@ Pergamon

Newral Networks, Vol. 9, No. 5, pp. 855-869, 1996
Copyright © 1996 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0893-6080/96 $15.00+ .00

0893-6080(95)00116-6

CONTRIBUTED ARTICLE

N-tuple Regression Network

ALEKSANDER KoLCZ AND NIGEL M. ALLINSON
University of York
(Received 14 July 1994; revised and accepted 19 August 1995)

Abstract—N-tuple neural networks (NTNNs) have been successfully applied to both pattern recognition and
Junction approximation tasks. Their main advantages include a single layer structure, capability of realizing highly
non-linear mappings and simplicity of operation. In this work a modification of the basic network architecture is
presented, which allows it to operate as a non-parametric kernel regression estimator. This type of network is
inherently capable of approximating complex probability density functions (pdfs) and, in the limiting sense,
deterministic arbitrary function mappings. At the same time, the regression network features a powerful one-pass
training procedure and its learning is statistically consistent. The major advantage of utilizing the N-tuple
architecture as a regression estimator is the fact that in this realization the training set points are stored by the
network implicitly, rather than explicitly, and thus the operation speed remains constant and independent of the

training set size. Therefore, the network performance can be guaranteed in practical implementations.

Copyright © 1996 Elsevier Science Ltd

Keywords—Non-parametric estimation, Regression equation, N-tuple sampling, RAM-based neural networks,

Local receptive fields, Basis functions.

1. INTRODUCTION

Establishing an approximate input/output relation-
ship for a multi-dimensional, generally non-linear
system is one of the major application areas of
artificial neural networks. Potential uses include
system identification and prediction characteristic of
control problems. Many of the existing network
architectures, including multilayer perceptrons
(MLPs), radial basis functions (RBFs), cerebellar
model articulation controller (CMAC) and NTNN,
have been applied for this purpose. Indeed, the recent
theoretical results concerning universal function
approximation properties guarantee that certain
architectures (i.e., MLPs and RBFs) are potentially
capable of achieving the approximation to any
desired level of accuracy, given enough memory
storage and processing power of their implementa-
tions (Hornik et al., 1989; Park & Sandberg, 1991).

Acknowledgements: The authors are grateful for the generous
support offered by the Overseas Research Student Awards Scheme
and the University of York in providing a research studentship
(UK).

Requests for reprints should be sent to Aleksander Kolcz,
Department of Electronics, Image Engineering Laboratory,
University of York, Heslington, York YO1 5DD, UK; e-mail:
ark@ohm.york.ac.uk

855

The recently investigated general regression neural
network (GRNN) (Specht, 1991) approximates an
unknown system mapping by estimating the expected
value of the system output given a specific value of
the input (i.e., by estimating the regression function)
and a finite set of training samples, where the system
input and output are vectors of random variables.
The network obtains non-parametric estimation of
the system probability density function on the basis
of a finite training/design set drawn according to this
distribution. The GRNN has been shown to perform
very well even in the cases of very few training
samples (Specht, 1991). It is especially suitable for
situations where the available data are inaccurate or
corrupted by noise, and offers the advantage of a very
simple one-pass learning procedure. One potential
implementation-oriented problem of this architecture
arises when the whole training set is stored and used
during the network operation, which can prove too
memory/performance expensive in a practical realiza-
tion. In such cases data-size reduction procedures
(e.g., clustering) may have to be applied as a
preprocessing stage.

A particular implementation of the GRNN using a
NTNN architecture is proposed, where the training
data set size problem can be avoided. In particular,
both the network structure and the operation speed

856

remain constant and independent of the amount of
training the network receives. The N-tuple architec-
ture, introduced by Bledsoe and Browning (1959),
has found many applications in pattern recognition,
image processing and function approximation
(Aleksander & Stonham, 1979; Aleksander et al.,
1984; Tattersall et al., 1991; Kolcz & Allinson, 1994,
1995). Its operation relies on transforming an
arbitrary system input into a binary array and
subsequently sampling it, taking N random array
locations (i.e., a random N-tuple) at a time. The
resulting binary N-element vectors serve as addresses
to a set of memory nodes, the elements of which are
combined to yield the network response. Many
variations of the NTNN differ in the format of the
memory locations (e.g., single vs multiple words per
location, binary, integer or floating point memory
word formats) as well as in the update rules used
during learning. In this paper we are concerned
mainly with the function approximation variant of
the network, also known as the single-layer look-up
perceptron (SLLUP) (Tattersall et al., 1991).

Section 2 describes the GRNN and the conditions
imposed on architectures for its implementation.
Section 3 discusses the mapping inherent in the
approximation-type NTNN. Section 4 introduces the
modifications which allow the N-tuple architecture to
realize a kernel regression estimator, and a derivation
of the network mapping is provided. Section 5
presents some architecture-specific issues involved in
the implementation of GRNN by NTNN. In Section
6 several simulation results are given, and the paper is
concluded in Section 7.

