
P pattern recognition based on a probablistic RAM
net using n-tuple input mapping

M.Ouslim
K.M. Curtis

Indexing terms: Digital neurul network, p R A M, n-tuple, Pattern clussificrction. Node connectivity

~ ~~~~~

Abstract: A multilayer digital neural network,
based on the probabilistic random access memory
(DRAM), is used as a P pattern classifier system.
This network presents an elaborate imple-
mentation of the n-tuple technique, which has
mostly been used for pattern recognition (Bledsoe
and Browning, 1959). The network’s main
properties, discrimination and generalisation, are
discussed as a function of the PRAM
connectivity. Pyramid networks, based on
different PRAM connectivities, are simulated
using an enhanced version of global reinforce-
ment learning. n-tuple input mapping based on
data analysis is proposed. The results show that
combining the permuted data-based input
mapping with a PRAM net, using different node
connectivities through the pyramid layers, can
achieve a good balance of the network’s
properties, when handling a P pattern class-
ification task. Results are presented for the 10
digit recognition problem, which are motivating
and very encouraging.

1 Introduction

The n-tuple technique addresses the problem of extract-
ing general features in a pattern recognition task. In
the case of images, it consists of handling the whole
image as a set of its parts, each of which is a group of
n pixels called an n-tuple [1-4]. Studies into the n-tuple
technique have led to new types of Boolean neural net-
works. The alternative to implementing these neural
networks, based on random access memories (RAMS),
presents an attractive and cost-effective solution. Dif-
ferent variants of the RAM exist; they differ by the
type of information they can store and the type of
strategies governing their functionality within the net-
work. Among them we cite the probabilistic logical
node (PLN) [3] and the goal seeking neuron (GSN) [5] ,
which is a RAM with a storage capacity of three values
0, 1 and U (undefined), and the probabilistic RAM
@RAM) [6], in which a continuous memory word is
0 IEE, 1998
ZEE Proceedings online no. 19982455
Paper first received 22nd October 1997 and in revised form 23rd July 1998
M. Ouslim is with the Electronic Institute, University of Sciences and
Technology, USTO - Oran, B.P. 1505 El-mnouar, Algeria
K.M. Curtis is with the Department of Electrical Engineering, University
of Nottingham, Nottingham NG7 2RD, UK

used. The PRAM generalises the Boolean neuron con-
cept; this is why it is used as a basic node in this paper.

The Boolean neuron connectivity affects the
properties of the net in a conflicting manner; a small
connectivity enhances generalisation but degrades
discrimination, whereas a high connectivity was shown
to achieve the reverse [2].

In this paper, we describe the use of a PRAM net
arranged as a pyramid (reverse tree) [7, 81, where the
nodes present different connectivities in an attempt to
balance between the net’s main properties. In addition,
in contrast to previous work [5, 7-10] which has been
devoted to enhancing the n-tuple processing stage, we
provide an adequate n-tuple extraction mechanism as a
complementary stage to enhance further the technique
when it is implemented on an elaborate processing
engine such as the pyramidal PRAM net.

number

1 comparator pRAMout

U input

1
out=0.6 (spike train)

R=10
Fig. 1 Pulse-basedpRAM neuron

I . 1 Probabilistic RAM
The PRAM stores an M-bit number representing the
probability a (0 I a 5 1) to fire (output 1) (Fig. 1).
This is achieved by adding the stored probability to an
A4-bit random number G, according to eqn. I :

a t = { 1 i f a + G L l
0 otherwise

As a result, an n-input PRAM is controlled by 2“ ran-
dom variables. The conditional probability for a
PRAM to output a 1, given a specified input vector, is
given by the simplified equation [l 11

where U is the address obtained by the application of
an n-input vector i, out is the PRAM’S output and a,, is
the probability stored at address U.

