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The Theoretical and Experimetal Status of the n-tuple Classi�er 2AbstractA number of theoretical approaches related to the n-tuple classi�cation system arereviewed including Kanerva's SDM, the n-tuple regression network, the Hamming{Distance framework and Likelihood Estimation. The limitations of these methods arepointed out and resemblances that exist between them are underlined. Large scaleexperiments carried out on StatLog project datasets con�rm the n-tuple method as aviable competitor to more popular methods due to its speed, simplicity, and accuracyon the majority of a wide variety of classi�cation problems. A further investigation intothe failure of the method on certain datasets shows its inner workings and turns uptwo main problems: di�culties with highly skewed class priors and more importantly,a mismatch between the scales involved in generalisation, the amount of training dataavailable, and the volume of the region in which data is likely to exist. This highlightsareas where improvements in the method are needed and further theoretical progresswould be helpful.keywords: n-tuple classi�er, Hamming distance, regression network, Kanerva model, CMACcode, review, benchmarking, StatLog.



The Theoretical and Experimetal Status of the n-tuple Classi�er 31 IntroductionThe n-tuple classi�er, invented by Bledsoe and Browning in 1959 (Bledsoe & Browning,1959), is one of the oldest practical pattern recognition methods based on distributed com-putation and amenable to description in terms of neural network metaphors. Althougheclipsed in popularity by methods such as Multilayer Perceptrons and Radial Basis Func-tion networks, the n-tuple method continues to o�er properties which make it vastly superiorfor certain common purposes. First among these properties is its speed of operation. Thetraining algorithm is a one-shot memorisation task, computationally trivial compared tosolving linear systems or minimising nonlinear functions. Another advantage is the sheersimplicity of learning by memorisation. If this can form the basis of a sound pattern recog-nition principle, then it is arguable that biological systems could make use of it.It is prudent to suspect that relatively poor performance will accompany the speed andsimplicity of the n-tuple algorithm. There are many reports of satisfactory results with themethod (Aleksander & Stonham, sh1979a; Bledsoe & Bisson, 1962; Ullmann & Kidd, 1969;Ullmann, 1969; Tarling & Rohwer, 1993; Rohwer & Lamb, 1993) but few studies involvingcomparisons with other methods (Rohwer & Cressy, 1989). Furthermore, most studies usejust one or two small data sets. Therefore a large experiment was carried out, in which then-tuple method was tested on 11 large real-world data sets which had been previously usedby the European Community ESPRIT StatLog project (Michie et al., 1994) to test 23 otherclassi�cation algorithms including the most popular neural network methods. The results,presented in section 5.4, show no systematic performance gap between the n-tuple methodand the others, on 7 of the 11 data sets tested. It is easy to recognise the other 4, withoutreferring to any competing methods, because the n-tuple method performed no better thanrandom guessing. The experiments therefore suggest that in most cases the n-tuple method



The Theoretical and Experimetal Status of the n-tuple Classi�er 4gives competitive performance, and the cases when it does not are clearly recognisable.When a fast and simple method proves to be a competitive performer in a large set ofexperiments, one would like to know why. Unfortunately, the n-tuple method has not yetyielded to theoretical analysis as well as the optimisation-based approaches which can beembedded in Bayesian statistical theory (MacKay, 1992) but there has been some progress.The main theoretical results are reviewed, discussed, and used as a vehicle for explain-ing some relationships between the standard n-tuple method, n-tuple methods incorporat-ing linear regression, radial basis function networks, and the Kanerva associative memorymodel. The theoretical tools are then used to develop a semi-quantitative account of whythe method failed on 4 of the 11 datasets. The main theoretical stumbling blocks are alsoindicated.2 The n-tuple recognition methodThe n-tuple recognition method is also known as a type of \RAMnet"1 or \weightlessneural network". It forms the basis of a commercial product (Aleksander et al., 1984). It isa method for classifying binary patterns, which can be regarded as bit strings of some �xedlength L. This is not an important restriction, because there is an e�cient preprocessingmethod, tailored to the RAMnet's generalisation properties, for converting scalar attributesinto bit strings. This method is reviewed in section 4. It is also possible to generalise aspecial case of the n-tuple method from a classi�er to a function interpolator.1RAMnets also include stochastic generalisations, pRAMs, to which the n-tuple recognition algorithm isnot applied. These are not considered here.



The Theoretical and Experimetal Status of the n-tuple Classi�er 52.1 De�nition of the standard n-tuple methodA consise de�nition of the n-tuple method is given here. More descriptive de�nitions can befound in (Alexander & Morton, 1995; Aleksander & Stonham, 1979b). Several (let us say N)sets of n distinct2 bit locations are selected randomly. These are the n-tuples. Collectively,they are called the \input mapping." The restriction of a pattern to an n-tuple can beregarded as an n-bit number which, together with the identity of the n-tuple, constitutes a\feature" of the pattern. The standard n-tuple recogniser operates simply as follows:A pattern is classi�ed as belonging to the class for which it has the mostfeatures in common with at least 1 training pattern of that class. (1)This is the � = 1 case of a more general rule whereby the class assigned to unclassi�edpattern u is argmaxc 0@ NXi=1 �� 0@ Xv2Dc ��i(u);�i(v)1A1A (2)where v ranges over Dc, the set of training patterns in class c, ��(x) = x for 0 � x � �,��(x) = � for x > �, �i;j is the Kronecker delta3 (�i;j = 1 if i = j and 0 otherwise.) and�i(u) is the ith feature of pattern u:�i(u) = n�1Xj=0 u�i(j)2j : (3)Here uk is the kth bit of u and �i(j) is the jth bit location of the ith n-tuple.Small values of �, greater than 1, are sometimes found to be most e�ective (see section3.3).With C classes to distinguish, the system can be implemented as a network of NCnodes, each of which is a 1-bit random access memory (RAM); hence the term RAMnet.2Relaxing the requirement that an n-tuple has n di�erent bit locations amounts to introducing a mixtureof di�erently sized n-tuples. Note the restriction does not disallow a single pattern component from beingshared by more than one n-tuple.3The comma is unconventional but is used here optionally for extra clarity.