2. ESTIMATION OF THE GENERAL
REGRESSION EQUATION

We consider a general system taking a D-dimensional
real-valued vector, x, as its input and producing a
scalar real-valued output, y (a scalar rather than
vector output form is considered for simplicity). The
input and output are realizations of random variables
X and Y, respectively. It is assumed that X and Y are
distributed according to a continuous joint prob-
ability density function (pdf) f(x, y). We seek to find
an input/output relationship of the system in terms of
the regression or a conditional mean of the dependent
variable Y for any particular value of the input, x

m(x) = E{Y/x} = E{Y/X=x}: 2> -2 (1)

where it is assumed that the conditional mean exists
and is well-defined over the input domain (i.e.,
Vx E|m(x)| < cc). For a known underlying pdf the
regression function is given by

A. Kolcz and N. M. Allinson

=\ y-fy/x)dy

m(x) = E{Y/x} = ——“fjﬁyf.(ﬂx’:dy - J)
X,y)ay

-00

@

and for any particular (x,y) pair generated by the
system

y=m(x) +e ®3)

where the random error component, £, disappears in
the average (i.e., E{Y/x} = m(x)). However, when
no explicit knowledge about the system is available,
the regression function can only be estimated from a
finite set of T random points (x/,’) taken from the
system according to its distribution. Regression
analysis plays a major role in statistics and various
approaches to the estimation problem exist (Hirdle,
1990). In this work we are concerned only with one
kind of non-parametric regression, based on the well-
established kernel method (Hand, 1982) for prob-
ability density estimation. From the definition of the
conditional mean (2) it is apparent that if an estimate
of the system joint pdf was available, it could be used
directly for estimating the regression function. The
kernel method provides a means of estimating f{x, y)
with no assumptions being made about its form,
allowing approximation of the regression function in
the general case.

The kernel estimation of density functions was first
investigated by Rosenblatt (1956) and Parzen (1962)
for the univariate case, and further extended to
multivariate distributions (Cacoullos, 1966). The
following discussion draws extensively from the
recent monographs of Hand (1982) and Scott
(1992). The method relies on assigning a smooth
monotonically decreasing function (i.e., the kernel
function) to every sample (x,y) taken from the
distribution. The kernels are usually normalized so
that they are also valid pdfs. Thus the estimate f{x, y)
of f(x,y) is built as a superposition of all kernel
functions associated with the sample points. As this
method provides a smooth estimate of the unknown
density, it is required that the underlying pdf is also
reasonably smooth so as to yield valid results. Thus
f(x, y) is assumed to be continuous and differentiable.
Many theorems about consistency and the rates of
convergence of the estimate actually require the
existence of the second and third order derivatives
(Hand, 1982). The estimates provided by the kernel
method are generally biased for a finite size of the
training set, with the bias disappearing asymptoti-
cally provided that certain assumptions about the
kernel functions are made.

N-tuple Regression Network

The univariate, real and even kernel function,
¢(x), satisfies the following conditions (Parzen, 1962)

suply(x)| < oo, L ol < oo, tm [p(x)] = 0.
)

Additionally, if hr denotes a smoothing parameter
(also called the bandwidth or window width of the
kernel function) dependent on the number of training
samples, T, and satisfying the conditions

lim Ar =0 and limy,o. T - hy = (5)

T—o0

then the estimator, f(x), given by

DR
fx) = = 000000
T. Eo o(x)dx

approaches asymptotically the univariate distribution
density f{x). This provides a consistent (in the mean
square sense) and asymptotically unbiased estimate
of fx). If

(6)

o(x) > 0 and L lo(x)ldx = 1 ™

then (x) is itself a valid density function. For
multivariate kernels similar conditions could be
specified.

It is convenient to choose a (D + 1)-variate kernel
function, ®(x, y), such that it is separable with respect
to x and y variables, i.e.,

o(x,y) = &x(x) - 9, ()

where ,(y) is a univariate kernel function satisfying
the conditons (4) and (7). With such a kernel the
estimate of the density function becomes (assuming
that the kernels are normalized to give unit integrals
over their respective domains)

T
fix.9) = 13- 8:lx =) -~)

[eax=1a0a [pom=1 @
[4 -0

and the regression function can be estimated as

857
T 00
> e (x-x J y-o(y—)
E(y/x) == —
ZQxx x’)
i=1
Xr:y‘ o, (x — x')
==———."‘ 9)

where ®,(x) is assumed to satisfy the following
conditions (analogous to those for the univariate
case)

sup [(x)] < o, j |®(x)|dx < oo,

i [ix] - |@(x)| = (10)

This separable form is also called the Nadaraya-
Watson kernel regression estimator (Nadaraya, 1964;
Watson, 1964). It is often chosen so that the function
®,(x) has a product form as well, which is most
commonly used in practical situations. Let @4(xy)
represent the kernel component of ®,(x) for the dth
dimension, and let A% be its smoothing parameter.
Then the estimate of the conditional mean with a
product kernel is given by

iy o, (x — x)
Z<I> (x—x)
> [lollea=0/H)

d=1 .oy

) iﬁw (ra)

1d=1

E(Y/x)=

Asymptotic quadratic consistency of the estimate
results if the kernel smoothing parameters satisfy

D
,D) and limy_,o,T- H h‘} = 00.

lim K. =0(d=1,...
T—o00 T (ami
(12)

A further simplification of the estimate is possible if a
common smoothing parameter, 7, and a common
functional form are chosen for all univariate kernel
functions. In such cases, although there is a loss of
flexibility in optimizing the kernel shape, only one
parameter has to be estimated from the training set.
It should be noted that assuming a product form for
the kernel function does not impose a similar form on

858

the pdf being estimated. A wide range of functions
provide valid kernels, including the commonly used
Gaussian function, and the performance tends to be
fairly insensitive to the particular kernel used.

Consequently, any network whose final response
can be expressed in the form (9), with the function
®,(x) satisfying the stated conditions, naturally
implements the non-parametric estimator of the
joint pdf and provides an approximate solution to
the regression equation. The GRNN proposed by
Specht utilizes a product kernel with a common
Gaussian univariate kernel form and a common
smoothing parameter. However, other variants of the
kernel regression estimation have been considered, in
which the shape and bandwidths of individual kernel
functions are locally adapted to their position (e.g.,
Vieu, 1991).