Prob(out = lli) = a, (2)

41 5 IEE Proc.-Vis. Image Signal Process., Vol. 14.7, No. 6, December 1998

When the PRAM evolves in time during R time
steps, the stored probability can be estimated by the
unary stochastic representation of a spike train of
length R appearing at the PRAM'S output. Suppose the
output is observed over R time steps and there are N ,
ones; then an estimate of au is N I / R (Fig. 1). The spike
train generation is controlled by the mechanism used to
generate G. This must provide a uniform probability
distribution over all generated G values and guarantee
the correct transmission of the stored probability to the
input of the following PRAM. In this case, we choose
R = 2', with M = 7 so that the memory required for
the whole network will not be too excessive.

The reinforcement learning algorithm, based on a
reward/punishment mechanism, is considered since it
has been shown to be the most appropriate [6, 111. The
learning phase is based on the adjustment of the con-
tents of the PRAM (a s) at each time step, according to
the following rule [6]:

Aau = au(t + 1) - au(t) = Aa; + AaE
= p (r (a - a,) + X(E - a,)p) (3)

where a = 1 - a, a is the PRAM'S output, r and p are
the reward and penalty signals, respectively, and 0 s p
s 1 and 0 s A 5 1 are the learning constants.

2 PRAM multi-layer properties

As a single pyramid is used to handle a P pattern clas-
sification problem, it then becomes obvious that any
node connectivity within the net must be n 2 log2P, to
allow discrimination among the P patterns at the node
level. For a given image resolution, we have several
alternatives to select the PRAM connectivity within dif-
ferent layers of the pyramid [12]. To restrict the
number of possible pyramid architectures to the most
relevant, the discrimination and generalisation of the
PRAM net main properties are discussed here as a
function of the PRAM connectivity.

2. I Discrimination
The n-connectivity PRAM can discriminate between up
to 2" different patterns and, when taken jointly, these
patterns can present differences up to lln the total
input covered. However, in the case of a pyramidal net,
the discrimination is limited by the PRAM with the
smallest connectivity and the position of this node
within the network, whether this connectivity is in the
input, hidden or output layer. If nout is the node con-
nectivity in the output layer, then each input connec-
tion to the output node represents the sub-pyramid's
output covering a l/nout fraction of the input image.
That is, the net's output node may not detect the differ-
ences between patterns that occur in a l/nout fraction of
the total input image.

It is therefore recommended to have a high connec-
tivity at the output layer. When we move through input
mappings, from the pyramid base towards its apex, the
nodes map differences into similarities due mainly to
the node fan-out being limited to 1 . Using PRAM
nodes helps to alleviate this problem since we can
change the memory contents of all nodes in an incre-
mental manner, thus forcing the output to settle at a
desired value by the end of a training session.

2.2 Generalisation
In a boolean neural network, the generalisation is
achieved at the network level by considering the joint

416

contribution of several nodes within the same layer [3].
If m exemplars are used to train the net presenting n1
nodes within its input layer, then a given pattern exem-
plar is divided into n l sub-patterns, each of which is
used to train a specific node. The generalisation then
covers the union of all combinations of the created n1
subsets, each of which has at most m elements. It fol-
lows that the maximum of the generalisation ability can
be quantified by G,, = m"1, where m reflects the train-
ing set diversity, and it is affected by the node connec-
tivity at the input layer.

In the case of P patterns, an n-input node can allow,
on average, m = 2"/P different representative exemplars
for each pattern. Consequently, small node connectivi-
ties limit the diversity of the training set at the node
level. Therefore, a relatively high value of the node
connectivity is recommended, at least at the input layer
when handling a P pattern recognition problem with a
single pyramid. However, if we limit the pattern's
diversity and distribute it over all nodes within the first
layer (i.e. not localised in specific nodes), by adopting
an appropriate n-tuple input mapping module based on
preprocessing the training data, it might be possible
that the small connectivity node generalises better when
all joint node contributions are not in conflict. Accord-
ingly, several combinations of sub-patterns seen during
training can easily be created.

