SHORT NOTES

Experiments with the n-tuple Method
of Pattern Recognition

J. R. ULLMANN

Abstract—The n-tuple method of pattern recognition has been
simulated on a somewhat larger and more comprehensive scale than
previously reported. The nonweighted version has been found to
work better than the maximum likelihood weighted version, and to
achieve about 93 percent successful recognition of unconstrained
hand-printed numerals, but at the cost of about 42 million bits of
storage.

Index Terms—Computer simulation, handprinted numerals, non-
linear decision-making, n-tuple method, pattern recognition, statis-
tical approximation.

INTRODUCTION

The n-tuple method of pattern recognition was intro-
duced by Bledsoe and Browning [3], and has been
described more formally by Steck [6]. Simulation of the
maximum likelihood version has been reported by
Bledsoe and Bisson [2], and Chow [4] and Roy and
Sherman [7] have pointed out that this is a method of
approximating a higher order distribution by a product
of lower order distributions. So one might expect that
the larger the sample size (the value of #), the better the
approximation, and the lower the error rate of the sys-
tem. A purpose of the present work was to investigate
this suggestion, which seemed sufficiently fundamental
to deserve experimental attention.

EXPERIMENTAL DATA

Six-hundred and fifty different subjects each wrote
a set of ten numerals in ink or ball point in pre-
printed boxes on standard paper. They were told: “Your
best writing is not required but use the same standard
that you would use if you were writing the post town
part of an address.”

The characters were binarized into a 22-column by
30-row array by means of a flying spot scanner which
did not have automatic centering or size-normalizing
facilities. So the characters were centered and roughly
size-normalized by a human operator. But there was no
normalization of height-to-width ratio or orientation,
and the characters were used directly, without line width
standardization, noise reduction, or any other pre-
processing.

RECOGNITION EXPERIMENTS
A. Performance Versus n

n is the number of pattern element locations consti-
tuting an n-tuple. The purpose of this experiment was
to find how performance at optimal »n varied with the
size of the “training” or “design” set.

Using a training set of ten characters per class,
Bledsoe and Browning’s original nonweighted method
[3] was applied to the ten numerals, using in turn vari-
ous values of #. The results form the bottom curve in
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Fig. 1. Recognition performance versus n for nonweighted method.
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Fig. 2. Recognition performance versus z for maximum

likelihood weighted method.

Fig. 1. The vertical axes of Figs. 1, 2, and 3 are the
percentages of characters correctly recognized, that is,
neither substituted nor rejected. The other curves in
Fig. 1 are the results of this experiment repeated, re-
spectively, with 20, 70, 200, and 630 patterns per class
in the training set instead of 10.

Fig. 2 gives results of simulation of the maximum
likelihood weighted #-tuple method, again with 10, 20,
70, 200, and 630 patterns per class in the training set,
and various values of n. The actual #n-tuples, training
set, and test set used in any run with the maximum likeli-
hood method were the same as those used in the cor-
responding run with the primitive nonweighted method.
For example, with a training set of 200 per class and
n=12, the same training set, test set, and m-tuples
were used with the maximum likelihood weighted and
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Fig. 3. Recognition performance versus number of 14-tuples for
nonweighted method.

nonweighted methods. (Eight bits per weight were used
in the simulation of the maximum likelihood method.)
All these experiments used 40 randomly chosen #-
tuples. The test set always consisted of 20 patterns per
class, the patterns used for testing being different to
those used for training. The test set size was sufficient
to reveal the flattening out trend of the locus of the
maxima, in Figs. 1 and 2, as the size of the training set
was increased. For Bayesian pattern classifiers, an
analogous effect has been predicted by Hughes [5], and
it is interesting that the family of curves in Fig. 1 fit his
quantitative predictions better than those in Fig. 2.

