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Abstract: A multilayer digital neural network, 
based on the probabilistic random access memory 
(DRAM), is used as a P pattern classifier system. 
This network presents an elaborate imple- 
mentation of the n-tuple technique, which has 
mostly been used for pattern recognition (Bledsoe 
and Browning, 1959). The network’s main 
properties, discrimination and generalisation, are 
discussed as a function of the PRAM 
connectivity. Pyramid networks, based on 
different PRAM connectivities, are simulated 
using an enhanced version of global reinforce- 
ment learning. n-tuple input mapping based on 
data analysis is proposed. The results show that 
combining the permuted data-based input 
mapping with a PRAM net, using different node 
connectivities through the pyramid layers, can 
achieve a good balance of the network’s 
properties, when handling a P pattern class- 
ification task. Results are presented for the 10 
digit recognition problem, which are motivating 
and very encouraging. 

1 Introduction 

The n-tuple technique addresses the problem of extract- 
ing general features in a pattern recognition task. In 
the case of images, it consists of handling the whole 
image as a set of its parts, each of which is a group of 
n pixels called an n-tuple [1-4]. Studies into the n-tuple 
technique have led to new types of Boolean neural net- 
works. The alternative to implementing these neural 
networks, based on random access memories (RAMS), 
presents an attractive and cost-effective solution. Dif- 
ferent variants of the RAM exist; they differ by the 
type of information they can store and the type of 
strategies governing their functionality within the net- 
work. Among them we cite the probabilistic logical 
node (PLN) [3] and the goal seeking neuron (GSN) [5] ,  
which is a RAM with a storage capacity of three values 
0, 1 and U (undefined), and the probabilistic RAM 
@RAM) [6],  in which a continuous memory word is 
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used. The PRAM generalises the Boolean neuron con- 
cept; this is why it is used as a basic node in this paper. 

The Boolean neuron connectivity affects the 
properties of the net in a conflicting manner; a small 
connectivity enhances generalisation but degrades 
discrimination, whereas a high connectivity was shown 
to achieve the reverse [2]. 

In this paper, we describe the use of a PRAM net 
arranged as a pyramid (reverse tree) [7, 81, where the 
nodes present different connectivities in an attempt to 
balance between the net’s main properties. In addition, 
in contrast to previous work [5, 7-10] which has been 
devoted to enhancing the n-tuple processing stage, we 
provide an adequate n-tuple extraction mechanism as a 
complementary stage to enhance further the technique 
when it is implemented on an elaborate processing 
engine such as the pyramidal PRAM net. 

number 

1 comparator pRAMout 

U input 

1 
out=0.6 (spike train) 

R=10 
Fig. 1 Pulse-basedpRAM neuron 

I .  1 Probabilistic RAM 
The PRAM stores an M-bit number representing the 
probability a (0 I a 5 1) to fire (output 1) (Fig. 1). 
This is achieved by adding the stored probability to an 
A4-bit random number G, according to eqn. I :  

a t = {  1 i f a + G L l  
0 otherwise 

As a result, an n-input PRAM is controlled by 2“ ran- 
dom variables. The conditional probability for a 
PRAM to output a 1, given a specified input vector, is 
given by the simplified equation [l 11 

where U is the address obtained by the application of 
an n-input vector i, out is the PRAM’S output and a,, is 
the probability stored at address U. 

Prob(out = lli) = a,  (2) 
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When the PRAM evolves in time during R time 
steps, the stored probability can be estimated by the 
unary stochastic representation of a spike train of 
length R appearing at the PRAM'S output. Suppose the 
output is observed over R time steps and there are N ,  
ones; then an estimate of au is N I / R  (Fig. 1). The spike 
train generation is controlled by the mechanism used to 
generate G. This must provide a uniform probability 
distribution over all generated G values and guarantee 
the correct transmission of the stored probability to the 
input of the following PRAM. In this case, we choose 
R = 2', with M = 7 so that the memory required for 
the whole network will not be too excessive. 

