REPRESENTATION OF CONTINUOUS FUNCTIONS OF THREE VARIABLES BY

THE SUPERPOSITION OF CONTINUOUS FUNCTIONS OF TWO VARIABLES™*
V.I. ARNOL'D
Contents

Introduction . . . . . . . .. . . . ¢ e e e e e e e e . . 61
Part I. Proof of Theorem 2 . . . . . . . . « v « « « « . e . . . 65
§1.  Fundamental lemma . .. .. e e e e e e e .. 66
§2. Proof of Theorem 2 e e e e e e e e e 0. .. 78
Part II. Proof of Theorem3 . . . . . .. .. e e e e e .. . 87
§3. Fundamental definitions. Inductive properties 1-4 .« v s e 89
&4. Inductive preservation of property 1 . . . . 94
§5. Lemma on generating schemes . . . . . . . . . .. .. .. .. 98
§6. Inductive preservation of generating schemes. . . . . . . . . . . 102
§1. Inductive preservation of the decomposition of functions . . 107
§8. Arithmetic lemma . . . . . . . . . . . .. e e e e . . . 112
&9. Inductive preservation of property 4 . . . . . . . . . .. . . . 118
§10. Proof of Theorem 3 . . .. .. .. .. A Y1

Appendix. The space of the components of the level sets of a continuous
function . . . . . . A R R TS SO . P . . . . 128
A.  Construction of the metric space 7} e e e e e e e e e . . 129
B. Two representations connected with a continuous function . 131
C. Singly connected sets . . . . . . . .. . .. .. e e« . . 133
D. Trees . . . . ¢« ¢« ¢« v v ¢« o o .. e e e e A k1]
E, Structure of trees . . . . . . . .. ..., P & 1 {
F. Realization of trees . . . . e . e e e e e e . . 141
Concepts and theorems of point-set topology used without further comment . 145
Bibliography . . . . « ¢ ¢« ¢ ¢ ¢ ¢ 4 0 v e e e . . S ¥ 4

Introduction

The present work is devoted to the proof of the following
was stated in an earlier note [1].

Theorem 1. Every real continuous function f(x4,%2,%3)

defined on the unit cube Es, can be represented in the form

s s
f (%1, X3, X5) = 2 Z hujli) (%1, X3), %3],

i=1 j=1

* Editor’s note: translation into English published in Amer. Math. Soc. Transl.
Translation of V.I.Arnol’d: On the representation of continuous functions of th

theorem, which

of three variables,

(2) 28 (1963), 61-147
ree variables by

superpositions of continuous functions of two variables, Mat. Sb. (n.S.) 48 (90):1 (1959), 3-74

Corrections in Mat. Sb. (n.S.) 56 (98):3 (1962), 392
47



62 V.I. ARNOL’'D

where hij and q)ij are real continuous functions of two variables.

For the proof of this theorem in note [1]. use was made of two theorems
whose complete proofs were not given in that paper. Here are these theorems.

Theorem 2. Every continuous function f(x3,%x2,%3) defined on E® can be

represented in the form

3
f (%1, Xg, %3) = 2 hi [9: (%1, %), X3,

i=1
where hi and @, are continuous functions; the functions hi are real and
are defined on the product E X E' of the tree (see [3], Chapter X) E by the
interval E, while the functions Q,;(x1,x2) are defined on a square and have

for their values points of E. Here B is a tree, whose points have a branching

index not greater than 3.

Theorem 3. Let F be any family of real, equi-continuous functions f(&)
defined on the tree B all of whose points have a branching index < 3. Then
one can realize the tree in the form of its homeomorphic image X, a subset of
the three-dimensional unit cube E°, in such a way that every function f of

the family F can be represented in the form

f (x) =k2 Fr (%),

where x = (x4,%2,x3) is the image in X of the element £ € B, fx) = £(&),
and the fk(xk) are continuous real functions of one variable. Here fr
depends continuously on f in the sense of uniform convergence.

Theorem 2 (with the exclusion of the last phrase) is contained in a work of
A.N. Kolmogorov [2] Its proof is also outlined there, but the proofs of the
lemmas used there were not published. In Part I of the present work there are
presented the proofs of these lemmas for the

4 M case when the branching index of the points of
the obtained tree is not greater than 3. After
f, & that, the Theorem 2 given above is derived from
£ 1 these lemmas.
Y g, For greater explicitness, let us consider
0¥ i the case n = 2 of the lemmas of the note [2].
I e The proofs (as well as the formulations) of

these lemmas are somewhat different from those

!;19:;9 ; Repre?en:t:zio;l given by A.N. Kolmogorov. This is due to the

n the form Q(x (y

of a function given on a introduction of the items 6) and 7) into the
Y-type tree. fundamental lemma, and to our desire to obtain
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 63

Theorem 2 in the formulation given above.

Theorem 3 is proved in the second part of this work. The ideas behind this
theorem are quite simple.

Let a continuous function f(£) (£ € A) be given on a Y-type tree
(Figure 1). Then there exist continuous functions f,(x) and f,(y) such that
fq(x) + fay) = (&) if x and y are the coordinates of the point & € A.
The proof can be accomplished, for example, as follows.

Suppose that the function f,(x) on AB 1is equal to f(.fl) for a point
&, € LN whose abscissa is x. In order that f = fq + f, on KL, one has to
define f,(y) on DE as f,(y) = £(€2) - f,(x), where fz € KL 1is the point
with coordinates x,y. Hereby, f,= 0 at the point E. Let f,(y) =0 on
EF also. Fipally, in order that f = f, + f, on LM, one has to set
fi(x"y = f(&;), where &, € LM is the point of LM with abscissa z'. It is
easily seen that the constructed functions f,(x) and f,(y) are the desired
ones.

It is easy to devise an analogous construction for the function given on a
more complicated tree (Figure 11). In general, we have the following type of
theorem.

Every finite® tree, whose branch points are of index not greater than 3,
can be mapped homeomorphically onto a flat segment-like complex K such that
every continuous function f(f) is representable on K 1in the form
(&)= () + f,(y), where =x and y are the coordinates of the point
ek

Theorem 3 asserts that an analogous result holds in the three-dimensional
space for any tree whose points have a branching index not greater than three.
The proof is very involved, but can be reduced in essence to the considerations
glven above, and to the transition to the infinite tree from finite trees.

Theorem 1 is a direct consequence of Theorems 2 and 3. Taking the risk of
possibly confusing the reader, who could derive the proof himself, we neverthe-
less present a simple argument.

From Theorem 2 it follows that one can express the function f(x4,x2,x3)
as the sum of three functions hi(fi.xa) (i =1,2,3) from the product of the
tree (?,"'i € B), none of whose points have a branching index greater than 3,
by the segment (x € E'): (rfi, xg) € E X E. Theorem 3 asserts that the
function h(£) on such a tree can be expressed as the sum of three continuous

* A tree with a finite number of points.

** The reader can easily construct the proof of this theorem after he reads §3-7.
Whether it is possible to give an analogous representation for an infinite tree,

is not known.
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64 V.I. ARNOL'D

functions hj("j) (j = 1,2,3) of the coordinates % of some realization

x j(ﬁ) of the tree B 1in the three-dimensional space. These functions hj (xj)
depend continuously on the decomposed function h(£) (in the sense of uniform
convergence) if the function h belongs to the same family F of equi-
continuous functions on the tree E for which the realization is constructed.
The functions hi(fi,xa) that are obtained from Theorem 2 can be considered to
be such a family of functions hi(f) on the tree =, which depend continuously
on the parameter x5 € E", and they are, therefore, equi-continuous. Applying
Theorem 3, we find & realization of £ 1in the form X C E°.

