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Abstract: About 12 years of work with a specific type of learning pattern-recognition system are reviewed.
The principles and characteristics of the scheme, which is based on random-access-memory implementation,
are discussed in some detail. Methods of improving performance and cost-optimising pattern recognisers are
presented, together with case studies in a variety of fields including the recognition of alphanumerics,
chemical data and faults in digital circuit boards.

1 Introduction

This paper contains no new material on the use of random-
access memories (r.a.m.s) pattern recognition. It is designed
to bring together and put forward in a simple way the
fundamentals of the subject, which, to date, have been
published in a scattered variety of articles and papers. The
scheme is centered around r.a.m.s, but this is largely a
conceptual crutch, becuase embodiments of resulting
pattern recognisers might turn out to be software for
conventional processors, specialised microprocessor systems
or straight forward read-only memory (r.o.m.) programm-
able logic array (p.l.a.) hardware.

Implementation is not the central issue of this paper: the
concept of learning, however, is. The first Section of the
paper has been purposely divorced from any form of
implementation to cover the pure rationale for using a
learning system. R.A.M.S are introduced as simple learning
machines in themselves with rather problematic character-
istics which may be overcome by the use of simple networks
of r.a.m.s. The effect of network parameters on pattern-
recognition properties is salient to the subsequent Sections
of the paper. Simple examples are used to illustrate the
principles involved.

The latter part of this paper concentrates on a survey
of optimisation methods and techniques that have been
used in practice to improve performance and a set of case
studies that show the sort of recognition performance
that can be achieved using this type of system.

2 Learning pattern recogniser

Given a relatively modest matrix of 100 binary points
(say, 10 x 10), the number of possible patterns that can be
represented on it is large: 2100 or, roughly, 1033.

A pattern recogniser is a device which when connected
to this matrix will signal (say with a 1, as opposed to a 0)
at some output the presence of a prespecified subset of
the 2100 patterns. The problem arises from the fact that
the specification for this subset could be very vague and
insufficient for the design of a system tailored to the job.
For example, such a specification may be the set of all
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patterns that look like an A. Or maybe, it could be the set
of all versions of a prototype A distorted by up to 5%
noise (i.e. with no more than 20 binary points altered).

The latter implies
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or approximately 79 x 106 possible patterns.
One could easily design a system to cater for the latter

case by forming the bit-by-bit comparsion of an unknown
pattern with the prototype, and, if more than 5 bits
disagreed, a 0 would be output, with a 1 output for other
cases.

However, it would be almost impossible to do this for
the former case because not all distortions of As which
still look like an A may be forseen by the designer.

It is for this reason that one appeals to learning systems,
which generally operate in the following way.

Let U be the total (universal) set of all patterns that
could occur on the binary matrix. Say that there are
several sets of patterns that are to be distinguished. Let us
label them A, B, C . . . The situation may be represented as
a set diagram, as in Fig. 1.

A sample of each pattern class is shown* to the learning
system, together with its class label. These samples are
called training sets, say TA, TB, Tc for the example in
Fig. 1.

Fig. 1 Pattern sets

This will later be called the process of training, and much of this
paper will deal with the matter
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Much of this paper is concerned with the way in which
the learning system interprets these training patterns and
attempts to classify patterns other than those in the train-
ing set. The fact that a system classifies patterns other than
those in the training set is called generalisation. The generali-
sation sets related to TA, TB and Tc are labelled GA,GB

and Gc, a typical situation being shown in Fig. 2. Several
points and definitions arise from this diagram:

(a) First, one assumes that only the patterns in A, B
and C will require classification. The rest of the space in
U represents meaningless spurious patterns. Then, we see
that (with the given generalisation) all the patterns in B
will be identified as belonging to class B, and the recog-
nition of this class is perfect. This too applies to all
patterns in A.

(b) The area of GB which lies outside B merely indicates
that some spurious patterns which in fact do not belong
to B would be classed as Bs. This does not matter, however,
because we have said above that only patterns within A,
B and C are used as input to the system.

(c) The fact that GA encroaches into area C (subset K)
indicates that those patterns in C which fall in the K area
will be classified incorrectly as As; this is called a mis-
classification.

(J)The fact that there are patterns in C which fall
outside Gc and in no other classification area indicates
that the system will treat them as unclassifiable; this is
called a rejection.

(e) In general, a rejection is thought of more favourably
than a misclassification. It is equivalent to the system
saying i don't know' rather than making the wrong
decision. In the recognition of postcodes, for example, a
rejected envelope could be salvaged and classified by a
human, whereas a misclassification could cause it to be
sent to the wrong address.

Fig. 2 Generalisation sets and errors

3 Random-access memory as a learning pattern
recogniser

The essential elements of a ramdom-access-memory are
shown in Fig. 3 (this is not a complete circuit diagram, it
is just intended to aid the description that follows).

