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study suggests that the recognition of tables is an important research 
topic. 

Finally, we note that the editing model could be extended to in- 
corporate other edit operations, such as block deletion. In the ex- 
periment, we assigned the pages to one of three classes and studied 
the behavior of the automatic zoning algorithms. We plan to analyze 
further what kind of layout features make automatic zoning difficult 
and to study the skew sensitivity of these algorithms. 

(a) (b) ( c )  
Fig. 7. Cost of Correcting Automatic Zoning Errors for the best, middle, and 
worst OCR system:(a)single column pages, (b) multi-column pages, (c) table 
pages. 
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A Method of Combining Multiple Experts for the 
Recognition of Unconstrained Handwritten Numerals 

Y. S. Huang and C. Y. Suen 

Abstract-For pattern recognition, when a single classifier cannot 
provide a decision which is 100 percent correct, multiple classifiers 
should be able to achieve higher accuracy. This is because group deci- 
sions are generally better than any individual’s. Based on this concept, a 
method called the ‘LBehavior-Knowledge Space Method” was developed, 
which can aggregate the decisions obtained from individual classifiers 
and derive the best final decisions from the statistical point of view. Ex- 
periments on 46,451 samples of unconstrained handwritten numerals 
have shown that this method achieves very promising performances and 
outperforms voting, Bayesian, and Dempster-Shafer approaches. 

Index Item-Unconstrained handwriting recognition, combination of 
multiple classifiers, evidence aggregation, behavior-knowledge space, 
knowledge modeling. 

I.  INTRODUCTION 

The recognition of handwritten numerals has been studied for 
more than three decades; during this period, many classifiers with 
high recognition rates have been developed [l]. However, none of 
them can achieve satisfactory performance when dealing with charac- 
ters of degraded quality. A new trend [2], [3], [4], [5], [6] called 
“Combination of multiple experts” (CME) has emerged to solve this 
problem. It is based on the idea that classifiers with different meth- 
odologies or different features can complement each other. Hence if 
different classifiers cooperate with each other, group decisions may 
reduce errors drastically and achieve a higher performance. 

In general, based on output information, classifiers can be derived 
into two types: type-1 outputs a unique class label indicating that this 
class has the highest probability to which the input pattern belongs; 
and type-2 assigns each class label a measurement value which indi- 
cates the degree that the corresponding class pertains to the input 
pattern. In fact, type-2 classifiers can be transformed into type-1 ones 
by outputting only the class with the highest degree. This is an in- 
formation reduction or abstraction process. In this sense, all classi- 
fiers are type-1 classifiers. Therefore, the research on methods of 
combining type-1 classifiers becomes most important. 

Previous studies have developed many CME approaches of type-1 
classifiers, among which the voting [7], Bayesian [5], [SI, and 
Dempster-Shafer (D-S) [5], [9] approaches are the most representa- 
tive. Simply speaking, voting is a democracy-behavior approach 
based on “the opinion of the majority wins”. It treats classifiers 
equally without considering their differences in performance. The 
Bayesian approach uses the Bayesian formula to integrate classifiers’ 
decisions; usually, it requires an independence assumption in order to 
tackle the computation of the joint probability. The D-S formula, 
which has frequently been applied to deal with uncertainty manage- 
ment and incomplete reasoning, can aggregate committed, uncommit- 
ted and ignorant beliefs. It allows one to attribute belief to subsets, as 
well as to individual elements of the hypothesis set. Both Bayesian 
and D-S approaches make use of probability to describe the different 
qualities of classifiers’ decisions. However, in the Bayesian ap- 
proach, the sum of P(C) and P(-  c) is equal to one; this is not nec- 
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essarily true for the D-S approach, where P(C) represents the prob- 
ability that C is true. Generally speaking, these three approaches, 
more or less, require the independence assumption which does not 
usually hold in real applications. This significantly limits their appli- 
cability. 

Recently, the Behavior-Knowledge Space method (the BKS 
method) [lo] has been developed by the Concordia OCR research 
team for combining type-1 classifiers. This method offers a number 
of advantages over previous CME methods. A detailed discussion of 
this method and two of its properties appears in Section 111. 

In total, this paper comprises six sections. Section I1 defines the 
symbols used and gives a formal description of the CME of type-1 
classifiers. Section 111 introduces the BKS method, and Section IV 
discusses its two salient properties. Section V describes experiments 
performed by several CME methods and the comparisons of their re- 
sults. Finally, Section VI draws our conclusions. 