3
In the decomposition f(xq,x2,%3) = _Elhi(fi.zs). &, = 9,(x1,%0) 188
1=

point of the tree &£ and depends continuously on x4 and xo (Theorem 2).
Hence, after the realization of E 1in the form X, every coordinate x € X
becomes a real, continuous function of x; and x5. If ‘fi = Cpi(xl.zg) and
the jth coordinate of the point x that is realized by 'fi is (pi}. (x4,%2),
then, in view of Theorem 3, the decomposition of hi('fi"'s)' as a function of

3
hixo('fi)' into the sum X

(x.(£.)) can be written in the form
j= xg J 71

1h"f

3
R 50 (X0, Xa), %3] = 2 g [ (%1, Xa), X3).
j=1
Therefore,

3 3
f (%1, Xa, x3) = E Z hij [ (1, %), Xa),
i=1j=1

which is8 the assertion of Theorem 1.

About two months after the completion of our work [1], A.N. Kolmogorov [2]
strengthened the Theorem 1 by showing that every continuous function on the
three-dimensional cube is representable in the form

7
f (%1, X2, X5) = Z hi [ (x1) + @i (Xe) 1= Pia (x5)],

i=1
where the functions hi and @ are continuous; the functions (pik are,
however, selected once for all independently of f. From this result of
A.N. Kolmogorov it follows that the three-dimensional cube can be imbedded in
a seven-dimensional space so that any continuous function on the cube will be
expressible as the sum of continuous functions of (seven-dimensional)
coordinates. According to the work [2], an analogous representation for a
square can be realized in a five-dimensional space. From this it follows
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 85

directly that in a five-dimensional space we can place our tree = , once for
all, so that any function continuous on it is expressible as the sum of con-
tinuous functions of the coordinates (while in our Theorem 3 the representation
in the three-dimensional space depended on the family F ). But by modifying the
methods of the note [2], one can obtain a representation of the tree & which
is valid for all continuous functions f 1in the three-dimensional space also.

In the constructions of the first and second parts of the present work, use
is being made of the tree of the components of the level sets, which was intro-
duced by A.S. Kronrod. The essential information about this tree can be found in
the Appendix. The Appendix and each of the two parts of this work are independent
of each other.

I take this opportunity to thank my teachers A.G. Vituskin and
A.N. Kolmogorov for their constant attention, counsel and help. In particular,

I am indebted to A.N. Kolmogorov for the final formulation of the fundamental
“inductive lemma ” of the second part.

PART 1
Proof of Theorem 2

Here we shall prove Theorem 2. The fundamental lemma of the work [2] and
Lemma 2 are proved in such a formulation that the tree &=, under consideration
in Theorem 3, consists of points whose branching index does not exceed 3.

The following notations will be used:

R? 1is the plane of the (x,y) points; E2 1is the closed unit square in
this plane, i.e., the set of points (x,y) with 0 x<1, 0<y< 1.

The metric in the plane is defined as the distance

p((x1, 41), (X2, Y2)) = max(| X, — X |, | Y1 — Y2 |).

U,(A) denotes a d-neighborhood of the set A, 1i.e. the set of all
points in the plane whose distance from the set A 1is less than d (d> 0).

A 18 the closure of 4.

A polygon is a closed broken line that does not intersect itself. An open
polygon (Q 1is the part of the plane lying inside a polygon, while a closed
polygon 6 is the closure of the open polygon.

An open polygonal band is the part of the plane bounded by two noninter-
secting polygons, one of which lies inside the other (is separated by the
other from infinity). A closed polygonal band is the closure of an open one.
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66 V.1, ARNOL'D

The set of the level ¢ of a function u(x,y) is the set of points (x,y)
such that u(x,y) = c.

A list of the topological terms used in this work is given at the end of
the Appendix.

§1. Fundamental lemma

Suppose that we are given a finite number of nonintersecting regions -
in a plane, and that over each region there is a hill u, . The set of hills
form a “mountain country” G. Suppose that we are given not only one
mountain country G (Figure 2) but an infinite sequence I' of such mountain
countries,

G1.G2,. .. Gp,en ey

where the ‘““country of rank &°” Gk consists of some finite number m, of
hills u,, of rank k (m= 1,...,m;) over the regions g;m; no two regions
of a given mountain country intersect each other (Figure 2). For large &k,

the country G, has more hills, but their bases, the regions g;m, are
smaller.

Finally, let us suppose (and this is not shown in Figure 2) that we are
given three such sequences of countries I'" (r = 1,2,3), namely, three systems
Iwr. Each of them consists of mountain countries Gi (k=1,2,...), and each
mountain country G, consists of hills up (m=1,...,m}).

In the fundamental lemma there are constructed three such systems of hills
u;m satisfying a number of requirements. For example, every hill u;m is
constructed in such a way that over every region g;'ml (k' > k) 1t possesses
a horizontal plane (requirement 5).

Fundamental lemma. It is possible to define on the plane R? a system of

real functions uim(x,y). with indices lying within the limits
1r<3, 1<kr<mw, 1<nK mp,
and having the following properties:
1) 0< u;m B
2) ";m # 0 just on the region g;m whose diameter is less than d, > 0;
dk-0 as k —®; u;m= 1 on the set g£+1m. only.

3) Two sets g;m and g;m, with the same indices r and k, but

m#n', do not intersect.

4) For any given k, and for every point of the square E%, it is true
that
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CONTINUOUS FUNCTION

3
0<c<

r=1

where
5)

when

¢ and C are constants indepen

The function
' >k but

r .
Upm 1S constant

1
m and m

r arbi-

trary.
6)
of the function

The boundary of each level set
uzm is connected and
divides the plane R? into three parts
at most.

r 2
€44 D E”°.

The functions uj, and the sets
will
be called functions and sets of the one
system while those with the same
index k (and arbitrary and m)
will be said to be functions and sets
The index = will

7) For every r,

ghm With the same index r = ro

ro.

r

of the same rank.

be called number. Obviously, for any N

the totality of functions (sets) of
rank not higher than N 1in each system
will be finite.

It is known that for every € > 0,
plane R? can be enclosed (covered) by
sides are parallel to the coordinate ax

Figure 3. Lebesgue covering. The
squares of one system are lined,
those of another system are black,
those of the third one are white.
The functions Qf . 8re constructed

for the black squares ngm.
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Mp

r
Z Upm < C)
m=1

dent of k.

on each set g;:m; with the same index

7 /

Figure 2.
countries. All the horizontal
planes R2 are actually in the
same plane.

System of mountain

the bounded region E D E? of the
means of closed squares Py whose
es, in such a way that the set of
squares can be divided into three sys-
tems pf , 1< r<3, whereby the
distance between any two squares of one
system will be greater than € /2
(Lebesgue covering, Figure 3). These
squares are the cells of the regions
BZm‘

All the successive constructions
for each r are done independently.
During each of the constructions of the

functions ";m' r 1s kept fixed.

The sets g (n=1,...,m) are



68 V.I. ARNOL'D

obtained from the squares ngm. where € > 0. The selection of the number
€p will be described later. The regions me will be obtained by means of a
« ” N r T r
dilatation ” of the ngm in such a way that ngm C gy, € Qekm, where Qg .
is the closure of the square which is an (€ /6)-neighborhood of
roo. g _r
Pekm. Uek/s(Pg ) = Qg,n (see Figure 3).
It {E_obvious that if mq # mog, p(QEkm1 Qek"l ) > €, /6. Therefore
P(gkm1' gku2 ek/6
This means that by this construction the requirement 3) of the fundamental
lemma will be satisfied.

