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Abatract-N-tuple neural networks (NTNNs) have been successfdly applied to both pattern recognition and
fmction approximation tasks. Their main advantages incluaka singIe layer structure, capability of realiztig highly
non-linear mappings and simplicity of operatwn. In this work a modzjication of the basic network architecture is
presented, which allows it to operate as a non-parametric kernel regression estimator. This type of network is
inherently capable of approximating complex probability dknsity fmctwns (pdfs) and, in the Ih”ting sense,
deterministic arbitrary fwction mappings. At the some the, the regression network features a powerful one-pass
training procedure and its learning is statistically consrktent. The major advantage of utiluing the N-tuple
architecture as a regression estimator is the fat that in this realization the tratirng set points are stored by the
network implicitly, rather than explicitly, and thus the operatwn speed remains constant and ino@endent of the
training set size. Therefore, the network performance con be guaranteed in practical implementatwns.
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1. INTRODUCTION

Establishingan approximateinput/outputrelation-
ship for a multi-dimensional,generallynon-linear
system is one of the major application areas of
artificial neural networks. Potential uses include
systemidentificationand predictioncharacteristicof
control problems. Many of the existing network
architectures, including multilayer perceptions
(MLPs), radial basis functions (RBFs), cerebella
model articulationcontroller (CMAC) and NTNN,
havebeenappliedfor thispurpose.Indeed,therecent
theoretical results concerning universal function
approximation properties guarantee that certain
architectures(i.e., MLPs and RBFs) are potentially
capable of achieving the approximation to any
desired level of accuracy, given enough memory
storage and processingpower of their implementa-
tions (Homik et al., 1989;Park & Sandberg,1991).
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The recentlyinvestigatedgeneralregressionneural
network (GRNN) (Specht, 1991) approximatesan
unknownsystemmappingby estimatingtheexpected
value of the systemoutput given a specificvalue of
the input (i.e., by estimatingthe regressionfunction)
and a tiite setof trainingsamples,wherethe system
input and output are vectors of random variables.
The network obtains non-parametricestimationof
the systemprobabilitydensityfunction on the basis
of a finitetraining/desigrtsetdrawnamordingto this
distribution.The GRNN hasbeen shown to perform
very well even in the cases of very few training
samples(Specht, 1991). It is especiallysuitablefor
situationswherethe availabledata are inaccurateor
corruptedby noise,andofferstheadvantageof a very
simple one-pass learningprocedure. One potential
implementation-orientedproblemof thisarchitecture
ariseswhenthe whole trainingset is stored and used
during the network operation,which can prove too
memory/performanceexpensivein a practicalrealiza-
tion. In such cases data-sizereduction procedures
(e.g., clustering) may have to be applied as a
preprocessingstage.

A particularimplementationof theGRNN usinga
N’TNN architectureis proposed, where the training
data set sizeproblem can be avoided. In particular,
both the network structureand the operation speed
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remain constant and independentof the amount of
trainingthe network receives.The N-tuple architec-
ture, introduced by Bledsoe and Browning (1959),
has found many applicationsin patternrecognition,
image processing and function approximation
(Aleksander & Stonharn, 1979; Aleksander et al.,
1984;Tattersallet al., 1991;Kolcz & Allinson, 1994,
1995). Its operation relies on transforming an
arbitrary system input into a binary array and
subsequentlysampling it, taking N random array
locations (i.e., a random N-tuple) at a time. The
resultingbinaryN-elementvectorsserveas addresses
to a set of memorynodes, theelementsof which are
combined to yield the network response. Many
variationsof the NTNN differ in the format of the
memory locations (e.g., singlevs multiplewords per
location, binary, integer or floating point memory
word formats) as well as in the update rules used
during learning. In this paper we are concerned
mainly with the function approximationvariant of
the network, also known as the single-layerlook-up
perception (SLLUP) (Tattersallet al., 1991).

Section2 describesthe GRNN and theconditions
imposed on architecturesfor its implementation.
Section 3 discusses the mapping inherent in the
approximation-typeNTN_N.Section4 introducesthe
modificationswhichallow theN-tuplearchitectureto
realizea kernelregressionestimator,and a derivation
of the network mapping is provided. Section 5
presentssome architecture-specificissuesinvolved in
the implementationof GRNN by NTNN. In Section
6 severalsimulationresultsaregiven,andthepaperis
concluded in Section7.