The reinforcement learning algorithm, based on a 
reward/punishment mechanism, is considered since it 
has been shown to be the most appropriate [6,  111. The 
learning phase is based on the adjustment of the con- 
tents of the PRAM (a  s) at each time step, according to 
the following rule [6]: 

Aau = au(t + 1) - au(t)  = Aa; + AaE 
= p ( r ( a  - a,) + X(E - a,)p) (3) 

where a = 1 - a, a is the PRAM'S output, r and p are 
the reward and penalty signals, respectively, and 0 s p 
s 1 and 0 s A 5 1 are the learning constants. 

2 PRAM multi-layer properties 

As a single pyramid is used to handle a P pattern clas- 
sification problem, it then becomes obvious that any 
node connectivity within the net must be n 2 log2P, to 
allow discrimination among the P patterns at the node 
level. For a given image resolution, we have several 
alternatives to select the PRAM connectivity within dif- 
ferent layers of the pyramid [12]. To restrict the 
number of possible pyramid architectures to the most 
relevant, the discrimination and generalisation of the 
PRAM net main properties are discussed here as a 
function of the PRAM connectivity. 

2. I Discrimination 
The n-connectivity PRAM can discriminate between up 
to 2" different patterns and, when taken jointly, these 
patterns can present differences up to lln the total 
input covered. However, in the case of a pyramidal net, 
the discrimination is limited by the PRAM with the 
smallest connectivity and the position of this node 
within the network, whether this connectivity is in the 
input, hidden or output layer. If nout is the node con- 
nectivity in the output layer, then each input connec- 
tion to the output node represents the sub-pyramid's 
output covering a l/nout fraction of the input image. 
That is, the net's output node may not detect the differ- 
ences between patterns that occur in a l/nout fraction of 
the total input image. 

It is therefore recommended to have a high connec- 
tivity at the output layer. When we move through input 
mappings, from the pyramid base towards its apex, the 
nodes map differences into similarities due mainly to 
the node fan-out being limited to 1 .  Using PRAM 
nodes helps to alleviate this problem since we can 
change the memory contents of all nodes in an incre- 
mental manner, thus forcing the output to settle at a 
desired value by the end of a training session. 

2.2 Generalisation 
In a boolean neural network, the generalisation is 
achieved at the network level by considering the joint 
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contribution of several nodes within the same layer [3]. 
If m exemplars are used to train the net presenting n1 
nodes within its input layer, then a given pattern exem- 
plar is divided into n l  sub-patterns, each of which is 
used to train a specific node. The generalisation then 
covers the union of all combinations of the created n1 
subsets, each of which has at most m elements. It fol- 
lows that the maximum of the generalisation ability can 
be quantified by G,, = m"1, where m reflects the train- 
ing set diversity, and it is affected by the node connec- 
tivity at the input layer. 

In the case of P patterns, an n-input node can allow, 
on average, m = 2"/P different representative exemplars 
for each pattern. Consequently, small node connectivi- 
ties limit the diversity of the training set at the node 
level. Therefore, a relatively high value of the node 
connectivity is recommended, at least at the input layer 
when handling a P pattern recognition problem with a 
single pyramid. However, if we limit the pattern's 
diversity and distribute it over all nodes within the first 
layer (i.e. not localised in specific nodes), by adopting 
an appropriate n-tuple input mapping module based on 
preprocessing the training data, it might be possible 
that the small connectivity node generalises better when 
all joint node contributions are not in conflict. Accord- 
ingly, several combinations of sub-patterns seen during 
training can easily be created. 

This discussion helped to determine the connectivity 
of PRAMS at the output layer, and consequently to 
limit the choices for the other PRAM connectivities in 
the input and hidden pyramid layers, according to the 
image resolution used. 

3 

The manner in which the n-pixels are extracted to form 
the n-tuple is referred to as n-tuple input sampling or 
mapping. These combined pixels form the sub-pattern, 
called the n-tuple state, which is generally used as an 
address to a single weightless neuron of a digital net 
input layer to decode the corresponding n-tuple state. 

