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TWO BAYESIAN TREATMENTS OF THE N-TUPLE IXECOGNITION METHOD 

R J Rohwer 

Aston University, UK 

ABSTRACT 

Two probabilistic interpretations of the n-tuple recog- 
nition method are put forward in order to allow this 
technique to be analysed with the same Bayesian 
rnethods used in connection with other neural net- 
work models. Elementary demonstrations are then 
given of the use of maximum likelihood and maxi- 
mum entropy methods for tuning the model param- 
eters and assisting their interpretation. One of the 
models can be used to illustrate the significance of 
overlapping n-tuple samples with respect to correla- 
tions in the patterns. 

IN TRO D U C TI0  N 

The n-tuple recognition method of Bledsoe and 
Browning (l), commercialised by Alexander et a1 
(2) is one of the oldest pattern recognition tech- 
niques which can be regarded as a neural network 
model. Practical experience has shown this classi- 
fication method to be exceptionally fast and simple 
compared to more conventional methods, and usu- 
ally similar in performance (For example, see Ro- 
hwer and Cressy (3),  Tarling and Rohwer (4) and 
Morciniec and Rohwer ( 5 ) . )  Some theoretical re- 
sults have been obtained which assist understand- 
ing of these systems, particularly by giving a semi- 
quantitative account of their generalisation proper- 
ties in terms of Hamming distance (See Aleksander 
and Stonham (6) for a review.), but they do not 
enjoy firm theoretical underpinnings on a par with 
those provided to neural network methods which can 
be viewed from the standpoint of regression, such as 
developed by MacKay (7) for systems such as multi- 
layer perceptrons. Here some basic formal machin- 
ery is laid out which makes this possible. 

The n-tuple recognition method is defined in the 
next subsection, which is followed by a short sub- 
section containing a terse review of the maximum 
likelihood method. These sections establish the no- 
tation for the rest of the paper. In the next two sec- 
tions the n-tuple recognition method is wrapped in 
a probabilistic interpretation in two different ways, 
either of which can be used to arrive at a gradient 
descent method for training these systems with a 

maximum-likelihood objective. (These probabilistic 
interpretations are not to be confused with general- 
isations to stochastic n-tuple models such as those 
more recently studied by Aleksander (8)). A con- 
cluding section points out that this clears the way 
for the application of more accurate Bayesian meth- 
ods such as Bayesian regularisation. 

The n-tuple recognition method 

The patterns to be classified are bit strings of a given 
length L .  Several (let us say N )  sets of n distinct' 
bit locations are selected randomly. These are the n- 
tuples. 'The restriction of a pattern to an n-tuple can 
be regarded as an n-bit number which, together with 
the identity of the n-tuple, constitutes a 'feature' of 
the pattern. A pattern is classified as belonging to 
the (class for which it has the most features in com- 
mon with at least 1 training pattern of that class. 

Precisely, the class assigned to unclassified pattern 
U is 

where ;Pc is the set of training patterns in class e,  
O ( x )  = 0 for x 5 0,  O ( x )  = 1 for x > 0, Si,j is the 
Kroinecker delta2 ( & , j  = 1 if i = j and 0 otherwise.) 
and ai(u) is the ia feature of pattern U :  

la-1 

q ( u )  = U 7 , ( j ) 2 j .  (2) 
j=O 

Here ujt is the k t h  bit of U and qi(j) is the j t h  bit 
locatioii of the ia n-tuple. 

With C.' classes to distinguish, the system can be im- 
plemented as a network of N C  nodes, each of which 
is a random access memory (RAM). The memory 
coni,ent, mcia at address a of the ia node allocated 

''Relaxing the requirement that an n-tuple has n diflerent 
bit 1,ocat.ions amounts to introducing a dxture  of differently 
sized n-tuples. Note the restriction does not disallow a single 
pattern component from being shared by more than one n- 
tupbe. 

The comma will be used optionally for extra clarity. 
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to class c is set to from Bayes’ rule 

P ( c / u ; m )  = (6) C P  (U 1 c ‘ ;m)  ~ ( c ’ )  
e’ 

and an estimate of P (e). (The sum over all pos- 
sible patterns would be replaced by an integral in 
applications involving real-valued patterns.) In any 
case, the general idea is to guess which model m* 
will approximate P (c ,  U )  best, on the basis of infor- 
mation provided by a training sample V of patterns 
generated by P (c, a ) ,  and to  then use P (c  I a;m*)  
to classify unknown patterns. (This approximates a 
more correct approach involving a sum over an esti- 
mated distribution of model probabilities.) 

