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Abstract. 

In this article, the application of the scanning n- 
tuple technique to classification tasks is studied. The 
performance of this technique is examined in a hand- 
written character recognition task where the accuracy is 
initially low. This task is employed as a case study for 
designing a general-purpose algorithm that improves the 
scanning n-tuple performance in hard classification tasks, 
by focusing on the characteristics of the pattern space. 
Experimental results indicate that the use of the algorithm 
results in a substantial improvement of the scanning n- 
tuple classifcation performance in comparison to 
previous results. This improvement is shown to be 
equivalent to that achieved by employing structural 
knowledge regarding the specific pattern space. 

1. Introduction. 

Currently, considerable research effort is aimed at 
recognising hand-written characters with a high accuracy. 
Due to the large variability of the data, several of the 
methods proposed are based on neural networks. Among 
neural network models, the n-tuple method stands out due 
to its readily implementable structure [ l ]  and its short 
recognition time. The standard n-tuple is a statistical 
pattern recognition method, which decomposes a given 
pattern into U sets of n points (termed n-tuples). Recently, 
research activity has focused on the n-tuple method, both 
regarding theoretical issues ([2], [3]) as well as real-world 
applications. In [4], an extension to the n-tuple method 
termed the scanning n-tuple (hereafter also denoted as sn- 
tuple) is proposed. The sn-tuple relies on a small number 
of n-tuples, which repetitively scan the input pattern. 

This article focuses on the sn-tuple approach, in an 
effort to devise methods that further improve its 
classification accuracy. To that end, the pattern space 
defined by the training set is studied in detail, to 
investigate how significant overlaps between pattern 
classes affect the classification performance and in 
particular whether one or more classes may be 
automatically divided into sub-classes to improve the 

classification performance. The results of this approach 
are found to be of an equivalent quality to these obtained 
when utilising knowledge concerning the specific pattern 
space to manually split the classes into sub-classes that 
optimise the classification performance. 

2. The scanning n-tuple method. 

The standard n-tuple method [ 13 decomposes a given 
input pattern p into U sets of n points (termed n-tuples). 

In the given context of character recognition, these points 
are binary pixels. For each n-tuple, a physical entity 
termed a function is provided, which consists of 2" 
memory locations, one for every possible combination of 
pixel values. In that memory location, either (i) a binary 
number is stored (indicating whether the corresponding 
combination has occurred during training, this being 
termed the non-weighted n-tuple) or (ii) an integer is 
stored (representing the frequency-of-occurrence of the 
combination, this being termed the weighted n-tuple). 

The j f h  n-tuple scans a fixed set of points 
{e,, j ,  e2, ,.., e,,, ] . In the corresponding function, these 
determine the memory location with address a : 

- 

k =I 

where p(x) denotes the xfh element of pattern - p and CJ is 

the number of possible values of a point (for binary 
pixels, c = 2). During training, as input patterns are 
presented, in each n-tuple the contents of the memory 
locations designated by (1) are updated, to record the 
patterns' occurrence. During classification, the contents 
of the memory locations ai are added to generate the 
final classification result. Thus, the recognition task is 
transformed into U elementary recognition tasks, each 
performed on the basis of the corresponding n points. The 
response r, of a given node 1 is: 

U 

r, = C content(a 
j=l 
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In the sn-tuple, a mask m = ( m 1 , m 2 , m 3  ,.., m,}is 
defined for the n sampled points, which are situated at a 
regular intervalf(termed offset) from each other [4]. This 
mask is applied repetitively with different initial points, in 
order to cover the entire pattern. Thus, each sn-tuple scans 
the whole retina, while in the standard n-tuple method 
each n-tuple only samples a specific area of the retina. 
Prior to applying the sn-tuple technique, the input pattern 
is chain-coded, starting at a given point of the character 
and traversing its perimeter until the whole character is 
covered. This results in a one-dimensional vector of k 
elements c = (c(l),c(2) ,.., c(x) ,.., c ( k ) ] ,  where 1 < x < k . 
The resulting chain-code has a variable length k, 
preventing the application of the standard n-tuple method. 
The scanning n-tuple is used instead, each sn-tuple 
instance being defined as: 

\ J J  for Vi, 1 < i 5 n : c(e .) = c(ei-l, + f )  i, J 

The address determined by each mask application is: 

k=l  
(4) 

The value of CT is equal to the number of possible 
directions used during chain-coding. Then, the response 
of the I t h  sn-tuple node consisting of U sn-tuples is: 

where f,, is the maximum offset value possible for the 
current chain-code c ,  so as to cover all chain-code 
elements. For a given position of the mask on the chain- 
code, g n  possible combinations of the sn-tuple exist. 
Consequently, for each sn-tuple 0’’ memory locations are 
provided to store the corresponding frequencies-of- 
occurrence. During classification, for all combinations 
occumng in the chain-coded pattern, the stored 
frequencies are added to generate the node response. 