The Theoretical and Experimetal Status of the n-tuple Classi�er 6(Equivalently, it is a network of N RAMs, each containing a C-dimensional bit vector.) Thememory content mci� at address � of the ith node allocated to class c is set tomci� = �� 0@ Xv2Dc ��;�i(v)1A : (4)Note, that symbol � denotes any address value in range [0; 2n � 1] and �i(u) refers to oneparticular address value gererated by the input pattern u.In the usual � = 1 case, the 1-bit content of mci� is set if any pattern of Dc has feature�i and unset otherwise. Recognition is accomplished by summing the contents of the nodesof each class at the addresses given by the features of the unclassi�ed pattern. That is,pattern u is assigned to class argmaxc  NXi=1mci�i(u)! : (5)To generalise the n-tuple classi�er to a function interpolator, a vector mi� of the appro-priate numeric type for the range of the function is stored at each address � in each nodei. Training is accomplished by assigning these vectors to the averagesmi� = Xv2Dc Y (v)��;�i(v)= Xv2Dc ��;�i(v); (6)where Y (v) is the desired output for input bit string v. The network output, or responseto an arbitrary input pattern u is 1N NXi=1mi�i(u): (7)The � = 1 version of the classi�er (4), (5) is recovered when Y (v) is the indicator functionfor the class c(v) of v: Y c(v) = �c;c(v). Experimental experience with the � = 1 versionof the classi�er is disappointing (Bledsoe & Bisson, 1962), possibly for the reasons givenin section 3.3, and this may bode ill for the interpolator, which is little studied. However,the interpolator is at least of theoretical interest for its connection with the Kanerva modelexplained in section 3.2.1.



The Theoretical and Experimetal Status of the n-tuple Classi�er 72.2 Practical experienceSimple theoretical considerations and practical experience provide fairly strong guidance forsetting the architectural parameters, n, N , and �. To begin with, the fact that the networkresponse to an arbitrary pattern is essentially an average over the n-tuples (5) means thatthe results should become increasingly consistent with increasing N . Because the n-tuplemethod can process thousands of patterns within seconds, there is little need for any dataanalysis method other than explicit measurement of the variation of performance as theinput mapping is re-randomised a few times for a given N . N is increased if the variation isunacceptably high. Practical experience is that values of 100 to 1000 usually turn out to beadequate. It is commonly observed that the network's output for the winning class exceedsthat of the second runner up by an uncomfortably small margin, such as 3 n-tuples out of1000, but that the correct class nevertheless wins consistently. Perhaps most n-tuples give aconstant response to most patterns, so e�ectively only a fraction of those in the network arecontributing to the decisions. This suggests that many n-tuples could be trimmed from thenetwork, but such variations on the method are vulnerable to overtraining and complicatethe theory. The phenomenon deserves further study.Practical experience tends to favour small values of the threshold �, particularly � = 1.A possible rationale for this is given in section 3.3. Many considerations apply to thechoice of n-tuple size n. Experimentally it usually turns out that bigger is better, up to animpractically large size (Rohwer & Lamb, 1993), which requires an unreasonable amount oftraining data, but n = 8 is usually enough, and n = 3 is sometimes adequate. This can beexplained qualitatively by observing that information about the correlations among up to nbits are available to the classi�er. It never hurts to take account of higher-order correlations,but it is plausible that 8th order correlations contain all that is needed for most binary data



The Theoretical and Experimetal Status of the n-tuple Classi�er 8sets. Another intuition is that the training process should write to neither too small nortoo great a proportion of the 2n addresses at each node. If n is too large, the sub-patternsoccuring in the training data will be unlikely to recur in the test data, whereas if n is toosmall, the memory can saturate, in which case mc�i = � for most memory locations, somost discriminative power is lost (Ullmann, 1969), (Tarling & Rohwer, 1993). These issuesare further complicated if the class priors are highly skewed, so that one class has far moretraining data than another. Although a precise theory is not available, there are strongenough theoretical tools to gain considerable insight, as is demonstrated in the discussionof the experimental results.3 Theoretical Status of the n-tuple methodThe n-tuple classi�er is a memory-based method. Such methods di�er from optimisation-based methods, such as Back Propagation of error through multi-layer perceptrons, in twoimportant ways. Firstly, \hidden" representations (or \features") are selected randomly,and secondly, training is a simple one-shot memorisation task involving these features.These di�erences give memory-based methods an awesome advantage in training speed.Radial Basis Functions obtain part of this speed advantage by selecting features randomly(Broomhead & Lowe, 1988), and multi-layer perceptrons can often be trained faster withlittle or no loss of performance by using �xed random weights into the hidden layers (Gallant& Smith, 1987; Sutton & Whitehead, 1993). However, this does not give the speed andsimplicity that training by mere memorisation provides.In spite of many useful advances (Austin, 1994; Aleksander & Stonham, sh1979a; Flana-gan et al., 1992; Bledsoe & Bisson, 1962; Ullmann & Kidd, 1969), there is no theory ofn-tuple networks of the standard of the sophisticated statistical techniques available with



