliers
shows that they are authors that were thought emulate Dickens’ style.

The fact that Austen’s style can be observed so readily using the
limited measurements of Docuscope data is interesting to our litera-

ture scholar collaborators. Factor analysis could have been used to
determine that these works are distinct. However, explainers provide
simpler projections (one has 3 variables with unit weights) that more
easily lead to theories, and a diverse set of projections (there are 7 that
perfectly discriminate) permits the scholar to consider multiple ideas
to see which is likely to have meaning.

7 DiscussION

This paper described an approach for exploration and discovery in
high-dimensional data using the idea of crafting projection functions
to serve the users needs. By generating projection functions that align
with user specifications, and by considering tradeoffs in correctness,
simplicity, and diversity, our approach creates derived dimensions that
serve to both organize the data, as well as show its connection to prop-
erties of interest. We enhance the rank-by-feature framework to con-
sider new types of properties, and a richer set of functions.

We have limited the approach to linear projection functions. Ar-
guments against non-linear functions include computational practical-
ity, understandability, and control of over-fitting. However, these are
tradeoffs, similar to those made with linear functions. Just as a user
may sometimes be willing to trade the simplicity of an axis aligned
projection for the expressiveness of a more general linear function,
non-linear functions may be warranted. Non-linearity is 2just another
simplicity tradeoff: is a simple non-linear function (e.g. x>+ y?) more
difficult to interpret than a linear one involving more variables and hav-
ing obscure weights? In the future, we hope to make a more rigorous
study of the tradeoff between function complexity and interpretability.

At present, our experiments have been on relatively small scale ex-
amples, 40-140 variables and 30-1500 objects. The scalability of our
approach is a concern. Less because of computation time, but more
in terms of the presentation and interpretation of the results. The vi-
sualizations we provide already break down at current scales. Future
work will consider more scalable visualizations and interactions. With
more variables, there is more potential for redundancy. Our present
methods avoid redundant variables as they minimize the number of
variables used. However, we hope to combine our approach with the
methods such as [43] that help identify redundancy. Similarly, larger
numbers of elements increase the likelihood that more complex clas-
sifiers may be necessary to capture more complex phenomena. We
seek to adapt our approach to help users make sense of these large and
complex classifiers.

Another limitation in our work is understanding the statistical sig-
nificance of the projections. Intuitively, the existence of a simpler pro-
jection seems to be a stronger indication that the property is really
represented in the data, however, we seek to formalize this.

Our current approach considers user knowledge and needs only
through specified partial order relationships that define properties. We
are exploring extensions to other forms of specifications. In particular,
we do not provide a clean way to consider multi-class separation, only
considering the classes independently. And, our approach considers a
single dimension at a time. While this has advantages in simplicity,
control over redundancy, and the availability of numerical techniques,
it can be limiting. Our present implementation does not provide a uni-
fied user experience, however we are developing one.

Even with its limitations, our approach to crafting projection func-
tions has proven useful to our collaborators, and shows promise in
other application domains. The ability to define dimensions of inter-
est, such as comedic-ness or Paris-ness, rather than being required to
show data variables or statistically defined dimensions (such as vari-
ance maximal), permits creating viewpoints that are meaningful and
relevant. Control over the tradeoffs allows for identifying functions
that help explain relations between variables and properties. We be-
lieve that our approach will be the basis for a variety of useful tools.
Acknowledgements: This work was supported in part by NSF
awards IIS-1162037, DRL-0918409, DRL-1247262 and CMMI-
0941013, and a grant from the Andrew Mellon Foundation. We thank
our collaborators on the Visualizing English Print project for provid-
ing problems that motivated the approach, especially Robin Valenza
for her help in articulating it.

REFERENCES

(1]
[2]

(3]
(4]
[5]
(6]

(71
(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Anand, L. Wilkinson, and T. N. Dang. Visual Pattern Discovery using
Random Projections. In IEEE VAST, 2012.

M. Ankerst, S. Berchtold, and D. Keim. Similarity clustering of dimen-
sions for an enhanced visualization of multidimensional data. In IEEE
InfoVis, 1998.

E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function: Learning
distance functions interactively. In IEEE VAST, 2012.

M. W. Browne. An Overview of Analytic Rotation in Exploratory Factor
Analysis. Multivariate Behavioral Research, 36(1):111-150, Jan. 2001.
Buzzdata. Best City Contest, 2012.