3. The character classification task. 

In [4], an sn-tuple network using one node per class 
is studied for both the ESSEX and CEDAR datasets of 
hand-written digits, giving competitive recognition rates 
of 91.4% and 97.3% respectively. Here, the ESSEX 
dataset, which is difficult to classify accurately, is studied 
in an effort to improve the sn-tuple classification 

performance. The ESSEX dataset consists of 3917 
training and 1835 test patterns, each being a 42x50 matrix 
of binary points. To reduce the character variation, the 
dataset is pre-processed by centring and scaling each 
character so that it fully occupies the retina and applying a 
median-filter operator to suppress the existing noise. The 
normalised pattern is then chain-coded by scanning the 
character from the upmost-left comer and recording the 
transitions along the character edges for each point as one 
of eight possible directions. 
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Figure 1 - Average test set accuracy over the 10 
digit classes and 95% confidence interval using 
single sn-tuple nodes sampling 5 points. 

When the configuration proposed in [4] is simulated 
(one node per class, each with 4 sn-tuples with offsets of 
2, 3, 4 and 5 points), a recognition rate of 89.3% is 
obtained. The deviation from the recognition rate quoted 
in [4] is attributable to different pre-processing steps. To 
improve this result, the performance of networks whose 
nodes consist of only a single sn-tuple is studied as a 
function of the offset. The results displayed in figure 1 
indicate that the recognition performance rises for offsets 
higher than these used in [4] and for offsets between 5 and 
11 gives better results than the four sn-tuple system. As 
summarised in table 1, the optimal recognition rate is 
equal to 91.4% for single sn-tuple nodes and 91.6% for 
nodes consisting of four sn-tuples. Notably, the single sn- 
tuple system gives a recognition rate equivalent to the 
optimal value of [4] where four sn-tuple nodes were used. 

Even for the highest-performing network of four-sn- 
tuple nodes, digit class “1” has a low recognition accuracy 
(only 79.8%). This is due to the existence of two 
fundamentally different sub-classes for digit “I”, without 
and with a horizontal line at the bottom of the character 
(denoted as sub-classes “1A” and “1B” respectively). 
Within the training set for class “l”, only 6% of the 
patterns belong to sub-class “1B”. Consequently, the 
node corresponding to class “1” is unable to extract the 
characteristics of “lB”. Instead, most patterns from sub- 
class “1B” are classified as members of digit class “2”, 
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due to the horizontal line at the bottom of the digit which 
characterises both classes “1B” and “2”. 

To improve the performance of a deformable model- 
based character recogniser, Cheung et al. [5] introduce 
multiple sub-classes for certain digit classes. This 
approach is adopted here, with two sub-classes 
established for class “1”. The partition of class “1” is 
achieved by a rule examining whether the maximum 
character width in the lower half of the retina is equal to 
or exceeds 50% of the retina width. 

recognition 
rate 

91.63 % 

91.38 % 

92.55 96 

92.23 % 

Network configuration recognition 
variance 

6.04 

6.27 

4.19 

4.50 

4 x sn-tuples 

1 x sn-tuple 

4 x sn-tuples with sub- 
classes If= 6, 7,s & 10) 
1 x sn-tuple with sub- 
classes If= 7) 

If= 6,7,8 & 10) 

If= 7)  

Table 1 - Classification results for different 
network configurations and offset values. 

The experimental results obtained with these 
modifications are shown in the last two rows of table 1. 
When each node consists of four sn-tuples, the 
recognition rate is equal to 92.6%, improving the best 
results previously reported [4] by 1.2% (giving a 
reduction in the error rate of approximately 14%). Even 
the single sn-tuple system gives an optimal recognition 
rate of 92.2%, reducing the error rate of [4] by 10%. 

4. Improving the sn-tuple accuracy. 

The improvement obtained by defining two sub- 
classes for class “1” is based on studying the testing set 
and determining the pattern classes that are not accurately 
classified. It is desirable to design a general-purpose 
method for improving the classification accuracy for 
different datasets in an automated manner, rather than 
manually examining each class. Such an algorithm is of 
particular use when the pattem space is complex, with a 
large number of pattern archetypes (as is the case in this 
task). The algorithm should be based exclusively on the 
training set, without resorting to the testing set. To that 
aim, four approaches are investigated. The first two 
involve studying the characteristics of each pattem class 
in an effort to determine cases where possible problems 
might occur. The remaining two utilise the response of the 
trained network to the training patterns so as to determine 
the relative position of classes in the pattern space. 