In order to fulfil the requirement 2), it is obviously necessary that
€,—+0 as k—o. It will become obvious that this condition will be ful-
filled by the construction given below.

This construction is divided into several stages. Everything that is con-
structed at the nth stage will carry the superscript n together with that
of the system r.

In general, all notations are constructed so that Ag:m should be read as
follows: the object A 1is constructed for the function u (or the set g) of
the systen r of rank k and number m, i.e. for u,  (g},) &t the nth
stage. The letters have the following designations:

P is the square cell.

Q 1is an approximation to g from within.

6 is an approximation to g from without.

*0 1is an approximation to the set of the level u= x (0< x < 1) and to
the boundary of the set of the level u=x when x=0 and x= 1.

*® is an approximation to the boundary of the set of the level
u=zx (0< x<1).

For example, xi6§£:m denotes the approximation to the boundary of the
set of the level uj = x; constructed at the nth stage.

We start the construction of the g;m at the kth stage, but at the nth
stage (n > k) we construct the (n -k *+ 1)st approximation to gzm from

within and from without: Qekm C gpp C Qé:m. Hereby Qekm p) Qekm and g
is determined as U QEkm i.e. as the sum of the dilated approximations

from within.

The functions "Zm are constructed with the aid of their level sets. The
construction is begun at the kth stage where one constructs the first

ootk - Ekm \\Qekm to the set of the zero level. At the

approximation ELn
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 69

next stage one constructs the first approximations to the sets of the levels

1/2 and 1, and to certain other levels, and the second approximations to the
zero level. At each stage there appear first approximations to new levels, and
one makes successive approximations to the earlier used levels. Each approxi-
mation is a closed polygonal band imbedded in the preceding approximation, while
the level set itself is the intersection of all its approximations. The values
of the function u on each of such level sets are selected so that ”Zm is
continuous, positive on g;m, larger than 1/2 on ngu but does not exceed

1 anywhere. The requirements 1) and 4) of the fundamental lemma will thus be

satisfied.

We shall make use of an elementary geometric lemma whose proof will be
omitted. It is sufficient to examine Figure 4 to convince oneself of the truth
of this lemma.

Case 1) Case 2)

Figure 4. The polygons Qm are black.
The band B 1is lined.

Geometric lemma. Let A be a closed polygonal band whose width (i.e. the
smallest distance between the boundaries of the polygons) is greater than a
positive number d. Let the Qm (m=1,...,M) be closed nonintersecting

polygons.

1) If the diameter of each of the polygons Qu does not exceed d, then
it is possible to construct a polygon S which is strictly inside the band A,
separates the boundary of the band A, and does not intersect the polygons
Q (m=1,....M.

2) If another closed polygonal band B lies strictly inside the band A,
and if the polygons Q do not intersect the boundaries of A and B, then
the polygon S, which separates the boundaries of A and does not intersect
Q,+ can be drawn strictly within the band A so that its intersection with B

will be an interval (segment).

We now begin the construction at the first stage.

In order to fulfil the requirement 7) of the fundamental lemma, we set
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70 V.I. ARNOL'D

€,=1, my=1, Pi, = E?. We construct the squares (Figure 5)

Qn = 11 = Ul (Pu)a-ndQu = Ul (Pu)
6 12
This is the first approximation to g;i, for we see that
011 C g11 C Q 6:: \\Qii = 00;; is called the first approximation to the
boundary 511' This is a closed polygonal band of width 1/12.

If €5 < (1/12){3/4), then the squares

. / Qg2m (n=1,...,m3) can be taken for the Q,
ﬁ\% ) in the geometric lemma,* while the first
‘z\\é\‘ approximation to the boundary of g}, plays
I~ the role of A.
2 With this selection of €,, we start the
_% j second stage (Figure 6). For this €, we

construct the squares
Figure 5. 1 is the boundary
of Py,, 2 is the boundary of

r r _Ar?2 _ 1 of .
P€2m' Q€2m - Eom - UEQ/G(PEQM)'

-
ii, 3 is the boundary of Qagm 62/12(P€2m) (m=1,...,m2). The Q62m

6:1- The shaded band 0021 are the first approximations to the regions

is the first approximation 8o, VWhile the E,m \\Q are the

to the boundary of the

first approximations to their boundaries.
region g,.

It will be convenient to perform the con-
struction so that the boundaries of the
regions ggm and 3£'m' do not intersect. It can happen that this requirement
is not fulfilled for the first approximation: the band 0021 may intersect the
squares anm. However, on the basis of the geometric lemma one can draw a
polygon within this band which separates Q;: from infinity and winds among
the squares Q£2m without touching them. This polygon, naturally, can be
enclosed in the closed polygonal band oogi which will be the second approxi-
mation to the boundary of 321 or to the boundary of the set of the level
21 = 0. (This explains the use of the left 0 superscript.) The band 00’2
determines the second approximation Q12 to 811 and can be represented in
the form Q1 \Q11 .
At the second stage we construct also the first approximations to certain
other level sets of the function "Ii‘ It is easy to see that, since
€, < (3/4)(1/12), one can find a square ngm— which will lie entirely within
P;i. It is the first approximation to the set of the level 1 for the function

* The construction of the squares is described after the formulation of the

fundamental lemma (see Figure 3). For the region E, which occurs there, one
should take eri-
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 1

uj,, while the band '07F = Qfne \ngm. is the first approximation to the
boundary of this set.

Next, in order to satisfy the requirement 4), we construct the set of the
level 1/2. The boundaries of P;1 and Q;i are at a distance of 1/12 from
each other, while €, < (3/4){1/12). Therefore, applying the geometric lemma
to the band between Pr and Q;:. we construct a polygon, and then a closed
band 1/2023. which winds among the squares QE o (m=1,...,m2) without
touching them, lies within Qn' and separates P 4, from infinity. The band
1/2 ;f becomes the first approximation to the set of the level 1/2 for the

function u],. The successive approximations 1/2 Q7} (n> 2) are constructed
within this band.

Finally, one constructs at the second stage the first approximations to the

sets of the levels of the function ul], that contain &p, and one determines
r

the values u,, on these sets.

First of all we discard forever those squares Qe which were found to
lie outside Q (and, hence, outside Q The remaining squares
Q€2m (m € M:i (excluding Q€ m‘) lie in the ring-shaped regions into which
Q}? 1s divided by the finished bands °0}2, */%0[2 and 10}2. Each ring-
shaped region is an open polygonal band which separates ng., and everything
that lies within it, from infinity.

Let us consider any one square Qf mo (mo € M’i, n# m*). We take the
closure of the polygonal band in which the given square lies, for the band A
of the geometric lemma; the remaining squares QE on (m # mg) we take for
the Qm, and the band QE,m QExMo\QEQMO for the band B. In accordance
with this lemma, we nwaw the polygon S, which intersects °og:no in an
interval, separates Qe om* from infinity, lies inside the open pongonal band
between the finished bands, and does not touch the squares Qe on (m # mo).

This polygon S can be enclosed in a closed polygonal band d, which has the
same properties, in such a wa.y that 4 U Qs is also a closed polygonal
band (Figure 6). It is 011- the first approximation to the level set, for
the function u},, that contains g;mo. The value xo of the function uf,
on this level set is determined below.

