
ON THE REPRESENTATION OF
FUNCTIONS OF SEVERAL VARIABLES AS
A SUPERPOSITION OF FUNCTIONS OF A
SMALLER NUMBER OF VARIABLES�

In this paper we wish to give an account of several recent papers by Moscow
mathematicians devoted to the question in the title of this paper. §1 contains
the definition of superposition of functions and the statement of Hilbert’s 13th
problem relating to superpositions. §2 is devoted to superpositions of smooth
functions. In §3 we present several very recent papers, in spite of the fact
that the content of that section is now perhaps only of historical interest.
The principal topic there is the description given by Kronrod of “the tree of
components of a function of several variables”, which is a concept whose pop-
ularization would seem to be very desirable (although the connection between
this concept and the problems considered in our paper has proved to be less
close than it originally appeared). The reader interested only in the strongest
(and, moreover, the simplest in its method of proof) result relating to the
representation of continuous functions of several variables as superpositions
of functions of a smaller number of variables can, after looking at the intro-
ductory §1 go straight to §4, missing out §2–3. In addition, the smaller print
in this paper means, as usual, that the corresponding material is auxiliary
and omitting it will not affect the reader’s understanding of what follows.

1. One of the problems of the famous problem book by Pólya and Szegö1

begins as follows:
“Do functions of three variables exist at all?”
The meaning of this question is as follows. Suppose that we have two

functions of two variables u(x, y) and v(y, z). We now consider a new func-
tion of two variables w(u, v) and substitute our functions in place of u and
v. Then the function w[u(x, y), v(y, z)] now depends on the three variables
x, y and z. Thus, by substituting in place of the arguments u and v of the
function of two variables w(u, v) the new functions of two variables we obtain

� Mat. Prosveshchenie 3, 41–61 (1958)
1 Pólya, G., Szegö, G.: Problems and theorems of analysis, part I. Moscow, Section

II, Problems 119 and 119a.
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2 V.I. Arnol’d

a function of three variables (one can even obtain a function of four variables
w[u(x, y), v(z, t)]; we call this function a single superposition formed from the
functions of two variables u, v and w. It is clear that all the properties of this
function are determined by our three functions of two variables. Pólya and
Szegö’s question (which, however, was not formulated in their book in all its
breadth) is as follows: can all functions of three variables be reduced to such
a superposition (or a somewhat more complicated superposition) of functions
of two variables, or do there in fact exist functions that are “essentially of
three variables” which cannot be reduced to functions of two variables.

Note first of all that if one can also use discontinuous functions, then
the answer to Pólya and Szegö’s question is clearly negative.2 Thus the only
question of interest is whether or not all continuous functions of three variables
are representable as superpositions of continuous functions of two variables.

In fact, a discontinuous function u = φ(x, y) enables one to map the (x, y) plane
bijectively onto the line u [the fact that the set of pairs (x, y) of numbers and the
set of numbers u have the same cardinality means precisely that these sets can be
bijectively mapped onto each other]. We now choose any function of three variables
F (x, y, z) and define the function ψ(u, z) by the equality

ψ[φ(x, y), z] = F (x, y, z) ;

this is possible because each pair of values (x, y) corresponds to a unique value
u = φ(x, y) and we can take ψ(u, z) to be equal to the corresponding value of
F (x, y, z).3

For the simplest continuous functions of three variables it is not hard to
find representations of them as superpositions of continuous functions of two
variables. For example, the function

F (x, y, z) = xy + yz

can be represented in the form

F = w[u(x, y), v(y, z)] ,

where
w(u, v) = u + v, u(x, y) = x + y, v(y, z) = yz .

For the somewhat more complicated function

F (x, y, z) = xy + yz + zx

it is already impossible to represent it as a simple superposition of functions of
two variables;4 However, it is possible to represent it as a double superposition
of functions of two variables, that is, in the form
2 See the solution of problem 119 in Pólya and Szegö’s book.
3 It suffices to require that no two distinct pairs (x, y) correspond to the same value

u = φ(x, y); here, for values ū not belonging to the range of the function φ(x, y)
the function ψ(ū, z) can be defined arbitrarily.

4 See Pólya and Szegö’s book.
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On the representation of functions of several variables 3

w{u[p(x, y), q(y, z)], v[r(y, z), s(z, x]} ;

it suffices merely to set
w(u, v) = u + v

and

u(p, q) = p + q, p(x, y) = xy, q(y, z) = yz, v(r, s) = s, s(z, x) = zx .

In general, all entire rational functions of several variables can by definition
be obtained from their arguments by means of a multiple application of the
operations of addition and multiplication, that is, they are the result of a
multiple superposition of functions of not more than two variables

φ(x, y) = x + y, ψ(x, y) = xy, f(x) = x + a, g(x) = ax ,

that is, the result of a multiple substitution of the arguments of these functions
by more complex expressions formed by means of the same functions. By
analogy with this, the rational functions are obtained as superpositions of six
of the simplest functions of not more than two variables:

φ(x, y) = x + y, ψ(x, y) = xy, χ(x, y) =
x

y
,

f(x) = x + a, g(x) = ax, h(x) =
a

x
.

If a segment of x is a function of known segments a, b, c, . . ., then in order to be
able to construct it using a ruler and compasses, it is necessary and sufficient
that this function be homogeneous of the first dimension and that it be a
superposition of these same simplest functions and the function y =

√
x. All

the elementary functions can be represented as superpositions obtained via
those same functions and in addition certain special functions of one variable,
such as

n
√

x, ex, ln(x), sin(x), and others.

