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Two Viewpoints of k-Tuple Pattern Recognition
ROB J. ROY, MEMBER, IEEE, AND JAMES SHERMAN, STUDENT MEMBER, IEEE

Abstract-This paper presents two viewpoints of the k-tuple
pattern recognition scheme proposed by Browning and Bledsoe.
The first shows that k-tuple pattern recognition is a statistical
approximation technique. In effect, the recognition is accomplished
by approximating a higher order probability distribution by use of
the first-order distributions. Using this viewpoint, and Lewis' mea-
sure of characteristic selection, several alternative approximations
are offered. The second viewpoint is that recognition is a special
case, or subclass, of a (1 learning machine. It can be shown that if
the input pattern vector X is first processed by a (1-processor (in
this case a kth order polynomial) and then certain terms discarded,
the resulting learning machine is identical to a k-tuple pattern rec-
ognition machine.

k-TUPLE PATTERN RECOGNITION

T HE technique of k-tuple pattern recognition[l-[41
(Browning-Bledsoe pattern recognition) examines

certain k-tuples of patterit points and attempts to separate
patterns on the basis of these subpatterns.

Consider then a 2-dimnenisional pattern containing N
binary pattern points. From the N pattern points, M sets
of k pattern points are selected. These k-tuples miay be
chosen in a randonm mannier, but would generally be
selected to be disjoint, so that the measuremellts on the
patterns will more nearly represent independent pattern
characteristics or features. Each k-tuple, or pattern
feature, has 2k possible values, corresponding to the 2k
possible binary patterns. A given pattern X is then
described by an M-dimensional vector, each component of
the vector being a feature value. Thus, the pattern X has
been transformed from an N-dimensionial vector with
binary components to an M-dimensional vector with
2k valued components. The original pattern can be re-
constructed only if each pattern point is included in at
east one of the ll k-tuples.
Assume that there are R categories. For each of the

possible R categories and for each of the feature values, a
number Mij, is stored, as in Fig. 1. The subscripts denote
the following:

i ith category
j jth feature
r rth value of feature j.

The memory element Mijr is chosen to be the logarithm
of the joint frequency of occurrence of category i anid the
rth value of feature j. These values for the entries in the
memrory matrix are chosen on the basis of a learning set of
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Fig. 1. Browning-Bledsoe (k-tuple recogniition).

data. Once the learning phase is completed, the test data
are presented. The decision making is then based upon a
set of discriminant functions, one for each of the R cat-
egories. The discriminant function for the ith category is
given by

2k_1 M

qi(X)I- E Z ajr(X)Mijr
r=O j=l

(1)

where

ajr rth value of feature j
M number of k-tuples
ai,(X) equals 1 if air is found in pattern X

equals 0 if ar is not found in pattern X
X binary input pattern.

The correct category is chosen as that category which has
the largest discrinminant function.

Since the memory elements are the logarithms of the
joint frequency functions f(Ri, ai7), the discriminant func-
tion could be expressed as the following product

2k-l M

gi(X) = II II [(Ri, air) Ijir(X).
r.=O j =1

(2)

Alternatively, the discrinminant funletion can be expressed
in the form of a disjunctive logic expression. The general
form for a 2-tuple discriminant function would be

g(X) = Z (M0oxij + Mlxi.; + M2-iXj + AI3XJXj)
all a

where xi, x; are the ith and jth binary pattern points
comprising the 2-tuple.
For this particuLlar form, the substitution tx = 1 - x

and j 1 -1x can be made. Consequently

g(X) (M3 + Mo-M - M2)xxX +

(M2 - MO) Xi + (AII - MO)xj + M0
-= WizX,Xj + WiXi + WjXj + WT.
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The following two viewpoints of this technique are
based upon the different forms of (2) and (3).

STATISTICAL APPROXIMATION[51 [81

A well-known result of pattern recognition191 is that the
minimunm error rate is obtained if classification is based on
selection of that category which has the mnaximum joint
probability P(X, i) = P(X/i)P(i). The conditional prob-
abilities P(X/i) are M-dimensional