Consider two training patterns from two different 
categories: 0001 and 1010, and a test pattern 1011 
assumed to belong to the second class. If the n-tuple 
size is 2 and we use the grouping 00 and l0, the 
test pattern 10 11 generates a score of 0 for the first 
category and f for the second category (the score repre- 
sents the number of similar n-tuples over the total 
number of n-tuples). However, if the grouping is such 
that the first and the third bits form one n-tuple and 
the second and the fourth form the second n-tuple, 
then we get the states 00 01 for pattern 1 and 1_L 00 for 
pattern 2, and the test pattern presents 11 01, which 
leads to a score of f  for both categories. As a result, the 
scheme fails in classifying the test pattern. It becomes 
clear that when a grouping is chosen, boolean functions 
for each n-tuple are generated according to the states 
present in the training set of that particular n-tuple. If 
the grouping changes, the expressions of these boolean 
functions automatically change. 

In this study, the order of the n-tuple elements is 
irrelevant in defining the n-tuple; what matters the 
most is the significance of the n-tuple elements, as we 
are not interested in specific n-tuple states favoured by 
a specific problem, but rather in extracting all n-tuple 
states. Under this condition, the total number of all 
possible mappings tot,, which sample n-pixels (n- 
tuple), from an image of Qn pixels, into a set of Q 

Choice of n-tuple input sampling 
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strings of length n, is given by (CnQ = Q!/(Q - n)!n! = 
(Q(Q - I) ... ( Q  - n + 1))/n!) 

tot,,, = cZncQn-nc2n-2n  . . . ~nQn--in 

. . . c&n-(Q- l )n  
n 

(4) 

Searching all this space for an optimum solution is not 
computationally possible. For example, in the case of 
Qn = 8 x 8 and n = 4, we get Totmap = 1.05 x This 
is why we propose an input mapping based on data 
analysis; we believe that extracting knowledge from the 
actual data to select the n-tuples is the most appropri- 
ate way to exploit the n-tuple technique to its fullest. 

3.7 Proposed n-tuple sampling scheme 
In a P pattern recognition problem, the n-tuples must 
fulfil the following conditions: 
(i) the n-tuples must convey the similarities between 
patterns in the same class. 
(ii) the n-tuples must convey the differences between 
patterns in different classes. 
One way to achieve these objectives is to take into con- 
sideration the local variations seen by each pixel within 
the image, according to the data used. As a result, we 
get L (image size in pixels) functions, each of which can 
be represented by P (number of patterns) strings of 
length T (size of each training set). Since each individ- 
ual pixel goes through a cycle of variations, we suggest 
to compute the resultant probability of a given n-tuple 
to be in a given state, based on the individual probabil- 
ity densities of the constituent pixels. It is therefore 
necessary to assume that the pixels which form the n- 
tuple are not correlated. This simplification is done to 
avoid excessive computation at this preliminary stage. 
Hence, we use the frequency of occurrence of a pixel in 
the state 1 as the main metric to represent changes at 
the pixel level while handling one training set at a time. 
Normally, if an n-tuple state is characteristic for a 
given training set, this state should be approximately 
constant (i.e. occurs with a high probability) and 
should have a low probability of occurrence for other 
training sets, Hence, to group pixels in n-tuples we 
must test for their frequency of occurrence in a particu- 
lar state. 

To mathematically formulate this concept, we restrict 
the n-tuple size and the number of patterns to be classi- 
fied to 4. In this case, an n-tuple element w is character- 
ised by four frequencies cfwo, f w l ,  fw2, f f i3}  recorded for 
the four classes used. Given the threshold value E (nor- 
mally less than 0.5), we search for n-tuple elements that 
respond to the following criteria: 
(i)fwi < E mfw1 > 1 - E for all i E (0, 1, 2, 3 )  
(ii) f,, < e df,, > 1 - E for all i, j E (0, 1,2, 3) and i 

Since n pixels are to be grouped in the same n-tuple, we 
have a multitude of choices to fulfil these criteria. 

In the case of a black and white image, the pattern 
space can be at most divided into two partitions (one 
dichotomy) at the pixel level. In this context, we form 
four main partitions to group all image pixels. Partition 
1 contains pixels with similar frequencies for all pat- 
terns used, represented by P similar patterns and one 
characteristic state. Partition 2 gathers pixels presenting 
exactly P/2 similar frequencies, represented by P/2  sim- 

+ j  
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ilar patterns and Cpp/2 (i.e. = p!/((p - p/2)! x @/2)!))  
characteristic states. Partition 3 contains pixels with P 
- 1 similar frequencies, represented by P - 1 similar 
patterns and P characteristic states. Partition 4 groups 
all remaining pixels not included in the previous three 
partitions. 

