
N-TUPLE NEURAL NETWORKS 

N. M. Allinson and A. R. Kolcz 
Department of Electrical Engineering and Electronics, UMIST, Manchester, UK. 

The N-Tuple Neural Network (NTNN) is a fast, efficient memory-based neural network capable 

of performing non-linear function approximation and pattern classification. The random nature 

of the N-tuple sampling of the input vectors makes precise analysis difficult. Here, the NTNN 

is considered within a unifying framework of the General Memory Neural Network (GMNN) -

a family of networks which include such important types as radial basis function networks. By 

discussing the NTNN within such a framework, a clearer understanding of its operation and 

efficient application can be gained. The nature of the intrinsic tuple distances, and the resultant 

kernel, is also discussed, together with techniques for handling non-binary input patterns. An 

example of a tuple-based network, which is a simple extension of the conventional NTNN, is shown 

to yield the best estimate of the underlying regression function, E(Ylx), for a finite training set. 

Finally, the pattern classification capabilities of the NTNN are considered. 

1 Introduction 
The origins ofthe N-tuple neural network date from 1959, when Bledsoe and Brown­
ing [1] proposed a pattern classification system that employed random sampling of a 
binary retina by taking N-bit long ordered samples (i.e., N-tuples) from the retina. 
These samples form the addresses to a number of memory nodes - with each bit 
in the sample corresponds to an individual address line. The N-tuple sampling 
is sensitive to correlations occurring between different regions for a given class of 
input patterns. Certain patterns will yield regions of the retina where the prob­
ability of a particular state of a selected N-tuple will be very high for a pattern 
class (e.g., predominately 'white' or 'black' if we are considering binary images of 
textual characters). If a set of exemplar patterns is presented to the retina, each of 
the N-tuple samples can be thought of as estimating the probability of occurrence 
of its individual states for each class. A cellular neural network interpretation of N­
tuple sampling was provided by Aleksander [2]; and as we attempt to demonstrate 
in this paper its architecture conforms to what we term as the General Memory 
Neural Network (GMNN). Though the N-tuple neural network is more commonly 
thought of as a supervised pattern classifier, we will consider first the general prob­
lem of approximating a function, I, which exists in a D-dimensional real space, 
IRP. This function is assumed to be smooth and continuous and that we possess a 
finite number of sample pairs {(Xi, Yi) : i = 1, 2 ... , T}. We will further assume that 
this training data is subject to a noise component, that is Yi = f(xi) + c, where 
c is a random error term with zero mean. A variant of the NTNN for function 
approximation was first proposed by Tattersall et al [3] and termed the Single­
Layer-Lookup-Perceptron (SLLUP). The essential elements of the SLLUP are the 
same as the basic NTNN except that the nodal memories contain numeric weights. 
A further extension of the basic NTNN, originally developed by Bledsoe and Bisson 
[4], records the relative frequencies at which the various nodal memories are ad­
dressed during training. The network introduced in Section 4 combines aspects of 
these two networks and follows directly from the consolidated approach presented 
in Section 2. 
We discuss, in Section 3, some details of the NTNN with particular reference to its 
mapping between sampled patterns on the retina and the N-tuple distance metric, 
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and the transformation of non-binary element vectors onto the binary retina. The 
form of the first mapping, which is an approximately exponential function, is the 
kernel function of the NTNN - though due to the random nature of the sampling, 
this must be considered in a statistical sense. Finally, a brief note is given on 
a Bayesian approximation that indicate how these networks can be employed as 
pattern classifiers. 

2 The General Memory Neural Network 
Examples of GMNN include Radial Basis Function (RBF) [5] networks and the 
General Regression Neural Network (GRNN) [6]. These networks can provide pow­
erful approximation capabilities and have been subject to rigorous analysis. A fur­
ther class of networks, of which the NTNN is one, have not been treated to such 
detailed examination. However, these networks (together with others such as the 
CMAC [7] and the Multi-Resolution Network [8]) are computationally very efficient 
and better suited to hardware implementation. The essential architectural compo­
nents of GMNNs are a layer of memory nodes, arranged into a number of blocks, 
and an addressing element that selects the set of locations participating in the 
computation of the output response. An extended version of this section is given in 
[9]. 
2.1 Canonical Form of the General Memory Neural Network 
The GMNN can be defined in terms of the following elements: 

• A set of K memory nodes, each possessing a finite number of IAk I addressable 
locations. 