J. Collins, D. Kaufer, P. Vlachos, and S. Ishizaki. Detecting collabora-
tions in text comparing the authors’ rhetorical language choices in the
Federalist Papers. Computers and the Humanities, 38(1):15-36, 2004.
M. Correll, D. Albers, S. Franconeri, and M. Gleicher. Comparing aver-
ages in time series data. In CHI, pages 1095-1104, May 2012.

M. Correll, M. Witmore, and M. Gleicher. Exploring Collections
of Tagged Text for Literary Scholarship. Computer Graphics Forum,
30(3):731-740, June 2011.

1. S. Dhillon, D. S. Modha, and W. Spangler. Class visualization of high-
dimensional data with applications. Computational Statistics & Data
Analysis, 41(1):59-90, Nov. 2002.

C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes
Paris look like Paris? ACM Trans. on Graphics, 31(4):101, July 2012.
A. Endert, C. Han, D. Maiti, L. House, S. Leman, and C. North.
Observation-Level Models for Visual Analytics. In I[EEE VAST, 2011.

L. R. Fabrigar, D. T. Wegener, R. C. MacCallum, and E. J. Strahan. Eval-
uating the Use of Exploratory Factor Analysis in Psychological Research.
Pyschological Methods, 4(3):272—-299, 1999.

J. Faith. Targeted Projection Pursuit for Interactive Exploration of High-
Dimensional Data Sets. In 2007 11th International Conference Informa-
tion Visualization (1V "07), pages 286-292. IEEE, July 2007.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIB-
LINEAR: A Library for Large Linear Classification. Journal of Machine
Learning Research, 9:1871-1874, June 2008.

S.J. Fernstad, J. Shaw, and J. Johansson. Quality-based guidance for ex-
ploratory dimensionality reduction. Information Visualization, 12(1):44—
64, Oct. 2012.

J. Friedman and J. Tukey. A Projection Pursuit Algorithm for Exploratory
Data Analysis. IEEE Trans. on Computers, C-23(9):881-890, Sept. 1974.
R. Gnandesikan, J. Kettenring, and J. Landwehr. Projection plots for
displaying clusters. In Statistics and Probability: Essays in Honor of
C.R. Rao, pages 269-280. 1982.

D. Guo. Coordinating computational and visual approaches for interac-
tive feature selection and multivariate clustering. Information Visualiza-
tion, 2(4):232-246, Dec. 2003.

I. Guyon and A. Elisseeff. An introduction to variable and feature selec-
tion. Journal of Machine Learning Research, 3:1157-1182, Mar. 2003.
M. Hearst, B. Scholkopf, S. Dumais, E. Osuna, and J. Platt. Support
Vector Machines. IEEE Intelligent Systems, (July/August):18-28, 1998.
F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual Classifier Training
for Text Document Retrieval. IEEE Trans. on Vis. and Comp. Graphics,
18(12):2839-2848, Dec. 2012.

J. Hope and M. Witmore. The Very Large Textual Object: A Pros-
thetic Reading of Shakespeare. Early Modern Literary Studies, 9(3):1—
36, 2004.

S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. Moller.
DimStiller: Workflows for dimensional analysis and reduction. In IEEE
VAST, 2010.

S. Ishizaki and D. Kaufer. DocuScope: Computer-aided rhetorical analy-
sis. In P. McCarthy and C. Boonthum, editors, Applied Natural Language
Processing and Content Analysis: Advances in Identification, Investiga-
tion, and Resolution. IGI Global, 2011.

S. Johansson and J. Johansson. Interactive dimensionality reduction
through user-defined combinations of quality metrics. [EEE Trans. on
Vis. and Comp. Graphics, 15(6):993-1000, 2009.

P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G. Nonato.
Local Affine Multidimensional Projection. IEEE Trans. on Vis. and
Comp. Graphics, 17(12):2563-71, Dec. 2011.

E. Kandogan. Just-in-Time Annotation of Clusters, Outliers, and Trends
in Point-based Data Visualizations. In IEEE VAST, 2012.

D. Kaufer, C. Geisler, P. Vlachos, and S. Ishizaki. Mining Textual Knowl-

10

[29]

(30]

[31]

(32]

[33]

(34]

[35]

(36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

(49]

[50]

(511

edge for Writing Research and Education. In L. V. Waes, M. Leijten, and
C. Neuwirth, editors, Writing & Digital Media, pages 115-129. 2006.

Y. Koren and L. Carmel. Robust linear dimensionality reduction. /EEE
Trans. on Vis. and Comp. Graphics, 10(4):459-70, Jan. 2004.

