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Abs t r ac t .  One family of classifiers which has has considerable experi- 
mental success over the last thirty year is that of the n-tuple classifier 
and its descendents. However, the theoretical basis for such classifiers is 
uncertain despite attempts from time to time to place it in a statistical 
framework. In particular the most commonly used training algorithms 
do not even try to minimise recognition error on the training set. In this 
paper the tools of statistical learning theory are applied to the classifier 
in an attempt to describe the classifier's effectivevess, hL particular the 
effective VC dimension of the classifier for various input distributions 
is calculated experimentally, and these results used as the basis for a 
discussion of the behaviour of the n-tuple classifier. As a side-issue an 
error-minimising algorithm for the n-tuple classifier is also proposed and 
briefly examined. 

1 In t roduc t ion  to the  n - tup le  Classifier 

The original n-tuple classifier wets described by Bledsoe and Browning in [3]. It is 
a pat tern recognition system which accepts binary i,nages and outputs  a binary 
"yes/no" response. Modifications to the original design have included allowing 
the output  to be one of a finite number of preset class labels [1], extending the 
input space to allow real-valued da ta  [2, 9] or extending the output  space to 
solve regression problems [6]. It  has also been shown to give good performance 
on the Statlog data  sets [7].In this paper the system considered will accept bi- 
nary strings as inputs and output  1 or 0. A schematic diagram of this system is 
given in figure 1. 

The architecture of the classifier consists of three layers: a layer of look-up tables, 
a layer of summing devices (one per class) and a winner-takes-all comparison. 
The operation of the classifier consists of three stages: a sampling stage, a look- 
up stage and an output  stage. The principle of' tile classifier is that  the image 
space may be sampled ill blocks of n bits known as n - t u p l e s .  For the purposes of 
this paper  it will be assumed that  the n-tuples are chosen uniformly at  random 
with the condition that  no two overlap (ie. no input bit belongs to more than one 
n-tuple) although it is possible to perform a similar analysis with this assump- 
tion relaxed. Each class has an associated set of N look-up tables or n o d e s ,  the 
whole set being known as a d i s c r i m i n a t o r .  Tile nodes in each discriminator are 
connected to the input space in exactly the same way so tha t  all discriminators 
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Fig. 1. A single n-tuple discriminator (schematically). An n-tuple classifier consists of 
as many discriminators as there are classes. Each discriminator is associated to each 
class. The classifier returns the class label of the discrimin~ttor with the highest output. 

are identical apart from the contents of the nodes. The look up tables take bi- 
nary n-bit strings as inputs and generate binary bits, {1,0}, as output. 

In each discriminator the (binary) output for each n-tuple is then read from 
the corresponding look-up table. The output of tile discriminator is obtained by 
summing the outputs of each node to obtain an integer between 0 and N. The 
outputs of each discriminator are compared and the class-label associated with 
the highest scoring discriminator is given as the output of the whole system. For 
this paper we assmne that all classifiers contain only two discriminators. We shall 
also assume that  in the case where the two discriminators give identical integer 
outputs, the class-label 1 is output. The problem for the training algorithm is 
what information to put in the nodes. In this paper the SMA training algorithm, 
see [5], is used. 

2 Background to Statistical Learning Theory 

Statistical learning theory is the application of statistical techniques to the prob- 
lem of learning from examples which can be used to derive minimal required 
training set sizes to guarantee a given level of generMisation with a certain con- 
fidence. These bounds are usually formulated in terms of the VC dimension, see 
for example [10]. Previous work has fixed lower and upper bounds for for the two- 
discriminator n-tuple classifier [4] as N(2 n -  1) and (log 2 3)N(2 n -  1) respectively. 

However, most practical work suggests that the sample sizes required by the 
VC dimension bounds are in fact much larger than required (see for example 
the results of the Statlog tests performed by Rohwer and Morciniec, [7]). In [11] 
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Vapnik, Levin and Le Cun define a quantity called effective VC dimension which 
is based on the learning machine together with an input distribution which yields 
a new sample size bound which is never greater than the original. Vapnik et al. 
also give an experimental method for estimating it, a method which they show 
works well in the case of the linear perceptron. This method is applied in this 
paper to the n-tuple classifier and shown to give plausible results in this case 
too. Thus the n-tuple classifier is analysed further and the experimental method 
of Vapnik et al. is further validated. 

3 Calculating the Effective VC Dimension 

Vapnik et al. suggest a definition of a VC dimension based not on all input sets 
but  just  on those with probability close to one. More formMly 

D e f i n i t i o n  The effective VC dimension of the learning machine E for the input 
distribution P is the minimal VC dimension of Z: on those subsets X* of the 
input space X whose probability measure according to P is almost 1. 

They show that the effective VC dimensioJ~ can be estimated by measuring the 
maximal deviation ~t between tile errors of a trained classifier on two halves of 
an input sample of length 2l. The estimation takes the form of a function (with 
two free paraineters a and b) delioted by ¢P(l/h), or an approximation to this 
denoted by ¢l(l/h) with one free parameter d, whose forms are given in [11]. 
The theoretical demonstration can be found ia [11]. 

