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Abstract-This paper presents a numerical algorithm for the parallel computations @q in the Kolmogorov
superpositions f(x) = ~~=o @g0 ~(xq), x = (X1, . . ., Xn) and Xq = (xl + qa, ..., x. + qa), thereby providing the
jinalstep in their numerical implementation. Thejirst step consisting of thef-independent computation of thefunctions
&(xq) = ~~=1 ap@(xp + qa) with ajxed+andconstants a andaP in a hiddenlayer in the Hecht-Nielsenfeed forward
neural network has been accomplished previously. The step taken in this paper is the implementation of the output
layer of the network that computes an arbitrary known continuousreal-valuedfunction f dejined on the unit cube En.
Employed for the purpose is an iterative method which is intended as a basisfor the possible development of adaptive
methods that build on this approach. Each function +q is obtained iteratively through a series ~, @~ which is
determinedon anf andq dependent subsequencedj,,d$,,df,. ..of rational coordinates d~r= (d~,, . . . , d: ~)such that
@~is determined at the coordinate points <(dfr).Thepaper also includes alternative constructions of the~unctions @~
anda brief discussion of the dz~erentiability of ~q o ~(xq); together with a previous result it gives a constructive proof
of Kolmogorov’s theorem. ~ 1997 Elsevier Science Ltd. All Rights Reserved.

Keywords—Superpositions,Kolmogorov,Computationof multivariatefunctions,Approximationof multi-
variatefunctions,Representationof multivariatefunctions,Continuity.

1. INTRODUCTION

Let n >2, m > 2n and -y> m + 2 be given integers;
let x = (xl,. .., XJ and x~= (xl + qa, ..., % + qa),
where a = [T(7– 1)]-1. This paper presents the
numerical implementation of the functions Oq in
Sprecher’s(1996a)version of the Kolmogorov (1957)
superpositions:

{

f(x) = ~ @q“ ((X,)
q=o

(1)
<(xq) = ~ ~P@(xP + qa)

p=l

With fixed transfer functions ~(x~) in which @ is
monotonic increasing, al = 1, r2P= ~Y=l 7-( P-l)B(~)

forp >1, and /?(r) = (n’ – 1)/ (n – 1). Implementing
the function @ and its affine translates and linear
combinations~(x~)independentlyof~is the first step,
accomplished previously (Sprecher, 1996a),where a
suitable function @is defined pointwise on the set of

Requests for reprints should be sent to David A. Sprecher,
Department of Mathematics, University of California Santa
Barbara, California 93106, USA;e-mail:sprecher@math.ucsb.edu.

rational numbers dk = ~k=l irT–r, ir — O, 1,
We o;serve that ~ dependi~~nland k = 1,2, 3, . . . .

as do in turn also the function @and constants ap, an~
from the arguments givenpreviously(Sprecher, 1965)
we can deduce that also the above @belongs to class
L@(bz2/Zn~).By sacrificingLipschitz continuity the
dependence on n of @ and constants aP can be
eliminated (Sprecher, 1993; Katsuura & Sprecher,
1994; Sprecher, 1996b). This paper deals with the
second step — the implementation of m + 1 parallel
functions @~that compute an arbitrary continuous
real-valued function f: t5n+ ‘R defined on the unit
cube &“ in n-dimensional Euclidean space. In the
context of the feedforward neural network of Hecht-
Nielsen (1987), this paper deals with forming the
output layer of the network. The iterative method
whichwe employfor this is intended as a basis for the
possibledevelopmentof adaptive methods that build
on this approach. The functions @~in eqn (1) are
constructed iteratively as functions @~(yQ)of the
single variable y~ with a numerical algorithm which
produces for each q a seriesof functions @~(y~)such
that lim r+m D=l @;(J’q) = @JY4)” Each function
~~(y~) is detemined by f at the points Y~= ~g(dj,)
of a subsequence {d~,, df ,df3, . . .} of coordinate
points df, = (d~,,l,..., djr,n~ (see Figure 3 below);
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the rational numbers d~,p k,
q = dk,p + 9 ~s. ~ ~–s, p =

1,2,. .., n, are connected with the expansion a =
[’y(~–1)]-1 = -y-z+ ~-s+ ~-q+ . . . .