(3) 

Thus mcja is set if any pattern of D, has feature Q 

and unset otherwise. Recognition is accomplished 
by tallying the set bits in the nodes of each class a t  
the addresses given by the features of the unclassified 
pattern. That  is, pattern U is assigned to class 

/ N  

(4) 

The method can be varied by changing 0 to a clipped 
ramp function with arbitrary threshold 8: O(z) = z 
for 2 5 8, O(z) = 8 for z > 6.  For 8 --+ 03, the 
memory content mcin is simply the t a l l y  

Let us refer to  all the mcia values collectively as m .  
A corresponding notation using T will be used for 
tallies. Similarly, let 7 refer to all the input map- 
ping values qi(j), with vi referring to the n values 
defining the i& n-tuple. An n-tuple recogniser is en- 
tirely specified by 7 and m .  Here 7 will be consid- 
ered given, so that m will suffice to specify a single 
recogniser . 

Maximum likelihood 

This section establishes some notation in the context 
of a brief review of the maximum likelihood method, 
and related methods of selecting model parameters. 
It is assumed that there is an unknown probabil- 
ity density3 P (c ,  U )  for being presented with a pat- 
tern U from class c. (The classes are not necessar- 
ily taken to  be mutually exclusive; the same pat- 
tern can have non-zero probability in more than one 
class.) The marginal and conditional distributions 
related to P (c ,  U )  will be denoted in the standard 
way. There is a parameterised class of models in- 

Throughout this paper we shall engage in the technically 
dubious but conventional practice of using the names of the 
variables in a probability density to also designate which den- 
sity is meant. This implies that variables cannot be renamed 
arbitrarily. We shall avoid ambiguity through the convention 
of generating new variable names only by appending primes 
(9. 

The optimal model m* can be obtained by max- 
imising over a probability distribution over models, 
which in turn is obtained from the training data and 
a prior distribution P o ( m )  expressing a guess of how 
likely each model should be thought to be if V were 
unknown. Bayes’ rule again provides the required 
expression 

p (D I m) P Y m )  
P m D =  (7) ( ’ 1 x P ( i T ) l m ’ ) P O ( m ’ )  

m’ 

in which an assumption of independent data samples 
provides: 

Here the training data ’D is regarded as split up into 
a set of subsets V, of patterns from each class. 

In (8), P ( e ,  U I m) can be expressed either as 

P ( u / c ; m ) P ( c )  or P ( c l u ; m ) P ( u ) .  Typically 
both factors in the first form are easier to  estimate 
than the corresponding factors of the second form, 
but it will be seen shortly that the n-tuple recogniser 
can lend itself to the atypical treatment. 

Under a uniform prior P o ( m ) ,  P (m I ’D) is propor- 

tional to the likelihood P (D I m) , in which case m* 
is the maximum-likelihood model. 

FIRST PROBABILISTIC 
INTERPRETATION 

In order to commence with a maximum-likelihood 
treatment, a probabilistic interpretation of n-tuple 
recognisers must be provided; ie., the form of ei- 
ther P (c I U; m) or P (U I c; m) must be specified 
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for use in (8) and then (7). Any interpretation will 
do, provided it is used consistently a t  each step of 
the procedure and provided there exist parameters 
yielding an accurate approximation to  the true dis- 
tribution, P c U or P U c . ( 1  1 ( 1 )  
One natural interpretation is suggested by the usage 
( 4 )  of m in classifying unknown patterns: 

A prior P o ( m )  which favours setting all mcia equal 
is sensible with a random input mapping q ,  because 
there is nothing a priori  that can be said about one 
memory location that cannot be said about another. 
But it is simpler and not wildly unreasonable to use 
a prior which is uniform over all arrangements of 
memory contents m, because then (7) submits to a 
maximum likelihood treatment. Plugging (9) into 

C'i 

for the likelihood. Because the logarithm is mono- 
tonicly increasing, the most likely model is the max- 
imum with respect to m of the log likelihood 

c U E V ,  1 \ i / 

and similarly abbreviating the total  weighi in mem- 
ory of ptattern U as 

Cd 

(12) can be written 

This says that for each memory locatlion, the sum 
of thle inverse class weights of all patterns which ad- 
dress that location must be the same for every class, 
and that this common value is the corresponding 
sum of inverse total weights. 

Although (15) is a system of N2" linear equations 
in the C D  variables l/i'.'c(u) (where D is the to- 
tal number of training patterns), the variables are 
related by (13), so a method of solution is not obvi- 
ous. There could be as few as N non-trivial equa- 
tions in (15) if for every i, ai(u) were the same for 
any pattern U in the training data. Because (10) 
and therefore (11) is bounded above, there must be 
a solution, and furthermore there must be at  least a 
1-parameter family of solutions because neither (10) 
nor (15) is affected by multiplication of all the meia 
by a constant scale factor. 

