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Abstract

Kolmogorov superpositions and Hecht-Nielsen’s neural network based on them are dimension reducing. This dimension reduction can be
understood in terms of space-filling curves that characterize Kolmogorov’s functions, and the subject of this paper is the construction of such
a curve. We construct a space-filling curve with Lebesgue measure 1 in the unit square, [0,1]2, with approximating curves Ay, k =1,2,3,...,
each with 10% rational nodal-points whose order is determined for each k by the linear order of their image-points under a nomographic
function y = o if(x|) + o, if(x,) that is the basis of a computable version of the Kolmogorov superpositions in two dimensions. The function
:[0,1]1 — [0,1] is continuous and monotonic increasing, and «, «, are suitable constants. The curves A; are composed of families of disjoint
closed squares of diminishing diameters and connecting joins of diminishing lengths as k— o0. © 2002 Elsevier Science Ltd. All rights

reserved.

Keywords: Space-filling curves; Peano curves; Kolmogorov superpositions; Superpositions; Nomographic functions; Hecht-Nielsen neural network; Neural

networks

1. Introduction
Referring to the Nomenclature, consider the two-

dimensional version of the Kolmogorov (1957) super-
positions:

4
f@, x) =Y ®,0,), (1)
q=0

in which an arbitrary real-valued continuous function

f:6*—# is computed with continuous functions
®,:6 — A. The arguments:
Vg = arlxy + qa) + arifix; + qa) 2)

are fixed nomographic functions that are independent of f;
The function : — & is monotonic increasing and contin-
uous, and «;, @, and a are suitable constants (Sprecher,
1996, 1997). In a pioneering paper, Hecht-Nielsen (1987)
linked the n-dimensional version of Kolmogorov superposi-
tions to computer architecture by interpreting them as a
four-layer architecture of a feedforward neural network, as
represented schematically in Fig. 1. This architecture
consists of two pairs of nonlinear — linear layers, the first

* Corresponding author. Tel.: +1-805-568-0681.
E-mail address: sprecher@math.ucsb.edu (D.A. Sprecher).

pair constituting a dimension-dependent and otherwise fixed
hidden layer, and the second pair constituting the output
layer in which an arbitrary target function f'is implemented.
The nonlinear activation functions of the units in the hidden
layer may therefore be implemented in hardware and
hard-coded into the network.

The functions in Eq. (2) are the most basic nonlinear
continuous functions that can be used to replace a pair of
variables (x;, x,) with new variables y,, with the result that
the computation of the two-variable function flx;, x;) is
carried out exclusively in terms of the five one-variable
functions @ ,(y,). This dimension-reduction is accomplished
with the binary operation ‘ + * in Eq. (2), and correspond-
ingly in the hidden layer of the network. Here we examine
the underlying topological properties of these functions that
enable this dimension reduction, and we begin with the
general statement that there exist continuous curves passing
through all points of a square or a subset thereof, thereby
inducing a linear order on an infinite dense set of points
(x1, x2). The question of existence of such curves followed
Cantor’s 1878 work that demonstrated, among other things,
that there is a one—one relationship between the points of a
square and the points of an interval. The first space-filling
curve, as these curves are called, was discovered by Peano
in 1890, and mathematicians since have followed his

0893-6080/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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Nomenclature

& Unit interval [0,1]

&2 Cartesian product [0,1] X [0,1]
¢ Nomographic mapping & — &
A Mapping & — &

A (Az) E 67 L€ 6}

dy
d;

Rational numbers 3*_,i,107",i,=0,1,2,...9
Rational point (dy 1, di2)

Z Image point &d;) of d;

dist(d;,d,) Euclidean distance

Tl Length of interval T

X Point (x;, x,)

by Series 32,1072 *!

discovery with a detailed study of their properties as well as
the construction of a rich variety of space-filling curves
(Sagan, 1991). Each of the functions in Eq. (2) determines
a space-filling curve with the specific properties that are
required to obtain Eq. (1). The subject of this paper is the
construction of a space-filling curve characterizing the
functions (Eq. 2), and in turn illuminating the algorithm
leading to the Kolmogorov superpositions and Hecht-
Nielsen’s neural network.