While the target function ~ is assumed to be
completelyknown in the constructions of this paper,
it is already shown by Kurkova (1992) that eqn (1)
can be used to approximate an arbitrary function ~
(see also below). The use of m + 1 instead of 2n + 1
summands in eqn (1) follows the observation in the
same paper that increased accuracy (rate of conver-
gence)for the approximation~(x) x x~.o Zj=o @~ o
<(x,) for a givennumber r of iterations is possibleby
increasing the number of functions Oq from its
minimum number of 2n + 1 to m + 1 > 2n + 1. This
can give a computational advantage when an objec-
tive is accuracy as a measure of speed of computation
since non-linear iterations are replaced with parallel
computations. The implementable numerical algor-
ithm that we develop gives several alternatives for
the approximation ofj leading to eqn (l), and these
are discussedin Section 5. In Section 6 we touch on
the question of differentiabilityof @~o f(x~).

On the mathematical side, this paper and Sprecher
(1996a) provide a complete constructive proof of
Kolmogorov’stheorem.

2. COMPUTATIONS OF ~

Referring to Sprecher (1996a),let (i]) = [il]= O,and
for r >1 let

{

O when i, = O,1,...,v–2
(i,) =

1 when i, = -y– 1

{

O when i, = O,1,..., T – 3
[i,]=

1 when i, = T –2, -y– 1

(

r—l

m, = (i,) 1+ ~ [i,]x . . . x [i,-1]
S=l )

for r = 1,2,..., k

Then for k = 1,2,3,...,

where dk = ~~=1i,~–’ and ;, = i, – (T – 2)(i,). This
uniquely determines a continuous function ~:
E ~ C that is extended beyond the unit interval ~
through the definition O(X+ 1) = ~(x) + 1. From
the defining eqn (2) we derive the following
simplified procedure for finding the values ~(dk):
We note that @(dl)= il~-’, and when i, < T – 2

for r >1 then (i,) = O, so that ;, = i,, m, = O.
Consequently

when no digits i, = v – 1 for r > 1 are present in the
sequence (i],i2,..., ik) defining the rational number
dk.When digitsi, = T – 1for r >1 are present in such
a sequence, we COIIIpUk ?j(dk) by applying appro-
priate casesof the basicpattern of consecutiveclusters
of digits i,

(U1digitsir = v - 2)(u2digitsir= T - 1)

x (U3digitsi, = T – 2)(u4digitsi, = -y– 1)

according to the followingrule. Let iu be a digit such
that i. < T – 1 if u = 1, or iu < v – 3 if u >1. Let
k = u + U1+ U2+ U3+ U4,then with the convention
~~.l E Owe have

+-y+’)22-”’-’ + (-y– 2)5 T-B(”+”I+”2+’)
r=l r=l

+Y+’)2 .2-U,-U2-U3-1

,=1

Table 2 of Sprecher(1996a)givesthe 10,000values of
@(dk)corresponding to k =4. The rational numbers
d; = dk+ q ~;.z 7-’ can be used to simplify the
computations of the translates +(dk+ qa) as follows:
Let

Because ~ – 2 z m 2 q we have from Lemma 1 of
Sprecher (1996a)

‘7j(dk+ qa) = @(d:)+ q~k

and if we set

then

p=l

‘f~p+(d:p)+9bk=&(di)+9bk
p=l
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FIGURE1. The functione(d~;Yq).

present here one, using only theClearly lim~+mbk = O and given functions @q,we ways, of which we
have the followingapproximate formula for rational constructions that are necessary for the purpose.
numbers: Additional detail and justification are contained in