In particular there is no reason to  suppose that the 
conventional prescription (3) ,  which gives 

(11) provides a solution. If real values were admissible 
for memory contents, then it would be possible to  
improve on (3) by gradient ascent of (11) from such 
an initial guess. In its simplest form, the algorithm 
would repeatedly make the replacement 

The final term 1n(p(U))  can be omitted because it 
does not depend on m. 

The extrema of the log likelihood I Vkia +- mcia 

$1 (D I m) /dmc~li~~ao = 0 ,  or (17) 

where c is a small real number, until a solution was 
founjd. If the memory were restricted to  integer or - 
binary values, then a global stochastic maximisation 

- b f f / k " W  = 0. (12) algorithm such as simulated annealing or a genetic 
algorithm could be applied to  find the maxima of 

i 

c UEV, mc'ia,(U) 

c'i (11). 
The denominator of the first term is the total num- 
ber of memory locations for class c addressed by pat- 
tern U .  Abbreviating this class c weight in memory 
of pattern U as 

SECOND PROBABILISTIC 
~NT'EFt.PREYlXI"J?ON 

Another probabilistic interpretation of m can be mo- 
tivatzed by the training rule (3). By recording which &(U) = Cmcia,(u), (13) 

i 
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n-tuples occur in the training data, m provides some 
information about the marginal distributions 

The indexing on the sum is meant to indicate a sum 
over all components of U except those in the range 
of si,  and us, indicates the subpattern {uj  Ij E vi}. 
Further to footnote 3,  the i in P ( U T ,  I e )  identi- 
fies which marginal distribution is meant. More pre- 
cisely, 

with the U' sum ranging over all possible patterns, 
which is to say 

Note that although the final expression is written in 
terms of all the components of U ,  it depends only on 
those in si. 

With infinite threshold, training prescription ( 3 )  gives 
m = T, in which case m can be interpreted as esti- 
mates of the marginal probabilities 

The maximum entropy distribution under these con- 
straints might reasonably serve to  define P U c; m 
for use in (8). If the tallies are thresholded to give 
m, the constraint becomes more complicated; eg., 
for 6' = 1, ( 2 1 )  could be replaced by 

( 1  1 

p (us, 1 c ; m )  < l /Oc 

p (us. I c ;  m) > l/Oc 

" , ( U )  = 0 

~ c n a , ( U )  = 1 (22) 

where Dc is the number of training samples for class 
C. 

Due to sampling fluctuations, ( 2 1 )  or (22) will not be 
precisely correct statements about the true P U c . 
Some improvement might be obtained by carrying 
through the maximum likelihood prescription to de- 
termine m, rather than following ( 3 ) .  Whether or 
not the maximum entropy distribution is used for 
this purpose, it is needed in (6) to  obtain the dis- 
tribution P c u;m from which classification de- 
cisions are made. These decisions will not necessar- 
ily turn out to be equivalent to (4). Here the pro- 
gramme will be examined to  the extent of obtaining 
expressions for the maximum entropy distribution, 

( 1 )  

( 1  ) 

and discussing a simple special case. Under simpli- 
fying assumptions to be examined shortly, ( 3 )  results 
anyway. 

Let us consider the maximumentropy problem under 
the simpler equality constraints (21). With 

the constraints (21) can be written 

because with an arbitrary pattern U ,  ai(u) simply 
refers to an arbitrary address. There is also a nor- 
malisation constraint, P (u  I c )  = 1.  

U 

Introducing Lagrange multipliers 
constraints, a standard maximum entropy treatment 
leads to 

and yc for these 

with the multiplier yc absorbed into the normalisa- 
tion factor 

and the P's  related to the h's by 

This can be simplified further if the n-tuples never 
overlap, ie., for all i and j ,  s ins j  = 0. Then ( 2 7 )  
can be written as 

or 

= L i e  (29) 

where U is the number of components in a pattern. 
This simplifies to 
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at 

or, using (26), 

a’ 

Evidently, comparing this with (23), one can identify 

(33) e-Pc,e’ - - Tcia .  

This result is unsurprising. If the n-tuples do not 
overlap, then in the absence of further information 
about the distribution of patterns, nothing requires 
the marginal distributions for different n-tuples to 
be correlated, so the maximum entropy distribution 
is simply the product of the marginals. Result (33) 
followed from the fact that (25) is readily broken up 
into such a product. This has been noted previously 
by Luttrell (9), and the independence assumption 
has led to good results in some applications, such as 
noted by Badr (10). 