Following Kolmogorov’s original strategy, Eq. (1) is
established through the construction of suitable families
of disjoint closed squares of increasing refinement for
each value of ¢, each covering the unit square &> except
for narrow horizontal and vertical strips. Each function
(Eq. 2) is such that it maps its families of squares one—one
onto families of disjoint closed intervals.' The diameters of
the squares and the widths of the gaps separating them tend
asymptotically to zero, and so do the lengths of the corre-
sponding intervals and their separating gaps. When each
family of squares is appropriately joined pair wise at each
stage, they form curves (chains) that converge to a space-
filling curve. We are able to refer to such chains as curves
because a square can be mapped onto its diagonal. The
constructions in this paper are for the case ¢ = 0 in Eq. (2).

Section 1 is devoted to a rehearsal of those properties
of the function y, that are necessary for the analytic
construction of a space-filling curve A in Section 2. This
construction culminates in a lemma and four theorems—all
proved in Section 4. Section 3 contains a geometric
construction of approximating curves A;. MatLab was
used to generate computer graphs of Ay and A;. These
graphs clearly reveal the non-linearity of the function y;.
An examination of the Kolmogorov (1957) original
functions y, = ¢ (x1) + ,(x2), r=0,1,...,4 suggests that
these also generate similar space filling curves, but this
needs yet to be verified.

! Details of the specific constructions can be found in Sprecher (1996,
1997).

2. The nomographic function £(x)

Our starting point is the nomographic function:
&(x) = a Plx)) + arip(xy) (3

with ¢ as defined in the Appendix, having rational values at
the points:

k
dy=>i,107",
r=1

i,=0,1,2,...9 and k=1,2,3,.... The normalized constants
ay, oy, also defined in the Appendix, are rationally indepen-
dent, so that if we set 7, = £(d,) and 7, = &d), then for fixed
k, 7, = z} if and only if d, = d',. Consequently, d;, = & ~'(z)
is well defined for fixed k, and hstmg the 1mage point z; =
é(dy) in increasing order: 0 = zk < zk < Zk <. < Zko
results in a correspondlng sequence dk, dk, dk, .. leZk
that is indexed through &~ (zk) =dy, so that d“’“ is the
immediate successor of di.” Associated with each
grid-point is a closed square:

Si(dy) = [di1, ex11 X [diy, exa], 4)
where:
et, =dg, + $107%. 5)

For fixed k, these squares are separated by horizontal and
vertical strips of widths %10_", and the function (Eq. 3)
maps each square S;(dy) onto a closed interval:

T(z) = [z, 2z + 8by], (6)
where:
> 1077 (7
r=k+1

2 Warmng The fact that dfj' = (d,f’lﬂ, dgs'y is the successor of

= (dfy, di,) does not 1mply that dkp 1 is the successor of dkp In the

case k = 1, for example, dl = (L 15- 0) is the successor of dl = (0, 9/10),

yet O is not the successor of 9/10. Here the superscript @ serves only to
indicate the association of an ordered-pair (dy|, dy») with dy’.
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L | nonlinear

linear | | nonlinear

linear |

Input Hidden layer

Output layer

Fig. 1. Hecht-Nielsen’s neural network for n = 2.

Since:

8 —k __ -r
$107F=8 > 107,
r=k+1

an application of Eq. (Al) to Eq. (5) shows that
Plef,) = Wdg,) + 8by, so that &ef) =z¢ + 8b, <zt
Like each system of squares, the intervals are pair wise
disjoint for each value of k.

Now, given arbitrary squares Si(d;) and S,(d,) with
m > k and corresponding intervals Ty(z;) and T,(z,), then
either S,,(d,,) N S(dy) = or S,,(d,,) C Si(dy), and likewise
To(zn) N Ti(z) =D or T,(z,,) C Ti(ze). It follows directly
from Eqgs. (4)—(7) that the inclusion of squares S,(d,) C
Si(dy) implies the inclusion of corresponding intervals
T,(z2m) C Ti(zi). The converse, however, is not true, as the
following example shows.

