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A pproximating D iscrete Probability D istributions 
HARRY H. KU AND SOLOMON KULLBACK, SENIOR MEMBER, IEEE 

Abstmcf-The method of min imum discrimination information 
estimation is applied to the problem of estimating an n-dimensional 
discrete probability distribution in terms of lower order marginal 
distributions. The procedure provides a convergent iterative algo- 
rithm. The method yields regular best asymptotically normal 
(RBAN) estimates. The general procedure includes as a particular 
case that proposed by a method using dependence trees. An example 
is given. 

I. INTRODUCTION 

I 

T HAS BEEN pointed out that the problem of esti- 
mating an n-dimensional discrete probability dis- 
tribution from a finite number of samples and storing 

the distributions in a certain limited amount of machine 
memory arises in designing information systems, such as 
communication, pattern recognition, and learning sys- 
tems. In [l], [8] the problem of approximating an nth 
order binary distribution by a product of several of its 
component distributions of lower order was considered. 
In [a], a method to approximate optimally an n-dimen- 
sional discrete probability distribution by a set of n - 1 
first-order dependence relationships among the n vari- 
ables was presented. The procedure in [2] involves an 
optimization process to construct a dependence tree of 
maximum weight. As a matter of fact, the concept of a 
dependence tree does not seem to be necessary unless 
one is restricted to use only n - 1 second-order marginal 
distributions. Closer approximations can be obtained by 
a straightforward convergent iterative algorithm in terms 
of lower order marginal distributions. We shall see that 
the approximation in [2] is one of the early iterates. 

The basic problem in the discrete case may be formu- 
lated as the statistical problem of estimating the cell 
entries of a multidimensional contingency table given a 
set of lower order marginal distributions. We may con- 
sider the complete sample table to contain all the “infor- 
mation” available from the particular experiment. In 
the process of analysis, we aim to express the sample table 
in a reduced number of parameters represented by the 
lower order marginal distributions. In other words, we 
are interested in knowing how much of this total infor- 
mation is contained in a summary consisting of sets of 
marginal distributions. The above interpretation is not 
restricted to complete sets of marginals. If the estimate 
computed from three out of the six second-order margi- 
nals in a four-variate table is found to be statistically 
“close enough” to the complete sample table, the three 
second-order marginals could be considered as containing 
essentially all the information in the four-variate table [5]. 
The underlying theory, properties of the estimates, proof 
of convergence of the iterative algorithm, and applica- 
tions to contingency table analyses are given in [3]-[5]. 
We shall summarize the basic results and properties and 
apply them to the example presented in [a]. We remark 
that the corresponding results including appropriate 
modifications of the convergence proof for the case of 
continuous distributions are given in [7]. 

II. MINIMUM DISCRIMINATION 
INFORMATION ESTIMATION 
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For convenience we discuss the results in terms of a 
four-variate distribution (the example is also four-variate) 
but the general results are easily apparent. Let r(x), 
x = (i, j, lc, Z), i = 0, 1, . . . , r - 1, j = 0, 1, . . . , s - 1, The authors are with the Nat,ional Bureau of Standards! Wash- 

ington, D. C. 20234, and the George Washington University, 
Wasrmgton, D. C. 20006. k = 0, 1, ..a , t - 1, I = 0, 1, f * * , u - 1, be a discrete 
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probability distribution that may be specified by hypothe- 
sis, given by observations, or derived by some estima- 
tion procedure. Let p(x) be a member of a class of dis- 
crete probability distributions having a specified set of 
some lower order marginal distributions. The minimum 
discrimination information estimat,e is p*(x), where p*(x) 
minimizes the discrimination information 

IO, : 7~) = C p(x) In po 
x .“w (1) 

over the class of p(x) distributions, that is, p*(x) is that 
member of the class of p(x) distributions that is “closest” 
to T(X) in terms of the measure of divergence (1). It has 
been shown [5, th. 2.31 that 

I(p : T) = I(p* : 7r) + I(p : p*> (2) 

where p(x) is any member of the class, and [3] that 
p*(x) is unique and a regular best asymptotically normal 
(RBAN) estimate, that is, it has the statistical proper- 
ties of a maximum likelihood estimate. 

We  remark that if g(x) is a member of the class of p(x) 
distributions then p*(x) = n(x) and I(p* : r) = 0. A 
reasonable criterion for the choice of a(x) in the present 
context, is to assume that dependence, or interactions, 
among the various variables are in fact fully represented 
by the lower order marginals. Equivalently, because of 
the form of the p*(x) distribution which we examine 
shortly, one may say that the estimates of the cell entries 
represent a lLgeneralized” independence distribution sub- 
ject to restraints imposed by the lower order marginal 
distributions. This assumption is tacitly made in the 
dependence tree scheme proposed in [a], and is explicitly 
stated here. Since the uniform distribution is a general 
form of independence, we may take r(x) to be the uni- 
form distribution r,,(x) = l/&u and compute p*,(x) 
when the discrete distribution is to be approximated 
by first-order marginals, compute p%(x) when the dis- 
crete distribution is to be approximated by second-order 
marginals, etc. We  remark that since higher order margi- 
nals determine lower order marginals we may also com- 
pute p%(x) with a(x) = p”;(x), p%(x) with r(x) = p:(x) 
or p%(x), etc. 