In fact, any problem can be transformed into an 
equivalent one with non-overlapping n-tuples, through 
the device of replacing each pattern bit with a set 
of identically set bits, each of which participates in 
a t  most one n-tuple. But this would introduce sub- 
stantial correlation into P U c for the iengthened 
patterns, bringing the maximum entropy assump- 
tion into question. Of course, patterns of inter& 
typically involve long substrings of identical bits any- 
way, so this assumption was never on a firm footing. 

( 1 )  

This points up an underlying difficulty. Expression 
(25) will be accurate only if the constraints (21) con- 
tain substantial information about the structure of 
P U c . It may be possible to  arrange this by hav- 
ing the n-tuples overlap substantially, perhaps by se- 
lecting them from a subset of the pattern bits. An 
alternative approach, more complicated but better 
motivated, is to  add further constraints to the prob- 
lem to express more of what is known either a priori 
or from the training data than (21). For example, 
the knowledge that the patterns typically contain 
substrings of identical bits can be expressed by intro- 
ducing an integer-valued metric di j  on bit locations 
and imposing the constraint 

( 1 )  

= de,, (34) 

where d,,, i s  an estimate of the average length of 
strings of identical bits. It can be obtained by re- 
placing the sum over all possible patterns in the left 
hand side of (34) with a sum over the training pat- 
terns. A, natural choice for d;j is li - j l  if this nat- 
ural metric for a string of bit locations is natural 
to the patterns represented, but other choices can 
be made to accommodate other situations. For ex- 
ample, &/W - j /W)z + ( i  mod W - j mod W)Z, 
with ‘ J ’  representing integer division, would be ap- 
prop riate for %dimensional raster-scanned images. 

Introducing this constraint with Lagrange multiplier 
(, leiids to 

where 

U 

and ‘to the condition 

to supplement (27). 

Maximum likelihood determination of the 
modiel parameters 

There is no obvious way to solve (27) and (38) for 
the ,Fs and < in terms of the h’s and d,,,, but it is 
possible to disregard (27) and (38) and seek the op- 
timal P’s and < by maximising their likelihood based 
on (35) and the training data. 

Proceeding from (8) in the manner of (10) - (12) it 
can be seen that the problem is to maximise 

with re,spect to the 0’s and 5. P (c )  is a model- 
independent estimate of the prior probability of class 
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e. Setting the ,B derivatives to zero gives 

UEV, U’ 

for each class e ,  n-tuple i and address cy, or 

which says that the model probability for a pattern 
from class c to  have subpattern cy in n-tuple i should 
match the naive empirical estimate. The C derivative 
gives 

which makes a similar statement about L .  

Note that without the constraint (34) (C = 0), and 
under the non-overlap assumptions leading to (33), 
(41) leads to  the same conclusion. Therefore in this 
case the maximum entropy treatment, whether or 
not followed by the maximum likelihood treatment, 
leads back to prescription (3) with infinite threshold. 

CONCLUSIONS 

Two probabilistic interpretations of the n-tuple recog- 
nition method have been presented and discussed, 
differing primarily by modelling distributions over 
outputs for the first model, and inputs for the sec- 
ond. The first is technically simpler. The second 
method provides some insight into a tradeoff which 
can be made between the complexity of the con- 
straints which must be imposed on its underlying 
maximum-entropy assumption, and the simplifica- 
tions which can be arranged with non-overlapping 
input mappings. Either way, the machinery of Bayes- 
ian methods can be applied. Here this has been car- 
ried out only in the simplest, maximum likelihood 
approximation. Over-training is likely to result if 
the method is applied as is, and preliminary find- 
ings by Morciniec4 seem to confirm this. However 
there appears to be no particular barrier to more 
complicated and realistic treatments, incorporating 
prior knowledge through regularisation methods, or 
via constraints in a maximumentropy problem. This 
should lead to improvements upon and better under- 
standing of this old, unusual, and surprisingly effec- 
tive neural network model. 

* Personnd communication. 

It is important to maintain a sense of perspective 
when adapting the n-tuple method to  conventional 
Bayesian treatment, because one of it’s outstanding 
advantages is its ultra-fast training speed. This ad- 
vantage is likely to be destroyed by bringing gradient- 
based optimisation methods into play. The best 
practical systems to arise from this line of research 
are likely to involve initialisation by a conventional 
method and fine-tuning by gradient descent. The 
main advantage of embedding the n-tuple method 
in a probabilistic interpretation is the potential for 
improving understanding of the simpler, less well un- 
derstood methods by placing them in the context of 
more complicated but better-understood methods. 
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