Section 4, and alternative implementationsare given

f(dk) = ~ 0,0 [t(d:) + Al = ~ @qo &(df). in Section 5.
q=() q=o

DEFINITION1

3. THE IMPLEMENTATION OF @~
Let m 7?,~ & be an arbitrary continuous function
with o(x) -0 when x <0, and a(x) G 1 when

The functions @qare implementable in a number of x > 1. For each number ~(d~), d: = (dj,, ... , d; ~),

lt,,l,,,(,,,,l,,,,,,,,,,,,,,,,,,,,r,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,
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FIGURE2. Sehemetk representationof the Implementationalgorlthm.
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we set

~(d~;yJ = o(#’(~+l)(y~– ((d;)) + 1)

—U(T‘(k+’)(Y, - c(%) - (’-Y- ‘2)%))

Clearly O< O(d~;y~)<l and O(d~;y~)=l for
((d:)<~q<f(d:) +(-Y -2)bk (see Figure 1). We
remark that the numbers #k+l) appearing in this
definition are not uniquely determined. They can
be replaced for each k by any number
f)<rks’#@+v.

NOTE
For the remainderof thispaper,letfi En -+ Z beagiven
continuousfunction with known un~orm norm Ilf [[,
and q and c numbers such that O< ((m – n + 1)/
(m+ 1)), + (2n/(m + 1)) < q <1. This implies that
c < 1 – (n/(m – n + 1) and fixingq and c in this way
is sufficient to guarantee the convergence of the
followingalgorithm:

The ImplementationAlgorithm

Starting with f. ~j iterate the
r = 1,2, 3, . . . (consult Figure 2).

I. Inwt layer

following steps for

Given the function fr-l(x), determine an integer
k, such that [J-1(x) –fi_l(x’)1 < cIIJ-]11
when 1XP– X~l < ~–kr for p = 1,... ,n. This
determines the rational coordinate points
d;, = (d:,l, ..., d~rn), Where

k,

d:,P = dk,P + q ~ ‘Y-’.
i-=2

II. Hidden layer
For q = O, 1,. .., m:
II-1 Compile the values ti(d~r)
II-2 Compute the linear combinations ((dir) =

X:=1 %4(%,)
II-3 Compute the one-variable functions

@(d{,;Y~).

III. Output layer
III-1 Compute the one variable functions

III-2

q = O,1,..., m.

Substitute the transfer functions <(xq) to
compute the multi-variablefunctions

D. A. Sprecher

q = O,1,... ,m.

III-3 Compute the function

J(x) =f(x) - ~ S q Of(xq).
q=l)j=l

This completes the rt~ iteration loop and gives the
rt~ approximation to f. Now replace r by r + 1 and
go to step I. ■

To each r there correspond Vk’rational numbers dkr
from which we compute in the input layer m + 1 lists
each of n x ~krrational numbersd~,:As seen in Figure
2, we compile from these in the hidden layer m + 1
listseach of n x Tkrentries@(d~rP), and from thesewe
compile, in turn, m + 1 tables each with -#xkr entries
~(d~) and m + 1 tables each with Tnxkr entries
e(d[; y~). We note in passing that the sets {d~r} of
rati&al numbers are not mutually exclusivefor fixed
k, and variable q, q = O,1,..., m, and neither are the
corresponding lists of compiled values {V(d: )}. In
the output layer we use these tables together w’iththe
tables of-y”x‘r valuesfr–l (dk,) to compute the output
functions O; and f,(x). The prescribed iteration
loops producing these tables are possible because
the functions ~. =~,J1 ,~2,. . . and @~(y~) are
continuous, and formulae III-2 and III-3 can be
obtained with direct computations since the func-
tion @ and as well as all constants are given
numerically. Section 5 includes further comments
concerning the implementation of the functions
@;(Yq).