• An address generator which assigns an address vector 

A(x) = [Al(X), A2(X), . .. , AK(X)] 
to each input point x. The address generated for the kth memory node is 
denoted by Ak(x). 

• The network's output, g, is obtained by combining the contents of selected 
memory locations, that is 

[ml (Al (x)), m2(A2(x)), ... , mk(Ak(x))] ~ m, (1) 
where mk(Ak(x)) is the content of the memory location selected by the kth 
memory node by the address generated by x for that node (this will be iden­
tified as simply mk(x)). No specific format is imposed on the nature of the 
memories other than that the format is uniform for all K nodes. 

• A learning procedure exists which permits the network to adjust the nodal 
memory contents, in response to the training set, so that some error criterion, 
7r(f, g), is minimised. 

Each node of the network performs a simple vector quantization of the input space 
into IAk I cells. For each node, the address generating element can be split into 
an index generator and an address decoder. The index generator, h, selects a cell 
for every x E n and assigns it a unique index value, Ik(x) E {1, 2, ... , IAkl}; 
hence the index generator identifies the quantization cell to which the input points 
belongs. The address decoder uses this generated index value to specify the physical 
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memory address which then selects the relevant node k. Hence, Ak(X) = Ak(Ik(X)). 
Therefore, a cell, Rf, can be defined as the set of all input points which result in 
the selection of an address corresponding to the ith index of the kth node. 

Rf = {x En: Ik(x) = i} (2) 

Each of the cells is closed and bounded as the input space is compact in IRD. The 
selection of a cell is given by the following operator or activation function 

S~(X)=(h(X)=i)={ 1 ifxEI!f: i =l, ... ,IAk l (3) 
• 0 otherwIse 

The quantization of n performed by the individual nodes is combined, through the 
intersection of the K cells being superimposed, to yield a global quantizer. The 
number of cells IAI is given by the number of all such distinct intersections. 

lAd IA21 IAkl K 
IAI = E E··· E II ({x En: hex) = ik} # 0) (4) 

;,=1 ;2=1 ik=1 k=1 

The upper bound being given by IAlmax = nf=1 IAkl· The address generation 
element of the network is distributed across the nodes, so that the general structure 
of Figure 1a emerges. Alternatively, the address generation can be considered at 
the global level (Figure 1b). These two variants are equivalent. 
The quantization of the input space by the network produces values that are con­
stant over each cell (We are ignoring, for the present, external kernel functions). 
The value of f assigned to the ith cell is normally expressed as the average value 
of f over the cell. 

(5) 

where d J is given by the squared error function. In most supervised learning schemes, 
this representation of feR;) is estimated inherently through the minimisation of an 
error function. 
For K = 1, the GMNN could be simply replaced to a VQ followed by a look-up 
table. There would need to be at least one input point per quantization cell. The 
granularity of the quantization needs to be sufficient to meet the degree of approx­
imation performance appropriate for the required task. When there are multiple 
nodes (K > 1), the quantization at the node level can be much coarser which, in 
turn, increases the probability of input points lying inside a cell. The fine granu­
larity being achieved through the superposition of nodal quantizers. Learning and 
generalisation are only possible through the use of multiple nodes. Points that are 
close to each other in the n space should share many addresses, and vice versa. 

2.2 GMNN Distance Metrics 
The address proximity function, which quantifies the proximity of points in nand 
so the number of generated identical nodal addresses, is given by 

K K 

K : n 2 -+ {O, 1, ... , K} K(X, y) = E(Ak(x) = Ak(Y)) = E(Ik(X) = hey)) (6) 
k=1 k=1 
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Figure 1 (a) GMNN - address gener­
ation considered at the nodal level. (b) 
GMNN - address generation considered 
at the global level. These two variants are 
identical in terms of overall functionality. 
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Figure 2 General structure of an 
NTNN. 

