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Abstract 

Shaft-invariant, custom designed n-tuple features 
are combined with (I probabilistic decision tree to  clas- 
sify isolated printed Characters. The feature probabil- 
ities are estimated using Q novel compound Bayesian 
procedure in order to  delay the fall-off in c lass i jh t ion  
accuracy with tree size due to  Q small sample set. On  
Q ten-class confusion set of eight-point characters, the 
method yields error rates under 1% with only 9 train- 
ing samples per  class. 

1 Motivation 

We address the restricted problem of automating 
the design of a recognition system for isolated single- 
font, single-size characters. Such a kernel algorithm 
is essential for adaptive recognition along the lines in- 
vestigated in [14, 11. 

In view of our ultimate objective of truly omnifont 
(multilingual) recognition, we need to automate the 
design not only of the classifier, but also of the fea- 
tures, so that the system can accommodate any type- 
face that it might encounter. And, in order to sat- 
isfy the requirement of adaptivity on short segments 
of text, we must be able to design the entire system 
using only a few training samples of each class. 

Features based on expansions of the patterns, such 
as moment invariants or orthogonal kernel transforms 
(Fourier, Haar, Walsh, Hadamard), are optimal for 
pattern reconstruction, but reveal differences between 
the character classes only incidentally. On the other 
hand, intuitively attractive structural features fail the 
criterion of complete automation. We are not aware of 
any method for completely automatic feature design. 

We can, however, design good pixel-based classi- 
fiers for two categories, which can be used as features 
in a binary tree classifier. Pixel-based classifiers called 
n-tuples were introduced by Bledsoe and Browning at 
the Eastern Joint Computer Conference [2], investi- 
gated extensively in [9, 10, 11, 12, 31, reviewed fa- 

vorably in [13], and revived recently in [19]. These 
researchers applied n-tuples directly to multicategory 
classification, without exploiting the considerable ad- 
vantage to be gained by designing each tuple explicitly 
for two-category classification. Yet the superiority of 
n-tuples resides precisely in the possibility of configur- 
ing them to discriminate between two arbitrary sets of 
prototype characters. This possibility is best realized 
through hierarchical classification. 

In a binary tree classifier, the patterns arriving at a 
node are partitioned into two categories, each of which 
is usually a mixture of several character classes. Each 
node decision is determined by whether the n-tupk 
assigned to the node fits or does not fit the unknown 
pattern. The leaves of the tree carry the label of a 
single character class. Several leaves may correspond 
to the same character, and leaves may also be labeled 
as “reject”. Since the average depth of the tree is 
typically only 12 or 14, only a few n-tuples must be 
tested to classify an unknown character. 

Tree-based classification also has a long pedigree. 
Distinguished antecedents include, among many oth- 
ers, fuzzy trees [15, 61, CART (Classification and 
Regression Trees) [4], inductive learning trees [16], 
feature-based trees [20, 211, Olivetti’s OCR system for 
office documents [7], and Shlien’s multi-trees [17, 181. 
Our trees derive from the probabilistic design algo- 
rithm presented in [5], aind the excellent information- 
theoretic analysis of [8]. 

2 N-tuples for two-category discrimi- 
nation 

A typical 7-tuple for a c-e vs. n-r dichotomy is 
shown in Fig. la. The n-tuple fits the design proto- 
types “c” and “e” (Fig. lb)  in p = 4 different shift 
positions (for instance, if the coordinate of the upper 
left corner of the “e” prototype is (O,O), with x in- 
creasing to the right and y down, then the tuple fits 
“e” when the topmost ‘b2 of the tuple moves to (3,5), 
(4,5), (0,13), (1,13), and (2,13).), and it fails to fit ei- 
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Figure 1: An n-tuple generated from four proto- 
types. (a) A 7-tuple with 4 black (’b’) pixels and 
3 white (‘w’) pixels. (b) Prototypes of the positive 
classes “e” and “c”, where ‘x’ represents a black 
pixel and ‘.’ white. (c) Prototypes of the negative 
classes “nyr and “r”. 

ther the prototype “n” or “r” (Fig. IC) in any position 
(in the best-fit position, only q = 5 of the 7 elements 
of the tuple fit either the “n” or the “r”, An example 
best-fit position is when the topmost ‘b’ of the tuple is 
shifted to (3,2) of the “n”. ). It is clear that a one- or 
two-pixel variation in any of the four characters would 
not prevent a fit on “c” and “e”, or cause a false fit 
for “n” and “r”: the tuple is “noise-resistant.’’ 