To maximise the error divergence with tile n-tuple classifier, an error minimis- 
ing algorithm for the n-tuple classifier is needed. The Stochastic Mimimisation 
Algorithm (SMA) for the n-tuple classifier was proposed in [4] as such an algo- 
rithm. The principle of the algorithm is to train as many patterns as possible 
by looping through the training set and in each case of misclassification chang- 
ing a minimal number of output  values - -  selected at random - -  so that  the 
current pat tern is trained correctly. The hope is that  by making an alteration 
of minimal size the previously trained responses will not be disturbed and thus 
that a good approximation to the global minimum of tile training error can be 
found. The loop is repeated enough times so that the minimum training error 
stops decreasing. 

3.1 N e c e s s a r y  A s s u m p t i o n s  

For an empirical estimate of effective VC dimension to be made by the method 
described the following assumptions must hold true. 

- E[~t] does not depend on the distribution of the classes, only the patterns 
themselves. 

- The expected deviation depends on the learning machine only through the 
effective VC dimension, h. 
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- ¢(l/h) or ex(l/h) is a good approximation to E[~t] for appropriate values of 
the parameters a and b. 

- a and b are constant over a large class of related learning machines. 

These assumptions were verified for the n-tuple classifier in [5]. 

3.2 Varying the Classifier 

Values of ~t were calculated for various values of n and N as well as i, the range 
of the integers stored in each RAM location. The output  values were assigned 
with 50% probability as was experimentally justified in [5]. The ~l are plotted 
in figure 2 for varying values of N and n. To allow comparison, the plot for the 
basic two discriminator classifier with n = 4, N = 50 is included in both graphs. 
As a guide to interpreting these graphs it is worth noting that  the further to the 
right a curve is, the higher its effective VC dimension. 
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Fig. 2. Empirical E[~l] for a range of n-tuple classifiers with varying number of (a) 
nodes per discriminator, N and (b) support per node. Uniform distribution. 

To make an estimate of the effective VC di,nension, we must plot E[~z] against 
l/h and show that some curve ¢ fits tile resulting graph. If the same • fits all the 
E[~I] graphs then our assumption that the parameters a and b are independent 
of the learning machine will have been justified. Since in almost all cases the 
ranges of I are such that l/h < 5, an approximation by 41 with a single free 
parameter d is valid, see [11]. Figure 3 shows the results tbr a range of machines 
and the best fit curve of type 41, with d = 0.225. The same value of d fits all 
settings of the parameters. 

4 R e s u l t s  a n d  C o n c l u s i o n s  

The known VC dimension values and bounds are shown in table 1 along with 
the corresponding effective VC dimension values for the uniform distribution. 
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Flg.3.  Empirical E[~t] for varying (a) N and (b) 'a against estimated EVCD o v e r  1 
plotted against a best-fit estimate. Uniform distribution. 

n N VC dim min VC dim max EVC dim Ratio 1 Ratio 2 
4 50 750 1190 300 2.5 4.0 
4 100 1500 2380 400 3.8 6.0 
4 150 2250 3570 450 5.1 7.9 
6 50 3150 4990 1000 3.2 5.0 
8 50 12750 20,200 2200 5.8 9.2 

Table  1. Effective (uniform distributioa) lad actual VC dimeasions for n-tuple clas- 
sifter, Ratio 1 is the VC dimension lower bound over the effective VC dim, while Ratio 
2 is the VC dimension upper boumi over the effective VC dim. 

This table shows at a glance how pessimistic the VC dimension results are when 
the pat terns are drawn from a uniform distribution. 
Table 1 shows clearly that  the effective VC dimension of the n-tuple classifier 
over a uniform distribution of input pat terns is significantly less than the actual 
VC dimension. 

4.1 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

The aim of the work in this paper has been two-fold. First to use the tools of  
learning theory to try to explain and predict the performance of the n-tuple 
classifier and second to validate the approach of Vapnik et al, to incorporating 
information about  the input distribution into the VC bounds. Est imates of gen- 
eralisation error of  n-tuple classifiers made using tile full VC dimension tend to 
severely over-estimate the error found in most experimental  contexts. The  cur- 
rent work shows that  if the bounds are based oil effective VC dimension then the 
predicted bounds are closer to experimental results. This was shown in [4]. Fur- 
thermore the work has validated the hypotheses of Vapnik et al. in 3.1 and given 
consistent results. Thus both of these goals have been substantial ly achieved. 

Several directions of further work are suggested by this study, some in tile do- 
main of tile n-tuple classifier and others ill the domain of learning theory. The 
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relationship of the various training algorithms to the success of the learning 
process are brought sharply into focus by this work. Although the aim of the 
classifier is to classify patterns with minimum error, the training algorithm does 
not explicitly try and mininaise error on the training set. Non-zero error on the 
training set is often referred to as "saturation" and dealt with by increasing the 
number of samples (ie. N) or the size of the n-tuple, thereby increasing the VC 
dimension of the classifier. On the other hand, the SMA, which does try to ex- 
plicitly minimise the error on the training set, has been shown to give markedly 
worse results to the original algorithm on certain data  (see [4]). It would be in- 
teresting to know how the training aigorithm limits the search for an acceptable 
hypothesis and thus how the classifier is often able to achieve good performance 
despite apparent over-capacity. 

In parallel to this, a practical theory of learning which takes into account more 
than just  the machine capacity and the input distribution is required if theoreti- 
cal sample size predictions are to become a useful tool for those applying learning 
machines to different tasks. For instance the "unluckiness" function defined by 
Shawe-Taylor et al. [8] is one new way of incorporating prior expectations about  
the data  distribution into the VC dimension/sample size bounds calculations. 
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