The simplest examples of algebraic functions going outside the limits of the
class of elementary functions are provided by the roots of algebraic equations;
the arguments of these functions are the values of the coefficients of the equa-
tions. But the roots of equations of the first, second, third and fourth degrees
are, as is well known, elementary functions of the coefficients obtained as the
result of superposition of those same functions of two variables, the sum, the
difference, the product and the quotient, and (for equations of these 2nd–4th
degrees) functions of the single variable n

√
x (here n = 2 in the case of a

quadratic equation and can be equal to 2 or 3 in the case of equations of
the 3rd and 4th degrees). For equations of the 5th and higher degrees such a
representation is not possible in general; this was shown by Abel. However,
the roots of equations of the 5th and 6th degrees can be expressed in terms of
the coefficients by means of superpositions of certain more complex analytic
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4 V.I. Arnol’d

functions of two variables; these representations can be used for the practical
calculation of the roots of equations; in particular for nomographic solution
of equations.

Attempts to obtain a representation of roots of 7th-degree equations as a
superposition of suitable functions have not been crowned with success. Using
algebraic transformations the general 7th-degree equation

x7 + a1x
6 + a2x

5 + a1x
6 + a3x

4 + a4x
3 + a6x + a7 = 0

can be reduced to the form

x7 + ax3 + bx2 + cx + d = 0

where a, b and c are elementary (algebraic) functions of the coefficients
a1, a2, . . . , a7 of the original equation, therefore they are expressed in terms
of these coefficients as superpositions composed of simple functions of two
variables. Thus, the question of the possibility of representing the roots of a
7th-degree equation by superpositions of functions of two variables reduces to
the problem of finding such a representation for the special function of three
variables a, b, c of the roots of the equation written above.

To date it is not known whether this function of three variables (which is
easily seen to be analytic) can be represented as a superposition of analytic
functions of two variables. Nevertheless, Hilbert managed to show that certain
analytic functions of three variables are not such superpositions.

Hilbert’s result is in connection with the following situation. If a function of
three variables is a superposition of functions of two variables, then among the
partial derivatives of the superposition and the functions of which it is composed
there exist fully determined analytic relations. Therefore if all analytic functions of
three variables are representable in such a form, then the space of coefficients of the
series expansion of the functions of two variables involved in this superposition can
be mapped analytically onto the space of coefficients of the expansion of functions of
three variables; but this is not possible, since the latter space has a greater dimension
(here we are restricted by the definite but large number of first coefficients of the
expansion, that is, the first partial derivatives).

In his lecture at the 1900 International Mathematical Congress held in
Paris the celebrated German mathematician David Hilbert posed 23 prob-
lems awaiting solution.5 The thirteenth of these “Mathematical problems” of
Hilbert’s was as follows:

Can the roots of the equation

x7 + ax3 + bx2 + cx + 1 = 0

be represented as superpositions of continuous functions of two variables ?

5 Hilbert, D.:Mathematische Problemen; Gesammelte Abhandlungen, vol.3, No.17
(1935). [Editor’s note: Translation of this work of Hilbert’s will appear in the next
issues of Mat. Prosveshch.]
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On the representation of functions of several variables 5

Hilbert conjectured that the answer to this question would turn out to
be negative; in that case the more general question of whether all functions
of three variables are superpositions of continuous functions of two variables
would be solved at the same time.

2. The first results touching on Hilbert’s 13th problem were obtained un-
der the assumptions that the superpositions have some special form, for exam-
ple, under conditions restricting the ‘single’ superpositions; they all supported
Hilbert’s conjecture.6 The strongest result here is the result of A.G. Vitushkin
who succeeded in constructing a polynomial such that neither the polynomial
itself nor any function sufficiently close to it (in the sense of uniform conver-
gence) can be decomposed into a simple superposition of continuous functions
of two variables in any region or in any system of coordinates.

Further results are in connection with restrictions imposed on the func-
tions involved in the superposition. As already recalled, Hilbert had noted
earlier that it was impossible to obtain all the analytic functions of three
variables as superpositions of analytic functions of two variables. Important
results in this direction were obtained by Vitushkin,who by using his theory of
multidimensional variations of functions and sets showed that not all l times
continuously differentiable functions of three variables can be represented as
superpositions of

[
2
3 l

]
times7 differentiable functtons of two variables all of

whose derivatives of order
[
2
3 l

]
satisfy Lipschitz condititons.8

In Kolmogorov’s interpretation9 Vitushkin’s results are connected with
the difference of the ‘dimensions’ of the corresponding function spaces. As
Pontryagin and Shnirel’man had already proved in 1932, the dimension of
a compact metric space (for example, a cube in Euclidean space) can be
defined in the following way. We cover our space with ‘small’ sets of diameter
ε. Clearly, the number N(ε) of sets required to do this will increase as ε
gets smaller; here it can be shown that N(ε) increases as 1

εn , where n is the

6 The simplest examples of this kind already appear in the book of Pólya and
Szegö; a number of other examples (due to A.Ya. Dubovitskĭı and R.A. Minlos)
are given in the book:Vitushkin, A.G.: On multidimensional variations. Moscow
(1955).

7 Here the square brackets indicate the integer part.
8 It also follows from this result that there exists in a three-dimensional cube

an analytic function (of three variables) satisfying a Lipschitz condition with
Lipschitz constant 1 such that no functions close to it (including the function
itself) can be represented as an s-fold superposition of two variables satisfying a
Lipschitz condition with some constant L1 (s and L1 are given in advance), and
there exists an unbounded differentiable function satisfying a Lipschitz condition
with Lipschitz constant 1 which is not a superposition of functions of two variables
satisfying a Lipschitz condition. See Vitushkin’s book referred to in footnote 6.

