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57 ABSTRACT

Input values are digitally represented and the bits used to
address memories. A composite (e.g. the sum) of the
memory outputs is formed, and update control is used during
“learning” to modify the memory contents. The digital
representation is formed by an encoder which encodes input
values using a redundant code, which preferably has a
Hamming distance to signal distance relationship which has
a relatively steep initial slope and is closer to being mono-
tonic than is the relationship for a simply binary code.

22 Claims, 7 Drawing Sheets
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1
PATTERN RECOGNITION

This is a continuation of application Ser. No. 07/752,493,
filed Aug. 27, 1991, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is concerned with pattern recogni-
tion devices.

2. Related Art

Pattern recognition devices commonly receive, in digital
form, an input pattern of bits which is then processed to
produce a scalar value, or a number of such values, which
are regarded as a vector. These may then be subjected to a
thresholding operation to provide an output indicating the
nature of an unknown pattern supplied to the device. Many
such devices are learning devices, in that they are not
constructed to recognize particular patterns but are, before
use, supplied with training patterns, the output of the device
being compared with information as to the nature of the
pattern, or identifying a class to which it belongs, and the
comparison result used as feedback to vary parameters
stored within the device.

It is convenient to view such systems in terms of an input
space and an output space. For example, one which receives
a set of five scalar values and produces two scalar values
may be considered as performing a mapping from a point in
a five-dimensional input pattern space to a point in a
two-dimensional output space.

One form of recognition device which has been proposed
is the perceptron, which forms one or more weighted sums
of a set of input values, the weighting factors being varied
adaptively during the learning process. The main disadvan-
tage of these is their inability to perform non-linear map-
pings from the input space to the output space, so that they
cannot learn such apparently simple functions as the
exclusive-or function. A solution to this problem is the
multi-level percepton, where the output of a first layer of
perceptrons supplies the input to a second layer; however,
large amounts of training are required in order to learn quite
simple non-linear mappings (i.e. convergence is slow), and
this has made the application of multi-layer perceptions to
real problems such as speech recognition very difficult.

Another form of recognition device is described in our
European patent application Ser. No. 0183389B, and U.S.
Pat. No. 4,782,459. This, as shown in FIG. 1, has an input
store 1 in which an input vector having sixteen elements of
8-bits each are stored. Groups (“n-tuples”) of bits are taken
to form n-bit addresses for each of a number of random
access memories 2, and the contents of the memory loca-
tions thereby addressed are added in an adder 3 to form a
scalar output. During training, this output is compared in a
subtractor 4 with the desired output input thereto, and the
difference used to control updating of the memory contents.
One application of the arrangement shown is as an echo
canceller for telecommunications applications where the
store 1 is in the form of a shift register receiving successive
digitally coded temporal samples of a transmitted signal, the
object of the device being to learn a mapping which models
the echo characteristics of a transmission path.

As will be explained in greater detail below, the ability of
such a recognition device to generalize from examples given
in training depends to some extent upon the form in which
the input data within the store 1 is coded. It is of course
conventional to employ binary coding to represent digital
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values of a signal, but (as discussed in “Guide to pattern and
recognition using random-access memories”- Aleksander
and Stonham, computers and digital techniques, February
1979, Vol 2 No 1, Page 36 “6.3 coding of physical data”) this
is not particularly suitable for this class of pattern recogni-
tion devices since signal values which are quite close in
signal space are disproportionately far apart in Hamming
distance. The authors there propose a Gray code (which
employs the same number of bits as the binary code) to
overcome this problem but note that this can lead to spurious
results as widely differing input signal levels can be close in
Hamming distance. They point out that the most suitable
coding is a 1-in-N code (hereinafter referred to as a bar
code), in which as many bits as there are signal levels are
employed. This code suffers from neither of the above
drawbacks. It is, however, very inefficient and can require a
large amount of input space; for example, for input data
having 256 levels (i.e. the typical output of an 8 bit digital
to analog converter), a 256 bit wide input buffer is
required—which is clearly impractical (the binary and Gray
code versions require only 8 bits, of course).

