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Brief Papers

A General Regression Neural Network

Donald F. Specht

Abstract—This paper describes a memory-based network that
provides estimates of continuous variables and converges to the
underlying (linear or nonlinear) regression surface. This gen-
eral regression neural network (GRNN) is a one-pass learning
algorithm with a highly parallel structure. Even with sparse
data in a multidimensional measurement space, the algorithm
provides smooth transitions from one observed value to an-
other. The algorithmic form can be used for any regression
problem in which an assumption of linearity is not justified.
The parallel network form should find use in applications such
as learning the dynamics of a plant model for prediction or
control.

I. INTRODUCTION

XTENSIVE effort has been devoted to developing
techniques for identification of linear time-invariant
systems (for example, see [1] and [2]). The linear iden-
tification is based on measured input and output vatues of
the system. Identification for nonlinear systems is also
based on measured input and output values, but it is more
difficult. Recently Narendra and Parthasarathy [3] have
presented a procedure that uses neural networks for iden-
tification and control of nonlinear systems. For identifi-
cation, the input and output values of the system are fed
into a multilayer neural network. Although that paper used
the back-propagation algorithm [4] for training the net-
works, the same identification and control framework can
be used with neural networks having other characteristics.
One disadvantage of back-propagation is that it can take
a large number of iterations to converge to the desired
solution. An alternative to back-propagation that has been
used in classification is the probabilistic neural network
(PNN) [5], [6], which involves one-pass learning and can
be implemented directly in neural network architecture.
This paper describes a similar one-pass neural network
learning algorithm which can be used for estimation of
continuous variables.

If the variables to be estimated are future values, then
the procedure is a predictor. If the variable or variables
to be estimated relate output variables to input variables,
then the procedure can be used to model the process or
system. Once the system has been modeled, a control
function can be defined. If the procedure is taught samples
of a control function, it can estimate the entire control
function, and it becomes a controller.
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Subsection II-A of this paper provides the mathematical
derivation of a procedure. Subsection II-B describes the
normalization required for the input data and a method for
selecting the proper value of the smoothing parameter.
Subsection II-C extends the method to employ clustering
and to adapt to changing conditions. In subsection II-D
the method is compared with similar techniques, such as
the procedures of Moody and Darken [7], radial basis
functions [8], [9], the cerebellar model arithmetic com-
puter (CMAC) [10], and classical regression techniques.
Hardware implementation is discussed in subsection II-E.
Section III presents two examples. The first example
models a simple nonlinear gain. The second example, with
five inputs and one output, was first described in [3] and
solved using a back-propagation neural network (BPN).
For the second example this technique required only 1%
of the training samples required by the back-propagation
model to achieve comparable accuracies.

II. APPROACH

The regression of a dependent variable, Y, on an inde-
pendent variable, X, is the computation of the most prob-
able value of Y for each value of X based on a finite num-
ber of possibly noisy measurements of X and the
associated values of Y. The variables X and Y are usually
vectors. In system identification, the dependent variable,
Y, is the system output and the independent variable, X,
is the system input. In order to implement system identi-
fication, it is usually necessary to assume some functional
form with unknown parameters a;. The values of the pa-
rameters are chosen to make the best fit to the observed
data. In the case of linear regression, for example, the
output, Y, is assumed to be a linear function of the input,
X, and the unknown parameters, ;. are linear coeffi-
cients. The approach presented here uses a method that
frees it from the necessity of assuming a specific func-
tional form. Rather, it allows the appropriate form to be
expressed as a probability density function (pdf) that is
empirically determined from the observed data using Par-
zen window estimation [11]. Thus, the approach is not
limited to any particular form and requires no prior
knowledge of the appropriate form.

If one knows the joint pdf of x and y, the conditional
pdf and the expected value can be computed. In this pa-
per, the joint pdf will be estimated from examples using
nonparametric estimators. The resulting regression equa-
tion can be implemented in a parallel, neural-network-like
structure. Since the parameters of the structure are deter-

1045-9227/91801.00 <= 1991 IEEE

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on November 11,2020 at 19:48:44 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2, NO. 6. NOVEMBER 1991 569

mined directly from examples rather than iteratively, the
structure ‘‘learns’’ and can begin to generalize immedi-
ately. To the extent that the network is implemented in
parallel hardware, it also can estimate values of Y for any
new value of X in the short time determined by the prop-
agation time through four layers of a neural network.