9 Kolmogorov, A.N.: Estimates of the minimum number of elements of ε-nets in
various function classes and their application to the question of the representation
of functions of several variables as superpositions of functions of a smaller number
of variables. Usp. Mat. Nauk 10, No.1, 192–195 (19??).
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6 V.I. Arnol’d

dimension of the space; thus the dimension n can be defined as the limit

lim inf
ε→0

[
− log N(ε)

log ε

]
.

For infinite-dimensional spaces this limit is equal to infinity. However, in
a number of cases the number N(ε) can increase as the function 1 : exp(zk),
where k is some constant which one can provisionally call the “dimension of
the infinite-dimensional space”. Thus for infinite-dimensional spaces the role
of dimension is played by the limit10

lim inf
ε→0

[
− log log N(ε)

log ε

]
.

For the space of functions f(x1, x2, . . . , xn) of n arguments defined on an
n-cube, where the functions are l times differentiable in all their arguments
and are such that all the partial derivatives of order l satisfy a Hölder condition
of order α,11 the above-defined dimension can be considered to be equal to

n

l + α
.

Hence it follows, in particular, that the set of l times differentiable functions
of three arguments is in a certain sense ‘richer in its elements’ than the set
of

[
2
3 l

]
times differentiable functions of two arguments satisfying a Lipschitz

condition (that is, a Hölder condition of order 1); hence it follows that it is
impossible to express all the first functions as superpositions of the last ones.

10 Instead of the number N(ε) of sets of diameter ε completely covering the (com-
pact) space one could choose the number M(ε) of points of an ε-net, that is, the
smallest number of points such that each point of the space is at a distance of
at most ε from at least one of the chosen points, or the maximum number K(ε)
of points such that the distance between any two of them is greater than ε. It is
curious to note that the same definition of the dimension of function spaces was
arrived at (almost at the same time) by Shannon [Shannon, C.E.: The mathe-
matical theory of communication, Urbana (1949); in the Russian translation of
Shannon’s work (in the collection “Theory of transmission of electric signals in
the presence of noise”. Inost. Lit., Moscow (1953)) the corresponding place was
omitted for some reason] which started from arguments relating to “the theory of
information”: in the space of the transmitted information K(ε) is the maximum
number of ‘ε-different signals’ that cannot be confused by the receiver provided
that the distortion of the information in the transmitter does not exceed ε.

11 A function f(x) satisfies a Hölder condition of order α if there exists a number
C such that for each x1, x2 in the domain of the function

|f(x1) − f(x2)| < C|x1 − x2|2 .

A function of several variables is said to satisfy a Hölder condition if it satisfies
this condition as a function of each of its variables.
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On the representation of functions of several variables 7

3. However, in the domain of all continuous functions Hilbert’s conjecture
has proved to be false.

In the spring of 1956 Kolmogorov succeeded in showing that every contin-
uous function of n variables (n � 4) defined on an n-cube is a superposition
of continuous functions of the three variables.12 The main tool in his con-
struction is the one-dimensional tree of components of level sets of a function
introduced by Kronrod.13

Fig. 1. Fig. 2.

By the level set of a function we mean the collection of all points in the
domain of the function at which the function takes some fixed value. For
example, if the function of a point of part of the land surface represents the
height at this point above sea level, then the level set will consist of all points
of the locality having the same height above sea level; in topography these
level sets are called contour lines. In Figs. 1 and 2 we have depicted simple
functions of two variables and the ‘maps’ of the level sets of these functions
(that is, a partition of the squares on which the functions are defined into
12 Kolmogorov, A.N.: On the representation of continuous functions of several vari-

ables by superpositions of continuous functions of a smaller number of variables.
Dokl. Akad. Nauk SSSR 108, 179–182(1956); English transl. in Amer. Math Soc.
transl. Ser. 2, vol. 17, 369–373 (1961).

13 Kronrod, A.S.: On functions of two variables. Usp. Mat. Nauk 5, No.1, 24–134
(1950).
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8 V.I. Arnol’d

their separate level sets). A level set can consist of a single piece (for example,
all the level sets of the function depicted in Fig. 1 or the 1-level set of the
function depicted in Fig 2; or it may consist of several connected pieces or
components (for example, the 3-level set in Fig. 2 consists of the two pieces
3a and 3b). To study the structure of the set of components of a level set of
a continuous function Kronrod proposed that one use the notion of a tree.

In topology, by a tree we mean a curve (‘one-dimensional locally connected
continuum’) not containing any closed arcs (‘homeomorphic images of a cir-
cle’). A tree can be represented in the following way. From the base of the
‘trunk’ of the tree there emerge ‘branches’ at the ‘branch points’ (the number
of branch points can be denumerable and from each such point there can be
denumerably many branches coming out of it); in turn, from each branch there
can emerge new branches (we can call them ‘twigs’), and so on (Fig. 3). In
general a tree can be somewhat complex; however, as the celebrated Austrian
(now American) mathematician Karl Menger showed, there exists in the plane
a universal tree such that any other tree is a part of it (more precisely, such
that any tree is homeomorphic to a part of the universal tree).14

Fig. 3.

14 Menger, K.: Kurventheorie, Ch. X. Berlin–Leipzig (1932).
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On the representation of functions of several variables 9

Kronrod showed that the set of components of all level sets of a continuous
function of several variables is naturally representable as a tree.