This operates as follows. There are 2" possible distinct
address patterns as the n address terminals. Each such
pattern selects (addresses) a two-state (0/1) device (flip-
flop), causing the value of its state to appear at the data-out
terminal. The above is known as the read or use mode.

Another mode, the write or teach mode, is entered by
energising the write-enable terminal. In this mode, the
contents of the addressed flip-flop may be charged to a
value determined by the logical value of the data-in terminal.
That is, if the data-in terminal is at 0 when the write-enable
terminal is energised, whichever flip-flop is addressed by the
input at the time will enter state 0, whatever the value of its
previous state.
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Fig. 3 Random-access memory

A r.a.m. alone can act as a rather trivial pattern recogniser
in the following way. Assume that the pattern is applied
at the n binary inputs. The recogniser will recognise one
class of pattern by outputting a 1 when a member of this
class is present at the input.

Assume that all the flip-flops are initially at zero. That is,
no pattern is identified. Say, now, that all the all-Is pattern
and the n patterns with only one 0 are taught to the r.ajn.
by presenting them in turn to the address terminals with
the write-enable wire energised and a 1 at the data-input
terminal. During a subsequent 'use' phase, the r.a.m. will
recognise the n + 1 patterns it was taught during the
previous 'teach' phase, but no others. Hence, it acts as a
learning pattern recogniser, but one with no generalisation.
It is because of this latter point that the scheme was
labelled as being 'trivial'. It will now be shown that very
simple networks of r.a.m.s are not trivial in the same way.

4 Some simple networks and their generalisation
properties

In Fig. 4a, a simple arrangement is shown where a 3 x 3
binary matrix is connected to three r.a.m.s. The 'data-in'
terminals of the r.a.m.s are connected together and an AND
gate receives the 'data-output' terminals. In this way, the
r.a.m.s are taught to respond with Is for the patterns in the
training set, and only those patterns causing all three r.ajm.s
to output Is would be classified in the same way as the
training set.

It is assumed that all stores are at 0 before training
commences. A specific training set TA is shown in Fig. 4b,
and it is represented as a subset of the universal set U in
Fig. 4c. Note that U contains 2 3 x 3 = 512 patterns. The
generalisation set GA may be computed as follows.

Looking at the way the r.a.m.s are connected, one notes
that during the entire training session each r.a.m. 'sees'
precisely two addressing subpatterns. The set GA is then
clearly made up of all combinations of such addressing
subpatterns. In general, the size of GA (denoted by GA) is
given by
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GA - kx x k2 x k3 . . .ke

where kj is the number of patterns seen during training by
/th r.a.m. In this example

GA = 2 x 2 x 2 = 8
Subtracting from this number those patterns in TA, GA

must contain another 5 combinations of 'seen' subpatterns.
These are shown in Fig. 4d, the set diagram being shown in
Fig.4e.

Consider now what would happen if the AND gate were
replaced by an OR gate, the rest of the system remaining
exactly the same. In this case, a pattern will be classified
in GA as long as one of the r.a.m.s sees an input seen during
training. One can show that GA is now much larger and, in
fact, contains 296 patterns. This large number includes
patterns as diverse as those shown in Fig. 5a. Clearly, one
gets a feel for the fact that the more restricted decision at
the output (AND) causes GA to include patterns that are
more directly related, that is, similar to the training set.

There is another way of affecting GA by means of net-
work changes. This is shown in Fig. 5b. It is assumed that
the training set is the same as in Fig. 4b. This time, however,
we note that the first and third r.a.m.s see two subpatterns,
whereas the second sees only one. Hence, the total number
of patterns in GA is

GA = 2 x 2 x 1 = 4
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Hence, outside the training set there is just one pattern
in GA, and this is shown in Fig. 5c. This connection has, in
fact, picked out a very important common feature of the
training set: the centre vertical bar.

The networks discussed here have a particular name:
single-layer nets, or sJ.n.s. They always have the following
physical characteristics:

(i) Given a binary matrix of R points, an s.l.n. contains
R/n «-input r.a.m.s connected (often at random) so that
each r.a.m. input (i.e. address terminal) 'sees' one, and only
one, matrix point.

(ii) A simple decision such as AND, OR, MAJORITY or
GREATER-THAN-X, is made at the output of the r.ajn.s.
From the examples in this Section of this paper one learns
that:

(a) Generalisation is affected first by the diversity of the
patterns in the training set; that is, the more diverse the
patterns in the training set, the greater will be the number
of subpatterns seen by each r.a.m., and hence, the greater
will be the generalisation set.

(b)Secondly, the output decision, based mainly on the
value of a threshold placed on the number of r.a.m.s that
respond with a 1, strongly affects the size of the generali-
sation set. The smallest set is achieved with an AND
decision (i.e. threshold between a R/n and R/n - \), and
the greatest with an OR decision (i.e. a threshold between
Oand 1).