A. General Regression

Assume that f(x, y) represents the known joint contin-
uous probability density function of a vector random vari-
able, x, and a scalar random variable, y. Let X be a par-
ticular measured value of the random variable x. The
conditional mean of y given X (also called the regression
of y on X) is given by
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When the density f(x, y) is not known, it must usually be
estimated from a sample of observations of x and y. For
a nonparametric estimate of f(x, y), we will use the class
of consistent estimators proposed by Parzen [11] and
shown to be applicable to the multidimensional case by
Cacoullos [12]. As noted in [13], these estimators are a
good choice for estimating the probability density func-
tion, f, if it can be assumed that the underlying density is
continuous and that the first partial derivatives of the
function evaluated at any x are small. The probability es-
timator f(X, Y) is based upon sample values X' and Y’ of
the random variables x and y, where n is the number of
sample observations and p is the dimension of the vector
variable x:
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A physical interpretation of the probability estimate f(X,
Y) is that it assigns sample probability of width ¢ for each
sample X' and Y', and the probability estimate is the sum
of those sample probabilities. Substituting the joint prob-
ability estimate f in (2) into the conditional mean, (1),
gives the desired conditional mean of y given X. In par-
ticular, combining (1) and (2) and interchanging the or-
der of integration and summation yields the desired con-
ditional mean, designated f(X):

X - XHTx -

Defining the scalar function D7,
D} =X - X)X -X) @)

and performing the indicated integrations yields the fol-
lowing:

5

Because the particular estimator, (3), is readily decom-
posed into x and y factors, the integrations were accom-
plished analytically. The resulting regression, (5), which
involves summations over the observations, is directly ap-
plicable to problems involving numerical data.

Parzen [11] and Cacoullos {12] have shown that density
estimators of the form of (2) used in estimating (1) by (5)
are consistent estimators (asymptotically converging to the
underlying probability density function f(x, y)) at all
points (x, y) at which the density function is continuous,
provided that ¢ = o(n) is chosen as a decreasing function
of n such that

lim o(n) =0
and
lim no”(n) = oo. 6)

The estimate Y(X) can be visualized as a weighted aver-
age of all of the observed values, Y;, where each observed
value is weighted exponentially according to its Euclidean
distance from X. When the smoothing parameter ¢ is made
large, the estimated density is forced to be smooth and in
the limit becomes a multivariate Gaussian with covari-
ance o?1. On the other hand, a smaller value of ¢ allows
the estimated density to assume non-Gaussian shapes, but
with the hazard that wild points may have too great an
effect on the estimate. As o becomes very large, Y(X) as-
sumes the value of the sample mean of the observed V',
and as o goes to 0, P(X) assumes the value of the Y’ as-
sociated with the observation closest to X. For interme-
diate values of ¢, all values of ¥’ are taken into account,
but those corresponding to points closer to X are given
heavier weight.

When the underlying parent distribution is not known,
it is not possible to compute an optimum o for a given
number of observations . It is therefore necessary to find
o on an empirical basis. This can be done easily when the
density estimate is being used in a regression equation
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because there is a natural criterion that can be used for
evaluating each value of ¢, namely, the mean squared er-
ror between ¥/ and the estimate Y(X’). For this purpose,
the estimate in (5) must be modified so that the jth element
in the summation is eliminated. Thus each Y(X') is based
on inference from all the observations except the actual
observed value at X’. This procedure is used to avoid an
artificial minimum error as ¢ — 0O that results when the
estimated density is allowed to fit the observed data points.
Overfitting of the data is also present in the least-squares
estimation of linear regression surfaces, but there it is not
as severe because the linear regression equation has only
p + 1 degrees of freedom. If n >> p, the phenomenon
of overfitting is commonly ignored.