Thus, for example, the set of components of the level set of the functions
depicted in Fig. 1 corresponds to a segment (the set of level 1 corresponds
to the point 1 of this segment and the set of level 2 corresponds to the point
2); the set of components of the level sets of the somewhat more complicated
function depicted in Fig. 2 corresponds to a Y -shaped tree (the set of level 1
corresponds to point 1 of the tree, the “figure 8” set of level 2 corresponds to
the branch point 2: the components 3a and 3b of the set of level 3 correspond
to the points 3a and 3b of the tree).

In more precise terms, one can introduce on the set of components a natural
topology after which it becomes a topological space T which Kronrod called the
one-dimensional tree of the function.

A study of the structure of this space can be carried out in the following way.
First, T is the continuous image of an n-dimensional cube and therefore T is a locally
connected continuum. Second, under the map d of the cube onto T the inverse image
of each point of T is a component, that is, a closed connected set. We call such maps
monotone.15 Visually they can be represented as a contraction without gluing: for
example, the projection of a square onto one of its sides is a monotone map, while
the formation of a cylinder from a square by gluing is not a monotone map. One
can prove that simple connectedness is preserved under a monotone map; therefore
T , which is the monotone image of a cube, is a simply connected set. Finally, under
a mapping of T onto a segment different components of the same level are taken to
each point of the segment, that is, a zero-dimensional subset of T (not containing
connected pieces) and, as is well known, under a map with zero-dimensional inverse
images the dimension is not lowered. Therefore T is one-dimensional. Thus T is a
one-dimensional and simply connected locally connected continuum. Hence T is a
tree.

We can regard each function f(x1, x2, . . . , xn) as a superposition of two
maps: 1) a map d(x1, x2, . . . , xn) of the domain of definition onto the tree of
components of the level sets of f ; under the map d the image of each point
of the domain of definition is the component of the level set containing this
point; 2) the map f(d) of the set of components onto the segment that is the
range of the function f(x1, x2, . . . , xn). Under this map all the components of
the level set f(x1, x2, . . . , xn) = t are taken to the point t.

Thus, for example, the function of two variables f(x, y) = xy defined on
the square −1 � x � 1,−1 � y � 1 can be represented as a superposition of
two maps: the map of the square onto the X-shaped tree of the components of
the level sets of this function (Fig. 4) [under which all the points of the ‘cross’
xy = 0 or one of the branches of the hyperbola xy = const are taken to a single
point of the tree], and the map of this tree onto the segment −1 � t � 1 [under
which two points of the tree corresponding to branches of the same hyperbola
(or one branch point corresponding to the cross xy = 0)are taken to the same
point of the segment.

15 Editor’s note: Since (non-strictly) monotone continuous functions of a single vari-
able have this property [see the remark by Keldysh on p.261 of the current issue].
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10 V.I. Arnol’d

Fig. 4.

Thus, each function f(x1, x2, . . . , xn) of n variables can be represented as
a superposition of two new functions: the function d(x1, x2, . . . , xn), which
defines a map of the domain of definition of f(x1, x2, . . . , xn) onto the tree of
components of the level sets of this function, and f(d), which is the map of the
tree onto a segment (since each point d of the tree belonging to a given level
set corresponds to a single value of f(d) of the function f . Since a tree can be
embedded in a plane, the points of this plane can be defined by the coordinates
u(d) and v(d); this means that the second map f(d) can be regarded as a func-
tion of two variables f(u, v), while the first map d(x1, x2, . . . , xn) can be re-
garded as two functions of n variables u(x1, x2, . . . , xn) and v(x1, x2, . . . , xn).

Kolmogorov managed to represent each function of n variables as a sum
of n + 1 functions each of which has standard (that is, not dependent on the
function in question) components of the level sets:

f(x1, x2, . . . , xn) =
n+1∑
r=1

fr(x1, x2, . . . , xn) ;

thus, each function of two variables f(x, y) can be represented as a function
of three functions f1(x, y), f2(x, y) and f3(x, y) where the ‘maps’ of the level
sets of these three functions do not depend on f , but have some predetermined
form, as illustrated in Fig. 5. Here for each function fr(x1, x2, . . . , xn) (r =
1, 2, . . . , n+1) the map dr(x1, x2, . . . , xn) of the domain of definition onto the
tree will not depend on the function f ; on the other hand, the second map
fr(d) of the tree onto the range of fr does depend on f .

We now regard the function of n variables f(x1, x2, . . . , xn) as a one-
parameter (depending on the parameter xn!) family of functions of n − 1
variables:

f(x1, x2, . . . , xn) = fxn
(x1, x2, . . . , xn−1) .

C1 B1

B2

C2

A

C1
C2

B1
B2

A

' '

'

B

A

C
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On the representation of functions of several variables 11

Fig. 5.

In this case we have

f(x1, x2, . . . , xn) = fxn
(x1, x2, . . . , xn−1)

=
n+1∑
r=1

fr
xn

(x1, x2, . . . , xn−1)

=
n+1∑
r=1

fr
xn

(dr(x1, x2, . . . , xn−1))