Example 1. Let d,=(0,0) and d, = (0, %). Then
according to Eq. (A1) and Eq. (3), z; = é(d;) = 0 and:

)

2 = &dy) = a1 Y(0) + ari(5) = 710"

Tl(zx)

Fig. 2. The case Ts(z;) C T(z;) and S»(d,) € S,(d,).

and this gives intervals:

Ti(z)) =0, 8 102’“]
| r=2

@ X o~ (-2 41
D) =] 2, 2 18,1
2(z2) | 2-10° 2710 82 2,10 ]

with corresponding squares:

Sidy)) = [0’ %]X[O’ %]

Sz(dz)z[o, ﬁ]x[]gz, o+ %]

(Fig. 2). The inclusion T5(z;) C T\(z;) follows from the
inequality:

i 1072 +!

r=2

@ o~ 2]
+8>» 10 <8
2-10 r;
yet clearly S;(d;) N Sy(d,) = .

To complete the preparatory constructions of this section,
let Uy(z) designate for w = l,2,...102k — 1 the open inter-

val separating intervals T}(z) and Ti(z"""):

Unz?) = (2 + 8by, 201y, (8)

For o = 10% let:

U2 = @1 + 8b,, 1). 9)
Then:
]02k

6= J @) v U@ (10)

w=1
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3. The curve A

We begin with the observations that every infinite
sequence of nested intervals T (z) D Ti,(z%,) O ... deter-
mines a unique point:

z= ﬂ Ty (z,)
r=1

as well as a unique sequence of squares S (dy),
Si(dy),.... This sequence may contain a nested
sequence S (dy) D S, (dg ) D ... defining a unique
image point of z for some integer s=1: We shall
show that the sequence d, dy, d;,... converges also
when no such nested sequence exists. When z € & is
not the infinite intersection of intervals T} (z,) then
there is an integer k and a sequence of nested intervals
Uzi) D Ups1(zg+1) D ... such that:

z= ﬂ Ui+ r(Zi+1)-
r=0

The existence of a space-filling curve associated with Eq.
(3) is derived from the following property of this function:

Lemma 1. Let an integer k be given. If |d;, — dj,| =
10™° for some integer 1 = s <k — 1, then:

!
|Zk Zk| > —102x+2 .
From this lemma we have:

Theorem 1.

1. max,, dist@d?"!, d¥) < C-107°2%" D where C=
\/E . lologzlogzlo.
2. 1Ty, (z,,) C Ti (z) then dist(d, , , d; ) < +/2-107%.
3. If Upy1(zk+1) C Up(zy) then
dist(d, . d,) < C- 107k DFL

Theorem 2.

1. If:
2= [T &),
r=1

then the corresponding sequence d;, dg,, d;
converges.
2. If:

30

7= n Us (2t r)
r=0

for some integer k then the corresponding sequence d; .,
diis15 dgs o, ... CONvVerges.

We now define the sets:

Ay = {z €&: 2= )Ty () and [)S (dy)

r=1 r=s

# (7 for some s}

H oy = {z €&: z= ()T (z)and (]S (dy)

r=1 r=s

= (I for every s}.

.%3 == {Z €& = m Uk+r(Zk+r) for some k}
r=0

and state:
Theorem 3.

1.Ifz,7 € A\, then 7 # 7' if and only if A(z) # /\(z');
2.Ifz,7/ € #yorz,7 € A5 then z # 7/ if A(z) # A(Z)).

With this and the observation that & = ") U /', U A5
we can now define A: Consider the mapping A : & — &,
specified as follows:

A@) = () Sk, (dy,) (11)
r=1

when z € X,

AMz) = lim d; (12)

when z € 4,

Mz) = Tim dy 13)

when z € X5.