For clarity, we use the following specific example. 
Let E = 0.2. If the pixel w presents the frequencies 0.4 
0.7 0.6 0.2, then w has an indeterminate state and 
belongs to partition 4. However, if the frequencies are 
0.9 0.9 0.1 0.9, w has the state: (l,l,O,l) and belongs to 
Partition 3. 

An n-tuple is desirable that incorporates pixels with 
the corresponding states (O,O,O,O) partition 1, (0,l ,O,l)  
partition 2, (1 ,O,O, 1) partition 2 and (0,0,0,1) partition 
3. This is because the n-tuple states are (0,O.l.O) for 
pattern I ,  (0.1.0.0) for pattern 2, (0,O.O.O) for pattern 3, 
and (0.1.1.1) for the fourth pattern, achieving discrimi- 
nation among the four patterns at the n-tuple level. 
This n-tuple sampling scheme was set up as an algo- 
rithm with the following steps: 
(i) Compute the frequency of occurrences of image pix- 
els to be on for all P training sets used. 
(ii) Group pixels into four main partitions, according 
to  their ability to discriminate between the pattern 
classes. 
(iii) Transform frequencies into pixel states (threshold 
levels E can be varied according to needs). 
(iv) Form n-tuples by taking pixels from partition 1 
and partition 2. Conditions are set up to randomly 
search for pixels from partition 2 so as to allow dis- 
crimination among the four patterns. Pixels from parti- 
tion 1 and partition 3 are then grouped. When 
partition 1 is exhausted, the process continues for the 
remaining partitions. 
Note that partition 4 contains pixels which present an 
indeterminate state when thresholding their frequency 
of occurrences. In the extreme case, a pixel with f = 0.5 
does not provide any contribution to the particularities 
of the pattern (50% of the training exemplars have this 
pixel with the state 0 and the remaining 50% represent 
it with the state 1). It seems that to enhance the gener- 
alisation property, it is beneficial to pack this type of 
pixel into the same n-tuple. However, searching for 
such pixels to be part of another partition complicates 
the algorithm and slows down its operating speed. 

Note that this particular partitioning of pixels into 
four partitions is mainly because we want to provide a 
simple algorithm that can operate as fast as possible. 
This algorithm is general in its application, since it does 
not assume any underlying specific knowledge about 
the pattern classes handled. 

However, the distribution of the n-tuples at the 
pyramidal net input is pivotal to the successful applica- 
tion of the PRAM net. Indeed, if the connectivity of 
the output layer is nho, then the image is divided into 
nho equal sized quadrants, each of which is independ- 
ently handled by the use of sub-pyramids built at prec- 
edent layers. Therefore, we can evenly arrange the 
obtained n-tuple set through all these parts, so that 
each sub-pyramid can contribute to the decision made 
at the output. As a result, we get a two-stage n-tuple 
input mapping. In the first stage, we compact pixels 
conveying information about the object within appro- 
priate n-tuples, to increase discrimination between dif- 
ferent patterns and decrease it between noisy patterns. 
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In the second stage, we evenly distribute the obtained 
n-tuples through the pyramid base. For this purpose, 
we define the joint n-tuple distance (JND) as the 
number of n-tuples which represent similar states when 
P, P - 1, .., 2 patterns are jointly taken using the same 
n-tuple input mapping. By gathering all joint n-tuple 
distances for various input mappings covering all n- 
tuples, we obtain the joint n-tuple distance map, where 
an n-tuple can be one of P different types correspond- 
ing to P, P - 1, ..., 2, 0 patterns, respectively, with the 
same state for that particular n-tuple. This map gives 
the information about the correlation among the pat- 
terns, as well as the spatial distribution of all n-tuples. 