The address distance function, defined as the number of different generated nodal 
addresses, is given by 

K K 

P : Q2 -+ {O, 1, ... , K} p(x, y) = ~)Ak(X) f Ak(Y» = ~)Ik(x) f Ik(Y» (7) 
k=l k=l 

The binary nodal incidence function, which returns' l' if two inputs share a common 
address at a given network node and '0' otherwise, is defined as 

{ I {::} h(x) = h(Y) 
Mk(X, y) = (Ik(X) = h(Y» = 0 {::} h(x) f h(Y) 

From these definitions, several properties directly follow. 
'v'(x, Y E Q) p(x, x) = 0 p(x, y) = p(y, x) 

(8) 

K(X, x) = K K(X , y) = K(Y, x) (9) 
K(X,y) = K - p(x,y) 

K 

L Mk(X, y) = K(X, y) (10) 
k=l 
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2.3 GMNN Error-Based Training 
If the address generation elements of the G MNN have been established (based on 
some a priori knowledge about the function to be approximated), then the only 
element which is modifiable through training is the contents of the nodal memory 
locations (e.g., the weights). If these locations contain real-valued numbers and the 
output of the network is formed by summing these numbers, then the response 
of the GMNN is linear in terms of this weight space. Learning methods based on 
the minimisation of the square error function are guaranteed to converge under 
these general circumstances. In the following analysis, we will therefore assume an 
iterative LMS learning schedule. For a finite training set of T paired samples, the 
error produced by the network for the jth presentation of the ith training sample 
is given by 

(11) 
k=1 

where Wk(Xi) is the value of the weight selected by xi at the kth node. The par­
ticipating weights are modified by a value, .6.}, proportional to this error so as to 
reduce the error. 

(12) 

Initially, all weight values are set to zero. As Wk(Xi ) is shared by all points within 
the neighbourhood Nk(Xi ), this weight updating can affect the network response 
for points from outside the training set. That is within an input space region given 
by 

(13) 

The output of the network after the training is complete, for an arbitrary x E 0, 
will depend on all training samples lying within the neighbourhood of x. 

K K T ( TO) 
g(x) = (; Wk(X) = (; ~ Mk(X, Xi) ];.6.; (14) 

Rearranging this expression and using the identity (10), yields 
T To K T To 

g(x) = :L::L:.6.; :L: Mk(X, xi) = :L:.6.i . IC(X, xi), where :L:.6.; = .6.;. (15) 
;=1;=1 k=1 i=1 ;=1 

We can compare this result with the response of a trained RBF network. 
T 

g(x) = E w; . IC(X, xi) (16) 
i=1 

For the normalised RBF network, the response is given by 
T E wi . IC(X, xi) 

g(x) = .;....i=...::1=T ___ _ 

E IC(X, xi) 
i=1 

(17) 
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and for the GRNN (where the training set response values replace the weight val­
ues). 

T 

E yi . IC(X, xi) 
g(x) = .:..:i=:;,:1T=-__ _ (18) 

EIC(X,Xi ) 

i=1 
Though there are obvious similarities, we can further extend the functionality of the 
G MNN by incorporating into each nodal memory an integer counter. This nodal 
counter is incremented whenever the node is addressed, that is Ck(Xi ) +- Ck(Xi ) + 1 
(Initially, all counter values are set to zero). Now the response of the GMNN is 
given by 

T 

E Ai . IC(X, xi) 

g(x) = .:c:i =:..:.1T=-__ _ (19) 

E IC(X, xi) 
i=1 

The trained GMNN is equivalent to a set ofT units, each centred at one ofthe train­
ing samples, xt, and possessing height At and kernel weighting function IC(" xt). To 
complete the equivalence ofthe GMNN and the GRNN, IC must satisfy the general 
conditions imposed on kernel functions [10]. 