4. MATHEMATICAL ARGUMENTS AND
PROOFS

The central theorem assuringthat the implementation
algorithm produces functions which convergence to
produce eqn (1) is Theorem 1below.The proof of this
theorem relies on certain properties of the functions
defined earlier, and we begin by establishing these.
The first is noting that the support of each function
O(d[;yq) is the open interval

+ (~–2)b/c+ @k+l)),

i.e., O(dj;yq) s O when y~ @U~(d~), as depicted in
Figure 1 (see, however, the remark followingDefini-
tion 1).Theseintervalsare pairwisedisjointfor fixedq
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and k: If ~(d~) # c(d~) then U~(d~)n U:(d$) = @
(Lemma 4 in Sprecher, 1996a). From this fact we
derive the followingestimate for formula III-1:

LEMMA 1
For each valueof q and r,

Proof
In viewof the observationsfollowingDefinition 1and
the above,

and the lemma follows. ■

We conclude that a typical graph of @~(y~)is as
depicted in Figure 3.

The functions fr-l and @~ as implemented
above are connected through the following essential
inequality:

THEOREM1
For r = 1,2,3,... we have the inequalities

Ifill = J-1(x) - T % 0 ‘H%) ~ W-111”
q=()

Iterating the inequalitiesin Lemma 1 and Theorem 1
giveat once

COROLLARY 1
Forj = 1,2,3,...,

(3)

From this corollary it followsthat

(5)

Accordingly, each series of functions ~~=1@~(y~)
converges absolutely for each value of q to a
continuous function @~(y~) as r + co; eqn (1)
follows from the fact that ~rlf II+ O as r + CO.
Expressed directly in terms of the functions
O(d~;~(x~)) (and hence the function CJ)and the
num’bersf(d~r), estimate (4) gives the approximate
equality

(see in this connection Kirkova, 1992).

Proof of theorem 1
A versionof the proof of this theorem can be found in
Lorentz (1966).Presented here is a proof that relates
to the specific constructions and notation of this
paper. To simplifythe arguments,we includenow the
value dk = 1 in the definitionof the rational numbers
dk. The proof is based on the following additional

FIGURE3. The function@&(Yq).
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property of the functions @and ~(x~) (see Sprecher,
1996a): Consider for each integer q the family of
closed intervals

It is easilyverifiedthat for fixedq and k theseintervals
are separated by gaps (open intervals) of width
(T– 1)-lT-k From these intervals we obtain for
each k the m + 1 families of closed (Cartesian
product) cubes

Sf(df) = E:(d:,l) x . . . x Eg(d&J, q = 0,1,... ,m.

whose images under ~(x~)are the closed intervals

T:(d:) = [&(d/!),<(d~) + (’Y–2)bk].

A direct calculation shows that

Let k be fixed.To gain insight into the mechanicsof
superpositionsand the proof, let us examinethe effect
of the mapping f(x~) for a givenvalue of q on a single
cube ~~(d~). AS a first approximation, the surface

Yq = <(%) for x = %(%) can be taken to be a tilted
plane as in Figure 4, with its lower left hand corner at
the point (d:, ~(d~)). Intuitively, the mapping ~(xg)
acts like a cookie-cutter, removing S~(d~) from the
coordinate space and givingit a unique image T~(dj)
on the y~-axis. The images of any two cubes have
empty intersections for fixed q (and k) as d~ Varies

Yq

I

over its domain, and this property enables the local
approximation of the target function ~(x) on the
surfacesy~= <(x~)for x E S~(d~).Loosely speaking,
we can view~(x~)as replacing the coordinate system
with -/’ ‘k local coordinate systems (surfaces) corre-
sponding to the Y“‘k cubes tl~(d~). Continuity
requires these surfaces to be separated by gaps,
however narrow, in which ~(x) cannot be approxi-
mated, and it is there that each stage of the
implementation iteration introduces q-dependent
errors that cannot be made arbitrarily small with
~(x~).Kolmogorov’singenuity comes to bear on the
problem most profoundly here by introducing
parallel schemes through the affine translations of
the families of cubes fl~(d~) such that each family
intersectsthe gaps of the other familiesin a prescribed
manner.