=
n+1∑
r=1

fr(dr(x1, x2, . . . , xn−1), xn) , (1)

where dr(x1, x2, . . . , xn−1) is a map of the domain of definition of the function
fr

xn
(x1, x2, . . . , xn−1) which, as we have said, is independent of the value of

the parameter xn (the components of the level sets of the function fr are
standard!) and fr

xn
(dr) = fr(dr, xn) is the map of the point of the ‘standard

tree’ dr onto the range of fr (which now depends on xn). By introducing the
system of coordinates (ur, vr) onto the plane of the tree dr we obtain:

f(x1, x2, . . . , xn) =
n∑

r=1

fr(ur(x1, x2, . . . , xn−1), vr(x1, x2, . . . , xn−1) , xn) ; (2)
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12 V.I. Arnol’d

in other words, we have a representation of an arbitrary function f of n
variables as a sum of n functions each of which can be represented as a
superposition of a function of three variables fr(ur, vr, xn) and two functions
ur(x1, x2, . . . , xn−1) and vr(x1, x2, . . . xn−1) of n − 1 variables. In the case
when n > 3 we can apply the same process to the functions ur and vr of
n − 1 variables, so that we can eventually represent a function of n variables
f(x1, x2, . . . , xn) as a superposition of functions of three variables. Thus, the
function f(x1, x2, x3, x4) can now be represented in the form

f(x1, x2, x3, x4) =
4∑

r=1

fr(ur(x1, x2, x3), vr(x1, x2, x3), x4) ; (2a)

[we recall once more that the function of four variables f = f1+f2+f3+f4 can
be obtained as a superposition consisting of a single function of two variables
φ(f1, f2) = f1 + f2]. For n = 3 we obtain in this way only the representation

f(x, y, z) =
3∑

r=1

fr(dr(x, y) z) , (3)

Fig. 6.

where dr(x, y) is a map of the square (x, y) onto the tree (which can be defined
by two functions of two variables) and the fr(dr, z) are defined on the set of
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On the representation of functions of several variables 13

pairs (dr, z) where z ranges over the segment and dr ranges over the tree, that
is, functions of three variables that can, however, be defined on some special
two-dimensional set, which is the direct product of the tree and the segment
(see Fig. 6).

Recently it became clear16 that the results of Kolmogorov can be improved:
any continuous function of n variables can be represented as a sum of 3n
functions each of which can be represented as a superposition obtained by
substituting in the function of two variables in place of one of the arguments
the function of n − 1 variables.

The proof of this result is based on the fact that the trees dr featuring above
can be located in a three-dimensional cube (u, v, w) so that each function
defined on any of them can be decomposed into a sum of three functions
depending only on one of the coordinates

fr(dr) = φr(ur) + ψr(vr) + χr(wr) . (4)

Hence from (1) we obtain:

f(x1, x2, . . . , xn) =
n∑

r=1

fr
xn

(dr(x1, x2, . . . , xn))

=
n∑

r=1

[φr
xn

(ur(x1, x2, . . . , xn−1)) + ψr
xn

(vr(x1, x2, . . . , xn−1))

+χr
xn

(wr(x1, x2, . . . , xn−1))

=
n∑

r=1

[φr(ur(x1, x2, . . . , xn−1), xn) + ψr(vr(x1, x2, . . . , xn−1), xn)

+χr(wr(x1, x2, . . . , xn−1), xn) .

In particular, as applied to functions of three variables we obtain instead of
(3):

f(x, y, z) =
3∑

r=1

[φr(ur(x, y), z) + ψr(vr(x, y), z) + χr(wr(x, y), z)] . (5)

Thus, each continuous function of three variables can be represented as a sum
of 9 functions each of which is a single superposition of functions of two
variables. This then is the answer to the question posed by Hilbert.

In the proof of the decomposition (4) an essential role is played by the fact
that in Kolmogorov’s construction one can, as it turns out, avoid only trees having
exceptional branch points of the third order (that is, points at which a single branch
emerges from the main ‘trunk’). Next it is easy to see that the simplest ‘Y-shaped’
tree can be arranged in the square (u, v) so that any function f(u, v) defined on it

16 Arnold, V.I.: On functions of three variables. Dokl. Akad. Nauk SSSR 114, 679–
681 (1957).
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14 V.I. Arnol’d

can be represented as the sum of two functions of a single variable: in fact, if in
Fig. 7a we define arbitrarily the function φ(u) on the interval

`
0, 1

2

´
, then we can

define the function ψ(v) on the interval
`
0, 1

2

´
since the sum φ(u)+ψ(v) on OA of the

tree coincides with f(u, v); next, we define the function ψ(v) on the interval
`

1
2
, 1

´

so that the sum of φ(u)+ψ(v) on the interval AB of the tree coincides with f(u, v);
finally, we can define φ(u) on the interval

`
1
2
, 1

´
so that the sum φ(u) + ψ(v) on

the interval AC of the tree coincides with f(u, v); thus the function f(u, v) defined
on the tree can be represented as the sum φ(u) + ψ(v). If the tree has two branch
points, that is, it has the form depicted in Fig. 7b, then the function f(u, v) defined
on it can also be represented as a sum φ(u) + ψ(v) ; we merely need to start from
the definitions of the functions φ(u) and ψ(v) on the interval

`
3
4
, 1

´
, assuming that

on the interval DC of the tree the sum φ(u) + ψ(v) coincides with f(u, v), and
then define the functions φ(u) and ψ(v) in the same way as before, so that the sum
φ(u) + ψ(v) on the entire tree coincides with the function f(u, v). In the same way,
any function defined on a tree with finitely many third-order branch points can be
represented as a sum of two functions of one variable. For functions defined on a tree
with infinitely many branch points, the above procedure fails; nevertheless, such a
tree can be located in a three-dimensional cube such that a function defined on it can
be represented as a sum of three functions depending on the separate coordinates.

Fig. 7a. Fig. 7b.

It turns out that the complicated constructions that we have been talking
about are superfluous for obtaining the final result. In the next section we
give a much more direct route enabling one to obtain stronger theorems.