We  shall now indicate the form of the p* distribution 
under various sets of marginal restraints. The basis for 
the statements is given in [3] and further discussed and 
illustrated in [5]. 

When the first-order marginals 

P(i)> P(i), P(k), P(Z) 

are given, where for example, 

P(i) =  c P(i, i, k, 0  
i.k.1 

(3) 

(4) 

we denote the minimizing distribution by p:, and it 
has the form 

PT(i, i, k, 0  = 44w~(~Mo~(~, i, k, 0  (5) 

where a(i), . . . , d(Z) are determined to satisfy the margi- 

nal restraints. When the rr distribution satisfies the cri- 
terion of independence, that is, 

7r(i, j, lc, Z) = 7r(i)7r(j)7r(lc)a(z), 

then 

PT(i, i, k, 0  =  P(i)P(i)P@)P(O. (‘3 

When the second-order marginals 

PC% i>, PC% k), P(i, 0, P(i, k), P(i, 0, Pk 0  (7) 

are given, where for example, 

PC6 i) = 5 P(i, i, k, 0, (8) 

we denote the minimizing distribution by p%, and it 
has the form 

pgi, j, k, 1) = a(i, j)b(i, k)c(i, I) 

.d(i, lc)e(i, Of(k Odi, i, 4  0 (9) 

where a(i, j), . . . , f(k, 1) are determined to satisfy the 
marginal restraints 

P(i, i) = 4i, i) z b(i, k)c(i, 0  . . * f(k, Mi, i, k, 0  
.I............................................ (10) 

p(lc, I) = f(k, I) C a(i, j)b(i, k) . . - e(j, Z)a(i, j, k, 1). 
i,j 

When the third-order marginals 

PC6 i, k), PC6 i, 0, PC% 4 0, P(i, h I> 

are given, where for example, 

P(i, i, w = c PC6 i, k, 0, 2  

(11) 

(12) 

we denote the minimizing distribution by p*,, and it 
has the form 

P*,(i, i, k, 0  = 4i, i, kP(i, i, 0  

.c(i, lc, 1) d(j, k, Z)n(i, j, lc, I) (13) 

where a(i, j, Ic), . . . , d(j, Jc, 2) are determined to satisfy 
the marginal restraints 

PC6 i, k) = a(;, j, w 

. F  NC i, 046 lc, Mi, k, b-(i, i, k, 0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14) 

P(i, k, 0  = 4i, lc, I> 

- F  46 i, W(i, i, b(i, k MC i, k 0. 

When the subset 

~(6 8, P(C 0, p(i, k) (15) 

of the second-order marginals is given (see [2] and the 
example) we denote the minimizing distribution by p*,, 
and it has the form 

pZ(i, j, lc, Z) = u(i, j)b(i, Z)c(j, k)r(i, j, k, Z) (16) 
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where a(;, j), b(i, Z), c(j, Ic) are determined to satisfy the 
marginal restraints 

tively, if and only if pT = p*,, p: = p$, p$ = p$ (see 
[6, pp. 14-181). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (17) 

p(i, M  = c(i, k) C  C a(i, i)Ni, MC j, h 0. 
i I 

Using the value of I(p : p*) as a measure of the good- 
ness of the approximation p* to p, the inequalities in (22) 
provide the ordering (in increasing goodness) p;, p*,, p*,, p:. 

III. EXAMPLE 

Note that the subset (15) implies the first-order mar- 
ginals. 

The p* distribution may be determined by a convergent 
iterative procedure successively satisfying the marginal 
restraints. The proof that the iterative algorithm con- 
verges to the p* distribution is given in [3] for the discrete 
case and in [7] for the continuous case. For the p: distri- 
bution the iteration cycles through 

In Table I is given the binary probability distribution 
p(i, j, k, 1) used in [2] and also the p: distribution com- 
puted as in (6). The optimization procedure in [2] is 
selected to use the branches of the dependence tree corre- 
sponding to the second-order marginals p(j, k), p(i, j), 
PC4 0. 

If we now follow the iteration (20)) with p(“) (i, j, k, I) = 
p:(i, j, Ic, I), and starting the cycles with the sequence of 
the marginals as selected in [a], we get 

P 1 @n+‘)(i, j, ]c, I) = .) p~~~i3ji~ ~““‘(6 i, k, 0 
t 

P 
(6n+2)(i, j, k, 1) = P(i’ ‘) 

P 
wn+l)(i, k) P c6n+1)(i, j, Ic, Z), (18) 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I P (67L+6)(i) j, k, 1) = P(k) 0 
P (6n+5)(]c, 0 P (6n+5)(i, j, k, I); 

for the p% distribution, the iteration cycles through 

I P (4n+1)(i, j, p, 1) = -PCit i, k)- ~4~) . p’4”‘(i j kj P (‘l 31 ‘, ‘) 
, > j........................................... (19) 

cp 
(4n+4)(i, j, r% 1) = -~~' 'c' " , 

P (4n+J)(J, k, 1) p ___- (4n+3)(i, j, k, 1); 

for the p*, distribution the iteration cycles through 

P (3n+l)(i, j, jc, I) = .Aij i) p(3”‘(i p’““‘(i, i, k, 0 

~p(3n+2)(i, j, k, I) = _-p(i.;ij 
P 

un+l)(i, 1) P --~~ (3,+l)(i, j, k, 1) (20) 