It is interesting to note that the estimate of the
conditional mean provided by the kernel method has
a form of a local average of the training samples (')

m(x) = zT: wi(x) - ' (where w;(x) decreases with ||x — x'||)

- (13)

which minimizes the weighted least-squares error to
the training set (Hirdle, 1990), i.e.,

(x) = min > wi(x)(6 - ¥) (14)
i=1

A direct method of implementing the GRNN
would be to store the whole training set, choose a
kernel function and its smoothness based on the
characteristic of the training set, and finally use the
network by evaluating the kernel functions at each
training sample for a particular value of the input, x,
and producing a weighted sum of the training
responses, y'. Unfortunately, for a large training-set
size this may prove computationally expensive, and
the network size has to be reduced, usually by using
various clustering techniques (Specht, 1991).

In Section 4 we show how a specifically modified
NTNN implicitly realizes a regression estimator.

3. THE APPROXIMATION-TYPE NTNN

Some details concerning the structure and operation
of the NTNN vary depending on the particular
network application. Here, we are mainly concerned
with a variant of the architecture suitable for
approximating arbitrary smooth and bounded
#P — R functions, defined on a compact domain.
The network consists of an R-bit binary array
(traditionally called a retina) and a set of X memory

A. Kolcz and N. M. Allinson

nodes, each having a N-bit long address word (i.e.,

having 2V addressable locations), where each

memory location is assumed to have a real-number
format. The #° — # mapping performed by the
network consist essentially of three stages:

1. Conversion of the real vector input into a binary
format and projecting it onto the network retina.

2. Sampling of the retina by a set of K-tuple memory
nodes, each forming its address with N randomly
selected array bits, from the R total retina bits
available.

3. Combining the contents of the addressed memory
locations (by summation) to produce the network
response.

The vector-to-binary conversion should provide a
unique retina pattern for every possible network
input. However, because the size of the array is finite,
a limitation on the input variable resolution has to be
imposed. Normally, the vector coordinates are
quantized (e.g., linearly) to an integer format which
lends itself more directly to a binary mapping. It is
further assumed that the coordinates are normalized,
so that each results in an integer variable within a
uniform range. A common conversion procedure can
be applied to map the values of these coordinates into
binary patterns, each pattern having the same size.
Thus each input vector variable is mapped onto R/D
bits of the retina array.

Once the retina pattern has been obtained, the
sampling process assigns to it a unique set of K binary
N-tuples

{1(x), (), ..., tx(x)}. (15)

As each N-tuple is naturally associated with an
integer in the range of 0,...,2" — 1, the symbol #(x)
corresponds to the value (or index) of the tuple
address selected for the kth memory node by a
pattern corresponding to input x. Normally, the
sampling algorithm and the number of tuple memory
nodes are chosen such that every retina bit is a
member of at least one N-tuple (unless memory
limitations impose an undersampling condition).

As each memory location contains a real number,
any particular choice of tuple addresses results in a
selection of K numerical weights

{wi(x), wa(x),...,wk(x)}. (16)

These are summed to give the network response for
the particular input, x. Thus the approximation-type
NTNN follows a single-layer paradigm (the hidden
layer being implicitly realized by N-tuple sampling);
and the LMS algorithm (Widrow & Stearns, 1985) is
usually used for weight update during the training
(similarly to other single-layer architectures, e.g.,

N-tuple Regression Network
Network input vector

(x1,

i

x2.

859

xD)

\L Coordinate binary transformation \L

& &/ Retina projection
N

-tuple sampling

(L XL L L L L L 4
e IS -

A S— — — — —

”””””’A’””’

N address ines

(/S /(-

Network output
Node output

FIGURE 1. Stages involved in the approximation-type NTNN mapping.

Adaline, CMAC, RBF). Figure 1 shows the steps
involved in the NTNN mapping.

To analyse the generalization properties of this
network it is useful to define the tuple distance
between two network inputs as the number of
different tuple addresses they generate:

X
p(x,2) =Y (1(x) # (@) p(-) €{0,1,...,K}. (17)
k=1

It is clear, that as long as every possible input to the
network results in a unique retina pattern, the tuple
distance is equivalent to a generalized Hamming
distance, and thus satisfies all the metric function
conditions (i.e., identity, symmetry, and the triangle
inequality). For correct operation the value of this
function should be proportional to the input-space
distance or, more specifically, there should be a
monotonically increasing relationship between the
input and tuple distances. In this way the topological
properties of the input space can be reflected in the
space of binary patterns.

The problem of finding the dependence between
the input and tuple distance functions can be
approached more conveniently if two separate
relationships are combined

—in the input distance — pattern distance (i.e.,

Hamming metric) mapping;

—the pattern distance — tuple distance mapping.