2.4 Introduction of External Kernels 
The network output is given by the sum of weights corresponding to the selected 
locations, but the output remains constant over each quantization cell - regardless 
of the relative position of the input point inside a cell. The network mapping thus 
becomes discontinuous at the cell boundaries. A solution would be to emphasise 
weights that correspond to quantization cells that are closer to the current excita­
tion, x, than others. This distance can be defined in terms of the distance between 
x and the centroid of R~ (where i = Ik(x». 

d(x, Rn = d(x, cf) (20) 
A smooth, continuous and monotonically decreasing kernel function is then intro­
duced to weight the contributions ofthe respective nodes to the values of d(x, R~(x», 
where Rf(x) is the cell selected by x for the kth node. The network output now 
becomes 

K IAhl 
g(x) = E E wf . <pf(d(x, R:(x))) . Mk(C:, x) (21) 

k=1i=1 
A set of K . IAk I kernel or basis functions can be defined, with centres given by 
the centroid set {cn and where each kernel has its support truncated to its corre­
sponding quantization region. The network mapping can be expressed as 

K IAkl 
g(x) = E E w~ . <p~(x) (22) 

k=1i=1 
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or in its normalised form as 
K IAkl 

E E wf· <pf(x) 

g(x) = k=l;=tAkl (23) 

EE<pf(x) 
k=li=l 

<pf(x) is the kernel function associated with the ith quantization cell of the kth 
node and truncated to zero at its cell boundaries. Gaussian kernels provide an 
approximation to this last condition, though B-spline kernels [11] can lead to the 
total absence of cell discontinuities. The introduction of external weighting kernels 
is the final step in the GMNN architecture. 
3 The N-Tuple Neural Network 
The general form of the NTNN was described in the introduction and is shown in 
Figure 2. The following two sections consider the mapping functions inherent to 
this network. Namely: 

• Conversion of the input vector into the binary format needed for the retina 

• Sampling the retina by taking N bit values at a time to the address of one of 
the K memory nodes. 

There is some choice in what form the first of these mappings may take depending 
on the application, but the retinal N-tuple sampling is common to all NTNNs. 
Figure 3a indicates how the threshold decision planes of the individual elements 
of a tuple delineate the input space into discrete regions and why the Hamming 
distance between tuple values is the obvious choice for a distance metric. Further 
details of the N-tuple distance metric and input encoding are given in [12, 13]. 

3.1 Retinal Sampling 
The relationship between the number of different addresses generated for two ar­
bitrary inputs, x and y, and the Hamming distance H(x, y) (i.e., the number of 
bits for which x and y differ) is important as it reveals the nature of the distance 
metric necessary when a NTNN is used for pattern classification and the form of 
the kernel for the approximation-NTNN. This relationship can only be expressed 
in terms of an expectation due the random nature of the sampling. For sampling 
without repetitions, the expected value of PNTNN(x, y) = PNTNN(H) is given by 

E(PNTNN(H)) = K (1 _ (1 _ ~) H) (24) 

For small values of H, this can be simplified to 

E(PNTNN(H)) ~ K (1- exp ( - Z)) (25) 

For sampling with repetitions, the expected value is 

E(PNTNN(H)) = K (1- exp (N. (h _ h; + ~3 - •• -))) (26) 

where h is the normalised Hamming distance (= HI R). Again, this can be simplified 
for small values of h, to yield 

E(PNTNN(H)) ~ K(l - exp( -N . h)) (27) 
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Figure 3 (a) The delineation of input space by the hard decision planes of each 
tuple element's threshold. Each region is marked by its specific binary state of 
the 3-tuple, tl' (b) The thermometer coding inherent in N-tuple sampling. The 
variable, Xl, is uniformly quantized into six discrete regions (L == 6). The indicated 
2-tuple partitions this interval into three unequal quantization regions, with the 
binary state of the 2-tuple indicated. (c) The delineation of the 3-dimensional input 
space into tetrahedral regions through the use of a ranking code. The binary space 
representation of the input space is also shown. 