We now have:

Theorem 4. The direct image A = {A(z) € &7 € &)
of A is a space-filling curve.

This implies, of course, that the mapping A : § — &% is
continuous (Sagan, 1991).
4. Approximating curves

We begin with:
Definition 1. Let a point z € & be a given. The curve

M) ={x € & &x) =z} is called a level-curve of the
function &.
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% S.(d"

L(c} ;")

@+
d; o
ck

R
e
i ¥ 7 X =e,

] AT

d’

1 an-l

'@\ \& @&

() o+ X
G % !

Fig. 3. Anatomy of a join J,(e?, d?* ).

Because the function ¢ is continuous and monotonic
increasing and the constants «; and «, are positive,
& _l(z) is a continuous monotonic decreasing curve for
fixed z, with initial and end points on the boundary of &2
For fixed k and w = 1,2,3,... we now connect each square
Su(d?) to its immediate successor Sy(d¢"!) with a join to
form a continuous chain (approximating curve) originating
at (0,0) and ending at (1,1), in such a way that no two joins
have common contact points: Our application of the term
successor to squares is to be understood in terms of the order
induced on the grid-points di’ through £ 1(z¥) = d?, and no
ambiguity is likely to arise out of this informal use. Consult-
ing Fig 3, let the point of intersection of the horizontal line
x2 = e, with the level-curve &~ (z“’H) be designated

(Cl,k’dZ,k ). Designate by I(e;’, ¢;’] the half-open line
segment connecting the points e’ and ¢{’, and by L(c{’, dy"" ")

the open level-curve segment connecting the points ¢;’ and
dw+ 1 .

Definition 2. For fixed k, the join J,(e”,d") C &2 is the
set:

Ju(ef,dpt ) = I(eg, ¢ U Licg, d*)
when w =0, 1,2,...,10%* — 1 and:

2k
Tl dl”" "y = D(el” 1

when o = 10%,
WeZk note that for fixed k&, the half-closed interval
D(e,lo , 1] connects the points:

k k
e = (Z 9-107 + 51075, 9107 + glo"‘)

r=1 r=1

— _ 1107k 1 - L1k

= (1= 41071~ 4107

and (1,1). Thus, Jk(ek,d‘"H) connects the pair of squares
Si(dy’) and Sk(dz’“) for w=0,1,2,...,10% — 1 _whereas
Ji(e ,1(0 d,io *1) connects the last square Sk(dk ) to the
point (1,1).

Definition 3. The kth approximating curve A, C & is the
set:

10%*

U SK(d) U J(ef, dp*h).
=1

Clearly, each curve A, originates at (0,0) and terminates
at (1,1). The anatomy of approximating curves is as follows:
For a given k, consider a curve A; and a pair of squares
Sy(d¥) and S;(d*"). This curve has 10%* nodal points dy’
that are also nodal points of the approximating curve A,
that has, in addition, 102]‘(102 — 1) new nodal points not
lying on Aj. Some of the squares S, (d;,;) associated
with the new nodal points and their joins J; (e}, di+})
form a new curve segment connecting the given squares,
thereby replacing the existing _]01n Jk(ek,d,‘fﬂ) Now, a
square Si(dy) contains the 9? squares Skﬂ(di‘ﬂ),
Sp+1(d2 ), ... (see the note in the Appendix). Let the
squares Sy (dj;;) occupying the lower left and upper
right corners of Si(dy) be Si. (diy;) and Si, (d;y)),
respectively. Some other squares S, ;(d;.;) belonging to
new nodal points are part of the curve-segment connecting
these squares, and according to Theorem 1(b), these nodal
points are such that dist(dy, d} ;) < +/2-107*

The path along which the points df are connected is
presented in Fig. 4; Fig. 5 presents the path obtained when
joining the points d5, and Fig. 6 presents the details of this
path in the interval [0,0.5] X [0,0.5]. These graphs have been
obtained for the Value a;=1 and the truncated value
o = ' + 103 + 107 The graphing of the actual curves
with the1r joins and squares is beyond the scope of our
program. We note in passing that other interesting space-
filling curves can be obtained by replacing « with constants:
a, = 1% + «
for values p =0,1,...,8.