The Theoretical and Experimetal Status of the n-tuple Classi�er 9optimisation-based methods (MacKay, 1992). It is not particularly di�cult to design newtraining algorithms for the n-tuple architecture in order to make these statistical methodsapplicable (Tattersall et al., 1991; Luttrell, 1992; Rohwer, 1995), but this approach sidestepsthe interesting questions instead of answering them. These modi�ed methods reduce thespeed and simplicity advantages as well.The main tools for understanding the standard n-tuple network are reviewed here, andused to place the n-tuple net into context with similar methods. These tools are used againto explain the experimental results.3.1 Approaches based on Hamming DistanceThe most productive theoretical concept for understanding the n-tuple method has been\tuple distance" and its nonlinear statistical relationship with Hamming distance.3.1.1 Tuple distance and Hamming distanceThe main theoretical results on the n-tuple method provide a relationship between a \tupledistance" relevant to the network's generalisation properties, and the Hamming distancebetween training and test patterns. The tuple distance �(u; v) between patterns u and vis the number of tuples (of a given input mapping) on which the patterns disagree:�(u; v) = N � NXi=1 ��i(u);�i(v): (8)The number on which they agree, N ��(u; v), will be called the \tuple score." An elemen-tary argument based on the random selection of the n-tuple inputs from the L bits availableshows that patterns v which lie a �xed Hamming distance H(u; v) from any one pattern uare distributed binomially in tuple distance:P (�jH) = N !�!(N � �)! �1� �1� HL �n�� �1� HL �n(N��) : (9)



The Theoretical and Experimetal Status of the n-tuple Classi�er 10More complicated expressions are available for more constrained n-tuple sampling proce-dures (Tattersall & Johnson, 1984). Distribution (9) gives an expectation value for � of�(H) = h�jHi = N �1� �1� HL �n� ; (10)and indicates that � typically strays from this value by the standard deviation��(H) = �N �1� HL �n �1� �1� HL �n�� 12 : (11)This is illustrated in �gure 1. If the patterns are nearby (H � L), then a convenientapproximation is �(H) � N �1� e�nHL � : (12)The n-tuple sampling variations then make �(H) uncertain by about p�(H).It is clear from (12) that proximity in Hamming distance plays a role in the generalisationbehaviour of n-tuple networks. Consider a network trained on just one example v of classc, and tested on a pattern u Hamming distance H from v. Classi�cations are based onthe network response NXi=1mci�i(u) to pattern u, which will be about Ne�nH(u;v)L . Henceone could say that the network generalises from training pattern v to all patterns withina Hamming distance of about L=n of v. Figure 1 shows a \clean" case in which thetraining patterns within L=n of a test pattern are predominately of the correct class. Inour experience it is far more usual for many incorrect patterns to populate this region aswell, but the classi�er seems to work anyway. It would appear that the training patternsnearest a test pattern tend to match on tuples (\overlap") no more often than patterns ofany other class.



The Theoretical and Experimetal Status of the n-tuple Classi�er 113.1.2 Training Data overlap on tuplesA network trained on a set of patterns fv1; :::; vTg could respond to pattern u by anyamount between N min(1;maxa e�nH(u;va)L ) and N min(1;Pa e�nH(u;va)L ), depending onthe correlations between the training patterns, as manifest in \overlap e�ects". Unfortu-nately, this circumstance limits the usefulness of tuple distance for explaining the standardn-tuple method. Because of a combinatorial explosion, there is no feasible method of mea-suring tuple correlations. Similar problems crippling an attempt of full formal analysis of themethod (Stonham, 1977) for datasets of arbitrary size have been reported. However, someinsight into the mechanism of the RAMnet can be gained by analysis of the experimentaldata.Overlap e�ects are displayed in �gure 2. Figures 2a and 2b show the network outputfor a test pattern as training patterns are added in Hamming distance order from the testpattern. For �gure 2a, the threshold is � = 1, and for �gure 2b it is � = 1, e�ectivelyignoring overlap in that the tuple scores are added for all the training patterns. Figure 2bshows that distant patterns of the incorrect class match the test pattern on many n-tuples,but �gure 2a shows that most of these subpatterns had already turned up in closer trainingpatterns. Figure 2c shows the number of new RAM locations accessed as training patternsare accumulated, regardless of whether these are accessed by the test pattern. One class isdisadvantaged by a smaller prior probability, and correspondingly fewer training samples,but it has the advantage that it populates new RAM locations more rapidly. Whereas themore probable class is showing signs of levelling o� in this respect, the less probable classis not, so it seems likely that if more data were available (in the same proportions), thenthe test pattern would be more likely to be classi�ed correctly with the less probable class.This scenario was frequently observed in datasets with skewed priors, and motivates the



The Theoretical and Experimetal Status of the n-tuple Classi�er 12hypothesis that errors would have been reduced if more data were available.3.2 Related methodsTuple distance can be used to compare the n-tuple network to Kanerva's sparse distributedmemory, the n-tuple regression network or single-layer lookup perceptron, and the familiarradial basis functions network. The n-tuple network can also be interpreted as a crudelikelihood estimator.3.2.1 The Kanerva ModelThe n-tuple network is related to Kanerva's Sparse Distributed Memory model (Kanerva,1988; Songcan & Jun, 1992), which has also been developed theoretically using an \overlap"measure similar to (12). Although intended mainly as an associative memory, it is easilygeneralised for classi�cation problems or function interpolation problems. The interpolationversion is presented here.Instead of n-tuples, a set of N bit strings are randomly selected from a uniform distribu-tion. These are used as centres �i of hard-sphere radial basis functions �i of binary vectorsv �i(v; r) = 8>>><>>>: 1 H(�i; v) � r)0 H(�i; v) > r) (13)with a somewhat carefully chosen radius r. Memory space for a vector in the range of thefunction to be approximated is associated with each centre. The memory at centre i is setto m(K)i = Xv2DY (v)�i(v; r)Xv2D �i(v; r) (14)during training. Here Y (v) is the desired output for input pattern v. The output Y (v)and memory m(K)i can belong to any space in which a weighted average can be de�ned.