Several analyses of the tuple distance have been
carried out (Johnson, 1991; Allinson & Johnson,
1993; Tattersall et al., 1991). It has been shown that
the expected value of the tuple distance correspond-
ing to the Hamming distance of H is given by (Kolcz
& Allinson, 1995)

E(p(X,Z)) = K(l - (1 - g)N)

~ K(1 — exp(—N - h)) where h — H/R. (18)

The approximate exponential relationship,
E(p(X,Z)) =~ K(1 — exp(—N - h)), has also been
suggested in Tattersall et al. (1991) and Johnson
(1991). From the above relationship it is apparent
that the network is inherently sensitive to the
Hamming distances between retina patterns, and it
is therefore advantageous to achieve proportionality
between the input and pattern distances. Since the
input vector coordinates are usually transformed
individually into a binary format and then merged
together to form a complete retina pattern, the
natural proportionality can be sought between the
L, (city-block) input metric and the Hamming metric.
Full proportionality is possible when a thermometer
code (Aleksander et al., 1984) is used for coordinate
mapping (so called, because it encodes a positive

860

integer of value g by setting ¢ consecutive bits of a
binary array to 1, which is analogous to the mercury
level in a thermometer), in which case the size in bits
of a binary code-word associated with an integer
variable of n bits is 2” in length. Unfortunately, if the
input quantization provides large ranges of input
coordinates (together with a large number of input
dimensions), system limitations may render the
thermometer code impractical. Several other coding
schemes have been proposed, all of which result in
smaller retina sizes at the cost of less regular
relationships between the L, and Hamming dis-
tances (Tattersall et al., 1991; Kolcz & Allinson,
1994). Specifically, the use of the CMAC (Albus,
1975; Kolcz & Allinson, 1994, 1995) code offers the
proportionality between the L, and Hamming
distances up to a fraction of the available range,
which can be easily controlled. In the following
discussions the use of the thermometer code is
assumed (i.e., L;(x,z) = H(x,z)).

4. REGRESSION TRAINING ALGORITHM FOR
THE NTNN

To realize the regression network, the general
structure of the approximation network presented
above is modified such that each tuple memory
location stores an integer counter value apart from
the real-valued weight. Let ax(x) designate the
counter value corresponding to the location ad-
dressed in the kth tuple memory by the input x.
Thus any input to the network results in a unique
selection of K-tuple addresses together with their
associated weight and counter values

{t(x), r2(x), ..., 2x(x)}
X — { {w1(x), wa(x), ..., wk(x)} (19)

{a(x), a2(x),...,ax{x)}.
Initially, all network tuple memory locations (both
the weight and counter values) are set to zero. During
the training phase the network is presented with T
training pairs (x!,y’) drawn according to the pdf of
the system being modelled, where x’ is the D-
dimensional input vector, and)’ denotes the
corresponding output. For each tuple location
addressed by x‘ the value of y' is added to the
corresponding weight, and the location counter is
incremented:

wi(x)) — we(x') +)' and (20)
a(x) —a(x)+1 i=1,...,T k=1,...,K
During the recall phase the network output, y(x),

is obtained by normalizing the sum of addressed
weights with the sum of their corresponding counter

A. Kolcz and N. M. Allinson

values. In cases where all addressed counter locations
are zero (i.e., none of the selected tuples has been
encountered during the training), the output is set to
Zero

K
Z wi(x) K

IR =— Y ax=0-jx)=0. (21)
Y ax) *=!
k=1

It remains to be shown that the function implemented
by the network achieves an approximation of the
regression function, E(Y/x), using a valid kernel for
the pdf estimate.

4.1. Derivation of the Regression Equation

Let x denote an arbitrary input presented for a recall
after the network has been trained on T pairs (x’,).
After the retina mapping x results in the selection of a
particular set of tuples

{n(x), 22(x), ..., 2x(x)} 22

and their associated contents. The value of each
addressed weight is given by the sum of all values,),
for which the training input vector, x/, resulted in the
selection of the tuple location containing the weight.
Thus

T
we(x) = ;yi - M (x)

1 if f(x) = 1(x?)

0 otherwise.

where Mi(x) = { (23)

Note that since the tuple distance between two inputs
to the network is defined as the number of different
tuple addresses they generate, the following relation-
ships are true

K
where p(-,})=0,1,...,K (24)

zK:Mi(X) =K-p(x,x)=K- (1 _ P(X,X'))
k=1 —

f:M},(x)=ak(x) where ay(x)=0,1,...,T. (25)
i=1

Therefore, the sum of weights selected by the input
vector x can be expressed as

N-tuple Regression Network 861

kK r L S The output of the network, given by the ratio of the
E wi(x) = Z Zy‘ Mi(x) = ZJ’ ;_:IM;(") above two sums, is thus

k=1 k=1i=1 i=1
a (x,x)
=k} y-(1-B5T (26) ,,
,'Z‘: (K) XK:WI;(X) Zr:y,' . (1 _ P(XI,(X))
#(x) _ k=1 =l

K .
p(x,x')
and the sum of the corresponding counter values is ’Z:l“k(") Z} (1 7K)
given by - =

(28)

which provides an approximate solution to the
X K L& regression function E(Y/x) provided that
Doal) =3 > M)=3_ > Mx)
k=1 k=1 i

= Kzrj (1 —-p(xl’{xi) (27) ®(-,) = (1 _LI;'))

0@;‘-a§§$%> 71 \ ;uﬁé%ﬁ%%4$§‘
CIIRIELIIICKT [\ ose o eler 2
el | |t
O4p L 2, 0;,' ~,\;.7,‘/ ,4 ,0\ P \‘\;\{’(:3';{ \}}{;z\::\\t X
% 2, yd) 4’ I \ “ \ X X X
S\ R
N S AR\ TRV Y R SR sz,
SSSSITEISILIRLTARA T LY I VS & 0\\l‘\\\(\‘.°’$‘o’:"o’:’:’3’:'o
<S < 2 005 Y/ 7 2SI DSS 0% %6202 e,
e O\ NNV R NSRS s
S RCIIZSIILEIEGLILEL AL ST A A <> " {‘{‘\;i\ RUOZGESIIRIIICHTIIITS
‘%%éﬁ?%dﬁ%%éﬁ?&hqﬁma%ﬂ' "k“"" ";‘kaaggkg%QE3§€§3§%4§: -
R e S et X R R R AR RS iiisseesesss s
X SEITIRSLSESISESL TR “." “. “. ‘ 4 ‘ . X "'0.3‘.;‘?;‘t:‘:':..‘:.:.:.:’0
S S S e e e e e S < ' szgg§§§§§§bggzp
S R STl S
IS S N N e O a0 0 Vs
2 2
S < ‘\.0:“,0. .‘.0':000"0000" " 25
S ‘”‘QQ#bQFbeQ;Q"
- o) ‘tc%ﬂ@%ﬂ.q;§ SLLIIAL)
<> <0‘¢00045Q¢»' 0 Y0,%
IR
S o tele e S
SSRSREISeSIRRRIE
S SIIoITIIIIIIIIIIIRS
s YOO O O O O
0.‘.0"...‘.“0
R
S8