There is little difference in the general form of these two sampling methods, though 
there may be crucial differences in performance for specific tasks. The distance 
function depends exponentially on the ratio of the Hamming distance, H, between 
patterns to the retinal size, R. The rate of decrease is proportional to the tuple 
size. 

3.2 Input Encoding 
There is a direct and monotonic dependence of PNTNN pn the Hamming distance in 
the binary space of the network's retina. For binary patterns, the N-tuple sampling 
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provides the desired mapping between the input and output addresses. For non­
binary input patterns, the situation is not so clear. One obvious solution is to use 
a thermometer or bar-chart code, where one bit is associated to every level of an 
input integer. This creates a linear array of 2n bits for an n-bit long integer. This 
can produce very large retinas if the input dimensionality and quantization level are 
large. The use of the natural binary code or Gray code is not feasible. Though these 
are compact codes, there is no monotonic relationship between input and pattern 
distances. The concatenation of several Gray codes [3] offers an improvement over 
a limited region and enhances the dynamic range over the binary and straight Gray 
code. The exponential dependence of the PNTNN on the Hamming distance means 
that strict proportionality is not required but monotonicity is required within an 
active region of Hamming distances. 
The potential of CMAC encoding, and further aspects of input coding methods, are 
discussed in Kolcz and Allinson [14]. Improvements in the input mapping, which in 
turn produce a more isotropic kernel, are given in Kolcz and Allinson [15], where 
rotation and hyper-sphere codings are described. Two further techniques will be 
briefly introduced here in order to indicate the wide range of possible sampling and 
coding schemes. Figure 3b shows one input variable, Xl, which is uniformly quan­
tized to six levels and this is sampled by the indicated 2-tuple. The corresponding 
states of the resultant tuple for the three resulting sub-intervals indicate that ther­
mometer encoding can be inherent in tuple sampling. This concept can be extended 
to the multivariate case. If the input space, 0, is a D-dimensional hypercube and 
each memory node distributes its N address lines among these dimensions, then 
the space is effectively quantized into I1~=1 (Nd + 1) hyper-rectangular cells. This 
assumes random sampling, such that there are Nd address lines per input dimen­
sions (where Nd = Nj D). The placement of tuples can be very flexible (i.e., uniform 
quantization is not essential) and the sampling process can take into account the 
density of training points within the input space. 
In rank-order coding, the non-binary N-tuple is transformed to a tuple of ranked 
values (e.g., (20, 63, 40, 84, 122,38) becomes, in ascending order, the ranked tuple 
(O, 3, 2, 4, 5, 1)). Each possible ordering is assigned a unique consecutive ranking 
number, which is converted to binary format and then used as the retinal input. 
Rank-order coding produces an equal significance code. The use of these relation­
ships is equivalent to delineating the input space into hyper-tetrahedrons rather 
than the usual hyper-rectangles (Figure 3c). 

4 N-tuple Regression Network 
The framework for GMNN proposed earlier together with the derivation the tuple 
distance metric are employed here in the development of a modified NTNN which 
operates as a non-parametric regression estimator. The formal derivation of this 
network and that the N-tuple kernel is a valid one for estimating the underlying 
probability function is given in Kolcz and Allinson [16]. The purpose ofthis section 
is to show the relative simplicity of this network compared with other implementa­
tions. 
During the training phase, the network is presented with T data pairs, (xi, yi), 
where xi is the D-dimensional input vector and yi is the corresponding scalar 
output of the system under consideration. The input vector is represented by a 
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unique selection of the K tuple addresses with their associated weight and counter 
values. 