When writing a code to implement such mappings, great
care must be taken to avoid representation problems. The
main cause of such problems is the fact that certain rational
numbers cannot be represented exactly in base 2 using a
finite number of digits. As a consequence, standard imple-
mentations of functions such as floor and ceiling may
provide wrong results. One way to avoid this type of
problem is to modify the algorithm in such a way that all
computations are done with integers. However, such modi-
fications are outside the scope of the present paper.

Note: An alternative definition of A, is obtained by
mapping in one of several ways each square Si(dy) onto
its diagonal Dy(dy’) and defining the kth approximating
curve to be:

102k
= |J Du@?) U Ji(ep.dith.

w=1

For a similar construction and use of terminology see
Sagan (1991).
We now define mappings A, : & — & as follows:
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08 H

ll?—\

0BF |

os| \
o

02| \

01 k

Definition 4. For k=1,2,3,...,

)\k(Z/? )= d/?

Mz + 8by) = ¢

0.z 0.3 0.4 0.5 (113 07 0.8 0.9

Fig. 4. The path of joining the points df.
N Ti(@) = Si(dy)

w 1-1 w w
e Upzd) = Jep,di™™h

According to this definition, each mapping A is such that:

o _wtl

M 20,2071 — Sp@dP) U Ji(ef, dpt )

Fig. 5. The path of joining the points d5.
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0.2

Fig. 6. Detail of the path connecting the points d5.

for w = 1,2,3,..., and this results in mappings A; : & — A,.
We observe that the only square intersecting a given level
curve ¢ 1(z¥) is Si(d?), and that there are squares S,,(d’,)
with m > k intersecting I(e;’, ¢;'] or D(e,lc()Zk, 1]. That each
join has finite length is already guaranteed by the monoto-
nicity of ¢. Fig. 7 depicts the four possible relative positions
of an arbitrary pair of squares S;(d?) and S,(d¢’*"), and the
details of configurations A and D are given in Fig. 8(a) and
(b), respectively. Each join is composed of a horizontal line
segment and a monotonic decreasing curve, and an exam-
ination shows that:

(e, di™h)

{|d;;j1+1 —dp| + 13! — di) + 3107 (position A)
=

et — dgy| + |dgs ' — diy| + 8107 (position D)

L]

Sk(dy' D)
Si (d":’M) —_

]

Fig. 7. S,(d?) and the relative points of S;(d¢™").

and:

k k
10> ;107 ! 2 1n—k
Ve .dp° )< 2107

Clearly, positions B and C in Fig. 7 need no elaboration,
and with Theorem 1 we therefore have:

Corollary 1. For fixed k&, max, |/ (ef,dP"h)| =
Cl1o7o=®b 4 8107,
(a)
oo S (@™
(dka,)l »d:).z )=+
(cer' etz
-~
o+l o ~
(dr1 - di2) S, (dy)
(b) (e,ffl,e,:‘fz)
¥
Se(dy)
S (@™
”

o +1 o+l o+l
(e iz ) (dry »diz)

Fig. 8. (a) Detail of configuration A in Fig. 7. (b) Detail of configuration B
in Fig. 7.
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Theorem 5. A is the limit of the sequence of approximat-
ing curves A; as k— oo.