P (X/i) = P (al, a2,.*. . aM/i)

where aj is the jth feature of pattern X. Clearly, the
measurement and storage of an Mth-order conditional
probability represents an extremely difficult problem.
For this reason, the Mth-order probabilities must be
approximated using lower order probabilities. Fortunately,
this problem has been investigated by Lewis. [6] The
results of this investigation are as follows. If a set of lower
order distributions is given, the possible approximations
to the high order distributions are those functions which
reduce to the given lower order distributions when prop-
erly summed. It is also assumed that there is a fixed
amount of information inherent in a process that gen-
erates a finite set of sequences. Some of this information is
contained in the probability distribution and the rest in
the reception of the sequences. The approximation
chosein should be such that a maxinmum of information is
transmitted by the reception of the sequences, and
minimum information by the probability distribution. In
this manner the approximation will be as unbiased or as
random as possible. An approximation which satisfies
this criterion will have a flat distribution, as a peaked
distribution gives a considerable amount of a priori
knowledge about the sequences. A flat distribution gives
very little a priori information about which sequence will
occur, and the sequences themselves give a maximum
amount of information.
The solution to the preceding requirements is a higher

order distribution made up of a product of its lower
order component distributions such that the high order
distribution reduces to the given lower order component
distributions when properly summed. Lewis has shown
that given a set of lower order probabilities P1, P2, ..
P,, such that the product approximation

P = PmP2 ... P.n (4)

satisfies the summation criterion, this approximation
contains the smallest amount of information of all possible
approximations which satisfy the summation criterion.
Consequently, this is the best way to use the partial
information available. The product approximation uses
the data retained to approximate the total information
available, thereby reducing the storage requirements
considerably.

IRELATIONSHIP BETWEEN k-TUPLE PATTERN RECOGNITION
AND STATISTICAL APPROXIMATION

The k-tuple memory matrix is filled by storing the
logarithm of the joint frequency of each feature value
ajr and each category i. Thus, for R categories and M
features (k-tuples) the memory matrix has RMVI2k entries of
the form log P [ajt, ii. For a given input pattern, the
features are extracted and the memory matrix is searched
to obtain the proper set of logarithms for all categories.
These logarithms are then summed, for each category,
over the set of input feature values. Thus

g (X) = E log P [aj,r i].
3

(5)

As a result, there are R discriminant functions gi(X). The
proper category is chosen to be that category with the
maximum discriminant function. Note, however, that
these R discriminant functions are exactly equal to the
probability approximations P(X, i) given by Lewis.

gi(X) = II P(aj/i)P(i) - P(X, i).
i

(6)

Consequently, for the partial data used, this is the best
use of the available information. Therefore it is not
surprising that these techniques gave the best results,
although Bledsoe and Bisson[4] state that "Even though
the maximum likelihood method scored better than the
other methods tried in this small study, it would be a
mistake to claim that such a result should have been
expected beforehand." On the contrary, in the absence of
ainy a priori information concerning the distribution of the
conditional probability distributions, this technique should
be expected to yield the best results.

'f-PROCESSOR LEARNING MACHINE
The general class of learning machines which use linear,

quadratic, or polynomial type of decision surfaces can be
constructed using a 'b-processor followed by a linear
machine. Figures 2-4 show a linear, quadratic, and 4)
learning machine, respectively. A 4) learning machine is a
4)-processor followed by a linear machine. The input to the
4)-processor is the pattern vector X, and the output is a
vector Ywhose components f (X) are linearly independent,
real, single-valued functions of X. The components fi(X)
are givein by

1) Linear decision surfaces: fi(X) = xi, i = 1, . .., N
2) Quadric decision surfaces: fi(X) -XnXkm

j, k =1,...,N n, m = O and 1
k

3) kth-order polynomial surfaces: fi(X) = HI x,j n
j=1

nj =0and1j= , .. . ,k pi ,..N
Once the form of the 4)-processor is decided upon, the

weights of the linear machine following the 4)-processor
are found by the inethods used for linear decision func-
tions.
Note that a k-tuple machine is equivalent to a kth-order

polynomial 4)-machine with only some of the terms re-
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BROWNING-BLEDSOE MACHINE

SELECTED
CATEGORY

DISCRIMINATORS

tained. Such a 4)-machine has R(M2k- M + 1) weights
in the linear machine compared to R(2k1M) matrix ele-
ments (or weights) in the Browning and Bledsoe machine
(R categories, M k-tuples).
This correspondence will be shown for k = 2 and can be

readily extended for any k N. A more precise statement
of the correspondence between the k-tuple Browning and
Bledsoe machine and the k-order polynomial 4)-machine
will then be given.
The discriminant function for the ith-category in the

Browning and Bledsoe method is given by (1). This
discriminant function contains terms of the form

XvX,Mi,3 + ,x-tMij2 + T,XvMift + xixvMijO (7)

il here x,, and x v are the components of the jth 2-tuple.
A possible structure for implementing a 2-tuple Brown-

ing and Bledsoe machine is shown in Fig. 5. The dis-
criminators are similar to 4)-machines, where the Mj
are the weights of a linear machine. Although the outputs

iTH DISCRIMINATOR

BROWNING-BLEDSO E
PROCESSOR

P-g. 5.

of the processor are real, single-valued functions of X
independent of the weights, they are not linearly in-
dependent functions. The components of each 2-tuple
must satisfy the disjuinctive relationship

XIXV + X,tV + :,AXv + ttv = 1.