SUMMARY OF THE INVENTION

The present invention therefore provides in a first aspect
a pattern recognition apparatus comprising:

an input for receiving a set of digital values representing
a pattern to be recognized;

a plurality of memories each having at least one address
line for addressing locations therein, the address lines
being connected to receive bits from a digital repre-
sentation of the set of values; and

means for producing a composite output dependent on
data read from the addressed locations of the memories;
wherein the apparatus includes means for encoding the
input values to form the said digital representation
employing a redundant code which has a normalized
Hamming distance to normalized signal distance rela-
tionship having a mean slope greater than 1 for signal
distances up to a predetermined level of at least 10% of
the maximum signal distance.

Preferably the slope is at least 1.5, more preferably at least

2.

Another aspect of the present invention provides a pattern
recognition apparatus comprising:

an input for receiving a set of digital values representing
a pattern to be recognized;

a plurality of memories each having at least one address
line for addressing locations therein, the address lines
being connected to receive bits from a digital repre-
sentation of the set of values; and

means for producing a composite output dependent on
data read from the addressed locations of the memories;
wherein the apparatus includes means for encoding the
input values to form the said digital representation
using a code employing a number of bits which is:

i) greater than that which a binary code would require to
represent an equal number of signal levels; and

ii) less than that number of signal levels; and being
selected to have a higher monotonicity (as herein
defined) than would such a binary code, irrespective of
the magnitudes of said values.

As will be discussed below, the first aspect of the inven-
tion provides a pattern recognizer which has similar prop-
erties to a bar code recognizer but is physically practical to
construct. The second aspect of the invention, (which pref-
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erably employs a coding which as above uses a realistically
small number of bits) provides a recognition device which
can learn complex mapping functions (as discussed below)
yet maintains the good generalization properties of the bar
code type recognizer.

Also provided according to the invention is a method of
training an n-tuple recognizer using redundant coding of the
above types. Other preferred features are as recited in the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention will now be
described, by way of example, with reference to the accom-
panying drawings, in which;

FIG. 1 as discussed above, shows a known form of pattern
recognition device;

FIG. 2 shows generally a pattern recognition device
according to the invention;

FIG. 3 illustrates the concept of an interpolation kernel;

FIGS. 4a and 4b illustrate 1-in-N or bar coding;

FIG. 5a illustrates the kernel function of the coding of
FIG. 4 in the apparatus of FIG. 2;

FIGS. 5b and 5c show the kernel functions correspond-
ingly obtained employing simple binary coding and Gray
coding respectively;

FIG. 5d illustrates an example of a kernel obtained
employing a code according to the present invention;

FIG. 6 illustrates the concept of “badness” employing a
first measure;

FIG. 7 illustrates a different measure of badness;

FIGS. 8a and 8b illustrate Hamming distance versus
signal distance plots for binary and Gray codes, respec-
tively;

FIGS. 8¢ and 8d illustrate corresponding plots for
embodiments of the invention; and

FIG. 8¢ illustrates a corresponding plot for a bar code

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Referring to FIG. 2 there is shown a pattern recognition
device having an input for receiving a time-varying signal in
the form of digital samples. These are divided into frames of
(for example) sixteen samples x; . . . X;5 (or, in vector
notation, X) and stored in a store 10. To avoid confusion, it
may be stated that a frame may be regarded as a sixteen
element vector (viz. a one-dimensional array or pattern of
samples) representing a point in a notional 16-dimensional
input space.

Note that the case of a one-dimensional array is by way
of example; multi-dimensional arrays (e.g. for image
recognition) are equally possible.