The Theoretical and Experimetal Status of the n-tuple Classi�er 13For classi�cation problems, Y (v) is an indicator function, and for an associative memory,Y (v) = v.The network response to test pattern u isy(K)(u) = Xi m(K)i �i(u; r)Xi �i(u; r) ; (15)which is y(K)(u) = Xv2DY (v)Xi �i(v; r)�i(u; r)Xv2DXi �i(v; r)�i(u; r) (16)in terms of the training data. (A further thresholding operation is required if a the outputis to be a bit string.) Each training pattern v contributes its desired output Yc(v) to anaverage weighted by N � �(K)r (v;u) def= Xi �i(v; r)�i(u; r); (17)the number of centres within Hamming distance r of both the training pattern and thetest pattern. Evidently, N � �(K)r (v;u) plays a role similar to the tuple score, with centreswithin distance r of both patterns being counted instead of n-tuples. Due to the randomplacement of centres, the expectation of N � �(K)r (v;u) is also a function �(K)r (H(u; v)) ofthe Hamming distance H(v;u), although it is more complicated than (10) or (12). Theexact form is a sum of products of binomial coe�cients which can be approximated by�(K)r (H) � N  1� Z 1H=L dx2�px(1� x)e� (r�L=2)2L=2 1(1�x)! (18)for 0 � H � L.To carry the comparison further, observe that the interpolative n-tuple network (6), (7)can be regarded as a special case of the Kanerva network (14), (15), if the Hamming distancein (14) and (15) is replaced with a Hamming distance restricted to a tuple. Speci�cally,a Kanerva centre �i� can be associated with each memory location � at each n-tuple i by



The Theoretical and Experimetal Status of the n-tuple Classi�er 14de�ning all bits of �i� arbitrarily except for those involved in the ith input mapping. Thesebits must form subpattern �: n�1Xj=0 ��i(j);�2j = �. The Hamming distance is replaced byn�1Xj=0(1� ���i(j);u�i(j)) and r = 0.3.2.2 The n-tuple regression networkThe fact that the n-tuple network response to a test pattern is dominated by the (Hamming)nearest training patterns suggests that it might be formally related to a nearest neighbourmethod or a local basis function method. A modi�ed method makes the most of thisresemblance. Called the n-tuple regression network (Allinson & Ko lcz, 1994b), or the single-layer lookup perceptron (Tattersall et al., 1991), it treats the interpolative n-tuple networkresponse (7) as a weighted sum of basis functions:yc = NXi=1mci�i(u) = NXi=1 2n�1X�=0 mci���;�i(u): (19)From the latter form, the network can be regarded as a linear transformation applied to theoutputs of the rather unusual basis functions ��;�i(u), one for each combination of i and �.Training is easily accomplished by a least mean squares (LMS) method.Expression (19) can be related to a basis function expansion in the the exponentialsappearing in (12), yc = Xa wcae�nH(u;va)L (20)provided that patterns va and weights wca can be found such thatmci� = Xa wca��;�i(va): (21)(Plugging (21) into (19) and using (8) gives (20) within approximation (12).)One way to arrange this is to choose all the patterns va so they are separated from eachother by tuple distance N ; ie., none of the patterns va match each other in any n-tuple.



The Theoretical and Experimetal Status of the n-tuple Classi�er 15(This is possible if and only if the number of these patterns is no more than 2n.) In thissituation there is at most one a for any given n-tuple i and address �i such that �i(va) = �,which may be called a(i; �) when it exists. Then the choicemc�i = 8>>><>>>: wca(i;�) a(i; �)de�ned0 a(i; �)not de�ned (22)satis�es (21). Such a network acts like the radial basis function network (20) with a(Hamming4) spherically symmetric local basis function of radius roughly L=n centred oneach pattern va, even though the patterns va do not appear in the implementation (19), andto the bene�t of computation speed, no distance calculations H(u; va) are ever performed.If the training patterns meet the separation condition, they can be identi�ed with thebasis function centres va. To see this, observe that the assumed one-to-one correspondencebetween pattern a and address �i(va) in the ith n-tuple memory implies that the set ofmemory locations corresponding to one pattern is disjoint from the set addressed by anyother. Therefore the LMS optimisation problem involving (19) will be symmetric withrespect to the N parameters mci�i(va) for each a and c. Hence these parameters will allbe equal in the solution, and one can meaningfully de�ne mca = mci�i(va). The networkresponse to a test pattern (19) can then be re-written by replacing the sum over addresseswith a sum over training patterns:yc = NXi=1Xa mci�i(va)��i(va);�i(u): (23)Then it is clear from (8) and (20) that one can identify mca = wca.The interpretation of an n-tuple regression network as an e�ective radial basis functionnetwork with a function centre on each training pattern requires the patterns va to be tuple-4The method can be modi�ed so that the e�ective basis functions have more nearly Euclidean-sphericalreceptive �elds (Kolcz & Allinson, 1994).



