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Abstract 

This thesis brings together two strands of neural networks research - weightless 

systems and statistical learning theory - in an attempt to understand better the 

learning and generalisation abilities of a class of pattern classifying machines. 

The machines under consideration are n-tuple classifiers. While their analysis falls 

outside the domain of more widespread neural networks methods the method has 

found considerable application since its first publication in 1959. The larger class of 

learning systems to which the n-tuple classifier belongs is known as the set of weight-

less or RAM-based systems, because of the fact that they store all their modifiable 

information in the nodes rather than as weights on the connections. 

The analytical tools used are those of statistical learning theory. Learning methods 

and machines are considered in terms of a formal learning problem which allows 

the precise definition of terms such as learning and generalisation (in this context). 

Results relating the empirical error of the machine on the training set, the number of 

training examples and the complexity of the machine (as measured by the Vapnik-

Chervonenkis dimension) to the generalisation error are derived. 

In the thesis this theoretical framework is applied for the first time to weightless 

systems in general and to n-tuple classifiers in particular. Novel theoretical results 

are used to inspire the design of related learning machines and empirical tests are 

used to assess the power of these new machines. Also data-independent theoretical 

results are compared with data-dependent results to explain the apparent anomalies 

in the n-tuple classifier's behaviour. 

The thesis takes an original approach to the study of weightless networks, and one 

which gives new insights into their strengths as learning machines. It also allows 

a new family of learning machines to be introduced and a method for improving 

generalisation to be applied. 
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Chapter 1 

Introduction 

1.1 T h e Inspira t ion for t he Thesis 

The forty year history of artificial neural networks from the perceptron in 1958 to 

the present day (1996) has been one of alternating excitement and retrenchment. 

Early successes of the perceptron learning rule with its apparently miraculous power 

to learn were followed by disappointment at the apparently limited range of both 

its learning and its modelling capability. Latterly the Hopfield and non-linear per-

ceptron revival have extended the range and power of (what are now often known 

as) conventional neural networks to the point that neural networks now offer real 

alternatives to classical approaches in fields from pattern recognition to control to 

psychological modelling. Such networks and such applications continue to be the 

subject of intense and widespread study. 

However, while perceptrons and similar architectures enjoy such ups and downs, 

there exist many related systems whose properties are sufficiently similar for them 

to be termed "neural networks" but whose histories have been less explosive. The 

n-tuple architectures of Bledsoe and Browning are one case in point and it is the 

analysis of these and their descendent systems which forms the core of this the-

sis. These systems sample binary input spaces in blocks of n (hence "n-tuple"), 

they can be easily implemented in logical or physical memory (hence the alternative 

term "RAM-based") and they are distinguished from perceptron-type networks by 
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the fact that there are no weights attached to each connection (hence a second al-

ternative "weightless'). Modifications with probabilistic output, internal feedback, 

weighted connections and complex architectures have led to the development of a 

large family of weightless networks whose capabilities have been investigated in less 

depth and breadth over the same forty years of the perceptron, but which have had 

many practical successes. 

So how may such systems be compared with the perceptron family and others? The 

question can, and should be asked more generally. How can any systems be com-

pared on any particular problem or set of problems? An answer to this question 

will require a precise formulation of the kinds of problems artificial neural systems 

are required to solve as well as the quantity and the type of training data available. 

These are questions of statistical inference, and quite naturally have been studied 

in depth by statisticians. The resulting theory of learning (as far as the different 

approaches to the problem constitute a single theory) comprises the second element 

of this thesis. 

Learning theory began as a branch of applied statistics inspired by the success of 

Rosenblatt's perceptron algorithm in the early 1960s [46]. The perceptron was itself 

inspired by biological models of information processing dating back to McCulloch 

and Pitts [33], but what was of interest to some statisticians was the way in which 

the perceptron adapted its internal parameters to model the data set when given 

nothing but a set of training examples. Questions of convergence to the correct 

solution, performance on small training samples and control of the architecture of 

the machine for optimal performance were and remain at the heart of the learning 

theory enquiry. In this thesis the results of learning theory are applied to weightless 

networks to understand better the performance and behaviour of such systems and 

to determine where they are most effective and how they may be optimised. 
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1.2 Aims of t he Thesis 

1.2.1 The Current State of Affairs 

This thesis deals with RAM-based or "weightless" classifiers. These are machines 

which are used (in real-world applications as well as in the lab) to classify patterns 

into pre-defined classes. Moreover, the behaviour of these classifiers, while obviously 

constrained by the architecture, is essentially guided by a so-called "training set" of 

example patterns and their correct outputs. For this reason RAM-based classifiers 

are examples of what are known as learning machines. They are known to have very 

quick training and operation times and in most cases exhibit acceptable accuracy. 

However, as learning machines they face considerable competition. 

Many machines, computer programs and statistical techniques exist to perform this 

sort of pattern classification and the RAM-based techniques comprise only one set 

of methods out of a very large number. Even artificial neural networks, the category 

of classifiers in which the RAM-based classifiers are often placed, comprise a wide 

spectrum of different architectures and learning methods. Many of these methods 

have been shown to work more or less well on various test and benchmark sets, but 

to make the best use of this variety a principled general method for selecting one 

system over another is required. The very fact that there are so many different types 

of pattern classifier leads naturally questions of comparative performance. Can we 

say, a priori, which classifier will perform best on a problem, how the parameters 

of the classifier should be set, how the classifier should be trained or programmed, 

what level of generalisation error we can expect to obtain? 

The questions posed above have been considered by many researchers studying learn-

ing machines and several general theories have been proposed for studying the ef-

ficacy of learning machines. Bayesian statistics is one such theory which has been 

applied to artificial neural network analysis and attempts have been made to put 

RAM-nets into a Bayesian framework. Statistical learning theory is another means 

of analysing learning machines in a general framework but to date no attempt has 
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been made to study RAM-nets with these theoretical tools. 

1.2.2 What is lacking 

It is fair to say that at present a general theory of learning machine capabilities 

does not exist. Nor need it ever. However the results of statistical learning theory 

allow certain aspects of performance, notably the expected generalisation error, to 

be bounded in terms of simple scalar properties of the learning machine and error 

on the training set. These results, which assume that the learning machine must be 

selected with almost no prior knowledge of the learning problem, beyond the data 

in the training set, can be extended to try and make use of domain- or data-specific 

knowledge. 

More importantly from the point of view of RAM-based systems there has been 

very little application of statistical learning theory to such systems. Furthermore no 

other means of analysis has been applied to RAM-based systems to obtain general 

bounds on generalisation error. Hence all comparisons between RAM-based systems 

and others have been on the basis of particular systems and benchmark tests. A 

learning theory analysis generates results which hold over a wide range (often all) 

data sets. 

1.2.3 What should be done 

It is assumed that a thorough and objective analysis of RAM-based systems would 

be useful for several reasons. Firstly if results can be obtained which allow compari-

son with other learning machines, then someone wishing to select a learning machine 

for a particular task can formulate criteria and test machines against them. In par-

ticular it is interesting to know if the high speed of training and testing which are 

associated with the RAM-based systems carries an overhead in terms of increased 

error rates. Secondly, because RAM-based systems are popular systems with real 

applications, any analysis of them will yield information about their behaviour in 

which current users, and those simply with an interest in the system, may be inter-
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ested. 

To make such an analysis several steps are necessary. The learning machine and 

the problem to which it is applied must be defined formally so that the the learning 

theory is applicable. Standard learning theory results may then be applied to give 

results about the generalisation error of the system. These results are then compa-

rable between different learning systems and provide a useful point of comparison. 

1.2.4 What will be done in the thesis 

This thesis addresses precisely those points which were noted above as things that 

should be done. The popular RAM-based systems will be formally defined and a 

measure of their complexity, the "Vapnik-Chervonenkis dimension" is calculated, or 

is some cases simply bounded. This quantity is then used to obtain the generalisation 

bounds for the classifiers. Ways of improving these bounds, especially when the data 

set is small, are then considered. The precise way this is achieved is set out in the 

contents description in the following section. 

1.3 Contents of the Thesis 

Chapter 2 contains the background in learning systems in general and weightless 

systems in particular. The origins and progress of the subject area are discussed, 

and the systems themselves are introduced. This chapter does not aim to be fully 

comprehensive, but rather to place the n-tuple classifier in the context of its "com-

petition" . 

Chapter 3 contains the background in learning theory necessary for the thesis. The 

pattern recognition learning problem is set out formally and conditions for its so-

lutions in terms of the size of the training set and the complexity of the learning 

machine are given. Most proofs are not shown as the mechanics underlying most of 

the results are not needed and none of the original results presented in this thesis 

extend or generalise them. Indeed they are all specific cases of the general theory 
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which use original results for n-tuple classifiers to describe classifier performance on 

the general learning problem. 

Chapter 4 contains much of the original mathematics of the thesis. In order to eval-

uate the sample size bounds on generalisation (which are introduced in the general 

case in Chapter 2) for the weightless systems the Vapnik-Chervonenkis dimension 

(VC dimension) is calculated. The results and proofs of these calculations for the 

simplest n-tuple based classifier, the discriminator, comprise Chapter 4. 

In chapter 5 the analysis is extended to more complex weightless system and up-

per and lower bounds on VC dimension are derived for these systems. Since the 

exact results are hard, bounds based on functionality are applied. Some analysis of 

duplicated functions is required to prove the validity of these bounds. Finally the 

n-tuple classifier with two discriminators is reformulated as a single discriminator 

with three possible stored values and the possibilities that arise from extending this 

model are considered. 

Knowing the VC dimension of the weightless systems we can apply the results of 

Chapter 2 to get results relating generalisation ability to training set size and net-

work structure. These are presented in Chapter 6 and compared with some real-

world results. A distribution dependent analogue of VC dimension, effective VC 

dimension, is described and calculated for various n-tuple classifier configurations. 

This helps to explain some of the looseness in the generalisation bounds. A com-

parison with other learning machines is also presented in this chapter. 

Chapter 7 examines the tools used to tune the n-tuple classifier and the results 

obtained by so doing. An overview of techniques used by previous researchers is 

presented, followed by a resume of the problems of statistical inference in the data-

independent "tabula rasa" case. Finally the n-tuple work is put into context and as 

far as possible explained in terms of statistical learning concepts. The role of data-

independent classifiers is considered and introduction of a priori knowledge into the 
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system is also discussed. 

Finally Chapter 8 contains an overview of the thesis and offers such conclusions as 

may be drawn, as well as suggestions for how this work may extended in future. 
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Chapter 2 

A n Introduction to Learning 

Machines 

Learning theory deals with the subject of learning machines, so implicit in the title 

of this thesis is the claim that weightless systems are learning machines. Before 

we attempt any analysis we must define what we mean by a learning machine and 

show that weightless systems are indeed examples of such. To show the scope of 

the technology of learning machines we shall first consider their history and finally 

the particular systems under consideration in this thesis, weightless systems, are 

described in detail. 

2.1 W h a t is a Learning Machine? 

Before answering this question it is worth first discussing what is meant by the word 

"learning". First of all it should be made clear that in this context learning is not 

intended to represent any psychological or even physiological phenomena. It is a 

purely formal exercise and any parallels or analogies with organic learning systems 

should be considered purely as inspiration or accident. 

So what is left? Well the idea of learning that the learning machines in this frame-

work aim to capture is the notion of learning from examples. It is assumed that 

some examples are produced probabilistically and then transformed according to 
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some unknown rule into some value: a yes/no if we are considering a pattern recog-

nition task or something more complicated in general. The machine is allowed to 

see a small sample of the inputs and their associated output values and from these 

is supposed to make a "best guess" at unseen inputs. If its error on the unseen in-

puts - the test data - is good then the machine has generalised well and an observer 

may feel that it has "learnt" the "underlying structure" of the task. The ability to 

generalise well is the crucial difference between learning and memorising. 

A learning machine can be defined informally as follows. A learning machine, 

comprises a set of functions and a mechanism for selecting one of the functions -

hopefully the one with least expected generalisation error - when shown a labelled 

sample of training data. (The functions are considered to be parametrised by a € A 

where A is some arbitrary set.) The most important point about a learning machine 

is that we have limited knowledge about the problem it is going to be asked to solve. 

To be successful a learning machine it must be able to produce a function with 

good generalisation in a wide range of situations. In this it differs from traditional 

statistical methods which require that a model for the data be specified up to the 

value of a small number of parameters. The importance of the distinction is discussed 

in conjunction with the so-called "bias/variance dilemma" in section 7.2.1. It is with 

this definition in mind that we consider the history of learning machines. 

2.2 His tory of Learning Machines 

Of course the original learning machines were not computer-based but living. The 

inspiration for inanimate learning machines was an attempt to reproduce in com-

puters the learning ability of human beings in an attempt to exploit the particular 

advantages computers offer: time, numerical power and accuracy, freedom from 

boredom et al.. It is probably no coincidence that the first learning machine was 

inspired by human anatomy. 

McCulloch and Pitts were the first to suggest that the spiking of neurons may offer 
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a model for computation [33]. However it wasn't until the perceptron algorithm of 

Rosenblatt [46] that the idea was put into practical operation and a true learning 

machine was created. That is, a machine which in could attempt to model many 

problems given limited data about them. Indeed it was proved by NovikofF [38] that 

the perceptron would always converge to the exact solution, if it existed. As men-

tioned in chapter 3 this is considered to be the first result in learning theory. The 

perceptron consisted of one unit, a "neuron", with a large number of afferent con-

nections in analogy with a real neuron. Each connection had an associated weight 

and by either sending a signal or not down each line an input pattern could be 

encoded. The neuron then summed the weights on the active lines and thresholded 

the result to give a hyperplanar discrimination surface. The training algorithm ad-

justed the weights incrementally until the classification error on the training data 

was minimised (where possible) and returned the weights it found. This system was 

to be the grandparent of all the systems later to be known as "neural networks". 

Subsequent attempts to extend the perceptron model to more layers, that is, to in-

troduce neurons between the input and output, were made in order to get round the 

limitations of the set of functions that the simple perceptrons could realise. While 

extending the architecture was a straightforward task, developing an algorithm to 

enable the system to learn was not. The presence of neurons whose required output 

was not known (because they did not connect directly to either the input nor the 

output) meant that Rosenblatt's algorithm could not be applied directly. Moreover, 

the usual solution applied to such tasks, the method of gradient descent, could not 

be used because the threshold function used by the neurons did not have a gradient 

at the critical point. 

The problem was finally solved for multi-layer perceptron in 1986 [29], [47] (although 

the algorithm was discovered in 1963 in [15] for a control problem). The simple idea 

they had was to replace the linear threshold function with a continuous (and contin-

uously differentiable) function which would approximate it. Such a function should 

tend to 1 as its argument tends to oo and to —1 or 0 as the argument tends to 
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—oo. Such functions are known as sigmoids and S{u) = tanh(u) is one of the most 

commonly used. It then becomes possible to apply gradient descent methods based 

on knowing the input and required output and looking for a local minimum of the 

network error. 

Other learning machines have also been developed, often in an ad hoc way to solve 

particular engineering problems. Some of these are usually classed as "statisti-

cal" methods and others as "neural" even though underlying principles may be the 

same. The difference tends to be the inspiration rather than the functionality. Since 

weightless systems are the subject of this thesis, and since they are classed as "neural 

networks", we shall take a further look at these systems. 

2.3 Neura l Networks 

The reborn perceptron was restyled a "neural network" to emphasise the biologi-

cal inspiration of the architecture and huge research effort was subsequently born. 

However, many machines which were inspired by but not based on the linear per-

ceptron had been created during its period of dormancy and these too were included 

in the class of "neural networks". In fact almost all learning machines that were not 

fundamentally grounded in statistics were put into this class. By the mid-90s these 

included, in approximate order of development: Adaline/Madaline [62], Learning 

Matrices [51], ART [23], Topological Maps [28], Sparse Distributed Memory [27], 

Radial Basis Function [40] and, out of sequence for rhetorical reasons. Weightless 

Systems. 

So what defines a neural network? The definition is both fuzzy and evolving. The 

only common external feature of neural networks is the ability to generalise from sets 

of labelled examples (ie. they are learning machines). Internally they are expected 

to contain a "large" number of identical processing units which share information 

amongst themselves in a "massively parallel" fashion. The training (learning) algo-

rithm is usually an attempt to minimise the error on the training set by incremental 
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adjustments but this is not always true, see weightless systems and sparse distributed 

memory. 

The term "neural networks" has for several years been a convenient way of linking 

together all the new models of learning while emphasising their basis in neurophys-

iology. Indeed, the analogy is often extended to the point where it is claimed that 

since the architecture of neural networks more closely approximates the architec-

ture of the brain so neural networks are intrinsically better suited to cognitive tasks. 

Perhaps a better way to consider the analogy is to note that learning machines em-

ulate some of the functions of the brain better than artificial intelligence methods 

and so they may be more likely to solve the human-type "cognitive" problems that 

old AI techniques have left unsolved. If this is indeed the case then since neural 

networks are learning machines they are not excluded, but also whole new classes 

of machines and algorithms with firm statistical backing can be introduced to the 

problems facing neural networkers in all fields. 

2.3.1 Perceptrons and Incremental Methods 

The multi-layer perceptron (MLP) is the workhorse of practical neural network (and 

hence learning machine) research and application and so it is worth taking time to 

understand it in order to contrast it with the weightless systems studied in the thesis. 

Each layer of the perceptron maps an input vector to an output vector according to 

a sigmoid function. Formally, 

X 1-4 y 

where 

yi = cr(x.Wi) 

and a is a sigmoid function. The vectors W; are known as the weight vectors. It is 

these which most training algorithms adjust. (Some also alter the sigmoid function 
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for each yi.) It has been proved theoretically by Cybenko [17] that any smooth 

function can be approximated arbitrarily closely by the weighted sum of sigmoid 

functions so there exists a perceptron to solve any such problem. There are two 

difficulties with this in practice. The first is that the approximation result is only 

asymptotically true. That is, any function can be approximated with arbitrary 

accuracy, but only if arbitrarily large perceptrons are used. In fact recent work 

[64] has shown that when implemented on computers, perceptrons are only able to 

function as well as polynomial approximators because of the finite nature of their 

implementation. The second, more mundane, difficulty rests in finding a local mini-

mum which is as close to the global minimum as to be acceptable without doing an 

exhaustive search of the set of weight vectors. In practice this can often be achieved 

satisfactorally with the aid of rules-of-thumb which are often known from AI and 

linguistic usage as heuristics. However, these do not form a principled mathematical 

approach to solving a given problem and learning theory is one attempt to put such 

heuristics on a sound footing. Current theoretical results are outlined in chapter 7. 

Another system which has recently attracted interest is the radial basis function 

network. In such networks the sigmoid functions of the MLP are replaced by an-

alytically more tractable symmetric functions, usually Gaussian distribution func-

tions. Again it has been proved that these systems can approximate any function 

[21]. The learning algorithms concentrate on finding the variance of a set a basis 

functions whose mean or centre is fixed, although moving the centres allows more 

flexibility. 

Other learning systems such as Kohonen's topological maps aim to model distribu-

tions by deforming grids to represent incoming data or in more complex cases by 

birth/death process amongst nodes in the grid to optimise the model. All that need 

interest us for this thesis is that the definition of a learning machine is fulfilled by 

a large number of object in practical use today and that it is against these that 

weightless systems must compete, both in theory and in practice. 
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2.4 Weightless Systems 

All the systems which described here as weightless are so-called in contrast to 

perceptron-like systems where training is accomplished by means of adjustments 

of the parameters called weights. The free parameters of a weightless system almost 

all reside in the nodes themselves. Amongst the systems here called weightless (and 

thus to which the results of this thesis can, to a greater or lesser extent, be applied) 

are the following: n-tuple recognition devices, weightless discriminators, WISARD, 

PLN pyramids, GNUs, GSN. Sparse distributed memory is sometimes described as 

a neural model and it has a certain amount in common with weightless systems, 

however it is too different for results about other weightless systems to be easily 

applied to it. 

The grandfather of these systems, standing in the same position to them as the 

perceptron does to weighted systems, is the n-tuple method of pattern recognition 

of Bledsoe and Browning [12]. In the 60s and 70s the idea was refined into that 

of the discriminator and subsequently rendered in hardware as the WISARD [5]. 

The discriminator then gave birth to a family of systems designed or inspired by 

Aleksander, amongst which are the probabilistic logic node (PLN), the gen-

eralising random access memory (GRAM) and the ensemble of GRAMs, the 

general neural unit (GNU). Before going on to describe their abilities and their 

shortcomings we shall describe the systems in some detail. 

2.4.1 The N-Tuple Method 

The first n-tuple classifier was the work of W.W.Bledsoe and I.Browning of the San-

dia Corporation of New Mexico. The problem addressed in their paper is that of 

character recognition, but here will be described as a general pattern recognition 

task. The work was followed up by others such as Bledsoe and Bisson [11], Ullman 

[56] and Ullman & Kidd [57] often still in the field of handwritten character recog-

nition. The framework of the pattern recognition task is as follows. The inputs 

consist of long binary input vectors (usually representing visual images) which must 
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be classified into one of a small number of classes. This is not a clustering algo-

rithm and the number of classes must be known before the task is started. A set of 

correctly classified input patterns is presented to the machine which is subsequently 

tested on further examples and the classification error measured. 

The n-tuple machine works by a process of sampling the input space, X, in small 

groups of points. There are N nodes which are capable of performing any boolean 

function from {0,1}" -4- {0,1} for some integer n. The input to each node is a ran-

domly chosen projection from the whole input space onto {0,1}". The projection 

is fixed at the start of the learning machine's operation and can be thought of as a 

physical or virtual connection from n of the input pixels onto the node. This is the 

n-tuple that gives the method it name. 

A group of N ra-tuples, and hence N nodes, is assigned to each class. Although the 

term is a later one, a group of n-tuples responding to the same class will be termed 

a discriminator. To complete the definition of the discriminator we must add a 

summing device which takes the binary outputs of the N nodes and sums them to 

produce an integer output between 0 and AL This integer can be seen as approxi-

mating the likelihood that the input is in the class assigned to that discriminator, 

[35], [50]. The output of the whole n-tuple learning machine is then defined to be 

the class name of the discriminator with the highest output. 

Training must necessarily involve defining the node functions which, since all 2^" 

functions are allowable, can be thought of as filling a look-up table at each node. 

Several different training methods are described. All methods start the learning 

process with all nodes for all classes performing the zero function (ie. responding 

with 0 for all inputs). The Bledsoe and Browning approach which was later echoed 

by Aleksander and Stonham [4] is to then present each labelled training pattern 

to the discriminator pertaining to its class and to fill the all the node table entries 

corresponding to the n-tuple it projects with a 1, whether the current entry is 1 or 

0. Alternatively we can think of this as ensuring that the all the node functions 
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Figure 2.1: The n-tuple Discriminator (schematically). 
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output one when presented with the particular n-tuple in the training pattern. 

Problems with the Training 

This method of training ensures that the discriminator pertaining to the correct class 

of each training example will always output N when the pattern is presented again. 

Problems arise if so many node table entries are set to 1 that the pattern also yields 

N in other discriminators. This problem of the "fiUing-up" of node table tables as 

the training progresses is known as saturation. It is most serious when the data 

sets are large and the data in each class has a large variance. We can consider it as 

being a tendency of the node functions to approach one, the constant function that 

always outputs 1. As this happens those training patterns which should output 0 

begin to output 1, so error on the training set is not minimised. Unless this is done 

in order to minimise some structural feature of the model (as in SRM in section 

3.4) this is will in general give sub-optimal generalisation. Tarling and Rohwer [53] 

developed a new algorithm to overcome the problems of saturation. 

Reducing Saturation 

Training in the Bledsoe and Browning sense involves maximal saturation. That 

is, all possible 1 values are set. The method of Tarling and Rohwer is to check 

before presenting each training pattern as to whether it is already classified correctly. 

Only if it is not are the node value tables set to 1. This has the effect of reducing 

saturation if the training set is large, but may reduce generalisation if it is small. 

The results they obtain for the new method of training are generally positive. A 

detailed examination of the issues involved is given in chapter 7. 

Maximum Likelihood Training 

It has been noted in several papers that the n-tuple classifier can be interpreted 

as a crude maximum-hkelihood estimator. Bledsoe and Bisson [11] were the first 

to try to use this observation to create a new training algorithm. The idea was 

used subsequently by several other researchers such as Rohwer [35], Badr [9] and 

Tattershall et al. [50]. There are certain problems with justifying the approach 
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statistically, especially with sparse data, but the method has enjoyed some empirical 

success. 

2.4.2 Thresholded Discriminators 

The discriminators defined above for use in the n-tuple classifier can be treated as 

learning machines in their own right . Their output is an integer between 0 and N so 

to turn them into machines implementing the {1, 0} hypotheses we are considering, 

a threshold between these values is required. Discriminators are rarely used in this 

way for practical applications, but their analysis can help in the understanding of 

the n-tuple classifier. They are discussed in detail in chapters 4 and 5. 

2.4.3 WISARD 

The Wllkie Stonham and Aleksander Recognition Device was presented in 1982 

as a practical realisation of the n-tuple method (see [5]). Each node was modelled 

by a random access memory (RAM) and the values for each discriminator could 

then be summed and compared. The operation is exactly analogous to the n-tuple 

method but the hardware implementation meant that it could be employed to pro-

cess data in real-time and even video images. The use of RAMs as nodes led to 

the widespread use of the term for nodes in all weightless systems even when imple-

mented in software. The term RAM-based systems is often used as a synonym for 

weightless systems. 

2.4.4 PLNs 

The probabilistic logic node, PLN, is an extension of the normal deterministic 

two-valued node used in the systems described so far. In a PLN, the output set is 

extended to a finite set with more than two elements. These values are then inter-

preted probabilistically in order to give a 1 or 0 output. PLNs with more than three 

probabilistic output values are known as MPLNs. They are described and used by 

Myers in [36]. The standard PLN has three probabilistic output values 0,1 and u 

where a u value is interpreted by the node as a probabilistic function giving 0 and 
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1 with equal probability. 

A popular architecture for PLNs has been the form of a feed-forward pyramid where 

the output of one layer feeds into the layer below, see [36], [3], [18]. A reward/penalty 

algorithm has been applied and been shown to allow learning of many complex 

functions. 

2.4.5 GRAMs and GNUs 

The generalising random access memory, the GRAM, is a development of the 

standard three-valued PLN which attempts to add "more" generalisation. Training 

starts with all node values set to u and these are then modified according to the 

architecture and training regime. After training is complete, each trained address 

"spreads" its stored value to nearby untrained addresses. This spreading occurs 

up to a radius defined by the machine design, and follows well-defined rules if two 

spread values clash, see [26]. However, the radius within which spreading occurs 

must be pre-determined and it is far from clear how performance at certain tasks is 

changed by spreading. 

The general neural unit GNU is an assembly of GRAMs connected so that some 

input to each node comes from the usual external input, while some comes as feed-

back from the outputs of the GRAMs. This entails the ensemble maintaining a 

memory of its last response and makes these systems very different to the previous 

arrangements of weightless nodes. (Although we see in section 4.5 that some results 

carry well between the two.) A diagram of the basic architecture is given below. 

A GNU can function as an associative memory for high-dimensional binary vectors 

whether auto- or hetero-associative, but detailed performance statistics are not avail-

able to compare it with other, similar, systems. It is hoped that the GNU will be 

able to analyse complex, time-dependent inputs where its feedback connections will 

be able to provide context information. However it will only be treated in passing in 

this thesis, and only for the pattern recognition it can perform as an auto-associator 
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Figure 2.2: The weightless general neural unit. 

when recall is simply treated as recognition. 