Adding the band *0072 to the finished omes, we choose from the M/’ a
new m# mg, m# m*, and construct by the same method an “Oﬁ, and so on,
until the set M1r12 is exhausted and every square ngm (m € M11 ) 1is en-
closed in the first approximation to some level set of the function u’;l.
These approximations are polygonal closed nonintersecting bands. The sets
xi@ﬁ "10'2 \ 0'2 n; BT called ®-type closed bands. Each of them divides
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72 V.I. ARNOL'D

the plane into three parts: the QE: e

the part that contains 2072

110 and

the part that contains 0023 (Figure 6). They are the first approximations to

T SO g
e T 7 T
v/ A =SS —— (g
(4 ‘lf
i\¢ i

e

(]
A o
g (.
i i
i "
14 %
i e
i i
i i'7
Wy i.‘
i 5%
P 4\
XY o\
gl W
7 %
fi "
K] /]
T nnumnmna_znnunun&,ég

Figure 6. The thin lines are first
stage constructions. The black
squares are the Q§2u. There

should be many more of them but
then one would not be able to see
anything on the figure. The black

square at the center is Qg2m~.

Only a few of the bands containing
the squares are shown; the second
stage 18 not completed.

the boundaries of the level sets of ";1

containing g;m, (m; € M;f pomy # n*).
1

Finally, let us determine the values

X ..
1
Between the boundary of the set g,
and /2072, the function uf, will

increase from 0 to 1/2, while between
1/2023 and 10;:. from 1/2 to 1.
The bands ’iogf are divided by 1/2023
into two classes: p, outer bands lying
outside 1/2013, and p,
Let us reorder them by means of an index

Jj = j(i) 1in the order determined by their
separation from infinity: the outer ones

inner ones.

from 1 to p,, the inner ones from

p1+1 to p, *p,
the increase of u

Let us spread out

to 1/2
uniformly among the outer bands, by
letting the jth band be an approximation
to the set of the level ul, = j/2(p, *+ 1).

from O

For the inner bands of uniform increase
from 1/2 to 1, we let the jth band

be the approximation to the set of the level 1/2 + (j - p,)/2(p, + 1).

Thus we have obtained the following objects at the second stage:

1) The first approximations Qg2 and °0g>. to the sets g and their

boundaries.

2) The second approximations Q. and °0[2 to the g7, and its

boundary.

3) The first approximations to the set of the level 1 of the function

u], and to its boundary, to the set of the level 1/2,

and to the sets of

the levels of u, on which the g . (m; #n’; n€ M;f) lie, and also to

the boundaries of these sets, ég

4) The values x;

2
2"'

of the function

1.r2  1/2,r2 xir2 xi@r2
031 2011' 0y 8%1-

r r
u,, on the 82’ and on the level

sets that contain them (not yet constructed).

The approximations to the open sets are open polygons containing the
preceding approximations, while the approximations to the closed sets are
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 3

closed polygons, polygonal bands, and ® -type bands contained within the
preceding approximations.

We note that the construction at the second stage of the functions and sets
of rank 2, is exactly the same procedure (if one disregards the scale €,) as

that used at the first stage for the construction of the functions and sets of
rank 1.

In general, after the nth stage we will have:

1) the first stage of the construction of the functions and sets of the
nth rank, the second stage of the construction of the functions and sets of the

(n - 1)st rank, and so on up to the (n-1)st stage of the construction of u;u
r .
and Eop

2) the nth approximations Q77 and °0]7 to the set g}, and its
boundary, respectively;

3) the (n-1)st approximation to the level sets of the function ugi.

which we began to construct at the second stage, and the (n - 2)nd approxi-
mations to those level sets which we began to construct at the third stage, and

so on up to the first approximations *1077 and *i@77 to the level sets of

u§1 that contain the 8;mi’ and to the boundaries of these level sets. Here

m, € M;:, i.e. m, runs through those values from 1 to m, for which the

corresponding squares anmi do not lie within QE:M, (1<k<n a'< m),

but lie inside Q77:

4) the values x, of the function uy, on g, (m € M}}).

We have the following results.

1°. The approximations to the open sets are open polygons whose boundaries
do not intersect each other (mor, in particular, the small squares QE n= ).
n

€nm
These approximations contain the preceding ones.

o

2°. The approximations to the closed sets are closed polygons, closed

polygonal, or polygonal O -type bands enclosed in the preceding approximations.
The polygons that are the boundaries of these approximations do not intersect
the other polygons constructed at the nth stage (nor, in particular, the
boundaries of the small squares anm).

3°. Each one of the bands *i07}, and each of the *i@T1 (. € M™)

contained in it, separates agzm. from infinity, while *i@[7, besides that,

separates from the rest of QE:Mi C xio;g the first approximation to the set

We call attention to the fact that the notation always reflects the number of

the stage at which an object is constructed and not the number of the approxima-
. . . . . r

tion. For example, Qg:m is the first approximation to genm.
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g;Mi vhich lies on the set of the level uj, = x,.

0 r
4. The values of uj, are uniformly distributed on g/ (m € M),

The last phrase has the following meaning by definition.

Let the bands A and B be constructed at the nth stage of the approxi-
mation to the set of the levels a« and b of the function ";1' where a
and b are determined up to the nth stage. Suppose that at the (n - 1)st
stage there was no band (of the approximation to the set of the level u;1)
between A and B, but at the nth stage such bands C; (i =1,...,p)
were constructed (the numbering of the C, 1is from A to B). If the value
x, of the function ";1 on the level set for which C; 1s the first approxi-
mation is equal to i(b - a)/(p +1) then the values of uj, on g, ~are said
to be distributed uniformly between A and B. The condition 4) requires that

the values of uj, on g be so constructed between any two bands A and
B of the indicated type.

The (n + 1)st stage begins with the selection of an € , . Since any two
of the polygons that bound the nth stage approximations to all level sets of
all the functions “fn (k< n) and to their boundaries do not intersect
(provided they are not identical), there exists a positive number d such that
the distance between any two distinct polygons is greater than d. We choose
€.+, B0 that €44 < 3d/4. This €.+, Permits us to carry out the first
stage of the construction of the sets g ,,, and of the functions uy

ntim’
the second stage of the construction of g~ and u ., and so on up to the

nth stage of the conmstruction of gj and uj, . "

Since we now assume that we have gone through the stages of rank less than
nt1l for ";1' and since they are entirely analogous for the remaining g;m
and “;n (k £ n), we consider only, as an example, the first stage of the

construction of the sets g, . gy

For € ,, we construct a Lebesgue covering with the squares P€n+1“ of
the nth approximations Q" to g, from without. We divide this covering
into three systems Pg " and construct with them the first approximations

n

to g, from within and from without,

and of the functions

rn41 r r Ar n+1 r
Qeipgrn = Uen s Pep i)y Qepym = Qeiim = Uep (P ym)

12 L]

(m= 1,...,m,,+1)
and the first approximations to the boundaries of g;m

0rn+1 Ar n+1 ra+1
0‘n+1m = Q‘n+1”' \Q'n+1m (m =1..., mn+l)-
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 75

(The squares Qg oy will be called the small squares.)
n

Since €p+4 < 3d/4, one can now proceed with the second stage of the
construction of g;m and u;m, and so on to the nth stage of the comstruction
r d r
8o, 8D gy -
Suppose all this has been done. Then one has to carry out the (n + 1)st
stage of the construction of g7, and uf,.
Let us consider any closed band xO:? which is an approximation to the set

of the level x of the function u},. If z=0, or xz=1/2, then 0}
will not intersect the sets Qz: (k € n). It can intersect the squares

r - o nt
QEn+1m Epben’ but their diameters are less than d, which is less than or

equal to the width of the band. Therefore, applying the geometric lemma, and
expanding the polygon S up to the closed polygonal band which winds within
the band *0]7 without touching the small squares, we obtain the bands
°O§f+1 and 1/2O§f+1 that satisfy all the requirements 1° to 4°.