FIGURE 2. The tuple kernel function for a two-dimensional case with N = 6. The input variables are uniformly quantized within the [0, 14]
interval and are clipped to 0 and 14 below and above this range, respectively. The kernel is centred about the point (7, 7) and a region
corresponding to [—7,21]1x[—7,21] is shown; saturation regions of the kernel function are visible.

862

A. Kolcz and N. M. Allinson

nomalized tuple kemel

-

HWMN = |
§ |

W N =t
PNMNON
|

nomnalized Homming distance

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

FIGURE 3. Tuple kernel function and its exponential approximate (less steep) for a range of smoothing parameters, N.

is a valid kernel function. According to eqn (18) and
taking the input quantization into account (assuming
the thermometer code for vector coordinate map-
ping) the kernel function is given by

R

®(x,2) = N
t2) =(1_]_x—-_z[) for 0<|x—-2z]<R

R

1—ﬂ¥2=1-(1—(1—11“—4))v)

0 for |x—1z| 2R (29)

where |x — z| = L;(x, z). It has to be noted that since
each vector coordinate, x4, is quantized to a finite
number of levels, a clipping of the norm function, |,
occurs. Let |-|, denote the value of the L; norm
before the quantization. Assuming that the vector
coordinates are quantized to the same number of
levels, O, the clipped norm can be expressed as

D
Ix =z = |x—zdl
d=1

X4 — 2, if |xq— zZalg<
where |x;—z4 = Ixa = zdla . Ira = zalg< € (30)
0 if |xi—zdg 2Q
Thus effectively, |-|=||z is satisfied inside the

hypercube [0, 0]” (provided that the coordinates are
quantized to positive integers) and saturates to the
clipped values outside this region. Figure 2 shows
these saturation effects for a two-dimensional case.

The function ®(-,-) is continuous, symmetrical,
non-negative and has finite support. Its value depends
(i.e., it is monotonically decreasing) only on the
distance between its arguments (i.e., it is position
independent). After normalization to give a unity
integral over its domain, ®(.,-) is a valid density
function and can be used as an estimation kernel.
Although this function is not directly representable as
a product of univariate kernel functions, its close
approximation is, since

((, _x==\"_ x — 2|
(l R ~exp|{ —N R

D -
= [l o 22
d=1

for 0<|x—2z <R
\0for x—2z| >R

Q(x,l) = <

€2

where the kernel smoothing parameter is given by
R/N. The exponential function satisfies all of the
univariate kernel function conditions (Parzen, 1962;
Hand, 1982). Figure 3 compares the one-dimensional
N-tuple kernel function and its exponential approx-
imate for a range of N (the distances are normalized
to lie inside the unity interval).

4.2. Advantages of the N-tuple Regression Network
One major advantage of the N-tuple implementa-

N-tuple Regression Network

tion is the speed of operation. Since each network
recall involves addressing K locations (a fixed
number), the response does not depend on the
number of (x,)’) pairs with which the network has
been trained. As a result, there is no need for
explicit data clustering, often used in conventional
regression architectures or the radial basis function
network (e.g., Moody & Darken, 1989) for large
training sizes. The mapping performed by the
NTNN consists mainly of combinatorial sampling
and simple memory look-up operations, and thus
can be realized very efficiently, especially in hard-
ware (e.g., Aleksander et al., 1984).

5. NTNN IMPLEMENTATION ISSUES

5.1. An Optimum Choice of the Kernel Smoothing
Parameter N

As for other regress-type networks, the bandwidth of
the kernel function has to be chosen according to the
training set characteristics. In the case of the N-tuple
network the kernel function depends on the sample
size, N, and becomes narrower with increasing N. The
existing methods for selecting the kernel function
bandwidth can be used for the “optimum” choice of
N (Specht, 1991; Scott, 1992). For example, one
might use a cross-validation technique, where the
network is trained using only a subset of the complete
training set and an error function (usually a squared
error) produced by the network for the remainder of
the training points is used as a validation criterion.
One of the more popular variants of this method
relies on creating the network using all the training
points available, except one, which is then used for
error estimation (i.e., the leave-one-out method). This
process is repeated for all the training points to give a
total error for a given choice of the smoothing
parameter. An optimization algorithm can be then
used to determine the minimum of the error curve.

Since N can only take discrete values, the number
of choices is smaller than for continuous smoothing
parameters and this can accelerate the selection
process. As other experiments with the NTNN
suggest, the dependence of the network on tuple
size is not very sharp (e.g., Aleksander & Stonham,
1979), and there will usually be a range of values of N
which provide a comparable performance. A similar
relative insensitivity of the GRNN to variation of the
smoothing parameter around the optimum has been
observed by Specht (1991).

