
Improved computation of beliefs based on
confusion matrix for combining multiple
classifiers

L. Chen and H.L. Tang

One approach among a number of strategies for multiple classifier

combination is to calculate the beliefs of confidence based on confu-

sion matrices from individual classifiers. To achieve precise belief

computation, based on previous researchers’ work, presented is a

better algorithm with a more generic capability, showing improved

performance.

Introduction: Applications in the area of pattern recognition are

increasing combining multiple classifiers instead of developing the

‘best’ classifier [1, 4, 5]. Xu et al. [1] summarise three types of

combination problems according to three levels of output information

by various classifiers: the abstract level (a classifier only outputs a

unique label), the rank level (ranked labels are output by a classifier)

and the measurement level (the posterior probability is known for

each classifier). A majority-voting algorithm is the main method

applied in the abstract level. This is normally applied in the case

that a single classifier only outputs one label and posterior probability

is unknown. An alternative approach [1, 2] is to calculate the beliefs

based on confusion matrices of different classifiers and these beliefs

will provide the basic information for multiple classifier combination.

The described method for computing beliefs [1, 2] does not, however,

consider the effect of the numbers of test data in individual classes in

a confusion matrix, and it is assumed that in each class there is an

equal number of test data. A similar problem exists [3] where the

different numbers of test data in individual classes lead to the wrong

beliefs in measuring the similarity between classes and further

imprecise semantic reasoning that is based on such beliefs.

In this Letter we present a theoretical method to compute beliefs

with a better degree of precision, which produces better experimental

results in practice compared with the published algorithms [1–3]. The

remaining part of this Letter is arranged as follows: the computation

methods of beliefs based on the confusion matrix of a single classifier

are reviewed, followed by a proposal for an improved algorithm. The

sum combination rule is applied to compare the previous and the

improved algorithms. Experimental results are discussed and conclu-

sion is given.

Confusion matrix, beliefs and combination: When posterior prob-

ability is not available for combining multiple classifiers, a natural

solution is to vote for the final decision by considering the labels

directly outputted from all the classifiers. Such a method is, however,

based on such an assumption: most or all classifiers achieve good

accuracy, so this ignores the detailed performance information of

every single classifier. An alternative is to calculate beliefs based on

confusion matrices of individual classifiers and then combine them

based on these beliefs. A confusion matrix is a detailed report on the

performance of a single classifier. Let us assume that M classes in

pattern space Z with K classifiers. A classifier is a black box or a

function:

ek ðxÞ ¼ j; k ¼ 1; 2; . . . ;K; j 2 f1; 2; . . . ;M ;M þ 1g

and its confusion matrix is:

CMk ¼

nk11 nk12 . . . nk1M nk1ðMþ1Þ

nk21 nk22 . . . nk2M nk2ðMþ1Þ

. . . . . . . . . . . . . . .

nkM1 nkM2 . . . nkMM nkM ðMþ1Þ

0
BBBB@

1
CCCCA
;

M þ 1 is an unknown label

Each row i corresponds to class i and each column j corresponds to ek
(x)¼ j. The element nij

k means that nij
k samples of class i are assigned to

class j by ek(x). CMk is obtained by executing ek(x) on the test dataset

after ek(x) is trained. The number of samples in class i is: ni.
k
¼
P

j¼1
Mþ1

nij
k , where i¼ 1, 2, . . . ,M, and the number of samples labelled j by ek(x)

is n.j
k
¼
P

i¼1
M nij

k , where j¼ 1, 2, . . . , Mþ 1.

Table 1: Experimental results of individual classifiers and aver-
aging methods by applying formulas (1) and (2) on 63
classes (for demonstration purpose, randomly chosen
classes are displayed in this Letter)

Class
#1

Accuracy (%)
#2

Accuracy (%)
#3

Accuracy (%)
Average (1)
Accuracy (%)

Average (2)
Accuracy (%)

1. Adipose tissue 51.85 59.26 54.31 57.50 59.26

. . . . . . . . . . . . . . . . . .

5. Anus epithelium 53.33 40.00 36.67 53.33 66.67

6. Anus lamina
propria

97.06 94.12 88.24 94.12 94.12

7. Some appendix
glands next
to lumen

56.76 54.05 43.24 51.35 70.27

8. Serosa next to
muscularis
externa

60.00 40.00 60.00 60.00 60.00

9. Muscularis
mucosae

83.33 66.67 66.67 66.67 100

. . . . . . . . . . . . . . . . . .

22. Junction between
submucosa and
tight muscle

57.14 42.86 50.00 42.86 64.29

23. Lymph nodule 85.19 79.63 85.19 83.33 90.74

24. Lamina propria 60.00 55.00 65.00 55.00 65.00

. . . . . . . . . . . . . . . . . .

47. Small intestine:
junction:intestinal
glands and
lamina propria

20.00 0 0 0 40.00

48. Small intestine:
junction:intestinal
glands and
muscularis
mucosae

51.06 57.45 46.81 57.45 61.70

49. Small intestine:
junction:
lumen and villi

28.21 41.03 38.46 41.03 48.72

. . . . . . . . . . . . . . . . . .