Method 1. 
This method employs a self-organising scheme to separate 

each class into constituent sub-classes. This scheme is 
based on the provision of several discriminator nodes for 
every pattem class, each of these nodes representing one 
sub-class. As a new pattern is presented to the network, it 
is compared to the knowledge accumulated already in 
each discriminator node (which forms a top-down 
expectation of the pattern), using the distribution 
constraint [6]. This constraint has been shown to allow a 
self-organising network consisting of standard n-tuple 
nodes to cluster pattern classes in an autonomous manner 
[6]. However, when using a network with only a few (in 
our experiments 4) sn-tuples per node, this method is 
found not to provide a significant improvement, without 
extensive experimentation with the dataset so as to 
determine an appropriate distribution constraint value. 

Method 2: 
As in the previous method, each class is examined in 
isolation, in an effort to determine patterns that differ 
considerably to the main part of the class. Due to the 
chain-coding operation, the pattern space consisting of the 
frequencies of occurrence of each direction in the chain- 
code is used. Initially, the class average is determined for 
all directions. As a measure of the pattern difference, the 
distance from the class average is used. Thus, this method 
determines the direction of maximal variability and then 
splits the pattern class along this direction. This results in 
an improvement in the clustering performance, the best 
classification rate being equal to 91.98% when focusing in 
class “1”. However, the method is found to be sensitive 
to the exact displacement from the class centroid where 
the boundary between the current class and the new sub- 
class is set. 

Method 3: 
This method involves a type of reinforcement learning to 
improve the network response. Reinforcement learning is 
required for training patterns which are misclassified (i.e. 
are classified to class j though they belong to class i) or 
(b) are correctly classified, but with a very low decision 
margin between the top two class responses. Cases (a) 
and (b) differ but training for both types of effects can be 
expected to improve the network response. Evidently, the 
training for patterns of type (a) needs to be more intensive 
than for patterns of type (b). 

Experiments indicate that this method improves the 
network performance, giving a classification rate of up to 
91.89%. However, the results depend strongly on 
determining the optimal amount by which the network is 
trained for each pattem. Also, this method is susceptible 
to overtraining since by adapting the network excessively 
to ‘problematic’ patterns its response to other patterns is 
adversely affected, the collective recognition rate 
suffering accordingly. 
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Method 4: 
The fourth method is also based on the confidence with 
which the network classifies the training pattems, the 
network size being varied by introducing new sub-classes 
in order to improve the classification. More specifically, 
initially all the training pattems are classified by the 
system, recording the confidence of each classification. 
Out of these, N pattems are studied (in our experiments, 
N= loo), which correspond to the negative-confidence 
classifications (i.e. cases where pattems are misclassified) 
and the lowest-confidence classifications (where pattems 
are correctly classified, but with a low confidence). 

Figure 2 - Representation of two overlapping 
classes (a), together with the clustering before 
(b) and after (c) applying method 4. 

The pattem class Ck to be divided into two sub-classes is 
determined to be the one with the highest fraction of 
negative-confidence and low-confidence decisions. The 
pattern class C,, which causes the negative- and low- 
confidence classifications for Ck, is also determined. 
Then, a new network node is introduced, defining an 
additional sub-class for Ck. The nucleus of that sub-class 
consists of the pattems belonging to Ckr which have a low 
or negative classification confidence due to C,. Following 
the introduction of the new node, the training set is 
repetitively classified by the new network which consists 
of N + I  nodes. During these iterations, the two constituent 
sub-classes of Ck are refined, by studying the M lowest- 
confidence patterns as assigned to the N+l classes. This 
procedure is repeated until the transfer of patterns 
between the sub-classes of Ck either ceases or is 
stabilised, so that an equal number of patterns are 
exchanged between the two sub-classes in subsequent 
iterations. This procedure is summarised in figure 2. 
For the Essex dataset, the class with most 
misclassifications is class “l”, due to class “2”. Therefore 
this is initially split into two new classes. According to the 

aforementioned procedure, seven patterns form the 
nucleus of the new sub-class, resulting in an improved 
recognition rate of 92.04%. The network settles after nine 
refinement iterations, when the new sub-class consists of 
29 pattems and the network recognition rate reaches 
92.52%. This is very close to the recognition rate obtained 
using the geometry rule to split class “1” (92.55%). These 
results are further improved by dividing class “1” to 
remove the confusion with class “7”, giving after only 
three iterations a recognition rate exceeding 92.6%. This 
represents the best classification accuracy reported so far 
for the ESSEX dataset, indicating the effectiveness of the 
automated class-splitting method. 

5. Conclusions. 

In this paper, a number of methods to improve the 
scanning n-tuple performance have been investigated. 
This study has focused on the design of an algorithm that 
allows the automated splitting into sub-classes of pattem 
classes with a high variability. It has been found that the 
best results are obtained when making use of the 
classification confidence of the training set to create new 
clusters for low-confidence training patterns. The 
experimental results illustrate that the best method gives a 
recognition performance equivalent to that obtained using 
structural knowledge regarding the different classes. 
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