2.4.6 Other Systems 

Other systems within the weightless framework are in use such as ADAM (the 

Advanced Distributed Associative Memory) [8] which is designed for image analysis 

tasks and the BCN series [24]. However none of these will be analysed in this thesis 

so no more details will be given. Hopefully though, this exposition of weightless 

technology serves to demonstrate the wide range of different systems, algorithms 

and techniques. 
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Chapter 3 

A n Introduction to Learning 

Theory 

3.1 In t roduct ion 

Vapnik [58] dates the beginning of learning theory to the work of Rosenblatt [46] 

and his perceptron. This early version of what we now call a neural network was the 

amongst the first implementations of algorithms which could learn from examples 

and generalise: what scientists call induction. Certainly his work produced a lot of 

interest in subject of adaptive learning machines and when Novikoff [38] produced 

the first theorem showing that the perceptron could separate any separable set this 

became the first result in learning theory. Moreover it was shown [2] that given 

an appropriate stopping rule the error can be guaranteed to be below any required 

value with any required probability. These results seemed to show that minimising 

the error of a learning machine on a training set was the best way to ensure min-

imal error on the whole input space. The principle this embodies is known as the 

Principle of Empirical Risk Minimisation or ERM. We shall return to this when we 

start to formalise our reasoning. 

At this point two schools of thought (which were later to become those of Neural 

Networks and Learning Theory) began to diverge. One group decided to accept 

the ERM principle and search for better ways to minimise training error and differ-
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ent and more flexible systems. Any adjustment of architecture or system size was 

considered an engineering problem and many such problems were solved quite suc-

cessfully. The other, more theoretical, group began to ask themselves the questions 

outlined in Chapter 1 about the conditions under which the ERM principle does 

indeed converge to the optimal solution and if so how fast. At the present time, 

when practical learning machines have shown themselves to be powerful practical 

tools but whose theory has severe lacunae, the two strands of research are meeting 

again. 

3.2 Risk Minimisat ion 

In this section we shall begin to lay out the formal framework of learning theory: 

both what it's trying to achieve and the concepts used to describe it. The fun-

damental problem of learning theory is the same as that of statistics, namely to 

estimate the properties of an unknown probability distribution using a limited num-

ber of data points. This is exactly the same problem that neural networks of all 

sorts have when given training data to solve a problem. The particular aspect of 

the question addressed by learning theory is how to make these estimations given 

a restricted number of functions which are parametrised by an arbitrary set when 

the only information about the input and output distributions is that contained in 

the training set. (This distinguishes learning theory from more traditional statistics 

where the distribution to be modelled is known up to the value of a few parameters 

which must be estimated.) This set of functions is equivalent to a learning machine, 

and familiar learning machines such as neural networks and radial basis function 

networks define such sets of functions; in the first case as being the sums of various 

sigmoid functions and in the latter as being sums of various symmetric kernel func-

tions. 

The algorithm chosen for selecting the best function available in a machine to match 

a given data sample, or "training" data in neural networks terms, can be in most 

cases be described by the ERM principle. The study of this principle and sub-
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sequently of its successor, the Statistical Risk Minimisation principle, is thus the 

natural focus of learning theory. However to explain properly what is meant by 

these principles we must first make clear what we mean by a statistical risk. 

3.2.1 The Learning Problem 

To formalise the ERM principle we must define the learning problem itself in the 

most general and formal terms. We assume an input set X and an output set Y. 

We have a probability measure F on % which corresponds to the probability of 

a given random generator, G, choosing any particular x G X in the training and 

test data. For the purposes of this work this probability distribution is assumed to 

be constant throughout the learning and test processes. We furthermore assume a 

conditional probability measure F{y\x) which defines the (probabilistic) rule for the 

input/output mapping which the machine must model.(Note that this may be given 

by a deterministic function y = y{x) and in many real-life cases will be. However 

we shall keep the analysis as general as possible, for instance so that noisy data 

can be introduced.) We assume a supervisor S which is able to deliver training and 

test data according to this rule. This supervisor is in real-life the sampling process 

that generates test and training data. The third part of the model is the learning 

machine itself which consists of a set of functions f : X x A Y where A is an 

arbitrary index of the available functions. 

3.2.2 Expected and Empirical Risk 

The above defines the underlying structure, but to define what we want the learning 

machine to do, we need some idea of what constitutes a "good function" in the 

learning machine. To do this we introduce the risk functional. First we define a loss 

function, L{y, f{x,a)) which is some measure of the incorrectness of the function 

parametrised by a £ A at point y in the output space. Different choices of loss 

function correspond to different statistical problems. The risk functional, R, is 

the value of the loss function integrated over the whole output space. That is 

E(a!)= 
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A particular value of R is known as the expected risk for parameter a . Good gen-

eralisation by a function which has been selected by reference to a training sample 

can be characterised by a low value of the expected risk. Minimising the expected 

risk of the learning machine (or the function selected by it) is the goal of any learn-

ing machine. 

Now let z denote a pair (a;,y) and let Q(z,a) be the loss associated with function 

a at z. We may then define the empirical risk over a set of data to be 

1 ' 
-Semp(a) := jY2Q(zi,a). 

' i = i 

This represents the average error of the function parametrised by a on the training 

set. By the law of large numbers we can see that the empirical risk will tend to the 

expected risk as I, the size of the sample, is increased. However, the goal of the learn-

ing machine is to select the function that minimises the expected risk over all a € A. 

The Empirical Risk Minimisation principle can now be stated as follows: 

In order to minimise the expected risk over the set of functions provided by the learn-

ing machine, one should attempt to minimise the empirical risk on the training data. 

This principle will be discussed in detail after some practical examples. From now 

on it is assumed that X and Y are some real spaces and 

3.2.3 Common Risk Functions 

The choice of loss function determines the sort of information that the learning 

machine attempts to extract from the data. Three of the most common examples 

are used for pattern recognition, regression analysis and density estimation. 

Pattern Recognition 

This is the simplest case and all the analysis of weightless systems in this thesis 

considers this problem. The only allowable values of y are 0 and 1 and the loss 
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function is given by 

% . / ( x , . ) ) = ( ° 

1 if/(a:,Q:) ^ y. 

The loss function in this case simply counts the number of classification errors and 

the expected risk is the probabihty of wrong classifications on the rest of the data. 

Hence the problem of minimising expected risk is indeed the classical problem of 

finding the best classifier from the functions available. 

Regression Analysis 

General regression problems are not considered in detail in this thesis because n-

tuple classifiers have only rarely been used in such situations. However as an example 

of a risk function it shows the scope of the preceding formalisation of the learning 

problem. 

To perform a regression in the standard model one must minimise the mean squared 

error, so the appropriate loss function is 

1(3/ , / ( i , a)) = (t/ - / ( a : , a ) ) \ 

Density Estimation 

As a final example we consider a case where the input/output mapping is irrelevant 

and only the input distribution is of interest. According to the standard model [10, 

page 59] if we want to approximate the density function on X (and here we ignore 

Y) we must minimise the loss functional given by 

L{p{x,a)) = - l o g p ( z , a ) . 

3.2.4 Empirical Risk Minimisation 

The ERM principle is central to most learning algorithms and so its study comprises 

a large part of learning theory. Multi-layer perceptrons, for example, minimise the 
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error on their output nodes by back-propagation of error during training, while ge-

netic algorithms do the same at the selection stage. Part of the aim of this thesis 

is to show how the n-tuple classifier can be put into the same framework and that 

this framework allows us new theoretical results and insights into the classifier's 

behaviour. 

Several questions naturally arise from the definition of the ERM principle: 

1. Does it yield a sequence of functions that asymptotically converge to the one 

with minimum expected risk? 

2. Does it guarantee good generalisation (ie. low expected risk) for small sample 

sizes? 

3. Can we improve the expected risk by controlling the machines capacity and 

preventing "over-fitting" ? 

4. Can learning machines based on other principles be as good or better? 

Consistency of the E R M Principle 

The question of asymptotic convergence is known as the question of the consistency 

of the learning process. It has been shown [61] that the ERM is consistent for a set 

of functions if and only if the maximum value of the difference between the empirical 

risk and the expected risk converges uniformly to zero in probability as the sample 

size tends to infinity. More precisely 

lim P{sup(/2(a) — -/?emp(«))} > c, V e > 0. (3.1) 

In particular this shows that the ERM principle is always consistent for finite sets of 

functions, such as those produced by n-tuple classifiers and GNUs. However, because 

the thesis is concerned with such learning machines only, we will concentrate on the 

non-asymptotic, small sample size part of the theory. 
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Generalisation 

One of the major benefits of this formalisation is that we have a precise notion of 

generalisation. We can say that a function generalises well if its expected risk is 

low. Thus we can say that a learning machine generalises well from a training set if 

the function selected by the learning machine after training has low expected risk. 

The question of good generalisation for small sample sizes is an important one in 

practice where a machine may be asked to learn from a fixed given set and to provide 

a function or classification with a low expected risk. Given no information about 

the problem, can we bound the expected generaUsation error? The answer is that 

for all most all learning machines (those without infinite VC dimension, see section 

6.5) such a bound can be found. These bounds are given in section 3.3. 

Controlling the Capacity of a Learning Machine 

The answer to question 3 above is an emphatic "Yes". The phenomenon of over-

fitting is a special case of the theory of "ill-posed problems" and the tools of regular-

isation theory have been developed to solve this and similar difficulties. Techniques 

for achieving this goal for general learning machines are often ad hoc, but analysis in 

the context of learning machine gives a particular method of restricting over-fitting 

problems by bounding the generalisation error of a learning machine by a function 

of a scalar quantity the VC dimension and controlling it over a sequence of learning 

machines of increasing capacity. The theory of this procedure and related ideas is 

given in section 3.4. 

N o n - E R M machines 

Learning machines which do not implement the ERM principle do exist. Stochastic 

approximation [43] is one such method of inference which minimises expected risk 

by a sequence of iterations based on each training pair. However the properties of 

the ERM principle are sufiaciently attractive that most current learning algorithms 

execute some version of it. In particular it can be shown that the n-tuple method 

can be analysed in this framework. 
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It should be noted that some learning algorithms do seem to violate ERM, for in-

stance by ignoring outliers, but by doing so they introduce a priori assumptions 

about the data, for instance that outliers are likely to be the result of noise or unex-

plained error. From a practical point of view such assumptions may be very useful, 

but in the context of the formal problem we cannot resort to such techniques. The 

only information about the unknown distribution is that contained in the training 

data. We shall look again at the idea of incorporating a priori knowledge in section 

7.2.4. 

3.3 Bounding the Expected Risk 

In order to be sure that a learning machine generalises well for small sample sizes we 

need tight bounds on the expected risk given the sample size and machine type. To 

get tighter bounds still we can use information about the distribution of the data if 

this is available. This information about the set of functions comes in four flavours 

(and more can be devised). They are 

• VC-Entropy 

• Annealed VC-Entropy 

• Growth Function 

• Generalised Growth Function. 

(The ' V C stands for Vapnik-Chervonenkis who first proposed these quantities in 

[6Cq.) 

3.3.1 Non-Constructive Bounds on Generalisation 

From now on this thesis will only be concerned with the theory pertaining to pat-

tern recognition as this is the main capability of n-tuple classifier and most other 

weightless systems studied in this thesis. For such a set of functions (that is, ones 
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which take values in {0,1}) we can make the following definitions. The notation 

used below is that of section 3.2.1. 

Capacity Definitions 

Let us consider a learning machine £ characterised as before by the set of boolean 

functions that it can perform on its input space. Denote these functions by Q{x,a) 

where cc E A and A is an index set. Let [xi,x2, be an input sample and let 

X2,..., Xi) be the number of dichotomies that £ can realise on the set. That 

is, the number of binary vectors in the set 

a) , a ) , . 0(2:/, a)) | a € A}. 

Example 3.1 Let us take as an example the linear classifier in two dimensions 

where the input set is the set of vertices of the unit square together with its centre 

point (|, I) and the separating hyperplane is just a line. Then if we consider the 

sample x = {(0,0), (1,1)}, N^{x) — 4 since all 2'̂ '̂ = 4 possible classifications o / x 

are possible, see figure 3.L (Note that one line yields two dichotomies because either 

side of the line can he set to 1 orO.) If x. were to be extended to include (1,0) and 

(0,1) then we would have jV^(x) = 14 and not 2l*l = 16 because the dichotomies 

where (0,0) and (1,1) take the same value as each other but different to the other 

two input point are not available (figure 3.2). 

If we consider the samples as being chosen according the unknown probability dis-

tribution F we can consider N^{xx,x2, ...^xi) as a random variable. We can then 

define VC-entropy, as follows. 

a'^(Z) = E[lnAr^(zi,Z2,...,%()]. 

Example 3.2 Let us return to our previous example and consider VC-entropy. For 

I — 1 there is only one possibility, a singleton point. In this case both dichotomies 

of the set are available, so H^{1) — 2. When I = 2 there are two possibilities, two 

distinct points or two choices of the same point. In the first case N^(x) = 4 and 

in the latter N^{x) = 2. The expected value of the number of dichotomies is the 
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dichotomy 1 
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( 0 . 1 ) \ . / / ( I I ) 

0%O) / \ ../ \ (1.0)/ 

Figure 3.1: All four dichotomies (given by two lines) of two points. 

Figure 3.2; The fourteen available dichotomies of the four corners of the unit square. 

sum of the number of dichotomies for each set, weighted by the probability of that set 

occurring. Hence H^{2) = (ln4)P[iioo points different] + {\n2)P[two points same]. 

It is not hard to see that such calculations soon become very convoluted and for this 

reason are little used in practice. 

Furthermore the annealed entropy is given by 

^ a n n ( 0 = 

And the growth function is 

G^(l)= In max 0:2,..., x;)]. 
Xi,X2,-.,Xl 

Example 3.3 Once again considering the running example, we can see that the 

growth function takes the following values. (Note that if the classifier can split a 

set in any particular way that such a split generates two dichotomies in which the 

outputs all take opposite values.) 

Any singleton set can be classified either 1 or 0 so G^(l) = In2. 

Any two points can he separated by a line, and either point may be classified as 1 or 

0 so G^(2) = ln4. 

Any three non-collinear points can be separated in any configuration by a line, so, for 

instance, {(0,0), (0,1), (1,0)} can be shattered by a linear classifier. Thus G^(3) = 

In 8. 
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(%1) (1,1) (1,1) 

(1/2,1/2) 

(0,0) (1,0) KXO) (1,0) 

Figure 3.3: (0,0) and (1,1) cannot take the opposite value to (0,1) and (1,0). 

Figure 3.4: (0,0) and (1,1) cannot take the opposite value to (1/2,1/2). 

This is the first case where no subset of the input set can be dichotomised in all 

possible ways. We must consider which dichotomies can and can't be realised. In 

the case of a convex set of four points, any single point can be separated from the 

others, and two of the three separations of two points from the other two can be 

made. However the third separation of the type 2:2 cannot be made (see figure 3.3). 

This leaves two dichotomies unavailable. In the case of a set of four points with three 

points the collinear point between the other two (ie. (1/2,1/2)) cannot be separated 

from both its endpoints simultaneously. Again two dichotomies are not realisable (see 

figure 3-4)•• Hence the maximum number of dichotomies of a four element subset of 

our input set is 14 so G^(4) = In 14 

There is only one five element subset of the input set and investigation shows that 

18 dichotomies of it are realisable. Thus G^{5) = In 18 

These three quantities form an increasing sequence. 

(3.2) 

Although it is not relevant to the finite sets of functions studied in this thesis, the 

quantities are implicit in the asymptotic behaviour of a learning machine which 

follows the ERM principle. In fact 

l t o ^ = 0 
l—^oo I 
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is a sufficient condition to guarantee asymptotic convergence to the best solution. 

(The necessary condition is very slightly weaker.) 

The condition 

lim = 0 
l-^OO I 

is sufficient (the necessity is at the moment an open question) for "fast" convergence 

in the sense defined in section (3.3.1). 

Finally 

l^oo I 

is necessary and sufficient for convergence for any distribution on the input space. 

This is the most general criterion we have. 

Note also that the sequence in expression (3.2) ensures that the conditions form an 

increasing set of conditions. If one is fulfilled then so are those to the left. These 

are what Vapnik calls the "milestones of learning theory", [58, page 52]. However, 

since we are here interested in finite sample size behaviour we shall consider the use 

of these quantities in bounding the generalisation error (expected risk) of learning 

machines. 

Generalisation Bounds 

The following results due to Vapnik [58] refer to learning machines trained according 

to the ERM principle. 

P[sup 1 [ Q(z,o;)c(F(z) - - ^ Q ( z ; , o : ) | > e] < 4exp{(ffann(20 -

(3.3) 

If the probability distribution on the input space is unknown then we cannot use 

the annealed entropy. We must use the growth function instead. This is the impor-

tance of the growth function. It is used to bound the generalisation error when the 
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distribution is unknown. Specifically 

r 1 ' 
P[sup 1 / Q{z,a)dF{z) - > e] < 4exp{(G^(2/) - eH)}. 

aeA J I 

(&4) 

We can rewrite this expression what is often a more useful form. First define 

g ^G^{2l)- Hr,/4) 

It is then true (see [58])that for any 0 < rj < 1 and for all Q{z,a) the following 

results hold with probability 1 — rj: 

R{a) < i?emp(«) + (3.5) 

and 

^emp(a^) — ^ < R(a). (3.6) 

Moreover, for the function Q{z, ai) which actually minimises the empirical risk on 

the sample (of length I) we have that the following holds with probability 1 — 2?/: 

R ( a , ) - m { ^ R ( a ) < J - ^ + ^ V e . (3.7) 

3.3.2 The VC Dimension 

There is a theorem due to Vapnik and Chervonenkis [60] (and independently to 

Sauer [48]) which shows the growth function to have a special form, which fact 

allows us to bound the growth function for all values of I using a single parameter, 

h. This parameter is known as the VC dimension. First we give the definition of 

VC dimension and then the statement of the theorem. 

VC Dimension 

Recall that the growth function, o f a machine is the natural logarithm of the 

maximum number of dichotomies that the learning machine can realise on a sample 

of size I. (The maximum is taken over all samples of size I.) The value of the growth 
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function is necessarily less than or equal to / In 2 since there are exactly 2̂  possible 

dichotomies of a sample of length I. Thus we may define 

h{A) := VC dimension (£) = max { I such that = I In 2}. 

If no such I exists we say that the VC dimension of £ is infinite. If a set of functions 

is able to dichotomise a set of size I in all 2' possible ways it is said to shatter the 

set. The VC dimension of a set of functions can thus be expressed as the size of the 

largest set that can be shattered by the functions. 

If the set of functions has finite cardinality N (as in most weightless systems) we 

have an immediate upper bound on h. Since 2' distinct hypotheses are required to 

shatter a sample of length we must have h < logg N. However h could be much 

smaller than logj N. 

Sauer's Lemma 

For any / > 0 

exp[G*(0] < 1 + ( J ) + ( 2 ) + - + ( i ) < ( l ) • P-®) 

For I < h this simply states that < h\n2 which is clear from the definition of 

h. However foi I > h the polynomial defined by the right-hand side of expression 

(3.8) is a polynomial in I of degree h. Thus if we know (or can bound) the VC 

dimension of a learning machine we have a logarithmic upper bound on the growth 

function. This can be used in the generalisation bounds of the learning machine to 

give a constructive upper bound to the expected risk for small sample sizes. 

The Form of the Growth Function 

Informally, Sauer's lemma shows that for a set of functions with a finite VC di-

mension, the growth function is linear (with slope In 2) for I < h and is thereafter 

bounded by a function logarithmic in l'̂ . Some possible and impossible forms of the 

growth function are sketched in figure 3.5. 
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Maximum number of dichotomies, N 

N=(ln2)l 

linear increase is 

possible if VC dim is 

infinite 

0(ln(l )) or below is possible 

above 0(ln(l^)) 

,...is impossible 

for finite h 

size of sample,1 

Figure 3.5: Possible (and impossible) forms of the growth function. 
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3.3.3 Constructive Distribution Independent Bounds 

We can now bound the right hand side of expression (3.4) by using the version of 

inequality (3.8) found in [V&C 68]. 

G ' ^ < / i ( l n ^ + l). 

We can use the same formulae as section (3.3.1) but with the S defined by 

£ ;= 4-,/^(ln( + l ) - l n ( : ) 

If instead of the VC dimension we choose to use the bound based on the number 

of functions in C we define 
g gin jV-In7?^ 

Inequalities (3.5) and (3.7) now hold without further modifications. 

3.4 S t ruc tu ra l Risk Minimisat ion 

From now on we shall only consider machines with finite VC dimensions. An infinite 

VC dimension implies an inability to learn all unknown distributions no matter how 

much data is given. Thus they can be said to have no generalisation ability. Thus 

for a learning machine with a finite VC dimension h the bound given by expression 

(3.5) can be expressed formally as 

R{a) < -Remp(a) + $ ( ^ , ^ ) 

with probability 1 — 7?. 

This expression us allows to see precisely what adherence to the ERM principle 

achieves. It bounds the left-hand side (the expected risk) by the smallest possible 

value of the empirical risk plus a confidence interval term which is related to the 

amount of data and the complexity of the machine. (We can neglect the term in 

T] since it is a controlled variable). For large I, or more precisely for large the 

second term will become small, but for small sample sizes the $ term can dwarf the 

other. To obtain the tightest bound on the expected risk we must control both the 
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empirical risk and the confidence interval simultaneously, and that means controlling 

the VC dimension. 

3.4.1 Controlling the VC dimension 

A single learning machine consists of a single set of functions with a single VC di-

mension. To control the VC dimension it is necessary to consider a whole family of 

learning machines and for this reason the concept of a structure is introduced. 

Let S be the set of functions {Q{z,a) | a € A}. A structure on S consists of a 

sequence of nested subsets of S\ 

C .92 C % C ... C 5'n..., 

where the VCdim, hk, of each Sk is finite (although the VCdim of S may be infinite, 

it doesn't matter) and where tJHi Sk is dense in S. 

Types of Structure 

A structure can be induced in several ways. Most straightforwardly, some control-

ling parameter of the learning machine can be varied so that the resulting sequence 

of machines is of increasing complexity. A canonical example of this is a sequence of 

multi-layer perceptrons with an increasing number of hidden units (see figure 3.6). 

Each machine in the sequence contains the previous ones as special cases and the 

VC dimension increases monotonically. 

Other ways of defining a structure included pre-processing the input data, for ex-

ample with a smoothing algorithm, so that as the data becomes less smooth more 

dichotomies can be defined on it and hence the VC dimension of the machine on 

the available inputs increases. A third way is by varying the training algorithm: 

defining a maximum value for the norm of the weight vector gives one means of 

defining a structure in this way. Later in the thesis appropriate ways of defining 

structures over sets of weightless classifiers will be proposed. 
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L J l ^ 3 

Figure 3.6: A structure on the perceptron based on the number of hidden units. 

Min imis ing Risk with t h e S R M Pr inc ip le 

We may then sketch how the total risk varies as the ERM principle is applied to 

each set of functions in structure. Recall that the error bound is such that as the VC 

dimension of the elements of the structure increase we will expect empirical error to 

fall, but the confidence term in 3.5 to increase. The resultant graph of expected risk 

against the VC dimension of the learning machines in the structure is sketched in 

figure 3.7 where h* is the VC dimension of the machine with the lowest error bound. 

This relationship inspires the statement of the Structural Risk Minimisation princi-

ple as follows: 

For a given set of training data {zi, Z2,..., zi} the function chosen should be that 

for which the guaranteed risk (as given by 3.5) is minimised. 

To comply with the SRM principle a trade-off between fitting the data and over-

complexity of the model is required. We shall return to this theme in chapter 7. 

3.4.2 Asymptotic Analysis of the SRM Principle 

It has been shown by Vapnik that under certain conditions, the approximations 

made using the SRM principle will converge asymptotically to the function with 

minimum expected risk in the whole set. The asymptotic rate of convergence can 
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error 
otal bound on 
sk 

Confidence interval 

Minimum empirical risk 

h 2 VC dimension 

Figure 3.7: The form of the total error for a structure of ERM-based learning 

machines with increasing VC dimension. 

be calculated, but the theory requires for this thesis does not require this. More 

important is the basic principle: that by adjusting the VC dimension for different 

sample sizes one may obtain better generalisation error. This will be applied, and 

extended in the analysis of the n-tuple method. 
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Chapter 4 

The V C Dimensions of Maximum 

Threshold Discriminators 

As described in chapter 3, the VC dimension of a machine is defined in terms of the 

functions that a learning machine can realise. In this sense it is a capacity measure 

which is largely independent of the training algorithm. The only dependence it 

may have is if the training algorithm never yields one of the theoretically possible 

hypotheses of the learning machine; this effect is considered in section 5.2.3. Hence 

this chapter will deal with discriminators which are allowed to contain any legal 

values which may be useful to determine the capacity of the discriminators. 

4.1 Principles for Calculating the VC Dimensions 

The VC dimension is defined to be the size of the largest set it can shatter. That 

is, the largest set it can dichotomise in all 2' ways. The approach to calculating 

this quantity is two-fold. To find a lower bound for the VC dimension it is simply 

necessary to demonstrate a shatterable set. If it can be shown that any dichotomy 

of a set can be realised by a certain set of values in the memory locations of a 

RAM net then the VC dimension cannot be less than the size of that set. However, 

to find an upper bound for the VC dimension it is necessary to prove that a set 

larger than a given number must cannot be shatterable. That is, that at least one 

dichotomy of the set cannot be realised. For RAM nets which deal with binary inputs 
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this is achieved by means of combinatorical considerations about the structure of 

training sets of a certain size. It should also be noted that since the systems under 

consideration contain a finite number of functions, the logarithm of the number 

of function constitutes an upper bound, (section (3.3.2)). In the cases where an 

exact upper bound on the VC dimension cannot be found, an upper bound on the 

logarithm of the number of available hypotheses may be used. 

4.2 Types of Discriminator 

Discriminators are differentiated from each other by their architecture: the number 

of RAM nodes in the discriminator, the size of their input addresses, the way in 

which their inputs are connected to the input and the value of their thresholds, if 

any. The VC dimension results below are built up from the most simple config-

urations and inductive arguments are used to extend these to the more complex 

discriminators. The method of training is also variable, but for the reasons given 

above has not been taken into account in calculating the VC dimension. 

Firstly we need to formalise the system in the learning machine framework. To de-

fine a discriminator as a pattern recogniser we must define the circumstances under 

which its output is 1 and those under which it is 0. If we limit the output to these 

two values, the only decision to make is that of assigning a value to the threshold 

0 . All discriminators considered in this chapter are of this type. 

[Note that if we allow a u output to designate a third output value (which we think 

of as denoting uncertainty as in a PLN) then we change the nature of the problem, 

since not every setting of the discriminator defines a dichotomy over all data sam-

ples. In this case we will only consider a function which takes values in {0,1}, on 

the sample under consideration, as defining a valid dichotomy. We may revise this 

definition later, but for now it allows direct calculation of many classes of discrimi-

nators and n-tuple classifiers.] 
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In this chapter all the discriminators considered will have Q = N. This is equivalent 

to passing the outputs of the RAMs to a TV-input AND gate. All RAMs must 

output 1 to a pattern for the system to output 1. The relationship between these 

discriminators, known as maximum threshold discriminators, and those with 

different forms of threshold will be explored in chapter 5. 