(c) Thirdly, the connection of r.a.m.s to common features
in the training set reduces the generalisation set.

5 Multicategory pattern recognition

A single-layer net tends to divide a universal set into two
categories: those patterns in GA and those that are not.

I H1

1

1

1

2

2

2

3

3

3

8 patts
(includingTa)

Fig. 4 Example of training and generalisation in a simple single-
layer net

a 3 X 3 binary matrix
b Specific training set
c Subset of U
d 'Seen' subpatterns
e Set diagram

i I

Fig. 5 Generalisation for an OR gate at output of net in Fig. 4

a Examples
b Reconnection pattern; this differs from Fig. 4a in the sense that

Is are connected to r.a.m. 1 etc.
C Reduced generalisation set
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Clearly, most pattern-recognition problems would require
classification into more categories (for example 26 for the
letters of the alphabet). That is, one needs to approach
the situation shown in Figs. 1 and 2. Particularly important
is the 'don't-know' category.

This is achieved by using several s.l.n.s. In theory, one
could use log2 C s.l.n.s for a C-class problem. For example,
two nets (Fig. 6a) could be used to recognise, say, three
classes A, B, C, as shown in Fig. 6b. This requires that for
training set TA, only s.l.n. a is taught to output a 1, for
TB both a and |3 are taught to output a 1, while for Tc

only j6 is taught to output a 1. When neither net responds,
this is taken to be a 'reject' or 'don't-know' response.

There is a major difficulty with this kind of scheme: the
nets have to be trained to respond in the same way to
patterns that are clearly in different classes. That is, it is
likely that the patterns on which the s.l.n.s are trained
have a great diversity, leading to an inappropriate generali-
sation.

Consider the example in which A is the set of three
vertical patterns, of which Fig. 6c is an example, B is the set
of three horizontal patterns of which Fig. 6d is an example
and C is the set of three diagonal patterns (or negative
slope) shown in Fig. 6e. If the nets are connected as in
Fig. 4, it may be seen that if a is trained on A and B and j3
on B and C, all the patterns in A and C will give a B
response.

i

i H
i

Fig. 6 Multinet systems

a Two nets for a 2-class problem
b Coding of net output
c Example of vertical pattern
d Kxampie of horizontal pattern
e Diagonal pattern

One imagines that the problem could be solved by
altering the conditions and the training. For example, one
could let |3 be connected as in Fig. 5 and the horizontals
be A, the verticals C with the diagonal as B. The intent
here is to tailor the matrix connections to the features of
the patterns. However, the scheme does not work because
one notes that, because the diagonals are used to teach
both nets, a cannot distinguish between diagonals and
verticals, whereas 0 cannot distinguish between diagonals
and horizontals. Hence,any pattern will give the B response.

A more usual way of dealing with the multicategory
problem is to assign one modified s.l.n. per class. The
modification consists in not having an output decision
circuit, but leaving the output decision to an overall circuit
called a maximum-response detector. The system is shown
in Fig. la for a 3-class problem. The maximum-response
detector assigns the classification to that discriminator
which has the strongest response. The resulting generali-
sation sets are shown in the diagram of Fig. 1b. All multiple
responses (in the sense that two or more s.l.n.s respond
the same way) are classed as 'don't know'. What is left of
the individual s.l.n.s is now called a discriminator.

The major advantage of this scheme is that a discrimi-
nator will be trained as a set of patterns which are in some
sense similar. Also, one can tailor the discriminator con-
nections to suit an individual class of pattern. Returning to
the example of the horizontal, vertical and diagonal lines,
one would require three discriminators. Say that the first
H is to distinguish horizontals and has its r.a.m.s hori-
zontally connected, the second V has the r.a.m.s. vertically
connected, and the third D has them diagonally connected
(as in Fig. 6e). For each step in the training procedure
(assuming training on all nine patterns), only the approp-
riate discriminator is taught. Consequently, for that dis-
criminator, one r.a.m. will be taught to output a 1 for the
all-1 address, and the other two output a 1 for the all 0
address. Consequently, when any pattern in a training set
is presented to the system, all three r.a.m.s will fire in the
appropriate discriminator, and none in the other two.
This provides perfect recognition of the training set. Now,
consider a pattern which is a distortion of a vertical training
pattern, say

0 1 0

1 1 0

0 1 0

Clearly, two r.a.m.s in the V discriminator will fire and
none in the others, still giving the correct decision. Indeed,
all single-bit distortions of the training sets will be correctly
classified.

A further point of interest in this kind of system of
discriminators is that one can obtain control over the
generalisation by insisting that there will be a minimum
difference (threshold) between the responses of the two
maximum discriminators, for the pattern not to be rejected.
Figs. 1c and d show the resulting generalisation sets for the
same situation as in Fig. 1b, except that in 1c the threshold
is 2 and in Id 3. (Normally the threshold is 1 as in Fig. 6b.