The Theoretical and Experimetal Status of the n-tuple Classi�er 16separated by N . This condition would be valid at least to a good approximation if theirHamming separation were large compared to L=n. The analysis of our experiments typi�edby �gures 1 and 7 does not suggest that this is likely to happen, and even in principle itmay not be easy to arrange this and ensure good coverage of the pattern space by the locale�ective basis functions. For this, the data needs to just happen to be arranged so that eachtraining pattern of a class is about L=n bits away from it's nearest neighbour. To do aswell as possible on both conditions, all other neighbours should be much further away, butthe triangle inequality requires the next nearest neighbour to be within 2L=n bits. If thedata just happened to be suitably arranged for this interpretation, then a suitable choice ofn-tuple size n could be stated in terms of the nearest neighbour distance dNN as n = L=dNN.Even if the training data is not distributed so that a basis function interpretation ispossible with the training points serving as function centres, it may still be possible toobtain a basis function interpretation by �nding a solution, at least approximately, to (21).In any case, there is no reason to suppose that the method will fail when the interpretationsdo.3.3 The n-tuple classi�er as a crude likelihood estimatorAn alternative to using tuple distance to formulate a theory of n-tuple networks is to viewthem as probability estimators. With � = 1, expression (4) for the memory content mci�can be interpreted as an estimate of the probability Pi(�jc) (up to a normalisation factor)that a data point from a given class c will have subpattern � in n-tuple i. Assuming thesedistributions for di�erent n-tuples to be independent of each other, the joint distributionover all the sub-patterns taken together isP (�jc) = Yi Pi(�jc): (24)



The Theoretical and Experimetal Status of the n-tuple Classi�er 17This can be used for maximum likelihood classi�cation, or converted to posterior classprobabilities using Bayes' rule with class priors P (c), if they are available. The independenceassumption lacks plausibility, because it would be remarkable for the correlations requiredto make the classes distinguishable not to be re
ected in correlations between the n-tuples,but nevertheless, good results have been reported with this formulation, which has beenre-invented from time to time (Bledsoe & Bisson, 1962; Sixsmith et al., 1990; Badr, 1993).Aside from its implausibility, its main practical problem is that factors of zero appear if anaive estimate of Pi(�jc) is used for subpatterns which never appear in the training data.In practice these are replaced with a small ad hoc positive constant, say �, leaving scope formore principled approaches to estimating these probabilities.The n-tuple method with �nite threshold can be seen as a scaled and translated approx-imation to the logarithm of (24). Speci�cally, if test pattern u has sub-patterns �(u), andthe Tc training patterns from class c supply the tallies Tci� = Xv2Dc ��;�i(v) used to estimatePi(�jc) by Tci�=Tc, then for suitable choices of � and �, the network responses in (5) willapproximately satisfyN + log �TNc P (�(u)jc)�� log � = NXi=1 �1 + log Tc + logPi(�(u)jc)� log � �= NXi=1�1 + log Tc�i� log � � � NXi=1 ��(Tc�i) (25)as illustrated by �gure 3. For integer tallies, the approximation becomes arbitrarily accuratefor � = 1 as � ! 0. Hence the standard n-tuple method could be justi�ed this wayif the independence assumption were acceptable and the absence of sub-patterns in thetraining data could be taken as strong evidence that the corresponding probabilities aretiny. Essentially, the method counts the number of factors of � in (24).



The Theoretical and Experimetal Status of the n-tuple Classi�er 184 Preprocessing of scalar attributesA RAMnet classi�es bit strings, but the attributes of the patterns in the StatLog data setsare mostly real numbers or integers. Given that generalisation from numerical attributesshould be related to arithmetic di�erences, and generalisation in RAMnets is related toHamming distances, it is important to transform numbers into bit strings in such a way thatnumerical proximity is transformed into Hamming proximity. A memory-e�cient methodtailored to the generalised Hamming distance underlying RAMnet generalisation has beenprovided by Allinson (Allinson & Ko lcz, 1993), (Allinson & Ko lcz, 1994a), using a combi-nation of CMAC and Gray coding techniques. The prescription for encoding integer x is toconcatenate K bit strings, the jth of which (counting from 1) is x+j�1K , rounded down andexpressed as a Gray code. The Gray code of an integer i can be obtained as the bitwiseexclusive-or of i (expressed as an ordinary base 2 number) with i=2 (rounded down). Thisprovides a representation in aK bits of the integers between 0 and (2a�1)K inclusive, suchthat if integers x and y di�er arithmetically by K or less, their codes di�er by Hammingdistance jx�yj, and if their arithmetic distance is K or more, their corresponding Hammingdistance is at least K. This is illustrated in �gure 4, and more comprehensive illustrationsare given by (Allinson & Ko lcz, 1993).Because tuple score decays exponentially with Hamming distance 12, there should berelatively little ill e�ect if a training pattern further than L=n bits away from a test patternis replaced by another training pattern further than L=n bits away (although �gures 1 and7 indicate that L=n is a very approximate estimate). Thus if there are A scalar attributes,one can expect the non-linearity of the CMAC/Gray mapping to do little harm if K > L=An .