4.3 Definit ions and Nota t ion 

The number of nodes in each discriminator is denoted by N while the number of 

bits sampled by each node, the tuple size, will be denoted by n. Discriminators 

are denoted by script letters (eg. V,Vi) while individual nodes are referred to by 

subscripted lower case letters (eg. di). In fact the V notation will be somewhat 

abused: sometimes it denotes the output function of a particular discriminator and 

sometimes it refers to all discriminators of a certain class. The meaning in any 

particular case, however, is unambiguous. The support of a node is defined to be 

the set of input nodes from which it receives input. It will sometimes be useful to 

split the input vector into two parts - the support of one node and the rest. When 

this is done it is assumed that the vector is ordered so that the support in which we 

are interested is at the start, delimited from the rest of the vector by a colon. In 

general the training set under consideration is denoted by T while the projection of 

the training set onto node di is denoted by Ti. Thus Ti is the set of addresses of di 

which are addressed by the training set. We denote the projection (or component) 

of pattern t at node di by t|d;. 

Further definitions which are useful in the context of this work are those of the 

functions fan and out and the sets Xi. Consider Ti for some di so we may decompose 

any input pattern into the part that lies in the support of node i and the rest which 

we write as t = U : t~. For any S C Ti we define fan{S) to be the number of 

elements of T whose z-th projection lies in S. That is 

y a n ( g ) : = : T 6 T | € ^ } | . (4 .1) 
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Let us suppose that the supports of the nodes do not overlap. We can then decom-

pose any pattern set T into : T" , where Ti is the component of T at di and T~ is 

the projection of T onto the rest of the input space. Then for any S C Ti we may 

define out{S) to be the set of projections in T~ of any element of T whose projection 

on di lies in S. More formally 

out{S) := { f Tand td G 5}. (4.2) 

Note that crucially |out(5')| < fan{S) with equality if and only if every pattern 

whose projection at di lies in S has a different projection on the rest of the space. 

Finally, for each node di we may define Xi to be the set of memory locations at node 

di which are addressed by more than one training pattern. That is, those elements 

X G Ti such that fan(x) > 1, hence 

Xi := {ti G Ti I 3a, 6 6 T s.t. a\di and = ti and a ^ b}. (4.3) 

These definitions become important when we try to prove that training sets above 

a certain size possess inseparable pairs, the definition of which is given below. 

4.3.1 Conditions for Shatterability 

We have a definition of a discriminator all of whose values lie in {0,1} and thus 

we have a consistent definition of shatterability. However, to effectively prove the 

shatterability or otherwise of a set we introduce the idea of inseparable pairs. Sup-

pose R and S are disjoint subsets of T and V is the discriminator. We say that 

R is inseparable from S under V if training every component S to output 1 in 

V causes every pattern in R to be recognised, that is, to output 1. {R,S) is then 

an inseparable pair. For example the pattern a : 6 is inseparable from {a : x,y : b}. 

Since we are considering maximal threshold discriminators, all components of any 

trained pattern must output 1 or the pattern will not be recognised. Thus if T 
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contains an inseparable pair it is not shatterable because no dichotomy in which the 

two sets take differing values can be realised. We now show the converse, that if T 

is not shatterable it must contain an inseparable pair. 

Since T is not shatterable, by definition there must be some dichotomy which is 

unrealisable. Pick such a dichotomy and label it {R, U) where R is the set of patterns 

to be recognised and U is the complement in T. If we train V to recognise i?, we must 

conclude that it recognises at least one element u of f / or else the dichotomy would 

be realisable. (At this point we should notice that the two constant dichotomies, 

all 0 and all 1 can always be realised so U 7̂  0. Because of this, the case of the 

constant dichotomies will always be implicitly assumed to have been proven in the 

following proofs.) Hence {u} is inseparable from R. This shows that the existence 

of an inseparable pair is a necessary and sufficient condition for unshatterability. 

This fact is used in the proofs below. 

4.4 T h e Simpler Cases 

We shall first consider three very simple cases whose analysis will illustrate the 

methods that can be applies to the more complex configurations. Firstly the case of 

two discriminators with non-overlapping supports, secondly the case of N discrim-

inators with non-overlapping supports, and thirdly the case of two discriminators 

whose supports overlap on ^ < TV input points. All three discriminators have Q = N 

so training a pattern requires training all of its components into all the nodes. 

4.4.1 Two Disjoint Nodes 

Consider the discriminator V which consists of two nodes, di and (fg, whose supports 

are disjoint and each consist of n input bits. First we shall demonstrate a pattern set 

which is shatterable in order to get a lower bound for the VC dimension. Consider 
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the set 

T := {0,1}" :0 (4.4) 

U 0 : { 0 , l } » 

-0:0, 

where U represents the union of sets, 0 represents the zero pattern, {0, l}" repre-

sents all n-bit binary patterns and where the part of the pattern before the colon 

represents the support of di and the part after is the support of 6.2. (Any subset S 

of T may be similarly decomposed into : % corresponding to the support of each 

node.) Note that each pattern is effectively discriminated by only one node: it is 

this which suggests it may be near-maximal. 

We shall now show that this set is shatterable by V. Pick any S C T and train V 

on S. Any t 6 T can be written ty : where the two parts of the pattern correspond 

to the two nodes as before. Pick ti : t2 G T — S. From the definition of T either ti 

or <2 (but not both) outputs 0. Assume without loss of generality that it is ti- Then 

we must have t2 ^ 0. If 2̂ E '̂2 then by the definition of T we must have either 

2̂ = 0 or 0 ; 2̂ € S". Neither of these is possible so <3 ^ S2. Hence ti : (2 is not 

recognised. Since it was chosen arbitrarily no t G T — S is recognised. Since S was 

also chosen arbitrarily the result is true for all 5" C T and hence T is shatterable. 

Since | r i = — 2 we have exhibited a shatterable set of size 2"+^ — 2, and hence 

yC(Zim(D) > 2""+̂  - 2. (4.5) 

To prove the upper bound we consider any training set, T, such that IT] > 2"+^ — 2. 

Let Ti : T2 be the decomposition of T as before and define Xi as above. If |%i| = 0 

then each component at di is contained in only one pattern of T. Hence T can 

contain no more than 2" patterns so for our value of | r | we must have |Xi| > 1. 

Now, 

jFori(;(i) == jFo,%(]li) --jFon(:ri -- j f i ) (4.6) 

= | r | - ( | r i | - | X i | ) 
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because for each t eTi — X i , / a n ( i ) = 1. 

We know \Ti\ < 2", | r | > 2"+^ — 1 and |%i| > 1, and hence 

/onCXi) > 2 " + i - - l - 2 " + 1 ^L7) 

> 2". 

Consider two cases. 

Case I: fan{Xi) > 2" 

Since there are at most 2" elements of T2, by the pigeonhole principle, 3 yi E T2 

and Xi,X2 € Xi such that Xi : y\ and : Hi E T. 

Since Xi € X i , 3 ^2 G Tg such that Xi : y2 E T and yi ^ 1/2. Thus := {xi : 

y2 1 X2 • j/i} and S2 '•= {a;i: yi} are subsets of T. However, if V is trained so that 

5'i is recognised, then S2 will also be recognised. Hence S2 is inseparable from Si so 

T is not shatterable. 

Case II: fan(Xi) — 2" 

This can only happen when [T'l = 2"+^ — l , |T i | = 2" and \Xi\ = 1. Suppose 

Xi = {zi}. 

Because fan{Xi) = 2" < [Tsl < 2" we must have V <2 € Tg, 2 1 : ^ 2 6 T. Also, if we 

pick any ti E Ti — Xi, there must of course be some (3 € T2 such that ti : E T. 

Choose t2 G Tg, ̂ 2 ^ ^3. 

Then the two sets {^i : ^2,^1 : (3} and {xi : ^3} are inseparable as before. 

Thus in either case there are two inseparable subsets of T, so T is not shatterable 

by T>. Hence we have 

<c --1. 04.8) 

54 



Combining the above result with equation (4.5) we get our result. 

= 2"+^ - 2. (4.9) 

4.4.2 N Disjoint Nodes 

Let Vn be a discriminator with N nodes each of support size n. 

For a lower bound on the VC dimension of consider the union 

T := { 0 , 1 } " ; 0 ; . . . : 0 (4.10) 

U 0 : { 0 , 1 } " : 0 : . . . :0 

u ... 

U 0 : ... : 0 : {0,1}" 

— 0 : 0 : ... : 0 : 0. 

To see that T is shatterable, pick any R C T and train R to be recognised in V^. 

Consider any s ^ R. The non-zero component of s does not appear in any other 

pattern in T, so 5 will not be recognised unless it is directly trained. Since s was 

arbitrary, no pattern not in R will be recognised. Hence T\R is not recognised so 

the dichotomy is realised. Since R itself was arbitrarily chosen, can realise any 

dichotomy of T so T is shatterable. Since | r | = A'̂ .2" — A'̂  we have 

l/C(&?m(2)/v) 2: //.2" - (4.11) 

Suppose T is a training set such that [T] > A .̂2" - N. As our inductive hypothesis 

we assume that for 1 < fc < A'̂ , VCdim{'Dk) — ^•2"' — k. By result (4.9) this is 

certainly true for the case N = 3. 

Decompose T as Td ' T~ where Td corresponds to the support of a single node, d, 

and T~ is the input to the N — I node discriminator V~ obtained by removing d 

from Vi<i. We want to use the inductive hypothesis to get an upper bound on \T~\. 
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As before, in (4.2), for any S CTd define 

out{S) ;= {t~ \ ta: t" e Ta.nd td G 5}. (4.12) 

Thus fan{S) > |owt(S')| with equality if and only if no element of out{S) is generated 

by more than one element of T. That is, if there are no t,s £ S such that t : t~ and s : 

t~ G T. Define Xd as before. Note that if |Xj | = 0 then there would be a maximum 

of 2"̂  patterns in T since each pattern would have a unique projection at d. Since 

this is not the case we must have > 1. 

As before, 

fan{Xd) - fan{Td) - fan{Td - Xd) (4.13) 

Also, | r | > .Ar.2" - AT, < 2" and |Xj| > 1, so 

/oM(Xd) > A r . 2 " - N - 2 " + l (4.14) 

= (AT - 1 )2" - (AT - 1) . 

Since fan{Xd) > \out{Xd)\ we have two cases. 

Case I: fan{Xd) > \out{Xd)\ 

In this case there must exist some t,s & Xd such that t : t~,s : f €. T. Because 

t ^ Xd there is also some t' G T~ such that t : t' €: T. Hence we cannot separate 

{t : t~} from {s :t~,t : t'} so T is inseparable in this case. 

Case II: fan{Xd) = \out{Xd)\ 

In this case \out{Xd)\ > (iV — 1)(2" — 1) so by the inductive hypothesis, out{Xd) is 

not shatterable by V~ Hence there are two disjoint sets Si,S2 G out{Xd) which are 

inseparable by V~. That is, if is recognised so is S2- Pick any gg G %. Define 

Si to be the pre-image of 5'i in the whole of T. That is, contains all training 

patterns which project an element of Si- Pick x G Xn such that x : S2 G T". By the 

definition of 3 G T~ such that x : t~ G T and t~ ^ 
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Then {x : 62} is inseparable from : t~}. 

Thus T is not shattered in either case, so 

5: /V\2" -- TV. (4JL5) 

Putt ing this together with equation (4.11) we get 

= Ar.2" - ./V. (4.16) 

4.4.3 Two Nodes Overlapping by I 

Let Vi be a discriminator consisting of two nodes whose supports overlap by I pixels 

where I < n. 

For a lower bound consider 

T := { 0 , 1 } " - ' : { 0 , 1 } ' : 0 (4.17) 

U 0 : {0,1} ' ; {0,1}"-' 

- 0 : { 0 , 1 } ' : 0 . 

Then T has size 2"+^ — 2'+^ and can be shattered by T>t in the same way as the 

disjoint case. Hence 

2*^1 -- 2'+i (4JL8) 

Suppose T is training set such that \T\ > 2"+* — 2'"*"̂  + 1. Then we must have 

1 ^ ^ 2 " - ' + 1 - 2 (4.19) 

We can partition T into 2' disjoint subsets (some may be empty) according to the 

/-bit pattern in the overlap. From inequality (4.19) we see that one such partition 

must contain more than —2 patterns. Decompose this partition as Ti : « : T2, 

where u is the (fixed) pattern in the overlap, Ti is the projection of the partition 

onto the part of the input which is only in the support of node di and T2 is the same 

57 



but for 8,2. 

Hence by result (4.9), Ti : u : cannot be shattered by a discriminator consisting 

of two non-overlapping nodes of size n — / on Ti and T2. This means that some 

Ri : i?2 and Si : S2 QTi : T2 are not separable by the two disjoint nodes. Therefore 

Ri : u : R2 and Si : u : S2 are not separable by D;. Thus T cannot be shattered by 

Hence 

y C < 2''+" - 2'+^ (4.20) 

Together with equation (4.18) this gives us the result 

yC(f*m(Df) = 2"+^ - 2'+\ (4.21) 

4.4.4 More General Configurations 

In sections 4.4.1, 4.4.2 and 4.4.3 the most basic arrangements of nodes were consid-

ered. A glance at the VC dimension results obtained suggests that adding a node 

with n inputs adds 2" to the VC dimension, but that for each overlap of size I be-

tween the supports of nodes the VC dimension falls by 2'. Thus we may be led to 

speculate that for a general discriminator D which comprises N numbered nodes 

N N 

yC(ftm(D) = g ( 2 " - ^ 2 ' ( '^) , 
x=l i=x+l 

where l{i,x) is the size of the overlap of the inputs to nodes di and dx- For some 

highly connected configurations (for example n = N — 1), the right hand side of the 

above is negative so this equality cannot always hold. However the above expression 

is close to a lower bound for the VC dimension of a discriminator. It will be shown 

that for any discriminator a shatterable set whose size is bounded below by a similar 

(though slightly larger) expression can be produced. 

4.4.5 Constructing the Bounds on VC Dimension 

Suppose P is a discriminator. Its parameters are arbitrary except that we demand 

Q z= N. We now distill the wisdom gained the from the previous calculations and 

58 



derive some general bounds for the VC dimension of such a discriminator. 

A Lower Bound 

Consider a set of patterns, T, built up in the following manner. For each node, 

define Tx to be the set of all patterns which are 0 everywhere except possibly on 

the support of (at this point \Tx\ = 2") and let T be the union of the T^. Now, 

for every pair of nodes d^^dy^ if any t 6 TxnTy {x ^ y), then remove t : 0 from the 

set. This removes at most — 1) patterns from each where l{x,y) 

is size of the overlap of the support of nodes dy and d^. (The '-1' is because the 

zero pattern doesn't need to be removed yet.) To calculate the (disjoint) union of 

the remaining sets we must take care not to remove patterns more than once, so 

we only need to consider each pair of node {x, y) once. Hence this union has size 

greater than or equal to 

N N 

Z ( 2 " - E - 1)) - AT. (4.22) 
x=l i/=a:+l 

(This time the '-N' has to be put in at the end because the zero pattern must finally 

be removed.) 

If /(y, x) is equal for all x and y this simplifies to 

y (2"+' ~{N - 1)(2' - l ) ) - N (4.23) 

Since each t eT has at least one projection not in any Xi (all the overlap patterns 

having been removed) it contains no inseparable pairs. Hence T is shatterable. 

However, the true size of the set generated by this method will in general be greater 

because we are counting some patterns more than once in the subtraction phase. The 

exact number of patterns removed depends on the exact topology, so to tighten up 

the bound we need to make more assumptions about the overlaps of the node inputs. 

In particular, the above is certainly not guaranteed to be a maximal shatterable set. 
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An Upper Bound 

Recall that the set Xi defined for a pattern set T and pertaining to each node di was 

defined to be the set of components in the support of di which were projected by 

more than one pattern in T. If the projection of some training pattern t onto each 

node is in each node's Xi then t will be inseparable from the rest of the training set. 

Moreover any pattern for which this is not the case will be separable from the rest 

of the set. This gives us a necessary and sufficient condition for a training set to 

contain an inseparable pair and hence to be shatterable. It must contain no pattern 

whose projections all lie in the Xi. 

Suppose we know the sets Ti and Xi for each node i. How many separable patterns 

can we construct under these constraints? The optimal solution (where possible) is 

to take iV — 1 elements from the XiS and exactly one from some Tî  — Xi^. Now by 

definition we can only select each element of each Ti — Xi once, so this gives us a 

maximum of 

E d ^ i l - (4.24) 

separable patterns. This upper bound may not be attained if it is not possible to 

select a set such that each pattern contains exactly one element not in any Xi. How-

ever, if we can find a set for which we know the sizes of the Ti are optimal and the 

sizes of the Xi are minimal, then the bound in (4.24) will be useful. 

Thin Uniform Coverage: A Special Case 

If we have a large input space, X, and relatively small n-tuples, it is often legitimate 

to assume (or to contrive) that every point in the input space is in the support of 

some nodes di,dj etc., but that no other input point lies in the same two supports. 

From the point of view of the nodes we can say that no two supports will overlap on 

more than one input pixel. We shall call this type of input sampling thin uniform 

coverage. In the most uniform case every input bit is sampled by 5 := nodes. 
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Thus the value of /(i,x) is always 1 or 0 so the lower bound construction and 4.23 

yields a shatterable set of size greater than 

_ (Af _ l)(2' - 1)) - W (4.26) 

= | ( 2 " + ' - ( i V + l ) ) . 

In fact we can show that the size of the set generated by the algorithm in section 4.4.5 

above is A''(2" — (n +1)) and that this is also the VC dimension of the discriminator. 

Let r + Uj.g'pO : {0,1}" ; 0 where the non-zero part of the pattern corresponds to 

the input to a particular node and the union is taken over all the nodes. Since any 

two nodes overlap at exactly one point, the training pattern which is 1 there and 0 

elsewhere must be removed. Thus we must remove n patterns from each of the N 

components of the formula for This is Nn patterns in all. We must also allow 

for the fact that the zero pattern has been counted N times and must be removed. 

Thus for our final set T we must have 

\T\ = N.2''-Nn~N (4.26) 

= - ( » + ! ) ) 

as stated. 

If we consider the case above where all \Ti\ = 2" we see that each Xi consists 

exactly of the zero pattern and all patterns containing exactly one 1. Hence for 

all i we have \Xi\ = n + 1. Thus the upper bound on the VC dimension is 

53(2" — (n-(-1)) = N{2^ — (n-f 1)) which is the value given by our constructive lower 

bound algorithm. 

Can we find a larger shatterable set by reducing the size of the Xi, perhaps reducing 

the size of the Ti to do so? We cannot, because each of the patterns in the Xi is 

generated by (on average) 52""^ training patterns. Thus to decrease IX,! by one, 

it would be necessary to remove a far greater number of patterns. However much 

we reduce Ti we can never remove fewer training patterns than the decrease in \Xi\. 
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Thus \Ti\ — 2" is the optimal value for each i and because of the overlaps between 

the node supports, ?? + 1 is the minimal size of each X,. Hence in the case of thin 

uniform coverage we have the following: 

yCdtm = N(2" - + 1)). (4.27) 

4.5 Auto-Associative GNUs 

The GNU of Aleksander which is described in 2.4.5 can be configured and trained 

as an auto-associator. A GNU consists of the same sort of nodes as a discriminator, 

but some of the nodes take input from the output of other nodes. (Note that we 

shall assume that the nodes output either 0 or 1. There is no probabilistic output 

in this analysis.) The whole system is clocked and recall takes place over a number 

of time steps. The state of the GNU at a particular time is taken to be the pattern 

given by the outputs of all the nodes treated as an ordered sequence. There is no 

thresholding. If there are the same number of nodes as bits in the input space then 

a pattern can be associated with an internal state. This allows auto-association to 

take place. 

Suppose the GNU takes all its inputs from the outputs of the other nodes (randomly 

sampled as before) except for when i = 0 when the nodes have yet to give an output 

and the internal state may be set as wished. The GNU is then said to be autonomous 

and a pattern is identified with the internal state to which it is identical. A state 

or pattern p is said to be s table if a GNU in state p remains at p at the next time 

step. (And hence forever if we have the time to wait.) If a particular pattern is a 

stable state of a trained GNU we can say it has been recognised. If the pattern is 

not stable it is not recognised. Since probabilistic outputs have not been allowed in 

the nodes this definition is consistent and we can therefore define the VC dimension 

of a GNU. 
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4.5.1 Conditions for Shatter ability 

In the case of discriminators with Q = N any pattern that is trained is recognised. 

This is not true of GNUs because of the existence of contradictions in pattern sets. 

A contradiction in a pattern set at a particular node d, occurs when two patterns p 

and q which differ at the bit represented by that node nevertheless have the same 

projection at that node. In this case whatever is stored in the node at that address 

it is not possible to simultaneously recognise or reject p and q. They will always 

take opposite values. Discussions of contradictions in auto-associative GNUs can be 

found in [14] and [1]. 

The failure of a set to be shatterable by a maximal discriminator was solely due to 

the existence of patterns in the set which were inseparable from some other subset 

of the training set. In the case of the GNU we require both that the training set 

be inseparable but also that it be non-contradictory. It is claimed that these two 

conditions are necessary and sufficient for a set to be shatterable by a GNU. Notice 

that to make a state s stable all locations addressed by the components of s must 

generate the correct output 1 or 0 depending on the node's assigned position in the 

internal state. This is equivalent to the Q = N discriminator because in both cases 

every location of s must be trained (in the former case to be 1, in the latter to be the 

appropriate bit of the pattern). Hence a pair inseparable by such a discriminator is 

also inseparable by the GNU and vice versa. 

For the necessary part of the proof, suppose patterns p and q are contradictory 

at some node then clearly no dichotomy in which they are both recognised can be 

realised. Suppose, instead, that pattern p is inseparable from Q C T. Then no 

dichotomy in which all members of Q are recognised while p is not can be realised. 

Hence the conditions are necessary for shatterability. 

Now consider a training set T which satisfies these two conditions. Pick any S CT 

and train G to recognise S. Since T contains no contradictions this can be done for 

any such S. Now pick any t e T. Is it a stable state? If so then it is inseparable 

63 



from S both in the sense of a GNU (by definition) and in the sense of the TV = 8 

discriminator (as explained above). However we are assuming this is not the case 

and hence t is not recognised. Hence Q can realise this dichotomy. Since t and S 

were chosen arbitrarily we have shown that Q can realise any dichotomy of T. Thus 

we have shown that the conditions are sufficient. 

4.5.2 Calculating the VC Dimension 

To apply the results above we shall suppose that the GNU in question is sparsely 

connected, in which case we can assume or contrive that its connection graph sat-

isfies the constraints of thin uniform coverage, see section 4.4.5. Separability was a 

necessary and sufficient condition on T for shatterability by a discriminator. Hence 

the VC dimension result in (4.27) is an upper bound for the VC dimension of GNUs. 

The question is how close is it possible to go to these bounds? In fact, for any n 

and N we can reach the upper bounds simply by insisting on self-connection. That 

is, that every GRAM in the GNU receive its own output as input at the next time 

step. As pointed out by Braga in [4], a node which is connected to itself can never 

generate a contradiction during auto-association because the required output forms 

part of each node's input. Hence the sets constructed in sections 4.4.5 and 4.4.5 are 

maximal shatterable set for such GNUs. 

Are such self-connected nets useful? Certainly they are perfect auto-associators 

in that any trained pattern is recognised. The problems come in the form of false 

attractors and basins of attraction and the fact that GNUs are usually used for more 

complex, hetero-associative tasks. These, however, do not currently fall within the 

scope of the VC dimension measurement. 
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Chapter 5 

V C Results for Other 

Discriminators and n-Tuple 

Classifiers 

The VC dimension calculations in chapter 4 pertain only to discriminators with 

maximum thresholds, that is, where Q = N. What was changed was simply the 

connection graph, the way in which the input space is sampled by the nodes. In 

this chapter we shall extend the results to discriminators whose output is a different 

function of the node outputs. Then we shall turn our attention to the n-tuple 

classifier itself and bound its VC dimension. As by-products of the VC dimension 

calculations various theorems are proven about the number of hypotheses these 

systems can generate. 

5.1 Which Other Discriminators? 

The most obvious case which has not yet been considered is that of the discriminator 

whose threshold is less than N. Such discriminators are known as sub -max ima l . 

The other variation considered is the thick threshold discriminator. In this vari-

ation both an upper and a lower threshold are specified. If the sum of the node 

outputs is below the lower threshold the pattern is not recognised, if it is above the 

upper the pattern is recognised. If it is between the two the discriminator takes an 
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uncertain value, denoted by u. The purpose of this discriminator is to draw lessons 

about how to deal with the uncertain outputs which occur in more complex systems 

such as some variations on the n-tuple classifier. 

5.2 Sub-Maximal Threshold Discr iminators 

If we set the threshold to a value Q < N, recognition performance is affected in 

two ways compared with the maximal threshold value. Firstly, for a given set of 

node values more patterns will be recognised since fewer components of each pattern 

must be trained for the pattern to be recognised. Secondly when we train a pattern 

we only need to train 0 of its components. Indeed, if we are to minimise false 

recognition of patterns, we should never train more than 0 components of each 

training pattern to be recognised. We shall show that these effects almost cancel 

each other out and the VC-dimension is almost the same for all values of 0 . 

5.2.1 A Constructive Lower Bound 

Suppose 1 < 0 < Â . Let Vq be a discriminator with threshold 0 and let 1 and 0 

represent the patterns containing n Is and Os respectively. Consider the set 

(5.1) T := {0,1}" : 1 : : : 1 : 0 : ... ; 1 

U 1 : 1 : : ... : 1 : 0 : ; 1 

U ... 

U 1 : : 1 : 0 : . .. : {0,1}" : ... : 0 

— 1 : ... : 1 : 0 : .. . : 1 

1 ; ... : 1 : 0 : .. . ; 0 . 

In each pattern 0 — 1 of the components are 1 and N — Q are 0. The other com-

ponent has a unique value. None of the patterns which only contain one 1 and 0 

components are in T. The discriminator can be made to recognise a pattern t by 

training all the non-0 components in the relevant RAMs. Because there are exactly 
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0 non-0 components in each pattern, this is sufficient to guarantee that the pattern 

so trained is recognised. 

Using this training method we can show that the set T is shatterable by Vq. Pick 

any subset of R and train it as described above. It is claimed that this ensures that 

no pattern in T - i? is recognised. Pick s eT - R. All the {N - Q) 0 components 

will yield a 0 output, so for s to be recognised all of the other components must 

output 1. However, since s ^ R the "distinctive" component of s - the one which 

is neither 0 nor 1 - has not been trained. Thus at least N — Q + l nodes output 0 

to s so at most 0 — 1 output 1. Hence s is not recognised. Since s was arbitrary, 

no element of T — i? is recognised, and since R was arbitrary any dichotomy can be 

realised in this manner. Thus we have shown that T is shatterable. 

Since | r | = 7V(2" — 1) we have the result 

> Ar(2'' - 1). (5.2) 

5.2.2 An Upper Bound 

In section 3.3.2 it was shown that the logarithm base 2 of the number of hypotheses 

a learning machine can generate is an upper bound for the VC dimension of the 

machine. In the case of any discriminator with a single (that is, not thick) threshold, 

the number of realisable functions is bounded above by the number of different ways 

of filling all the addressed locations in all the nodes. There are N2'^ such locations 

and since the stored values can be either 0 or 1 there are 2^^ ways of filling them. 