Although, in the example, the input is a one-dimensional
array, it is convenient to view the store 10 as two-
dimensional since it must accommodate a number of bits for
each sample. N-tuple connection lines 11 are, as in FIG. 2,
connected to the store to form address lines for several banks
12 of memories. The connections are distributed over the
bits of the store—i.e. their assignment is uncorrelated with
the x-y organization of the data. Preferably, the assignments
are made at random. The memories of the first bank are
designated RAM, ; . . . RAM, ,, and those of the N“ bank
RAMy, ; ... RAMy . there being Q memories in each bank.
The outputs of the memories of a bank are added in a
respective adder S . . . Sy to form an output y, . . . y, (which
may be regarded as an output vector Y).
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The system is trained by applying a vector X to its input.
This causes a specific set of n-tuple addresses to be
generated, which access corresponding contents in each of
the memories. The summation of the output of each bank of
memories produces the elements of the output vector Y. This
vector is compared in a control unit 13 with a desired output
or target vector T and the result used to update the contents
of the memory locations C; of those memory locations
addressed by the n-tuple lines (C; being the content of the
addressed location within the j* memory of the i bank).

Repeated applications of different training vectors allows
the system to learn the required input-output mapping Y=f
(X). It is important to notice that with appropriate choice of
n-tuple order and number of memories per bank, the system
can estimate the best function f(X) to fit a rather sparse
training set. That is, it is not necessary to expose the machine
to all possible input-output vector pairs because it is able to
interpolate the required function between training points.
This property will be discussed in more detail later.

Once trained, the device should respond to receipt of an
unknown input vector X by producing the desired output
vector Y.

It will be seen that one difference between the device
shown in FIG. 2 and that of FIG. 1 is the provision of
multiple banks to enable a multi-element output vector to be
generated. In addition, however, the device includes an
encoder 14 for determining the bits representative of the
input samples which are to be entered into the store. Before
discussing the form of this in detail, the question of inter-
polation will be introduced.

A supervised learning machine is required to learn a
mapping function Y=£f(X); however, in a practical system, it
is not generally possible to expose it to all possible input
vectors X, and therefore satisfactory results will be obtained
only if the system can interpolate between the training
examples which it has been given, i.e. produce the desired
response to an input vector which is not one of those used
in training. This view of the training results as being a
sampled version of the required continuous function leads
one to regard the latter as the convolution of the sampled
function, and an interpolation kernel. This is illustrated in
FIG. 3 for the case of a one-dimensional function.

The form of interpolation kernel produced by the device
of FIG. 2 depends strongly on the way in which the input
vector X is coded. Consider a device for which the input
vectors X have only two elements; this is easy to visualise
as the input pattern space is two-dimensional. Suppose now
(for the purposes of illustration) that each element of X is
encoded in bar-chart form—i.e. the encoder 14 produces an
output bit for every increment Of every dimension of X. A
typical content of the store 10 for the case of an 8-level
signal is shown in FIG. 4a for x,=5 and x,=3; and the
corresponding pattern space in FIG. 4b. If three memory
address lines are connected to the bits shown, then a change
in the value in any of those bits causes a change in the
address, and hence a change in the contribution of the
associated memory to the output of the device. This effec-
tively partitions the input space, as illustrated by the dotted
lines in FIG. 4b; crossing a threshold line can cause a change
in the output Y. Connection of further address lines causes
smaller and smaller regions of the pattern space to be
delineated.

For this simple two-dimensional case, the interpolation
kernel can be plotted as the response of the device when it
has been iteratively trained on a single input vector X. FIG.
S5a shows the output y, of a device for all points in the
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pattern space, when trained on a single point in the centre.
The device used W=24 quantization levels for each
dimension, with 4-tuple (n=4) address connections disposed
randomly over the input store. The width of the kernel is
large for practical values of n and the number of dimensions
in the pattern space, and therefore the complexity of the
mapping function that can be learned is quite low. Bar-chart
coding produces a large number of coded bits and therefore
the size of the input store and the number of memories
increases rapidly with the number of input dimensions, so
that it is not satisfactory unless the number of input dimen-
sions is low or the desired mapping function is very simple.