If x=1, then 10;f+1 will be 102;:3. a band that already has been
constructed, since we assume that the nth stage of the construction of the

functions u} . has been completed.
If x#0, 1/2, or 1, then the band *i0]} contains the approximation

aé:m‘ to gzm, (k < n), which was constructed at the nth stage, and this

1 13

band contains, therefore, also the band °ogé;f‘ that has been constructed at
1

the (n t+ 1)st stage. Since this band, which contains OE:Mi. and is con-
tained in ég:ui, does not intersect the small squares, one can choose it for
the band B 1in the geometric lemma, while for the band A of that lemma, we
can take ‘iogq. Applying the lemma, we obtain a polygon S which 1) inter-
sects the band OOggzzi in an interval, 2) separates 10;:+1 from 002:*1,

3) lies inside *:0]7, and 4) winds among the small squares without touching
them. Dilating S to the closed polygonal band d, which has the properties
2), 3), and 4) and which is such that xi02:+1 =dU AE;:? is also a closed
polygonal band (that this is possible is obvious), we obtain the following
approximation *ip[n*l to the set of the level uj, = x;.

xi@;;‘“ = xio;;‘“ \ng’;:i‘ is the next approximation to the boundary of
this level set.

Having completed the indicated operation for all the bands *i0}7},
will have the set of all closed polygonal nonintersecting bands ’O;f+1
that separate 10;:+1 from infinity. These bands will be referred to as

finished bands.

we

Let us begin to construct first approximations to the level sets of the
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function uj, that contain the sets g ,,, of rank n + 1.

The boundaries of the finished bands xi0:f+1 do not intersect the small
squares. Let us consider the numbers m that correspond to those small squares
that lie in Q;f+1, and do not lie in any of the finished bands. The set of
all such =, we denote by M;;"+1. The small squares 6g;i:; (m € M;;"+1)
must be included in the first approximations to the level sets. The finished
bands divide the Q;f+1 into open polygonal bands which contain the small
squares. In each of these bands we proceed exactly as it was described in the
performance at the second stage. The only difference is that we now have more
finished bands. As a result, we obtain the bands xi02;’+1 and the ®-type
bands xi@?;f+1 which are approximations to the level sets and their

boundaries. The values x; in each open band between two finished bands are
distributed uniformly.

In this manner one can accomplish the construction by building at each stage
objects that have the properties 1°, 2°, 3°, 4°:

Suppose that all stages have been completed.
r rt
We define g as ; 2 Q-

The level sets of the function uj, ~which contain the sets gp..« (k' > k)
are defined as the intersections of the corresponding polygonal bands, the
approximations. The values of the function on these levels are determined at
the k'th stage.

On all regions g, the functions uj  are extended by continuation.
Below it is proved that this can be done, and that the obtained functions will
satisfy all the requirements of the fundamental lemma.

It is obvious that Ek -0 when k —-® . Recalling how the squares P
were constructed, we see that LJij Pz,m, is an everywhere
1

P;im, C gy, (ki > k)

dense set on g, . Because of this, the sum }Ezm of all level sets on which

we determined u} ~1is everywhere dense in gj . We shall show that the

function "gm is uniformly continuous on the set Iizm.

Without restricting the argument, we will set k= m= 1, and will give

the proof only for ul, = u.

Let €> 0 be given. At each (n *+ 1)st stage one can find between any
two bands xO;f+1. yO;f+1 at least one square aé +am? if the construction
of the levels u= x and u =y began before the (ﬁ + 1)st stage. Indeed,
the width of the open band O" between ’0;? and Y0[| is greater than d,

while the squares Pg + have diameters less than d and enter into
n
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Lebesgue covering in such a wa{ that one of them Pgn+£; has points in 0.
This square, and with it Qé;:i%— will, obviously, fall into the open band ottt
between *O7"*' and Y0['. But at the (n + 1)st stage (n > 1) the

values between the newly constructed band were distributed uniformly. Therefore,
the largest interval between the values of u on two level sets, whose approxi-
mations are neighboring bands of the nth stage, will decrease by two at each
stage. Hence, there exists a stage k such that if ”O;i and yo;ﬁ are

neighboring bands, then |z - y| < €/2.

Let us select & = €p4, - Suppose that p(a,b) < 0. Then the points a

and b are separated by one band ’Ogi only, since the distance between the
polygons that bound the bands is greater than Epey = 8. Hence, there exists a
band ’Oii which is not separated from a« and & by any other band. But it

is obvious that at such points the function u differs from :z by less than
€/2 (the rank k 1is chosen in this way). Therefore, |u(a) - u(b)| < €, and
the function u 1is thus uniformly continuous on the everywhere dense set of the
compact g .

This function can be extended (and in a unique manner) over the set g .

We set u = 0 outside of g. Such a continuation of the functions
will satisfy the requirements 1) to 7) of the fundamental lemma.

r
Ykm

Indeed, the fulfillment of the require-
ments 1), 2), 3), and 7) is obvious.

The condition 4) is satisfied with the
constants ¢ = 1/2 and C= 3, because for
any k each point of E? 1is covered by at
least one, and by not more than three squares
ngm for some m and r. But on these
squares 1/2 < ”;m < 1. The level sets
";m = 1/2 were constructed especially for

this purpose. Figure 7. The bands are con-

The condition 5) will be fulfilled if structed at the nth stage.
In the shaded area u dif-
fers from the value on the
- ) ® . - ) level u = z (whose approxi-
g,’z,m, =y Qer;:m’_(;—:_ N er;,m'g N x’"’O;ﬁ,,, mation is the middle band

ik =k I=k 41 207k ) by less than €/2.

ghtpt C 8k, because

that is, the set g/, 1s contained en-

tirely in the level set of u, . If g;;m, C RQ\\g;m, then u,,,, =0 on
g;,m,. The boundaries of gj ~ and gh/,+ do not intersect, by their
definition. Each of these sets is a region, and hence there can occur no
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other cases.

The condition 6) is also satisfied. This is obvious for the sets of the
levels 0 and 1. (It is easy to see that each of the remaining level sets of the
function u;m is obtained as the intersection of a sequence of closed polygonal
bands, and it is, therefore, connected, and divides the plane into two parts,
one containing the set where “;m = 0, the other one where “Zm = 1.) The
boundaries of the level sets of u;m that contain g;,m,, divide the plane
into not more than three parts because they are obtained as the intersection of
sequences of closed polygonal ®-type bands. The boundaries of the remaining
level sets of u;m (with the exception of the 0 level set for which 6) is
trivial) coincide with exactly these sets because none of such level sets con-
tains points of the open set
Y Ghymy »

Shim; © o

which is everywhere dense in g . and consists of all points of g ~ that
belong to the sets of higher rank of the same system.

This completes the proof of the fundamental lemma.

§2. Proof of Theorem 2

Let ";m be functions that satisfy the conditions of the fundamental lemma,
g;m be sets on which the functions are positive, and let d, and 0< c<C
be the constants occurring in that lemma. For the purpose of constructing the
representation of a function of three variables in the form indicated in
Theorem 2, we first decompose a function of two variables into an absolutely
and uniformly convergent series of the functions “Zm-

Lemma 1. Suppose that we are given on the square E%a family F of
continuous functions which form a compact in the uniform metric (i.e. the
family consists of uniformly bounded and equi-continuous functions u, and
is closed with respect to uniform convergence). Then every function f € F

can be represented in the form

©o 3 mp

f)= 2 2 2 @m(f) tkm (%), 1)

k=1r=1m=]

where the coefficients aim are independent of x, depend continuously (in the

sense of the uniform metric) on the f € F and are such that

| @k ()] < ay 2 ap < 0o,

h=1
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vhere the a, depend only on the family F.
For the proof of this theorem we need the following proposition.