2. ESTIMATION OF THE GENERAL
REGRESSION EQUATION

We considera generalsystemtakinga D-dimensional
real-valuedvector, x, as its input and producing a
scalar real-valuedoutput, y (a scalar rather than
vector output form is consideredfor simplicity).The
inputand outputarerealizationsof randomvariables
X and Y, respectively.It is assumedthatX and Yare
distributed according to a continuous joint prob-
ability densityfunction (pd~ fix, y). We seekto find
an input/outputrelationshipof thesystemin termsof
theregressionor a conditionalmeanof thedependent
variable Y for any particularvalueof the input, x

m(x) = E{Y/x} = E{Y/x =x} :4%=+ a (1)

where it is assumedthat the conditionalmean exists
and is well-defined over the input domain (i.e.,
Vx l+n(x)l < co). For a known underlyingpdf the
regressionfunctionis givenby

ry.flx, y)dy ~
m(x) = E{Y/x} = -m

r’
.~Y“m/x)4J

flx,y)u’y -w
–m

(2)

and for any particular (x, y) pair generatedby the
system

y = m(x) + e (3)

wherethe randomerror component, e, disappearsin
the average (i.e., E{Y/x} = m(x)). However, when
no explicitknowledgeabout the systemis available,
the regressionfunctioncan only be estimatedfrom a
finiteset of T random points (Xi,fl’) takenfrom the
system according to its distribution. Regression
analysisplays a major role in statisticsand various
approachesto the estimationproblem exist (Hardle,
1990).In thiswork we are concerned only with one
kindof non-parametricregression,basedon thewell-
establishedkernel method (Hand, 1982) for prob-
abilitydensityestimation.From the definitionof the
conditionalmean(2) it is apparentthatif an estimate
of thesystemjoint pdf wasavailable,it could be used
directly for estimatingthe regressionfunction. The
kernelmethodprovidesa meansof estimatingflx,y)
with no assumptionsbeing made about its form,
allowingapproximationof the regressionfunctionin
the generalease.

The kernelestimationof densityfunctionswasfirst
investigatedby Rosenblatt(1956) and Parzen(1962)
for the univariate case, and further extended to
multivariate distributions (Cacoullos, 1966). The
following discussion draws extensively from the
recent monographs of Hand (1982) and Scott
(1992). The method relies on assigning a smooth
monotonically decreasingfunction (i.e., the kernel
function) to every sample (xly) taken from the
distribution.The kernelsare usually normalizedso
thattheyarealsovalidpdfs. Thus theestimate~x,y)
of fix, y) is built as a superposition of all kernel
functionsassociatedwith the samplepoints. As this
method providesa smooth estimateof the unknown
density,it is requiredthat the underlyingpdf is also
reasonablysmooth so as to yield valid results.Thus
flx,y) is assumedto be continuousanddifferentiable.
Many theoremsabout consistency and the rates of
convergence of the estimate actually require the
existenceof the second and third order derivatives
(Hand, 1982).The estimatesprovided by the kernel
method are generallybiased for a finite size of the
training set, with the bias disappearingasymptoti-
cally provided that certain assumptionsabout the
kernelfunctionsaremade.
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The univariate, real and even kernel function,
p(x), satisfiesthefollowingconditions(Parzen,1962)

(4)

Additionally, if ATdenotes a smoothing parameter
(also called the bandwidthor window width of the
kernelfunction)dependenton thenumberof training
samples,T, and satisfyingthe conditions

lim h~ = Oand lim~+~T. h~ = m
T-hw

(5)

then the estimator,fix), givenby

~p((x-xi)/~T)
fix) =,.,

T.
r

$?(x)dx
–m

(6)

approachesasymptoticallytheunivariatedistribution
densityfix). This providesa consistent(in the mean
square sense)and asymptoticallyunbiasedestimate
of fix). If

(7)

then p(x) is itself a valid density fimction. For
multivariate kernels similar conditions could be
specified.

It is convenientto choose a (D+ 1)-variatekernel
function,@(x, y), suchthatit is separablewithrespect
to x and y variables,i.e.,

qx,y) = r?.(x). py(y)

whereqY(y) is a univariatekernelfunction satisfying
the conditons (4) and (7). With such a kernel the
estimateof the densityfunction becomes (assuming
that the kernelsare normalizedto give unit integrals
over theirrespectivedomains)

jp,y) = +~%(x - xi) “P,(Y- Y’)
,=1

I @x(x)dx = 1
@

and the regressionfunction

/

m

and -~PJWJJ = 1 (8)

can be estimatedas

857

59X(X-X’) .jm y.py(y-y’)dy

@(Y/x) = ‘= ‘

~@x~~-xi)
i=l

‘&. @x(x-x’)
i=l= T (9)

~%(x - x’)
i=l

where OX(X) is assumed to satisfy the following
conditions (analogous to those for the univariate
case)

sup IO(X)I < cm,
J

lo(x)ldx < m,
xc~n *

Ilmllxll . I@(x)l = o. (lo)

This separable form is also called the Nadaraya–
Watsonkernelregressionestimator(Nadaraya,1964;
Watson, 1964).It is often chosen so thatthe function
@.(x) has a product form as well, which is most
commonly used in practical situations.Let WJXJ
representthe kernelcomponent of Q.(x) for the dth
dimension, and let h; be its smoothing parameter.
Then the estimateof the conditional mean with a
product kernelis given by

fry’.@x(x - x’)

qy/x) = i=’T
~qx-x’)
i=l

5’i“fiw((w-id)/hj)
= i=l d=l (11)

fifiPd((xd-fd)/~;) “
i=l d= 1

Asymptotic quadratic consistency of the estimate
resultsif the kernelsmoothingparameterssatisfy

limh:= O(d= 1,...,D) and limT_+~T. fih~= eo.
T-m d=l

(12)