FIGS. 5b and Sc similarly show the interpolation kernel
for the case where X is encoded in 5-bit simple binary and
a Gray code respectively. The irregularity of the kernel is
evident, though the centre of the kernel is much narrower
than the bar-chart case.

The output from the device is, as one moves within the
pattern space, influenced by the number of memories which
are still receiving the original address produced by the
training pattern. Loosely speaking, the probability of the
n-tuple address changing value is proportional to the Ham-
ming distance between the current input vector and the
original training vector. It is believed that bar-chart coding
gives a regular interpolation kernel because the relationship
between signal distance (i.e. the difference between the
actual values represented) and the Hamming distance
between the corresponding encoded values is monotonic,
whereas this is not so for simple binary (sece FIG. 5b), or
Gray code, although the latter is better than the former in that
the Hamming distance changes only by 1 for every unit
change in input value.

Perfect monotonicity in the relationship between Ham-
ming and signal distance can be obtained only by the use of
highly redundant codes (such as bar-chart coding) having
one bit for each signal level represented. The encoder 14
aims to provide an improved interpolation kernel by encod-
ing the input values using a redundant code which is,
however, shorter than with the bar code.

Typically, the encoder is a ROM device, to the address
lines of which the input signal bits are applied and from the
data lines of which the codeword, stored at the address
corresponding to that combination of input bits, may be
read.

One simple way of doing this is to use a code which
represents each input value, by the concatenation of several
shifted versions of a Gray code, thereby causing some
averaging of the irregularities. One possible composite code

is set out below in Table 1.
TABLE 1
SIG CODE
0 000000010011
1 000100110010
2 001100100111
3 001001100111
4 011001110101
5 011101010100
6 010101001100
7 010011001101
8 110011011111
9 110111111110
10 111111101010
11 111010101011
12 101010111001
13 101110011000
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TABLE 1-continued

SIG CODE
14 100110000000
15 100000000001

The kneel function obtained using this code for the
two-elements vector case is shown, in the same format as
previously, in FIG. 5d.

It is believed that the reason that the use of bar chart
coding results in a large kernel width is that, in that code,
which (assuming linear steps between signal levels) has a
linear relationship between Hamming distance and signal
distance, the slope of the relationship is relatively low. In the
binary code, on the other hand, the slope is relatively steep
and the kernel width is small.

Suppose we define a normalized Hamming distance as
d',=d,/d,,,... where d, is the actual Hamming distance and
d;,..c 1S the maximum Hamming distance for the code under
consideration (i.e. the number of bits in the code) and the
normalized signal distance as d'.=d.d,,,,. Where q, is the
signal distance and d,,, ... is the maximum signal distance for
that code. For a 16-level (linear) system the maximum signal
distance is 15: however, for purposes of comparison it may
be preferable to assume the maximum to be 16 (i.e. the
number of levels).

Thus the mean slope (as opposed to the instantaneous
slope) at any point is d',/d',. It follows from the above that
the slope, for small signal levels (e.g. up to 10%, or
preferably 15% or even 20 or 25% of the maximum signal
distance) is in excess of unity, thereby representing an
improvement over the bar-chart case.

In general, the Hamming distance (and hence slope) is not
a unique function of signal distance in that it depends on
which signal level one starts from. The above criterion may
be taken to indicate that the slope obtained by taking the
average of the mean slopes of all possible starting points (in
both directions of signal distance) is greater than unity; more
preferably, however, the mean slope for each starting point
is greater than unity.

It is also postulated that the ‘noise’ remote from the centre
of the kernel plots shown in FIGS. 5a to 5d is a result of the
non-monotonicity of the Hamming distance signal relation-
ship. It is thus preferable to use codes having a high
monotonicity.