The Theoretical and Experimetal Status of the n-tuple Classi�er 19There are aK bits per attribute, so this condition isa < n: (26)Scalar di�erences up to �K fall within the linear region of the mapping. This represents afraction 2K(2a�1)K or about 21�a of the largest separation allowed. With a < n, the \gener-alisation Hamming distance" L=An = aKn corresponds to a scalar separation of �aKn , whichis the fraction 2an(2a�1) � an21�a (for a > 1) of the largest possible scalar separation.For a = 1, the mapping becomes the \thermometer code", in which integer x is mappedto a bit string with the last x bits set and the remaining K�x=K unset. If K is adjusted topreserve the input interval, then larger a values give shorter codes, which should be similarlye�ective as long as a < n and scalar attributes separated by more than fraction 21�a oftheir dynamic range can be regarded as dissimilar as far as generalisation is concerned.Figure 5 shows the test set classi�cation accuracy as a function of n for a 100-bitthermometer code, a 48-bit (a = 3, K = 16) code and a 40-bit (a = 5, K = 8) codefor one of the datasets studied. For small values of n, the longer codes perform better,presumably because they are linear over a larger fraction of the dynamic range. But withincreasing n, the \generalisation distance" shrinks, so more and more of the linear regionof the longer codes is ignored by the RAMnet, eliminating their advantage. Meanwhile,accuracy improves with n, eventually levelling out. This is probably due to making higher-order correlations available, as well as reducing saturation e�ects.5 The experimentsExtensive experimental trials were conducted in order to benchmark and study the n-tuplealgorithm.



The Theoretical and Experimetal Status of the n-tuple Classi�er 205.1 Selection and pre-processing of StatLog data setsThe European Community ESPRIT project 5170, the StatLog project, was designed tocarry out comparative testing and evaluation of classi�cation algorithms on large scaleapplications. About 20 data sets were used to estimate the performance of 23 procedures.These are described in detail in (Michie et al., 1994). Each of the larger data sets (withmany more than 1000 samples) were randomly split into training and testing partitions.Di�erent methodologies (cross-validation and bootstrap) were applied to the smaller datasets. This study used the large data sets, which are summarised in table 2. There are 11 ofthese.5.2 Experimental detailsThe CMAC/Gray parameters used were K = 8 and a = 5, giving 40-bit representations ofthe integers in [0; 248]. All scalar attributes were linearly rescaled and rounded to obtainintegers in this interval. In the Letter data set (See Table 2), where the attributes cantake on only 16 values, it would be more reasonable to use a one-out-of-N encoding withstrings of 16 bits, but the CMAC/Gray procedure was used anyway for the convenience ofuniformity.The threshold � was set to 1 in all the experiments reported here, the n-tuple size nwas set to 8, and N was set to 1000 n-tuples. These values for n and N yield the bestclassi�cation results and have been determined experimentaly as discussed in section 2.2.The results reported are averages over 10 di�erent random input mappings �. Using n = 6gave similar results.



The Theoretical and Experimetal Status of the n-tuple Classi�er 215.3 Time and Memory requirementsComputation time requirements were insigni�cant in these experiments, which were carriedout with a C++ program on a SUN Sparc workstation. For example, an 8-tuple networkcan be trained on the 2000 57-attribute training patterns of the BelgianII data set in about49 seconds. Sixteen of these seconds are needed just to read in the data; another 4 to dothe CMAC/Gray conversion of the 
oating point attributes; and the �nal 29 to train theRAMnet itself. Testing the same 2000 patterns takes slightly longer, 37 seconds insteadof 29, because a loop over classes is needed within the loop over n-tuples. Detailed timingstatistics are not published for the algorithms used in the StatLog project, but it is clearthat popular neural network algorithms such as Back Propagation and even the relativelyfast Radial Basis Functions are slow by comparison. The algorithm is highly parallelisable,so if it were important for the RAMnet to be even faster, special purpose parallel hardwarecould be designed or purchased (Aleksander et al., 1984). It would be feasible for a biologicalsystem to implement a highly parallel but otherwise trivial calculation along these lines.The storage requirements were moderate in most cases. In the most extreme case(Shuttle) 128kB of RAM per class was needed.5.4 ResultsThe classi�cation results for each algorithm attempted with each data set are presentedin �gure 6. Table 1 gives a brief description of each algorithm with the symbol used torepresent it in the �gure. The classi�cation error rates increase from left to right, and arescaled separately for each data set, so that they equal 1 at the error rate of the trivialmethod of always guessing the class with the highest prior probability, ignoring the inputpattern.



The Theoretical and Experimetal Status of the n-tuple Classi�er 22As remarked in section 5.2, the results plotted for the n-tuple recognition algorithmare averages over 10 randomly selected input mappings. If the corresponding standarddeviations were plotted as error bars in �gure 6, they would be obscured by the dotsrepresenting the means.Algorithm codes appear in Table 1. Classi�cation error rates increase from left to right,and are scaled separately for each data set, so that they equal 1 at the error rate of thetrivial method of always guessing the class with the highest prior probability, ignoring theinput pattern. The arrows indicate the few cases in which performance was worse than this.6 Analysis of ResultsThe n-tuple method delivered competitive accuracy on 6 of the data sets tested (Shuttle,Letter, Tsetse, BelgianI, Chromo, SatIm), performed modestly on 1 (DNA) and failedentirely on the other 4 (Belgian II, Cut50, Cut20, Technical). Further experimental andtheoretical analysis was carried out to explain the failures.The available tuple-distance theory is not amenable to treating overlap e�ects, eventhough �gures 2, 1 and 7 (and many like them) show these to be important. Therefore wegenerated and inspected many detailed Hamming distance vs. tuple score plots like �gure1 in order to develop a qualitative impression of the validity of this theory when there aremany training patterns.Ignoring overlap e�ects, a test pattern should be assigned to the class of most of thetraining patterns that lie nearer to it, in Hamming distance, than about L=n. A glanceat �gure 7 shows that the distribution of tuple distances bears no systematic relationshipto L=n, but nevertheless it was found that the closest patterns did tend to determinethe decision, at least when the class priors were roughly equal. Figures 7a and 7b show