11. PROBLEM FORMULATION 

ek represents expert (classifier) k where k = l; . . ,K, and K is the 
total number of experts. Cl,.-.,  C, are mutually exclusive and ex- 
haustive sets of patterns. M represents the total number of pattem sets 
or classes. A = (l;.., M)  is a set which consists of all class labels. x 
is the unknown input pattem and ek (x )  = j k  means expert k assigns 
the input x to class j k ,  where j k  E A U (M+l) .  When j k  E A, it means 
that expert k accepts x (either correct recognition or substitution); 
otherwise expert k rejects x. To simplify the notation, ek (x) is re- 
placed by e&). Then, the research focus on CME becomes, “When K 
classifiers give their individual decisions e(l);.., e(K) about the 
identity of x, what is the combination function E(e(l), ..., e(K)) 
which can produce the best final decision?’ 

111. THE BEHAVIOR-KNOWLEDGE SPACE METHOD 

A thorough analysis of the reason why most CME methods require 
the independence assumption reveals that either they treat each 
classifier equally, or they derive information useful for the combina- 
tion stage from the confusion matrix of a single classifier. Naturally, 
both situations need to assume that the decisions of classifiers are in- 
dependent. To avoid this assumption, the information should be de- 
rived from a knowledge space which can concurrently record the 
decisions of all classifiers on each learned sample. Since this knowl- 
edge space record the behavior of all classifiers, we call it the 
“Behavior-Knowledge Space”. Simply speaking, the BKS method 
derives its final decisions from a behavior-knowledge space. 

A. Behavior-Knowledge Space 

A Behavior-Knowledge Space (BKS) is a K-dimensional space 
where each dimension corresponds to the decision of one classifier. 
Each classifier has M+1 possible decision values chosen from the set 
( l , . . . ,  M+1). The intersection of the decisions of individual classifi- 
ers occupies one unit of the BKS, and each unit accumulates the 
number of incoming samples for each class. The unit which is the 
intersection of the classifiers’ decisions of the current input is called 
the focal unit. Table 1 gives an example of a two-dimensional BKS, 
where unit (ij) is the focal unit when e(1) = i and 42)  = j .  Each unit 
contains three kinds of data: (1) the total number of incoming sam- 
ples, (2) the best representative class, and (3) the total number of in- 
coming samples for each class. Learned samples distributed to one 
uniVclass are called incoming units of that uniVclass. 

TABLE I. 
2-D BEHAVIOR-KNOWLEDGE SPACE 

Symbols used in defining a BKS are 

BKS 

BKS(e(l), ..., e(K))= a unit of BKS, where classifier 1 gives its deci- 
sion as e( l ) ,  ..., and classifier K gives its deci- 
sion as e(K), 

= the total number of incoming samples belonging 
to class m in BKS(e(l), ..., e(K)), 

= the total number of incoming samples in 
BKS(e(l), ..., e(K)), 

= a K-dimensional behavior-knowledge space, 

,,, ,(&n) 

T c f I )  ... d K )  

m=l 

Ref1 J...efK) = the best representative class of BKS(e(l), 
..., e(K)), 

= h c ( l J  ... cfKJfjJ = marlgn&~4!J...cfKJfm~. 1 (2) 

The following is one example of a two-classifiers BKS, which 
demonstrates the situation where the classifiers give different deci- 
sions. Suppose for x, the decision of the first classifier is 4 and that of 
the second classifier is 9, i.e. e(1) = 4 and 42)  = 9. Obviously, the 
focal unit now is BKS (4,9). Let there be non-zero incoming samples 
only for classes 4 and 9 in this unit; and they amount to 

n4, (4) = 1 5, 
n49(9) = 5 ,  
nd9(m) = 0, when m e  (4, 9)andm E A. 

Then, T49 = 20 and R49 = 4. 
Interestingly, the semantic meaning of the BKS is clear. For ex- 

ample, in the above, it means when classifier 1 recognizes x to be 4 
and classifier 2 to be 9, there is a 75 percent probability that the input 
x belongs to class 4, and also a 25 percent probability to class 9. Ob- 
viously, for any focal unit, if rejection is not allowable, then the class 
with the highest probability is the best and the safest to choose as the 
final decision. 