Before considering this point, we will consider possible
ways in which departure from monotonicity can be mea-
sured. FIG. 6 shows a hypothetical graph of Hamming
distance versus signal distance starting from some arbitrary
signal level. Any point on the plot which has a normalized
Hamming distance less than its previous maximum is indica-
tive of a departure from monotonicity, and one possible
measure of badness would be the sum of these departures,
shown by the dotted lines in FIG. 6. One also takes into
account signal levels lower than the starting level, as indi-
cated by the left hand half of the graph. The average of these
sums taken over all starting points, is referred to here as
“Badness 2”. This is similar to considering the hatched area
in FIG. 6 )which may be a viable alternative measure).

Alternatively, one could sum the departures from the
previous minimum, proceeding in the negative direction (see
chain-dot lines within the cross-hatched area in FIG. 6)—or
the mean of this and Badness 2.

Another, similar, approach would be to take the sum
(Badness 1) of the differences from the immediately pre-
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ceding point if the latter is higher—i.e. the distances shown
dotted i FIG. 7. The possibility of upper and lower mea-
sures does not arise in this case, since the two would always
give the same value.

A further option is to weight the significance of these
departures (on the basis that a ‘kink’ of given absolute size
may be more significant at low distances than at high ones)
by dividing each difference by she signal distance, before
summations, thereby forming a “weighted badness.”

To summarize the above, the badness measures may be
defined mathematically as

dsmax (dsmax
Badness 1= ) {Z (i =1, j)=dali, )+

=0 \i=j+l
o
D i+ L -G, j>>0}

i=j-1

dsmax {dsmax S P 7 -
dli=1, —d(l,
Weighted Badness 1= { > izl )= »

i—
=0 \i=j+1 Y

(dy(i+1, j) = dy (i, J))
j-i

[yl

dsmax (dsmax
Badness 2 = Z {Z <3;Z(l', N —di, j)) +

=0 \i=j1

Mo

(i, - diti. j))}

i

-j—1

&0, D =i ) > .

dsmax (dsmax
Weighted Badness 2 =
ST o

=0 =1
% At
< dy(is J) = di(i, J) >

i
i=j-1 1

Where d,,’ (i,j) is the normalized Hamming distance between
the codes representing signal levels i and j; d,,' (i,j) is the
maximum normalized Hamming distance between the code
j and any code prior (in the direction of summation) to code
j; dsmax is the maximum signal distance (equal to the
number of signal levels minus one); and the triangular
brackets indicate that negative values are taken to be zero
(ie. <x>=0 for x=0).

Loosely speaking, monotonicity here has its usual mean-
ing. Where, in the following, exact values are quoted, we
define monotonicity as being the reciprocal of the badness.

The following table indicates Badness 1 and Badness 2
figures for a number of 16-level codes. These figures are not
normalized, but those having more than four bits are scaled
to four bits.

TABLE 2

Bl B2
Four-bit binary 3.125 5.6875
Four-bit Gray 2.75 5.1875
Eight-bit Concatenated Gray (odd shift) 0.875 2.469
Seven-bit Lloyd no. 1 1.107 1.750
Twelve-bit Concatenated Gray (1, 3) 1.2085 2.5835
Twelve-bit Concatenated Gray (+1, +7) 1.1666 2.479

Note that the results for concatenated Gray codes depend on
the shift(s) used. For the 8-bit code, the results obtained with
an odd shift are significantly better than with an even shift.
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These figures show that 4-bit Gray code has a better
monotonicity than binary. The 12-bit concatenated Gray
code (with shifts of (+1,+7)—which were found to give the
highest monotonicity figure for that code) is significantly
better, though not as good as the 8-bit concatenated Gray
code. The 7-bit Lloyd code was designed (manually) to
achieve a good monotonicity, discarding the cyclic property
of the Gray code which is not needed for present purposes.
It is slightly better or slightly worse than the 8-bit concat-
enated Gray code, according to which measure one consid-
ers. Note that this code is entirely monotonic (with a linear
Hamming/signal distance relationship) for signal distances
(from any starting value) up to 3 (i.e. 20% of the maximum
signal distance of 15). With a small modification (1111011
for signal level 12) this limit is increased to 4.

The codes are set out below (Table 3).