In summary, therefore, the C-discriminator system for a
C-class problem has the following advantages:

(a) The discriminators are not required to accept a greater
diversity of patterns than contained in a single class. This
avoids exaggerated generalisation.

(b) Connections can, in certain cases, be tailored to
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suit individual classes.
(c) Predetermination of output-decision thresholds

(fixed-output decision) is avoided.
(^Differential thresholds between discriminators may

be used to control the 'reject' class size.

6.2 Training data

The training data on which the discriminators are set up
determines the generalisation properties of the system, as
has been shown in previous Sections. The response to an

disci

maximum- -»•

Fig. 7 Multicategory problem

a 3-category system
b Strongest-response discrimination
c Threshold of 2
d Threshold of 3

6 Optimisation of s.l.n. classifiers

6.1 Introduction

To suppress the extensive and sometimes inappropriate
generalisation which occurs when the C-class multicategory
problem is implemented with the minimum number (log2 C)
of sJ.n.s practical systems invariably comprise C discrimi-
nators for the C-class problem. The designer is therefore
able to optimise each discriminator to respond in the
appropriate manner to only one data category. Nevertheless,
the intrinsic flexibility of the technique is so great as to
preclude exhaustive assessment of all system parameters
and a heuristic approach must, in some cases, be adopted.

In this Section, the optimisable parameters of the
system are considered, and techniques for improving the
overall recognition are discussed.

unknown pattern can be assessed1 by measuring its
Hamming distance from all the members of the training
set, and hence its most probable classification category
can be obtained. In practical pattern recognition, the
nature of the training data in terms of Hamming distance
is of paramount importance to the overall performance.2

Fig. 8a shows the area of response of patterns to a set
trained on set T, where

T = {r , , 7-2,7-3, r 4 , . . . , rn}

in which unknown patterns will obtain an equal or higher
response than pattern X at Hamming distance d from T.
In this case, the training set T is well defined in terms of
recurrent pattern features and the Hamming distances
between training patterns is low.

The same test/training pattern Hamming-distance
relationship can prevail for a less-well-defined pattern class
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as shown in Fig. 8b. Tnow represents a much more diverse
class of patterns, although the mean Hamming distance
from X still remains at d. It can be seen that the comparable
area of response is now much larger; i.e. the discriminator
has a much larger generalisation area which may induce
high responses from patterns which should not be associated
with T.

F i g. 8 Ham ming distan ce

T ata Generalisation area of a tightly clustered training set
distance d from test pattern X

b Generalisation area of a diverse training set at a distance d from
test pattern X

6.2.1 Optimum training set: An exploration of the
Hamming-distance relationships between training patterns
will determine the action required to optimise the training
sets. In the case where the patterns cluster, a procedure
that ensures that the training set is representative can be
used. An s.l.n. is trained on an arbitrary member of a class
of patterns (a reference set), and the responses of all
members obtained. The pattern with the lowest response
is detected and incorporated into the training set, and the
system retrained. By repeating the procedure, a reliable
training set can be compiled.

This procedure serves two purposes:
(a) The training set thus obtained is fully representative

of the reference set and, hence, the data category as a
whole

(&)The response behaviour can provide evidence of
recurrent «-tuple features and, hence, a pattern in the
data.
The latter can be ascertained by observing the lowest
response after each training increment. If, after training on
n patterns (less the total number of patterns in the reference
set), the lowest response is in fact the maximum possible
from the discriminator, further training will not contribute
any additional information on the pattern class. The
patterns remaining in the reference set and not included
in the training set are being recognised by generalisation, as
shown diagrammatically in Fig. 9.

The tightness of the clustering at the training patterns
can be obtained by observing the rate at which bits within
the discriminator are being set, and full specification of
the reference set occurs when this rate becomes zero.

This technique has been successfully employed on
patterns derived from mass spectra to ascertain the exist-
ence of recurrent features in the data set.3

6.2.2 Subcategories: The diversity of patterns as typified
by T in Fig. 8b is unlikely to occur in real data, which can
be recognised by the human interpreter, but distinct sub-
categories can often be detected within a class (e.g. upper -
and lower-case versions of a letter). The assignment of
separate discriminations to each subcategory can quite
often reduce the overall errors by restricting the generali-
sation between the subcategories within a single net. The
populations of the subcategories must be taken into
account, and it may be economic to ignore low-populated
subcategories. This can be illustrated by considering the
separation of printed characters and, in particular, Bs and
8s. Fig. 10 shows the generalisation area for training sets

B = (Bi ,B2,B2,B4)

The inclusion of the character B, as obtained from a 7-
segment display, would create a problem. It can represent
an 8 or B in the training sets for either character, and
would therefore destroy a large proportion of the
discrimination between those alphanumerics. The problem
can be dealt with either by ignoring the recalcitrant
character with respect to training (clearly it would most
probably be rejected during classification) or by creating
a discriminator to detect it together with its close variants.
The latter course of action would preserve dichotomy

Fig. 9 Generalisation completely specified by Tx, T2
Pattern T4 does not contribute any further information

and 7\,.
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between 8s and Bs, although 8/B and B/B separations would
not be high.