A furthersimplificationof theestimateis possibleif a
common smoothing parameter,h~, and a common
functional form are chosen for all univariatekernel
functions. In such cases, although thereis a loss of
flexibilityin optimizing the kernel shape, only one
parameterhas to be estimatedfrom the trainingset.
It shouldbe noted that assuminga product form for
thekernelfunctiondoesnot imposea similarform on
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the pdf being estimated.A wide range of functions
provide valid kernels,includingthe commonly used
Gaussianfimction, and the performancetendsto be
fairlyinsensitiveto the particularkernelused.

Consequently,any network whose final response
can be expressedin the form (9), with the fimction
OX(X) satisfying the stated conditions, naturally
implements the non-parametric estimator of the
joint pdf and provides an approximatesolution to
the regressionequation. The GRNN proposed by
Specht utilizes a product kernel with a common
Gaussian univariate kernel form and a common
smoothingparameter.However,othervariantsof the
kernelregressionestimationhavebeenconsidered,in
whichtheshapeand bandwidthsof individualkernel
functionsare locally adaptedto their position (e.g.,
Vieu, 1991).

It is interestingto note that the estimateof the
conditionalmeanprovidedby thekernelmethodhas
a form of a local averageof thetrainingsamples@“)

m(X)= &wi(x) .# (wherewi(x)decreaseswith11x– Xil[)
i=l

(13)

which minimizesthe weightedleast-squareserror to
the trainingset (Hiirdle,1990),i.e.,

(14)

A direct method of implementingthe GRNN
would be to store the whole trainingset, choose a
kernel function and its smoothness based on the
characteristicof the trainingset, and finallyuse the
network by evaluatingthe kernel functions at each
trainingsamplefor a particularvalueof the input,x,
and producing a weighted sum of the training
responses,yi. Unfortunately,for a large training-set
size this may prove computationallyexpensive,and
the networksizehas to be reduced,usuallyby using
variousclusteringtechniques(Specht, 1991).

In Section4 we show how a specificallymodified
NTNN implicitlyrealizesa regressionestimator.

3. THE APPROXIMATION-TYPE NTNN

Some detailsconcerningthe structureand operation
of the NTNN vary depending on the particular
networkapplication.Here, we are mainlyconcerned
with a variant of the architecture suitable for
approximating arbitrary smooth and bounded
# - 9t functions, definedon a compact domain.
The network consists of an R-bit binary array
(traditionallycalleda retina)and a set of K memory

nodes, each having a N-bit long addressword (i.e.,
having 2~ addressable locations), where each
memory location is assumedto have a real-number
format. The @ ~ 6? mapping performed by the
networkconsistessentiallyof threestages:
1. Conversionof the real vector input into a binary

format and projectingit onto the networkretina.
2. Samplingof theretinaby a setof K-tuplememory

nodes, each forming its addresswith N randomly
selectedarray bits, from the R total retina bits
available.

3. Combiningthecontentsof theaddressedmemory
locations(by summation) to produce the network
response.
The vector-to-binaryconversionshould provide a

unique retina pattern for every possible network
input.However,becausethesizeof thearrayis finite,
a limitationon theinputvariableresolutionhasto be
imposed. Normally, the vector coordinates are
quantized(e.g., linearly)to an integerformat which
lends itselfmore direetlyto a binary mapping. It is
furtherassumedthatthecoordinatesarenormalized,
so that each resultsin an integervariablewithin a
uniformrange.A common conversionprocedurecan
be appliedto map thevaluesof thesecoordinatesinto
binary patterns,each patternhaving the same size.
Thus eachinputvector variableis mappedonto R/D
bits of the retinaarray.

Once the retina pattern has been obtained, the
samplingprocessassignsto it a uniquesetof Kbinary
N-tuples

{t,(x), tz(x), ..., ZK(X)}. (15)

As each N-tuple is naturally associated with an
integerin therangeof O,..., 2N– 1, thesymbol t~(x)
corresponds to the value (or index) of the tuple
address selected for the kth memory node by a
pattern corresponding to input x. Normally, the
samplingalgorithmand thenumberof tuplememory
nodes are chosen such that every retina bit is a
member of at least one N-tuple (unless memory
limitationsimpose an undersamplingcondition).

As each memory location containsa realnumber,
any particularchoice of tuple addressesresultsin a
selectionof K numericalweights

{w*(x), W2(X),..., WK(X)}. (16)

These are summedto give the network responsefor
the particularinput, x. Thus theapproximation-type
NTNN follows a single-layerparadigm(the hidden
layer being implicitlyrealizedby N-tuple sampling);
and the LMS algorithm(Widrow & Steams, 1985)is
usually used for weight update during the training
(similarly to other single-layerarchitectures,e.g.,
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Network inputvector

(xl, x2, . . . . . . . XD)

‘L L CoordinatebinarytransformationJ/
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FIGURE1.Stagesinvolved in the approxitnetion-typeNTNNmapping.