TABLE 3

BINARY 4-BIT(FIG. 8a) GRAY(FIG. 8b)

SIG CODE SIG CODE
0 0000 0 0000
1 0001 1 0001
2 0010 2 0011
3 0011 3 0010
4 0100 4 0110
5 0101 5 0111
6 0110 6 0101
7 0111 7 0100
8 1000 8 1100
9 1001 9 1101

10 1010 10 1111
11 1011 11 1110
12 1100 12 1010
13 1101 13 1011
14 1110 14 1001
15 1111 15 1000

CONCATENATED (8 BIT) GRAY (FIG. 8c) 11OYD (FIG. &)

SIG CODE SIG CODE
0 00000001 0 0000000
1 00010011 1 0000001
2 00110010 2 0000011
3 00100110 3 0000111
4 01100111 4 0001111
5 01110101 5 0001110
6 01010100 6 0011110
7 01001100 7 0011100
8 11001101 8 0111100
9 11011111 9 0111000

10 11111110 10 1111000

11 11101010 11 1111001

12 10101011 12 1111101

13 10111001 13 1111111

14 10011000 14 1110111

15 10000000 15 1110110

FIGS. 84-8d codes as (normalized) Hamming distance
against Signal distance (from 0) plots. The bar code is also
illustrated for comparison (FIG. 8e)

In general, the monotonicity of the code used is greater
than that of the binary code representing the same number of
signal levels; preferably, it is at least 1.5 times that figure
preferably it is at least 2.0 times that figure.

It is expected that a concatenation of shifted binary codes
will have poor monotonicity and that the codes used pref-
erably exceed to the desired extent that of such a code.

The means adopted by the control unit—for adaptively
adjusting the contents of the memories—during the learning
phase will now be discussed.
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The adaptation by the RAM memory contents to develop
the required mapping function may be done using a gradient
descent procedure. It can be shown that the gradient is very
easily calculated and that the error surface for the system is
quadratic thereby indicating that convergence is always
possible.

Each memory in the system is addressed by an n-tuple
address whose value depends on the input vector X. Thus,
the output of each memory in the system depends in some
complex way on X, and in general the output of the j*
memory in the i” bank can be expressed as C(X).

The output of the i”* bank is then:

0 (9]

vi= ) eX

i

where Q is the number of memories per bank.

Let the target output vector when X is input be T=[t,. . .
ty]- The mean square output error of the system can then be
expressed as:

1 @
E==) Gi-n)?

Substituting (1) into (2) gives an expression for the mean
square error in terms of the contents of the memories:

&)

1&g ?
E= NZ{Z c;j(X)—n}
i=1 | j=1

Equation 3 shows that the highest power term involving
C;(X) in the expression for mean square error is two. This
indicates a single minimum, quadratic surface, and so con-
vergence to a global optimum is guaranteed using a gradient
algorithm.

The gradient descent algorithm operates on the currently
addressed memory contents such that:

= @

+1 = L
C‘-j- (X)_CU(X)+k 3CHX)

where k(k=1) is a constant determining the rate of conver-
gence.

The gradient term required in (4) is simply calculated
from (3) as:

AE?

T —2.(y:i—1)=2e:
ACHX) i —1)=2¢

where ¢; is the difference between the output of the i bank
and its target value. So, the algorithm for modifying the
contents becomes:

Cij"+1(X)=Cij"(X)+2k' bt )

If a sufficiently large number of training patterns is
available, a single exposure to each may be sufficient. In
practice, however, it will usually be necessary to expose the
system repeatedly to the training set, until convergence to a
desired level of error is obtained. It may be found advanta-

geous to vary, in successive passes, the order in which the
training patterns are presented.
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What is claimed is:

1. A pattern recognition apparatus comprising:

an input port for receiving a set of input digital signal
values representing a pattern of physical occurrences
distributed over time or space to be recognized;

means for encoding the input digital signal values into
coded input signal values to form a digital representa-
tion of the received set of input digital signal values;

a plurality of addressable digital signal storage memory
devices each having at least one address line for
addressing locations therein, the address lines being
connected to receive bits from said digital representa-
tion; and

means connected to receive digital data signals from said
memory devices for producing a composite digital
output signal dependent on data signals read from the
addressed locations of the memory devices;

wherein the means for encoding employs a redundant
code having a normalized coded input signal value
Hamming distance to normalized input signal value
distance relationship with a mean slope greater than 1
for input signal value distances up to a predetermined
level of at least 10% of the maximum input signal value
distance.