Each such set of stored values is referred to as a node value set. This gives an 

upper bound on the VC dimension of all discriminators of 

logj(2''^") = N2'. 

So the bounds we have for the VC dimension are 

Ar(2" - 1) < yC(iim(De) < ^^2". (5.3) 
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To reduce the value of the upper bound we may consider how many node value sets 

yield the same hypothesis on the input space. For instance, if 1 < 0 < iV then 

the node value set in which all locations are filled with Os will give the same output 

on any input pattern as that which contains all Os except for a single 1. We shall 

now show that two node value sets generate different hypotheses on the input space 

unless they both yield the same constant hypothesis (ie. all 1 or all 0). We use this 

result to calculate the number of distinct hypotheses available and thus see if the 

upper bound on the VC dimension can be tightened up. 

Distinct Hypotheses from Distinct Node Value Sets 

To prove the results we will consider what conditions on two node value sets 

and NV2 cause the discriminators containing them, Vi and Dg, to generate the same 

hypothesis on the whole input space. To show that the hypotheses generated are 

different we need only produce one pattern which takes a different value under 

than X>2-

The proposition is as follows: 

Two different node value sets give rise to different non-overlapping discriminators 

if and only if they do not both generate the either all 1 nor the all 0 hypothesis. 

The proof is by induction. First consider the case Q = N. Let NVi and NV2 be 

different node value sets and suppose that the discriminators they generate when 

thresholded at N, Vi and D2, are the same. Since the two node value sets are 

different, some component yi in some node di must take different values in each, 

and since the discriminators are not constantly 0 there is some pattern p such that 

Vi{p) = V2{p) = 1. Let py be the pattern formed by replacing the component 

of p at node di by yi. Then we must have T>i{py) ^ T^iiPy) which is a contra-

diction. Hence one of the assumptions must be false so the result is true for the 

case Q = N. This gives us the base case for our induction, namely when N = Q = I. 
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Assume that for all and for all 1 < 0 < A: the proposition is true. Consider 

two differing node value sets NVi and NV2 defined on N nodes and let the discrim-

inators they generate when thresholded at 0 < be Di and Pick any node 

and label it Consider the A'̂  — 1 node discriminators generated by removing 

and thresholding the raw output at 0 . Call them %)[ and . Let 0{p) be the 

raw integer output from a discriminator given input p. Let us distinguish three cases. 

Case 1 =1 

In this case the raw outputs from each smaller discriminator are already greater 

than 0 for all patterns. Hence the output when dj^ is added will still be greater 

than 0 so = T̂ 2 = 1 

Case 2 = 2 ) 2 = 0 

Let us assume that Vi = {Dg, so for all patterns p in the input space of V' and 

for all X in the input space of dN, T î{p '• x) = : z). Suppose also that 

^ 0 ^ % . Suppose there is some pattern x in the input to at which NVi and 

NV2 take differing values. Without losing any generahty we may assume that NVi 

outputs 1 and NV2 outputs 0. Then since {p) = 0 it is true that X>2(p : a;) = 0 

and since we are assuming that the discriminators both perform the same function, 

T>i{p : x) = 0. Thus, since dM{x) = l,Oi{p) < 0 — 1 for all p. Thus Oi(p : .t) < 0 

for all p and x. Hence Di = 0 so we must assume that no such x exists. So the node 

values in NVi and NV2 must be the same as each other at node d^ for all values of x. 

Since ^ 0 ^ Dz we may choose p : x such that 'Di{p : x) = : x) = 1. 

This can only happen when both NVi and NV2 store 1 at address x and Cr (p) = 

O^ip) = 0 - 1 . Now, NVi and NV2 do not differ on d^ so they must differ on 

some other node di. Let y be the pattern on which they differ and consider py, the 

pattern p with y inserted at the support of di. Since the output of the T>j is 0 we 

must have either Or(Py) = © - 2 and O^iPy) = 0 - 1 or vice versa. Either way. 
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'^i{Py • x) / T^2{Py : x) which is a contradiction. Hence in this case NVi = NV2. 

Case 3 ^ 

Suppose Vi ^ T>2, then there is some p such that V^{p) / V^ip), and for all a: 

in the input to dN,Vi{p : x) = : z). Thus NVi and NV2 must differ a.t 

for each value of x. Moreover they must differ in the same way so as to ensure 

Vi{p : x) = V2{p : x). Thus the node values at dN in both NVi and NV2 must differ 

and not vary with x. 

Now consider each choice of d]̂  in turn, if any yield Cases 1 or 2 then the result is 

proven. If not, then all the nodes contain constant values which are opposite each 

to each other so they certainly do not yield the same hypothesis. Thus for Q < N 

the proposition is true. Since the result is true for the case = 1 it is true for all 

N by mathematical induction. 

Moreover we have proved above that we know the result is true for all © = N, this 

proves the result for all N and all 1 < 8 < Â . 

Counting Distinct Hypotheses 

The result above tells us that distinct node value sets generate distinct hypotheses as 

long as they do not generate a constant function. To count the distinct hypotheses 

we must therefore count the number of ways of generating the constant hypotheses. 

To do this we note the following 

A NV set generates constant 0 if fewer than 0 nodes contain a 1. 

A NV set generates constant 1 if fewer than + 1 — 0 nodes contain a 0. 

To write down the number of NV sets generating the constant hypothesis we must 

consider the number of NV sets with exactly k nodes without a 1 for each N -Q < 

k < N. This number is given by To obtain the total number of 
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hypotheses we must sum this expression iov N - Q <k < N. Hence the number of 

node value sets which yield the 0 hypothesis is 

The equivalent expression for node value sets which realise the 1 hypothesis is 

( 0 ) 2 ® * " - " + - ( 0 + + -

These expressions are not immediately amenable to analysis, but all we need to 

know is that such duplications of functionality by differing node value sets is not 

so great as to make the number of node value sets a poor estimate for the number 

of hypotheses. Numerical simulations were carried out in Mathematica for which 

the quantitative results are listed in Appendix A. The important qualitative results 

however are the following: 

1. The number of node value sets generating constant hypotheses is a maximum 

for Q = N and 0 = 0. It is minimal for 0 = y . 

2. For n « N the proportion of constant hypotheses is negligible compared to 

the number of non-constant ones. 

The Consequences for VC Dimension 

We see from the results above that when n < < # , we can almost equate the number 

of node value sets with the number of hypotheses, and so we cannot appreciably 

tighten up the upper bound on the number of hypotheses. Hence we cannot use 

this method to obtain a tighter bound on VC dimension either. However this is not 

too important for the discriminator as the bound is fairly tight already. We shall 

return to the problem of multiply generated hypotheses when considering the n-tuple 

classifier in section 5.4.2 when the upper bound obtained from counting node-value 

sets is much higher than the maximum lower bound achieved and we again need a 

bound based on counting hypotheses. 
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5.2.3 Impossible Node Value Sets 

It was noted at the very beginning of 4 that the training algorithm only affects the 

VC dimension of a classifier if it renders some of the hypotheses of the learning 

machine unrealiseable. The standard training algorithm of Bledsoe and Browning 

does indeed make certain node value sets of the n-tuple classifier unobtainable. 

Training with only one pattern will ensure that all the RAMs in one discriminator 

store at least one 1. Indeed if any RAM in discriminator contains a 1 at some 

address then all the other RAMs in the same discriminator but also contain at least 

one . This does remove a number of node value sets, and since not all those sets yield 

constant hypotheses, a number of different hypotheses. However, the proportion of 

hypotheses lost is tiny and the effect on the VC dimension estimate is equally small. 

5.3 Thick Thresholds 

Recall that th ick threshold discr iminator , Vq is defined as a normal discrimi-

nator, but with an upper and a lower threshold 0„ and 0/. A pattern is recognised 

by Vq if and only if more than 0„ RAMs fire, A pattern is unrecognised if fewer 

than 0 ; RAMs fire. If the number of RAMs is between 0/ and 0^ then the output is 

probabilistic. For a set to be dichotomised by Vq we make the definition that there 

must be no probabiUstic outputs on that set. (Note that this is an ad hoc definition 

to keep the thick threshold discriminator within the same framework as the other 

discriminators so far considered.) 

Because this discriminator is a generalisation of the standard discriminator, the 

results are only proven for the cases 0^ = and/or 0; = 1. The generalisations 

of the bounds for non-maximal discriminators proceed in a similar way, but are not 

presented here since the thick threshold discriminator is mainly a qualitative system 

designed to investigate the effects of probabilistic outputs. 
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5.3.1 A Lower Bound on Thick Threshold VC-dimension 

Again we provide a constructive lower bound. The training set has a similar 

form to that for "thin" discriminators except that each training pattern contains 

©« — 0/ + 1 non-1 and non-0 components instead of just one. It is a generalisation 

of equation(5.2). 

Let a be a fixed non-1 and non-0 pattern component, say the alternating pattern. 

Then define T as follows. 

T := {0,1}" : a : ... : a : 1 ; : 1 : 0 : ... : 1 (5.4) 

U 1 : ... : 1 : {0,1}" : a : ... : a : 1 : ... : 1 : 0 : ... : 1 

U ... 

U 1 : ... : 1 : 0 ; ... : {0,1}" : a : ... : a ; : 0 

— 1 : ... : 1 : 0 : : 1 

— 1 : ... ; 1 : 0 : : 0 . 

Each pattern must contain 0/ — 1 0 components, 0„ — 0; — 1 1 components and 

0« — 0? + 1 non-1 and non-0 components. Any dichotomy of the set T can be 

realised by training all the 1 components and none of the 0 components to output 

1 while also training the non-1 and non-0 components of the patterns which are 

recognised in the dichotomy. The non-1 and non-0 components of the patterns not 

to be recognised are not trained. Since any dichotomy of T is realisable in this way, 

T is shatterable by the thick threshold discriminator. 

None of the terms in the union that forms T can have overlapping non-1 and non-0 

components, so there are at most q terms in the union. Hence the size of the 

set T is 

+ - ''J • 
which we may conclude is a lower bound for the VC dimension. 
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5.3.2 An Upper Bound on Thick Threshold VC-dimension 

If the upper threshold is equal to N, then we can use a similar argument to that 

in section 4.4.5 to state that if the sets T, (ie. the projection of the training set 

onto each node's support) are given, and if 8^ — (or conversely 0 ; = 1) then no 

element of T can have more than iV — 0/ + 1 (conversely 0^) components belonging 

to the sets Xi. Hence for given Ti and 0„ = we have 

VCd.m < (5.5) 

This also holds for the original case in which 0„ = 0; and so is a generalisation of 

the original result. 

However, the exact result for general 0„ is a generalisation of the result for the 

sub-maximal discriminator and so is still not known. 

5.4 T h e VC Dimension of the n-Tuple Classifier 

5.4.1 Defining the Learning Machine 

The n-tuple classifier was defined in section 2.4.1, but here we ensure that the def-

inition is precise enough to be used to calculate VC dimension. The output of 

the classifier must lie in {0,1} since we are only considering classifiers with binary 

output, and for a two-discriminator classifier the output is simply taken to be the 

class label of the discriminator whose raw output (ie. summed output of individual 

RAMs) is highest. This leaves an ambiguity when both discriminators have the 

same output to the same pattern. This ambiguity can be removed in one of several 

ways. 

One method is to follow the lead of the PLN and define a logical u output which is 

passed through a probability generator and outputs 1 or 0 with equal probability. 

This has the advantage of not biasing the classifier, but the disadvantage of mak-

ing the concept of a dichotomy ill-defined. A trained machine may give different 
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outputs to the same pattern at different times and hence it is hard to say what di-

chotomy the machine is performing. It is instead possible to introduce the concept 

of a deterministic dichotomy which is considered to exist on an input set only if 

none of the input patterns has a probabilistic output. It can be seen that such an 

arrangement gives a system similar to the thick threshold discriminator whereby the 

raw discriminator outputs need to be different by more than one. (In fact, in terms 

of the reformulation of section 5.5 this discriminator with deterministic dichotomies 

only can be considered as a 3-valued thick threshold discriminator.) Whatever the 

exact formulation, the existence of a probabilistic value clouds the issues surround-

ing the classifier and another approach will be taken. 

Rohwer and Morciniec in [45] set the output of a "tied" classifier to be that of the 

class which had most training examples on the grounds that that is the class with the 

highest a priori probability. This method is well-motivated, but makes the analysis 

tricky just because of a rather rare case. Instead the convention is adopted that if a 

pattern elicits equal outputs from the two discriminators it outputs 1. This biases 

the classifier, but hopefully to an insignificant degree in most cases. 

5.4.2 The VC Dimension Bounds 

The Lower Bound 

To get a lower bound we may note that a single discriminator with Q = N has VC 

dimension equal to N{2"- — 1) and we may modify the training set used to prove the 

lower bound for that to get a lower bound for the n-tuple classifier. Consider the 

following set 
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T := : 0 (5.6) 

U 0:{0,1}":0:. . . :0 

u ... 

U 0 : . . :0:{0,1}" 

— 0 : 0 : : 0 : 0. 

We may realise any dichotomy % ;= [R, U) where R is the set to give output 1 and U 

is the set to give output 0 as follows. Train all components of all elements of R into 

T>i and all components of all elements of U into Vq. Thus we have X'i(r) = N \/r ^ R 

and X'o(m) = N \/u ^ U. Since a single discriminator is able to make this dichotomy 

we know that Vi{u) < N \/u ^ U and T>o{r) < TV Vr E E. Hence the n-tuple 

classifier, comparing the outputs of X>i and Vq, outputs 1 for r € /? and 0 for u € f/ 

as required. Since % was chosen arbitrarily this shoes that W shatters T. Hence 

- 1). (5.7) 

T h e U p p e r Bound 

First, in order to obtain an upper bound on VCdim{W) we consider the total 

number of distinct hypotheses available on the input space. Given any set of hy-

potheses VCdim{H) < log2\l-L\. Therefore counting the hypotheses available to 

n-tuple classifier will allow us to bound the VC dimension of n-tuple classifier above. 

There are N2"' addressable locations in each TV-RAM, n-tuple discriminator. As 

before, particular instantiation of these values will be termed a node value set. 

There are two such discriminators in our n-tuple classifier and hence 2A^2" = 

locations. This gives possible node value sets. 

However, if a particular address has the same value in both discriminators it is not 

having any effect on the hypothesis generated by the n-tuple classifier. Thus two 
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node value sets which only differ at locations where the two discriminators have 

the same value will generate the same hypothesis on {0,1}^". Consider the node 

value sets of Vq and Vi as binary patterns and let h be the Hamming distance be-

tween them. This means that the node value sets differ at h locations and so there 

are (^ /̂  ) ways of choosing the locations. We can then calculate how many distinct 

hypotheses are generated by all node value sets in which h takes a fixed, given value. 

In the case h = 0 the node values are the same in Vq and Vi. Thus only one distinct 

hypothesis is generated by all of the 2^ eligible node value sets. For any choice of 

node value sets at distance h there are 2^ distinct hypotheses generated on {0,1}. 

Hence the number of dichotomies of a subset of the input space is less than 

Ar2" /Mnn\ 

2'' = (1 + 2 ^ = 3^''" (5.8) 

h=o\^J 

by applying the binomial theorem. 

We may take the base 2 logarithm of the right-hand side of (5.8) to get the following 

bound on the VC dimension. 

yC(^im(M;) < log; 3.A^2\ (5.9) 

Thus we have 

Ar(2" - 1) > yC(i%m(W) < (/op23)Ar2". (5.10) 

The upper bound seems to be loose, and in trial-and-error work no training set that 

contained patterns which were inseparable from the rest of the training set (in the 

sense of maximal threshold discriminators) was successfully shown to be separable. 

It is suggested as a conjecture for future analysis that no such set is shatterable and 

that the VC dimension of the n-tuple classifier is exactly N{2'̂  - 1). 
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5.5 A Reformulat ion of the Two Discr iminator 

Classifier 

The bound on the number of hypotheses, and more precisely the fact that it is 

considerably lower than the number of possible node value sets suggests a different 

formulation for the n-tuple classifier with two discriminators. Suppose we have two 

trained discriminators Vi and Vq which comprise a classifier W. Let 6̂  be a trained 

3-valued discriminator with the same parameters as Vi and Vq and whose stored 

values lie in { — 1,0,1} and are formed by subtracting the corresponding stored val-

ues of Vq from Vi- If we consider 6! to be a discriminator thresholded at 0, then £ 

is functionally identical to W. 

This functional identity takes advantage of the fact that locations storing the same 

value have no effect on the discrimination. Moreover there are exactly 3N2^ pos-

sible node value sets for a discriminator of type so the bound on the number of 

hypotheses realisable by W is immediate. 

5.5.1 Advantages of the Reformulation 

Since we have already derived the bound on the number of hypotheses, it is apposite 

to ask whether this reformulation has any benefits. There are several. It becomes 

easier now to determine which node value sets correspond to different hypotheses, 

thereby tightening up the bound on the number of hypotheses. Also in this for-

mulation the n-tuple classifier becomes a more direct extension of the discriminator 

so that results and insights about discriminators can be more easily transferred 

to the classifier. It also suggests a role for discriminators with even larger output 

sets, which offers an important possibility for the application of the structural risk 

minimisation principle to a family of such machines. However, first we need more 

information about the VC dimension of, and the number of hypotheses realisable 

by, such multi-valued machines. 
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5.5.2 Counting the Hypotheses 

We shall use the symbol 8 to represent the discriminator with output values in 

{—1,0,1} and threshold at 0, and the symbol ^ to represent the equivalent dis-

criminator which takes values in {0,1,2} and is thresholded at N. (We can then 

extend the notation to encompass all J-i.) As in the normal discriminator case, 

given two node value sets we must try and find a pattern which they discriminate 

differently. As before we shall argue inductively, but this time informally, that most 

node value sets do indeed generate distinct hypotheses. 

We are considering three-valued discriminators with N nodes and the threshold set 

to N: that is to say, examples of T3. Suppose we have some T3 discriminator called 

. Pick some node d and consider the — 1 node discriminator J-~ formed by 

removing d. What conditions on J-~ are necessary and sufficient for at least some 

of the possible value sets at d to yield identical hypotheses? This will happen if and 

only it is possible to interchange some pair of distinct stored values in d without 

altering the hypothesis generated. We have three pairs of node values to consider: 

(0,1), (1,2) and (2,0). 

Let us consider (2,0) first: J^{p : 0) = 0 while !F{p : 2) = 1 if and only if there is any 

pattern p in the input to such that 0~ [p) = N — 2 or N. Hence for 0 and 2 to 

be interchangeable we require that Vp, 0~{p) < N — 2 ov > N. Moreover, if there 

are p and q such that 0~[p) < N - 2 and 0~{q) > N then there is some pattern 

r formed by combining components of p and q such that 0~{q) = N. Hence the 

condition we require is even stronger, namely 

Vp, 0~{p) < N — 2 or Vp, 0~{p) > N. 

We can reason similarly that for 1 and 2 to be interchangeable we must have 

Vp, 0 - ( p ) < Af - 2 or Vp, 0 - ( p ) > AT - 1 

and for 1 and 0 we require 

Vp, 0 - ( p ) < AT - 1 or Vp, 0 - ( p ) > TV. 
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This splits the set of node value sets on J- into four groups as follows: 

1. Those such that Vp, 0~(p) < N — 2. 

2. Those such that Vp, 0~{p) < N ~1 and 3po, 0~{p) = N — 2. 

3. Those such that Vp, 0~{p) > N. 

A. Those such that Vp, 0~{p) > / / — 1 and 3po, C~(p) — N. 

If we once again assume that N is large, then cases 1 and 3 dwarf the effect of the 

other two. Moreover, these are just the cases where whatever the node value set is 

at d, the hypothesis generated by JF+ on the whole input space is constant. Hence 

we obtain the result that almost all node value sets generate distinct hypotheses or 

a constant hypothesis. Moreover, for # > > M the number of constant hypotheses 

is tiny compared to the others (see Appendix A) so we once again deduce that 

the number of node value sets of discriminators is a good approximation to 

the number of distinct hypotheses. Since J-z is functionally equivalent to the two-

discriminator n-tuple classifier W we can deduce that the result is also true for 

W. 

5.6 Larger Ou tpu t Sets 

The construction of the set as an isomorphic image of the set of n-tuple classifiers 

suggests a way of generating a whole family of learning machines. By increasing the 

set of allowed output values until N is reached we increase the functionality of the 

machines (or at least the number of available node value sets). The important ques-

tion is as to whether or not we increase the VC-dimension. If VCdim(.7\) increases 

with i then we have a candidate for a structure to which the SRM principle may be 

applied. If not, then since the functionality of the does increase we may be able 

to reduce the empirical risk on our data without increasing the complexity of the 

model (as measured by the VC dimension). To progress any further in this analysis 

the VC dimensions of all the including = T>i±, must be calculated. 
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Work up to now lias not produced a set of size greater than N{2"- — 1) which 

is shatterable by any member of any of the It seems that the sets used for 

the lower bounds in this chapter cannot be extended to larger sets shatterable by 

the J-i and if larger separable sets exist they must contain elements with n-tuple 

distance between them of more than two. (The term "n-tuple distance" refers to 

the number of n-tuples on which the patterns differ.) Work is proceeding to find 

accurate measures of these VC dimensions. At present all than can be said with 

certainty is that VC dimension does not decline with i. Unfortunately the large 

number of ways in which a training set may be trained makes theoretical upper 

bounds hard to generate. However for any particular distribution of input patterns 

it is possible to define the so-called effective VC dimension which can be used to 

obtain similar bounds on generalisation. The definition and empirical calculation of 

this quantity is given in the next chapter. 

81 



Chapter 6 

Experimental Results and 

Comparisons 

One use which can be made of the VC dimension is to bound the number of training 

examples that a learning machine which obeys the ERM principle requires to achieve 

a given level of generalisation. The formulae governing the bounds were given in 

chapter 3 and the results they give for n-tuple systems are given in this chapter. 

6.1 Theoret ical Per formance Predict ions 

6.1.1 Weightless Systems 

The only VC dimension that was calculated precisely was that for the maximal 

discriminator, which is A^(2" — 1). The upper bound for the sub-maximal 

discriminator is N2'^ while for the n-tuple classifier it is logg 3.A^2", although it is 

conjectured that both of these systems also have a VC dimension of about # ( 2 " — 1). 

The results quoted in chapter 3 then allow us to derive a probabilistic upper bound 

on the generalisation error with any probability rj we choose. To recap, 

R{a) < jRemp(o!) + % ( 6 . 1 ) 

where 
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. = 4 ? M ± l ) : L M i ) . (6.2) 

This upper bound assumes no a priori knowledge of the problem: neither of the 

input distribution nor of the classification itself. In this sense it can be described 

as a worst case bound. However, given that we have no such a priori knowledge it 

is the best bound we can expect. (This is not strictly true. If we knew the growth 

function explicitly rather than bounding it by a function of the VC dimension we 

could possibly tighten up the bound, but work by Vapnik and others have shown 

[58] that in the worst case this bound is tight.) 

We may therefore calculate E for the various machines. For the maximal discrimi-

nator, T>n we have 

+ (6.3) 

and the other bounds can be written down by means of similar substitutions. 

6.2 Comparison with Exper iment 

Can these theoretical bounds be tested empirically? Since they hold for all distribu-

tions, a proper empirical test would involve generating data sets using every possible 

distribution and classification. This fact renders testing the bound directly impossi-

ble in all but the most trivial of cases. Indeed, since we can be sure analytically that 

they do hold we do not need to test them at all. More important is the tightness 

of the bound on the generalisation error. It may be true that real-world problems 

require in general far fewer training examples than the 0{N{2'^ — 1)) suggested by 

the bound above. However, to know this requires a priori knowledge of the data and 

hence has not been considered in the preceding analysis. Nevertheless, it is possible 

to make use of experimental data to draw some qualitative conclusions. 
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6.2.1 Benchmarking with StatLog 

The n-tuple classifier has been used by Rohwer and Morciniec [45] in benchmarking 

tests which compare the performance of the RAM-based method with other neural 

and statistical machines. The source of the data was the StatLog project (ESPRIT 

project 5170, see [34]) which was designed to achieve precisely this sort of bench-

marking on a range of real-world data sets. 

Although we cannot exactly predict generalisation performance on any dataset, 

the VC dimension bounds hold over all distributions, the results of Rohwer and 

Morciniec give an indication of the tightness of the bounds in some, hopefully typi-

cal, cases. As we shall see, the raw bounds turn out to be very loose indeed. 

The Nature of the Trials 

The StatLog data sets mainly comprised real-valued vector data with discrete-valued 

outputs. For the purposes of this comparison, only the data sets with boolean out-

puts are considered. There were eleven such sets. The real-valued inputs were en-

coded as binary vectors using the CMAC encoding [6] and the RAMs were trained 

using the original method; all components of all training patterns were addressed 

and trained. The experiments were performed with an n-tuple size of 8, although 

it is reported that a size of 6 gave similar results. The finding was that the n-tuple 

classifier performed comparably with most other methods apart from on four of the 

data sets on which its performance was worse than random. 

Table 6.1 lists the error rates on each training set together with the number of 

training examples available and an upper and lower bound on the of training ex-

amples predicted by the VC dimension results to be necessary to ensure such a 

level of generaUsation with probability 0.05. The lower VC dimension bound is 

# ( 2 " - 1) = 255,000; the upper is log2?,N{T' - 1) = 404,165. It is important to no-

tice that the value of the largest prior is not directly used by the classifier. However 

when Rohwer and Morciniec evaluate the performance of the classifier they do so 

relative to the (almost) trivial classification assigning every pattern to the class with 
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Problem 

Belgian II 

CutSO 

Cut20 

Belgian I 

Tsetse 

Error rate 

0.70 

0.056 

0.055 

0.053 

0.050 

Largest Prior 

0.924 

0.941 

0.941 

0.566 

0.508 

Number of examples given 

2000 

11220 

11220 

1250 

3500 

Problem Fewest theoretically required Most theoretically required 

Belgian II 5.50 * 10® &7*10G 

CutSO 128*10* 200 * 10* 

Cut20 128*106 200 % 10® 

Belgian I 134*106 210* 10® 

Tsetse 143*106 226* 106 

Table 6.1: Generalisation performance on StatLog against predictions from VC di-

mension bounds. 

the largest prior. Hence Cut20 and Cut50, although they have low overall error rate, 

are judged failures by this criterion. However from a pure learning theory standpoint 

they are successful. This illustrates the problems caused to the the analysis when 

prior knowledge is introduced. 

6.2.2 Conclusions from the StatLog trials 

It is clear from the table above that far more training data should be available if the 

low levels of error achieved were to be guaranteed with high probability by the VC 

dimension analysis. As a rule of thumb the number of training examples should be 

at least of the order of the VC dimension of the classifier. For this trial of the n-tuple 

classifier on the StatLog database this is not the case. Thus some other explanation 

is required for the unexpectedly good performance of the n-tuple method. One such 

explanation is considered in the next section. 
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6.3 Reasons for t he Loose Bounds 

Most importantly it must be stressed that five experiments hardly offer any informa-

tion about the general problems discussed theoretically so far. Hence the discussion 

can only be informal. However two main facts apply. Firstly the training algorithm 

used is surprisingly insensitive to excess capacity if data are fairly tightly clustered. 