5.2. Dealing with Large Values of N

For cases where the distribution of the training
samples is very localized in the input space, and also
when the size of the training set is large, the

863

bandwidth selection process can lead to very large
values of N (i.e.,, very narrow kernels). This may
result in excessive memory requirements, as well as in
high probability of accessing empty locations by
input points from outside the training set.

It is obvious that for large values of N each
memory-node would have to consist of a very large
number of locations. However, during the network
training only a small fraction of possible memory
addresses is actually encountered. Thus hash-memory
techniques (Knuth, 1973) are appropriate for
realizing efficient weights/counters storage. Several
of the hashing techniques have also been proposed
for custom hardware implementations (cf., a review
in Kohonen, 1984).

Large values of N usually correspond to a high
density of input points being used as a training set.
Since the input points which are used during the
normal network operation (e.g., testing) come from
the same distribution, they should also be located
close to many points from the training set. Hence
there will be a high degree of overlap between the
corresponding retina patterns. However, since the N-
tuple sampling is a statistical technique where each
sample corresponds to a small feature of the retina
pattern, the size of the retina should be increased
accordingly so that the relationship R > N is valid.
On the other hand, the actual kernel function utilized
by the network agrees with formula (29) only in an
average sense and will usually be rather irregular if
the number of tuples, X, is small (Kolcz & Allinson,
1995). Therefore, K should be made at least large
enough to allow complete sampling of the retina, and
generous oversampling is desirable for improving the
approximation capabilities. One possible method of
optimizing the values of N and R is to select the value
of R based on the range and variance parameter of
the data set and then select K so that the error level
provided by the NTNN is as close as possible to that
generated for a GRNN with a simulated tuple kernel
function. Of course, both the increase in the retina
size and the number of memory nodes have
performance and resources implications, especially
in sequential computer simulations, and in practice
some trade-off is always necessary.

5.3. Data Normalization

Since the kernel function is symmetrical, the same
degree of smoothing occurs along each dimension.
Consequently, it is desirable that the input coordi-
nates are normalized to the same range and variance
(Specht, 1991). The choice of the number of
quantization steps is affected by the range and
variance of normalized input vector coordinates. In
particular, a smaller number of quantization levels
for low-resolution variables could be chosen, with the

864

corresponding binary patterns being expanded to the

length used by other variables. One possible method

of normalizing a D-dimensional input vector consists

of the following steps (i.e., after establishing the

minimum/maximum bounds and variance for each

vector dimension):

1. Rescaling each real vector variable to the [0, 1]
range.

2. Converting it to an integer value using a linear
quantizer with the maximum of Q quantization
steps, where Q satisfies the condition

range(x4) d=1
d e

Q > max ., D
o4

in which case the change by a standard deviation in
any real input variable will change the value of the
corresponding integer variable at least by one.

The value of @ may have to be increased for large
values of N as explained in Section 5.2, as the retina
size (assuming thermometer code) is given by
R =D-Q, and it is desirable that R >> N.

6. EXPERIMENTAL RESULTS

To demonstrate the interpolation capabilities of the
N-tuple network as well as to compare it with other
architectures two test tasks have been investigated. In
both cases the thermometer code has been applied to
transform the input variables into binary retina
patterns.

A. Kolcz and N. M. Allinson

6.1. Example 1: Non-linear Plant Approximation
After Specht (1991) the non-linear function

x|x2x3x5(X3 - 1) + X3

1+x34x3

glxty...,x5) = (32)

provides a simulation of a plant governed by the
following recurrence equation

ok +1) = g(yp(k), yp(k — 1), yp(k — 2), u(k), u(k — 1))
(33)

where y,(k) and u(k) represent the output and the
input of the plant at the kth time step, respectively.
The network was trained on 1000 sample pairs, where
the control input u(k) had been drawn from a
uniform distribution in the [—1, 1] interval while the
remaining variables were calculated wusing the
recurrence equation (33), with zero initial condi-
tions. The test set consisted of 1000 points generated
by choosing the control input according to

® sin{27k/250) for k < 500
771 0.8-sin(2nk/250) +0.2-sin(27k/25) for k > 500.
(34)

Apart from the regression-type NTNN two other
networks have been considered:
-—a GRNN with a simulated N-tuple kernel given
by eqn (29)
—a GRNN with the Gaussian kernel,

02 1

041

06 -

08 T

a1+

FIGURE 4. Simulation run of the regression NTNN for N = 31, Q = 512, and T = 1000 training points.

N-tuple Regression Network
06 T

04 +//

02 -;

865

-0.2

-04

-06

-0.8

a -+

FIGURE 5. Simulation run of the GRNN with an N-tuple kernel function, eqn (29), for N = 31 and T = 1000 training points.

2
X—Z
ot =m0
(|I-| denotes Euclidean norm in the input space).
(35)

The NTNN used a tuple size of N =31, the input
vector variables were quantized to Q = 512 levels;
whereas a smoothing parameter of o= 0.315 was
used for the Gaussian kernel, which provides
approximately the same neighbourhood size as the
value of N chosen for the NTNN kernel func-
tion.

Figures 4 and 5 show the simulation results for the

06

04 +/

oz |f

NTNN and GRNN with a simulated N-tuple kernel.
It is clear that both networks provide a very similar
approximation performance. The slightly more
irregular waveforms generated by the NTNN can
be attributed to the dependence of the actual tuple
distance function on both of its arguments, rather
than only on their distance.

Figure 6 gives the approximation provided by the
GRNN with a Gaussian kernel; and although the
Euclidean symmetry of the Gaussian slightly im-
proves the approximation quality, all of the networks
considered result in comparable performance for this
task.