This discussion helped to determine the connectivity
of PRAMS at the output layer, and consequently to
limit the choices for the other PRAM connectivities in
the input and hidden pyramid layers, according to the
image resolution used.

3

The manner in which the n-pixels are extracted to form
the n-tuple is referred to as n-tuple input sampling or
mapping. These combined pixels form the sub-pattern,
called the n-tuple state, which is generally used as an
address to a single weightless neuron of a digital net
input layer to decode the corresponding n-tuple state.

Consider two training patterns from two different
categories: 0001 and 1010, and a test pattern 1011
assumed to belong to the second class. If the n-tuple
size is 2 and we use the grouping 00 and l0, the
test pattern 10 11 generates a score of 0 for the first
category and f for the second category (the score repre-
sents the number of similar n-tuples over the total
number of n-tuples). However, if the grouping is such
that the first and the third bits form one n-tuple and
the second and the fourth form the second n-tuple,
then we get the states 00 01 for pattern 1 and 1_L 00 for
pattern 2, and the test pattern presents 11 01, which
leads to a score of f for both categories. As a result, the
scheme fails in classifying the test pattern. It becomes
clear that when a grouping is chosen, boolean functions
for each n-tuple are generated according to the states
present in the training set of that particular n-tuple. If
the grouping changes, the expressions of these boolean
functions automatically change.

In this study, the order of the n-tuple elements is
irrelevant in defining the n-tuple; what matters the
most is the significance of the n-tuple elements, as we
are not interested in specific n-tuple states favoured by
a specific problem, but rather in extracting all n-tuple
states. Under this condition, the total number of all
possible mappings tot,, which sample n-pixels (n-
tuple), from an image of Qn pixels, into a set of Q

Choice of n-tuple input sampling

IEE Pioc -Vis Image Signal Process, Vol 145, No 6 December 1998

strings of length n, is given by (CnQ = Q!/(Q - n)!n! =
(Q(Q - I) ... (Q - n + 1))/n!)

tot,,, = cZncQn-nc2n-2n . . . ~nQn--in

. . . c&n-(Q- l)n
n

(4)

Searching all this space for an optimum solution is not
computationally possible. For example, in the case of
Qn = 8 x 8 and n = 4, we get Totmap = 1.05 x This
is why we propose an input mapping based on data
analysis; we believe that extracting knowledge from the
actual data to select the n-tuples is the most appropri-
ate way to exploit the n-tuple technique to its fullest.

3.7 Proposed n-tuple sampling scheme
In a P pattern recognition problem, the n-tuples must
fulfil the following conditions:
(i) the n-tuples must convey the similarities between
patterns in the same class.
(ii) the n-tuples must convey the differences between
patterns in different classes.
One way to achieve these objectives is to take into con-
sideration the local variations seen by each pixel within
the image, according to the data used. As a result, we
get L (image size in pixels) functions, each of which can
be represented by P (number of patterns) strings of
length T (size of each training set). Since each individ-
ual pixel goes through a cycle of variations, we suggest
to compute the resultant probability of a given n-tuple
to be in a given state, based on the individual probabil-
ity densities of the constituent pixels. It is therefore
necessary to assume that the pixels which form the n-
tuple are not correlated. This simplification is done to
avoid excessive computation at this preliminary stage.
Hence, we use the frequency of occurrence of a pixel in
the state 1 as the main metric to represent changes at
the pixel level while handling one training set at a time.
Normally, if an n-tuple state is characteristic for a
given training set, this state should be approximately
constant (i.e. occurs with a high probability) and
should have a low probability of occurrence for other
training sets, Hence, to group pixels in n-tuples we
must test for their frequency of occurrence in a particu-
lar state.