4. The above discussion enables one to answer in the negative the question
posed by Pólya and Szegö whether there exist functions of three variables;
more precisely this means that all continuous functions of three variables can
be reduced to superpositions of continuous functions of two variables and all

y
B C B C

y

A A

D

a) b)

1

1
2

0 1
2

1

1
2

3
4

1

0 13
4

1
2

x
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On the representation of functions of several variables 15

the properties of a function of three variables f(x1, x2, x3) are completely
determined by certain functions of two variables, namely, the nine functions
ur, vr, wr(r = 1, 2, 3) and the nine functions φr, ψr, χr (r = 1, 2, 3) featuring
in the representation (5). It is now natural to pose the question: do there exist
functions of two variables ?

The precise meaning of the latter question is as follows. A superposition

F [f1(f2(. . . fn−1(fn))) . . .]

of any number of functions of one variable is, of course, a function of one
variable and one cannot obtain functions of more than one variable in this
way. However, if we add to our supply of functions of one variable just one
‘standard’ function of two variables, say, the sum

g(x, y) = x + y,

then superpositions composed of g(x, y) and functions of one variable can now
be functions of any number of variables; thus, for example, the (n − 1)-fold
superposition of the function g

g(g(g . . . g(g(x1, x2), x3), . . . , xn−1), xn) = x1 + x2 + . . . + xn−1 + xn

is a function of n variables. Here there arises the question: can all continuous
functions of two or more variables be represented as superpositions of this
kind ? This is the question we have in mind when we ask whether there exist
(‘artificial’) functions of two variables. [More precisely, here we could ask: is
our supply of functions of two variables essentially exhausted by one such
function g(x, y) = x + y?]

If we restrict ourselves to the simplest representations of functions of two
variables as a superposition of the function g(x, y) and continuous functions
of one variable, then the answer to the question of the possibility of obtaining
all functions of two variables will be negative; thus, one can show by quite
elementary means that the set of functions defined on a square that are rep-
resentable in the form f [φ(x) + ψ(y)] (f, φ, ψ are continuous functions of one
variable) not only fails to coincide with the set of all continuous functions,
but is even nowhere dense and non-closed.17 On the other hand, Kolmogorov
had proved even before he had obtained the representation (2) that any con-
tinuous function of n variables can be approximated to within any degree of
accuracy by a superposition of continuous functions of one variable and the
sum g = x + y; thus, for example, any function f(x, y) of two variables can
be approximated arbitrarily closely by an expression

P1(x) · Q[R1(x) + y] + P2(x) · Q[R2(x) + y] ,

17 See Arnold, V.I.: On the representation of functions of two variables in the form
χ[φ(x) + ψ(y)]. Usp. Mat. Nauk 12, No.2, 119–121 (1957).
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16 V.I. Arnol’d

where P1(x), P2(x);R1(x), R2(x);Q(u) are specially chosen polynomials of one
variable.18

In more recent times, in his attempts to simplify the methods by which he
had obtained the representations (2) and (5), Kolmogorov turned his attention
to more elementary considerations that led him to the above result. Along
these lines he succeeded in proving by extraordinary elementary and elegant
means that each continuous function of n variables defined on the unit cube
of n-dimensional space En can be represented in the form

f(x1, x2, . . . , xn) =
2n+1∑
r=1

hq

[
n∑

p=1

φp
q(xp)

]
, (6)

where the hq(u) are continuous and the φq
p(xp) are, in fact, standard, that

is, they do not depend on the choice of the function f ; in particular, each
continuous function of two variables can be represented in the form

f(x, y) =
5∑

q=1

hq[φq(x) + ψq(y)]. (6a)

For n = 3 it follows from (6) that

f(x, y, z) =
7∑

q=1

hq[φq(x) + ψq(y) + χq(z)]] =
7∑

q=1

Fq[gq(x, y)z] ,

where we have set

Fq(u, z) = hq[u + χq(z)], gq(x, y) = φq(x) + ψq(y) .

This last formula is even stronger than (5), since here the function of three
variables f(x, y, z) is representable in the form of seven (and not nine, as in (5))
terms that are single superpositions of functions of two variables; here these
functions of two variables themselves have a special simple structure, and the
inner function gq(x, y) (and the functions χq(z) occurring in the definition of
Fq(u, z)) are, moreover, standard [so that all the properties of the functions
f(x, y, z) are completely determined by the seven functions of one variable
hq(v)].

The proof of (6) is so simple and beautiful that we shall reproduce it here
almost in its entirety, referring those interested in the details to the author’s
more formalized account.19 Since all the ideas of the proof occur quite clearly
already in the case n = 2, we shall merely talk about the representation (6a)

18 See Kolmogorov’s paper mentioned in the footnote 9 on page 5.
19 See Kolmogorov, A.N.: On the representation of continuous functions of several

variables as superpositions of continuous functions of one variable. Dokl. Akad.
Nauk SSSR 114, 953–956 (1957).
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On the representation of functions of several variables 17

of an arbitrary continuous function f(x, y) of two variables x and y. The
possibility of such a representation is proved in several stages.

1◦. The ‘inner’ functions φq(x) and ψq(y) of the representation (6a) are
completely independent of the function f(x, y) to be decomposed.

Fig. 8.