6.2.3 Protection against errors in training data: A considera-
tion of rogue training patterns has culminated in a method
whereby the recognition performance of a classification
can be protected against corruption arising from errors in
the training data. By an extension of the example in Fig. 10,
the inclusion (by accident or otherwise) of a member of
8 in B, would cause the separability of character 8 and B to
be almost totally destroyed. One can overcome this by the
use of a memory element threshold4 t, whereby the pattern
/2-tuples sampled by the memory elements within a
discriminator must occur t times over the complete training
data before the location is set. A threshold of 1 would
provide protection against one error pattern by suppressing
all the w-tuple samples over and above those occurring
within the valid training data. This prevents the area of
generalisation encompassing another category.

Fig. 10 Error area is increased by the inclusion of pattern B in
either or both training set

Error area is shown by shading

6.2.4 Size of n-tuple samples: The size of rc-tuple samples
affects the behaviour of an si.n. system as does the number
of training patterns in applications where an optimum
training set cannot be specified. (This is generally the case
in optical pattern recognition where noise is present). It
has been found empirically that for a given size of training
set there is an optimum value for the size of the pattern
samples which will give maximum performance; smaller
samples causing overgeneralisation and larger samples
undergeneralisation. This behaviour is also manifest if the
sampling size is kept constant, and the number of patterns
in the training sets is varied (small training sets having an
effect similar to small n-tuple samples). The extent to
which optimisation of the «-tuple size is both desirable
and cost effective depends again on the nature of the data
to be classified, and is proportional to its diversity.TV-tuple
behaviour is summerised in Fig. 11 for recognition of
hand-written characters (a diverse data form) and machine

printed characters (a relatively constrained data form). By
combining these performances with the cost characteristics
in terms of bits of storage against n for a 1-to-l mapping
(Fig. 12), the return on «-tuple size optimisation can be
assessed.

Fig. 11 Performance behaviour with varying n-tuple size

a Handwriting
b Machine-printed characters

0 2 A 6 8 10
n

Fig. 12 Cost with increasing n in terms of storage

6.2.5 Input connection mapping: The input mapping
determines the sampling and defines the locations of the
matrix. These are combined to form a subpattern which is
subsequently interpreted as an address within the sJ.n.s.
There is a vast number of possible connections available
(for a 16 x 16-bit pattern matrix the number of 256! or
approximately. 101000). An exhaustive assessment is there-
fore impossible, and a 'hill-climbing' approach must be
adopted, although this gives no guarantee that the final
mapping is the most suited. The classification performance
as a function of the mapping approximates to a normal
distribution, with the majority of mappings giving average
performance. There is a small but finite probability of a
specific map giving a very much better (or worse) perform-
ance, but its detection is governed by chance. Fig. 13 gives
experimental results of a classification distribution pertain-
ing to medical data, for a range of maps.

In an unoptimised problem, a random map is chosen,
because sampling points distributed throughout the pattern
matrix are more likely to detect global features than an
ordered map, which in a single-layer system is only sensitive
to local features.

In optimising a mapping, an initial check would be
carried out on a set of maps, perhaps up to 10, to ensure
that an unduly poor map had not been selected. The best
map would then be selected and the connections modified
according to the outcome of the following investigations:
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(a) Removal of invariant points on input matrix
By observing the training data sets, any points on the input
patterns which are invariant over the whole training set,
and are always either 1 or always 0, can be disconnected.6

An invariant point in a subpattern reduces the effective
storage of its associated memory element by half (2n to
2'1"1). If the invariance within the training data is typical
of the data as a whole, this area of store is never addressed,
and if information occurs in the hitherto invariant location
during operation, all corresponding elements in each
discriminator have identical outputs. Consequently, no
classification information is forthcoming from the pattern
point and its reconnection cannot degrade the performance
and will probably contribute in a positive manner to the
classification.

50 52 56 56 58 60 62 66
number of patterns (k) correctly classified

Fig. 13 Distribution of responses with 36 differing maps

Medical data

fb) Common n-tuple samples
An extension of the invariant-point problem in the training
data can result in common «-tuple samples throughout
the training data. This gives rise to common memory-
element contents within corresponding elements in differ-
ent discriminators, the outputs of Which will always,
therefore, be identical, and no contribution to the classifi-
cation of the data will be made by those elements.

The probability of common n-tuples occurring through-
out a complete training set is low; therefore, a major
improvement for all classes in a multicategory classification
is unlikely. If, however, reference is made to actual classifi-
cation results, this method can be used to improve the
classification between categories of low separability by
removing common n-tuples between them.