As previously noted, the distance function realized

02 —+

04

-06 T

0.8 +

a4

FIGURE 6. Simulation run of the GRNN with a Gaussian kernel function, eqn (35), for ¢ = 0.315 and T = 1000 training points.

866
06 7
04

024

e

A. Kolcz and N. M. Allinson

06 -

-08

1+

FIGURE 7. Simulation run of the regression NTNN for N = 31, Q = 64, four-fold oversampling, and T = 1000 training points.

by the network is accurate only in the statistical
average sense and its value for a particular pair of
inputs becomes more erratic when the number of
tuples is small. This becomes especially significant for
large values of N and a small number of retina bits,
R. To demonstrate this we present the network
simulation results on the same training set but with
the number of quantization steps per coordinate
reduced from 512 to 64. In one case the number of
tuples allows each retina bit to be sampled just once,
whereas the second case uses four-fold retina
oversampling. From Figures 7 and 8, note that the
increase in the number of tuples taken results in a
much smoother estimate.

06 T

TABLE 1
Choice of the Bandwidth for the GRNN with Gaussian and
N-tuple Kernels

Training Set Size Optimum o Optimum N Sub-optimum N

100 0.038 168 20
1000 0.020 257 140
5000 0.011 485 280
10,000 0.011 537

6.2. Example 2: Mackey—-Glass Chaotic Time Series
Prediction

The chaotic time series, given by a differential delay
equation

14

FIGURE 8. Simulation run of the regression NTNN for N = 31, Q = 64, four-fold oversampling, and 7 = 1000 training poinis.

N-tuple Regression Network 867

18 T \ T
training set —
test set —
16 4
14 L
8 J
§
z
0 i A A " A A ! A A
50 100 150 200 250 N 300 350 400 450 500

FIGURE 9. Mackey—Glass time series prediction by the regression NTNN: Dependence of the approximation squared error on the value
of N, for both the training and test sets (trained on 1000 and tested on 500 points).

of the series of .44 =~ 50. The problem of estimating
the function

x(t—-71)

() _ _ -1
B 1+ x(t—7)"°

2 —b-x(t)+a-

(36)

has been studied extensively (Lapedes & Farber, x(t + F) = g(x(t), x(t — A), x(t — 24), x(t — 3A)),

1987) and used as an example for demonstrating with A =6and F=85> fgar 37)
neural networks approximation capabilities (e.g.,

Moody & Darken, 1989; Platt, 1991). After Moody

and Darken (1989) we set the parameters to 7= 17, was considered. The number of training samples was
a = 0.2, b = 0.1, which results in a characteristic time varied between 100 and 10000, and the normalized

14

original —

| approximated - 4

121
11t
1+t

09}

value

08}

07

0.5

04}

03 " " " 2 " 2 " " N
0 50 100 150 200 250 300 350 400 450 500

time
FIGURE 10. Simulation run of the regression NTNN for N = 140, Q = 2000, K = 140, and T = 1000 for the Mackey-Glass chaotic time
series prediction.

868

A. Kolcz and N. M. Allinson

log10(normalized error)
& = b -

1

—

oo
T

Gaussian kernel -e—
N-tuple kernel -~ A

N-tuple sub-optimum -=—
NTNN »¢ |

|
[

22 24 2.6 238

(]

3

3.2 34 3.6 3.8 4

log10(training-set size)

FIGURE 11. Normalized approximation errors for the Mackey-Glass time-series prediction generated by the GRNN with Gaussian and

N-tuple kernels as well as by the regression NTNN.

prediction error, defined as

Y (0 —2(0))

test set

> (x(0) - E(x(1)))

lest set

(38)

where %(#) denotes the network estimate of x(t), was
used as a measure of the network performance. In all
cases the test set consisted of 500 points. As with the
previous example, we considered the GRNN with
Gaussian and N-tuple kernel functions as well as a
full implementation of the NTNN. The ‘“leave-one-
out” method of the kernel bandwidth selection gave
the results shown in Table 1 (columns 2 and 3). It is
apparent that optimization produced very large
values of N. However, as the error curves tend to
be very flat around the minimum, much smaller
values of N can be chosen in practice. As an example,
Figure 9 shows the squared error for both the
training and test sets as a function of N for the case
of 1000 training samples. It can be seen that the
function drops sharply in the region of small N and
then stabilizes as N increases. Additionally, it is seen
that the optimum bandwidth given by the “leave-one-
out” method in this case produces a value very close
to that for minimizing the error over the entire test
set. Figure 10 shows the actual and predicted values
of the series for the T = 1000 case, and for a NTNN
with N = 140. Figure 11 gives the normalized error as
a function of the training set size for all the networks
considered. As can be seen, there is little difference
between the results obtained by the GRNN with
Gaussian and N-tuple kernels, and the NTNN
provides a performance close to the N-tuple GRNN
prediction (the smaller, sub-optimum values of N

given in Table 1 did not significantly affect the
network performance). The apparent linear relation-
ship between the normalized error and the training-
set size agrees with the results reported by Moody &
Darken (1989) for an RBF network.

7. CONCLUSIONS

A modification of the standard NTNN, allowing an
implementation of the GRNN, has been proposed.
The network employs a valid kernel function whose
“optimum” smoothing parameters can be found
using existing heuristics. This particular realization
of the GRNN permits efficient system design with
predictable and constant response times, independent
of the amount of training involved. It allows the
direct use of large training sets and does not require
an application of data clustering techniques.