5. Proofs

Proof of Lemma. 1: Let k = 2 be fixed and let an integer
1 =s=k— 1 be given. Then:

[Wdr0) = (d2p)l = =

according to the Appendix, and we consider the inequality:

1 a
/ /
|Zs,k - Zs,k| = ot [lp(dl,k) - l/f(dl,k)] + W
1 a
= A | a9

We seek a lower bound on |z, — zi,| as a function of s,
and toward this end we consider the formula:

s - ) k - )
A, = @, —1,) (@, —T1y)
210 210
r=1 r=s+1
= Bl,s + Bs+1,k

obtained from Eq. (A1). Using the lower positive bound:

1
By = 0T
the inequality:

o - 1 o l—«
Bl,s+ 1025—1 - 102371 - 102571 1025*1

tells us that the right side of Eq. (14) cannot attain a mini-
mum value unless that B; ; = 0, implying, in particular, that
liy, — i,| = 0 for all values 1 = r =< s5. Hence, we consider
the inequality:

min
a+ 1 By

|zox — Zixl = Boiix + (15)

o
instead of Eq. (14). In view of the inequalities:
min [z, = 25o| = min fg5 — 25| = ... = min g5, — 24

Zs2 Tg2| = MIN |Zg3 s3] = ... = TN [Zop sk
BS,Z B.\,S Bs.k

we assume without loss of generality that k = 7. We now
note that the terms of Bj,; closest to:

(6]
102:—1

are of the form:

1 1++1

and it is a simple exercise to verify that:

1 1
0= — — ... =

2" A

- 4+ — _
10 103 24 2 10°
(16)

‘ 1 1 1 1 7

and consequently, when s = k — 4 we obtain from an exam-
ination of By that:

=2 > 71
sk sk a+1 102»v_1 . 103 102.;%_1

1 1 6
x8+§+...+ﬁ >W.

a7

When k£ — 4 <s =k — 1 itis clear that the lower bound
in Eq. (16) cannot be attained, but inequality Eq. (17)
remains true.

Proof of Theorem 1.

1. By Definition 1, the successor d{’*' of a given grid point
wtl

dy is determined by that number z,, = &df" ) for
which:

e = | = minle; — z¢

; (18)

and therefore dist(d{’""!,d?’) is determined by the func-
tion £. Assuming that d;’ is given, we seek a lower bound
ons, | =s=k— 1, such that the minimum in Eq. (18)
can be attained under the conditions of Lemma 1. The
inequality:

1
wtl _ o = 19
|Zk Zk| 72](_].10, (19)
that follows from Lemma A1l leads to the inequality:
6 1
<
102"+2 - zkfl <10 :

(20)

which is trivially true for all values 1 = k = 9; for values
k = 10 a direct calculation that it is satisfied when:

s = logy(k — 1) — log,log ,10. 21

We now observe from Lemma 1 that |d;;, — d},| = 10™°
and we conclude that |d;, — dj ,| < 100D lowlos10
for p = 1,2 and (a) follows.

2. The inclusion T} , (7 ,,) C Ty (2 ) gives the inequalities:

1

_kr
% =z, <zu +8hy <z +8-1077"!

r

and according to construction, there exists a number
!
Zk.., = Z,. and hence:

ks, — 2| = la,, — 2., | < 8-10%. (22)

1

Furthermore, there are rational numbers dj ; = d,

101
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s, (d,,)
A(Z/) —~a S"'l (d"’l )
e ALY
Zy Z,  Z

Fig. 9. Showing that if A(z) # A(Z') then z # 7.

and dy , = dim,z, and with the supposition that:
1
10°°
this enables us to emulate the argument employed to
establish Lemma 1. This leads us to the inequality:

6
=
- 102"+2

\d,

=

2 Ak

ey ke

which, in turn, gives in place of Inequality (20) the
inequality:

6 8

> < .
102‘ +2 102"" -1

An inspection shows that this inequality is satisfied when
s = k,, and (b) follows.

. The inclusion Uy 41(zx+1) C Ui(zy), gives the inequalities
2+ 8b < zipy < Zuey + 8bpiy < 2P, and we have
the inequality:

1
otl _ o] =
|Zk Zk|_ 2](_].10-

Also from the construction we know that there is a point
Zhe1 = 2211, so that:

kvt = zesn| < |2 = 2] = KT, 10°

We apply Lemma 1 to the difference |zj4; — 24| and
have:

6

gkt = zen| = 0

and instead of inequality (Inequality 20) we arrive at:
6 1
=
102”‘+2 2k.10°

Solving this for s verifies the assertion made.