Adaline, CMAC, RBF). Figure 1 shows the steps
involved in the NTNN mapping.

To analyse the generalizationproperties of this
network it is uzefid to define the tuple distance
between two network inputs as the number of
differenttupleaddressesthey generate:

K

P(X,Z) = ~ (tk(x) # t&(z)) ~(”.o)● {O, 1,... ,~. (17)
k=l

It is clear, thatas long as everypossibleinput to the
network resultsin a uniqueretinapattern,the tuple
distance is equivalent to a generalizedHamming
distance, and thus satisfiesall the metric function
conditions (i.e., identity,symmetry,and the triangle
inequality). For correct operation the value of this
fimction should be proportional to the input-space
distance or, more specifically, there should be a
monotonically increasing relationshipbetween the
input and tupledistances.In thisway thetopological
propertiesof the input spacecan be reflectedin the
space of binarypatterns.

The problem of finding the dependencebetween
the input and tuple distance functions can be
approached more conveniently if two separate
relationshipsare combined

—in the input distanceA patterndistance (i.e.,
Hammingmetric)mapping;

—the patterndistance- tupledistancemapping.
Severalanalysesof the tuple distancehave been

carried out (Johnson, 1991; Allinson & Johnson,
1993;Tattersallet al., 1991).It has been shown that
the expectedvalue of the tuple distancecorrespond-
ing to theHammingdistanceof H is givenby (KOICZ
& Allinson, 1995)

W>ZD=+(+)N)
x K(l – exp(-N. h)) whereh– H/R. (18)

The approximate exponential relationship,
E(p(X, Z)) = K(l – exp(-N. h)), has also been
suggestedin Tattersallet al. (1991) and Johnson
(1991). From the above relationshipit is apparent
that the network is inherently sensitive to the
Hamming distancesbetweenretina patterns,and it
is thereforeadvantageousto achieveproportionality
betweenthe input and pattern distances.Since the
input vector coordinates are usually transformed
individuallyinto a binary format and then merged
together to form a complete retina pattern, the
naturalproportionality can be sought between the
Z.l (city-block)inputmetricand theHammingmetric.
Full proportionalityis possiblewhen a thermometer
code (Aleksanderet al., 1984)is used for coordinate
mapping (so called, because it encodes a positive
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integerof value q by settingq consecutivebits of a
binary arrayto 1, whichis analogousto the mercury
levelin a thermometer),in whichcase the sizein bits
of a binary code-word associated with an integer
variableof n bitsis 2nin length.Unfortunately,if the
input quantizationprovides large ranges of input
coordinates (togetherwith a large number of input
dimensions), system limitations may render the
thermometercode impractical.Severalother coding
schemeshave been proposed, all of which result in
smaller retina sizes at the cost of less regular
relationships between the L1 and Hamming dis-
tances (Tattersallet al., 1991; Kolcz & Allinson,
1994). Specifically,the use of the CMAC (Albus,
1975;Kolcz & Allinson, 1994, 1995)code offers the
proportionality between the L1 and Hamming
distances up to a fraction of the available range,
which can be easily controlled. In the following
discussions the use of the thermometer code is
assumed(i.e., L1(x,z) = H(x, z)).

4. REGRESSION TRAINING ALGORITHM FOR
THE NTNN

To realize the regression network, the general
structure of the approximation network presented
above is modified such that each tuple memory
location storesan integercounter value apart from
the real-valued weight. Let ak(x) designate the
counter value corresponding to the location ad-
dressed in the kth tuple memory by the input x.
Thus any input to the network resultsin a unique
selection of K-tuple addressestogether with their
associatedweightand countervalues

({t,(x), tz(x),..., fx(x)}
x + {W,(X), W,(X),..., WK(X)} (19)

{al(x), az(x),..., ax(x)}.

Initially,all network tuple memory locations (both
theweightandcountervalues)aresetto zero. During
the trainingphase the network is presentedwith T
trainingpairs (xi,~”) drawn according to the pdf of
the system being modelled, where xi is the D-
Dimensional input vector, and yi denotes the
corresponding output. For each tuple location
addressed by xi the value of yi is added to the
corresponding weight, and the location counter is
incremented:

is

values.In caseswhereall addressedcounterlocations
are zero (i.e., none of the selectedtuples has been
encounteredduringthe training),the output is set to
zero

SW(X).
j(x) = y ~ak(x)=o~j(x) =O. (21)

~a~(x) ‘=’
k=l

It remainsto be shownthatthe functionimplemented
by the network achieves an approximation of the
regressionfunction,E(Y/x), usinga valid kernelfor
the pdf estimate.