Additionally, since the distances between inputs to
the network and the training points are computed
implicitly, the network provides very fast response
times, determined essentially by the time necessary to
convert the input into a binary form, perform a fixed
number of memory look-up operations and carry out
the final summation.

From the point of applying the N-tuple architec-
ture to function approximation problems, the
regression training compares favourably with the
LMS training, which usually requires more passes
through the training set before the learning achieves
sufficiently low error levels. However, this modifica-
tion of the NTNN requires more memory storage, as
each location contains a counter value as well as a
weight value.

N-tuple Regression Network

REFERENCES

Albus, J. S. (1975). A new approach to manipulator control: The
Cerebellar Model Articulation Controller (CMAC). J. Dynam.
Syst. Measurement Control, 97(3), 220-227.

Aleksander, 1., & Stonham, T. J. (1979). A guide to pattern
recognition using random-access memories. JEE Proceedings-E
Computers and Digital Techniques, 2(1), 29-40.

Aleksander, I., Thomas, W., & Bowden, P. (1984). WISARD, a
radical new step forward in image recognition. Sensor Review,
4(3), 120-124.

Allinson, N. M., & Johnson, M. (1993). Self-organising N-tuple
feature maps. Neural Network World, (5), 511-530.

Allinson, N. M., & Kolcz, A. (1993). Enhanced N-tuple
approximators. Weightless Neural Network Workshop '93.
University of York.

Bledsoe, W., & Browning, I. (1959). Pattern recognition and
reading by machine. IRE Joint Computer Conference (pp. 225
232).

Cacoullos, T. (1966). Estimation of a multivariate density. Annals of
the Institute of Statistical Mathematics (Tokyo), 18(2), 179-189.

Hand, D. J. (1982). Kernel discriminant analysis. Chichester:
Research Studies Press (John Wiley).

Hirdle, W. (1990). Applied nonparametric regression. Cambridge:
Cambridge University Press.

Homik, K., Stinchcombe, M., & White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural
Networks, 2, 359-366.

Johnson, M. (1991). Self-organising N-tuple feature maps. PhD
thesis, University of York.

Knuth, D. E. (1973). The art of computer programming. (Vol. 3).
Reading, Mass.: Addison-Wesley.

Kohonen, T. (1984). Content addressable memories. Berlin:
Springer-Verlag.

Kolez, A., & Allinson, N. M. (1994). Application of the CMAC
input encoding scheme in the N-tuple approximation network.
IEE Proceedings-E Computers and Digital Techniques, 141(3),
177-183. ‘

Kolcz, A., & Allinson, N. M. (1995). Distance relationships in the
N-tuple mapping. Electronics Dept/Research Report 1/1995,
University of York.

Lapedes, A. S., & Farber, R. (1987). Nonlinear signal processing
using neural networks: Prediction and system modelling.
Technical Report, Los Alamos Laboratory, Los Alamos, New
Mexico.

Moody, J., & Darken, C. J. (1989). Fast learning in networks of
locally-tuned processing units. Neural Computation, 1, 281-294.

Nadaraya, E. A. (1964). On estimating regression. Theory Probab.
Applic., 15, 134-7

Park, J., & Sandberg, 1. W. (1991). Universal approximation using
radial basis function networks. Neural Computation, 3, 246~
257.

Parzen, E. (1962). On estimation of a probability density function
and mode. Annals of Mathematical Science, 33, 1065-1076.
Platt, J. (1991). A resource-allocating network for function

interpolation. Neural Computation, 3(2), 213-225.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates
of a density function. Annals of Mathematical Statistics, 27,
832-837.

Scott, D. W. (1992). Multivariate density estimation. New York:
Wiley-Interscience.

Specht, D. F. (1990). Probabilistic neural networks. Neural
Networks, 3(1), 109-118.

Specht, D. F. (1991). A general regression neural network. JEEE
Transactions on Neural Networks, 2(6), 568-576.

Tattersall, G. D., Foster, S., & Johnston, R. D. (1991). Single-layer
lookup perceptrons. IEE Proceedings-F, 138(1), 46-54.

869

Vieu, P. (1991). Nonparametric regression: optimal local
bandwidth choice. Journal of the Royal Statistical Society B,
53(2), 453-464.

Watson, G. S. (1964). Smooth regression analysis. Sankhya A, 26,
359-372.

Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing.
Englewood Cliffs, NJ: Prentice-Hall.

NOMENCLATURE

X,Z D-dimensional vectors of random
variables, inputs to the system

X,Z D-dimensional real vectors, particular
instances of X and Z

Y random variable corresponding to the
system output

y system output, particular instance of

E(Y/x),m(x) regression function: expected value of
the system output, Y, given a
particular input vector, x

E(Y/x),m(x) estimated value of E(Y/x)

fx,y) joint probability density function
corresponding to the system

R mapping

fx,») estimated value of f(x, y)

(x) univariate kernel function

o(x) multivariate kernel function

N size of a tuple

K number of N-tuples taken

tx(x) index to the location selected in the k-

th tuple memory by a pattern
generated for the input, x

wi(x) the weight value contained in the
location pointed by #(x)

ai(x) the counter value contained in the
location pointed by #(x)

T the training-set size

hr the smoothing parameter of the
kernel function, dependent on the
training-set size

o(x,z) the tuple distance function

0 number of discrete levels, each input
variable is quantized to

R the retina size in bits

H the Hamming distance between retina
patterns

h normalized Hamming distance

Mi(x) an indicator function, equal to one if

the tuple selected in the kth
memory node by input, X, is
identical to the one generated for
the ith training sample, x’ (zero
otherwise)

I Euclidean norm

. city-block (L_1) norm