The Theoretical and Experimetal Status of the n-tuple Classi�er 23examples of this, which was by far the most common situation encountered. Figure 7cshows an error due to overlap e�ects, abetted by a highly skewed prior. The 4 troublesomedatasets had highly skewed priors and predominately showed this pattern, although thevery easy Shuttle dataset also had highly skewed priors. Figure 7d shows a relatively raresituation in which overlap e�ects rescued a pattern which would have been misclassi�ed,judging by its Hamming-near neighbours. It would appear that although overlap e�ects arequantitatively important, they tend not to alter the conclusion that the near neighboursdetermine the decision, at least when the priors are relatively uniform.Given that Hamming neighbours tend to determine the classi�cation outcome, it seemssensible to suspect that test patterns in the 4 problematic data sets have a shortage of goodneighbours. It turns out that they simply don't have enough neighbours at all, within thedistance scales relevant to RAMnet generalisation. To generalise properly, a test patternmust have at least 1 training pattern within a Hamming distance of about L=n. Distributedevenly over A CMAC/Gray-mapped scalar attributes, this is a scalar di�erence of aboutan21�a, with the attributes scaled to lie between 0 and 1, as explained in section 4. Thereforeeach training pattern can provide information about any test pattern which falls within ahypercube of volume roughly � an21�a�A. The number of such cubes required to cover theregion of attribute space where test data is likely to appear can be crudely estimated byapproximating this region as a hyper-rectangle with edge lengths given by the eigenvaluesof the sample covariance matrix of the training data. Any eigenvalues smaller than an21�ashould be rounded up to this value, because the covering cubes must be at least this thick.The number of \generalisation hypercubes" required to cover the data region is thereforeroughly AYi=1max(1; �ina2a�1) for 1 < a � n, where the �i are the eigenvalues. Figure8 shows this lower bound on the number of training samples required, for each dataset



The Theoretical and Experimetal Status of the n-tuple Classi�er 24studied, taking a = 5 and n = 8 as in the experiments.Aside from Technical and DNA, the problematic datasets stand out as several ordersof magnitude more de�cient in training data than the others, some of which are mildlyde�cient according to this crude estimate. DNA is special in that its Boolean attributes weretreated as integers, so it's data distribution will be highly non-Gaussian and therefore poorlydescribed by the covariance matrix. The Technical data set turned out to be coverable byjust 1 hypercube, according to this estimate. Presumably then, each of its patterns looksthe same to the RAMnet, and this accounts for its failure. Perhaps a non-linear rescalingof its attributes, such as histogram equalisation, would help. This possibility remains to bepursued.It is not possible to address the data de�ciencies by supplying more data, especiallywhen several orders of magnitude more samples are needed, but it is possible to tweak theRAMnet parameters to enlarge the \generalisation cubes". However, there is less room tomaneuver than one would like. To enlarge the cubes, n must be decreased, but this risksdegradation of performance due to loss of high-order correlation information, as indicated in�gure 5. Decreasing n also requires decreasing a, if the constraint a � n is to be respected,keeping L=n within the linear region of the CMAC/Gray mapping. Low a values give lessmemory-e�cient representations of scalars, at any given resolution. Systematic experimentsvarying the parameters did not produce signi�cant improvements on the 4 problematic datasets (or the others). A more far-reaching improvement in the algorithm is required.7 ConclusionsExtensive experimental trials, on a scale uncommon for any algorithm, were carried outwith the n-tuple classi�er. The fact that this was possible at all testi�es to the method's



