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1 Introduction 
The idea of n-tuple sampling as a basis for pattern recognition was first proposed in 1959 by Bledsoe and 
Browning [ 13; and remains a viable approach to a range of pattern classification tasks especially where 
speed of learning is of importance. Though a firm understanding of their operation was developed in 
these early years and is summarised in Ullmann’s Pattern Recognition Techniques [2J, only recently has 
the formal relationship between n-tuple neural networks (as they have become to be called) and more 
mainstream network paradigms, such as radial basis function networks, and classical non-parametric 
pattern classifiers, such as kernel estimation, been presented [3,4]. This contribution describes how the 
classic n-tuple recogniser and the more recently developed n-tuple regression network form differing 
approximations in the classification process. 

The essential elements of the classic n-tuple recogniser are shown in Figure 1. The input data is pro-jected 
on to a two-dimensional binary retina (The retina is not an essential feature but remains in most 
descriptions for historical reasons); and this retinal pattern is sampled by taking fixed randomly- 
positioned chosen array bits - n at a time. The state of these n-tuples form the addresses of a number of 
memory nodes. These memory states after training can be considered as estimating the probability of 
occurrence of the individual tuple states. In traditional n-tuple systems, the memory contents are either a 
simple class label that indicates that this located has been addressed or a counter that indicates how often 
the particular address has been activated. Here, we will concentrate on this latter variant - the frequency 
n-tuple recogniser, first proposed in [SI - and the recently suggested n-tuple regression network [6], 
which was originally presented as a function approximator. 
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2 Maximum likelihood approximation 
This section owns much to the analysis given by Ullmann [Z]. The training phase of a supervised 
network provides estimates of the conditional probabilities of individual pattern classes. The class 
membership probabilities can be formulated through the Bayes relationship, i.e. 

where c is the class label for a particular class {c = 42, ..., e).  
For an n-tuple network, the prior probabilities and conditional probability densities can be expressed 
through the individual tuple terms, if we assume the statistical mutual independence of the samples. That 
is 

These tuple-wise probabilities can be, in turn, estimated by considering the frequency each tuple location 
has been addressed during training. Namely, 

where T, is the number of input patterns for class c and Tis the total number of patterns. Hence, the 
posterior probability for class membership is given by 

A problem with this relationship is when one or more tuple locations have not been addressed during the 
training phase (i.e., wh = O  or uk = 0). Several ad hoc solutions have been suggested from simply 
ignoring these unaddressed terms from the product to inserting small numeric values [7]. For simple 
classification, the detailed values of these estimated probabilities are unimportant as only their mutual 
relationship matters. The above expression can be simplified by removing common factors to yield the 
following decision rule for selecting the winning class cWinner. 

If the number of training examples per class is a constant, then further simplification yields, 
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The validity of this approach depends on the assumed mutual independence of the tuples. With random 
sampling without repetitions, this may be justified. 
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Figure 2 N-tuple regression network - output stage modifications 

3 Regression approximation 
The n-tuple regression network was originally presented as a function approximator, that is the task of 
estimating a function, f = (x), given a finite number of sample pairs (xi,yi). The network is a simple 
extension of the frequency n-tuple network where the node memories contain not only a counter value, 
u k ,  indicating the number of times the location k has been addressed but also an associated weight value, 
wk. The modifications to the conventional n-tuple scheme are indicated in Figure 2. During training, 
each addressed tuple location is updated using 

wL(xi) +wk(xi )+  yi and ak(xi)  -+(xi)+ 1. (7) 

Initially, all weight and counter values are set to zero. After training the network output, j(x), is given by 

k-1 

This response, j(x), has been shown to be the best estimate of the underlying function for y(x) [6] and 
can formally be expressed in terms of the distance metria resulting from the number of different tz-tuple 
addresses generated for two arbitrary inputs X’ and x” , and the Hamming distance H( d,x”)  - that is the 
number of bits for which x’ and x” differ. (In terms of function approximation, then it is usual to  
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consider kernel widths rather than distance metria.) The expected values of the distance 
p(x’,x’’) {= p( H ) )  can be approximated by 

E{p”’,x’’)} = K(l -e.p(-%j), 

for tuple sampling without repetitions. 

and 

E(p(x’,x”)} = K(l -e.pl-NH/R))9 

(9) 

for tuple sampling with repetitions and where R is the size of the retina in bits. So the inherent distance 
metric for n-tuple sampling is seen to be an increasing monotonic function. Derivation and further 
details are given in [8]. 