4.1. Derivationof the RegressionEquation

Let x denotean arbitraryinputpresentedfor a recall
afterthenetworkhas beentrainedon Tpairs (xi,yi).
After theretinamappingx resultsin theseleetionof a
particularsetof tuples

{f, (x), t*(x), ..., 2X(X)} (22)

and their associated contents. The value of each
addressedweightis givenby the sumof allvalues,yi,
for whichthetraininginputvector, xi, resultedin the
selectionof the tuple location containingthe weight.
Thus

Wk(x)= ~~i . tik(X)
i=l

{

1 if fk(x) = fk(xi)
where Mk(x) = o Othefise (23)

Note thatsincethetupledistancebetweentwo inputs
to the networkis definedas the numberof different
tupleaddressestheygenerate,the following relation-
shipsare true

f~;(x) = K-p(x,xi) = K.
k=l (l-W

where P(.,.) = 0,1,. . . ,K (24)

wk,(x’) + wk(xi) + ~i and
(w-i)

ak(xi)+ ak(xi)+ 1 i = 1,..., T k = 1,. . . ,K. ‘~’”

During the recallphasethe networkoutput, f(x),
obtained by normalizing the sum of addressed

weightswiththe sum of theircorrespondingcounter

fii@(x)=a~(x) where ak(x)=(),~,...,T. (25)
iel

Therefore, the sum of weightsselectedby the input
vector x can be expressedas
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‘&k(x)=$5Y”M(X)=b$wx)
k=l k=l i=l i= 1 k=l

‘K&i”(l-%9
(26)

and the sum of the correspondingcounter valuesis
givenby

f~k(x) = f fi~;(x) = S jjt!f;(X)
k=l k=l i=l i=l i=l

“g(’-F)
(27)

The output of the network,givenby the ratio of the
above two sums,is thus

which provides an approximate solution to the
regressionfunctionE(Y/x) provided that

‘(””)=(1-*)

FIGURE2.Thetuplekernelfunctionforatwodlmensionai0ssswithN= 6.Thainputvariabieaareurkiformiyquantizedwithinthe[0,14]
intervaiandareclippedtoOand14beiowandabovethierange,respactiveiy.Thekerneiiecentredaboutthapoint(7,7)anda region
correspondingto[–7,21]x[–7,21]isshown;saturationregionsofthekerneifunotionarevisibie.
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FIGURE3.Tupiekernelfunotlonenditsexponenffalapproximate(leessteep)fore rengeofemoolhingperemetere,N.

is a valid kernelfunction.According to eqn (18) and
takingtheinputquantizationinto account (assuming
the thermometercode for vector coordinate map-
ping) the kernelfunctionis givenby

[

,.!?q?l=+(d+)”)

‘(x”)=‘(’-’+ ‘or“’x-z’<R
O for lx – Z[ >R (29)

wherelx – ZI= L1(x, z). It hasto be noted thatsince
each vector coordinate, x~, is quantizedto a hite
numberof levels,a clippingof thenorm function, I*I,
occurs. Let I*[Rdenote the value of the L1 norm
before the quantization.Assuming that the vector
coordinates are quantizedto the same number of
levels,Q, the clippednorm can be expressedas

lx -21= SIxd- Zd[
d=l

{

Ixd– zdl~ if Ixd– zdl~<Q
where Ixd-zdl = Q (30)

if Ixd– z~l~ >Q

Thus effectively, l-l= I.IR is satisfied inside the
hypercube[0,Q]D@ovided that the coordinatesare
quantizedto positive integers)and saturatesto the
clipped values outside this region. Figure 2 shows
thesesaturationeffectsfor a two-dimensionalcase.

The function Q(o,.) is continuous, symmetrical,
non-negativeandhasfinitesupport.Itsvaluedepends
(i.e., it is monotonically decreasing) only on the
distance between its arguments(i.e., it is position
independent).After normalization to give a unity
integral over its domain, @(., .) is a valid density
function and can be used as an estimationkernel.
Althoughthisfhnctionis not directlyrepresentableas
a product of univariatekernel fimctions, its close
approximationis, since

I(’-WN”=’(-N”W
qx,z) = = )dfi,q(+kd

R

for O <[x – ZI< R

O for lx – ZI > R

(31)

where the kernel smoothing parameteris given by
R/N. The exponential fimction satisfiesall of the
univariatekernel fimction conditions (ParZen,1962;
Hand, 1982).Figure3 comparestheone-dimensional
N-tuplekernelfunction and its exponentialapprox-
imatefor a rangeof N (the distancesare normalized
to lie insidethe unity interval).

4.2. Advantage of the N-tupleRegressionNetwork

One major advantage of the N-tuple implementa-
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tion is the speed of operation. Since each network
recall involves addressing K locations (a 6xed
number), the response does not depend on the
numberof (Xi,yi) pairs with which the networkhas
been trained. As a result, there is no need for
explicit data clustering,often used in conventional
regressionarchitecturesor the radial basis function
network (e.g., Moody & Darken, 1989) for large
training sizes. The mapping performed by the
NTNN consists mainly of combinatorial sampling
and simple memory look-up operations, and thus
can be realizedvery efficiently,especiallyin hard-
ware (e.g., Aleksanderet al., 1984).