It is possible (although unlikely) that the margin between
the responses of highly separable groups will be reduced,
although the classification will not be corrupted. The
overall effect is therefore that the classification and
confidence is improved throughout the data set as a whole.

(e) Feature masking
Feature masking within the elements of a discriminator is
comparable at the subpatterns («-tuple) level to the effect
of rogue patterns in training sets at the pattern level. It
occurs when the same subpattern presents itself in the
training set of two or more classes.

The reduction of feature masking does not involve any
direct modification to the connection mapping, but it can

increase the usefulness of subpattern samples by the judicial
modification of the store contents after training. Infor-
mation on the frequency of occurrence of subpatterns is
required; therefore, the optimisation is more suited to
software systems in the first instance.

The technique can best be described by reference to an
example. Let corresponding memory elements in different
discriminators sample a set of subpatterns during training
such that

A = {axa2a3 ...an) = B = ( b i b 2 b 3 ...bn)

It is probable that some of the addresses will be the same,
e.g.

ax = b\ and a3 = b3

Masking degrades the performance significantly if the
frequencies of occurrence of a and b differ significantly,
implying that the sample is a strong feature of one class and
a weak feature of the other. As the memory elements are
not sensitive to the frequency of occurrence of the sub-
patterns, over and above the initial occurrences, the corres-
ponding elements in the discriminators are unable to
differentiate, and have identical outputs. By locating the
memory element in the discriminator for which the feature
is weak and resetting the appropriate bit after training, the
strong feature can contribute to the correct classification of
these patterns at the expense of enhancing an incorrect
response to patterns of other categories where the feature
is weak. This approach involves a trade off, but it can be
utilised to increase the confidence of decisions between
data categories of low separability.

6.3 Coding of physical data

Most pattern recognisers have to be interfaced with the real
world, and the method of transduction and coding influence
the overall performance, In optical pattern recognition, a
suitable threshold must be chosen and applied to the grey
scale to detect image boundaries.

The problem of coding numerical data is more critical.
The discriminators require binary information, and a simple
binary coding of a numerical value might seem appropriate.
The code is interpreted by the s.l.n.s as a pattern, and from
the knowledge of their Hamming-distance behaviour, it is
imperative that the coding reflects similarities in measure-
ments. A direct binary code has discontinuities in its
Hamming distances between incremented numbers, thereby
creating disproportionate changes in the pattern. A
reflexive Gray code eliminates this specific problem, but
widely differing quantities can now be close in Hamming
distances. The most suitable coding is a l-in-« code, which
overcomes all the Hamming-distance problems. It is, how-
ever, very inefficient and can require a large amount of
input space.

The properties of these codes are summarised in Fig. 14.
Binary and Gray codes will distort the generalisation

characteristics of an s.l.n. with respect to properties of the
data in the physical world.

Another approach to coding has been to measure binary
properties of the data to be recognised, and this appears to
be a suitable technique in some applications. In mass-
spectral recognition, the binary patterns represent the
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presence or absence of peaks pertaining to specific masses,
and a similar approach could be made to the encoding of
sound according to the presence or absence of frequency
components.

jir Lr
8 12 16 20

numerical value of pattern

£ *

% 3
a
e 2
9/

I 20

J I B

12

8 12 16 20
numerical value of pattern

U 8 C 16 20 24
c numerical value of pattern

Fig. 14 Hamming distance properties of codes

a Binary code
b Gray code
c 1-in-l code

6.4 Data transformations and multilevel networks

Nonlinearities in the coding of physical data can distort
the area of generalisation of a training set. One would
normally expect similar patterns in the real world to be
transformed into binary patterns closely related in terms of
Hamming distance. However, advantage can be taken of
distorted areas of generalisation to improve the classifi-
cation. For example, the Hamming distance between
acceptable binary versions of the characters C and 0 can
be very low, and the generalisation areas of these characters
overlap. If high confidence requirements are imposed on
the classifier, a large number of Cs and Os can be rejected
which would otherwise be misclassified. A second layer
processor can then be employed, wherein the mapping only
considers the potential areas of difference between the
characters, i.e. the right-hand side of the pattern matrix.
The relative separations in Hamming distance are thereby
increased, and there is a greater probability of correct
classification at the output of the second layer. This tech-
nique, whereby high levels of rejection are induced (to

reduce the output error rate to a minimum)7 in the first
layer and nonlinear transforms used to enable a classifi-
cation to be made in the second layer, is termed 'buck-
passing'.8 Note that the transform must be nonlinear. A
linear transformation is tantamount to using a different
random connection mapping, and it is then most unlikely
that the accuracy of the classification will be improved.