Returning to eqn (6), we note that the gaps
separating the intervals do not intersect for fixed k
and variable q. Therefore, any point x c ~ can be
contained in at most one gap and consequentlycan be
excluded from at most one of the m + 1 intervals
E~(d~), and so must be contained in at least m of
them. Thus, if x e &nis an arbitrary point, then we
deduce that there are at least m – n + 1 values of q
for which x ~ S~(d~). We see at once from eqn (6)
that dk E E~(d~) for each q, and COIWqUeX@

(lk E n~=o $(d;). It therefore follows that there are
at least m – n + 1 cubes containing both x and some
grid-pointsd~.

Now let k, be a givenintegerfor which Step I of the
Implementation Algorithm holds; let x c S“ be an
arbitrary point. Let qj,j = 1, ... ,m – ~ + 1,be values
for whichx c $’f(di). For the point dkr~ S~~(d~!)we
have

Ifi-l(x) ‘fi-l(dk,)[ ~ cllfi-,11 (8)

and in view of eqn (7), C(Xqj) 6 l“~f(d$ when

FIGURE4. The maPPln9g(xq).
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x c Lsj:(dj:),so that III-2 gives

Together with eqn (8) this shows that

-&M) - @;j0‘@qj) <& “4.LIII

(j= 1. . . . . m – n + 1).

For the remaining values of q we have the estimate in
Lemma 1. Thus,

L-1 (x) - ~ 0; o <(X,)
q=l)

‘s+’ [J@-,(x) - @;j “Wj)]
j=l

s Vllfr-1 II

and the theorem follows. H

5. NOTES ON THE FUNCTIONS i@q(yq)

i) From the perspective of computing, superposi-
tions can be interpreted as a device which enables the
computation off(x) through m + 1 iterative parallel
computations of which not less than m – n + 1
approximate ~ at any point x E &nusing neighbori-
ng points d~rx x, not necessarilyall distinct, and at
most n of these introduce an error as specifiedin eqn
(6). The implementation of the functions @~(Y~)as
well as the proofs of convergenceare predicated on
the knowledgeoff on an everywheredenseset in Enas
wellas its uniform norm. For computational efficiency
we standardized the sets of points at which the
functions in the hidden layer are determined and
evaluated, and the evaluation of~in the output layer is
limited to the coordinate points d~,. Prescribing the
evaluation off in this manner may not always be
appropriate, however, since actual data arising in
applications may not include the values ~(d~r), or
these may not be efficiently computable. In such
cases the implementation of the output layer can be
modified to use arbitrary values f(x~r) as long as
x:, E S; (d: ). An examination of the Proof of
Theorem 1‘shows that this produces the same end

result. More generally we can, for example, replace
the functions @~(y~)with functions

@;(yq)= &
[
c,+~ [fi-l(x:,)–OW’rvq)]

q,

where Cr= ~[maxfr–l + minfr–l]. These functions
have a smaller oscillation than the corresponding
functionsO;, and clearly II@J[l= IIOJII.The functions
d(d~;y~) are convenient because their supports are
loca~ized,and this may be of particular interest with
dynamic target functions whose values, rather than
being prescribed in advance, may change locally.The
disadvantage of the functions O(d~,;y~)lies in the
fact that they may introduce large oscillations into
each individual computation O; even when we take
advantage of functions of the type 5;. Any such
oscillations,however, decreasewith increasingr, and
they are anyway diminished in the sum of the
functions Q; over q.