To mathematically formulate this concept, we restrict
the n-tuple size and the number of patterns to be classi-
fied to 4. In this case, an n-tuple element w is character-
ised by four frequencies cfwo, f w l , fw2, f f i3} recorded for
the four classes used. Given the threshold value E (nor-
mally less than 0.5), we search for n-tuple elements that
respond to the following criteria:
(i)fwi < E mfw1 > 1 - E for all i E (0, 1, 2, 3)
(ii) f,, < e df,, > 1 - E for all i, j E (0, 1,2, 3) and i

Since n pixels are to be grouped in the same n-tuple, we
have a multitude of choices to fulfil these criteria.

In the case of a black and white image, the pattern
space can be at most divided into two partitions (one
dichotomy) at the pixel level. In this context, we form
four main partitions to group all image pixels. Partition
1 contains pixels with similar frequencies for all pat-
terns used, represented by P similar patterns and one
characteristic state. Partition 2 gathers pixels presenting
exactly P/2 similar frequencies, represented by P/2 sim-

+ j

IEE Proc -VIS Image Signal Process ~ Vol 145, No 6, December 1998

ilar patterns and Cpp/2 (i.e. = p!/((p - p/2)! x @/2)!))
characteristic states. Partition 3 contains pixels with P
- 1 similar frequencies, represented by P - 1 similar
patterns and P characteristic states. Partition 4 groups
all remaining pixels not included in the previous three
partitions.

For clarity, we use the following specific example.
Let E = 0.2. If the pixel w presents the frequencies 0.4
0.7 0.6 0.2, then w has an indeterminate state and
belongs to partition 4. However, if the frequencies are
0.9 0.9 0.1 0.9, w has the state: (l,l,O,l) and belongs to
Partition 3.

An n-tuple is desirable that incorporates pixels with
the corresponding states (O,O,O,O) partition 1, (0,l ,O,l)
partition 2, (1 ,O,O, 1) partition 2 and (0,0,0,1) partition
3. This is because the n-tuple states are (0,O.l.O) for
pattern I , (0.1.0.0) for pattern 2, (0,O.O.O) for pattern 3,
and (0.1.1.1) for the fourth pattern, achieving discrimi-
nation among the four patterns at the n-tuple level.
This n-tuple sampling scheme was set up as an algo-
rithm with the following steps:
(i) Compute the frequency of occurrences of image pix-
els to be on for all P training sets used.
(ii) Group pixels into four main partitions, according
to their ability to discriminate between the pattern
classes.
(iii) Transform frequencies into pixel states (threshold
levels E can be varied according to needs).
(iv) Form n-tuples by taking pixels from partition 1
and partition 2. Conditions are set up to randomly
search for pixels from partition 2 so as to allow dis-
crimination among the four patterns. Pixels from parti-
tion 1 and partition 3 are then grouped. When
partition 1 is exhausted, the process continues for the
remaining partitions.
Note that partition 4 contains pixels which present an
indeterminate state when thresholding their frequency
of occurrences. In the extreme case, a pixel with f = 0.5
does not provide any contribution to the particularities
of the pattern (50% of the training exemplars have this
pixel with the state 0 and the remaining 50% represent
it with the state 1). It seems that to enhance the gener-
alisation property, it is beneficial to pack this type of
pixel into the same n-tuple. However, searching for
such pixels to be part of another partition complicates
the algorithm and slows down its operating speed.

Note that this particular partitioning of pixels into
four partitions is mainly because we want to provide a
simple algorithm that can operate as fast as possible.
This algorithm is general in its application, since it does
not assume any underlying specific knowledge about
the pattern classes handled.

However, the distribution of the n-tuples at the
pyramidal net input is pivotal to the successful applica-
tion of the PRAM net. Indeed, if the connectivity of
the output layer is nho, then the image is divided into
nho equal sized quadrants, each of which is independ-
ently handled by the use of sub-pyramids built at prec-
edent layers. Therefore, we can evenly arrange the
obtained n-tuple set through all these parts, so that
each sub-pyramid can contribute to the decision made
at the output. As a result, we get a two-stage n-tuple
input mapping. In the first stage, we compact pixels
conveying information about the object within appro-
priate n-tuples, to increase discrimination between dif-
ferent patterns and decrease it between noisy patterns.