2. An apparatus according to claim 1, in which said means
for encoding is constructed to cause said slope to be at least
1.5.

3. An apparatus according to claim 2, in which said means
for encoding is constructed to cause said slope to be at least
2.

4. An apparatus according to claim 1 in which said means
for encoding is constructed to cause said predetermined
level to be 15%.

5. An apparatus according to claim 1 in which said means
for encoding is constructed to cause said predetermined
level to be 20%.

6. An apparatus according to claim 1 in which said means
for encoding is constructed to cause said predetermined
level to be 25%.

7. An apparatus according to claim 1 in which said means
for encoding is constructed to cause said code to employ a
number of bits which is:

i) greater than that which a binary code would require to

represent an equal number of signal levels; and

ii) less than that which a bar code would require to
represent an equal number of signal levels;

and has a higher monotonicity than would such a binary
code.

8. A pattern recognition apparatus comprising:

an input port for receiving a set of input digital signal
values representing a pattern of physical occurrences
distributed over time or space to be recognized;

means for encoding the input digital signal values to form
a digital representation of the received set of input
digital signal values;

a plurality of addressable digital signal storage memory
devices each having at least one address line for
addressing locations therein, the address lines being
connected to receive bits from said digital representa-
tion; and

means connected to receive digital data signals from said
memory devices for producing a composite digital
output signal dependent on data signals read from the
addressed locations of the memory devices;

wherein the means for encoding uses a code employing a
number of bits which is:
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i) greater than that which a binary code would require
to represent an equal number of signal levels; and
ii) less than that which a bar code would require to

represent an equal number of signal levels;
and being selected to have a higher monotonicity than
would such a binary code.

9. An apparatus according to claim 7, in which the means
for encoding is constructed to cause said monotonicity to be
at least 1.5 times that of a binary code.

10. An apparatus according to claim 9, in which the means
for encoding is constructed to cause said monotonicity to be
at least twice that of a binary code.

11. An apparatus according to claim 8, in which the means
for producing a composite output signal comprises a plu-
rality of digital signal combining circuits, each connected to
receive digital data signals from a different plurality of the
said memory devices, and each being arranged to produce a
scalar valued signal output in dependence upon the data
signals read from the addressed locations of those memory
devices to which it is connected, the composite output signal
being a vector including said scalar valued signal outputs.

12. A method of training a pattern recognition device
which is arranged to receive a set of digital input signal
values representing a pattern of physical occurrences dis-
tributed over time or space to be recognized comprising the
steps of:

encoding said digital input signal values into coded input

signal values to form a digital signal representation of
said pattern using a redundant code which has a nor-
malized Hamming distance to normalized input signal
value distance relationship with a mean slope greater
than 1 for input signal value distances up to a prede-
termined level of at least 10% of the maximum input
signal value distance; and

using the coded input signal values to recognize the

pattern of physical occurrences.

13. A method of training a pattern recognition device
which is arranged to receive a set of digital input signal
values representing a pattern of physical occurrences dis-
tributed over time or space to be recognized comprising the
steps of:

encoding said digital input signal values using a code

employing a number of bits which is:

i) greater than that which a binary code would require
to represent an equal number of signal levels; and
ii) less than that which a bar code would require to

represent an equal number of signal levels;
and being selected to have a higher monotonicity than
would such a binary code; and

using the coded input signal values to recognize the

pattern of physical occurrences.