To define these functions we require certain preliminary constructions. We
consider a ‘town’ consisting of a system of identical ‘blocks’ (non-intersecting
closed squares) separated by narrow ‘streets’ all of the same width; see Fig. 8.
We homothetically reduce our ‘town’ N times; for the centre of the homothety
we can take, for example, the point A1; we obtain a new ‘town’, which we call
‘a town of rank 2’. The ‘town of rank 3’ is obtained in exactly the same way
from the ‘town of rank 2’ by a homothetic reduction with homothety coefficient
1
N : the ‘town of rank 4’ is obtained by a homothetic N -fold reduction by the
‘town of rank 3’, and so on. In general, the ‘town of rank k’ is obtained from
the original ‘town’ (which we call ‘the town of the first rank’) by an Nk-fold
reduction (with the centre of the homothety at A1; incidentally the choice of
the centre of the homothety is of no importance in what follows).

We call the system of ‘towns’ constructed above the 1st system. The ‘town
of the first rank of the qth system’ (q = 2, . . . , 5) is obtained from the ‘town’

A1

A2

A3

A4

A5
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18 V.I. Arnol’d

depicted in Fig. 7† by moving the point A1 to the point Aq by a parallel
translation. It is not difficult to see that the ‘streets’ of the ‘town’ can be
chosen sufficiently narrow so that a point of the plane will be covered by at
least three blocks of our five ‘towns of the first rank’. In the same way, the
‘town of the kth rank’ of the qth system (k = 2, 3, . . . : q = 2, . . . , 5) is obtained
from the ‘town of the kth rank of the first system’ by a parallel translation
taking the point Ak

1 to the point Ak
q , where Ak

1 and Ak
q are obtained from the

points A1 and Aq by a homothety taking the ‘town of the first rank’ of the
first system (that is, our original ‘town’) to the ‘town of the kth rank’ of the
same first system; here each point of the plane will belong to ‘blocks’ of at least
three of the five ‘towns’ of any fixed rank k.

We define the function

Φq(x, y) = φq(x) + ψq(y) (q = 1, 2, . . . , 5)

so that it divides any two ‘blocks’ of each ‘town’ of the system q, that is, so
that the set of values taken by Φq(x, y) on a certain ‘block’ of the ‘town of
kth rank’ (here k is an arbitrary fixed number) of the qth system does not
intersect the set of values taken by Φq(x, y) on any other ‘block’ of the same
‘town’. Here, of course, it suffices to consider the function Φq(x, y) on the unit
square (and not on the entire plane).

In order that the function Φq(x, y) = φq(x)+ψq(y) divide the ‘blocks’ of the ‘town
of the first rank’ we can require, for instance, that on the projections of the ‘blocks’
of the ‘town’ onto the x axis φq(x) differs very slightly from the various integers and
on the projections of the ‘blocks’ on the y axis ψq(x) differs very slightly from the
various multiples of

√
2 (because m + n

√
2 = m′ + n′√2 for integers m, n, m′, n′,

only if m′ = m, n′ = n). Here, these conditions do not, of course, determine the
functions φq(x) and ψq(y) (on the ‘streets’ the function Φq = φq +ψq can in general
be defined completely arbitrarily for the moment); using this we can select limits
on the values of φq(x) and ψq(y) on the ‘blocks’ of the ‘town of the second rank’ so
that the function Φq(x, y) = φq(x)+ψq(y) divides not only the ‘blocks’ of the ‘town
of the first rank’ but also the ‘blocks’ of the ‘town of the second rank’.20 In similar
fashion, by bringing into consideration ‘towns’ of subsequent ranks and refining each
time the values of the functions φq(x) and ψq(y), in the limit we obtain continuous
functions φq(x) and ψq(y) (one can even require that they be monotone) satisfying
the conditions in question.

2◦ By contrast, the functions hq(u) of the decomposition (6a) depend
essentially on the original function f(x, y).

To construct these functions we prove first of all that any continuous func-
tion f(x, y) of two variables x and y defined on the unit square can be repre-
sented in the form

† Translator’s note: This should be Fig. 8.
20 The designated programme can be carried out if N is sufficiently large (so that

the blocks of subsequent ranks do not join on to blocks of the previous ones).
Kolmogorov chose N = 18.
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On the representation of functions of several variables 19

f(x, y) =
5∑

q=1

h(1)
q ∗ Φq(x, y)) + f1(x, y), (7)

where the Φq(x, y) = φq(x) + ψq(y) are the functions constructed above, and

M1 = max |f1(x, y)| � 5
6

max |f(x, y)| =
5
6
M , (7a)

max |h(1)
q (|Φq(x, y)| � 1

3
M, q = 1, . . . , 5 . (7b)

We choose the rank k sufficiently large so that the oscillation21 of the
function f(x, y) on each ‘block’ of any of the ‘towns of rank k’ does not
exceed 1

6M ; this, of course, is possible since as k increases the ‘blocks’ decrease
without limit. Next, let p

(ij)
1 be a certain ‘block’ of a ‘town of the first system’

(and of the chosen rank k); then on this ‘block’ the (continuous) function
Φ1(x, y) takes values belonging to a certain segment Δ

(ij)
1 of the real line

(where, in view of the definition of the function Φ1, this segment does not
intersect segments of values taken by Φ1 on any of the other ‘blocks’). We
now define the function h

(1)
1 on the segment Δ

(ij)
1 to be a constant equal to

one third of the value taken by f(x, y) on any interior point M
(ij)
1 of the block

p
(ij)
1 (it does not matter which). (We call this point the ‘centre of the block’.)

In similar fashion we define the function h
(1)
1 on each of the other segments

defined by the values of Φ1(x, y) on the ‘block’ of the ‘town of rank k’ of
the first system; here all the values of h

(1)
1 will be at most 1

3M in modulus
(since the value of f(x, y) at the ‘centre’ of any ‘block’ will not exceed M in
modulus). We now define in arbitrary fashion the function h

(1)
1 (u) at those

values of the argument u at which it has not already been defined, with the
proviso that it be continuous and that inequality (7b) should hold; we define
all the other functions h

(1)
q (u)(q = 2, . . . , 5) in similar fashion.