417

In the second stage, we evenly distribute the obtained
n-tuples through the pyramid base. For this purpose,
we define the joint n-tuple distance (JND) as the
number of n-tuples which represent similar states when
P, P - 1, .., 2 patterns are jointly taken using the same
n-tuple input mapping. By gathering all joint n-tuple
distances for various input mappings covering all n-
tuples, we obtain the joint n-tuple distance map, where
an n-tuple can be one of P different types correspond-
ing to P, P - 1, ..., 2, 0 patterns, respectively, with the
same state for that particular n-tuple. This map gives
the information about the correlation among the pat-
terns, as well as the spatial distribution of all n-tuples.

Note that this representation is obtained by record-
ing the frequency of occurrence of all n-tuple states for
all n-tuples using the transformed training sets, accord-
ing to the n-tuple input mapping used. This allows us
to define the characteristic image that reflects a high
similarity among all patterns within a given training
set, and it is obtained by selecting the n-tuple attractor
state (i.e. the most frequently occurring state) for all n-
tuples. By a simple comparison between all characteris-
tic images, we then get the JND that represents the cor-
relation among all patterns used.

4 Results and comments

Several computer simulations were carried out to high-
light the effect of using different node connectivities
and to test the n-tuple input mappings on a pyramidal
neural network [121.

o a o o o o o o o o ,
1 I 11: 1 1 1 ' 1 1,

3 3 3 3 3 3 3 3 3 3
4 4 4 % 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5

2 2 8 2 2 2 2 2 2 2

6 6 6 6 4 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
a t 1 ~ 8 8 m a a ~
9 9 9 9 9 9 9 9 9 9

Fig. 2 Sample of 10 digits used

For this purpose, real-life data were handled, consist-
ing of the digits shown in Fig. 2. The size of the image
at 24 x 16 suggests the use of various PRAM net topol-
ogies. In the case of the four-pattern recognition prob-
lem, four digits among the 10 available (0, 6, 8, 9) were
selected as being one of the most correlated cases. Each
digit was represented by 150 training exemplars and
150 test exemplars. A 4 4 - 4 6 PRAM net was simu-
lated to perform the recognition task. This choice was
mainly dictated by the saving in storage so that the
simulation could run on a simple IBM PC.

Three n-tuple input mappings were tested: the struc-
tured (i.e. regularly samples n consecutive pixels),the
data derived using the proposed algorithm, and a per-
muted version of the proposed algorithm. The spatial
distributions of the n-tuples represented by these map-
pings are indicated using the JND distance map given
in Fig. 3 . Table 1 summarises the proportion of each
n-tuple type obtained from a corresponding n-tuple
input mapping. The net's performance is measured
using the convergence and recognition rates, as these
are the most common metrics used for pattern recogni-
tion problems. The obtained results are illustrated in
Fig. 4 and Table 2. The learning constants p and A
were set up as 0.8 and 0.008, respectively.

418

a b c d e f g h

4 3 2 0

number of pattern!; presenting similar states

Fig.3
P = 4 a n d P = I O
Case of 24 x 16 digits; each entry represents an n-tuple.
Input mappings used are listed in order of appearance: (4,5,6,7) digits: a =
mapped, b = permuted, (0,1,2,3) digits: c = mapped, d = permuted, (0,6,8.9)
digits: e = mapped, f = permuted, g = linear IO digits: h = derived from b-d-f
plotted for (3,4,5,9)