Returning to the expression for the network response then, as derived in [6], the best estimate of the 
underlying regression function is given by 

j ( x )  = 

We can simply reformulate this expression in terms of a pattern classification task into C distinct classes. 
The network through training approximates C indicatorfitnctions, each one of which denotes 
membership of an individual class. Namely 

1 i f x C c  
0 otherwise‘ 

These indicator functions can be approximated, after training, by 

T “ ” 

I - I  k - 1  k =I 

This relationship gives the ratio of the cumulative summation of all training points belonging to class c,  
which have an n-tuple distance at 0, I,. . .,( K - 1) from x to a similar cumulative summation for all training 
points. Ignoring common terms, the winning class is simply given by 
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The mutual exclusion of individual tuple samples is not required to ensure validity of this second 
approach. In fact, oversampling can lead to greater consistency in the formulation of tuple distances. 
The presence of unselected locations is not a problem and the product of terms is replaced by the more 
computationally effective sum of terms. For classification tasks, only integer arithmetic is necessary as 
the network targets can only take the value 0 or 1. 

4 Comparison of approaches 
Both the maximum likelihood and the regression methods aim to provide a good approximation to the 
underlying true regression function; but they result in different computational forms. A question thiat 
naturally arises is which method is more accurate and under what conditions will they yield identical 
results. For equal occurrence of training classes, the decision provided by both methods will be in 
agreement when, 

K K K K 

where the indices a and b correspond to the selection of different classes. This relationship is valid if the 
weights in the two competing selections can be rank ordered, that is 

for k = 1,2 ,..., K . b w; 2 w, 
Otherwise, the output decisions may differ and will depend on the specific distribution of the weight 
values for all competing classes. 

The nature of the decision surfaces implicit in each approach can been seen by noting that the selection 
of a set of K weights is equivalent to selecting a point in %' space. As all weights are positive, only a 
portion of this space needs to be considered. Selecting a point (i.e., a set of weights) determines the 
corresponding decision surfaces. Namely, 

K K 2 w, = constant and w, = constant. 
-I 

The former, for the regression approximation, represents a hyperplane; while the latter, for the maximum 
likelihood approximation, represents a hyperboloid in the 8' space. Hence the regions of 'illK yielding 
a consistent decision differ for the two approximations. For an idealised rriz space (Figure 3), the regions 
where decisions will differ are shown shaded for a situation where the point (4, 1) has been selected. 
From this example, it can be inferred that the regression network will favour situations where there is an 
unbalanced weight distribution (i.e., some tuples provide a high response and others low); whereas the 
ML network will emphasise classes where the majority of tuples have similar (not necessarily high) 
responses. In this example, the ML network would choose the point (2, 2.5) while the regression ne:twork 
would choose (4, 1). 

5 Managing addressed null weights 
As discussed previously, the null weights selected during a ML recall operation are often assigned an 
arbitrary fractional value. An alternative suggestion would be to set all weights to unity prior to training 
(or equivalently incrementing all weights by unity prior to forming the product terms). There would be a 
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computational advantage in this approach as only integer arithmetic is necessary. Considering, as before, 
the decision hypersurfaces it is possible to compare the classification performance with the traditional 
approach. The two methods will be consistent for weight space regions, for two nominal pattern classes c 
and d. where 

1 2 3 4 5 6 7 8  

Figure 3 Decision surfaces in % space for ML and regression approximations 

I f a  particular point in the weight space is chosen (say, w,C, ..., wi) then the region where decisions will 
differ is delimited by the two hyperboloid surfaces passing through this point. Namely, 

Figure 4 illustrates this situation for an idealised % *  space. The basic hyperbola satisfies the equation 
w1 -w2 = 100 and the reference points are chosen as (10, 10) and (20,5) for the upper and lower graphs 
respectively. The straight line corresponds to the regression network decision boundary. The region of 
decision disagreement between the original and modified ML methods is very small; though in this 
example the new method yields a decision only slightly biased in the direction of the regression network 
decision. 