Note that this representation is obtained by record- 
ing the frequency of occurrence of all n-tuple states for 
all n-tuples using the transformed training sets, accord- 
ing to the n-tuple input mapping used. This allows us 
to define the characteristic image that reflects a high 
similarity among all patterns within a given training 
set, and it is obtained by selecting the n-tuple attractor 
state (i.e. the most frequently occurring state) for all n- 
tuples. By a simple comparison between all characteris- 
tic images, we then get the JND that represents the cor- 
relation among all patterns used. 

4 Results and comments 

Several computer simulations were carried out to high- 
light the effect of using different node connectivities 
and to test the n-tuple input mappings on a pyramidal 
neural network [ 121. 

o a o o o o o o o o ,  
1 I 11: 1 1 1 ' 1  1, 

3 3 3 3 3 3 3 3 3 3  
4 4 4 % 4 4 4 4 4 4  
5 5 5 5 5 5 5 5 5 5  

2 2 8 2 2 2 2 2 2 2  

6 6 6 6 4 6 6 6 6 6  
7 7 7 7 7 7 7 7 7 7  
a t 1 ~ 8 8 m a a ~  
9 9 9 9 9 9 9 9 9 9  

Fig. 2 Sample of 10 digits used 

For this purpose, real-life data were handled, consist- 
ing of the digits shown in Fig. 2. The size of the image 
at 24 x 16 suggests the use of various PRAM net topol- 
ogies. In the case of the four-pattern recognition prob- 
lem, four digits among the 10 available (0, 6, 8, 9) were 
selected as being one of the most correlated cases. Each 
digit was represented by 150 training exemplars and 
150 test exemplars. A 4 4 - 4 6  PRAM net was simu- 
lated to perform the recognition task. This choice was 
mainly dictated by the saving in storage so that the 
simulation could run on a simple IBM PC. 

Three n-tuple input mappings were tested: the struc- 
tured (i.e. regularly samples n consecutive pixels),the 
data derived using the proposed algorithm, and a per- 
muted version of the proposed algorithm. The spatial 
distributions of the n-tuples represented by these map- 
pings are indicated using the JND distance map given 
in Fig. 3 .  Table 1 summarises the proportion of each 
n-tuple type obtained from a corresponding n-tuple 
input mapping. The net's performance is measured 
using the convergence and recognition rates, as these 
are the most common metrics used for pattern recogni- 
tion problems. The obtained results are illustrated in 
Fig. 4 and Table 2. The learning constants p and A 
were set up as 0.8 and 0.008, respectively. 
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a b c d e f  g h  

4 3 2 0  

number of pattern!; presenting similar states 

Fig.3 
P = 4 a n d P =  I O  
Case of 24 x 16 digits; each entry represents an n-tuple. 
Input mappings used are listed in order of appearance: (4,5,6,7) digits: a = 
mapped, b = permuted, (0,1,2,3) digits: c = mapped, d = permuted, (0,6,8.9) 
digits: e = mapped, f = permuted, g = linear IO digits: h = derived from b-d-f 
plotted for (3,4,5,9) 

Joint n-tuple distunce map for digits 

Table 1: Proportion of each n-tuple type obtained from 
corresponding n-tuple input mapping 

n-tuple Group of n-tup'e types 
mapping digits 

a, b 4,5,6,7 65 23 6 6 

c, d 0,1,2,3 56 20 5 19 

e, f 0,6,8,9 35 21 11 21 
h IO-digits 26 58 13 3 

Proportion of n-tuples is given as a percentage of a total of 96 

- 

0 . 4 0 1 - - - - - - 7  
0.324 

0.08 

800 
0 
0 200 400 600 

number of iterations 

Fig.4 net convergence rate 
Various n-tuple mappings case of 4 digits - permuted 
V- - -V structured linear 

~ data-mapped 
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Table 2: Recognition rate for 4 digits (0,6,8,9) 

Training set Test set Convergence time 
recognition (%) recognition (IBM PC 66MHz) n-tuple input mapping 

Data-mapped 99 80 9343s (260 iterations) 

Structured (linear) 97 87 4297s (100 iterations) 

Permuted 100 93 6200s (140 iterations) 

Fig. 4 shows that the network's convergence is better 
in the case of the permuted and data-based mappings 
than for the linear mapping. Using the permuted map- 
ping, we managed to achieve a low convergence error 
rate approximated at 2%, compared to 13% for the 
structured mapping and 6% for the data-based map- 
ping without permutation. We noted that the net based 
on the structured mapping needed fewer iterations to 
converge, where the estimated convergence time is 4297 
s compared to the other nets, as illustrated in Table 2. 
This is due to the high value of the convergence error 
recorded for the structured n-tuple mapping. Fig. 4 
presents a stable error for the structured mapping com- 
pared to the data-based and permuted mappings. These 
fluctuations are the result of changes in the PRAM 
memory contents, which vary in the range [0, I]. 