S. Lespinats and M. Aupetit. CheckViz: Sanity Check and Topological
Clues for Linear and Non-Linear Mappings. Computer Graphics Forum,
30(1):113-125, Mar. 2011.

J. Lewis, L. van der Maaten, and V. de Sa. A Psychophysical Investigation
of Dimensionality Reduction. In NIPS Workshop on the Challenges of
Data Visualization, page NP, 2010.

T. Malisiewicz and A. A. Efros. Beyond Categories: The Visual Memex
Model for Reasoning About Object Relationships. In NIPS, 2009.

T. May, A. Bannach, J. Davey, T. Ruppert, and J. Kohlhammer. Guiding
feature subset selection with an interactive visualization. In /EEE VAST,
2011.

A. Patro, N. Mehta, M. Ward, and E. Rundensteiner. Value and Relation
Display for Interactive Exploration of High Dimensional Datasets. In
IEEE InfoVis, 2004.

F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: a fast high-precision multidimensional projection tech-
nique and its application to document mapping. /EEE Trans. on Vis. and
Comp. Graphics, 14(3):564-75, 2008.

H. Piringer, W. Berger, and H. Hauser. Quantifying and Comparing Fea-
tures in High-Dimensional Datasets. In 2008 12th International Confer-
ence Information Visualisation, pages 240-245. IEEE, July 2008.

D. Powers. Evaluation: From Precision, Recall and F-Measure to ROC,
Informedness, Markedness and Correllation. Journal of Machine Learn-
ing Technologies, 2(1):37-63, 2011.

M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A Taxonomy of Vi-
sual Cluster Separation Factors. Computer Graphics Forum, 31(3):1335-
1344, June 2012.

J. Seo and B. Shneiderman. A rank-by-feature framework for interac-
tive exploration of multidimensional data. Information Visualization,
4(2):96-113, May 2005.

M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views
of high-dimensional data using class consistency. Computer Graphics
Forum, 28(3):831-838, June 2009.

S. Sra, S. Nowozin, and S. Wright, editors. Optimization for Machine
Learning. MIT Press, Cambridge, 2012.

E. Tejada, R. Minghim, and L. Gustavo Nonato. On improved projection
techniques to support visual exploration of multi-dimensional data sets.
Information Visualization, 2(4):218-231, Dec. 2003.

C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser. Rep-
resentative Factor Generation for the Interactive Visual Analysis of
High-Dimensional Data. IEEE Trans. on Vis. and Comp. Graphics,
18(12):2621-2630, 2012.

L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics.
In IEEE InfoVis, pages 157-164, 2005.

L. Wilkinson, A. Anand, and R. Grossman. High-dimensional visual an-
alytics: interactive exploration guided by pairwise views of point distri-
butions. IEEE Trans. on Vis. and Comp. Graphics, 12(6):1363-72, 2006.
M. Witmore and J. Hope. The Hundredth Psalm to the Tune of “Green
Sleeves”: Digital Approaches to Shakespeare’s Language of Genre.
Shakespeare Quarterly, 61(3):357-390, 2010.

I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques, 3e. Morgan Kaufmann, 2011.

P. C. Wong and R. D. Bergeron. 30 Years of Multidimensional Multivari-
ate Visualization. In Scientific Visualization, Overviews, Methodologies,
and Techniques, pages 3-33. IEEE Computer Society, May 1997.

S. Wright, R. Nowak, and M. Figueiredo. Sparse Reconstruction by Sep-
arable Approximation. [EEE Trans. on Signal Processing, 57(7):2479—
2493, July 2009.

J. Yang, M. O. Ward, E. A. Rundensteiner, and S. Huang. Visual hierar-
chical dimension reduction for exploration of high dimensional datasets.
In VISSYM °03 Proceedings of the symposium on Data visualisation,
pages 19-28, May 2003.

L. Yang. Distance Metric Learning: A Comprehensive Survey. 2005.

	Introduction
	Case Study: City Livability

	Background and Related Work
	Properties of Explainer Functions
	Correctness
	Simplicity and Explanatory Power
	Statistical Distributions
	Diversity

	Generating Projection Functions
	Function Creation as Constrained Optimization
	Feature Selection
	Additional Constraints
	Quantization

	Using Projection Functions
	Filtering and Sorting
	Visualizing Function Sets
	Generating Distance Metrics

	Case Study
	Shakespeare's Plays
	Novels

	Discussion