Joint n-tuple distunce map for digits

Table 1: Proportion of each n-tuple type obtained from
corresponding n-tuple input mapping

n-tuple Group of n-tup'e types
mapping digits

a, b 4,5,6,7 65 23 6 6

c, d 0,1,2,3 56 20 5 19

e, f 0,6,8,9 35 21 11 21
h IO-digits 26 58 13 3

Proportion of n-tuples is given as a percentage of a total of 96

-

0 . 4 0 1 - - - - - - 7
0.324

0.08

800
0
0 200 400 600

number of iterations

Fig.4 net convergence rate
Various n-tuple mappings case of 4 digits - permuted
V- - -V structured linear

~ data-mapped

IEE Proc.-Vis. Imuge Signal Process., Vol. 145, No. 6, December 1998

Table 2: Recognition rate for 4 digits (0,6,8,9)

Training set Test set Convergence time
recognition (%) recognition (IBM PC 66MHz) n-tuple input mapping

Data-mapped 99 80 9343s (260 iterations)

Structured (linear) 97 87 4297s (100 iterations)

Permuted 100 93 6200s (140 iterations)

Fig. 4 shows that the network's convergence is better
in the case of the permuted and data-based mappings
than for the linear mapping. Using the permuted map-
ping, we managed to achieve a low convergence error
rate approximated at 2%, compared to 13% for the
structured mapping and 6% for the data-based map-
ping without permutation. We noted that the net based
on the structured mapping needed fewer iterations to
converge, where the estimated convergence time is 4297
s compared to the other nets, as illustrated in Table 2.
This is due to the high value of the convergence error
recorded for the structured n-tuple mapping. Fig. 4
presents a stable error for the structured mapping com-
pared to the data-based and permuted mappings. These
fluctuations are the result of changes in the PRAM
memory contents, which vary in the range [0, I].

However, Table 2 illustrates that the network using
the permuted mapping achieves the highest recognition
rate of 93% (i.e. the mean value of the recognition rates
corresponding to the four digits), whereas the non-per-
muted mapping only achieved 80%, even worse than
that of the structured input mapping. This result can be
justified by consulting the JND map. Indeed, we see
that the structured mapping presents relatively good
distribution of all n-tuple types throughout the input
layer of the pyramidal net compared to the data-based
input mapping, as illustrated by their respective JNDs
g and e in Fig. 3. In rearranging the obtained n-tuples,
using the data-based algorithm, we obtain the JND J
The resultant n-tuple mapping, called permuted map-
ping, presents better spatial distribution of the n-tuples
than the original data-based mapping; this is shown by
comparing the two JNDs e andfin Fig. 3.

This result allows us to state that breeding a good n-
tuple input mapping is not sufficient when used with a
PRAM pyramidal network; in addition, we must pro-
vide a uniform distribution of the n-tuple types at the
network input.

The PRAM network was extended to tackle the ten-
digit recognition problem. This necessitates increasing
the output layer to four nodes. The output was appro-
priately coded to represent each pattern uniquely. The
codes are chosen so that each output node has the
same possibility to be either one or zero. Hence, we
used the following codes: (1 lOO,O), (0001,1), (1010,2),
(0011,3), (0100,4), (0101,5), (0110,6), (0111,7), (1000,8)
and (1001,9). To get the JND of ten patterns, it is nec-
essary to perform exhaustive comparisons between all
representative patterns. In our case to avoid such com-
putations, we construct the resultant JND from three
different JNDs corresponding to the three arbitrarily
chosen groups of four digits (0,1,2,3), (4,5,6,7) and
(0,6,8,9), respectively. We then distributed the n-tuples
uniformly to obtain a balanced set of n-tuple types at
the input of the PRAM net. These permuted JNDs are
used to construct the JND for the ten digits, by taking
n-tuples from each JND without any overlap. The
obtained JND represents a particular n-tuple input

IEE Proc.-Vis. Image Signal Process., Vol. 145, No. 6, December 1998

mapping, and it was used to generate the transformed
training and test sets.