However, Table 2 illustrates that the network using 
the permuted mapping achieves the highest recognition 
rate of 93% (i.e. the mean value of the recognition rates 
corresponding to the four digits), whereas the non-per- 
muted mapping only achieved 80%, even worse than 
that of the structured input mapping. This result can be 
justified by consulting the JND map. Indeed, we see 
that the structured mapping presents relatively good 
distribution of all n-tuple types throughout the input 
layer of the pyramidal net compared to the data-based 
input mapping, as illustrated by their respective JNDs 
g and e in Fig. 3. In rearranging the obtained n-tuples, 
using the data-based algorithm, we obtain the JND J 
The resultant n-tuple mapping, called permuted map- 
ping, presents better spatial distribution of the n-tuples 
than the original data-based mapping; this is shown by 
comparing the two JNDs e andfin Fig. 3. 

This result allows us to state that breeding a good n- 
tuple input mapping is not sufficient when used with a 
PRAM pyramidal network; in addition, we must pro- 
vide a uniform distribution of the n-tuple types at the 
network input. 

The PRAM network was extended to tackle the ten- 
digit recognition problem. This necessitates increasing 
the output layer to four nodes. The output was appro- 
priately coded to represent each pattern uniquely. The 
codes are chosen so that each output node has the 
same possibility to be either one or zero. Hence, we 
used the following codes: (1 lOO,O), (0001,1), (1010,2), 
(0011,3), (0100,4), (0101,5), (0110,6), (0111,7), (1000,8) 
and (1001,9). To get the JND of ten patterns, it is nec- 
essary to perform exhaustive comparisons between all 
representative patterns. In our case to avoid such com- 
putations, we construct the resultant JND from three 
different JNDs corresponding to the three arbitrarily 
chosen groups of four digits (0,1,2,3), (4,5,6,7) and 
(0,6,8,9), respectively. We then distributed the n-tuples 
uniformly to obtain a balanced set of n-tuple types at 
the input of the PRAM net. These permuted JNDs are 
used to construct the JND for the ten digits, by taking 
n-tuples from each JND without any overlap. The 
obtained JND represents a particular n-tuple input 
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mapping, and it was used to generate the transformed 
training and test sets. 

To evaluate the effect of this input mapping on the 
PRAM net when it performs the recognition of ten dig- 
its, we conducted several tests covering three PRAM 
networks; the 4 4 - 6 ,  the 8-6-8 and the 6-8-8. The 
first configuration saves memory but slows down the 
training session as the pyramid depth is deeper; even 
worse, it may happen that this net does not converge 
due to the diversity of the training set, since the con- 
nectivity used allows less than two different exemplars 
per pattern. The second configuration 6-8-8 limits the 
number of pyramid layers at the cost of a higher node 
connectivity requiring 7 168 memory words, compared 
with 13696 in the case of the 8-6-8 net. In addition, 
these configurations present a high connectivity at the 
output layer, as recommended in the discussion pre- 
sented in Section 2. 

We used the structured mapping for the three named 
nets, and we trained them using the learning constants 
p = 0.95 and h = 0.01. The training set covered 1500 
patterns, representing 150 examples for each digit. We 
noted that, in the case of the structured linear input 
mapping, the 6-8-8 net outperforms the others con- 
cerning the convergence error, which is around 12% for 
the 6-8-8, I S %  for the 8-6-8 net and 30% for the 4-4- 
4-6 network. These networks have been trained for 
1000 iterations for the 4-4-4-6 network and 500 itera- 
tions for the 6-8-8 and the 8-6-8 networks. The 4-4- 
4-6 network configuration did not show any improve- 
ment in the convergence error rate; it was then judged 
unable to learn this problem. 