This is because in the cases considered two patterns which share an n-tuple probably 

also share an n + 1-tuple - indeed Rohwer and Morciniec report very similar results 

with either 6-tuples or 8-tuples. In the general case however this is not true. The 

training algorithm takes advantage of this by keeping this information rather than 

discarding n-tuples which may be in conflict with other patterns as can happen in an 

ERM algorithm. The implicit assumptions of the algorithm are that input patterns 

occur in Hamming distance clusters and that n and N are large enough to avoid 

clashes on training patterns (ie. saturation). This is not an approach to solving the 

pure learning problem, and the role of such data-dependent techniques is discussed 

in chapter 7. 

The second important reason also has to do with the distribution of patterns in 

real-world problems. As has been stressed repeatedly, the VC dimension bounds 

are independent of the distribution over the data. In this sense they are completely 

general and assume no a priori knowledge of the problem. The disadvantage is that 

they are in a sense "worst case" bounds, because they have to consider even patho-

logical problems which one would probably not even try to solve with an n-tuple 

classifier. The set constructed to prove the lower bound of the VC dimension of the 

classifiers, in section 5.4.2, is an example of such a hard case. 

For this reason attempts have been made to reformulate the bounds on generalisa-

tion error using quantities other than the VC dimension which reflect at least some 

assumptions about the problem in hand. In the cases where the large shatterable 

sets are highly unlikely to occur this will allow the error bound to be significantly 

tightened up. One such quantity which was discussed in section 3.3.1 is VC entropy. 
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However this is an analogue not of VC dimension, but of the growth function and 

hence it is not a convenient scalar quantity like VC dimension. It is also hard to 

calculate and so highly dependent on the data that it is not likely to be any easier 

to calculate than the target function itself. 

If something, but not everything is known about the data distribution then the 

function required in the bound is the generalised growth function which is de-

fined as follows). Suppose that it is known that the data follow a probability from 

a set Vo which is smaller than the set of all possible distributions, then we define 

the generalised growth function in a similar way to the standard growth function, 

except that the maximum is taken over all distributions F in Vq rather than V. 

Formally, 

= In sup Ef[N^{zi,Z2,...,zi)]. 
FGPo 

However, this function is not easily calculated for most problems. Indeed, as is the 

case for VC entropy, calculating it could involve as much work as actually solving 

the problem. 

The SRM principle in 3.4 gives another way of reducing the VC dimension of a 

class of functions by decomposing the whole class into a chain of subclasses with 

increasing VC dimension. However this method is not applicable to analysing the 

Rohwer and Morciniec experiments because no such decomposition was made. More 

will be said about SRM in chapter 7 where the n-tuple method will be considered 

in light of current techniques for matching an optimal learning machine to a problem. 

A further, and more tractable way of incorporating distribution information into the 

generalisation bound is by means of the effective VC dimension. This quantity 

is defined by Vapnik, Levin and LeCun in [59] and is considered in the next section. 
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6.4 Effective VC Dimension 

Effective VC dimension is defined by considering the dichotomies defined on subsets 

of the input space whose probabihty is high but possibly less than 1. As long as 

the probability of the subset, X' say, is "sufficiently large", the VC dimension of 

the functions restricted to X' may be used in place of the VC dimension in the 

generalisation error bound. The effective VC dimension is then defined to be the 

lowest VC dimension of the set of functions restricted to the subsets of probability 

"nearly 1". The technical details here have been skirted round, but are presented 

in the paper [59]. For the purposes of this thesis it will be sufficient to understand 

merely the properties of the efi'ective VC dimension as they apply to RAM-based 

systems. 

If it is true that the large shatterable subsets which fix the lower bound of the VC 

dimension are indeed uncommon under most distributions, it may be that they are 

ignored in the calculation of the effective VC dimension for many distributions. If so 

we may expect the effective VC dimension to be significantly lower than the actual 

VC dimension and hence our generalisation bound will be correspondingly tighter. 

This leaves one major problem: how is the effective VC dimension to be calculated? 

The definition of effective VC dimension in terms of subsets of probability close to 

1 does not make its calculation easy. However, Vapnik et al. do offer an empirical 

method for making the calculation in the same paper, [59]. Experiments and calcu-

lations based on this method were then carried out on various n-tuple classifiers. 

6.4.1 Definitions and Theory 

The details of the derivation of the following results are all to be found in [59] and 

will not be repeated. What follows is an exposition of the key results and the key 

assumptions. 

The empirical estimation of effective VC dimension (henceforth EVC dimension) 
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depends upon estimating a bound on the maximal deviation of the generalisation 

error on two half samples. Given a training sample xy, this quantity can be defined 

as follows: 

-^[6] := a) - &mp(y,a))]. (6.4) 

where E[...] denotes the expectation with respect to the fixed but unknown input 

distribution P. Here x and y should be considered as sets drawn at random, accord-

ing to P, of labelled examples each of length I. That is, there are I labelled examples 

in each of x and y. As before, a G A parametrises the hypotheses realisable by the 

learning machine, and the maximum deviation between the error on each half sam-

ple (when tested with the same hypothesis) is taken over the whole hypothesis set. 

What is important is that this quantity can be empirically estimated for a given 

sample xy. 

Theoretical considerations suggest that the quantity in 6.4 is tightly bounded by a 

function of the half-sample length, /, and the effective VC-dimension of the classifier, 

h. The following function estimates this bound for r — (l/h). Hence we have 

$ ( r ) := 
1 if r < 0.5 

l̂n(2T)+i/- A , _L n otherwise + ! ^ + 1) 

where a and b are free parameters and k is derived from the condition of continuity 

at T = 0.5. For smaller values of r (say < 5) an acceptable approximation is 

[ 1 if r < 0.5 
$ i ( r ) : = { _ ^ 

where there is only a single free parameter d. Under a certain number of assumptions 

these bounds can allow us to approximate the effective VC dimension of any classifier 

on any distribution. 

Necessary Assumptions 

For an empirical estimate of EVC dimension to be made by the method described 

the following assumptions must hold true. 
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• -£'[6] does not depend on the distribution of the classes, only the patterns 

themselves. 

• The expected deviation depends on the learning machine only through the 

effective VC dimension, h. 

• or $i(// / i) is a good approximation to E[^i] for appropriate a and b. 

• a and b are constant over a large class of related learning machines. 

These assumptions were verified by Vapnik et al. for linear threshold machines for 

which the EVC dimension for the uniform distribution is known. Unfortunately it is 

exactly because the EVC dimension is not known for the n-tuple classifier that this 

method is being employed, so verification of these assumptions was less complete. 

6.4.2 Maximising the Error Divergence 

Before trying to calculate the EVC dimension, or indeed before trying to verify the 

assumptions on which the method rests, it is necessary to find a way to experimen-

tally find the maximum value of The method employed is to invert the labels 

on the first half of the sample, x, to obtain a new sample, x, and then minimise the 

total error on the new sample xy. Again, the details are in [59]. 

However, as has been pointed out in section 2.4.1 and will be discussed in chapter 

7, the standard n-tuple classifier algorithms do not attempt to minimise total error 

on the training sample because they are prone to saturate: even given training sets 

that, with careful setting of the node values, they may be able to classify with no 

errors. Hence a new algorithm was devised in attempt to find a best fit for the 

training data. 

The Stochastic Minimisation Algorithm 

The stochastic minimisation algorithm or SMA was devised with only one goal 

in mind: to fit a training set to an n-tuple classifier with minimal error. Considera-

tions of time and space were ignored as long as the experiments in this thesis could 
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be performed within the requisite three years. Also no theoretical proof is provided 

that this algorithm works in all cases; it is sufficient for the experiment that it works 

fairly well and consistently most of the time. 

The SMA apphes to single discriminator classifiers with any threshold and range 

of stored values. (In particular, since it has been shown that the standard two-

discriminator n-tuple classifier, W, can be represented in such a form when the 

stored values can be taken from {0,1,2} and the threshold is set to - see section 

5.5 - the SMA can be applied to such a system.) The initial state of the classifier 

could be anything, but in this work every location was assumed to contain the 

median value of the allowed range. The algorithm proceeds as follows. 

1. Set current training pattern to the first in the training set. 

2. Test current training pattern. If it is classified correctly set current pattern to 

the next in the training set and repeat this step. 

3. Count how many locations need to be changed to make the current output 

correct. 

4. Randomly select the required number of locations and alter their values so as 

to make the current output correct. 

5. Set current pattern to be the next in the training set and go back to step 2. 

Notice that this algorithm doesn't have an explicit termination condition. In prac-

tice it terminates if zero error is reached on the training set or if further iterations 

through the training set are not producing lower error rates. Notice also that the 

training error rate does not decrease monotonically. It is necessary to store the 

lowest error rate achieved up to any point in order to make a comparison with the 

current error rate. 

This algorithm is used throughout the following experiments to minimise the error 

on "flipped" the training sets of section 6.4.2 to estimate and also on other data 
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such as in [32] to assess its usefulness as a tool for training n-tuple systems in real 

applications. Repeated use showed that it gave consistent results for the systems 

and number of iterations used (typically several hundred per problem). Hence it 

could be used as at least a good approximation to a global minimisation algorithm. 

6.4.3 The Experimental Method 

To verify the assumptions, experiments were performed using computer simulations 

written in C. These modelled a wide class of n-tuple classifiers, generated random 

training and test sets according to certain specified distributions and allowed the 

classifier to be trained according to either the original, the Tarling-Rohwer or the 

stochastic minimisation algorithm above. The first assumption was tested for few 

cases by generating output values of diff'ering difficulty and calculating -E[̂ /] on 

them. The last two assumptions can only be approximately proved by fitting the 

theoretical error divergence, $, to the experimentally generated error curve. If this 

is done and shown to be a good model the best-fit effective VC dimension can be 

ascertained for each value of the classifier's parameters. It will then be possible to 

see (although only by comparing curves) if the free parameters of the theoretical 

error function are constant for a range of different classifiers. 

The first experiments involve a uniform distribution of input patterns. (Note that in 

all cases the distribution must be the same during both training and testing.) The 

success of these experiments lead to work on a more complex input distribution, 

where the patterns are distributed with Gaussian Hamming distance around a single 

pattern. The results of these experiments are presented later in the chapter in section 

6.4.5 where they are compared with the uniform results. 

Varying the Output Distribution 

To test the independence of the maximal values of the empirical deviation from 

the distribution of the labels, training sets of increasing difficulty were constructed. 

This was achieved by selecting a base pattern and labelling the patterns depending 

on their distance from it. A probability value p is chosen and patterns with a relative 
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Hamming distance from the base pattern of < 0.5 are assigned the output value 1 

with probability p. Those further from the base pattern were assigned the output 

value 0 with the same probability p. Since the n-tuple classifier approximates a 

Hamming distance classifier (see for example Allinson and Kolcz in [7]) the problem 

is easier for the n-tuple classifier the larger the value of p. Conversely a value of 

0.5 for p would ensure that labels were distributed randomly which will be a more 

difficult problem, especially for large training sets. 

A standard two discriminator n-tuple classifier (modelled by a single three-valued 

discriminator) with n = 4, = 50 was used for this part of the simulation. Early 

work with SMA showed that with these values consistent error rates were obtained 

on test problems. Thus it is reasonable to assume that the algorithm was finding 

local minima close to the global minimum. Training sets (of size 21) were created 

for values of p ranging from 0.5 to 1 and values of / from 50 to 400. In order to find 

the values of for each of these (p,/) pairs, the assigned output values of the first 

I training examples were inverted and the error on the resulting training set (ap-

proximately) minimised by the stochastic minimisation algorithm. As per Vapnik 

et al., the proportional error after minimisation was doubled and subtracted from 

1 which gives the empirical estimate of ^i. The values obtained are plotted against 

1, the length of the half-sample, in figure 6.1. (Each data point is the average of at 

least 10 runs.) 

We see from figure 6.1 that the maximal deviation curve for an n-tuple classifier 

with n = 4, A'" = 50 is very little affected by the distribution of the output labels, 

as hoped. For simplicity all further experiments to measure use a uniform (50%) 

distribution of both labels with the assumption that the results so generated would 

be the same with any other output distribution. (However when the experiments 

are performed with other input distributions this independence must be re-checked.) 
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Figure 6.1: Empirically determined E[(i] for output distributions of varying diffi-

culty. Uniform distribution. 

Varying the Classifier 

The second assumption, as to whether or not the estimate for depends only on 

h could not be directly tested for n-tuple classifiers as there is no good theoretical 

estimate of effective VC dimension. Hence this assumption can only be proved right 

if some precise relationship between the parameters of the classifiers (and in partic-

ular the size of the hypothesis set they generate which at least gives an upper bound 

on actual VC dimension) and the effective VC dimension. Initially, however, it will 

simply be assumed to hold as well for the n-tuple classifier as Vapnik et al. showed 

it did for the linear classifier. 

In practice the estimation of the effective VC dimension is done in two parts. Firstly 

for each set of differently parametrised classifiers a corresponding set of effective VC 

dimensions, h, is estimated such that the resulting curves of E[(i] against l/h co-

incide as far as possible. This gives the correct ratios of effective VC dimensions 

between the classifiers. To fix a base point only one of the experimentally generated 

curves needs to be fitted, by varying h, to an appropriately parametrised graph of 

$ or $1. Using the previously generated ratios the effective VC dimensions of all 
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the classifiers may then be calculated from the value of h that fits the theoretical 

estimates. If this procedure is followed, and if the appropriate curves can be fitted, 

we have shown that the theoretical model really can estimate error deviation. 

The last two assumptions could at least be circumstantially checked. If a wide 

range of n-tuple classifiers can be approximated by an appropriately parametrised 

version of then the third assumption is true. Moreover if these parameters are 

constant over the set of classifiers, then it may be reasonable to assume that the 

last assumption also holds. We shall consider the fate of these assumptions when 

the appropriate results are presented. 

Values of were calculated for various values of n and N as well as i, the range of 

the integers stored in each RAM location. Values were also calculated for for the 

maximal and 0 = N/2 single discriminator classifiers. These are plotted in figure 

6.2 for the single discriminators, figure 6.3 for varying values of N, figure 6.4 for 

varying values of n and figure 6.5 for varying values of i. To allow comparison the 

plot for the basic two discriminator classifier with n = 4, = 50 is included in all 

graphs. (Note that for varying i the basic two discriminator classifier is equivalent 

to i = 3.) As a guide to interpreting these graphs it is worth noting that the further 

to the right a curve is, the higher its effective VC dimension. 

To make an estimate of the EVC dimension, we must plot E[^i] against l/h and 

show that some curve $ fits the resulting graph. If the same $ fits all the 

graphs then our assumption that the parameters a and b are independent of the 

learning machine will have been justified. We may also be able to judge whether or 

not the depends on the machines other than through h. Since in almost all 

cases the ranges of I are such that l/h < 5, the approximation by with a single 

free parameter d is valid. Figures 6.6, 6.7, 6.8, 6.9 show the results for a range of 

machines and the best fit curve of type $ i , with d = 0.225. The same value of d fits 

all setting of the parameters. 
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Figure 6.2: Empirical E[^i] for some single discriminator classifiers. Uniform distri-

bution. 
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nodes per discriminator, N. Uniform distribution. 
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Figure 6.5: Empirical E[(i] for a range of n-tuple classifiers with varying size of 

output set, i. Uniform distribution. 
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Figure 6.7: Empirical E[^i] for varying N against estimated EVCD over 1 plotted 

against a best-fit estimate. Uniform distribution. 
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Figure 6.8: Empirical for varying n against estimated EVCD over 1 plotted 

against a best-fit estimate. Uniform distribution. 

0.6 

0 . 4 

0.2 

0 

T 1 1 

phi(1/h, 0 

1 

225) 

1 

h n=4, N=50, i=3, h=300 

U 
V? 

n=4, N=50, i=5, h=400 ---

-
n=4, N=50, i=7, h=550 

-
\ \ \ 

- -

1 1 1 1 
0 1 2 3 4 5 

half-sample length/effective VC dim estimate, 1/h 

Figure 6.9: Empirical for varying i against estimated EVCD over 1 plotted 

against a best-fit estimate. Uniform distribution. 

99 



6.4.4 Analysis of Results 

Because this method relies on so many assumptions, backed up by curve fitting, it 

can never be counted on to be totally accurate. However there are several reasons to 

believe that it gives a good indication of the effective VC dimension of the n-tuple 

classifiers. It is worth considering the results in detail and seeing what conclusions 

can be drawn. 

Firstly the consistency of the results over a wide range of values suggests that the 

assumptions of the method are justified. Figure 6.1 shows that the maximal de-

viation of errors on two half samples does not depend significantly on the output 

distribution; that is, on the way in which the output labels are assigned to the ran-

dom input patterns. (Note that the input distribution remains unchanged as the 

uniform distribution in all graphs above.) If this were not the case we could not 

say that depends only on the parameters of the classifier and the distribution 

of input patterns so the relationship between E[^i] and EVC dim could not be as 

simple as that given by This independence was also found to be true for 

linear classifiers by Vapnik et al.. 

The second set of graphs, figures 6.2, 6.3, 6.4 and 6.5, present the raw values of 

estimated against the size of the half-sample, /, for various parametrisations 

of the n-tuple classifier. The results are qualitatively plausible in that the curves 

are shifted to the right - which implies higher EVC dim - according to the func-

tionality of the classifier. Since the functionality provides and upper bound on the 

VC-dimension, and hence on effective VC-dimension, this is in line with what we 

would expect. (Although because the theoretical results are in general upper bounds 

only, this is not proven theoretically.) Functionality increases linearly in N, expo-

nentially in n and logarithmically in i. Perhaps results like these can be used to see 

if effective VC dimension follows suit. 

The final set of graphs, figures 6.6, 6.7, 6.8 and 6.9, plot against Ijh where h 

is an estimate of effective VCdim. Since we have no analytically derived values that 
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can be used to fix the parameters of $ and/or we must fit both the parameters 

(a, b or d) as well as the values h of effective VCdim. This matching problem 

possesses several degrees of freedom, but the resulting curves are closely fitted by 

$1 with d = 0.225. Hence it is reasonable to assume that this method allows us 

to estimate eff^ective VC dimension at least to an approximation equivalent to the 

worst fitted E[^i] curve. What is crucial is the fact that the effective VCdim results 

are considerably lower than the bounds and results for the true VC dimension. 

The Gaussian Results 

Since the experiments with uniformly generated input data were successful in that 

they showed the theoretical assumptions to be justified and yielded acceptable de-

viation curves, they were repeated with a different data distribution. Instead of 

selecting each bit of each pattern at random, a base pattern was chosen (the all zero 

pattern, without loss of generality) and Hamming distances from this base were 

selected according to a Gaussian (with the end of the tails truncated because the 

pattern space is discrete and finite) distribution with mean 0 and a variance of half 

the size of the pattern. (Thus the distribution was not constant between experi-

ments). For each pattern generated, the requisite number of bits are set to one. 

This gives an input set of patterns whose Hamming distances from the all-zero pat-

tern are distributed binomially. It is a more likely scenario for a "real-life" problem. 

As before, output distributions of increasing difficulty were applied to the input sets 

to ascertain the effect of task difficulty on the expected maximal error deviations. 

This was done by splitting the input data into two approximately equal parts, those 

nearer and those further from the base pattern. A probability parameter, p, was 

selected and the outputs for those patterns nearer the base pattern were set to one 

according to a Bernoulli distribution with parameter p. Those further away were 

set according to 1 — p. A probability parameter of 1 or 0 makes the task easier since 

patterns requiring similar outputs will be clustered. A parameter value of p = 0.5 is 

equivalent to a random distribution of classes. The results for several values of the 

probability parameter for the two discriminator classifier with n = 4 and = 50 
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Figure 6.10: Estimates of for Gaussian input and different difficulties of output. 

are shown in figure 6.10. As before we see that is unaffected by the difficulty 

of the task. 

All the experiments performed with the uniform input patterns were repeated with 

the Gaussian data. The results for various n-tuple classifiers are in figures 6.11, 6.12 

and 6.13 while the same results scaled by an estimate of effective VC dimension are 

given in figures 6.14, 6.14 and 6.16. The good fit with the theoretical estimate allows 

us to make estimates of effective VC dimension for Gaussian inputs and compare 

them with both the uniform case and the with actual VC dimensions. This is done 

below in tables 6.2 and 6.3. 

6.4.5 What to Make of the Results? 

Are the Results Accurate? 

There are three immediate sources of inaccuracy in this method. Firstly there is 

the fact that the values of E[^i] are only estimates from fairly small sample sizes. 

This introduces noise into the data points. Secondly the data are generated by a 

deterministic random number generator ([41, "gasdev" on pages 288-290]) which, 

however good, may have some unforeseen correlations. The third problem is with 
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Figure 6.14: The results for Gaussian inputs normalised by effective VC dim and 
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the SMA which takes a long time to run over large sets and which does not guar-

antee a minimal solution. The data suggest an over-estimation of training error on 

large sets of large patterns. This leads to incorrectly low values of E[^i] which is 

seen from the graphs when the experimental result curves often go slightly below 

the theoretical prediction given by $i . (In fact is simplification which should 

itself slightly under-estimate E[^i] for larger values of l/h.) This third effect is most 

noticeable in figure 6.12 where both pattern sets and pattern sizes are largest. 

Nevertheless, given the caveats above, the fit between theory and experiment is 

fairly close for almost all cases. Moreover, the assumptions made in section 6.4.1 

have been verified for both the uniform and the Gaussian cases with the exception of 

the independence of from any property of the classifier other that h. However, 

circumstantially this assumption is not invalidated. 

The Estimated Values 

The known VC dimension values and bounds are shown in table 6.2 along with the 

corresponding effective VC dimension values for the uniform distribution. This table 

shows at a glance how pessimistic the VC dimension results are when the patterns 

are drawn from a uniform distribution. The equivalent results for the Gaussian dis-

tribution are given in table 6.3. 

Table 6.2 shows clearly that the effective VC dimension of the n-tuple classifier over 

a uniform distribution of input patterns is significantly less than the actual VC di-

mension. How can this be explained? The answer lies in the definition of effective 

VC dimension which only requires dichotomies to be counted on sets of probability 

close to 1. The "pathological" sets created in chapters 4 and 5 are sparse in the set 

of all possible input sets, and can be ignored for the purposes of calculating EVC 

dim. The effect of this on the error bound is to push the possible error on such sets 

from the "epsilon" term, that is the maximum error expected, to the "delta" term, 

the confidence with which the error can be expected. This can only be done when 

something is known about the input distribution (in general it could be only the 
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n N i VC dim > VC dim < EVC dim Ratio 1 Ratio 2 

4 50 3 750 1190 300 2.5 4.0 

4 100 3 1500 2380 400 3.8 6.0 

4 150 3 2250 3570 450 5.1 7.9 

6 50 3 3150 <W90 1000 3.2 5.0 

8 50 3 12750 20,200 2200 5.8 9.2 

4 50 5 750 1740 400 2.5 4.4 

4 50 7 750 2110 550 2.5 3.8 

Table 6.2: Effective (uniform) and actual VC dimensions for n-tupie classifier. Ratio 

1 is the VC dim lower bound over EVC dim while ration two is VC dim upper bound 

to EVC dim. 

n N i VC dim > VC dim < EVC dim Ratio 1 Ratio 2 

4 50 3 750 1190 150 5.0 7.9 

4 100 3 1500 2380 340 4.4 7.0 

4 150 3 2250 3570 460 4.9 8.2 

6 50 3 3150 4990 700 4.5 7.1 

8 50 3 12750 20,200 2000 6.4 10 

4 50 5 750 1740 320 2.3 5.4 

4 50 7 750 2110 450 1.7 4.7 

Table 6.3: Effective (Gaussian) and actual VC dimensions for n-tuple classifier. 

Ratio 1 is the VC dim lower bound over EVC dim while ration two is VC dim upper 

bound to EVC dim. 
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pathological sets which have probability > 0) which is why effective VC dimension 

requires some knowledge about the data. 

The other important quaHtative result is that the effective VC dimension is higher 

for the uniform distribution than for the Gaussian. This is not surprising, given 

that some patterns have a very low probability of being selected. Hypotheses which 

only differ on such patterns are not differentiated on input sets which do not contain 

those patterns. Hence one would be led to expect that the input distribution with 

fewest "hard-to-reach" patterns would have the largest effective VC dimension. This 

informal reasoning appears to be borne out by the results. 

Does this mean that the n-tuple classifiers good performance on St at Log and else-

where can be fully explained by these figures? Unfortunately not. The fact that 

the bounds are true for any distribution of output values means that even the EVC 

dim bounds are not fully optimised for any particular data set. Moreover it is not 

the case that the St at Log input data are distributed uniformly or even as sums of 

Gaussians so we cannot be confident that any such bounds apply. There is also the 

fact that the StatLog experiments used the original n-tuple classifier training which 

does not minimise empirical risk. 

However, it is not really the purpose of these bounds to analyse particular results 

since any particular learning problem depends upon its data to a degree that is 

not taken into account by either the VC dimension nor the effective VC dimension. 

The practical usefulness of the theoretical results is predicting, before the problem 

is attacked with the learning machine, what generalisation error can be expected 

for what training set size. The general problem of minimising generalisation error is 

discussed in the following chapter in light of all the experimental data and theoretical 

results pertaining to it. 
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6.4.6 Investigating the SMA 

Since the SMA is better able to minimise error on a training set one would expect 

it in general to outperform other training,algorithms as long as the VC dimension 

(or effective VC dimension) of the classifier is not too large. In this subsection we 

briefly review a comparative experiment with the SMA. An example of such a clas-

sification experiment in which this approach worked is with the electro-cardiograph 

data of Manintveld [32]. Here the image consisted of 30,000 bits and the training 

set contained only 500 images. A subset of the data was taken so that each image 

could be classified as either normal or as having one particular abnormality. 

The results with the original algorithm are given in [32] and discussed at length. 

Generalisation error was on the whole below 5%. When the machine was trained on 

the same data with SMA, the error was close to 50%. In both cases the classifier 

was the same, so had the same VC dimension and effective VC dimension on the 

data. In both cases there were no errors on the training data. 

It is clear that in this case the fact that the original algorithm implicitly makes 

assumptions about the data is crucial to the success of the classifier. When treated 

as a pure learning problem there are simply insufficient training images to ensure 

good generalisation. This problem of the choice of algorithm is discussed in greater 

detail in chapter 7. 

6.5 Other Systems 

Before leaving the discussion of VC dimension bounds it is instructive to consider the 

VC dimensions of other machines including some of those involved in the Stat Log 

test. Linear and non-linear perceptrons are considered since they are such popular 

neural network classifiers, as is the support vector machine, an improved linear 

classifier, and, for completeness, a classifier based on the sine curve which can be 

shown to behave maximally badly. These results will be presented and compared 

with the n-tuple classifier, but full discussion of the implications will be held over 
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to the next chapter. Most of these results can be found in the summary paper by 

Maass [30]. 

The Linear Perceptron 

The VC dimension of a single linear threshold gates with n real input and boolean 

output was shown by Wencour and Dudley to be 

VCdim = n + l. (6.5) 

Multi-Layer Perceptrons 

The situation is more complicated for the non-linear perceptron with real weights 

and sigmoid activation function. However it was shown by Karpinski and Maclntyre 

that if there are w weights in the network then 

yCcfzm < (6.6) 

The Support Vector Machine 

The support vector machine was introduced by Cores & Vapnik in [16] to make 

use of a certain class on hyperplanes with a useful structure defined on them. Let 

A be the, sum of the defining vector of the hyperplane when written in Vapnik's 

"canonical form". Let R be the radius of the smallest sphere bounding the input 

vectors and let n be the dimension of the space being classified. Then 

VCdim = min(A^R^ ,n) + 1. (6.7) 

This example is to show that VC dimension can be significantly lower than the 

number of free parameters in the systems. The result is a significant improvement 

on (6.5) for small A and R. 