14. A pattern recognition apparatus comprising:

an input port for receiving a set of digital input signal

values representing a pattern of physical occurrences
distributed over time or space to be recognized;
means for encoding the digital input signal values into
coded input signal values to form a digital representa-
tion of the received set of input digital signal values;

a plurality of addressable digital signal storage memory

devices each having at least one address line for
addressing locations therein, the address lines being
connected to receive bits from said digital representa-
tion; and

means connected to receive digital data signals from said

memory devices for producing a composite digital
output signal dependent on data signals read from the
addressed locations of the memory devices;
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wherein the means for encoding employs a redundant
code which has a normalized coded input signal value
Hamming distance to normalized input signal value
distance relationship having a mean slope greater than
2 for input signal value distances up to a predetermined
level of at least 20% of the maximum input signal value
distance.

15. An apparatus according to claim 14 in which the
predetermined level is 25%.

16. An apparatus according to claim 14 in which the code
employs a number of bits which is:

i) greater than that which a binary code would require to

represent an equal number of signal levels; and

ii) less than that which a bar code would require to

represent an equal number of signal levels;

and has a monotonicity at least 1.5 times that of a binary

code.

17. An apparatus according to claim 14 in which the
means for producing a composite output signal comprise a
plurality of digital signal combining circuits, each connected
to receive data signals output from a different plurality of
said memory devices and each being arranged to produce a
scalar valued signal output in dependence upon the data
signals read from the addressed locations of those memory
devices to which it is connected, the composite output signal
being a vector including said scalar valued signal outputs.

18. A pattern recognition apparatus comprising:

an input port for receiving a set of input digital signal

values representing a pattern of physical occurrences
distributed over time or space to be recognized;
means for encoding the input digital signal values into
coded input signal values to form a digital representa-
tion of the received set of input digital signal values;

a plurality of addressable digital signal storage memory

devices each having at least one address line for
addressing locations therein, the address lines being
connected to receive bits from said digital representa-
tion; and

means connected to receive digital data signals from said

memory devices for producing a composite digital
output signal dependent on data signals read from the
addressed locations of the memory devices;

wherein the means for encoding uses a code employing a

number of bits which is:

i) greater than that which a binary code would require
to represent an equal number of signal levels; and
ii) less than that which a bar code would require to

represent an equal number of signal levels;
and being selected to have a monotonicity at least 1.5
times that of a binary code.

19. An apparatus according to claim 18 in which said
monotonicity is at least twice that of a binary code.

20. An apparatus according to claim 18 in which the
means for producing a composite output signal comprise a
plurality of digital signal combining circuits, each connected
to receive data signals output from a different plurality of
said memory devices and each being arranged to produce a
scalar valued signal output in dependence upon the data
signals read from the addressed locations of those memory
devices to which it is connected, the composite output signal
being a vector including said scalar valued signal outputs.

21. A method of training a pattern recognition device
which is arranged to receive a set of digital input signal
values representing a pattern of physical occurrences dis-
tributed over time or space to be recognized comprising the
steps of:
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encoding said digital input signal values into coded input values representing a pattern of physical occurrences dis-
signal values to form a digital signal representation of tributed over time or space to be recognized comprising the
said pattern employing a redundant code which has a steps Of', e . .
normalized coded input signal values Hamming dis- encoding said digital input signal values by employing a

A 10p &0 - & 5 number of bits which is:
tance to normalized input signal value distance rela- i) greater than that which a binary code would require
tionship having a mean slope greater than 2 for input to represent an equal number of signal levels; and
signal value distances up to a predetermined level of at ii) less than that which a bar code would require to
least 20% of the maximum input signal value distance; represent an equal number of 51gna1. l.evels;
d and being selected to have a monotonicity at least 1.5

.an ) ) ) 10 times that of a binary code; and

using the coded .mput signal values to recognize the using the coded input signal values to recognize the
pattern of physical occurrences. pattern of physical occurrences.

22. A method of training a pattern recognition device
which is arranged to receive a set of digital input signal ¥ % % % %