0.40 

8 
e 
b 
L- 

0.35 
0.30 
0.25 

O . 0 . ? i L ' ' '  " "  " '  
0 50 100 150 200 250 300 350 400 450 500 

number of iterations 
Fig. 5 Convergence error ,for IO digits (permuted mapping) 

net4446 
net868 
net688 

~ _ _  
_ _ ~ _  
. . . . . . . . . . . 

Table 3: Recognition rate for 10 digits 

PRAM net architectures 

6-8-8 n-tuple input 
mapping 8-6-8 

Training set Test set Training set Test set 

Linear 97 84 96 83 
Permuted 96 86 98 89 
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When the permuted version of the data-based map- 
ping was used, the error dropped to 9% for the 6-8-8 
network compared to 14% for the 8-6-8 network. This 
was not the case for the 4 4 4 - 6  network, where the n- 
tuple input mapping did not enhance the network con- 
vergence, as indicated in Fig. 5. However, the results 
summarised in Table 3 correspond to the 6-8-8 and the 
8-6-8 nets, confirming that the permuted mapping out- 
performs the linear mapping, with the 6-8-8 net per- 
forming best. This is an interesting result, as we get 
better performance with less memory capacity require- 
ment in using the 6-8-8 net compared to the 8-6-8 net. 

As far as the training time is concerned, the 8-6-8 
net took 360 iterations to converge to an acceptable 
low error (14%), corresponding to 3h on a SUN work- 
station; compared to 2 18 iterations, corresponding to 
1 h 47min, for the 6-8-8 net. These are relatively slow 
training sessions, mainly due to the use of the single 
pyramid where the number of patterns used is relatively 
high (1500). 

However, in taking into consideration the recogni- 
tion rate metric, even though we verified that the per- 
muted input mapping performs better than the 
structured mapping, we achieved an overall result of 
89% recognition success. This is compared to other 
studies where more than 90% of the recognition success 
rate is generally reported for the recognition of hand- 
written digits [13]. 

As the permuted n-tuple input mapping was based on 
the JND (derived in this case in an indirect way), better 
results are expected for a judiciously selected JND for 
the ten-pattern recognition problem. The use of more 
than one pyramid, to allow for the overlap among the 
n-tuples, plays a positive role in enhancing the perform- 
ance. These suggestions are left as a possible continua- 
tion to this work. 

However, we should bear in mind that this applica- 
tion is meant to be a tool to verify the adequacy of the 
proposed approach to select adequate n-tuples and the 
effect of distributing them at the input of a Boolean 
neural network. We did not intend to solve specifically 
the digits recognition problem: this is why no complete 
comparative study was undertaken with other tech- 
niques. Nevertheless, the good results obtained are very 
motivating and suggest that the use of such a scheme 
should be further investigated. 

5 Conclusions 

In this paper, PRAM nets have been simulated and 
used to tackle a P image recognition problem. This 
study has emphasised the benefit of using a PRAM net 
with different node connectivities from one layer to the 
other, as each connectivity affects the main properties 

of the net in a conflicting manner. By using such topol- 
ogies, we can guarantee a good balance between the 
net’s main properties; generalisation and discrimina- 
tion. 

A two stage n-tuple input mapping based on data 
analysis was proposed. The first stage extracts n-tuples 
according to discrimination among patterns at the n- 
tuple level. This delivers a mixture of n-tuple types, and 
when used with a single pyramidal PRAM net without 
any overlap among n-tuples, required an adequate dis- 
tribution of the obtained n-tuples at the pyramid base. 
In this context, the joint n-tuple distance (JND) was 
introduced and used to derive the final n-tuple input 
mapping. The application of these propositions to digit 
recognition was successful and confirmed their effec- 
tiveness when handling a P pattern recognition task. 

We should note, however, that the complexity 
increases for big values of P (the number of patterns 
used) when extracting the JND. This limitation of the 
n-tuple input mapping can be avoided by using an indi- 
rect way to derive the JND, as in the case for the digit 
recognition problem proposed in this study. 

We also believe that extending the variability of the 
node fan-in within the same layer makes the network 
perform better. 
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