The Sine Classifier 

It is worth taking a brief look at a classifier with an infinite VC dimension. For 

such a machine the generalisation bound is also infinite, and it has been shown by 
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Vapnik that such a classifier can fit any training data, in some locality , with any of 

the possible interpolations. 

The classifier consists of the set of functions of the form 

X 1-4- sign{sinax), a G [0, oo]. 

This classifier maps the real line to [0,1] and has a single free parameter a . However 

for any I the set 

can be shattered. For each possible set of outputs 

yi e {0,1} 

it is only necessary to set 

« = 7 r . (^ ( l - yi)W + 1). 
1=1 

(For more details see Vapnik, [58, page 78].) The result of this is that 

VCdim = oo (6.8) 

so the sine classifier can never be expected to generalise well, no matter how big the 

training set nor how low its error on it. 
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Chapter 7 

The A/^-tuple Classifier as a 

Statistical Learning Machine 

The results presented in the previous chapters comprise an analysis of n-tuple classi-

fier learning from the single viewpoint of statistical learning theory. The aim of this 

chapter is to place these results in the context of previous work, both in learning 

theory and in the study of n-tuple machines. This allows us to see how the par-

ticular problems of the n-tuple method are echoed in more general learning theory 

terms, and perhaps to see how such problems may be overcome. The chapter can be 

divided into three main parts: a summary of the problems encountered when using 

the n-tuple method, a review of the analogous problems in theories of learning and 

finally a synthesis of the two which illustrates how existing methods for improving 

n-tuple classifier performance are described by learning theory and offers suggestions 

from learning theory as to how they may be improved. 

7.1 Optimising the N-Tuple Classifier: A Review 

In most previous work, the difficulties associated with the classifier have been con-

sidered from the system point of view. That is to say the architecture - in particular 

the size of the n-tuples - and the training algorithm, have been analysed separately 

in an attempt to maximise the accuracy of the classifier. From the point of view 

of learning theory this is not the crucial distinction. The two important factors are 
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the behaviour of the learning machine on the training set and its generalisation to 

the whole input space. Whether these two are optimised by appropriate choice of 

n-tuple size or training algorithm or both is in not really relevant; it is the perfor-

mance of the machine on the learning problem alone which is important. In this 

section the structural (in the architectural sense), algorithmic and other attempts 

to optimise classifier performance are considered. In section 7.3 their effect in terms 

of learning theory will be analysed. 

7.1.1 Structure: The Size of the A^-tuple 

As the first example of an optimisation problem let us consider the old staple - size 

of the n-tuple. This most fundamental parameter is well known to be crucial to the 

perennial problem of learning machines: balancing error on the training set against 

generalisation. The effect of trade-off can be stated informally as follows 

It has been found empirically that for a given size of training set there is 

an optimum value for the size of the n-tuples which will give maximum 

performance; smaller samples causing overgeneralisation [false positives] 

and larger samples undergeneralisation [false negatives]. 

Aleksander and Stonham, 1979 [4] 

Naturally various attempts have been made to measure the effect of the n-tuple size. 

Generally these attempts take the form of experimental evidence and plots of error 

rate against n. The work of Ullman was among the first to consider this difficulty. 

In [56] he considers the generalisation error on a hand-writing recognition problem 

for various n. The results he obtains show the same form as that expected from 

a learning theory analysis: the error rate at first decreases with increasing n-tuple 

size, reaches a minimum and increases. The minimum error rate is attained for 

higher values of n if the training set is larger, as predicted. Later work [52], [63] 

made use of these "Ullman" curves to try and optimise the value of n for partic-

ular applications, but systematic theoretic analysis has been rare. The difficulties 

associated with setting this parameter are also discussed by Rohwer and Lamb in 

[44] and Rohwer and Morciniec in [45]. The former claim that bigger choices of n 
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give better performance until "very large" sizes are reached, although "a value of 

8 is generally enough". The latter suggest that this may be due to the fact that 

8th order correlations contain enough information to solve the learning problem for 

most data sets. They also suggest that it is useful to keep the proportion of written 

memory locations "neither too high nor too low". They also point out that highly 

skewed input data may result in one discriminator having too many stored Is while 

the other has too few. In this case simply adjusting n cannot correct the problem. 

Indeed, as we shall see in section 7.3, the value of n is constrained by a number 

of considerations, not all of which can be simultaneously satisfied in all situations. 

However, many researchers have found that the choice of a value of n requires a 

trade-off at some point if good generalisation is to be achieved. 

7.1.2 Structure: The Range of the Stored Values 

Perhaps the first attempt to extend the power of the n-tuple method by extending 

the range of values that could be held in each address was made by Bledsoe and 

Bisson in [11]. In this scheme unlimited values could be stored and the whole was 

trained by an algorithm based on maximum likelihood. The results reported by Ull-

man in [56]for this version of the classifier were generally worse than for the original 

method. 

Sixsmith, Tattershall and Rollet in [50] consider the n-tuple classifier as an approx-

imation to the Parzen windows technique in non-parametric statistics. However the 

clipping effect caused by the fact that each discriminator has a limit to its maximum 

score (ie. N) means that patterns similar in Hamming space yield Parzen kernels 

which overlap but whose joint output is not double either individual kernel. Their 

solution was to use Bayes' Theorem to set the RAM locations which must therefore 

take real values. The results obtained with this methods in speech recognition ex-

periments were a slight improvement over those obtained with the original system, 

not in terms of accuracy but rather in terms of the difference between the output of 

the correct discriminator and the output of the second. 
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A related way of extending the output range was applied by Goutos for alpha-

numeric character recognition in [22]. He sets a memory element threshold^ an inte-

ger such that a memory location is only set to 1 during training if that location 

is accessed at least t times during training. This is equivalent to having an infinite 

output range and an output function incorporating a threshold. The idea behind 

it is to decrease saturation due to noise or rogue data. The value of t is a tunable 

parameter, which does not alter the VC dimension of the classifier, but rather the 

effectiveness of the training algorithm. Some a priori knowledge is required to set a 

value of t so that noise is filtered out while important data are not discarded. 

The classifiers ^ proposed in chapter 5 also fall into the category of expanded 

storage range machines. The only difference between these machines and those 

above is that they are designed to give an output after thresholding. They aim to 

define a structure (in the statistical learning theory sense) that includes the standard 

n-tuple classifier as a low-dimensional element. 

7.1.3 Structure: The Connection Graph 

As Aleksander and Stonham point out in [4], the number of possible training graphs 

is astronomical, about for a 256 bit input pattern. Consequently any means 

of selecting between them will require either a lot of time, a very subtle algorithm, 

or a willingness to accept a sub-optimal solution. This last was the case for Alek-

sander and Stonham whose main concern was that they should not have accidentally 

picked a graph that was unusually bad for the data they were processing. Hence 

their method consisted initially of training the classifier and testing the data for 

ten different connection graphs. In order to make better use of the connections 

which are obtained, points which do not vary in value between any of the training 

patterns can be removed from the input field. It is also suggested that this pro-

cess may be extended to entire n-tuples which will therefore give no classification 

benefit. With large systems this is unlikely to be of much help in general. How-

ever it suggested that after training, if the two classes are only just separable, that 

an advantage may be gained by removing common n-tuples from the discriminators. 
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More ambitious was the work of Christiansen et al. [25] who developed a cross-

validation scheme for selecting the best connections. The method was one of random 

selection followed by removal of poor connections according to an information-based 

measured t e r m e d w h i c h is designed to assess the suitability of a particular 

classifier. As a result the algorithm requires many passes to find a solution. However, 

the empirical results given in the paper suggest that the effort was worthwhile in 

improving the error rate. 

7.1.4 The Training Algorithm 

It was claimed in chapter 2 that the purpose of the training algorithm in the gen-

eral learning problem had to be to minimise empirical risk. However if the training 

algorithm is formulated appropriately it is possible to implement structural risk min-

imisation (see 3.4) simultaneously. That is to say, a training algorithm may be used 

to restrict the set of available functions to one with a low VC dimension and only 

increase the set of functions when it is no longer possible to maintain a sufficiently 

low error on the training set. 

The original training method of Bledsoe and Browning is still the most widely used 

and the one against which the others are generally compared. Its benefits of sim-

plicity and speed are always cited and since its results are usually acceptable many 

using the method feel no urgent need to change it. Moreover as long as saturation is 

avoided, the algorithm has advantages when the data consists of a number of clus-

ters in Hamming distance. However, modifications and wholesale changes have been 

made by many users of RAM-based systems. Perhaps the first was the maximum 

likelihood training of Bledsoe and Bisson in [11] and mentioned in 7.1.2. As described 

above, in this method the output range was allowed to be infinite and the stored 

values were set by a maximum likelihood method. However the results obtained in 

this way in a comparison by Ullman [56] were not encouraging, although the analysis 

was more amenable to traditional statistical techniques. Other training algorithms 

using the idea of maximum likelihood are [57], [50] and [9]. An attempt was made 
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by Morciniec and Rohwer in [35] to circumvent the inherent problems of using the 

n-tuple classifier as a maximum likelihood classifier, most notably the problem of 

dealing with n-tuples which have never been seen (the 'zero-tally problem'). They 

used another statistical formulation which they termed the Good-Turing Estimate 

(GTE) to improve the estimation for low tallies and introduced a smoothed tally 

to deal with gaps in the training data. Their empirical results however did not find 

that an algorithm based on the GTE gave them a significant benefit. 

More recently the method of Tar ling and Rohwer [53], first mentioned in section 

2.4.1, which was designed to reduce the problem of saturation whereby so many 

locations in the RAMs are filled that almost all test patterns yield a raw value of 

N in each discriminator. Their idea was simply to test each new training pattern 

before training it. If the classifier already classified it correctly then it would be 

ignored, if not then the pattern would be trained in the usual way. It was found in 

the experiments performed in [53] that three passes through the training data were 

sufficient to train all patterns accurately. The same experiments showed that this 

method brought a decrease in the level of saturation and and increase in general-

isation accuracy over an identical experiment performed with the original algorithm. 

A further training algorithm was developed in this thesis: the SMA, see section 6.4.2. 

The inspiration behind this algorithm is that, given a learning machine, the best 

approach to learning a completely unknown distribution is to minimise the error of 

the machine on the training set. Other algorithms, notably the original one, fail to 

do this, especially when saturation occurs. This algorithm was used for estimation 

of VC dimension but has also been applied to real-world data from ECGs, provided 

by Manintveld, [32]and discussed in section 6.4.6. In this case the test error was 

about 5% with the original algorithm and 50% with the SMA. However in both 

cases the error on the training set was zero. We shall return to this example after 

the discussion of the problems of learning in the next section. 
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7.1.5 Preprocessing 

If the network can't solve the problem, change the problem. Most data when pre-

sented are already processed or pre-processed in whatever way yields the best results. 

Preprocessing is sometimes discussed in relation to its effect on the performance of 

the n-tuple classifier and this illuminates some important properties of the classifier. 

A very thorough discussion in this vein is perhaps that of Rohwer and Morciniec 

in [45] in which real-valued vector data must be converted into the bit patterns 

in which the n-tuple classifier deals. The approximation of the n-tuple classifier 

to a nearest-neighbour (or k-nearest neighbour) look-up table is examined, and a 

preprocessing which as far as possible maintains Hamming distance relationships 

which mirror the Euclidean distance relationships of the real-valued data. Rohwer 

and Morciniec then discuss the successes and failures of the classifier on various 

data sets in terms of the parameters used in the preprocessing. It is clear from this 

discussion that the preprocessing is crucial in getting good generalisation. However, 

the raison d'etre of neural networks is to learn to classify any data with little or no 

knowledge of the underlying model. The validity of the above statement is discussed 

in the next section in relation to preprocessing and all the other methods used for 

tweaking the performance of learning machines. 

7.1.6 A Summary of TV-Tuple Classifier Techniques 

This section has given the briefest of overviews of those techniques which have been 

applied to the basic n-tuple classifier to either improve its performance or occasion-

ally to improve its analytical tractability. The point of this list is to understand the 

success or failure of these variations according to an analysis using the framework 

of statistical learning theory. 

7.2 The Problem for Learning Machines 

When learning machines were introduced in chapter 2 and learning theory in chap-

ter 3, the problem of learning from examples was presented formally and shown to 
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be solvable in most cases, at least most of those cases involving real data and pop-

ular learning machines. However in real world situations it is not always possible 

to generate the amount of training data required to guarantee successful generali-

sation according to the ERM and SRM analyses of Vapnik and Chervonenkis. In 

this section other methods for analysing learning are set out, and it is shown how 

the basic problems of learning do not depend on the framework in which it they 

are analysed. Consequently it may be necessary to alter the problem slightly and 

produce "data-dependent" methods which are sub-optimal in general but give much 

improved results for particular learning problems. These are also considered briefly. 

7.2.1 The Bias/Variance Dilemma 

The title of this subsection is taken from a paper by Geman et al. [20] in which the 

problems of learning machines are presented in the general theory of non-parametric 

statistics. The problems considered in the paper are essentially the same as those 

considered by Vapnik in [58] and I shall make use of both approaches to explain the 

problem. 

The problem concerns the trade-off described by Vapnik and elucidated in section 

3.3.3 between fitting the machine to the training data and knowing, within certain 

probabilistic parameters, that the generalisation will be good. Vapnik shows that 

the expected risk is bounded by the sum of the empirical risk on the training data 

and a confidence interval determined by the amount of training data and the com-

plexity of the learning machine. Geman describes the trade off in more traditional 

statistical terms as being between the bias and the variance of the estimator. His 

formulation is as follows. Given an unknown mapping from X -> F , a learning 

machine C and a data sample z of length I he obtains 

z) - = (E[/:(z, z)] - Eiz/lz]):: 

+ E[C{x,z) - E[{C{x,z)y] ^'•variance". 

The first summand, the "bias" term, represents the systematic error made by the 
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learning machine. If, on average, the learning machine differs from the the expected 

output for any input (that is, the regression function) it is said to be a biased es-

timator for that sample z. The extent of this bias is measured by the first term. 

Suppose however that the bias is zero, so on average the classifier from the learning 

machine fits the observed data sample z. However the distance from the correct 

regression function for any particular data set could be wide. Geman gives the 

example of a linear interpolator which is used to solve a complex, noisy problem. 

Although the bias will be zero, the variance will be high if the noise level is high 

because many data points will be far from the regression function, and fitting the 

classifier to them will be of little benefit for the correct classification. Hence the 

actual (mean-squared) error will be large. 

This decomposition exactly mirrors 3.3.3 where the bias is more generally the em-

pirical risk and the variance term is a confidence interval based on the complexity of 

the machine. The main difference is that Geman's expression is a precise decomposi-

tion of expected mean squared error, while Vapnik's is more general, but is an upper 

bound on the expected risk. What is most important however, is that the trade-off 

between minimising empirical risk/minimising the bias of the estimator and min-

imising the confidence interval/minimising the variance of the estimator. Indeed, 

other frameworks for fitting a model to unknown data display the same dichotomy. 

Geman goes on to consider the bounds on generalisation error, both theoretically 

and in a number of simulated examples. The conclusion he reaches is that if noth-

ing is known about the data being modelled, and non-parametric techniques such as 

neural networks are being used to do the modelling, then unfeasibly large training 

sets are required to minimise simultaneously the bias and the variance. Two pos-

sibilities for getting round this problem present themselves: either large amounts 

of data must be available so that bias and variance can be minimised together, or 

the learning machine is chosen so that it is already biased towards the correct data. 

The former is analogous to following the SRM principle and providing the amount of 

data required by the VC dimension bound that applies to the optimal element of the 
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structure, while the latter is equivalent to knowing enough about the data to choose 

an appropriate structure that is expected to model the data well. A technique for 

formalising this choice within the SRM framework is described in section 7.2.4. 

7.2.2 Minimum Description Length 

The minimum description length principle was put forward by Rissanen in [42] as 

a means of bounding the error of a learning machine by considering the algorithmic 

complexity of the relationship between the input and output parts of the training 

sample. The idea of algorithmic complexity was considered first by SolomonofF and 

refined by Kolmogorov who used it to define the randomness of a string. His idea 

was that the randomness of a string depends on the amount by which the string 

may be compressed. He defined the algorithmic complexity of a string to be the 

size of the shortest computer program that can generate the string and showed that 

this size was invariant up to an additive constant between computers. Hence high 

algorithmic complexity implies low compressibihty which is associated with high 

randomness. 

The process of bounding the error involves considering a table of input/output 

relations and considering how much the training data can be compressed by referring 

to this table. This coefficient of compression can then be shown, by a coarsening of 

the bound for the SRM principle, to give a bound on the expectation of making an 

error with table T with confidence 1 — r/ of 

A ( T ) < 2 ( A : ( T ) l n 2 - l n ^ ) 

where I is the training set size and K{T) is the coefficient of compression of the 

training data using T. Note that although this bound is worse than the standard 

bound in 6.1.1 it depends only on 77,/ and the coefficient of compression. No in-

formation about the number of tables available, the number of errors made by the 

table T, nor how the tables and code-books were organised is used in this bound. 

This shows the power of the MDL principle, but also that the SRM principle (by 

using more information) gives better error bounds. 
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7.2.3 Regularisation and Bayesian Methods 

Regularisation is the name given to the set of techniques, originally developed in 

statistics, for solving "ill-posed problems": that is, problems for which a sequence 

of approximations to the correct solution do not necessarily converge to the correct 

solution. In particular, the problem of estimating a regression function - or even an 

unknown density function - from sparse data is ill-posed. It was shown by Tichonov, 

[54], [55],that minimal expected risk was obtained by minimising not the empirical 

risk, but a functional of the form 

R*(a) := Remp + 7(^)0(a) 

where 7 is a constant and some function, both chosen according to the problem 

to be solved. 

In the realm of neural networks the regularisation term may correspond to the sum 

of the weights in a multi-layer perceptron or some other structural parameter. In 

this way regularisation theory provides a method for adapting the "structural" pa-

rameters of a learning machine to minimise expected risk. 

The theory of statistical inference that is usually used to explain and justify the 

use of a regularisation term is Bayesian statistics. In Bayesian theories of model 

selection a prior probability distribution P{a) over the set of all possible classifiers 

is assumed. Once the training data, \Y,X] := (7/1, x i ) , . . . , (j/;, x/) is available the 

regression function (or at least the parameter a. that defines it) can be estimated by 

applying Bayes' rule 

While several methods exist for approximating the regression given this expression, 

let us consider the case where a* is chosen to maximise the conditional probability 

with respect to the data. If, for example, noise is distributed normally over the data 

the value of a required minimises 

( 2^2 
:= X)InP{yi - / ( z „ a ) ) — I n P ( a ) . 
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This is in a form immediately recognisable from regularisation theory: the empirical 

error plus a regularisation term. 

This regularisation information comes in the Bayesian model from the assumptions 

underlying the choice of prior distribution. In the case of neural networks or radial 

basis function classifiers in which the model parameters are real-valued, the prior 

is often taken to be a Gaussian distribution. Because non-smooth output functions 

require a wide distribution of weights, this has the effect of favouring smooth so-

lutions: the same aim as many pre-processing and regularisation techniques. Most 

Bayesian methods yield a result that could be construed as a regularisation method, 

and at the same time provide a theoretical basis for using it. In this sense both 

methods, Bayes' rule and regularisation, can be seen as trying to minimise empiri-

cal risk simultaneously with another term. This other term can usually be seen as 

representing some structural parameters of the learning machine in which case the 

analogies with SRM become clear. Most importantly it is important to have enough 

data to continue the minimisation until the regularisation term becomes small and 

this again leads us to the problem of small data sets. 

Another concept offered by the Bayesian approach is that of evidence. This is the 

probability of the training data given a particular model (or model parameter, a) , 

ie. P{[X, y] |a) . This also can be estimated in the learning process and the evidence 

for the data from a range of models can be compared. However the evidence need 

not be well correlated with the expected error since the two quantities simply denote 

different things. Empirical work has been done by MacKay [31] which suggests that 

the two quantities are correlated, but in certain cases they certainly are not. 

Strictly speaking, a Bayesian learning machine must include the regression function 

exactly in its supply of hypotheses. If not, its prior probability will be zero and by 

Bayes' rule, so will its posterior probability. However, careful selection of the a priori 

distribution can ensure that this is not a problem. Moreover, it is claimed by Neil 

in [37] that good selection of the priors can ensure that the Bayesian method always 

produces optimal generalisation, whatever the complexity of the model. However, 
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such a "hands-on" approach to the selection of the function set is not consistent with 

the principle of no a priori knowledge that this has been held so far in this thesis. 

The results of chapter 3 show that optimal generalisation is certainly a function 

of model complexity unless external knowledge about the problem is known. For 

this reason the Bayesian formalism, and the method of regularisation, have more in 

common with the methods in the section below in which information about the data 

can be used to improve classification performance than with the data independent 

analyses of the ERM and the SRM principle. 

7.2.4 Data-Dependent Methods 

Of course there are as many data-dependent methods for minimising error are there 

are data sets, and this thesis has been mainly concerned with considering the bare-

bones learning problem without knowledge of the underlying model. However, given 

the size of the error bounds found by such people as Vapnik and Geman, it is worth 

considering the role of the data itself, both to improve performance and to explain 

experimental successes. 

Effective VC Dimension 

Effective VC dimension was described in section 6.4 as a way of improving VC 

dimension bounds in cases where the distribution of the input is known. In the case 

of the n-tuple classifier it has been seen that the improvement in the generalisation 

bounds can be substantial. A problem with EVC dimensions is that they are often 

difficult to calculate theoretically, but the experimental methods of chapter 6 can 

be used to obtain an estimate. Thus if the input data from a known distribution 

or if there is sufficient training data, experiments similar to those in section 6.4.3 

may be performed. This will give an indication of the effective VC dimension of the 

classifier on that input distribution which will allow tighter generalisation bounds 

to be made. 
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Unluckiness 

Introduced by Shawe-Taylor et al. in [49], the concept of unluckiness is used to 

encode a priori assumptions about the training data and how well it will be fitted 

by the classifier. The training data itself is then used to choose a learning machine 

from a structure with a bias towards the elements of the structure with lower VC 

dimension that are expected to fit the data well. This allows the error bounds for 

the SRM principle to be improved on average (assuming the bias has been selected 

well). This is an example of "designing bias" as recommended by Geman et al.. 

The "High Art of Engineering" 

What Vapnik has called "the high art of engineering" (see [58, page 157]) has un-

doubtedly been the most common method of choosing appropriate learning machines 

for learning problems. Either trial and error over various values of structural pa-

rameters or "heuristics" based on knowledge of the data or experience of previous 

problems have allowed results to be obtained which are far better than they would 

be if know external knowledge were introduced into the problem. Concepts such as 

effective VC dimension and unluckiness are attempts to formalise this engineering 

process and allow theoretical predictions to be made based on all the information 

available to the user of the learning machine. 

7.3 The T V - t u p l e Classifier Explained 

The title of this section is in deference to the similarly named book by Dennett [19] 

which, in the same way as this section, analyses every aspect of the object of interest 

but never quite pins it down. The first two sections of this chapter have described in 

turn the particulars of the n-tuple method and the generalities of solving problems 

with learning machines and non-parametric methods. The aim of this section is to 

complete the syllogism and explain as much as possible about the n-tuple classifier 

given the current state of the art in the study of learning machines. 

Some of techniques used for training and optimising n-tuple classifiers have a clear 
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explanation in terms of the SRM principle. Others, however, are not so obvious and 

may even seem to run counter to the principle. We shall examine these cases and 

see if by not heeding the principle they make assumptions about the data which 

could, if required, be more formally stated. 

7.3.1 Empirical Risk Minimisers 

We shall first consider the n-tuple classifier's performance as an empirical risk min-

imisation machine. For any particular architecture the best upper bound on ex-

pected risk (when the structure of the data is totally unknown) is obtained when 

the error on the training data is minimised, see 3.2.4. As has been mentioned be-

fore, neither the original nor the Tarling-Rohwer algorithms described in section 

7.1.4 guarantee to minimise error on the training data. The possibility of saturation 

is always present because of the fact that the algorithms can replace Os in the RAM 

locations with Is but cannot do the reverse. The stochastic minimisation algorithm 

was intended to replace the older algorithms with a process which would actually try 

to reduce error on the training sample. Experiments were performed with identical 

classifiers trained on the same data with all three algorithms in turn. The error on 

the training sample is plotted against the number of training samples drawn from 

the uniform distribution (figure 7.1) and the Gaussian training set of section 6.4.4 

(figure 7.2). It can be seen that there is better accuracy on the training sample 

when trained with the SMA. However the SMA takes far longer and many passes 

through the data to run. 

When they introduced their new algorithm, Tarling and Rohwer showed that on 

their classification task their new algorithm gave both lower saturation and lower 

generalisation error and state that the error of the trained classifiers on the training 

set was zero. They do not say if the error on the training set was zero with the 

original algorithm, but given the size of the training set and the fact that over-

all accuracy was high we may assume that this probably was the case. Hence the 

Tarling-Rohwer results are not showing enhanced empirical risk minimisation so the 

benefit of their algorithm must lie elsewhere. Indeed, in practical work it is often 
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Figure 7.1; Error on the training set when trained with three different algorithms. 
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Figure 7.2; Error on the training set when trained with three different algorithms. 

Gaussian distribution. 
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the case that the empirical risk is zero. When this is the case the key to good gen-

eralisation lies in a small architecture (with small VC dimension) or else an inbuilt 

bias towards fitting the data. It will be argued that the latter is responsible for the 

success of the classifier in most of its practical applications. 

Since the rest of the methods for optimising n-tuple classifier performance deal not 

with empirical risk minimisation but with choose the best architecture, the next 

subsection will consider the classifier in the light of the SRM principle. 

7.3.2 Structural Risk Minimisers 

All methods which modify the architecture to improve performance, but which do 

not make any assumptions about the structure of the data, can be considered in 

light of the SRM principle. This includes variation of the classifier's parameters and 

also the use of algorithms which tend to restrict the classifier to a subset of the 

class of functions that the classifier can theoretically realise. We shall first consider 

how certain structural considerations control generalisation by controlling the VC 

dimension and then look at the effect of algorithms. 

Structural Control by Varying n 

The n-tuple size controls the VC dimension and, in at least two cases, the effective 

VC dimension. Changing n is the most direct way of changing the number of func-

tions realisable and the size of the maximal shatterable set. It is not possible to 

verify the VC dimension bounds empirically without testing the classifier on every 

possible data distribution. However the curves generated by Ullman [56] and those 

in chapter 6 show clearly the trade off between empirical error and over-fitting that 

SRM aims to solve. What is made clear in chapter 6 though is that although the VC 

dimension is governed by a term exponential in n, the effective VC dimension for 

common data distributions can be much lower than either log^ 3A^(2" — 1) (upper 

bound) or N{2'̂  - 1) (lower bound). Because of this, the distribution-independent 

requirements on training set size for good generalisation are much higher than is 

commonly required. This is very much in line with Geman et al. above who claimed 
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that truly non-parametric learning, which is equivalent to distribution-independent 

learning, will always require an number of examples which is larger than is usually 

feasible, or often necessary. 