Using (8), the Browning and Bledsoe discrinminators cani

be transformed into equivalent 4b-machines such that
gi(X) for the Browning and Bledsoe machine equals
gi(X) for the 1)-machine.
The terms of (7) become

Mij3XI,Xv'+ Mij2XM(l - X,) + MiIl(l -xp)xV + Mijo X

(1 - X,,)(1 -X,) = XXV(Mij3- Mij2 - Mift + MJ10) +

(9)

Considering now a Browning and Bledsoe machine withM
2-tuples where the 2-tuples of mieasurements are written
as

x2j -1 aldX2 j= 1, ...,M

the discriminant functions become
M

gi(X) E=Z {x2j 1X2j1[MAj3"- -i221-ij + MmjI] +

M

X2j LAi1ij2 - jo] + X2J [A'J l- ]ijo]} + EI 26IJO. (10)

1=1

This is a quadric 4)-machine with 211I linear terms and M
cross product terms. Since there are R categories, the
total number of weights is (3M + 1)R. This can be
extended to the case of a Browning and Bledsoe machine
with M k-tuples where the k-tuples of measurement

Fig. 2.
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Fig. 3.
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Fig. 4.

(8)
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XA(Nij2 - MiJO) + Xv(Mijl Mijo) + Mijo.
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are written as

Xkj- 1,...,M;q = 0, 1,...,k -1.

The ternis of the equivalent kth order polynomial 1-
machine that are retainied can be written as

k-i

fp(X) =H Xkj qnq n, = O and I; q-=0, l,. , -
q=o

j=l...,)M

where fp(X) = 1 or at least orne nq = 1. There are 2"k 1
possible combinations of ordered sequences of the nq
not including all zeros. Since there are M k-tuples there
are a total of M (2" - 1) functions of X. The Browning
and Bledsoe machine has been transformed into a linear
machine in ED space where D = M (2 - 1). For a R
category machine there are R(2kJM - M + 1) weights.
These weights are simple linear combinations of the
memory matrix elements Mij, of the Brown-ing and
Bledsoe machine.
The preceding discussion points out that the k-tuple

pattern recognition technique can be viewed as a de-
generate form of a general kth-order machine. The de-
generacy is due to the selection of only certain k-tuples.
Thus, not all cross products, nor all linear terms, may be
present in the k-tuple machine. Consequently, the k-
tuple technique is not as general as the D-processing
technique. The designer of the k-tuple machine has a
priori assumed how the decision surfaces will separate the
categories. These assumiptions may inot be justified for the
problenm chosen. For example, consider the case of a
2 X 2 grid with binary elements x1, X2, X3, X4. If the 2-
tuples chosen are xI x2 and X3 X4, then the discriniinant
functions are of the form

W1Xl + W2X2 + W3X3 + W4X4 + W12X1X2 + W34X3X4 + WT.

Assuming this set of 2-tuples has, in effect, assumed the
type of decision surfaces on each pair of coordinates.

Notice that although the separating curves in both the
X - x2 and X3 -X4 planes are quadric, the separating
curves in the xi-X3X, x1- 4, X2 - X3, and X2 -X4 planes
are linear. Consequently, the choice of the k-tuples deter-
mines the form of the separating surfaces. More impor-
tantly, selection of k-tuples may leave out many of the

coordinate points. This mearns that separatioin is inmpossible
in any set of coordinates which have been omnitted.
The seriousness of this problem depends uponi how good
(in terms of error rate) the separation is using the other
coordinates.

CONCLIJSION
This paper has shown two differenit ways to view k-

tuple pattern recognition. Onte viewpoint is that of sta-
tistical approximation, while the other iinterprets kc-tuple
recognition inl terms of a general kth-order 4-machine.
Both viewpoints give insight into this technique, and
suggest alternative approaches to pattern recognition.
For examiple, since k-tuple recognition is not an itera-
tive technique, the weights are determined faster than
in the self-correcting ¢-machine. Consequently, the
k-tuple techinique may be used to initialize the weights of
the 1-machine. Then the self-correcting algorithms would
be applied to obtain a better solution. This would reduce
the long iteration times required to adjust the weights
of the 4-machine, yet retain the advantage of self-
correction.
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