ii) We note that the function @is strictly mono-
tonic increasing,and that the functions~(x~)map the
n-dimensionalcubes S~(d:) onto the non-degenerate
intervals T: (dj ) which a~e used to construct local
approximat~onsrto f(x). An alternative implementa-
tion algorithm can be developed by approximating
each ~(x~) with a sequence {(~,(x~)} of continuous
functions with the property that for each coordinate
point d; the image of the cube Sjr(d~,) is the number
f(d~,) i~stead of the interval Tfr(d~ ). In this case,
rather than composing @J(y~) with the functions
O(d~;y~), we can use for each q interpolating
fun~tions G; obtained by passing arbitrary inter-
polating curves through the points (((dgr),
(l/(m + l))j-l(dkr)) or through the points (~(d~r),
(l/(m + 1))J-l(x; )) for x:, c Sg,(d~,), subject only
to the condition llG~ll< (l/(m + 1))11.f-lII(see III-2
and Lemma 1).This requires, however, that we know
for each q the linear order of the points C(d:) on the
yq-axis fork= 1,2,3,.... An alternativeconstruction
of functions @~that also requires knowledge of this
order can be found in Katsuura and Sprecher (1994).
This linear order can be determined from the specific
numerical construction of ~(d~). We observe in
passing that for each value of q, the piecewiselinear
Cumesfl~ : ~(d~)~ d: joining the coordinate points
d: in the order induced by the function C(xq)
converge to a Peano (space-filling)curve as k ~ co.
To proceed in this way, we approximate the
function @ with a sequence {@k}of continuous
monotonicnon-decreasingfunctionswith the property
that the image of the interval Ek(dk) is the number
~(d~). Toward this end we introduce continuous
functions w(dk;x):7? ~ & defined as follows (see
Figure 5):
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b
Ii< @(dk;X)
j

i

i
\

~-A’., ‘f \“
x

Ek(dk) /1

k ~y ‘k
()

dk + 1-— y ‘k dk + y- k
y -1

FIGURE5. The function@(dk;x).

DEFINITION2
For each rational number d~and k = 1,2,3,...,

w(d~;X) = a(#(v – 1)(x – d~)+ 1)

– a(#’(~ – 1)(X– d~)– v + 2).

We observethat ~d, w(d~;x) -1 and w(d~;d~) = 1so
that the functions

@~(x)= ~ V(d~)w(d~;x)
dk

are such that +~(d~)=~(d~). They have the
property that @J~(x)= $~(d~) when x c E~(d~) for
each rational number dk. The next step is to apply
the functions ~~(x) to the translations of ~ and their
linear combinations ~(xg). Since ~ z 2n + 2> q +2,
it follows that w(dj; d:) = 1 and also that

~ w(d;;x+ q.) =1.
d:

for fixed q and k. Defining

4:(x + qa) = ~ @(dk+ qa)~(d~;x + W)
d:

we have

LEMMA 2

~~mm~f(x + qa) = V(X + qa).

Proof
Let k be given. By construction, if dk and d; are
consecutive rational numbers, then I@(dk+ qa) –
@(d~+ qa)l < 2-k+17-1 (Sprecher, 1996a). Now, if x
is given, then for each k there are consecutiverational
numbers dk < d{ such that dk < x < d~ and using the
faCt that $$(dk + qU)= @(dk+ qU) fOr all ratiOnal

numbers dk we find that

IV%(X+9a) - 4(x+ qa)l
< l#:(x + qa) – ti~(dk+ W)l

+ I*(X+ qU)– @(dk+ qa)l

~ z . Z-k+l T-l

and the lemma follows,

Now let

and definethe functions

&:(xq)= ~ ~,’@k(x~ + q~)
p=l

We have

COROLLARY2
For each value of q we have

lim Q(xq) = ~(xq).
k+cx

We can now replace the functions @~(y~)in III-2 with
inteqolating functions G~(y~)such that

and

and we modify the implementationalgorithm accord-
ingly. Alternatively, we could replace the functions
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@(d;; yQ) in the implementation
functions

#(d;; yq) = o(#(k+l)(yq -

algorithm with the

C{(dj)) + 1)

—cJ(#’@+l)(Y, - C;(d;)))

whose supports are the open intervals ((~(d~)–
7-0(~+1) g dg + ~-~(~+1))(see,however, the remark

!~k( k)
following Definition 1). It is easy to see that
Theorem 1 and Corollary 1 remain valid with
these new constructions.

iii) Consider a function~(x) givenas an aggregate
of values

(x;f(x))

and the functions @l)(y~),@~(y~), ..., @m(ym)
representing it also as aggregatesof values

(Ye;@o(YO))?(Y1;@l(YI)), . . ~, (Yin; @m(Ym)).