5. NTNN IMPLEMENTATION ISSUES

5.1. An OptimumChoice of the KernelSmoothing
ParameterN

As for otherregress-typenetworks,thebandwidthof
thekernelfunctionhas to be chosenaccordingto the
trainingsetcharacteristics.In thecaseof theiV-tuple
network the kernel function dependson the sample
size,N, andbecomesnarrowerwithincreasingN. The
existing methods for selectingthe kernel function
bandwidthcan be used for the “optimum” choice of
N (Specht, 1991; Scott, 1992). For example, one
might use a cross-validationtechnique, where the
networkis trainedusingonly a subsetof thecomplete
trainingset and an error function(usuallya squared
error) produced by the networkfor the remainderof
the trainingpoints is used as a validationcriterion.
One of the more popular variantsof this method
relieson creatingthe networkusing all the training
points available,except one, which is then used for
errorestimation(i.e., theleave-one-outmethod).This
processis repeatedfor allthetrainingpointsto givea
total error for a given choice of the smoothing
parameter.An optimizationalgorithm can be then
usedto determinethe minimumof the error curve.

SinceN can only takediscretevalues,thenumber
of choices is smallerthan for continuoussmoothing
parameters and this can accelerate the selection
process. As other experiments with the NTNN
suggest, the dependence of the network on tuple
size is not very sharp (e.g., Aleksander& Stonham,
1979),andtherewillusuallybe a rangeof valuesof N
which provide a comparableperformance.A similar
relativeinsensitivityof theGRNN to variationof the
smoothingparameteraround the optimumhas been
observedby Specht(1991).

5.2. Dealingwith Large Values of N

For cases where the distribution of the training
samplesis very localizedin the inputspace,and also
when the size of the training set is large, the

bandwidth selectionprocess can lead to very large
values of N (i.e., very narrow kernels). This may
resultin excessivememoryrequirements,aswell as in
high probability of accessing empty locations by
input points from outsidethe trainingset.

It is obvious that for large values of N each
memory-nodewould have to consist of a very large
number of locations. However, during the network
training only a small fraction of possible memory
addressesis actuallyencountered.Thushash-memory
techniques (Knuth, 1973) are appropriate for
realizing efficientweights/countersstorage. Several
of the hashingtechniqueshave also been proposed
for custom hardwareimplementations(cf., a review
in Kohonen, 1984).

Large values of N usuallycorrespond to a high
densityof input points being used as a trainingset.
Since the input points which are used during the
normal network operation (e.g., testing)come from
the same distribution,they should also be located
close to many points from the training set. Hence
there will be a high degree of overlap between the
correspondingretinapatterns.However, sincethe N-
tuple samplingis a statisticaltechniquewhere each
sample correspondsto a small featureof the retina
pattern, the size of the retina should be increased
accordingly so that the relationshipR >> N is valid.
On theotherhand,theactualkernelfunctionutilized
by the networkagreeswith formula (29) only in an
averagesenseand will usuallybe rather irregularif
the numberof tuples,K, is small(Kolcz & Allinson,
1995). Therefore, K should be made at least large
enough to allowcompletesamplingof theretina,and
generousoversamplingis desirablefor improvingthe
approximationcapabilities.One possible method of
optimizingthevaluesof N and R is to selectthevalue
of R based on the range and varianceparameterof
the data set and then selectK so that the error level
providedby theNTNN is as close as possibleto that
generatedfor a GRNN witha simulatedtuplekernel
function. Of course, both the increasein the retina
size and the number of memory nodes have
performance and resources implications, especially
in sequentialcomputer simulations,and in practice
some trade-offis alwaysnecessary.

5.3. Data Normalization

Since the kernel function is symmetrical,the same
degree of smoothing occurs along each dimension.
Consequently,it is desirablethat the input coordi-
natesarenormalizedto the samerangeand variance
(Specht, 1991). The choice of the number of
quantization steps is affected by the range and
varianceof normalizedinput vector coordinates. In
particular,a smallernumber of quantization levels
for low-resolutionvariablescould be chosen,withthe
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correspondingbinarypatternsbeingexpandedto the
lengthused by other variables.One possiblemethod
of normalizinga D-dimensionalinputvector consists
of the following steps (i.e., after establishingthe
minimum/maximumbounds and variance for each
vector dimension):
1. Resealingeach real vector variable to the [0, 1]

range.
2. Converting it to an integervalue using a linear

quantizerwith the maximum of Q quantization
steps,whereQ satisfiesthecondition

Q>mdp randxd) d = 1,...,1)
Ud

in which case the changeby a standarddeviationin
any real input variablewill change the value of the
correspondingintegervariableat leastby one.