Y and ¥ can be vector variables instead of scalars. In
this case, each component of the vector ¥ would be esti-
mated in the same way and from the same observations
(X, Y) except that Y is now augmented by observations
of each component. It will be noted from (5) that the de-
nominator of the estimator and all of the exponential terms
remain unchanged for vector estimation,

The explanation here is similar to that in [14]. That
paper goes on to approximate f(x, y) with a truncated
polynomial [15]. The estimator of (5) then becomes the
ratio of two polynomials. Very recently, Grabec [16] used
the same estimator to predict chaotic behavior. Based on
application of the maximum entropy principle, he devel-
oped an iterative technique for optimal estimation with a
reduced set of k exemplars, where k < n.

B. Normalization of Input and Selection of Value of
Smoothing Parameter

As a preprocessing step, it is usually necessary to scale
all input variables such that they have approximately the
same ranges or variances. The need for this stems from
the fact that the underlying probability density function is
to be estimated with a kernel that has the same width in
each dimension. This step is not necessary in the limit as
n = oo and o = 0, but it is very helpful for finite data
sets. Exact scaling is not necessary, so the scaling vari-
ables need not be changed every time new data are added
to the data set.

It has been suggested that an even better estimation of
densities using Parzen windows and finite data sets can be
obtained using a different set of o’s for each exemplar
[17]. This concept could be carried into the general
regression equations too, but would negate the instant
learning capability of the network as proposed.

After rough scaling has been accomplished, it is nec-
essary to select the width of the estimating kernel, o. A
useful method of selecting o is the holdout method. For a
particular value of ¢, the holdout method consists in re-
moving one sample at a time and constructing a network
based on all of the other samples. Then the network is
used to estimate Y for the removed sample. By repeating
this process for each sample and storing each estimate,
the mean-squared error can be measured between the ac-
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tual sample values Y' and the estimates. The value of ¢
giving the smallest error should be used in the final net-
work. Typically, the curve of mean-squared error versus
o exhibits a wide range of values near the minimum, so it
is not difficult to pick a good value for ¢ without a large
number of trials.

Finally, it should be pointed out that the Gaussian ker-
nel used in (2) could be replaced by any of the Parzen
windows. Several of these have been enumerated in [6]
and expressed in terms of neural network nodes having
specific activation functions. Particularly attractive from
the point of view of computational simplicity is [6, eq.
(21)], which results in the estimator
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This measure is often called the city block distance. In
experience with PNN classification we have found that
the city block metric works approximately as well as the
Euclidian distance metric. It is assumed that this obser-
vation will hold true when using the same pdf estimators
for nonlinear regression.

C. Clustering and Adaptation to Nonstationary
Statistics

For some problems, the number of observations (X, ¥)
may be small enough that it is desired to use all the data
obtainable directly in the estimator of (5) or (7). In other
problems, the number of observations obtained can be-
come sufficiently large that it is no longer practical to as-
sign a separate node (or neuron) to each sample. Various
clustering techniques can be used to group samples so that
the group can be represented by only one node that mea-
sures distance of input vectors from the cluster center.
Burrascano [18] has suggested using learning vector
quantization to find representative samples to use for PNN
to reduce the size of the training set. This same technique
also can be used for the current procedure. Likewise, K-
means averaging [19], adaptive K-means [7], one-pass K-
means clustering, or the clustering technique used by
Reilly et al. [19] for the restricted Coulomb energy (RCE)
network could be used. However the cluster centers are
determined, let us assign a new variable, N;, to indicate
the number of samples that are represented by the ith clus-
ter center. Equation (5) can then be rewritten as

®




IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2,

Al(k) = Atk — 1) + y/) incremented each time a
; : training observation Y’ for
B'(k) = B'(k — 1) + 1) cluster i is encountered
(10)

where m < n is the number of clusters, and A'(k) and
B'(k) are the values of the coefficients for cluster i after k
observations. A/(k) is the sum of the Y values and Bi(k) is
the number of samples assigned to cluster i.

The method of clustering can be as simple as establish-
ing a single radius of influence, r. Starting with the first
sample point (X, Y), establish a cluster center, X', at X.
All future samples for which the distance | X — X '| is less
than the distance to any other cluster center and is also
< r would update equations (10) for this cluster. A sample
for which the distance to the nearest cluster is > would
become the center for a new cluster. Note that the nu-
merator and denominator coefficients are completely de-
termined in one pass through the data. No iteration is re-
quired to improve the coefficients.