Buck-passing can be extended to the point whereby only
a coarse classification is made in the first layer. In alpha-
numeric recognition examples of the categories could be:
(a) round characters C 0 G Q
(b) double-round characters 8 B S S
(c) vertical centre \ I T J
(d) vertical edges H M W N
ie)
and a discriminator detects each of these groups of charac-
ters. The final classification can then be made in a second
layer, where optimisation can be more extensive owing to
the limited number of possible decisions determined by
the first layer.

7 Case studies

7. / Introduction

In this Section, a range of pattern-recognition problems to
which s.l.n. classifiers can be applied will be examined and
referenced. Two basic approaches can be adopted towards
a specific data set. One can be termed recognition, in which
the aim is to assist or replace a human operator who
processes a data form where well defined patterns or
characteristics exist. The other approach is pattern detec-
tion, where meaningful partition of a data set is sought
through the use of a classifier trained on a representative
subset of data. If partition accuracy exceeds that expected
by chance allocation of categories, the existence of some
characteristic information can be postulated and pattern
recognition processing may be appropriate. A salient
feature of this approach is that the processing is self-evolv-
ing and does not depend on existing theories and prejudices
associated with the interpretation of the data, and therefore
the opportunities of establishing new cause/effect relation-
ships and correlations between measurements and physical/
structural descriptions exist. The results quoted in what
follows are those that were generally obtained after optimi-
sation of structure and training sets. Details may be
obtained from the References. Recognition results never
include testing or training sets.

7.2 Alphanumeric character recognition

One of the original pattern-recognition problems, alpha-
numeric recognition performance figures with an n-tuple
recogniser system, were first published by Bledsoe and
Browning in 19599 using a software simulation. 80%
correct classification was achieved on hand-printed
characters. Subsequent n-tuple experiments by Ullmanns

and Cheung10 on similar data have produced accuracies up
to 90%.

Machine-printed characters provide a more constrained
data set, although the problem is nontrivial owing to the
diversity of fonts and styles and the presence of noise.

An initial performance of 93% correct classification has
been reported in an unoptimised single layer classification
over a data set of 10000 examples from 34 character
categories, and this rises to 97% after optimisation.11 The
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introduction of multilayer techniques gives a further
increase to 98-2%,4 and limited experiments to improve
the second-layer discrimination show that 99% should be
possible.

Fig. 15 illustrates the diversity of data encountered in
the 0 class in these experiments.

7.3 Chemical-pattern recognition

Single-layer network systems were applied to the recog-
nition of mass spectra in the eaily 1970s. Mass spectra are
well defined data, because the presence or absence of
molecular fragments can be ascertained to a high degree of
accuracy. The motivation for the work was based on the
ability of the experienced human spectroscopist to recog-

nise spectra on inspection. Emulation of this behaviour
within a machine was attempted. Ideally, a unique classifi-
cation is required for each spectrum, but in practice a
general classification according to the compound's func-
tional group was made (e.g. l r y alcohols, aldehydes,
diesters etc.). In all, up to 1000 spectra falling into 42
general classes were assessed.12'13 The data represented the
most frequently occurring compounds in a chemical manu-
facturing plant, and it was found that the data could be
partitioned into the 42 categories with an accuracy greater
than 99%, which gave a larger saving in cost over direct
storage at a time when typical prices were £1 per bit. The
dramatic decrease in costs over the past eight years, together
with the ability to obtain a unique identification, make
direct storage more attractive.
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Fig. 15 Examples of digitised machine-printed characters
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Recent research,14 however, has revealed a powerful
facility for the interpretation of spectra of mixtures of
compounds, where a data explosion in terms of possible
spectra precludes direct storage. (There are 500 000 possible
mixtures of any two spectra from the original base of
1000). Furthermore, the problem is more closely related
to the practical environment, in which spectra of pure
samples rarely occur due to contamination, and their use
in manufacturing processes.

To understand the problem fully, the mass spectrum of
a mixture must be considered. The mass spectrum of a
pure compound is normalised such that the largest peak has
an intensity of 100. The fragmentations of molecules occur
in a short period of time (10~10 s) within a mass spec-
trometer, and there is no recombination of radicles. There-
fore, a spectrum of a mixture can be regarded as the
superposition of the spectra of the compounds. This is
valid, however, only when the largest peaks in the individual
spectra are equal. If the relative concentrations of com-
ponents are such that this condition is not fulfilled, the
level of significance of one or other of the spectra is
reduced within the composite spectrum.

A binary pattern derived from the measure of the
presence or absence of a peak above a threshold intensity
at each integer mass value will therefore vary according to
the relative concentrations of the components, and direct
correlation with a library cannot be achieved.