These functions, related to~through eqn (l), givean
alternative systemfor the listingof the valuesy = ~(x)
in the following sense. A point a in the range of ~
determines the level-set F. = {x: f(x) = a} in the
domain of X that is, the different solutions x of the
equation~(x) = a have the same imagein the range of
fi so that the inverse image of a does not distinguish
between the points of its level-set. The transfer
functions ((x~), however, do distinguishbetween the
sets Fa n s~,(d~r), so that different solutions of the
equation ~(x) = a may have different images in the
ranges of O; o ~(x~) for each q and k,. At the same
time, however, the values of ~ corresponding to the
solution set E~= {x~:&(xQ)= b} givethe same image
in the range of O; o ((x~).

iv) A given target function J(x) arising in appli-
cations may not be specifiedon an everywheredense
set, but interpolating functions can still yield useful
results, even with incomplete data that may also
not be distributed uniformly. Interpolating functions
Gj(y~) of a single variable, however, do not
necessarily provide useful interpolated values ~(x)
because neighboring points ~(d~r)on the y~-axisdo
not always correspond to neighboring points d~rin
En.

The followingspecificquestion is posed by Hecht-
Nielsen (1987):

Suppose that a function f En ~ 1? is specified
through data that is mostly concentrated in an
n-dimensional region D“ c En and sparsely
distributed in En – Dn. We wish to interpolate
values J(x) subject to certain prescribed
conditions imposed on f: Let N designate the
total number of given data points in the region
Dn. Can interpolating functions G~(Y~) be

constructed such that G~~(y~)-+ @~(y~) as
N -+ cc and for which:
a) Equation (1) with the given transfer func-

tions holds at the points at whichf is defined.
b) The functions G~(x) = Z~=OG! o~(x~)

interpolatevaluesof~subject to itsprescribed
properties.

The measure of the reliability of such interpolations
can be a comparative one that relates to alternative
(multi-variable)interpolation methods.

6. NOTES ON SUPERPOSITIONS WITH
DIFFERENTIABLE @~O~(X~)

The function @ is monotonic, and the Lebesgue
theorem tells us that it is differentiable almost
everywhere (except for a set of measure zero). Like
the corresponding functions in other versions of
Kolmogorov’s superpositions, @ is singular:
~’(x) = O almost everywhere, and @’(x)= +W or
no derivative exists elsewhere (see below). In this
sectionwe make a first attempt to determineclassesof
functions f that are obtainable with differentiable
functions Og(yq) and differentiablecomposite func-
tions @~o f(x~). The character of@ tellsus that these
are distinct problems, since it is clear that for the
composite function iO~o ~(x~)to have partial deriva-
tives there must exist a certain symmetry (comple-
mentary relationship) between the differentiability
properties of @~(y~)and that of ~(x~),as determined
by @. The complete differentiability profile of @is
obtained as follows(Sprecher, 1966):The number

D+(x)= /im?)(x+h) - ‘l/!(x)
h+O h

is the derivednumberof ~ at x when the limitexists;we
also use the notation Dtj(x-) and D@(x+) when the
left or the right limits exist, respectively.

We now set

[seethe intervals in eqn (6) above]and have

LEMMA 3
For each rationalnumberdk,

~~(dk–) = +cc

~~(dk+) = O

D@((dk+ 6~)–) = O

D@((d~ + ti,k)+) = +co.

Consider the open intervals Ak(dk) = (dk,dk + ($k)
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and the gaps Gk(dk) =
them, and let

U = {dk}

(dk + 6k, dk + T-k) separating

U {dk +&}

{

co

% X: XEflfikr(dk,)
r=l 1

{ }W=x:xcfi G,(dJ .
~Ek

Then V has Lebesgue measure 1, U and W have
measure O, &= U U V U W and U (1V = V fl W =
U n W = a, and we have

THEOREM3

@’(x) = Owhenx ● V;

+’(x) = +CC whenx 6 W;

no derivativeexists whenx E U

Lemma 3 and Theorem 3 are easilyverifiedwith direct
calculations, or they can be derived with minor
modificationsfrom Sprecher (1966).The observation
made at the beginning of this section suggest that
smooth functions @~(y~)are not expected to be very
useful and this is confirmed in the following.