B. Two Stage Operations and the Decision Rule 

The BKS method operates in two stages: knowledge modeling and 
decision making. The knowledge-modeling stage uses the learning set 
of samples with both genuine and recognized class labels to construct 
a BKS; then the values of Tc(l)... e ( ~  and Re(l),.. c ( ~  of each unit 
BKS(e(l);..,e(K)) are computed by equations (1) and (2). The deci- 
sion-making stage, according to the constructed BKS and the deci- 
sions offered from the individual classifiers, enters the focal unit and 
makes the final decision by the following rule: 

M+1 , otherwise. 
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where h is a threshold (0 I h < 1) which controls the reliability of the 
final decision. The knowledge-modeling stage needs to be executed 
only once for the learning set of pattems, but the decision-making 
stage will be performed on each test pattern. 

IV. PROPERTIES 

Many good properties can be derived from this method. However, 
only two of them are presented here due to limited space: automatic 
threshold finding, and optimality. 

A. Automatic Threshold Finding 

’ 

Among OCR applications, each may have its own specific per- 
formance requirements. For example, in monetary applications, the 
substitution rate should be approximately 0. But, in address-reading 
applications, slight errors are endurable, such as one error per 1000 
pieces of mail. Therefore, it is important that a system should have 
the capability to automatically adapt itself to the required perform- 
ance. The following six parameters are used to accomplish this adap- 
tation: (1) 8 the required recognition rate, (2) S: the required substi- 
tution rate, (3) ;p : the required rejection rate, (4) DREC(P,): the de- 
rived recognition rate with threshold P,, (5) DSUB(P,): the derived 
substitution rate with threshold PI,  and (6) DREJ(P,): the derived re- 
jection rate with threshold P,. 

The goal here is to find a threshold P, for equation (3) which can 
make the system perform close to the required level. Let C(PJ be de- 
fined as an error function which is the sum of three values, each of 
which is the square of the distance between the required rate and its 
derived one, that is 

C(P,) = [DREC(P,) - &Iz + [DSUB(P,) - SI2 + [DREJ(P,) - RI2. (4) 

Since the value of the error function C(PJ denotes the difference 
between the desired and derived performances when the threshold is 
P,, it is obvious that if the value of C(P,) is small, then the derived 
performance is close to the desired one. Therefore, the best P, 
(denoted by P’) is the one which minimizes the value of the error 
function; that is, C(P*) = mino C(P,). To derive P*, some more 
symbols are defined below : 

De(l )... elKj = the proportion of unit BKS(e(l), ..., e(K) to the 
whole BKS, 

- %)...e( K )  
M M - -.c,,,,=, %I)  ... d K )  ’ 

P e l l ) . . . d K ~  = the probability of the best representative class 
in unit BKS(e(l), ..., e(K)), 

and 

flf‘e(l)...e(~), P,) = the acceptance index, 
1’ when Pp(l)..&) 2 4 ’  
0, otherwise. 

For a unit BKS(e( l);..,e(K)), there are two exclusive situations 
between Pe(l).,, and P,: 

(1) Pe( , ) , . .  e ( K )  < P,: all samples in this unit are rejected. Therefore, 
the contribution of this unit to both the derived recognition and sub- 
stitution rates is 0, and to the derived rejection rate it is 
D41) ... ?(a. 

(2) Pe(l),., e ( ~  2 P,: all samples in this unit are accepted. Accord- 
ingly, Te(l) ... e ( ~  * Pe(l) . , ,  e(a samples are recognized correctly and 
Te(l).,. * (1 - Pc(l),., e(a) samples are misrecognized. Therefore, the 
contribution of this unit to the derived recognition rate is De(l)... e(a * 
Pe(l),,, e(a, to the derived substitution rate it is De(l) , , .  e(lC) * ( 1  - Pe(,) ... 
e(a), and to the derived rejection rate it is 0. 

In fact, the above two situations can be further aggregated together 
such that the contribution of one unit BKS(e(l).-. e(K)) to the de- 
rived recognition rate is De(l).. .  e ( ~  * P<(I),., e ( ~  *f(Pe(l) . . .  ,(a,P,), to the 
derived substitution rate it is De(,),. ,  e(a * (1 - Pe(l).,, e(a) * f(Pe(I).,, 
e(K),P,), and to the derived rejection rate it is De(l).. .  e(a * (1 
e(a,P,)). Therefore, by summing up the contributions of all units, we 
get 

So, the error function C(P,) becomes 

There are many approaches which can find P*. Accordingly, 
whenever the required & S, R are known, the best threshold P* can 
be found from equation (5) automatically. 