Lemma on the approximation by means of a linear combination of functions of
rank k. Let f(x) be a continuous real function on E%  and let

max | f () | < M.
XEE?
Let k be a positive integer, and

max | f(x) — ()| < 3.
p(x, y)<dp

Then one can determine coefficients b;. independent of x, such that

f()=S(x) + R(x), (2)
where
3 mp
Sx) =2 2 bnttem (%), (3)
[RO|< (1= )M A (4)

Hereby one can select the b: so that they depend continuously (in the sense
of the uniform metric) on f(x), and satisfy the inequality Ib;l <M/C.

Proof. We pick a point x;m in each one of the sets g;m. and set
b; = f(x;u) /C. Obviously, the b; depend continuously on f and |b;| <M/C.
Next we will show that the inequality (4) is fulfilled at each point =x € EZ,
The R(x) 1s determined by means of (2) and (3) for the given choice of
b;. Let us keep the arbitrary point =x € E? fixed. From the properties 2)
and 3) of the functions u;m (see the fundamental lemma) it follows that at
most three of the functions uzm. for a given k, will be different from
zero at each point x, and these will correspond to different r. Suppose
that for the given point x these functions are u;mr (r=1,2,3). Then,
for the given point =x, we have

3 3
()= 2 bk, (x) = = 2 (¥km,) thm, (0
r=1 r=1

Let us suppose at first that z;mr (r=1,2,3) and =x were selected so
fortunately that they coincided: ximr =x (r=1,2,3). Then s(x) would be

3 3
(@) =2 F0) thm, (9 = T 3 i, () ©)

r=1
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and R(x) would be, correspondingly,

R (x)=[(x)— S (x) 6)

But from the requirement 4) of the fundamental lemma it follows that

8
0<e< Z Upm, (%) < C

Therefore, we have the following estimate for R(x),

IR @)= 10— @ =1f@(1— =)< M1 —=) ™

The same estimate for B'(x), defined by the equations (5) and (6) holds,

obviously, also without the hypothesis that x;m =x (r=1,2,3). In order
r

to appraise R(x) 1in the general case, we consider

[RK)—R®)|=|Sx)—5x|=

= ‘é_ l E [f (x;m,) - f(X)] u/:m, (x)l 1 2 f(ka,) - f(x) | ukm (X)

r=1 r=1

Since (see condition 2) of the fundamental lemma) the diameter of the region
8L, 15 less than d,, we have that

IR@— R3] < — 0 2 th, ()

r=1

or, on the basis of property 4) of the fundamental lemma, that
|R(x) — R' ()] < .

This, in combination with (7), establishes the lemma.

Proof of Lemma 1. Let f € F be a real function continuous on E? and
let

sup |f(x)| <M =M, sup lf(x)-—f(y)l=3k-
XEE?, fEF X€L?, yEL?,
plx, U)<dk

As k -0, 5k — 0. Therefore, one can select a ky = kq(F) so large that
8k1 < ¢Mp/2C. Applying the lemma on the approximation, with k = k,, and
r _br

assuming that Uom = we obtain

) =2 Za,h,,,(f)uhlm (x) + Ry (x);

re=1m=1
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moreover

) rnm(i—g
G2 TR < Mo (10— &) 0 <My (1 ),

where the “Zlm depend continuously on f € F, and

2

M
r -0 __
lak1m]<: [5 c’

Setting 1 - c/2C= 6, and OM, = M,;, we obtain

sup | Ry(x)| < M,.
x€L2, fGF

It is obvious that the Rj(x) that correspond to all possible f € F, form a
compact F4, as a continuous image of a compact. In particular, these R4(x)

are uniformly bounded and equi-continuous. Furthermore, each function R € F,

depends continuously on the corresponding function f € F,. Let us introduce

the notation

sup [ Ry (x) — Ry (y)| =3,

X€E?, y€lt, REFy

plx, y)<dy,
We can repeat the preceding argument, and in conclusion obtain a kg = ko(F)
such that
3 m@{
Ri(®) = 21 2 a, (R)U,, (x)+ Ry (x),
r=1m=1
where

sup | Rz (x)]|<<0M, = 0°M
xE6L2, f[€F

and the aizm depend continuously on R; € F4, and, hence, on f € Fg.
Furthermore,

M M
ar — =—=0.
| h""!<c c

Continuing in the same way, we obtain the sequence

s Eniy
R,(x) = 2‘ Z a;’;nHm(Rn)“;n“m(x)‘}’ Rni1(x)

re=1 m=1

moreover
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sm)lRMA@|<6Mn=6”ML (8)
XEE, f

where the a;nm depend continuously on f € F, and

M, M .
|a‘r'n+1ml<—c-=? b (9)

(n=0,1,2,..., 1f we use the notation Ro(x) = f(x)).

Let us introduce the notation

a kg
S, = 2<R,<x>—R,+1(x»—zz S 0 (10

imQ r=1 m=1
Then it is obvious that
f(x) = S,(x)+ R, (%).

From the inequalities (8) and (9) it can be seen that the sequence S,(x)
(n=1,2,...) converges to f(x) absolutely and uniformly, and that
| afnl < o, =KM0t/C (i=1,2...).

This proves the lemma, since one may set aim = 0 when k # ki (i =1,2,.
and then obtain (1) from (10).

In the proof of Theorem 2 use is made of the following result.

Lemma 2. The space of the components of the level sets of the function

Fr(x' y) Z E km(‘x' y)

is a tree with a branch point index not greater than three.
Every function

(o]

fo(x, 9)= 2 Z Ul (*)

k=1 m=1

is constant on each component of a level set of the function Fr if the aim
are such constants that the series (*) converges uniformly and absolutely.

Proof of Lemma 2. Let r be fixed. First, let us prove that all the com-
ponents of the level sets of the function Fr(x,y) are 1) components of the
level sets of the function “;m (k=1,2,...; m= 1,....mk). 2) boundaries of
such components, 3) separate points which are intersections of sequences of
the sets g;m,k (k »m).
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Let us pick a point a 1in the plane. The point a belongs either to an
infinite number of the sets g;m, or there exists a “last rank” k,> 0
after which the point o does not belong to any g, (k> k).

Let us consider the first case. We will prove that such a point is a com-
ponent of the level sets of the function F . Suppose that the point « belongs
to an infinite sequence {giimi} . From the condition 3) of the fundamental
lemma it follows that the k,; are all distinct. We shall assume that ki+1 > k.
One can easily deduce from the fundamental lemma (requirements 2) and 5)),
that if the sets g ~and gy, , 1intersect, and if &' > k, then 8himt C Bhpe
In the proof of the fundamental lemma given above, this result is obtained auto-
matically (see the proof of the fact that the requirement 5) 1s fulfilled).

Therefore, we have a sequence of inscribed sets g, .. .D g D...da.
® i i+aMi+1

In this connection, n g;, .= a, since the diameters of the sets g;, )
i=1 il img

tend to zero as i1 —» ® (requirement 2) of the fundamental lemma).

On the boundary M; of each set gii"i' the value of the function Fr is
less than that at the point a. Indeed, all the functions uzm (k 2‘ki) are
zZero on Mi (this is a direct consequence of the requirements 2) and 5) of
the fundamental lemma), while all the functions u;m (k < ki) take on the
same values as at the point a (requirement 5)). At the point a, however,

all the functiomns UZ'm‘ (j > t) are positive, and, therefore,
J7)

©

mk
F (&)= X — X u (a) 1is greater than F_ on M.
" k=1 k" m=1"" r '

But each continuum that contains a, intersects some set of the Mi

o)

because ] Mi separates a from all the points of RQ\\a (Figure 8).
i=1

This means that on each continuum that contains a one can find a point &

where Fr(b) # Fr(a). but this indicates precisely that a 1is a component of

the level sets of the function Fr.