The valueof Q may haveto be increasedfor large
valuesof N as explainedin Section5.2, as the retina
size (assuming thermometer code) is given by
R = D. Q, and it is desirablethatR>> N.

6. EXPERIMENTAL RESULTS

To demonstratethe interpolationcapabilitiesof the
N-tuplenetworkas well as to compare it with other
architecturestwo testtaskshavebeeninvestigated.In
both casesthethermometercode hasbeen appliedto
transform the input variables into binary retina
patterns.

6.1. Example 1: Non-linearPlant Approximation

After Specht(1991)the non-linearfunction

xlxzxs~s(xs – 1) +X4
g(xl,...,x5) =

1 +%++
(32)

provides a simulation of a plant governed by the
following recurrenceequation

W+ 1)=dy,(k)v,(k– l),YP(k – 2)>z@)Ju(k – 1))

(33)

whereyP(k) and u(k) representthe output and the
input of the plant at the kth time step, respectively.
The networkwastrainedon 1000samplepairs,where
the control input u(k) had been drawn from a
uniform distributionin the [–1, 1] intervalwhile the
remaining variables were calculated using the
recurrence equation (33), with zero initial condi-
tions.The testsetconsistedof 1000pointsgenerated
by choosing the control input according to

{

sin(2rk/250) for k <500
u(k)=

0.8.sin(2rk/250) +0.2. sin(2nk/25) for k >500.

(34)

Apart from the regression-typeNTNN two other
networkshavebeen considered:

—a GRNN with a simulatedN-tuplekernelgiven
by eqn (29)

—a GRNN with the Gaussiankernel,

418
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FIGURE4.SimulationrunoftheregreeelonNTNNforN= 31,Q = 512,andT = 1000trainingpointa.



N-tuple Regression Network 865

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

FIGURE5.

L

SimulationrunoftfreGRNNwithanN-tuplakernelfunction,aqn(2S),forN = 31andT= 1000trainingpointe.

“XZ’==P(-’’XJ”)
(11.11denotesEuclideannormin theinput space).

(35)

The NTNN used a tuple size of N = 31, the input
vector variableswere quantized to Q = 512 levels;
whereas a smoothing parameter of a = 0.315 was
used for the Gaussian kernel, which provides
approximatelythe same neighbourhood size as the
value of N chosen for the NTNN kernel func-
tion.

Figures4 and 5 showthe simulationresultsfor the

NTNN and GRNN witha simulatedN-tuplekernel.
It is clear that both networksprovide a very similar
approximation performance. The slightly more
irregularwaveforms generatedby the NTNN can
be attributedto the dependenceof the actual tuple
distance function on both of its arguments,rather
thanonly on theirdistance.

Figure6 givesthe approximationprovided by the
GRNN with a Gaussian kernel; and although the
Euclidean symmetry of the Gaussian slightly im-
provestheapproximationquality,all of thenetworks
consideredresultin comparableperformancefor this
task.

As previouslynoted, thedistancefhnctionrealized

q -L

FiGURES.SimulationrunoftfreGRNNwitha Gauaeiankarnelfunotion,aqn(35),foru = 0.315andT= 1000trainingpoinfa.
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-1 L
FIGURE7.SimulationrunoftheregreeeionNTNNforN= 31,Q = S4,four-fotdoveraempllng,endT= 1000freiningpointe.

by the network is accurate only in the statistical
averagesenseand its value for a particularpair of
inputs becomes more erratic when the number of
tuplesis small.This becomesespeciallysignificantfor
largevaluesof N and a smallnumberof retinabits,
R. To demonstrate this we present the network
simulationresultson the sametrainingset but with
the number of quantization steps per coordinate
reducedfrom 512 to 64. In one case the numberof
tuplesallowseach retinabit to be sampledjust once,
whereas the second case uses four-fold retina
oversampling.From Figures7 and 8, note that the
increasein the number of tuples taken resultsin a
much smootherestimate.

(-).6T

o

-0.2

-0.4

-0.6

-0.8

r

TABLE1
ChokeoftheBandwidthfortheGRNNwithGaueeienand

N-tuplaKamale

TrainingSetSize Optimuma OptimumN Sub-optimumN

100 0.038 168 20
1000 0.020 257 140
5000 0.011 485 280
10,000 0.011 537

6.2. Example2: Mackey-G1aaa Chaotic Time Series
Prediction

The chaotic time series,given by a differentialdelay
equation

FIGURE8.SimulationrunoftharegressionNTNNforN = 31,Q = S4,four-fofdovereamplh’ig,andT= 1000trainingpointa.
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FIGURE9.Maokey-GlaaatimeaarlespradlotlonbytheragraaalonNTNN:Dapandenaaoffheepproxlmatfonaqueraderroronthevalue
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&(t)
— = –b . x(t) + a .