We now prove that the difference

f1(x, y) = f(x, y) −
5∑

q=1

h(1)
q (Φq(x, y))

satisfies condition (7a), that is,

|f1(x0, y0)| � 5
6
M ,

where (x0, y0) is an arbitrary point of the unit square. This point belongs
(as indeed do all the points of the plane) to at least three blocks of ‘towns of
rank k’; therefore there certainly exist three of the five functions h

(1)
1 (Φq(x, y))

taking at the point (x0, y0) a value equal to one third of the value of f(x, y)
21 that is, the difference between the largest and smallest values
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20 V.I. Arnol’d

at the ‘centre’ of the corresponding ‘block’, that is, differing from 1
3f(x0, y0)

by not more than 1
18M (since the oscillation of f(x, y) on each block does

not exceed 1
6M); the sum of these three values h

(1)
q (Φq(x0, y0)) differs from

f(x0, y0) in modulus by at most 1
6M . But since each of the remaining two

numbers h
(1)
q (Φq(x0, y0)) does not exceed 1

3M in modulus (in view of (7)), we
obtain

|f1(x0, y0)| =
∣∣∣f(x0, y0) −

5∑
q=1

h(1)
q (Φ(x0, y0))

∣∣∣ � 1
6
M +

2
3
M =

5
6
M ,

which proves (7a).
We now apply the same representation (7) to the function f1(x, y) featuring

in (7); we obtain

f1(x, y) =
5∑

q=1

h(2)
q (Φq(x, y)) + f2(x, y)

or

f(x, y) =
5∑

q=1

h(1)
q (Φq(x, y)) +

5∑
q=1

h(2)
q (Φq(x, y) + f2(x, y)) ,

where

M2 = max |f2(x, y)| � 5
6
M1 �

(
5
6

)2

M

and
max |h(2)(Φq(x, y)) � 1

3
M1 � 1

3
· 5
6
M (q = 1, 2, . . . , 5) .

Next we apply the decomposition (7) to the function f2(x, y) so obtained,
and so on; after an n-fold application of this decomposition we obtain

f(x, y) =
5∑

q=1

h(1)
q (Φq(x, y)) +

5∑
q=1

h(2)
q (Φq(x, y)) + · · ·

+
5∑

q=1

h(n−1)
q (Φq(x, y)) + f2(x, y) ,

where

M2 = max |fn(x, y)| �
(

5
6

)n

M

and

max |h(s)
q (Φq(x, y)| � 1

3

(
5
6

)s−1

M (q = 1, 2, . . . , 5; s = 1, 2, . . . , n − 1)) .

The last estimates show that as n → ∞
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On the representation of functions of several variables 21

f(x, y) =
5∑

q=1

h(1)
q (Φq(x, y)) +

5∑
q=1

h(2)
q (Φq(x, y)) + · · ·

+
5∑

q=1

h(n)
q (Φq(x, y)) + · · · ,

where the infinite series on the right hand side converges uniformly, as does
each of the five series

h(1)
q (Φq(x, y)) + h(2)

q (Φq(x, y)) + · · · + h(n)
q (Φq(x, y)) + · · · (q = 1, 2, . . . , 5) .

This enables us to introduce the notation

hq(u) = h(1)
q (u) + h(2)

q (u) + · · · + h(n)
q (u) + · · · (q = 1, 2, . . . , 5) .

Thus, we finally obtain

f(x, y) =
5∑

q=1

hq(Φq(x, y)) =
5∑

q=1

hq[φq(x) + ψq(y)] ,

which is the required decomposition (6).
In conclusion we note that the representations (2), (5) and (6) are of purely

theoretical interest, since they use essentially non-smooth functions such as
the Weierstrass function;22 therefore for practical purposes these representa-
tions are, it would seem, useless (in contrast with the representations (recalled
earlier) of roots of equations of the 5th and 6th degrees as superpositions of
functions of two variables). Thus the results that we have obtained do not
remove the problem of finding convenient representations of, say, roots of 7th
degree equations.

It is also unclear to what extent the decomposition (6) can be further
improved; for example, the question of the uniqueness of the choice of the
function h has not been solved. Also there are no methods enabling one to
represent a given smooth function as a superposition of functions that are also
relatively smooth; the strongest result in this direction remains the purely neg-
ative results of Vitushkin. Positive results of this kind would be of enormous
interest.

We note one further result of Kolmogorov that goes in another direction. He
proved that for each function of two variables defined on a square there exists a sum

22 In view of the results of Bari (see Bari, N.K.: Mémoire sur la représentation finie
des fonctions continues. Math. Ann. 103, 145-248 and 590–653 (1930), one can
represent each continuous function of one variable as a superposition of absolutely
continuous functions. It therefore follows from (6) that each continuous function
of n variables can be represented as a superposition of monotone functions of one
variable and the sum function g(x, y) = x+y; however, these monotone functions
are also essentially non-smooth.
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of the form φ(x) + ψ(y) that best approximates this function. It can also be shown
that for any (even everywhere discontinuous) bounded real function f defined on
a compact set and any continuous function g defined on the same set there is a
continuous function φ such that the deviation of φ(g) from f is a minimum. In
particular, for each bounded function f(x) there is a continuous function φ(x) best
approximating it (in the sense of uniform convergence).
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