To evaluate the effect of this input mapping on the
PRAM net when it performs the recognition of ten dig-
its, we conducted several tests covering three PRAM
networks; the 4 4 - 6 , the 8-6-8 and the 6-8-8. The
first configuration saves memory but slows down the
training session as the pyramid depth is deeper; even
worse, it may happen that this net does not converge
due to the diversity of the training set, since the con-
nectivity used allows less than two different exemplars
per pattern. The second configuration 6-8-8 limits the
number of pyramid layers at the cost of a higher node
connectivity requiring 7 168 memory words, compared
with 13696 in the case of the 8-6-8 net. In addition,
these configurations present a high connectivity at the
output layer, as recommended in the discussion pre-
sented in Section 2.

We used the structured mapping for the three named
nets, and we trained them using the learning constants
p = 0.95 and h = 0.01. The training set covered 1500
patterns, representing 150 examples for each digit. We
noted that, in the case of the structured linear input
mapping, the 6-8-8 net outperforms the others con-
cerning the convergence error, which is around 12% for
the 6-8-8, I S % for the 8-6-8 net and 30% for the 4-4-
4-6 network. These networks have been trained for
1000 iterations for the 4-4-4-6 network and 500 itera-
tions for the 6-8-8 and the 8-6-8 networks. The 4-4-
4-6 network configuration did not show any improve-
ment in the convergence error rate; it was then judged
unable to learn this problem.

0.40

8
e
b
L-

0.35
0.30
0.25

O . 0 . ? i L ' ' ' " " " '
0 50 100 150 200 250 300 350 400 450 500

number of iterations
Fig. 5 Convergence error ,for IO digits (permuted mapping)

net4446
net868
net688

~ _ _
_ _ ~ _
.

Table 3: Recognition rate for 10 digits

PRAM net architectures

6-8-8 n-tuple input
mapping 8-6-8

Training set Test set Training set Test set

Linear 97 84 96 83
Permuted 96 86 98 89

419

When the permuted version of the data-based map-
ping was used, the error dropped to 9% for the 6-8-8
network compared to 14% for the 8-6-8 network. This
was not the case for the 4 4 4 - 6 network, where the n-
tuple input mapping did not enhance the network con-
vergence, as indicated in Fig. 5. However, the results
summarised in Table 3 correspond to the 6-8-8 and the
8-6-8 nets, confirming that the permuted mapping out-
performs the linear mapping, with the 6-8-8 net per-
forming best. This is an interesting result, as we get
better performance with less memory capacity require-
ment in using the 6-8-8 net compared to the 8-6-8 net.

As far as the training time is concerned, the 8-6-8
net took 360 iterations to converge to an acceptable
low error (14%), corresponding to 3h on a SUN work-
station; compared to 2 18 iterations, corresponding to
1 h 47min, for the 6-8-8 net. These are relatively slow
training sessions, mainly due to the use of the single
pyramid where the number of patterns used is relatively
high (1500).

However, in taking into consideration the recogni-
tion rate metric, even though we verified that the per-
muted input mapping performs better than the
structured mapping, we achieved an overall result of
89% recognition success. This is compared to other
studies where more than 90% of the recognition success
rate is generally reported for the recognition of hand-
written digits [13].

As the permuted n-tuple input mapping was based on
the JND (derived in this case in an indirect way), better
results are expected for a judiciously selected JND for
the ten-pattern recognition problem. The use of more
than one pyramid, to allow for the overlap among the
n-tuples, plays a positive role in enhancing the perform-
ance. These suggestions are left as a possible continua-
tion to this work.

However, we should bear in mind that this applica-
tion is meant to be a tool to verify the adequacy of the
proposed approach to select adequate n-tuples and the
effect of distributing them at the input of a Boolean
neural network. We did not intend to solve specifically
the digits recognition problem: this is why no complete
comparative study was undertaken with other tech-
niques. Nevertheless, the good results obtained are very
motivating and suggest that the use of such a scheme
should be further investigated.