THEOREM4
If the function @q(yq) is dljlerentiablewith bounded
derivativesthroughoutits domain,then @qo ((xq) has
vanishingfirst orderpartial derivativesalmostevery-
where.

The proof is a direct consequenceof the chain rule
which applies to each composite function @~o<(x~)
almost everywhere:setting (~ = ((x~) we have

almost everywhere, and hence also 8f/8xP = O
almost everywhere. Consequently, no continuously
differentiablefunction other than f= const. is repre-
sentable with differentiable functions @q(yq)having
bounded derivatives.

To determine classes of functions @q(.Yq)for
which @qo((xq) is differentiablewe have to introduce
the following concepts (for further discussion see
Bruckner, 1994,chapter 5).

DEFINITIONS
Let I be a closed interval, and 0: Z+ 7?a continuous
function. Then:

3-1 @isof boundedvariationifsup~ I.f(bi)–f(ai)l <
cc where the supremum is taken over all
sequencesof non overlapping intervals in Z.

3-2

3-3

D. A. Sprecher

@ is of generalized bounded variation if I is the
finiteor countable union of sets on each of which
@has bounded variation.
The point x is a pointof varyingmonotonicityof @
if x has no neighbourhood in which @is either
constant or monotonic.

The reader is reminded that every function of
bounded variation can be written as the differenceof
two monotonic increasingcontinuous functions.

THEOREMS
5-1 If @qo $(xq) hasjr.st order partial derivatives then

@q is of generalized bounded variation.
5-2 If @q o ,g(xq) has bounded first order partial

derivatives then @q is of bounded variation.
5-3 If @q o <(xq) has continuous first order partial

derivatives then @q is of bounded variation and in
additionm[@(K)]= O,whereK is the set ofpoints
of varyingmonotonicityof @~.

These theorems give necessary conditions for the
stated differentiability of the composite functions
@qo ,$(x~)and they specifythe classesfrom which the
functions@~must be drawn, but for the reasonsnoted
above these conditions are not sufficient. Further
discussion of these statements entails considerations
and arguments quite alien to the setting of this paper,
and they offer no insight into our understanding of
superpositions. They are therefore omitted. Proofs
can be found in Bruckner(1994),Chapter 5, Section4.
The converse question, that of characterizing classes
of functions @qfor which f has given differentiation
properties, remains completely open. It is clear that
the resultsof this sectioncould have been stated in the
more general setting of arbitrary monotonic singular
functions @Pq(xP)instead of translates 4(xP + qa).
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MATHEMATICAL SYMBOLS

vector (xl, ..., XJ
vector (xl + qu.,..., x~+ qa) where a =

[7(7- 1)1-1
composite function Q(c)
real time
unit interval [0,1]
n-dimensionalunit cube
rational numbers ~~=1 ir~–r, ir = O,1,.

7–1

l%-]

m,

~(r)

c7

> II“11

rational numbers d~ + q ~~=2 ~-’
vector (dk,l, . . . . d~,n)
vector (d[,l, ..., d~,n)

(il) = Oand

(i,) =
{

O when i, = O,1,...,~–2
1 when i, = y – 1

for r >1
[i,] = O:ndwhen , = o ~

[i,]=
{

?’7 ,...,7–3

1 when i, = ~ – 2, T – 1
for r >1

(

r–1

m, = (i,) 1+ ~ [i,] x . . . x [i,-l]
$=1 )

,8(r) = ~

Continuous function m 7? ~ &such that
o(x) ~ Ofor x s Oand a(x) ~ 1 for
x > 1.

the uniform norm