There is a further difficulty in obtaining certified data
pertaining to mixtures to train an sJ.n. pattern recogniser,
which is obviated by deriving the discriminant logic
functions directly from those for the pure components
and thereby eliminating mixture training routines. The
variation in the data owing to concentration differences is
circumvented by the generalisation of the networks. Experi-
ments to date have demonstrated that mass spectra of
mixtures of two components can be classified according to
the functional groups of their components. Over 80000
classifications into 135 data categories have been made,
still remaining within the confines of a manufacturer's
plant. Detection of both components in the mixture can
be as high as 79%, whereas the detection of at least one of
the components can be 98-5%.15 The generalisation of the
networks allow variations of up to 50% in the relative
concentrations of the components without adversely
affecting the overall performance.

7.4 Industrial automation

The need for pattern recognition in industrial automation
is a growing requirement. To this end, a videocamera has
been interfaced with a pattern recognition systemls to
provide an input facility for real data and to enable recog-
nition studies to be carried out.

Two main approaches have been made, using S.1JI.S,
to the problem of industrial automation typified by the
need to recognise and sort components on a conveyor belt.

The first approach is to regard the components as
shapes and select a training set in much the same way as is
done with alphanumerics. The problems of normalising
the data are more difficult in the industrial environment,
and it is clear from the previous Sections that the patterns
(shapes) must be aligned in a predetermined way to mini-
mise Hamming distances between members of the same
class of patterns, and thereby achieve optimum classifi-
cation. The preprocessing must be done electronically
because the moving and rotating of a camera is unaccept-

able. Othogonal shifting can readily be achieved on a
pattern matrix, but rotation is more difficult. It has been
achieved by the use of 'rotated' mappings. The sJ.n. is
trained on a set of shapes aligned in a predetermined
manner, and the test data is input to the recogniser via a
set of mappings, each being related to the mapping used in
training which in effect rotate the input. A classification
is made at each rotation and the final decision made with
reference to all the responses.

Although it would be expected in engineering that the
shapes encountered would be of precise dimensions, the
generalisation of a pattern-recognition system is still required
to circumvent the distortions which can occur in the pre-
processing, as illustrated by the rotation of a bar by
rotation mappings in Fig. 16.

A second approach to industrial automation is recog-
nition through tracking round the edge of an object. An
s.l.n. controls the position of a window, which is trained to
move around the edge of a shape. The system thus possesses
the ability to track around similar shapes, whereby they can
be recognised.17

7.5 Fault diagnosis in digital systems

Encouraging results have been achieved by employing an
s.l.n. to monitor the function of a digital sequential system.

Test points throughout the circuit contribute to the
elements of the input pattern, and the network is trained
when the system is known to be functioning correctly.
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F ig. 16 Use of ro ta tion mappings
The matrices on the right represent the rotation of a digitised
pattern using mappings. The diagrams on the left represent the
physical rotation of the object
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If and when the circuit malfunctions, the outputs of some
or all of the test points give rise to patterns which have not
been seen during training and are outside the generali-
sation area of the s in . and will not be recognised. A
signal can then be output to signify malfunction of the
circuit. Preliminary results indicating 90% detection of
malfunctions have been achieved18 to date.

7.6 Processing of medical records

The processing of medical records is being researched using
s.l.n.s. This problem falls into the category of pattern
detection in the first instance.

The aim is to endeavour to classify abdominal pain in
its many forms from composite patterns representing the
patient's medical history and physical examination upon
admission as an emergency into hospital. Initial findings
of the order of 70% correct diagnosis by the pattern recog-
niser are far in excess of the anticipated by random assign-
ment of class, and suggest that the data is featured.

7.7 Other applications

Two further projects for which experimental results are
not yet available are

(a) Signature verification, which would appear to be
implementable by s.l.n.s. The verifier would only require
one discriminator on which a threshold could be set to
effect a simple acceptable/not-acceptable decision.

(b) Speech recognition, a traditional subject for pattern
recognition which has not yet reached fruition. S.LN.
systems would be confined to small single-word vocabu-
laries. The simplest system which has a high feasibility is
an aid to speech therapy, whereby a recogniser could be
set up for patient use to detect single words or syllables.
Here, the accuracy requirements are not unduly high.

8 Concluding comments

This paper is intended to provide a guide to sJ.n. pattern
recognisers, their behaviour and operation, and the types
of problems to which they can be applied.

The technique can be used as a research tool because
the recognition mechanism does not rely on any established
theory of analysing of the data it is classifying. The oppor-
tunity for establishing new or hitherto unknown relation-
ships between the measurements in the real world on which
the patterns are in some way based and the overall data
description exists. The technique can be used to detect
patterns or recognise known established patterns.

The case studies pertain to specific research assignments,
but the range of problems to which s.l.n.s can be applied

is much greater. Other examples might include prediction
of pharmacological activity of drugs from mass spectra,
disease prediction from personal records, vehicle monitor
ing and in fact any data form which can be coded in a
binary format can be assessed with SLNs.

Finally, the physical implementation of sln.s is very
flexible, varying from a conventional computer simulation,
through microcomputers to hardware versions using r.a.m.s
and r.ojn.s.
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