Another practical problem with the formal control of generalisation using n, is that 

there is no progression of n-tuples which yields a sequence of machines whose func-

tionalities form an increasing sequence of the form 

Wn, c c - c c... 

where the sequence {nj} represents the sequence of increasing n-tuple size and the 

yVni are some n-tuple machines with a tuple size of It is fairly obvious that no 

such Wri; exist for most {«,}, but in fact even the case a, — 2' (with uj-tuples amal-

gamating to form 2nj-tuples) is not possible. Because of this limitation the SRM 

principle can only be informally applied to a set of n-tuple classifiers with strictly 

increasing n. Perhaps the easiest way around this problem if a structure based on 

n is desired is to add new RAM-nodes rather than replace ones with smaller values 

of n. Then the increasing sets of realisable hypotheses must be contained in each 

other, although the supports to the various will not all be of the same size. 

Altering n may also have other, data-dependent, efl:ects. In Rohwer and Morciniec 

[45], the pre-processing of real-valued data into binary codes may lead to problems 

as the metric induced by the CMAC/Gray encoding becomes non-linear for moder-

ately high Hamming distances. Another problem can occur when the input pattern 

is large. If bits are not to be ignored, the product nN must be equal to the size 

of the input pattern. If only a simple machine is needed to classify the data, even 

the n — 1 classifier may have too high a VC dimension to solve the data from the 

training sample, even though the classification function (or at least the regression 

function) are realisable by the machine. 

A real-world example of this is the performance of the n-tuple classifier on the EGG 

data used by Manintveld in [32] and mentioned in section 7.1.4. Since the full 
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explanation of the results requires consideration of the training data it can be found 

in section 7.3.2. 

Increasing the Range of Values 

This subsection deals with those methods of controlling generalisation by increasing 

the range of stored values in the RAMs. The experiments of chapter 6 show that ef-

fective VC dimension increases with the range of values i for the distributions tested, 

although upper bounds have not been calculated theoretically for the distribution-

independent case. Moreover, the classifiers with increasing output range do form 

a structure. Any hypothesis realisable using an output alphabet from 1 to i can 

certainly be realised if the output alphabet is extended to include % + l. Hence there 

is a real possibility of applying SRM techniques. It will be necessary, however, to 

find the best rule for selecting the correct range of output values, and possibly, tuple 

size, and has not been attempted. 

However this is for general data. In practice such systems have performed worse 

than similar classifiers with simpler output alphabets using Bledsoe and Browning 

training, eg. [11]. In the main these experiments have used far fewer data than the 

upper bound suggests and yet good performance is still obtained. This can only be 

because the classifier is a good model of the underlying data. In this case increasing 

the capacity can only be expected to harm the generalisation unless by chance it is 

a better model. 

Maximum likelihood interpretations of the n-tuple classifier come across the same 

problems. If many of the components of the training examples occur only once, 

because of the paucity of training data, the analysis cannot be expected to work 

properly, see [35], [45]. 

The Role of the Training Algorithm in SRM 

In certain cases the over-capacity caused by the size of the input space may be alle-

viated by the choice of algorithm. An obvious course of action given an over-sized 
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input space is to preprocess the input data, if only by under-sampling it and ignoring 

some of the input bits. An alternative is to use an algorithm which does not fully 

search the space of functions of the classifier, at least not on all input distributions, 

but can be expected to contain the classification function or a close approximation. 

The ECG data experiments of section 6.4.6 showed that in some circumstances 

the original training algorithm would out-perform an ERM algorithm (in this case 

SMA). Why should there be such a discrepancy? There are two reasons, of which 

only one strictly belongs in this section. The first is that the Bledsoe and Browning 

algorithm allows the classifier to model better the data. This is an example of de-

signing bias as discussed in the next section. The second reason has to do with the 

limiting effect of saturation on the classifier. The SMA always managed to train the 

classifier with only a few bits set in the RAMs. This suggests that far more training 

data could have been fitted. This was much less true of the Bledsoe and Browning 

training algorithm. Many more training patterns, unless they shared all the same 

components, would have resulted in errors on the training set. This is because the 

effective search space of the original algorithm is smaller than that of the SMA. 

Although both algorithms can produce all hypotheses when given specially chosen 

training sets, as the training sets get larger the original algorithm tends towards 

those which are close to saturation. Thus the classifier returned by the algorithm is 

not necessarily a global optimum. Even if it is, it has been found without consid-

ering all the possible ways of fitting the training data. Although this argument is 

informal,it illustrates the effect of the algorithm on the control of generalisation. 

It should be noted that similar effects are suggested to explain the performance of 

the multi-layer perceptron. Far fewer training patterns are needed to achieve good 

generalisation than even the tightest bounds seem to demand, and it is suggested 

(see [20]) that the existence of local minima into which the training machine can fall 

serve to limit the effective functionality, and hence the effective VC dimension of 

the machine. No formal method for controlling this effect has yet been put forward. 
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7.3.3 Designing Bias 

According to Geman et al. in [20] 

. . . the bias/variance dilemma can be circumvented if one is willing 

to give up generality, that is, purposefully introduce bias. In this way 

variance can be eliminated, or significantly reduced. Of course, one must 

ensure that the bias is in fact harmless for the problem at hand ... 

Theoretical frameworks for introducing bias into structural risk minimisation have 

been introduced in section?.2 in the form of effective VC dimension and unluckiness. 

Empirical methods for doing so were classed as the "the high art of engineering" and 

it is fair to say that all n-tuple classifier research has been of this kind. Which 

approach is the better one to take? 

The answer, of course, depends on the context in which learning problem is found. 

Constraints external to the whole problem, such as time and resource limitations, 

have not been considered so far. There is no doubt that the n-tuple method can 

be implemented to run very rapidly with satisfactory performance and in such sit-

uations engineering constraints are paramount. In more relaxed conditions such as 

off-line data analysis or recognition of static images, it may be possible to make bet-

ter use of theoretical predictions. At the current state of the art, the models based 

on theoretical predictions improve relative to highly engineered models the less a 

priori information is available. As more sophisticated data-dependent methods such 

as unluckiness appear it may be possible to tip the balance more in favour of theo-

retically guided approaches. For those interested in accurate problem solving with 

n-tuple classifiers, neural networks or non-parametric statistical models generally, 

this will be a Good Thing. 

7.4 What Results from these Results? 

Statistical learning theory is in the first instance concerned with estimating expected 

error on a training set with information derived only from the training set. For a 
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given learning machine the ERM principle is the best way to do this and the training 

algorithm should attempt to implement this principle. However a learning machine 

can be decomposed into increasing subsets of functions, and by considering these 

subsets in increasing order of size, it may be possible to pick a function with ac-

ceptably low training error from a subset of a small enough size that the probability 

of good generalisation is higher. This is the trade-off at the heart of the learning 

theory problem. 

These increasing subsets of functions will certainly increase in cardinality, but most 

crucially they will increase in complexity. It is this complexity, as measured by 

the growth function and approximated with the VC dimension that is responsible 

for the effectiveness or otherwise of a classifier. It is not necessarily related to the 

number of parameters of the system, see section 6.5 but in the case of the n-tuple 

discriminators it is very close. The precise result for the two discriminator n-tuple 

classifier is not available but the VC dimension is within a factor of logg 3 of the log 

of the number of functions. 

Given a particular structure on a learning machine, and as before given known prior 

knowledge of the problem to be learnt, the SRM principle says that the training 

algorithm should choose a function from a structure so that the sum of the training 

error and the expected generalisation error is minimal. Thus it specifies and tries 

to resolve the trade-off. Two problems remain, namely how to define the structure 

and how to perform the minimisation. From the point of view of the SRM principle, 

however, these are just implementation details and should be easily solved. In prac-

tice these are important problems, but decomposition and analysis along the lines of 

the Unluckiness function (section 7.2.4) may provide a principled answer. There is 

one other detail, however, which tends to make the bare ERM and SRM principles 

unsuited for practical use, and this is the large number of training samples required 

to guarantee low error. For this reason methods which make some assumptions 

about the data are almost always applied in practise. In the words of Geman et al. 

in [20] these methods "design bias". 
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How such bias is to be introduced has been a theme of this chapter, but there is 

no general answer unless the nature of the a priori information is specified. Many 

neural networks make assumptions about the smoothness of the output and that 

allows regularisation methods to be employed. In chapter 6 it was assumed that the 

input distribution was known and the effective VC dimension was calculated taking 

this into account. For both the normal and the Gaussian distributions the effective 

VC dimension was significantly lower than the VC dimension. By its nature the 

EVC dimension must be lower than its distribution-independent analogue, but can 

we see a reason for the extent of the difference? Perhaps the best reason we have 

for expecting that the VC dimension will be too high for most input distribution is 

the specialised nature of the training sets developed in chapters 4 and 5. Only very 

few such large sets are shatterable, so if the input distribution is such that those 

sets appear with very low probability it is not unreasonable to expect a significantly 

lower EVC dimension. 

The other way in which bias is systematically introduced into the n-tuple classifier 

is through the training algorithm. Although only very few possible node value sets 

are actually ruled out by the algorithm, the predisposition is to set node values to 

1 - a predisposition which when there is too much training data, and which is too 

noisy, leads to saturation. This clearly suits some data sets because it is possible for 

the same classifier, with the same structural parameters, the same training set and 

the same error (zero) on the training data, to perform close to optimally well and 

maximally poorly on the same test set as in the case of the ECG data in section 7.3.2. 

In this case the algorithm does not split the learning machine up into a structure 

in a deterministic way, but it does make certain output functions more probable 

than others. It would be interesting to know which functions these are, although 

previous theoretical work and experimental successes suggest that functions which 

are smooth in Hamming space are most easily implemented. 
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7.4.1 Future Directions 

Future work in this subject is dependent on two factors, namely progress in learning 

theory and progress in the analysis of weightless systems. The data-dependent 

methods described in section 7.2.4 such as the unluckiness function offer possible 

ways of encoding a priori knowledge in a way that makes it amenable to statistical 

learning theory techniques. This may help to quantify the expected amount of 

training data required to obtain a required level of generalisation in some particular 

case. Progress in the analysis of weightless systems could take the form of the mainly 

theoretical results in this thesis or a more case-based experimental approach as in 

[45]. Specific areas for further research will be highlighted in the after the review of 

the thesis in the next chapter. 
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Chapter 8 

Conclusions and the Future for 

the tuple Classifier 

This thesis has combined two strands of research, n-tuple classifiers and statistical 

learning theory. It is intended as exposition of the capabilities and shortcomings of 

the n-tuple method and as an attempt to place the problems facing this method in 

the context of a more general learning situation. In this way it has been possible to 

suggest ways of improving recognition performance while making clear which facets 

of performance (whether accuracy or generality) have to be sacrificed or at least 

traded off against each other. 

8.1 Fulfilling the Aims of the Thesis 

The stated aim of this thesis was to apply the methods of statistical learning theory 

to the study of RAM-based systems, and in particular the n-tuple classifier. The 

point of this was to obtain a measure of the performance of the classifiers under con-

sideration which would allow them to be compared with other classification methods. 

The method chosen to begin this analysis was the calculation of the VC dimension 

for the various classifiers which also entailed a formalisation of the learning prob-

lem and of the classifiers so that they attempted to solve this problem. The aim 

was then to obtain bounds on generalisation error from the VC dimensions. Ways 

would then be sought to improve the bounds in cases where some knowledge of the 
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problem domain was available. The following section outlines the work presented in 

the thesis towards these aims. 

8.2 A Recap of the Thesis 

8.2.1 Chapter 1 

Chapter 1 served as an introduction to the aims and contents of the thesis and de-

scribed the nature of the work as being an application of learning theory to weightless 

systems - something previously little attempted. It served as a quick preview of the 

aims and contents of the thesis. 

8.2.2 Chapter 2 

Chapter 2 gave a brief history and overview of learning machines emphasising the 

rather independent lineage of the n-tuple classifier. The term learning machines 

covers more than simply neural networks (and indeed some neural networks such 

as Hopfield nets hardly count as learning machines at all.) The invention of many 

learning machines was inspired by physical biological models, especially the function 

and structure of the neuron. The analysis of such systems has in general proceeded 

quite separately from the analysis of learning machines whose inspiration is drawn 

mainly from statistics. Methods in non-parametric statistics such as Parzen win-

dows [10, pages 53] had similar aims to those of many neural networks, namely to 

model data when very little is known about the underlying structure of the data. 

Many neural network methods have close parallels in statistics and the distinction 

between neural nets which learn from examples and statistical methods which learn 

from examples is largely arbitrary or due to external factors such as "biological 

plausibility." 

8.2.3 Chapter 3 

Chapter 3 was devoted to an overview of the statistical learning theory. The formal 

learning problem was discussed and the theoretical basis for solving it was explained. 
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The growth function and VC dimension were described along with their relationship 

to generalisation error. The aim of this chapter was to describe the tools with which 

learning in n-tuple systems is analysed in this thesis. The importance of both the 

ERM and SRM principles is stressed. The limitations of the theory, especially in 

terms of the failure to consider known facts (prior knowledge) about the data, were 

emphasised. Analysis of weightless systems has only occasionally been performed 

from the point of view of statistical learning theory. De Souto uses the concept 

of VC dimension in [18] to show that the problem of training a PLN pyramid (see 

section 2.4.4) is NP-hard. VC dimension was also used by Penny and Stonham in 

[39] to predict the storage capacity of PLN pyramids. The results were inconclusive, 

partly because they rested on some untested assumptions about the relationship 

between functionality and VC dimension, and partly because they were only tested 

on the uniform input distribution. 

This chapter stressed the numerical distribution-independent bounds on generalisa-

tion that can be derived from the VC dimension of a system. Although in real-life 

cases there exists more knowledge about the problem which can be used to improve 

performance, these bounds remain the baseline performance of the machine in the 

absence of all prior knowledge and for that reason are important. 

8.2.4 Chapter 4 

Exact theoretical calculation of the VC dimension has not previously been performed 

for weightless systems. Unfortunately, as with so many other learning machines the 

calculation is extremely difficult in all but the simplest case. The VC dimension 

of a single discriminator with a maximal threshold and no nodes with overlapping 

supports is calculated exactly. This is achieved by exhibiting sets which are shat-

terable and then by showing no sets of greater size can exist. This the first original 

contribution of the thesis. The results are then extended to the case where node 

supports may overlap. In general the result only consists of an upper and lower 

bound, but for the case where each support overlaps on exactly one input bit or 

not at all a precise value for the VC dimension is calculated. This result is then 
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extended to general neural units acting as auto-associators. All these results are 

novel and represent a baseline for assessing the abilities of weightless systems as 

pattern recognisers which learn from examples. 

8.2.5 Chapter 5 

More complicated classifiers such as non-maximal threshold classifiers and two-

discriminator classifiers are considered in chapter 5. Precise VC dimension bounds 

are very hard to calculate for such systems because of the large number of ways that 

the classifier can be trained to realise a particular dichotomy on a small input set. 

Thus the functional capacity of the classifiers is used to obtain an upper bound on 

the VC dimension. The number of possible node value sets is shown to be a good 

approximation of the number of available hypotheses and this approximation is used 

for the VC dimension bound. 

It is also shown that the two-discriminator n-tuple classifier can be expressed as a 

single, thresholded discriminator with three possible stored values instead of just 

two. This simplifies some of the calculations and also offers a way of defining a 

structure on a set of weightless classifiers which is not easily done by other means. 

8.2.6 Chapter 6 

The generalisation bounds generated from the VC dimensions of the previous two 

chapters are novel, but not very tight in many real cases. This is illustrated by 

a brief look at some experimental evidence and a brief discussion on the looseness 

of the bounds. A quantity called the effective VC dimension is used to cope with 

the looseness due to lack of knowledge of the input distribution. This is calculated 

for several different n-tuple classifiers with varying parameters and for two difi'erent 

input distributions; uniform and Gaussian. This allows better a priori estimates of 

generalisation to be made and is all novel work. Finally, for sake of comparison, the 

VC dimensions of some other systems are given. 
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8.2.7 Chapter 7 

The effective VC dimension makes use of some a priori information, but often this 

information takes forms other than knowledge about the distribution of the in-

put patterns. This chapter discusses previous attempts to optimise or improve the 

performance of the classifier and reviews other techniques for studying learning ma-

chines. These techniques are used to explain those aspects of the previous ?2-tuple 

work which are not explained by statistical learning theory. Amongst other things 

the role of the training algorithm was compared with the ERM principle and the 

reasons for its success despite not adhering to this principle are considered. Statisti-

cal learning theory has not previously been applied so comprehensively to weightless 

systems so it is important to separate the difficulties due to lack of research from the 

intrinsic limitations of the method. More advanced methods of applying learning 

theory, such as unluckiness [49] are suggested as ways of overcoming the limitations. 

The practical usefulness of the learning theory analysis is also discussed, both as it 

applied to weightless systems and to learning systems in general. The problem of 

learning from examples is hard in many senses (computational, statistical, mathe-

matical) and success can only be expected after either a lot of examples or with a 

lot of inbuilt bias which represents a priori assumptions of the system. It is clear 

that the usefulness of the standard learning theory increases the less is known about 

the data. For these cases the bounds on required training set size are most useful. 

8.2.8 Chapter 8 

This chapter is a s u m m a r y of the work done in the thesis along with a look at its 

originality and usefulness and some directions for future work. 

8.3 Were the Aims Achieved? 

The answer to the question in the heading is "Yes, up to a point". The learning ma-

chines were easily put into the form required to calculate VC dimension and in the 
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simplest cases (the maximum threshold discriminator and the self-connected GNU) 

the calculation was performed successfully. In more complex cases the VC dimen-

sion was bounded within a factor of logg i, where i represents the range of stored 

values. These results were sufficient to obtain bounds, albeit looser than preferable, 

on the generalisation error of the classifier as required. 

To try to obtain tighter bounds, a variant of the VC dimension, known as the ef-

fective VC dimension was introduced. This quantity depends on both the learning 

machine and the distribution of input patterns and is never greater than the VC 

dimension. However it is possible to use it in place of the VC dimension in the 

error bounds if the input distribution is known. The effective VC dimension can 

be estimated experimentally, and estimates of it were made for various weightless 

classifiers under both uniform and Gaussian input distributions. These values were 

substantially lower than actual VC dimension values and so if the input distribution 

is known, or can be guessed, fewer samples are needed to guarantee good generalisa-

tion. Alternatively this means that for the same number of samples a more complex 

machine can be used which may make it possible to reduce the error on the training 

set, thereby decreasing overall error. 

8.4 What Wasn't Done 

A first omission was the lack of exact values for the VC dimensions of many of the 

n-tuple classifiers. It becomes very difficult to find such VC dimensions because 

the number of ways in which a classifier may be trained to perform a particular 

dichotomy increases rapidly as the threshold is moved from the extremes - 1 or A'' -

to the middle. However this omission is not too worrying from a practical point of 

view since the bounds obtained by considering the functionality of the classifiers are 

fairly tight and only differ from the actual VC dimension by at most a multiplicative 

constant. Moreover the generalisation bounds obtained from the VC dimension are 

true for any input distribution while many real problems use much more ordered 

data. Hence a bound which can incorporate a priori knowledge is usually more use-
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ful than a tighter bound which is independent of the problem. 

A second obvious failing is in the treatment of the Bledsoe and Browning training 

algorithm (the "standard training"). The error term in the generalisation bounds 

is expressed in two parts, an error from the training plus an error from incorrect 

generalisation. Bledsoe and Browning training does not in general attempt to min-

imise error on the training sample. That it often does give low training error is due 

to properties of the data. If the data is assumed to be entirely unknown then there 

is no statistical reason to use the B & B algorithm (practically, however, it's a lot 

faster). Hence the decision about which algorithm to use is data-dependent and, as 

in the case of Manintveld's EGG data, can even be crucial. 

8.5 Directions for Future Work 

Several research ideas spring almost immediately from this work, while others are 

more tangential but equally interesting. If we consider the theoretical work first, it 

would certainly be satisfying to derive analytically the VC dimension of the n-tuple 

classifier rather than to simply bound it. However if learning theory is to be use-

fully applied to weightless systems it must take into account the sort of assumptions 

make, often implicitly, when systems such as the n-tuple classifier are used. The 

distribution-independent results, although interesting theoretically, are not realistic 

from the point of someone wanting to use weightless systems to solve a practical 

problem. Formalisation of implicit assumptions, as is done for example when setting 

Bayesian priors or a regularisation term, is important both for weightless systems 

and for learning theory in particular. Only then can all the information available 

be used for inference. Incorporating prior knowledge into the statistical learning 

theory framework and obtaining that knowledge for weightless systems are the two 

key areas which should be researched. 

Learning theory approaches to incorporating prior knowledge are only just emerg-

ing, but since other fields of statistics make use of it ("classical" stats use models 
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which are assumed a priori up to just a small number of parameters) it is reasonable 

to hope that such work will be fruitful. In a similar way, the fairly large number 

of techniques used for "tweaking" the n-tuple classifier should give insight into how 

assumptions (about data clustering or noise tolerance) are made and allowed for. A 

formalisation may follow from an investigation of such work (such as that outlined 

in chapter 7). In particular explicit use of the SRM principle may be made, perhaps 

by defining a structure based on the Ti of section 5.6. 

More immediately it is possible to calculate effective VC dimensions for other input 

distributions and maybe estimate the accuracy of the calculations. One could also 

ask how effective VC dimension changes with small changes to the distribution. This 

is important if some actual input data is not exactly the same as a distribution for 

which the effective VC dimension is known. 

8.6 A Take Home Message 

This thesis has presented a study of the learning problem as faced by weightless, 

n-tuple based systems. The tools of statistical learning theory have been applied 

to make a number of predictions about the learning capabilities of such machines. 

Where the theory has been unable to explain the experimental results other theories 

of statistical inference have been used to supply a qualitative explanation. Thus 

novel results which may be of use to the designer of a n-tuple system have been 

presented while a review of the tricks used when more information exists has also be 

given. The message is that the a system cannot be analysed until it is formalised, but 

complex assumptions about data are very often left implicit when learning machines 

are applied to a learning problem. Making these assumptions explicit and allowing 

the resulting bias to be built into the machine is what is required to avoid the 

bias/variance dilemma in a principled way. 
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Appendix A 

Identical Hypotheses from 

Different Node Value Sets 

It was shown in chapter 5 that two different node value sets for a single two-valued 

discriminator give identical hypotheses if and only if they yield the same constant 

hypothesis. That is, either the hypothesis which always returns 1 or that which 

always returns 0. As shown in chapter 5 the number of constant hypotheses is given 

by 

- e + > < - - . ) ( - > + + . . . 

( e ) • ( e + J + • • • ( « ) 

Figure A.l shows the logarithm of the proportion of such constant hypotheses among 

all hypotheses for various values of the threshold, 0 . It is clear that the proportion 

is miniscule and reaches a minimum when 8 = # /2 . 
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Figure A.l: The logarithm of the proportion of constant hypotheses for a n = 4, A'" 

50 discriminator thresholded at each value of 0 from 1 to 50. 
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Appendix B 

Features and Relatedness in G N U s 

Published in Proceedings ICANN95 
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B . l Introduction 

An important question for Neural State Macliine[l] design is how to be sure that the 

trained states will give the kind of generalisation wanted. In this paper we consider 

the more general problem of an arbitrary training set, and measure the relation-

ships between each input and output feature contained in it. We then measure how 

well they are preserved by a learning system. We assume the system has no prior 

knowledge of the training set and we define a function to determine how much infor-

mation the training set alone contains about the relatedness between features. The 

use of this relatedness function is then extended to assess learning performance 

and to define certain problems. These terms are now defined precisely before the 

relatedness measure is proposed. 

Let the input space, X, be {0,1}^ and let the output space, F , be {0,1}^^, where 

N and M are integers, large enough that the normal approximation for the distri-

bution of patterns [2] is vahd. The training set, T, is a subset of the Cartesian 

product X xY. If {x,y) eT then T associates x with y. Each x E X may only be 

associated with one y € F , so T is a partial function from X into Y. The learning 

system is supposed to extend T to a complete function 5 : —>• F in a principled 

way. The aim of this paper is to give a more precise notion of how the principles 

governing the preservation of related features may be formulated. To do this the 

idea of a feature pair is introduced. 

An input region of size n is any of the subsets of X of the form {0,1}"; it 

is identified by its associated projection function, nl : X ^ {0,1}". An input 

feature, / , is defined to be the ordered pair that is, the pair containing a 

projection and some zy G X. The input region of f , X - Ker{nl), is denoted by / . 

The size of the feature / is denoted by | / | and equals the size of the region of / , 

that is, n. An output feature is defined analogously for Y. Let F{X) be the set 

of all input features and let F{Y) be the set of all output features. A feature pair 

is an ordered pair {f,g) E F{X) x F{Y). 
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Almost all feature pairs will be irrelevant to the training set. It will be useful to be 

able to decide which pairs are relevant, and to get some measure of how relevant 

they are, given only the information in the training set. In this paper two functions 

from the set of feature pairs into the interval [0,1] are defined. One measures the 

relatedness of two features in the training set while the other measures the amount 

of information in the training set about the input feature. 

B.2 The Relatedness Function 

Suppose T, the training set, is finite with Nt members, {^i, ^2, a,nd each 

If / i and /2 are defined on the same region, that is, their associated projection 

functions are the same, then define s{fi,f2) to be the number of bits on which 

x/j and x/2 match in the region / i (which is the same as /g). Let , /g) be the 

number of bits that differ (= | / i | — ^(/i, /2)). We call s the feature similarity and 

d the feature distance. We now give the formula for the relatedness of some given 

feature pair, {f^g). 

Let s{ := f ) and let sf := s{TT^{tJ), g). We also specify the properties 

required of the nearness functions, n,,, which measure similarity between features. 

(A particular choice of functions is given in the next section.) Let rii and ng be 

functions of two integer variables, monotonically increasing in the first, which take 

real values in the interval [0,1]. 

The relatedness between / and g according to the training set is then defined by 

C r : F ( X ) x F ( y ) - ^ [ 0 , l ] 

„ , ES ' l" l ( ' ' i , l / l ) -"2(5Mg|) 

' TS.nMm • 

The confidence associated to each input feature is given by 

conf: F{X) -4- [0,1] 
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Nx 

conX/) = Z " i W , l / | ) 

Since the are monotonically increasing, ^1(5/, | / | ) is a measure of the closeness 

between / and the projection of the zth training example onto / . By multiplying 

this with a similar function on the output space we get a measure of the linkage 

between / and g in that training pair. This is then summed over the whole of T and 

normalised by conf(f), the "total nearness" of / with the training examples. Thus 

feature pairs linked strongly on a few training pairs, but for which the training data 

containing / is sparse, are still assigned high levels of relatedness. 

The comprehensiveness of the training data is indicated by con/(/).This gives a 

measure of how many times the input feature, / , or close approximations to it, 

occur in the training data. 

The relatedness function differs importantly from co variance in several ways. For 

instance if the output feature under consideration is linked to input features other 

than the one under consideration, this does not affect the value of the function. 

Moreover, there is flexibility in the choice of nearness function function which allows 

different ideas of closeness of features to be used. 

B.2.1 The Nearness Functions 

The choice of the nearness functions rii is crucial to the interpretation of the re-

latedness function. They depend only on the distance between features and the size 

of the features, not on the features themselves, so they have very little "knowledge" 

of the inputs. 

Since no prior knowledge of the training set is assumed, the best model of the train-

ing data before it is presented is to assume all patterns to be equally probable. 

Hence the distances between features are expected to follow a binomial distribution 

which may be approximated by the normal [2]. For a relationship between features 

in a training pair to be significant, it must be significantly improbable in such a 
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random distribution. 