Since the A and B coefficients can be determined using
recursion equations, it is easy to add a forgetting function.
This is desirable if the network is being used to model a
system with changing characteristics. If equations (10) are
written in the form

-1 1
Aly=——A" k-1 +-Y
T
; T—1_,; 1
B'ky =—B' (k- 1) + -
T
new sample assigned to cluster i
; 1 .
Ay = T—— Ak - 1)
i T— 1.,
B'(k) = ——B'(k - 1)

new sample assigned to a cluster # i

(11
then 7 can be considered the time constant of an exponen-
tial decay function (where 7 is measured in update sam-
ples rather than in units of time). It is interesting to note
that if all of the coefficients were attenuated by the factor
(r — 1)/7, the regression equation (9) would be un-
changed; however, the new sample information will have
an influence in the local area around its assigned cluster
center.

For practical considerations, there should be a lower
threshold established for B, so that when suflicient time
has elapsed without update for a particular cluster, that
cluster (and its associated A’ and B' coefficients) would be
eliminated. In the case of dedicated neural network hard-
ware, these elements could be reassigned to a new cluster.

When the regression function of (9) is used to represent
a system that has many modes of operation, it is undesir-
able to forget data associated with modes other than the
current one. To be selective about forgetting, one might
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assign a second radius, p >> r. In this case, equations
(11) would be applied only to cluster centers within a dis-
tance p of the new training sample.

Equation (12), the equivalent estimator using city block
distances, can use the same coefficient update equations,
(10) and (11).

(12)

Higher moments can also be estimated with y? substi-
tuted for y in (1). Therefore variance of the estimate and
standard deviation can also be estimated directly from the
training examples.

D. Comparison with Other Techniques

Conventional nonlinear regression techniques involve
either a priori specification of the form of the regression
equation with subsequent statistical determination of some
undetermined constants, or statistical determination of the
constants in a general regression equation, usually of
polynomial form. The first technique requires that the
form of the regression equation be known a priori or
guessed. The advantages of this approach are that it usu-
ally reduces the problem to estimation of a small number
of undetermined constants, and that the values of these
constants when found may provide some insight to the
investigator. The disadvantage is that the regression is
constrained to yield a “‘best fit’’ for the specified form of
equation. If the specified form is a poor guess and not
appropriate to the data base to which it is applied, this
constraint can be serious. Classical polynomial regression
is usually limited to polynomials in one independent vari-
able or low order, because high-order polynomials in-
volving multiple variates often have too many free con-
stants to be determined using a fixed number, n, of
observations (X', Y%). A classical polynomial regression
surface may fit the n observed points very closely, but
unless n is much larger than the number of coefficients in
the polynomial, there is no assurance that the error for a
new point taken randomly from the distribution fx, y)
will be small.

With the regression defined by (5) or (7), however, it
is possible to let ¢ be small, which allows high-order
curves if they are necessary to fit the data. Even in the
limit as o approaches 0, (5) is well behaved. It estimates
7(X) as being the same as the Y’ associated with the X'
that is closest in Euclidean distance to X (nearest neighbor
estimator). For any o > 0, there is a smooth interpolation
between the observed points (as distinct from the discon-
tinuous change of ¥ from one value to another at points
equidistant from the observed points when o = 0). Other
methods used for estimating general regression surfaces
include the back-propagation of errors neural network
(BPN), radial basis functions (RBF’s) [8], the method of
Moody and Darken [7], CMAC [10], and the use of Ko-
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honen mapping to find the knots for a multidimensionatl
spline fit [22].

The principal advantages of GRNN are fast learning
and convergence to the optimal regression surface as the
number of samples becomes very large. GRNN is partic-
ularly advantageous with sparse data in a real-time envi-
ronment, because the regression surface is instantly de-
fined everywhere, even with just one sample. The one-
sample estimate is that ¥ will be the same as the one ob-
served value regardless of the input vector X. A second
sample will divide hyperspace into high and low halves
with a smooth transition between them. The surface be-
comes gradually more complex with the addition of each
new sample point.