6 Simulation experiments 
Though the usefulness or otherwise of any recognition system can only be confirmed by extensive 
application under practical conditions, the potential of a particular scheme (and its meaningful 
comparison to others) is best tackled through controlled simulation. For these comparative experiments, 
the input retina is a 16 x 16 binary array consistent with input pattern classes of simple geometric shapes 
- ten classes in total with a black (1) : white (0) pixel ratio varying from 50% to 25%. The data set 

216 



40 I 

normal - 
increment - 

regres - 

Figure 4 Decision surfaces in 8 ’ space for  classic and modified frequency n-tuple networks 
The corresponding regression approximation is shown as a straight line. 

consists of these ten pattern classes with varying degrees of additional random noise (probability, p, of an 
individual pixel being correctly set of p = 0.85,0.75 or 0.65). Examples of the data set are given in 
Figure 5. The training set composes 20 or 40 blocks of these pattern classes, while the test set consists of 
80 blocks. 

The n-tuples are chosen randomly with n varying between 3 and 3 1 (in unit steps). The number of 
selected tuples was kept constant such that the retina is fully sampled at the minimum tuple size. Hence 
for larger tuples, the input retina is oversampled. Though this chosen procedure is rather arbitrary, it 
does improve the quality of the tuple distance function approximation as the tuple size increases. 
Otherwise the fraction of tuple memories addressed during training reduces as the tuple size increases so 
the recall operation is based on diminishingly small numbers (i.e., the statistical consistency begins to 



Figure 5 Simulation training data 
The second, third and fourth columns are examples of the training data 
for p = 0.85, 0.75 and 0.65 respectively 

become suspect). The solution is either to increase the size of the training set (not always feasible in 
practice) or increase the number of tuple samples. 
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Table 1 shows the averaged correct classification rate (over eight simulation runs), with 20 training blocks 
and the test blocks being independent of the training ones, for the following training schedules: 

n =  

1. 
2. 
3. 
4. Regression n-tuple network. 

Frequency n-tuple network (ML decision with null weights ignored) 
Frequency n-tuple network (ML decision with null weights set to 0.5) 
Frequency n-tuple network (ML decision with null weights set to 1 .O) 

4 8 16 31 

Though all approaches achieve almost identical recognition for small n, the regression network maintains 
a higher classification rate as n increases above this optimum region. This is because for large n, 
anincreasing fraction of locations will be empty (or contain only unity values) - which are treated 
indiscriminately by the ML approach. The regression network also provides superior performance as the 
trainingltest data becomes noisier (i.e., p decreases). As p approaches 0.5, the patterns become 
increasingly random and the interclass variability diminishes. 

Table I Classification rates 

I M i n e ~ ( n u 1 1  weights= i.0j 1 .Si .68 .33 .21 

Regression net I .82 .70 .34 .21 

p = 0.75 

4 8 16 31 

.98 .95 .19 0 

.98 .98 .63 .21 

.98 .% .G 2 1  

1.00 1.00 .96 .06 

p = 0.85 

- M i  
1.00 1.00 .97 .39 I 

I 
.39 I 1.00 i.00 .97 

1.00 1.00 .99 .39 I 

Variants of the frequency n-tuple network where the null weights are set to some non-zero value display a 
large improvement over the classic approach where null weights are ignored - this is particularly true for 
regions of non-optimal n. The regression network still provides better performance albeit sometimes 
only marginally. Figure 6 shows a typical set of averaged simulation results for the regression network 
and the classic frequency n-tuple network. For these simulations, the optimum tuple size is generally 
small (typically n = 3 - 6) with a fall-off in performance as n increases. This observation is due to the 
nature of the training patterns (i.e., approximately equispaced in the pattern space and with high noise 
levels). In general, there will be a peak in performance as n increases with the peak being wider and less 
distinct for the regression network than the other approaches (i.e., optimisation of this network is less 
critical). 

7 Conclusion 
This short paper has shown how the regression n-tuple network, originally developed for function 
approximation, can be employed in recogniser systems. This network and the traditional frequency n- 
tuple networks make approximations to evaluate the underlying regression function associated with the 
individual pattern classes. The regression network approximation does not require the assumption of the 
mutual independence of tuple samples and it yields a computationally simpler form. A minor 
improvement in the management of addressed null weights for frequency n-tuple networks has also been 
presented. This, too, yields a computational simplification. An extensive programme of simulations have 
supported these statements. 
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Figure 6 Set of averaged classification results for regression network and classic n-tuple frequency 
network 
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