P 
(3n+3)(i, j, k, I) _ P(i, ‘) 

P 
(3n+2)(j, k) P ~ (3n+2)(i, j, 16, I) 

with p(‘)(i, j, Ic, 1) = n(i, j, k, 1). 
When the pT distribution is given as in (6) by using 

the relation (2) (see [5]), we have 

Ig, 

I 

: P*,j = I(PZ : p*,j + I(p : P*2) 

Ib : p:j = I(pB : 12) + I(P : p*,j 
Gw 

I(p : P3 = I(PZ : p3 + I(P : P3 

I(p : p*2) = I(p,* : p%) + I(p : p*,) 

and in the iterations (Is)-(20), we may take p”’ (i, j, k, Z) = 
p”;(i, j, k, I), and in (19) we may also take p”’ (ijkl) = 
p*,(ijM). Since the discrimination information values 
in (21) are 2 0, 

ICP : PT) 2 I(p : p*,) 2 I(;0 : p;) 2 Ib : p*3) (22) 

with equality in the first, second, and third pair, respec- 

I 
p”‘(i, j, k, 1) = p(j, p(j)p(lcj 244diMG-Q) 

= P(j, k)P(4P(Z) 

1 
p’“‘(i, j, k, l) = f&$j p(i, QP(~)P(~ 

, 
= PC6 i)p(i, NPO) 

p(i) 

p(')(i) j, 16, Zj = L. P(i 0 p(i, i)p(i, WPU) 
PM0 P(i) 

i = p(i, k)P(i, i)p(i, O/P(i!Phl, 

and since, as may be verified, 

P’~’ (i, k) = p(j, k), P’~’ (i, i) = P(C i), 

pc3) (i, Z) = p(i, I), 

(23) 

(24) 

further iteration merely reproduces the pC3’ distribution 
so that pz = pc3’. Note that the order here is different 
from that in (20) but the reader may verify that 
p’“’ (i, j, k, I) is the same in (20) and (23). The optimiza- 
tion procedure in [2] yields as the optimum approximation 

pAi, i, 1~ 0 = p(ijp(j I i)p(k I ijp(l I i) 

= P(i, Np(i, iM, OMMi). (25) 

Its numerical values are given in Table I, and we note 
that 

p’“‘(i, j, Ic, 1) = pa(i, j, k, I) = p*,(i, j, lc, 1). 

Using the iterative relationships, and following the 
procedure used in proving the convergence of the itera- 
tive algorithm in [3], it may be shown that 

I($ : p(")j = I(iDCn+l) : p(n)j + Ib : p(n+l)) (26) 

IO? : 24 = m  : pa) + I(3, : pyzj (27) 

where p, is any of the iterates in the procedure leading 
to ~5, and consequently 

(2% 
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TABLE I TABLE II 

i j k  1  

0  0  0  0  
0 0 0 1 
0 0 1 0 
0011 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

0.100 0.04556 0.130 0.09977 
0.100 0.04556 0.104 0.10000 
0.050 0.05569 0.037 0.04958 
0.050 0.05569 0.030 0.04927 
0.000 0.05569 0.015 0.00051 
0.000 0.05569 0.012 0.00026 
0.100 0.06806 0.068 0.10011 
0.050 0.06806 0.054 0.05035 
0.050 0.05569 0.053 0.05027 
0.100 0.05569 0.064 0.09996 

I@“’ : p*,) 0.18899 
I(p : p(l)) 0.17968 

I(p’3’ : PC”) 0.07943 
I(p : p(Z)) 0.10025 

I(p (3) : p (2)) 0.00506 
I(p : p(3)) 0.09519 

I&*, : p@)) 0.08539 
I@ : P*,) 0 .00980 

0.000 0.06806 0.015 0.00039 
0.000 0.06806 0.018 0.00076 
0.050 0.06806 0.033 0.04945 
0.050 0.06806 0.040 0.04978 
0.150 0.08319 0.149 0.14992 
0.150 0.08319 0.178 0.14962 

hypotheses and tests of significance which arise in the 
statistical applications to contingency table analysis as 
discussed in [3], [4], [5]. 
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with equality if and only if tions. 

Carrying out the iteration (18) until there is agreement PI 

to at least 0.0014 in the second-order marginals we get 
values tabulated as p’“, in Table I. Recomputing certain 

[21 

results given in [2] we list in Table II decomposit ions 
corresponding to (26) and (27). [31 

[41 
IV. REMARKS 

[51 
The various relationships given are valid either for 

theoretical distributions or observed distributions. It [6] 
would be of interest to compare the results of applying 
the p”“, distribution to the pattern recognition problem 171  

described in [2] using their optimal approximation. Bl 
In this discussion we have not considered the possible 
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