We say that this n-tuple was designed for positive 
prototypes “c” and “e” and negative prototypes “n” 
and “r”, with design parameters n = 7 , p  = 4, 
y = 5 .  In general, having a high value of n decreases 
the probability of a (perfect) fit of characters of the 
classes represented by the positive prototypes, but in- 
creases the probability of a misfit of characters of the 
classes represented by the negative prototypes. 

High values of p generally result in a high probabil- 
ity of fitting any member of the positive classes. Low 
values of y yield a low probability of fitting charac- 
ters from the negative classes. Good n-tuples therefore 
have high p and low q .  

The tree-design procedure requires that n-tuples 
that appear on any path be class-conditionally inde- 
pendent. Computations of pairwise correlations indi- 

cate that our tuple generation procedure does indeed 
satisfy the independence criterion. 

The input to the n-tuple generator program consists 
of the design parameters (n ,  p, y) and of the bitmaps 
of the positive and negative prototypes. The program 
either produces an n-tuple that satisfies the specifica- 
tions or returns after exhausting its time allocation. 
(In that case, it is called again with a different set of 
prototypes.) During the design of a single classifica- 
tion tree, the n-tuple generator may be called several 
thousand times. 

3 Decision tree design 

In principle, the design of a probabilistic tree re- 
quires only the iteration of two steps [5]: 

1. Choose the next leaf node to be expanded. 

2. Select the best feature for the chosen node. 

The first step is accomplished by choosing the node 
with the maximum entropy, calculated from the class 
probabilities at each of the current leaves. 

In the second step, the positive and negative classes 
are determined by clustering the design samples cor- 
responding to the prevalent node class probabilities. 
One or more prototypes are then chosen from each 
positive character class and each negative class to 
serve as input to the n-tuple generator. The class- 
conditional feature probabilities corresponding to the 
returned n-tuple are estimated, and the class proba- 
bilities of the two child nodes are computed. 

A well-known phenomenon with decision trees is 
that their classification accuracy declines when the 
trees are extended beyond a certain point that de- 
pends on the number of design samples. This prob- 
lem arises because as the tree grows we must estimate 
an increasing number of leaf class probabilities using a 
constant number of design samples. (The a priori class 
probabilities of the classes at the root are essentially 
distributed among all the leaves.) 

Breiman et al. advocate using only part of the 
training samples in tree design and saving the rest 
for cross-validation [4], but we adopt a different ap- 
proach, called Compound Bayesian Estimation. The 
parameters to be estimated are the class-conditional 
feature probabilities for each tuple X used in the tree. 

The value of the parameter of the Bernoulli process 
that models whether a tuple X fits an independently 
drawn sample of a given class depends both on the 
prototypes on which the tuple was generated and on 
the character class. 
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0 0 e e Table 1 : Average erroir rate on sets of nine trees. 

Figure 2: Enlarged character bitmaps sampled 
from Helvetica 8-point e’s. The top, middle, 
and bottom rows are originals, 2nd-, and 5th- 
generation photocopies, respectively. 

Instead of using a fixed a priori probability distri- 
bution for the Bernoulli parameter, we estimate the a 
priori distribution by generating additional (predictor) 
n-tuples, which we test on the design samples. The 
underlying assumption is a form of ergodicity, which 
stipulates that the ensemble distribution of the fit- 
probabilities of predictor n-tuples generated by iden- 
tical processes on the design sample is the same as that 
of the n-tuples on the (unavailable) test samples. The 
a priori distribution itself is assumed to be a Beta dis- 
tribution, whose two parameters are estimated using 
the predictor n-tuples and the design samples. The a 
priori a priori (sic) distribution of the parameters of 
the Beta distribution are assumed to be uniform over 
(-1,9] x (-1,9]. 