This suggests that nearness functions which take into account the difference from 

the expected values of feature nearness would be appropriate. That is, the n,- should 

be related to the cumulative distribution function for the distribution of distances 

of features in the feature region of / . This is approximately the normal distribution 

with mean ^ and variance To ensure that the values fall in the required range 

(a feature at distance ^ has probabihty | ) the cdf is transformed by a; 2a; — 1 and 

negative values are mapped to 0. Weight is then given to feature pairs according to 

the a priori expectation of their distances from the measured feature. Those which 

are "unusually" close are given high weighting while those at mean distance (and 

further) are ignored. 

A nearness level below which a feature can be said to be insignificant may be stipu-

lated. This is the significance level. Note that in a binary space this is equivalent 

to defining a Hamming radius around a feature outside which the feature is no longer 

said to be significant; this will be called the significance radius. The radius can be 

derived from the nearness and vice versa by simply considering the probability that 

a pattern picked at random should fall outside that radius. Similar calculations, and 

tables of values, can be found in [2]. 

The significance radius for a particular significance level also allow us to determine 

the m i n i m u m possible size for a feature. (For example a feature of size 1 will be 

found in 50% of a set of randomly chosen patterns, and so any non-zero significance 

level would make it always insignificant.) It is interesting to note that the minimum 

feature size depends solely on the significance level and the size of the feature, not 

on the size of the space containing the feature. However, any particular learning 

model (eg. the GNU) may have further constraints as to the size of feature it can 

hope to distinguish. 

Note that other choices of nearness functions are possible. For instance they could 
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give different weight to different parts of the feature. However, such a notion of 

nearness assumes some prior knowledge of the relative importance of the input 

and/or output bits which is not assumed in this paper. 

B.2.2 Finding the Real Features 

Given a particular training set, all but a few feature pairs have a relatedness of 

near zero. Moreover, of those with non-zero relatedness some will be contained in, 

contain or overlap other feature pairs with higher relatedness. How are our human 

conceptions of real features related to the very general definition of features above? 

We have two choices: either to think of a rea/feature not as a single input/output 

pair, but rather as a less well-defined area of input/output space where similar 

features are correlated, or else to attempt to find feature pairs with locally maximum 

relatedness and think of these as the actual feature pairs in the data. It is not clear 

how such a local maximum should be defined. 

B.2.3 Uses of the Relatedness Function 

Extracting features from training sets is what a learning system is often required 

to do. The learning machine can be seen as a statistical model of the data which 

is trained on the (supposedly "real world") training data and which outputs a best 

guess on the rest of the input space. This is what we call generalisation. 

There are two other ways the coefficient can be used: as a measure of the relatedness 

between input and output features in a trained system, and as a means of specifying 

a problem. The first case is similar to that in Section 2 except that the sum is taken 

over all possible input patterns, not just those in the training set, and the pattern in 

the output space is the pattern output by the system. A comparison between this 

and the values for the training set will give a measure of how well the system main-

tains links between associated features. Values calculated this way, from a trained 

system, will be referred to as Csystem, for example, Cqnu-
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Specifying a problem by its Ct values inverts the analysis described above. Instead 

of trying to determine what sort of behaviour our training set should induce, we 

can try to discover what sort of training set will induce a specified behaviour. The 

pre-specified values of relatedness used to specify a problem will be referred to as 

Cp. In the remainder or the paper we shall discuss the generalisation behaviour of 

GNUs [1] in terms of Cp and Cqnu-

B.3 Brief Analysis of GNU behaviour 

Here we look at how a simple classification problem may be specified in terms of its 

Cp values and how well the GNU can approximate the right answer from training 

data. We isolate three specific areas of difficulty for the GNU, and ways of over-

coming these problems are put forward. 

The problem is known as the LR problem. The input space is divided into two 

subsets, L and R. The system is required to output TypeL if and only if it receives 

an input which has one of some set of predefined features in L. The TypeR output 

is defined analogously, and if neither condition is fulfilled the required output is 

undefined. We have thus defined which feature pairs are to have Cp = 1. Further 

conditions are considered later. We assume that the training set and GNU connec-

tions are unknown. 

Suppose Tc is the significance radius, and suppose / is some feature which is re-

quired to output TypeL. Let pj be a pattern such that s{TTf{pj),f) = i. To evaluate 

CoNuif, TypeL) we need to find the nearness of the output of pj to TypeL. This 

depends on | / | , on the number of nodes nodes that output the same for both TypeL 

and TypeR and also on 

Proh(A node given a pattern with a feature at nearness i to f outputs TypeL/ 
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Only the last is unknown (until the training set and the GNU connections are 

specified) and the output nearness will be written simply as n2{Prob{...)). Then the 

relatedness in the GNU between / and TypeL is evaluated as follows. 

1 / 1 ) 1 
CgnuU, TypeL) = 

'i=\f\ i 

Let us suppose initially that the GNU is fully connected without feedback and hence 

acts a look-up table, then the probability can be re-written as 

Prob(A pattern with a feature at nearness i to f is nearer a TypeL training input 

than a TypeR/ 

This expression encapsulates a lot of what is "hard" about certain problems and 

training sets. If its value varies wildly for large i, the value of CoNuif, TypeL) will 

be very close to CoNuif-, TypeR). Hence the correlations that the GNU can infer 

will be weak and flawed even if the feature has size N, that is, the feature covers the 

whole input space. These problems are not well-suited to solution by GNUs in their 

current form. The worst example of such a problem is the parity problem which 

alternates completely for each i. However, if when the problem is specified it is 

required that Cp decline smoothly within the significance radius, then this difficulty 

is avoided. (Although functions like parity cannot be specified with this stipulation 

unless the confidence radius is 0.) 

The other way in which the problem can be hard is if the feature is small, and many 

exemplars of its class are very distant in Hamming terms, since they may differ on 

that part of the pattern which is not part of the feature. In this case even though 

a training example is close in one feature region, it is not close in the whole input 

space. The non-feature part of the pattern causes confusion. The GNU can only be 

expected to make a judgement on a small feature if that feature is strongly linked 

with the correct output feature in the training set. 

If a training set is chosen such that both C t ( / , TypeL) and conf(f) are high, the 

training inputs containing close approximations to the feature mostly give the re-

quired output, and moreover there are lots of such training pairs in the set. In 
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this case there will probably be a positive exemplar near to the test input, and the 

fully-connected GNU will find the correct output in most cases. 

The memory and/or processing requirements of a fully-connected GNU increase 

exponentially in N, so let us now consider the case of the sparsely-connected feed-

forward GNU [1], Suppose, as is usual, that the GNU connections are randomly 

generated and fixed thereafter. Assume L and R are spatially distinct, so we can 

assume that a node x has connections to the L part of the input space and Vx to 

the R. The total number of inputs per node is = k which is the same for 

each node. 

In lieu of a full analysis, the obvious difficulties will be outlined. Clearly the two pre-

vious difficulties will occur, but compounded by the effect of partial sampling. Some 

of the output nodes will have the same output value for both sorts of input and these 

can be ignored. Of the others, some have opposite values for each category, while 

some are only defined for one or other of the outputs. It is not hard to see that those 

with opposite values would perform optimally when Ix = while those which only 

need to fire for, say, TypeL, will perform optimally for L = k^Vx — 0. It is possible, 

given a statistical distribution of the training pairs and the connections, to estimate 

the accuracy of the response to nearby patterns, as required for the Cgnu calculation. 

Improvements have been suggested to the GNU system which aim to optimise per-

formance by extending the system to more layers [3] or by adapting the connections 

according to the training data [4]. It will be possible to assess any improvements 

to the GNU's capability for feature-based generalisation by comparing the csystem 

values obtained from training with given training sets and comparing them to the 

Ct values induced by those sets. 
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B.4 Conclusions 

A function has been defined which expresses the relatedness between input and 

output features which need not span the whole input or output space. Three forms 

of the function have been proposed; to study training sets, to specify problems 

and to study trained systems. The capacity of learning systems to preserve feature 

correlations in training sets can be gauged by comparing ct with csystem- The 

capacity of a learning system to learn how to solve a problem from a set of examples 

can be gauged by comparing the required values of Cp with the actual values of 
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C.l Introduction 

This paper presents an overview of some of the current problems and sticking points 

in weightless systems research. The aim is to highlight where progress will need to 

be made if weightless systems are to play a distinctive role in the future of neural 

systems research. 

There are two main areas which should be examined more closely; firstly the impre-

cise nature of the use of terms such as "training", "generalisation" and "learning" 

and secondly the lack of much adaptation of the systems to optimise them for any 

particular task. The suggestion in this paper is for a more formal, if not indeed 

mathematical, set of definitions governing our everyday terms for the capabilities of 

our systems, together with a more precise knowledge of how well they perform to 

these formal specifications. This will then allow us to properly assess the effective-

ness of any new "learning" or "adaptive behaviour". The inspiration for much of 

this approach is from Computational Learning Theory[6]. To interpret GNUs and 

other weightless systems in COLT terms is a long-term goal. 

While some of the comments refer to all weightless systems, they are more specifically 

aimed at the General Neural Unit and Neural State Machine of Aleksander [9] Note 

that most of the GNUs referred to are feed-forward only and are operating in single 

steps. There is no discussion of attractors. To analyse more complicated systems, 

the basic machinery must be properly understood. 

C.2 Formalisation 

In this paper we shall only describe the degree of rigour and formality with which 

undefined terms should be used. The rigorous theoretical treatment demanded will 

be given elsewhere. Examples are [2] and [3]. 

A good point to start is 'training'. What differentiates 'training' from 'program-

ming' apart from the connotations placed upon them by workers in different fields? 
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This question is fundamental to any claim about trained machines. Could we, for 

example, refer to 'iconic programming' rather than 'iconic training' (see [9]) without 

altering the sense? In so far as the iconic paradigm defines exactly what internal 

representation should be stored for a particular input this is indeed an example of 

programming. More exactly it is a specification of the data structures that the pro-

cessor, in this case the GNU, should use. It is training and not programming in so 

far as adding another iconic state transition to the GNU is not a clear declarative 

programming act. It depends on the previously trained transitions, and the nature 

of their interaction is largely opaque to the 'trainer'. 

Of course, the fact that the training is iconic is not really the issue here; any one-

time occurrence which is determined externally to the machine must be subject the 

same examination. 

This is not to say that the GNUs are not being trained. Of course they are. The 

point is rather to look past the terms we commonly use to notice whether what we are 

doing is substantively different to what has gone before, that is to say, programming. 

If it is different, then in what way? Only by making this sort of analysis will we 

ever see in what way work with weightless neural systems is making an original 

contribution. 

C.3 The Generalisation Game 

Now what does generalisation mean? In its broadest sense we can examine the 

generalisation of some function T : X ^ Y. Suppose X C Z, then any function 

S : Z -^Y such that 5'|x = T is a generalisation of T. In a sense S fills in the gaps. 

But how? Whenever we feel we intuitively know what we mean by generalisation it 

is because we have an idea of our domain of interest (Z in the example), and of a 

pattern in the required function which seems in some sense obvious. Whenever we 

are designing a system to perform generalisation we must be aware of our hidden 

assumptions and deep understanding of the patterns in our data which may make 
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a particular generalisation problem seem easier than it is. 

The generalisation performed in most weightless systems is based on the same prin-

ciple. The function T (ie. the training data) consists of point to point mappings (ie. 

input/output training pairs), and the underlying idea is to eliminate noise by recall-

ing from an unknown input the output pattern corresponding to the trained input 

pattern that is nearest in Hamming distance. That is, nearest neighbour lookup 

(NNLU). 

Now this is one generahsation function that GNUs have been shown to be capable of 

performing. Their performance at such tasks has been analysed, for example in [10]. 

To see what else they can usefully do, it is instructive (as a thought experiment) 

to substitute a perfect NNLU machine for a GNU in any proposed system. If the 

NNLU performs better in its position, then the usefulness of the GNU in that situa-

tion is clearly dependent simply on its approximation to a NNLU. In this case it has 

well-defined competitors such as Sparse Distributed Memory and a direct technical 

comparison can be made. 

Of course the behaviour of a GNU is by no means exactly that of a NNLU machine. 

It is where these differences are of benefit that any GNU-specific research should 

be directed. The differences with the GNU as currently formulated stem from the 

fact that no node has more than a fractional view of the input space. This restricts 

the number of functions that a GNU can perform (parity for instance cannot be 

measured by a sparsely connected GNU), but also appears to give potential for more 

interesting generalisation. The "partial blindness" of GNUs forces them to make 

generalisations about the training data. The question is, are these generalisations 

the right ones? 
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C.4 What they can't do 

In the section above it is claimed that a sparsely connected GNU cannot learn to 

solve the problem of the parity of its inputs. This is not in itself too worrying (it 

isn't the sort of problem people can solve easily, either) but it is worthwhile consid-

ering why it is the case, and precisely what sort of problem the sparse GNU cannot 

solve. 

The easiest way to see that a non-fully-connected GNU cannot solve the parity 

problem is to consider the response of any one node. There are inputs which 

yield any given /-tuple at any particular node. Of these, half have zero parity and 

half have one. Thus there is no way for the node to select which to output. The 

power of the GNU to perform generalisation assumes that at least some of the nodes 

can make the assumption that, given a particular input /-tuple, one output is more 

likely than another. Thus this particular problem cannot be solved by any GNU, 

whatever its learning, training or spreading algorithm, unless at least one node takes 

input from the whole of the input space. The result is analogous to the equivalent 

result for linear perceptrons in [1]. The question for GNU research is, having given 

up the ability to solve parity problems, what have we gained? 

This is not a terminal problem for GNUs. The parity problem and similar problems 

yield easily to other techniques (eg. counting) and do not occur regularly in the 

domains which have been selected for experiment with GNUs. Perceptron workers, 

although set back temporarily by the inability of the one-layer perceptron to solve 

parity [1], soon recovered their confidence, and learning to solve parity-like problems 

became a benchmark for new learning systems. Moreover, it is clear than a GNU 

has enough information to make the decision (if we assume each input pixel is 

connected to at least one node); it is the feed-forward nature of the GNU which 

makes it impossible. Could a GNU with feedback in principle succeed where the 

feed-forward net failed? This is a question for further research. 
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C.5 Feature Sensitivity 

Again this needs a fairly formal definition if we are to talk meaningfully about it. If 

a machine is given nothing but a set of training examples, it will not be able to use 

any "deep principles" to analyse the data. Hence a measure of relatedness based 

purely on the training set has been proposed in [2] which associates a value in [0,1] 

to every pair of input and output sub-patterns. The stronger any such association 

is, the more sense it makes to refer to the two sub-patterns as features. Thus by 

"feature sensitivity" I am referring to the ability to detect such i/o correlations in 

the training data, and use them as a basis for generalisation. Whether or not this 

is the sort of generalisation behaviour required in a particular system is another 

question. It is just a way of extracting meaning from a set of training examples and 

as such is something that a learning machine could plausibly hope to discover. 

This is traditionally a property more associated with weighted-sum type networks 

rather than weightless systems. There is, however, no reason not to investigate 

the performance of GNUs in feature-sensitive situations. The relatedness measure 

defined in [2] and expanded upon in [3] can be used to determine the relatedness 

between sub-patterns either on the basis of the patterns in the training set or the 

state function of a trained system. By comparing the two we can see how well the 

trained system retains the feature-sensitivity in the training set. Perhaps we can 

also find ways to enhance it. 

C.6 Enhancement Speculation 

A GNU is specified by just a few characteristics: the size of the input and output 

fields, the size of the feed-forward and feedback to each node, the exact distribution 

of the (usually randomly chosen) connections and (when trained) the contents of the 

VRAMs and the spreading radius. The training procedure already deals with setting 

the contents of the VRAMs, so we need not investigate that in such detail. The i/o 

sizes are a function of the problem to be solved, and varying the spreading radius 

does not fundamentally affect the GNU capabilities. A non-maximum spreading 
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radius forces the GNU to use less information, so the decision to alter it must 

be external to the GNU system itself. It may in some cases prevent unwanted 

information from being used, but the functionality of the GNU is fundamentally the 

same. To upgrade the GNU's capability we are therefore left with the possibility of 

altering the number and distribution of the connections, or else extending the model 

in some way, possibly by adding extra layers of GNUs as in [4]. 

C.6.1 Ways and Means 

Two possible ways to improve on random connections are presented next. Both, 

however, require some (preferably local) method of determining useful (ie informa-

tion rich) lines and rejecting unhelpful poor lines. 
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Method I: 

Start with a random system of connections of fixed size / . Use some kind of evo-

lutionary process to remove poor lines and test other lines at random. This would 

be better if we could pick potentially useful lines rather than at random, but this is 

even harder. 

Method II: 

Instead of fixed /-tuple size we fix the total memory available for storage. The / -

tuple size is then set to be the maximum possible that will fill the available memory. 

When training threatens to overflow the memory the /-tuple size for each node is 

reduced by removing the least helpful input line. This is highly dependent on order 

of training and does not allow for recovery of lines which later training makes useful 

again. Of course, we could initially train like this until some "base" /-tuple size is 

reached and then continue with the birth/death processes of Method I. 

Extensions of the model to extra layers can have several uses. Kan trains with an 

algorithm which separates the images of trained patterns so that they interfere less. 

This is very useful for unrelated pattern recall, but unhelpful for feature sensitive 

data. It may well, however, be possible to devise an algorithm to deal sensitively 

with training examples which are correlated. A procedure could start by assigning a 

random pattern to each input pattern and adapting it according to the output and 

input data in the training set. Thus a pattern which made best use of the random 

connections could be interpolated between the input and output data with an extra 

layer of VRAMs to perform the mapping. Perhaps this could be done so as to give 

a generalisation process in some sense better? 
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C.6.2 Optimal Mappings and Connections 

A useful thing to know would be, given a fixed set of /-tuples and connections, what 

are the "easiest" training sets for the GNU. That is, what is its optimal performance 

over all possible i/o mappings. We can see that the parity problem is the most diffi-

cult possible, and a constant map (where each VRAM always outputs either 1 or 0) 

is the easiest. Can we measure this sort of "easiness" and use it to convert "hard" 

representations of problems to "easier" ones? Then we could hope to come up with 

intermediate patterns which help us to approximate this best mapping at each level. 

We would need to find a set of patterns which, given the input set, form an "easy" 

output set but which form an "easy" input set given the output set, and preferably 

do this adaptively during training. There is no obvious reason to believe any such 

set could give performance above the average, but maybe ... 

Another sort of extension is to add more parameters to the basic GNU. This has 

already been done in at least two ways. Aleksander et al. in [5] suggest a "dis-

crimination coefficient" to modulate each input line to a G/VRAM according to an 

off-line analysis of the training set. This has the advantage of adapting the GNU 

to the training set and allowing each VRAM to become differentially sensitive to 

its input lines, thus allowing the GNU to be feature sensitive. An extension to 

this work has been proposed by Ruijterman [8] who uses the algorithm to analyse 

medical data. Sales [7] has implemented a system by which the spreading of val-

ues in the VRAMs varies over the input fields. These both provide cases for analysis. 

The important point about any of these extensions and innovations is not how they 

perform on a few convenient training sets, but how they match up to some formal 

criteria for learning and generalisation. Their limitations, and hence their domains 

of applicability must be discovered if the method is going to survive into the future. 
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C.6.3 Statistical Learning Theory 

One candidate for the formalisation of weightless systems is the statistical learning 

theory of Vapnik and others [11]. This formulates the problem of learning from 

examples in precise terms and offers standard statistical definitions of learning and 

generalisation. Moreover it provides a framework for the evaluation and comparison 

of different learning machines. Whenever the learning problem can be precisely 

stated learning theory methods are applicable, so in most useful cases the theory 

can be applied. Work to measure the complexity and generalisation ability of certain 

weightless systems is ongoing. 

C.7 Conclusions 

There are no conclusions in this paper, only suggestions and speculations. The sug-

gestion made is that without a good look at the real computational capability, and 

indeed cost, of weightless systems it will be impossible to systematically improve 

them except for some narrow class of problems. Moreover, unless we decide exactly 

why we want to use a weightless system for a particular task we cannot properly 

assess its performance against competitors. Do we see the GNU as a quick-training 

associative memory in which we may implement a state machine, or does its sparse 

connectivity allow it a wider scope? 

The speculation took the form of some possible extensions to the GNU functionality 

which may or may not help to solve some of the problems which may or may not 

be of interest to those working in the field. They attempt to bring some adaptivity 

into the model to allow it to respond better to a wider range of problems. Of course, 

similar schemes have been put forward before, what is important is to properly un-

derstand and measure what function we want the GNU to perform and measure the 

improvement with these extensions. If we don't do this, and as formally as pos-

sible, we risk having a raft of plausible examples but no general facts about what 

our systems can do. It is for this reason that the application of statistical learning 

theory methods to weightless systems may be fruitful. An early attempt to do this 
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is contained in [12] but more analysis is needed. 

I hope that this will inspire people to think about the underlying nature of the power 

of weightless systems, or, more importantly, to formalise and make known what 

they have been thinking about for a while. Without some taking stock, research in 

weightless systems could slowly stagnate. 
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Abstract The VC dimension of an n-tuple classifier predicts poorer generalisation 

performance than is found in practice. The effective VC dimension of the classifier 

for a Gaussian input distribution is calculated empirically and shown to be signif-

icantly lower than the VC dimension. Thus better generalisation can be predicted 

without risking over-fitting. 

Introduction: N-tuple classifiers of the type pioneered by Bledsoe and Browning [12] 

and developed by, amongst others, Aleksander and Stonham [4] and Rohwer [45] 

and have found significant practical application owing to their simplicity and the 

speed with which they operate in either hardware or software. 

The Vapnik-Chervonenkis dimension is a scalar quantity which contains information 

about the functional complexity of a learning machine. It is possible to derive 

probabilistic bounds on the expected generalisation error of a learning machine on 

a problem if the size of the training set and the VC dimension are known. In 

order to make these bounds tighter in those cases where something is known about 

the distribution of the input patterns, a second quantity called the effective VC 

dimension is used. 

In this paper the lower bound on the size of the training set required to give good 

generalisation is found to be unrealistically high if based on the the VC dimension. 

The effective VC dimension is estimated empirically for a Gaussian distribution of 

input patterns and shown to be significantly lower than the true VC dimension. 

This reduces the bound on the minimum number of training examples required for 

generalisation, and allows the system designer to make a better choice of system 

parameters. 

The N-Tuple Classifier. The fundamental unit of weightless systems is the RAM 

node which is functionally equivalent to a random access memory capable of storing 

single binary digits. A binary input pattern is presented at the input and is sampled 
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in N groups of n bits. Each group or n-tuple is fed into a single RAM node which 

either writes or reads at the addressed location depending on whether the classifier 

is in the training or the test phase. A discriminator consists of N RAM nodes 

and a device for summing their outputs. Each discriminator (and although there 

can be any number this paper only considers the case where there are two) has an 

associated class label. In this paper they are taken to be logical 1 and 0. Several 

training methods have been suggested but none affect the VC dimension. For this 

paper the Stochastic Minimisation Algorithm (SMA) has been developed to find the 

set of stored values that yield minimum number of misclassifications of the training 

data. It is described in [13]. 

Testing requires that the input pattern be presented to each discriminator, where-

upon the locations addressed at each node by the n-bit samples of the pattern are 

read. The output from each RAM node in a discriminator is summed and the out-

put of the classifier is the class label of the discriminator with the highest score. 

(In the case of a tie the output may be selected by an arbitrary rule.) The speed 

and simplicity of both training and testing are the classifier's biggest advantages in 

practical situations. 

The VC Dimension: The VC dimension is a scalar property of any set of binary 

valued functions: for example the set of functions realisable by a two-discriminator 

n-tuple classifier. Let us say that a set of size I of input patterns is s h a t t e r e d by 

a set of functions if those functions can produce all 2' dichotomies of the input set. 

The V C dimension of a set of function £ is defined to be the size of the largest 

input set that can be shattered by C. The definition can be extended to functions 

with a larger output range, but for simplicity we shall only consider binary-valued 

functions here. Hence we shall only consider classifiers with two discriminators. 

The importance of the VC dimension is due to the following bound, (D.l), on gener-

alisation error by Vapnik and Chervonenkis [58]. Given completely unknown input 

and output distributions, a randomly drawn training sample of size I, a classifier 

with VC dimension h and a proportion Remp of misclassifications on the training 

data, then with probability r) the expected classification error R can be bounded as 
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follows. 

(D.l) 

This leads to a trade-off between the first term, error on the training set, and the 

second, error due to poor generalisation. Both depend on the complexity of the 

training set, but in different senses. An optimal classifier for a problem must have 

both sufficient VC dimension and sufficient training data. 

The VC Dimension of the N-Tuple Classifier: In previous theoretical work, [13], the 

VC dimension, h-p, of the two discriminator n-tuple classifier has been bounded by 

- 1) < /iz, < (log; 3 ) N 2 \ (D.2) 

For (D.l) to guarantee acceptable generalisation, the size of the training sample 

must at least be of the order of the VC dimension of the classifier used. Even at the 

lower end of this bound this would require far more examples than are commonly 

used. 

The problem with the VC dimension result is that because no assumptions are made 

about the distribution of the data, all the information about the problem must be 

deduced from the training examples. The effective VC dimension defined by Vapnik 

et al. in [59] takes into account some of the properties of the input distribution 

(if they are known) and can be used to replace the VC dimension in (D.l). The 

same paper gives an empirical method for calculating the effective VC dimension of 

a classifier in which the maximal deviation of the errors on two half-samples must 

be calculated. This method has been applied to the n-tuple classifier. 

A simulation was designed in which random training sets could be generated ac-

cording to a Gaussian distribution (of Hamming distance from a fixed point). Each 

output value was set to 1 or 0 with 50% probability. The training error was then 

approximately minimised by the SMA and the resulting error converted to a max-

imal half-sample error deviation as in [59]. These values were then plotted against 

half-sample size. According to the theory this graph can be approximated by an 

analytic function, phi(///i), which depends on the effective VC dimension and the 
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n N VCDupper VCDlower EVCdim 

4 50 750 1190 150 

4 100 1500 2380 340 

4 150 2250 3570 460 

6 50 3150 4490 700 

8 50 12750 20,200 2000 

Table D.l: VC dimension lower bound, VC dimension upper bound and effective 

(Gaussian) VC dimension of n-tuple classifier. 

half-sample size. By these means an estimate of the effective VC dimension can be 

derived. 

Experimental Results First it was shown that the choice of assignment of output 

values did not affect half-sample error deviation. These are shown in Figures 1 and 

2. Then the expected deviation E[(i] was estimated for different values of /, differ-

ent classifiers and for both input distributions. The best-fit effective VC dimensions 

were estimated and the graphs of E[(i] against l/h were shown to fit with the the-

oretical predictions justifying the approximate estimated values of VC dimensions. 

These plots are shown in Figure 2. The discrepancies for the larger values of I may 

be due to the failure of the SMA to find the global minimum of the error. 

178 



0.8 

phi(Wi,0.31) 

n=4,N=50,h=150 

n=4,N=100,li=340 

n=4,N=150,h3f60 

eg 
D.i 

1 1 

\ \ • \l ' phi(Mi,0.31) 

i ' n=4,N=50,h=150 

V;. n=6,N=l00,hz700 . . . 

V v n=8,N=150,h=2000 

1 1 1 1 0 OJ I li 2 15 0 Oi ) U 2 15 

half-sample size/estimated effective VC dimension, 1/h half-sample size/estimated effective VC dimension, 1/h 

Figure D.l: Max half-sample error against 1 for three different output distributions. 

Figure D.2: Empirical against estimated effective VC dim over 1 plotted against 

a best-fit estimate. 
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