The principal disadvantage of the technique of (5) is
the amount of computation required of the trained system
to estimate a new output vector. The version of (9)-(11)
using clustering overcomes this problem to a large de-
gree. Soon the development of neural-network semicon-
ductor chips capable of performing all the indicated op-
erations in parallel will greatly speed performance. Almost
all the neurons are pattern units, and are identical. The
step and repeat microlithography techniques of semicon-
ductor manufacturing are ideally suited to replicating large
numbers of identical cells.

The algorithms of (5) or (7) can be used for rapid de-
velopment of applications because they are easy to use.
When further adaptation is not required, an estimation
technique that requires less computation for evaluation of
new samples could be substituted. For this purpose, the
following techniques could be used: (1) a least-squares fit
of a general polynomial, (2) a feedforward neural network
based on the back-propagation of errors paradigm, or (3)
use of learning vector quantization or other clustering
methods to find a reduced set of exemplars.

The general polynomial is essentially not usable unless
a very large number of exemplars are available. However,
(5) or (7) can be used to define the regression surface
everywhere and then can be used to ‘‘manufacture’’ a suf-
ficient number of exemplars. Back-propagation (BPN) re-
quires very long training times [23] and is subject to con-
verging to local minima instead of finding the global
minimum error surface. For a mature application, the long
training time may be justified. To guard against getting
trapped in local minima, the BPN can be compared with
the GRNN accuracy. If the BPN accuracy is not compa-
rable, the BPN adaptation should be restarted with differ-
ent initial conditions until comparable accuracy is ob-
tained.

For interpolation applications, the procedure averages
the values of sample points using the Parzen window
function. When the samples are subject to measurement
errors or stochastic variations, then averaging of this type
is desirable. However, when the given sample values are
presumed to be accurate and it is desired to perform a
smooth interpolation between them, then the averaging of
many samples will result in errors at the location of the
sample points. A preferable solution in this case is the
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method of radial basis functions, in which a linear com-
bination of exponential terms is found that gives no error
at the sample points. Generally, RBF neurons are not
identical and require global computations to determine
their parameters.

The technique most similar to the proposed estimator is
that proposed by Moody and Darken [7]. The structure of
the network that implements the ratio of the sums of ex-
ponentials is, indeed, identical for one variant of each
method. However, the training methods are quite differ-
ent. Whereas Moody and Darken (hereafter referred to as
M&D) use least mean squared adaptation to find the coef-
ficients in (5) or (7), the proposed method uses observed
samples (or averages of observed samples) directly as
these coefficients. This may not seem like much of a dif-
ference, but it results in three advantages:

1) The estimate of (5) or (7) is the weighted average
of actual sample points. This fact establishes that
the estimate is bounded to the range of the observed
samples.

2) The variable ¢ is a smoothing parameter that can be
made large to smooth out noisy data or small to al-
low the estimated regression surface to be as non-
linear as is required to approximate closely the ac-
tual observed values of Y.

3) The coefficients are determined in one pass through
the data; no iterative algorithm is required.

In contrast, there is no constraint on the M&D algorithm
to estimate values within the range of the observed sam-
ples. A combination of large o and sparse, noisy samples
can produce artificial minima and maxima well outside
the range of observed samples, Y'. At the limiting con-
dition of ¢ = 0, both algorithms converge to become the
nearest neighbor estimator. For larger numbers of obser-
vations, the averaging inherent in the M&D procedure re-
duces its sensitivity to noise.

CMAC [10] represents another similar structure for es-
timating continuous output variables based on stored ex-
perience. In this structure the neurons closest (in Eucli-
dian distance) to the input vector turn on and the others
produce zero output. These neurons are less complicated
than those of RBF, M&D, or the present method, but more
are required to produce a smoothly varying output func-
tion.

E. Neural-Network Implementation

An artificial neural network is usually defined as a net-
work composed of a large number of simple processors
(neurons) that are massively interconnected, operate in
parallel, and learn from experience (examples). These are
the primary known characteristics of biological neural
systems that are the easiest to exploit in artificial neural
systems. Fig. 1 shows the overall block diagram of the
present proposal in its adaptive form represented by (9)
or (12). The input units are merely distribution units,
which provide all of the (scaled) measurement variables
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Fig. 1. GRNN block diagram.