Proof of Theorem 2.

1. Since the condition of the theorem entails a nested

sequence of intervals, Theorem 1(b) applies. Hence,
given any number € > 0, there is an integer k. such that:

dist(dy,. di) < V2D 1077 =23 107

r=u r=u

© 2
sﬁZM) ’zglo wtl <

r=u

for all k, > k, > k., thereby showing that the sequence
d,.dy,.dy,... is a Cauchy sequence.

. Theorem 1(c) applies here, so that:

dist(dy,,, dgyy) < C Z 10 loma(ktr=1)+1

r=u

sCi(k+r— I

r=u

for a sufficiently large value of u, and hence the sequence
dy,.dy,,d,,... is also in this case a Cauchy sequence.

Proof of Theorem 3.

1. Let:

z= ﬁl Ty (z,)
and
7= ﬁ T, (Zm)

s=1
have corresponding image points:
AMz) = ésk,(dk,)
and: -
A = ﬁ Sy, (dy)s

s=1

and suppose that A(z) # A(Z). Then we can select inte-
gers k; and m, so that S, (dy) N S, (d,, )=, and we
suppose that z;, < z,,,. If k; < m;, then we can select an
integer k, such that k, = m; and:

=T (&)
r=u

(Fig. 9). There is a point ZZH among the points of the set
{zx,} such that Z§<“ = Z»,» and from Sprecher (1996),
Lemma 2, we have the inequalities:

1
!

Ty — e =2 T U = ——r -
ny ky ky Ky 1 Oz(zku -1)

Since z€ T (z,) we see from Eq. (6) that
%, =7=17, 1+ 8b, and a simple calculation shows
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that:

1
Ky < 102(21(,471) :

Since z,,, = 7 we have the inequalities:

7= Zk, + 8bk“ < Zk, + Sbk“ < W =
as was to be shown.
Conversely, suppose that z # z'. Then there is an integer
u>0 such that Ty (z,) N T, (z,,,) = &, implying that
Sk, (dy,) N S, (d,, ) = and so:

M) = () Sk, (di) # [) S, (@) = AE.

r=u S=u

2.Let zZ €4, and suppose A(z) = lim, . d;,
Mz = lim,_,o d;, . Suppose further that A(z) # Az,
and let dist(A(z), A(z)) = 7. We deduce from Corollary
1(b) that for any integer u,

dist(A(z). dy,) + dist(AZ). ) < V2D (1075 + 107",

r=u

and we select u sufficiently large, so that:

dist(A(z), ) + dist(A(z"). d,, )

+diameter(Sy, (dy )) + diameter(S, (d;, ))

<23 07 + 107" + \/52(10*’% + 107y < 7.

r=u

Finally, when z,z’ € 25 we simply replace respectively
k, and h, with k + u and h + u in these inequalities and
use Corollary 1(c). In either case we can guarantee that
Sy, (d ) N S, (d, ) =, and this enables us to repeat
the first argument in (1) to derive that z # 7.

Proof of Theorem 4. For a given point a € & we define
the §-neighborhood Ng@) N & = {z € & : |z — a| < 8}
and the corresponding e-neighborhood N.(M)a)) N &*
={xE & dist(x, A(a)) < €}. We establish the pointwise
continuity of the mapping A: & — & by showing that
for any point a € & and number € >0 there exists a
number & = 6(e,a) such that if z &€ Ns(a) N & then
Az) € N.(A@) N &

Consider an arbitrary point z € &. Then for any integer &,
A(a) can be obtained as the limit of a (convergent) infinite
series whose largest term does not exceed 10~ %, where ¢
has one of the values a;, by, or k. Given points
a,z € Ti(z;) U Ui(zp), then dist(A(a), A(z)) can be estimated

with the triangle inequality dist(A(a), A(z)) = dist(A(a), dy )
+dist(d ,A(z)) and such infinite series derived from
Lemma 2, and Theorems 2 and 4. Therefore, given a number
€ >0, we can find an integer k so large that if a,z €
Ns(a) C [Ti(z) U Ui(zp)] then A(z) € N(A(a)). The proof
is conveniently divided into the following cases:

lLa€ X UA,and a= 2, f"k’_(zk,), where Tk, desig-
nates the interior of Ty s

2.a € A 5.