X(t – r)
(36)

of the seriesof tCtis 50. The problem of estimating
dt 1 + X(t – T)10 the function

has been studied extensively (Lapedes & Farber, x(t + F) = g(x(t), x(t – A),x(t–2A),x(t – 3A)),
1987) and used as an example for demonstrating with A = 6 andF = 85> t~w (37)
neural networks approximation capabilities (e.g.,
Moody & Darken, 1989;Platt, 1991).After Moody
and Darken (1989) we set the parametersto r = 17, was considered.The numberof trainingsampleswas
a = 0.2, b = 0.1, whichresultsin a characteristictime varied between 100 and 10000,and the normalized

1.3 -
original—

1.1

;
9 0.8 ./

0.7 -/
I

0.6 ,
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0.4 -

0,3 -
0

time

FIGURE10.SimulationrunoffheragraaafonNTNNforN = 140,0 = 2000,K= 140,andT= 1000forthaMackey-Glaaachaotictime
aarieapradfoflon.
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FIGURE11.NormalizedapproximationarroraforthaMaskey-Glaestime-eerieepredlotiongenaratedbytheGRNNwithGaussianand
N-tuplekernelaaswallasbytheregressionNTNN.

predictionerror, definedas

wherei(t)denotesthenetworkestimateof x(t), was
usedas a measureof thenetworkperformance.In all
casesthe testsetconsistedof 500points. As withthe
previous example, we considered the GRNN with
Gaussianand N-tuple kernelfunctions as well as a
full implementationof the NTNN. The “leave-one-
out” method of the kernelbandwidthselectiongave
the resultsshown in Table 1 (columns 2 and 3). It is
apparent that optimization produced very large
values of N. However, as the error curves tend to
be very flat around the minimum, much smaller
valuesof N can be chosenin practice.As anexample,
Figure 9 shows the squared error for both the
trainingand testsetsas a function of N for the case
of 1000 training samples. It can be seen that the
function drops sharplyin the region of smallN and
thenstabilizesas N increases.Additionally,it is seen
thattheoptimumbandwidthgivenby the“leave-one-
out” methodin thiscaseproducesa valuevery close
to that for minimizingthe error over the entiretest
set. Figure 10 shows the actualand predictedvalues
of the seriesfor the T = 1000case, and for a NTNN
withN = 140.Figure11givesthenormalizederroras
a functionof thetrainingsetsizefor all thenetworks
considered.As can be seen, there is littledifference
between the results obtained by the GRNN with
Gaussian and N-tuple kernels, and the NTNN
providesa performanceclose to the N-tupleGRNN
prediction (the smaller, sub-optimum values of N

given in Table 1 did not significantlyaffect the
networkperformance).The apparentlinearrelation-
ship betweenthe normalizederror and the training-
setsizeagreeswith the resultsreportedby Moody &
Darken(1989) for an RBF network.

7. CONCLUSIONS

A modificationof the standardNTNN, allowingan
implementationof the GRNN, has been proposed.
The networkemploys a valid kernelfunction whose
“optimum” smoothing parameters can be found
using existingheuristics.This particularrealization
of the GRNN permits efficientsystem design with
predictableand constantresponsetimes,independent
of the amount of training involved. It allows the
direetuse of large trainingsetsand does not require
an applicationof data clusteringtechniques.

Additionally,sincethedistancesbetweeninputsto
the network and the trainingpoints are computed
implicitly, the network provides very fast response
times,determinedessentiallyby thetimenecessaryto
convertthe inputinto a binaryform, performa fixed
numberof memory look-up operationsandcarryout
the finalsummation.

From the point of applyingthe N-tuple architec-
ture to function approximation problems, the
regression training compares favorably with the
LMS training, which usually requiresmore passes
throughthe trainingset before the learningachieves
sticiently low error levels.However, this modifica-
tion of theNTNN requiresmore memory storage,as
each location contains a counter value as well as a
weightvalue.
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NOMENCLATURE

D-dimensionalvectors of random
variables,inputsto the system

D-dimensionalrealvectors,particular
instancesof X and Z

randomvariablecorrespondingto the
systemoutput

systemoutput, particularinstanceof
Y

regressionfunction: expectedvalueof
the systemoutput, Y, givena
particularinput vector, x

estimatedvalue of E(Y/x)
joint probabilitydensityfunction

correspondingto the system
mapping

estimatedvalue of~(x, y)
univariatekernelfunction
multivariatekernelfunction
sizeof a tuple
numberof N-tuplestaken
indexto the location selectedin thek-

th tuplememory by a pattern
generatedfor the input,x

the weightvaluecontainedin the
location pointed by tk(x)

the counter valuecontainedin the
location pointed by tk(x)

the training-setsize
the smoothingparameterof the

kernelfunction, dependenton the
training-setsize

the tupledistancefunction
numberof discretelevels,each input

variableis quantizedto
the retinasizein bits
theHammingdistancebetweenretina

patterns
normalizedHamming distance
an indicator function, equal to one if

the tupleselectedin the kth
memory node by input,x, is
identicalto the one generatedfor
the ith trainingsample,xi (zero
otherwise)

Euclideannorm
city-block (L-1) norm