X to all of the neurons on the second layer, the pattern
units. The pattern unit is dedicated to one exemplar or one
cluster center. When a new vector X is entered into the
network, it is subtracted from the stored vector repre-
senting each cluster center. Either the squares or the ab-
solute values of the differences are summed and fed into
a nonlinear activation function. The activation function
normally used is the exponential, although all of the al-
ternate activation functions shown in [6, table 1] also
could be used here. The pattern unit outputs are passed
on to the summation units.

The summation units perform a dot product between a
weight vector and a vector composed of the signals from
the pattern units. The summation unit that generates an
estimate of f(X)K sums the outputs of the pattern units
weighted by the number of observations each cluster cen-
ter represents. When using (11), this number is also
weighted by the age of the observations. K is a constant
determined by the Parzen window used, but is not data-
dependent and does not need to be computed. The sum-
mation unit that estimates Yf(X)K multiplies each value
from a pattern unit by the sum of samples Y/ associated
with cluster center X'. The output unit merely divides
Yf(X)K by f(X)K to yield the desired estimate of Y.

When estimation of a vector Y is desired, each com-
ponent is estimated using one extra summation unit, which
uses as its multipliers sums of samples of the component
of ¥ associated with each cluster center X'. There may be
many pattern units (one for each exemplar or cluster cen-
ter); however, the addition of one element in the output
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vector requires only one summation neuron and one out-
put neuron.

What is shown in Fig. 1 is a feedforward network that
can be used to estimate a vector Y from a measurement
vector X. Because they are not interactive, all of the neu-
rons can operate in parallel. Not shown in Fig. 1 is a mi-
croprocessor that assigns training patterns to cluster cen-
ters and updates the coefficients 4’ and B'. One practical
advantage of not migrating the cluster centers, depending
on the hardware implementation chosen, is that the cluster
center data could be written into the pattern units using a
programmable read-only memory. Then the only weights
that have to be adaptive and readily changed are the A’
and B’ weights in the summation layer. Alternatively, the
cluster centers could also be adjusted using K-means av-
eraging [19].

III. EXAMPLES

Estimators of the type described have many potential
uses as models, inverse models, and controllers. Two ex-
amples are presented here. The first is a contrived exam-
ple to illustrate the behavior of the estimated regression
line. The second is an identification problem in controls
first posed by Narendra and Parthasarathy [3].

A. A One-Dimensional Example

A simple problem with one independent variable will
serve to illustrate some of the differences between the
techniques that have been discussed. Suppose that a
regression technique is needed to model a “‘plant’” which
happens to be an amplifier that saturates in both polarities
and has an unknown offset. Its input/output (I/O) char-
acteristic is shown in Fig. 2. With enough sample points,
many techniques would model the plant well. However,
in a large dimensional measurement space, any practical
data set appears to be sparse. The following illustration
shows how the methods work on this example with sparse
data, namely, five samples atx = —2, —1, 0, 1, and 2.
When polynomial regression using polynomials of first,
second, and fourth order was tried, the results were pre-
dictable. The polynomial curves are poor approximations
to the *‘plant’’ except at the sample points. In contrast,
Fig. 3 shows the I/O characteristic of this same plant as
estimated by GRNN. Since GRNN always estimates using
a (nonlinearly) weighted average of the given samples,
the estimate is always within the observed range of the
dependent variable. In the range fromx = —4 tox = 4,
the estimator takes on a family of curves depending on o.
Any curve in the family is a reasonable approximation to
the plant of Fig. 2. The curve corresponding to ¢ = 0.5
is the best approximation. Larger values of ¢ provide more
smoothing, and lower values provide a closer approxi-
mation to the sample values plus a ‘‘dwell”’ region at each
sample point. When the holdout method was used to se-
lect o, 0 = 0.3 was selected (based on only four sample
points at a time).
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Fig. 2. Input/output characteristics of simple “plant.”
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Fig. 3. Input/output characteristics of plant of Fig. 2 as estimated by
GRNN based on sample points at X = ~2, —1. 0. 1. and 2.