Now, let us consider the second case. Suppose the point a € g;omo does
not belong to any g;m (k> ko). Then a will belong to a continuum K,
the set of a nonzero level :z of the function uioMo'

Let us assume at first that K does not contain the regions g;m (k > ko).
Then 0 < z < 1. We will prove that K is a component of a level set of the
function Fr.

Let us select two sequences z: and z; (i =1,2,...) which converge
to z from above and from below, and which are such that the sets M; and
M: of the levels z; and z: (i=1,2,...) of the function uzomo do not
contain the regions SZM and 0 < z; <z< z: < 1. This can be done because
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0< z<1 and the regions g;m constitute a denumerable set. The continua Mz
and M;, obviously, separate K from the points where uioMo is greater than

z: and less than z:. and all of them together, i.e. U (M: U M;). separate

i=

K entirely from all points of RQ\\K, since at every point of RQ\\K, uiomo
is greater than some z: or less than some z:. On K, as well as on the
sets M: and M:, the function Fr does not change since all the terms with
"Zu (k > ko) are zero in view of the assumption on the absence on K, M: and
M: of the sets g;m. But the values of F_ on K, on M: and on M: are
different, because all terms "Zm with k < ko are the same on these continua
(requirement 5)), all the terms uzm with k> kg are equal to zero, while

the function ";omo is equal to z on K, to z: on M;. and to z: on M:.

Figure 8. Representation of all types of components. In the
third case z # 1. The gr,m, are lined. The case z =1
is left eo the reader.

[oo]

Each continuum M # K, but containing K, intersects 'Ul (MI Un)

1=
(Figure 8). Therefore it has points where Fr differs from the values of Fr
at the points of K. This means that K 1is a component of the set of levels
of the function Fr.

In the remaining case the proof is analogous to the one given above, and we
will only indicate it. If the set K -) a of the level uioﬂo = z contains
g;,m,, then the component of the level set of the function F_ that contains
a will be L, the boundary of K (Fig. 8). Actually, the point a does not
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belong to g;:n, (since k, 1s the *“last rank” ). The boundary of K
divides the plane into no more than three parts (requirement 6)). First,
suppose that z # 1. Then in two of these parts uzomO will take on values
greater and less than 2z, while in the third part gz,m,, ";'m’ is positive.
The point a cannot lie in any of these parts but lies on the boundary of K.
On the continuum L, the function Fr is constant, because all the functions
u;m are constant (requirements 5) and 6)). In order to prove that L 1is a com-
ponent of the level set of the function Fr, it is necessary to separate it by
means of continua, with values of Fr. from all points of Rz\\L. For this it
is necessary to use sets of levels near zero of the function ";’m’ and sets
of levels close to 2z of the function u;omo (Figure 8).

The remaining case, 2z = 1, is even simpler because the boundary of the set
uzomo = 1 divides the plane into two parts only (this is a direct consequence
of the construction of the functions u;m, but it can also be deduced from
requirements 2) and 6) of the fundamental lemma).

The structure of the components of a level set for the function Fr has
thus been explained. Not a single one of them divides the plane into more than
three parts. It follows (Appendix, Theorem 3) that the tree of the function Fr
consists of points whose branching index does not exceed 3.

In order to complete the proof of Lemma 2, we note that all the functions
u;m are constant on each component of the level sets of F,.. This implies
the truth of the second assertion of the lemma.

. . . 3
Theorem 2. FEvery real function f(x4,22,x3) that is continuous on E

can be represented in the form

f(xlr X2, x3)= Zhi[q’l(xl’ x2)v x3]y

i=1

where h, and Q. are continuous functions, the functions hi are defined

on the product Ex g1 of the tree by the interval El, while the CPi(xi,x2)
are defined on the square E?, and have for their values points of E. Here
B is a tree whose points have branching indices not greater than 3.

Proof. A function f(x,, x, x,) of three variables can be considered as
a family of functions of two variables that depends on the third variable as a
parameter: fy,(x1,%x2), where the function fy,(x4,x2) 15 defined for each
%3 on a single square 0 < x4,x2< 1, and at a point (a,b) 1s equal to
f(a,b,x3). Obviously, each of the functions f,,(x1,%x2) 18 continuous and
depends continuously (in the sense of the uniform metric) on the parameter

x3 (0 < x3 < 1). Therefore, the family of functions f,,(x4,x2) forms a
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compact. Hence, we can apply the Lemma 1 and obtain

o 3 Mp
fr, (%1, X2) = 2 2 E @ () Uf,, (X1, Xa).

k=1r=1m=1

©
Since |al (z,)| < o, and X a, <o, it follows that each of the series
km "8 k=1

o My

[, (¥, x2) = A ay, () uy (X1, %) (r=1,2, 3

k=1m=1

converges absolutely and uniformly. (But by the fundamental lemma only one of
the "im (m = 1,...,mk) is different from zero at any given point.) We shall

show that " (x,, xz,) depends on x, continuously (in the same sense).
x3 "1 2 3 ©

Indeed, suppose € > 0. We can select N so large that kE a), < €/4.

Since the “£m<"s)"£m("1"2) depend continuously on «x the same thing must

8'
be true for the finite sum. Hence there exists a & > 0 such that if
|y - z] <& then

-1 My
sup | b G (D (52 3 — D) D) (2) (5 x| <+
T G€E Ty ) me k=1 m=1
(r=1,2,3).
But since
o Mp
sup Z 2 ay,. (Y up, (X1, %) — 2, Z a;, (2) u, (%1, x2)| <2 2, ap < ——»
FoxskE N me1 k=N m=1 k=N

we find that for |y - z| <&, it is true that

sup |f (xlv x2)_f (xlv x2)‘<e (f = 11 2» 3)

X1, Xe€E

Now we apply Lemma 2 and see that for any given X each of the functions

2 € [0,1] is constant on each component of the level set of one of the con-
® mp

structed functions Fp(x,,x,) = kz 2 2‘.1 up,(%1,%2) which does not depend
= 1 m=

on  f(xy x5 %g).

Let us consider (see Appendix) the tree of components of the level sets of
the function Fr(xi.xg). The mapping t(a) = q’r(‘r"a) assoclates with each
point x of the square E2=4 a point (Pr of the tree T° which represents
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the component ¢t of the level set of F,(x4,x,) that contains (x4,x2). We

can consider this mapping as a function ®,(x;,x,) defined on the square and
with values from the tree. If one wishes, one can realize the tree on a plane.
This mapping can then be written with the aid of two real functions defined on
the square. The mapping t(a) 18 continuous. The functions f:s(xl,xg) generate
on T  functions f;o(wr) which are equal to the values of f;a(xi,XQ) at any
point of the component ¢ of the counterimage of @, on E2. Because of Lemma
2, this value is the same at all points of this component. It is obvious that

the obtained functions f;g(mr) are continuous on T° and depend continuously
on xg. Therefore, one may consider the family f:a(mr) (x3 € [0,1]) as a

continuous real function f'(x3,®.) on the product of the tree by the interval
of variation of «xg:

fr, (f1 X5) = f7 (s @r (1, X2)).
From the three trees T' (r = 1,2,3) we can compose a single tree X=. By
Lemma 2, each of the three trees consists of points whose branching indices are
1, 2 or 3. The tree &, obviously, can be constructed so that it has the same
property. Each of the functions f" (x3,9,) (r=1,2,3) can be extended con-
tinuously over the product of the entire tree E by the interval (it does not
matter in what way this is done). Let us denote this extemsion by h, (9@, x3)
(r = 1,2,3). From the relation (1), Lemma 1, we obtain in this notation

3
f (%1 %o %3) = D) h,[9, (%1, X2), %5).

r=1

This completes the proof of Theorem 1.