57. Stomach
foveolae(long)

45.46 50.00 22.73 45.46 63.64

58. Stomach
foveolae(middle)

58.93 50.00 51.79 50.00 67.86

59. Stomach
foveolae(surface)

59.21 65.79 64.47 65.79 61.84

60. Stomach:
junction:fundus
glands and
lamina propria

72.73 63.64 61.11 63.64 81.82

61. Stomach:
junction:fundus
glands and
muscularis
mucosae

50.00 40.00 50.00 30.00 60.00

62. Stomach:
junction:lumen
and focal
oedema

62.50 50.00 75.00 50.00 50.00

63. Stomach:
junction:lumen
and foveolae

61.91 69.05 64.29 69.05 69.05

Total accuracy 70.73 69.66 69.74 70.37 72.27

In [1], the belief bk (�) is calculated as follows:

bk ðx 2 class ijek ðxÞ ¼ j;EN Þ ¼ Pðx 2 class ijek ðxÞ ¼ j;EN Þ

¼
nkij

nk:j
; i; j ¼ 1; 2; . . . ;M þ 1 ð1Þ

EN denotes the common classification environment. However this

computation is only suitable in cases when the number of samples in

each class is the same, i.e. ni.
k
¼ nj.

k, (i 6¼ j). When ni.
k
� nj.

k (i 6¼ j), even if

the accuracy for the classifier ek (x2 class i) is high, the small number

of misclassification, i.e. ek (x2 class i)¼ j, where i, j2 {1, 2, . . . ,
Mþ 1} and i 6¼ j, will cause the imprecise beliefs. In the proposed

method, (1) is modified into:

bk ðx 2 class ijek ðxÞ ¼ j;EN Þ

¼ Pðx 2 class ijek ðxÞ ¼ j;EN Þ

¼
nkij=n

k
i:

PM
t¼1

ðnktj=n
k
t:Þ

¼
nkij

PM
t¼1

ðnktjx
k
itÞ

;

where xkit ¼
nki:

nkt:
; i; j ¼ 1; 2; . . . ;M þ 1

ð2Þ

When the difference between the numbers of test data for different

classes becomes large, (1) is less precise than (2) in computing the
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beliefs for individual classifiers. The imprecise beliefs will give the

wrong measurement for multiple classifier combination process.

When multiple classifiers e1, e2, . . . , eK are developed, their corres-

pondent beliefs b1, b2, . . . , bK are computed based on the performance

of base classifiers. It is assumed that individual classifiers are mutually

exclusive. Typical combination strategies are averaging and multiplying

algorithms. A theoretical and practical comparison has been discussed

[5] for these two types of methods, the conclusion being that averaging-

estimated posterior probabilities are to be preferred when posterior

problems are not well estimated. Pathological images [6] have been

used to test the proposed approach. The posterior probabilities from

confusion matrices of individual classifiers are not well estimated (see

the performance of base classifiers in Table 1) due to the limitations of

current image processing techniques and complicated nature of patho-

logical images, so the following average algorithm (3) has been

employed:

bðiÞ ¼ bðx 2 class ije1ðxÞ; e2ðxÞ; . . . ; eK ðxÞ;EN Þ

¼ Pðx 2 class ije1ðxÞ; e2ðxÞ; . . . ; eK ðxÞ;EN Þ

¼
1

M þ 1

PK
k¼1

bk ðx 2 class ijek ðxÞ;EN Þ; i ¼ 1; 2; . . . ;M þ 1 ð3Þ

The belief of making the final decision to assign x to class j ( j¼ 1,

2, . . . , Mþ 1) is B( j)¼maxi¼1
Mþ1 b(i).

Experiment results: In this work, the pathological image collection

and its classes (63 classes) [6] are used as the dataset, which is

randomly divided into three subsets without considering the numbers

of the test data in individual classes: training dataset (2754 samples),

test dataset1 (2755 samples), testing dataset2 (2528 samples). To

avoid inaccurate belief estimations due to over-training, the training

dataset is used to train individual classifiers, none-overlapping test

dataset1 is used to produce the confusion matrices of base classifiers,

and the second test dataset is applied to test the aforementioned idea.

The classification algorithm is based on multi-class support vector

machines (SVMs). Three multi-class SVMs are trained based on

colour histogram (#1), texture feature extracted by Gabor filters

(#2), texture feature by wavelet (#3). The experimental results

are shown in Table 1. The first three columns (#1–#3) demonstrate

the performance of the individual classifiers. The accuracy of the base

classifiers is not high enough to be reliable, implying that the posterior

probability is not well estimated; therefore the averaging combination

strategy is adopted as discussed above. The formulas (1) and (2) are

applied into the average algorithm (3), respectively, and the detailed

comparison is reported in the last two columns of the Table 1. The

averaging method using the beliefs calculated in (1) results in even

worse performance than some of the base classifiers; while the

averaging combination strategy based on the improved algorithm

(2) achieves the best performance in categorising most of the classes

as well as in the total accuracy.

Conclusion: The aim of this work was to produce a general and

precise computation method of beliefs based on confusion matrices of

individual classifiers, which will serve as the basic information for

multiple classifier combination at the abstract level [1, 2] as well as

providing knowledge for further semantic reasoning [3]. We improved

the previous algorithms [1–3] and used a large-scale pathological

image database to test the proposed idea with the improved results.
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