The Theoretical and Experimetal Status of the n-tuple Classi�er 25speed, which derives from its simple principle of learning by 1-shot memorisation of randomfeatures. In 6 of the 11 datasets tested, this speed and simplicity can be enjoyed withoutsacri�cing classi�cation accuracy relative to 23 other slower methods, including the mostpopular neural network methods. Clearly, the n-tuple algorithm should be considered byevery neural network researcher before a more sophisticated and therefore slower method isapplied.The theoretical tools available for the n-tuple method were reviewed and used to place itinto context with other algorithms. These tools were also used to explain what went wrongon the 4 data sets which gave poor results. One problem is that skewed class priors tendto be problematic in a way that is di�cult to quantify using current theories of \overlape�ects". A more fundamental problem is that one parameter, the n-tuple size n, controlsboth the distance-scales associated with generalisation behaviour, and the complexity ofthe random features used to discriminate classes. For some data sets it is not possible to�nd one setting suitable for both of these considerations.In spite of its imperfections, the n-tuple method demonstrates that its underlying princi-ple, learning by memorisation of random features, is a powerful one. It should be rewardingto develop the theory further, especially by inventing practical approximations to describeoverlap e�ects, and to invent improved methods which incorporate the underlying principlein a more 
exible way.8 AcknowledgementsThe authors are grateful to Louis Wehenkel of Universite de Liege for useful correspondenceand permission to report results on the BelgianI and BelgianII data sets, Trevor Booth ofthe Australian CSIRO Division of Forestry for permission to report results on the Tsetse
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The Theoretical and Experimetal Status of the n-tuple Classi�er 31Figure 1 Tuple score vs. Hamming distance for a �xed test pattern u and training patternsfv1; :::; vT g. The score of u was computed for the system trained on just one patternvi. Distances between patterns of the same class are marked �, and � is used fordi�erent classes. Functions (10) and (11) are plotted as 3 standard deviation errorcurves. The total number of patterns of the correct class (dotted line) and incorrectclasses (solid line) are plotted in the margins as functions of Hamming distance (top)and tuple score (right). The means of these distributions are indicated by � and �marks. The \generalisation distance" L=n is indicated by a vertical dotted line.Figure 2 a) actual network response to a test pattern u; b) accumulated network response (asthough patterns never overlapped on any tuples) and c) the number of new RAMcells addressed as a function of training patterns fv1; :::; vT g. Light lines are usedto indicate the discriminator associated with the class that generated u, dark linesdenote the other class. The training data is sorted by the Hamming distance to thetest pattern.Figure 3 1+ logT� log � truncated to 0 for T < � (dark lines) for � = 0:25; 0:05; 0:005 and 0:0001, and��(T ) (light lines) for � = 1; 2 and 3, as functions of T . This shows that (25) can be areasonable approximation at integral values of T in some circumstances, particularlyfor �! 0 with � = 1.Figure 4 Hamming distance between two CMAC/Gray-transformed integers vs. their arith-metic di�erence, for 3�104 randomly chosen pairs of integers. K = 8 and a = 5. Therelationship is linear for Hamming distances up to K, and the transformed distanceis bounded below by K for greater Hamming distances.



The Theoretical and Experimetal Status of the n-tuple Classi�er 32Figure 5 RAMnet's performance on Cut20 as a function of tuple size n for di�erent values ofa and K. The error bars of size � 1 standard deviation are centred around the meanperformance measured for 10 runs.Figure 6 Results for N-tuple (�) and other algorithms.Figure 7 Tuple score vs. Hamming Distance: a) Classi�cation error (�=952, �=970) due tohigh number of NN from the incorrect class; b) Correct classi�cation (�=803, �=564)resulting from the domination of NN patterns of the correct class; c) Classi�cationerror (�= 805, �=884) caused by exceptionally large number of patterns from theincorrect class in the tail of the distribution (skewed priors); d) Correct classi�cation(�=996, �=994) thanks to the smaller tuple overlap on patterns from the correct class.Figure 8 The number of hypercubes required to cover the space occupied by data. The datasetson which n-tuple classi�er performed poorly are printed in bold face. A star denotesthe existence of skewed priors.
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The Theoretical and Experimetal Status of the n-tuple Classi�er 39RAMnets.(�) n-tuple recogniser.Discriminators.(|) Back Propagation in a 1-hidden-layer MLP.(�) Radial Basis Functions.(~) Cascade Correlation.(�) SMART (Projection persuit).(
) Dipol92 (based on pairwise linear discriminators).(	) Logistic discriminant.(�) Quadratic discriminant.(�) Linear discriminant.Methods related to density estimation.(�) CASTLE (Probabilistic decision tree).(�) k-NN (k nearest neighbours).(
) LVQ (Learning Vector Quantisation).(�) Kohonen topographic map.(") Naive-Bayes (Estimate assuming independent attributes).(�) ALLOC80 (Kernel function density estimator)Decision trees.(a) NewID (Decision Tree)(b) AC2 (Decision Tree)(c) Cal5 (Decision Tree)(d) CN2 (Decision Tree)(e) C4.5 (Decision Tree)(f) CART (Decision Tree)(g) IndCART (CART variation)(h) BayesTree (Decision Tree)(i) ITrule (Decision Tree)Table 1: Synopsis of Algorithms with symbols used in Figure 6.
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Name Largest Prior Training Patterns DescriptionClasses Attributes Testing PatternsBelgianII 2 0.924 57 real 2000 1000 Classify measurements on simulatedlarge scale power system as leading tostable or unstable behaviour.Cut50 2 0.941 50 real 11220 7480 50 measurements from a candidate seg-mentation point in joined handwrittentext. Classify as suitable cut point ornot. Commercially con�dential data.Cut20 2 0.941 20 real 11220 7480 Best 20 attributes (by stepwise regres-sion) from Cut50.Technical 91 0.230 56 4500 2580 Commercially con�dential. Appears tobe generated by a decision tree. Mostattribute values are 0.DNA 3 0.525 180 Boolean 2000 1186 Sequences of 60 nucleotides (4-valued)classi�ed into 3 categories.SatIm 6 0.242 36 integer 4435 2000 3x3 pixel regions of Landsat images. In-tensities in 4 spectral bands. Classi�edinto 6 land uses at central pixel.Chromo 24 0.044 16 20000 20000 Images of Chromosomes, reduced to 16features.BelgianI 2 0.5664 28 real 1250 1250 As Belgian II with a smaller simulation.Attributes thought to be least informa-tive omitted from simulation.Tsetse 2 0.508 14 real 3500 1499 Classify environmental attributes forpresence of Tsetse 
ies.Letter 26 0.045 16 16-valued 15000 5000 Images of typed capital letters, de-scribed by 16 real numbers discretisedinto 16 integers.Shuttle 7 0.784 9 real 43500 14500 Classi�cation problem concerning posi-tion of radiators on the Space Shuttle.Noise-free data.Table 2: Descriptions of data sets used.