B. Performance of Nonweighted Method
Versus Number of n-Tuples

Fig. 3 is a plot of performance versus number of
random n-tuples, with #=14 and training and testing
sets of 600 and 50 per class, respectively. This experi-
ment, like all the previous ones, was carried out with
the ten numerals, and again the patterns used for test-
ing were different from those used for training. Fig. 3 was
obtained with Bledsoe and Browning’'s original non-
weighted #n-tuple method. (We could not afford to run
the maximum likelihood version on this scale.)

SoME EXPERIMENTAL STATISTICS OF
n-TUPLE STATES

On a given n-tuple, different states generally occur
different numbers of times in the training set of a given
class. For each (n-tuple, class) pair, we determined these
numbers of occurrences, and obtained from them a
histogram showing the numbers of states occurring
once, twice, and so on. The numbers of states occurring
once in all the (n-tuple, class) histograms were added
together to yield the leftmost point in Fig. 4. The num-
bers of states occurring twice were added together to
yield the second-from-left point in Fig. 4, and so on.
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Fig. 4. Histogram of counts of numbers of occurrences
of 6-tuple states.
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Fig. 5. Histogram of counts of numbers of occurrences
of 18-tuple states.

Fig. 4 was obtained from the ten numerals with 40
6-tuples, using a training set of 650 per class. The verti-
cal scale is logarithmic, to fit it on the page, and the
horizontal scale is truncated at 120 occurrences. For
instance, the leftmost point in Fig. 4 signifies that the
number of 6-tuple states which occur only once is
3002 (out of a possible 25 600). Fig. 5 differs from Fig. 4
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only in that it was obtained with #» =18 instead of #=6.

For each n-tuple we obtained the number of different
states occurring in the training set of each class at least
once. This number was averaged over all (u-tuple,
class) pairs, working with 40 random #-tuples, 630
patterns per class in the training set, and various values
of n. Fig. 6 is a plot of the average number of different
states per nm-tuple versus #, which may be of interest
from the point of view of associative memory, as well as
giving together with Figs. 4 and 5 a quantitative indi-
cation of the diversity and quality of our experimental
data.

CONCLUDING REMARKS
A. Weakness of Maximum Likelthood Method

In a run with 40 n-tuples and a training set of 650
patterns per class, altogether 40X10X650=260 000
n-tuple states occurred during training. Of these more
than half (actually 134 369, c.f. Fig. 5) only occurred
once per n-tuple per class, when #»=18. One occurrence
is of course insufficient to allow an adequate estimation
of the class membership conditional probability of an
n-tuple state, and this indicates and exemplifies the
cause of weakness of the maximum likelihood #-tuple
method.

B. Bits per Weight when n=1

Extrapolating from Fig. 2 to the case where n =1, we
see that beyond a certain size, any further increase in
the size of the training set will cause a deterioration of
performance. It may be of interest to relate this to a
previous finding, reported elsewhere in an elementary
paper [8], that with n=1 and a fixed sized training
set, beyond a certain number, a further increase in the
number of bits per weight caused a deterioration of
performance.

C. Pattern Probability Distributions

Figs. 4 and S suggest a trend such that, for larger #,
the occurrence more than once of any state of an #-
tuple in any class would become rare. This confirms the
impression that a machine recognizing unconstrained
hand-printed characters must continually deal with new
characters which have never occurred before. Instead of
having to recognize a limited repertoire of patterns,
each of them occurring quite frequently, the machine
has to recognize a virtually unlimited repertoire of
patterns, most of which occur very infrequently. This is
why, as Nagy [1] has said, “ ... In practice the train-
ing set is always too small.” The training set is never
sufficiently representative of the virtually unlimited
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Fig. 6. Average number of difference states per
n-tuple per class versus n.

repertoire of patterns to be recognized. This underlies
the diminishing returns trend of the locus of the maxima
in Fig. 1, which suggests that however big the training
set, there will always in practice be a pool of rarely
occurring patterns which the system will fail to recog-
nize correctly.

This is of course a drastic weakness of the n-tuple
method. But one should also consider to what extent
the same weakness is manifestin all other known recog-
nition systems, even those which are intuitively de-
signed.
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