The curve that would result from back-propagation
would depend on a number of choices having to do with
the configuration of hidden units, initial conditions, and
other parameters. The main difference between Fig. 3 and
the curve resulting from radial basis functions is that the
IRB]F ordinate would decrease to zero for large values of
X|.

B. Adaptive Control Systems

The fields of nonlinear control systems and robotics are
particularly good application areas that can use the poten-
tial speed of neural networks implemented in parallel
hardware, the adaptability of instant learning, and the
flexibility of a completely nonlinear formulation. A
straightforward technique can be used. First, model the
plant as in Fig. 4. The GRNN learns the relationships
between the input vector (the input state of the system and
the control variables) and the simulated or actual output
of the system. Control inputs can be supplied by a nom-
inal controller (with random variations added to explore
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Fig. 4. Modeling the system.

inputs not allowed by the nominal controller) or by a hu-
man operator. After the model is trained, it can then be
used to determine control inputs using an automated
“‘what if ”’ strategy or by finding an inverse model. Mod-
eling involves discovering the association between inputs
and outputs, so an inverse model can be determined from
the same data base as the forward model by assigning the
input variable(s) to the function of the desired output, Y,
in Fig. 1, and the state vector and other measurements are
considered components of the X vector in Fig. 1. One way
in which the neural network could be used to control a
plant is illustrated in Fig. 5.

Adaptive inverse neural networks can be used for con-
trol purposes either in the feedforward path or in the feed-
back path. Atkeson et al. [24] have used an adaptive in-
verse in the feedforward path with positional and velocity
feedback to correct for residual error in the model. They
noted that the feedback had less effect as the inverse model
improved from experience. Atkeson er al. [24] have used
a content addressable memory as the inverse model and
have reported good results. Interestingly, the success re-
ported was based on using only single nearest neighbors
as estimators. Their paper mentions the possibility of ex-
tending the work to local averaging.

Farrell er al. [25] have used both sigmoidal processing
units and Gaussian processing units as a neural network
controller in a model reference adaptive control system.
They note that the Gaussian processing units have an ad-
vantage in control systems because the localized influence
of each Gaussian node allows the learning system to refine
its control function in one region of measurement space
without degrading its approximation in distant regions.
The same advantage would hold true when using (9) or
(12) as an adaptive inverse.

Narendra and Parthasarathy [3] separate the problem of
control of nonlinear dynamical systems into an identifi-
cation or system modeling section, and a model reference
adaptive control (MRAC) section. Four different repre-
sentations of the plant are described: 1) output of plant is
a linear combination of delayed outputs plus a nonlinear
combination of delayed inputs; 2) output of plant is a non-
linear combination of delayed outputs plus a linear com-
bination of delayed inputs; 3) output of plant is a nonlin-
ear combination of outputs plus a nonlinear combination
of inputs; and 4) output of plant is a nonlinear function of
delayed outputs and delayed inputs. GRNN, together with
tapped delay lines for the outputs and inputs, could di-
rectly implement the identification task for the most gen-
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Fig. 5. A GRNN controller.

eral of these models (which subsumes the others). This is
true both for single-input, single-output (SISO) plants and
for multi-input, multi-output (MIMO) plants. Once the
plant has been identified (modeled), all of the methods of
[3], which are based on the back-propagation network
(BPN) [4], can be used for adapting a controller to mini-
mize the difference between the output of the reference
model and the output of the identification model of the
plant. This combination of technologies yields a control-
ler with the simpler structure of BPN but still utilizes the
instant learning capability of GRNN for the plant mod-
eling function.