4 Experimental data 

We prepared three “stress” Helvetica data sets for 
designing and testing our n-tuple-based decision trees. 
Each data set is of one of three print qualities. Fig. 2 
shows examples of e’s. The top, middle, and bottom 
rows contain originals, 2nd-generation, and 5th- gen- 
eration copies, respectively. 

Each of the 3 data sets contains 10 alphabetic 
classes of 1,000 8-point characters each. The total 
number of samples is therefore 90,000. All samples 
are scanned at 300 dpi, which is generally considered 
the limiting sampling rate for 8-point characters. The 
10 classes are: a, c, e, n, 0, r,  s, U, x, z. We expect the 
major confusion classes to be a-s, c-e-o, r-n- U,  and 

For each print quality, 100 characters per class are 
randomly selected and reserved for training purposes. 
The remaining 900 characters of each class constitute 
the test set. In the experiments to be described, each 
tree was designed on only a very small fraction of the 
training sets. 

x-z . 

Hel-2 0.044 0.095 

5 Experimental results 

Table 1 shows the average accuracy of nine trees 
designed with compound Bayesian estimation (called 
Compound Bayes Trees), compared with those de- 
signed with maximum likelihood estimation. Each 
tree was designed on different samples of only three 
characters of each class, and tested on the 9000-sample 
test set. The size of the training set was set at three 
because at each node one sample is required for de- 
signing the n-tuple, and at least two are necessary 
to estimate the two parameters of the Beta distribu- 
tion. The expansion of the nodes was halted when the 
tree size reached 1024 leaves. The median error-rate 
compound Bayes tree for the original characters made 
only 36 substitution errors of the following 7 types: 

e + o 22 (22 e’s were mistaken as 0 ’s )  
0 - c  5 a - + s  3 
o - e  2 0 - + U  2 
a - + u  1 c - + r  1 

The Maximum Likelihood Trees reached zero esti- 
mated error at every node long before this limit was 
reached, and therefore could not be expanded further. 
This is an intrinsic disadvantage of small-sample max- 
imum likelihood estimation. Although the variances 
in the error rate are large, the Compound Bayes Tree 
maintains an advantage over the Maximum Likelihood 
Tree on every pair generated from the same training 
set. Both the Bayesian and the Maximum likelihood 
trees are well balanced. 

The most encouraging; aspect of the results shown 
in Table 1 is that they confirm our hypothesis: pre- 
dictor features improve the accuracy of the estimation 
of the node class probabilities sufficiently to construct 
large trees from very small training samples. Indeed, 
the error rate decreases nearly monotonically for each 
doubling of the tree size. The errors are concentrated 
at very few leaf nodes. 

As a check on the contribution of the information 
from the predictor n-tuples, we also carried out similar 
experiments using simple Bayesian estimation based 
on the uniform a priori density for the parameter of 
the Bernoulli process. The resulting error rate was 
much higher than with either of the above procedures. 

In total 81 trees (including simple Bayes trees), 
56,401 node-n-tuples, and 156,200 predictor n-tuples 
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were generated. On average the design of each Com- 
pound Bayes Tree for original characters took 13.5 
hours of CPU time on a SUN SPARC 10 with 32 
MB RAM, and about 70% longer on fifth-generation 
copies. Testing each tree on 9000 isolated characters 
took 90 seconds, but this included considerable over- 
head for collecting statistics. 

6 Conclusion 

Our experiments suggest that Compound Bayesian 
Estimation often allows extending the useful size of 
probabilistic classification trees beyond that possible 
with either maximum likelihood estimation, or with 
simple Bayesian estimation. 

Even at its current rate of development, the method 
yields respectable classification accuracy on a confu- 
sion set of noisy characters of small point size. The de- 
sign is completely automated and produces both fea- 
tures and classifier custom-tailored to a small design 
sample. Our current research addresses the many is- 
sues, including segmentation, that must be resolved 
for practical application of the method. 
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