3. a is an endpoint, a = z; or a = z; + 8b;, of some inter-
val 7.

We omit the laborious and routine computations as these
are similar to the arguments employed in preceding proofs.

To complete the proof, it remains only to show that A has
positive Lebesgue measure and, in fact, that its Lebesgue
measure is 1. To this end, consider the set:

={xe&*: x=)58)}.

r=1

That this set has Lebesgue measure 1, follows from the
fact that A D I'. A proof of this can be found in Sprecher
(1966). It follows directly from the fact that ¢ is monotonic
increasing and singular (i.e., ) has a vanishing derivative
almost everywhere).

Proof of Theorem 5. Let a number € > 0 be given, then
for each point a € & there is an integer k. and a neighbor-
hood N (A(a)) such that Ay C N (A(a)) N & for k > k..
The system of neighborhoods N (A(a)) forms an infinite
open covering of &, and since & is compact, there
is a finite sub-covering of neighborhoods N.(A(a)),
N (AN @), ..., No(AMay)) corresponding to integers ki, ko,
...,kg such that Ay C N (A(a,)) for k = k,, r=1.2,....s.
Hence, Ay C Ji=| Nc(A(a,)) for k = k,, and we conclude
that the approximating curves A; lie within an e-neighbor-
hood of A.

Appendix A
The following is an abbreviated decimal version of the

construction of the function ¢ in Sprecher (1996) for the
case n = 2.

Definition Al. Let (i;) = [i;] = 0 and for r > 1 let:
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m1=0

r—1
m. = <lr>(+ Z [ls] X [is+1] X...X [lrl])
s=1

for r=2,....k.
The function ¢ is defined for k = 1,2,3,... at the points:

k.
dk = Z 1l6ra

r=1

i,=0,1,...,9 through the formula:

k -

W= ——r

—— T (A1)
£ om g

(1) = 1.

So defined at the dense set of rational points of &,
is morloltonic increasing with a continuous extension
Y: & — &, also designated . Immediate consequences
of Eq. (A1) are the following two lemmas:

Lemma Al. If:

1
d,—di|= —
| k k| 10k
then:
1
d) — Wdh)| = ——.
|d’( k) '»[f( k)| 2/(7110

Lemma A2. If:

1
10°

for some integer s < k then:

|d — di| =

1
— ! =
[Wdp) — (d)| = T

The last lemma follows from the observation that 1072+
is the smallest possible of the increments 271072 tof 1}
at step s, where 0 =v=ys5— 1.

The constants used in Eqs. (2) and (3) are defined as
follows:

e S 107
r=1

1
ap = >
a+1
a
oy = ——,
2 a+1

Note: For readers who wish to work with Eq. (A1) we
mention that for fixed k, the values i(d;) increase in
uniform increments 1072 "' as the index i, increases
through the range 0,1,...,8. Otherwise the increments of
¥(d;) are of the form 271072 "', with the values of s
and v being determined by strings of digits 8 and 9 imme-
diately proceeding i, in the decimal representation
dy = 0.iyiy...0,_1i,...I;. It is the purpose of the expression
m, to count the lengths of such strings. Referring to Eq. (4)
in Section 1, an examination of Eq. (Al) shows that
S,.(d,,) C Si(dy) if and only if the following three condi-
tions hold for p = 1,2:

m

dyy=di,+ > 0,107, 0
r=k+1

ik+l,p 7 9» (11)

it 1o ikt 2ps e 7 8y 8,9, ey (iii)

meaning that the string of digits starting with i, , cannot
consist of digits 8 followed by digits 9 only.

Further elaboration can be found in Sprecher (1996,
1997).
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