{ 
{tl(X), t2(X)"", tK(X)} 

x --+ {Wl(X), W2(X)", ., WK(X)} 
{al (x), a2(x), ... , aK(x)} 

During training, each addressed tuple location is updated according to 

Wk(Xi ) +- Wk(Xi ) + yi and ak(xi ) +- ak(xi ) + 1 
for i = 1,2, ... , T and k = 1,2, ... , K 

(28) 

(29) 

Initially all weight and counter values are set to zero. After training, the network 
output, y(x), is obtained from 

K 

LWk(X) 
'() ,,-k=.:::-l __ y X = K (30) 

Lak(X) 
k=l 

An additional condition is where all addressed locations are zero. In this case, the 
output is set to zero. 

K 

L ak(x) = 0 --+ y(x) = 0 (31) 
k=l 

Figure 4 shows the modifications needed to a conventional NTNN to form the N-
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Figure 4 Modifications to the nodes and output elements of the NTNN to yield 
the N-tuple regression network. 

tuple regression network. By considering the tuple distances between inputs, as 
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defined in terms of the number of different tuple addresses generated, then (30) can 
be extended to 

T . 
Lyi. (1- p(x,x')) 
;=1 K 

(32) 

k=l 
This suggests that the network output is an approximate solution of the gener­
alised regression function, E(Ylx), provided that the bracketed term in (32) is a 
valid kernel function. This function is continuous, symmetrical, non-negative and 
possesses finite support. These are all necessary conditions. A close approximation 
(based on the exponential approximation of tuple distances) is also representable 
as a product of univariate kernel functions. Taken together these provide sufficient 
conditions for a valid kernel function [17]. A wide ranging set of experiments on 
chaotic time-series prediction and non-linear system modelling has been conducted 
[16), which confirm the successful operation of this network. A major advantage of 
the NTNN implementation over other approaches is its fast, and fixed, speed of 
operation. Each recall operation involves addressing a fixed number of locations. 
There is no need for preprocessing large data sets, through data clustering, as is 
often the case for RBF networks [18]. 
5 Pattern Classification 
So far we have restricted our considerations to the approximation properties of the 
NTNN, but the other major application - namely, pattern classification - can 
be discussed within this common framework. The training phase of a supervised 
network provides estimates of the conditional probabilities of individual pattern 
classes. The class membership probabilities can be formulated through the Bayes 
relationship, i.e., 

P( ) P(xlc)P(c) 
x E c = P(x) (33) 

where c is the class label for a particular class {c = 1,2, ... , C}. The modified 
NTNN discussed in Section 4 can be reformulated in terms of this classification. 
The network through training approximates C indicator functions, which denote 
membership to an individual class. 

le(x) = { ~ if xC c 
(34) 

otherwise 

Modifying (32), the indicator functions can be approximated, after training, by 
T K K 

L(xi Cc)(I-p(x,xi )/K) LWk LP(tklc) 
le(x) = .:..:i==.:l:"-T~ _______ = k~l == P( c) _k=-::~:--__ (35) 

L(1- p(x, xi)/ K) L ak L P(tk) 
i=l k=l k=l 

This relationship gives the ratio of the cumulative summation of all training points 
belonging to a class c, which have an N-tuple distance at 0,1, ... , (K - 1) from 
x to a similar cumulative summation for all training points. The decision surfaces 
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present in the K-dimensional weight space are described by 2:f=1 Wk = const, and 
h .. I . . b ",K e t e wmmng c ass IS gIven y cwinner = maXe=I,2, ... ,C L.."k=1 Wk' 

6 Conclusions 
The unifying approach proposed for a wide class of memory-based neural networks 
means that practical, but poorly understood, networks (such as the NTNN) can 
be considered in direct comparison with networks (such as RBF networks) that 
possess a much firmer theoretical foundation. The random sampling inherent in 
the N-tuple approach makes detailed analysis difficult so this link is all the more 
important. The pragmatic advantages of NTNNs has been demonstrated in the 
regression network described above, where large data-sets can be accommodated 
with fixed computational overheads. The possible range of input sampling and 
encoding strategies has been illustrated, but by no means exhaustively. There is 
still a need to seek other strategies that will provide optimum kernel functions for 
specified recognition or approximation tasks. The power and flexibility of Bledsoe 
and Browning's original concept has not, as yet, been fully exploited. 
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