5 Conclusions

In this paper, PRAM nets have been simulated and
used to tackle a P image recognition problem. This
study has emphasised the benefit of using a PRAM net
with different node connectivities from one layer to the
other, as each connectivity affects the main properties

of the net in a conflicting manner. By using such topol-
ogies, we can guarantee a good balance between the
net’s main properties; generalisation and discrimina-
tion.

A two stage n-tuple input mapping based on data
analysis was proposed. The first stage extracts n-tuples
according to discrimination among patterns at the n-
tuple level. This delivers a mixture of n-tuple types, and
when used with a single pyramidal PRAM net without
any overlap among n-tuples, required an adequate dis-
tribution of the obtained n-tuples at the pyramid base.
In this context, the joint n-tuple distance (JND) was
introduced and used to derive the final n-tuple input
mapping. The application of these propositions to digit
recognition was successful and confirmed their effec-
tiveness when handling a P pattern recognition task.

We should note, however, that the complexity
increases for big values of P (the number of patterns
used) when extracting the JND. This limitation of the
n-tuple input mapping can be avoided by using an indi-
rect way to derive the JND, as in the case for the digit
recognition problem proposed in this study.

We also believe that extending the variability of the
node fan-in within the same layer makes the network
perform better.

6 References

1 BLEDSOE, W.W., and BROWNING, I.: ‘Pattern recognition
and reading by machine’. Proceedings of the Eastern Joint Com-
puter conference, 1959, pp. 225-233

2 ALEKSANDER, I., and STONHAM, T.J.: ‘Guide to pattern
recognition using random-access memories’, IEE J. Comput.
Digit. Tech., 1979, 2, (l), pp. 29-40

3 ALEKSANDER, I.: ‘Weightless neural models for cognitive
design’, J. Intell. Syst., 1992, 2, pp. 31-52

4 OUSLIM, M., and CURTIS, K.M.: ‘Automatic visual inspection
based upon a variant of the n-tuple technique’, IEE Proc. Vis.
Image, Signal Process., 1996, 143, (9, pp. 301-309

5 FILHO, E.C., FAIRHURST, M.C., and BISSET, D.L.: ‘Adap-
tive pattern recognition using goal seeking neurons’, Patt. Recoi.
Lett., 1991, 12, pp. 131-138

6 CLARKSON, T.G., GORSE, D., TAYLOR, J.G., NG, C.K., ,
and : ‘Learning probabilistic RAM nets using VLSI structures’,
IEEE Trans. Computers, 1992, 41, (12), pp. 1552-1561

7 AL-ALAWI, R., and STONHAM, T.J.: ‘Functionality of a
multi-layer Boolean neural network’, Electron. Lett., 1989, 25,
(lo), pp: 658-659

8 DE CARVALHO, A.. FAIRHURST, M.C., and BISSET, D.L.:
‘An integrated Boolean neural network for pattern classification’,
Patt. Recog. Lett., 1994, 15, pp. 807-813
ROHWER, R., and MORCINIEC, M.: ‘Theoretical and experi-
mental status of the n-tuple classifier’. Report, NCRG/4347,
Aston University, Birmingham, UK, May 1995

10 STONHAM, T.J.: ‘Improved hamming-distance analysis for dig-
ital learning networks’, Elecfron. Lett., 1977, 13, (6), pp. 155-156

11 CLARKSON, T.C.: ‘The PRAM as a hardware realisable neu-
ron’. Proceedings of Neural Networks, 1992, pp. 140-146

12 OUSLIM, M.: ‘Analysis of the n-tuple technique based upon two
perspectives to determine n-tuple groupings’. PhD Thesis, Univer-
sity of Nottingham, 1997

13 GADER, P.D., and KHABOU, M.A.: ‘Automatic feature gener-
ation for handwritten digit recognition’, ZEEE Trans. Pattern
Anal. Mach. Intell., 1996, 18, (12), pp. 1256-1261

9

420 IEE Proc.- Vis. Image Signal Process., Vol. 145, No. 6, December 1998