One of the more difficult examples given in [3] is ex-
ample number 4, for which the authors identified the plant
using the type 4 model above. In this example, the plant
is assumed to be of the form

yp(k + 1)= f[yp(k)’ yp(k - 1)’ yp(k - 2); Ll(k), M(k - 1)]
(13)

where y,(k + 1) is the next time sample of the output of
the plant, y,(k) is the current output, y,(k — 1) and yplk
— 2) are delayed time samples of the output, u(k) is the
current input, u(k — 1) is the previous input, and the un-
known function f has the form

X\ XX3xs5(x3 — 1) + x4

14
1+x§+x§ (14)

ﬂxl’ X2, X3, X4, xS] =
In the identification model, a GRNN network was used to
approximate the function f. Fig. 6 shows the outputs of
the plant and the model when the identification procedure
was carried out for 1000 time steps using a random input
signal uniformly distributed in the interval [—1, 1], and
using a ¢ = 0.315. In Fig. 6, the input to the plant and
the identified model is given by u(k) = sin 2wk /250) for
k < 500 and u(k) = 0.8 sin 27k/250) + 0.2 sin
(2wk/25) for k > 500. Fig. 6 shows approximately the
same amount of error between the model and the plant as
does [3, fig. 16]; however, only 1000 time steps were
required for the GRNN model to achieve this degree of
accuracy, compared with 100 000 time steps required for
the back-propagation model used in [3]. In other words,
only 1% of the training was required to achieve compa-
rable accuracies. The identification was accomplished
with 1000 nodes in a five-dimensional space. No attempt
has been made to reduce the number of nodes through
clustering.

For back-propagation it may be that for the 100 000
presentations of training points, the same 1000 patterns
could have been repeated 100 times each to achieve the
same results. In this case it could be said that GRNN
learned in one pass through the data instead of 100 passes.
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Fig. 6. Outputs of plant (dark line) and of the GRNN mode! (lighter line)
after training with 1000 random patterns.
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Fig. 7. Outputs of plant (dark line) and of the GRNN model (lighter line)
after training with only ten random patterns.

T TT ™ T

An experiment was performed to determine the extent
to which performance degrades with less training data.
First the training set was reduced to 100 patterns, then to
ten patterns. Fig. 7 shows the output of the plant and the
model when the identification procedure was carried out
for only the first ten random patterns of the 1000 (instead
of the 100 000 used for BPN). The model predicted the
plant output with approximately twice the error of the fully
trained BPN, but using only 0.01% of the training data.
Although it is not to be expected that equivalent perfor-
mance would result from training with any ten random
patterns, this performance was achieved on the first trial
of only ten patterns. Certainly further research is indi-
cated to provide estimates of the number of patterns re-
quired for the identification of important classes of sys-
tems.

IV. SuMMARY AND CONCLUSIONS

This paper describes a new network that provides esti-
mates of continuous variables and converges to the un-
derlying (linear or nonlinear) regression surface. The net-
work features fast learning that does not require an

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on November 11,2020 at 19:48:44 UTC from IEEE Xplore. Restrictions apply.



576 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2. NO. 6, NOVEMBER 1991

iterative procedure, and a highly parallel structure. It can
be used for prediction, modeling, mapping, and interpo-
lating or as a controller.

The general regression neural network (GRNN) is sim-
ilar in form to the probabilistic neural network (PNN).
Whereas PNN finds decision boundaries between cate-
gories of patterns, GRNN estimates values for continuous
dependent variables. Both do so through the use of non-
parametric estimators of probability density functions.

The advantages of GRNN relative to other nonlinear
regression techniques are as follows.

1) The network “‘learns’” in one pass through the data
and can generalize from examples as soon as they
are stored.

2) The estimate converges to the conditional mean
regression surfaces as more and more examples are
observed; yet, as indicated in the examples, it forms
very reasonable regression surfaces based on only a
few samples.

3) The estimate is bounded by the minimum and max-
imum of the observations.

4) The estimate cannot converge to poor solutions cor-
responding to local minima of the error criterion (as
sometimes happens with iterative techniques).

5) A software simulation is easy to write and use.

6) The network can provide a mapping from one set of
sample points to another. If the mapping is one to
one, an inverse mapping can easily be generated
from the same sample points.

7) The clustering versions of GRNN, equations (9)-
(12), limit the numbers of nodes and (optionally)
provides a mechanism for forgetting old data.

The main disadvantage of GRNN (without clustering) rel-
ative to other techniques is that it requires substantial
computation to evaluate new points. There are several
ways to overcome this disadvantage. One is to use the
clustering versions of GRNN. Another is to take advan-
tage of the inherent parallel structure of this network and
design semiconductor chips to do the computation. The
two in combination provide high throughput and rapid ad-
aptation.
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