B. Optimality 

From the statistical point of view, after each classifier has given its 
decision to x, the belief value BEL(i) of x belonging to class i can be 
computed from a conditional probability as 

BEL(i) = ~ ( x  E ci/ e(1) =jl,...,e(K) =j,,~i+) 

where P( . )  is the probability function, and E I f  denotes the classifi- 
cation environment generated from combining the K classifiers. As a 
matter of fact, (1) E I f  is precisely equal to the BKS of the K classifi- 
ers, and (2) the condition under both e(l)=j1;..,e(K)=jK and E I f  is 
actually the same as that of the focal unit BKS (jl,...jK). Based on 
these two understandings, the belief function becomes 

Using the knowledge of the focal unit BKS (jl,..., jK) ,  the belief 
function can be further modified as 

Undoubtedly, the best choice is to assign the unknown input to the 
class with the highest belief, which is the class with the largest num- 
ber of incoming samples. With a threshold h to keep the decision 
more reliable, the best decision rule finally becomes 
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[M + 1, otherwise. 

Looking at equations (3) and (6), they are essentially identical. 
Therefore, the performance of the BKS method is equal to that of the 
optimal one. 

V. EXPERIMENTS 

Three classifiers (called el, e2 and e3) developed by the CEN- 
PARMI and ITRI’ OCR research teams were chosen as three experts. 
The data used for this experiment come from the ITRI numeral data 
base, which contains 46,45 1 numeral samples collected from more 
than 1,000 people. The whole data was divided into 10 sets. The first 
set (5,074 samples) was used for training the individual classifiers, 
and the remaining 9 sets (41,377 samples) for testing their perform- 
ances. 

To index the performances, Rec., Sub., Rej., and Rel. denote the 
recognition, substitution, rejection, and reliability rates respectively, 
where the scale of Rec., Sub. and Rej. is percentage. Table I1 shows 
the performances of the three classifiers on the 41,377 samples. 

TABLE 11. 
PERFORMANCE OF INDIVIDUAL CLASSIFIERS 

USING 41,377 TESTING SAMPLES. 

I Rec. I Sub. I Rej. I Rel. 
el I 90.37 I 9.63 [ 0.00 I 0.9037 
e2 I 90.93 I 9.07 I 0.00 I 0.9093 
e2 I 92.14 I 7.86 I 0.00 I 0.9214 

The goal of this experiment is to compare the performances of four 
CME methods: voting, Bayesian, D-S and BKS. For an unbiased 
comparison, we adopted a leave-one-out estimation [ 131. Tables 3(a), 
3(b), 3(c) and 3(d) list the results produced by voting, D-S, Bayesian, 
and BKS approaches, respectively. Fig. 1 shows these results in a 
graphic form. Two observations may be drawn from this experiment: 
(1) All four CME methods perform much better than any individual 
classifier. This shows that by CME a recognition system with high 
recognition and low substitution rates is achievable. (2) generally, the 
BKS method performs best among the four CME methods. However, 
in the situation of a low substitution rate, the BKS method’s per- 
formance is degraded drastically, and all four approaches get very 
similar performances. This indicates that if the substitution rate must 
be very low (such as 0.77 percent), then the simplest voting might be 
a suitable choice; otherwise, the BKS method is the one to achieve 
the highest recognitionperformance. 

VI. CONCLUSION 

Kana1 [12] argued that research addressed to the problem of com- 
bining multiple classifiers may provide new insight into pattern rec- 
ognition. Previously, the main efforts focused on the design of one 
good classifier so that a desired classification rate could be obtained. 
Now we can also shift our focus. Instead of designing one high per- 
formance classifier (the job is usually extremely difficult), we can 
build a number of different and complementary ones. Each classifier 
itself may not achieve the desired performance, but the appropriate 
combination of these individual classifiers may produce a highly reli- 
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Fig. 1. Graphic representation of the performances of four CMEmethods. 

able performance. In this paper, the authors have presented a CME 
method (i.e. the BKS method) which can efficiently combine type-1 
classifiers. Many good properties have been derived from this 
method, two of them are described in this paper: automatic threshold 
finding, and optimality. However, all properties exist from the statis- 
tical point of view. This means that a large enough and well represen- 
tative learning data set should exist. If only few samples are col- 
lected, or samples are collected randomly and carelessly, the desired 
properties of this method cannot be guaranteed. Therefore, for practi- 
cal applications, the key issue to apply this method successfully is to 
construct a representative training data base. This indicates that more 
attention should be paid to data collection, which is often ignored in 
the current research domain. 
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