PART I1
Proof of Theorem 3

We shall now construct the tree X C E° mentioned in Theorem 3. This tree
is to be homeomorphic to the universal tree & which does not have points
whose branching index is greater than 3. The latter tree, as is well known
(see Appendix, Theorem 5), can be obtained by attaching branches. More
precisely, B can be represented in the form

[eS)
= U Any An - An+1,
n=1

where A, 1s a finite tree (curved complexes), A, 1s a simple arc and A4+,
is obtained from A,l by attaching at the point p, (which is not a branch
point) simple arcs o, (Figure 9). We note that the set of points p, that
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are now branch points of E, 1is at most denumerable. Everything that pertains
to the abstract tree &= will be denoted by Greek letters, while the correspond -
ing items of its realization X will de designated by Latin letters. The
realization of X will be constructed in the form

X = U Dm Dn CDIH-D

n=1
where the D, are segment complexes in a three-dimensional space; the homeomor-
phism between = and X will be constructed as a continuation of the
homeomorphisms A, and D,.

It is known that in order for X to be a realization of & (and, hence, to
be a tree), it is sufficient that the following conditions be fulfilled (see
Appendix, Lemmas 10 and 11):

) Each newly constructed branch LIS except for its base, must lie
entirely inside the open, still empty, simplex T,. Furthermore, for all twigs
s, attached to s_ (p, € s ) later (n>n) TnC T, (Figure 9).

On Figure 9, and in Menger’s work ([3]. Chapter X ), where the tree X
lies in a plane, the simplexes T are triangles. In our case they are
tetrahedra. This makes no essential difference.

B) The simplexes T, must be sufficiently small: the diameters of the
Tn, tend to zero whem n — .

y) The points P, at which the new branches are attached may not have been
earlier branch points or endpoints for D,.

—
D ///}
// Ta |
//4

/<(f / |
R
P |

~_ % / \
~_ 7 I
<<\

ST
NG
- ~d4

Figure 9. Finite trees: “ abstract”, curved tree A, and
its realization as a complex D.
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In the sequel (§43-7), in the construction of D, and X, we will always
be able to choose the points p_  and the direction of the segments s, Wwith
sufficient freedom: each time the forbidden points or directions will have an
everywhere dense complement. The length of the Sh will always be chosen
sufficiently small. The conditions @), ), and ¥) can, therefore, be assumed
to have been satisfied at each step. In order not to complicate the future
presentation, we will not mention this in the sequel. We assume that by attach-
ing each branch s we construct the corresponding tetrahedron T, and will
not worry about the fulfillment of the conditions ¢), ), and y).

In order that the obtained tree X may satisfy the conditions of Theorem
3, i.e. in order that each continuous function of the given family may be
represented as the sum of functions of coordinates, it is necessary to select
the p ~and s = with certain restrictions. For the precise formulation of
these restrictions, we need several new concepts which are presented in the
next section.

§3. Fundamental definitions. Inductive properties 1-4

In a three-dimensional space® let K be a finite set of segments or

straight lines. These segments (straight lines) are not to be parallel to the
coordinate planes.

Definition 1 (Figure 10). A zigzag (certain type of broken line) is a
system of points ap # a3 # ... ¥ an.1 #¥ ap 0of K, such that the segments
aj.qa; (i =1,...,n —=1) are perpendicular to the coordinate axes *a and
Oy # Oy # Qg # ... # Xy, The segments a, ,a,
If ap = ap, the zigzag is sald to be closed.

are called links of the zigzag.

One should visualize the zigzag in the following way. The beginning ag

is a point of K. We choose the first direction 04 . The plane that passes
through ao and is perpendicular to the axis xo, (we shall refer to it as
the “ plane of the coordinate direction 04 '') intersects K at a point ajy.
We shall say that it leads from ag to a;. In exactly the same way the link
ajap lies in the plane of the direction 0, (# (4) so that at a, there
occurs a break. At the point a,, the direction again changes to Qg (# ®3)
and we arrive at the point a3, and so on until we get to «a,, the end of the
zigzag.

By somewhat modifying the described process we obtain the generating

* In §3-7 the number of dimensions could be > 2. The graphs correspond to the two-

dimensional case.
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scheme that was defined in note [1]. A more descriptive definition will be
given here.

Definition 2 (Figure 11). The beginning of the generating scheme is the
point ap € K.

Figure 10. The zigzag Figure 11. A generating scheme
apa1a0a3a4asag. from the point ap. If one in-

cludes the point a, then the
obtained double generating
scheme will be of the class of
the point ao.

The beginning is also called the end of rank 0. We choose a coordinate direction
0o and draw through the point ag the plane of this direction. In general, it
will have several points of intersection with K in addition to the point ag.
We shall call this plane a plane of rank 1, and these points, ends of rank 1.

The plane of rank 1 leads from ap 1nto each of the ends of rank 1.

Next, this process is continued. At each end a of rank n we select a
coordinate direction O different from the one along which we arrived at this
end.* Through a we pass the plane of this direction. If this plane does not
pass through any other point of K besides a, we do no more to this point a;
it is called a free end. If, however, a 1is not a free end, then we obtain
points of intersection of the plane with K, which are called ends of rank
n+ 1. In this manner the constructed plane of rank n + 1 leads away from

the nonfree end of rank rn and leads to ends of rank n + 1.

If this process terminates, i.e. if all the ends of some rank N are free
ends, and if all ends of all ranks as pairwise distinct,*® then the entire

* That is, different from the direction of the plane of rank n at whose inter-

section with K the point a lies.

** This means that in the construction we do not arrive at the same point twice.
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structure is called a generating scheme which leads from the point ag in the
direction 0g. N 18 called the rank of the scheme.

In this manner, a generating scheme (or system) consists of a beginning ag,
of *“ supporting” planes of different ranks, and of ends of different ranks.

We will need a certain generalization of generating systems, a double
generating system. It differs from the simple one defined above only in that
from some of its points (ends) one draws two planes, and not just one. In this
way, all three directional coordinate planes that pass through such a point,
can be supporting planes in a double scheme if one of these planes leads into,
and the other two away from the point. Double systems can be obtained, for
example, by combining simple ones which have only the beginning in common, or by
connecting to some nonfree end a« of a simple scheme A a generating system
B, for which a 1is the beginning, and which has no common points with A
except a.

Every free end a of a double (or simple) generating system can be con-
nected to the beginning ag by a unique zigzag all of whose points are ends of
a scheme, and all of whose links lie in the supporting planes of the scheme.

If there were several such zigzags, then the ends of the scheme could not be
pairwise distinct. The indicated zigzags are called zigzags of the scheme. They
are finite, not closed, and do not contain closed parts.

Definitions of stability. We shall say that two zigzags (generating schemes)
on K are of the same type if their points can be put into a one-to-one
reciprocal correspondence in such a way that corresponding points lie on the
same segments (straight lines) of K,* while the corresponding links are
perpendicular to the same coordinate axis.

We shall say that the zigzag ao...a, 1s not longer than the zigzag

bo...by (m> n) 1f it is of the same type as a part bp...b, Of the second
one.

A generating scheme A 1is not longer than a generating scheme B 1if one
can set up a correspondence between their zigzags under which all zigzags of
A are not longer than the corresponding zigzags of B. The types of the
generating schemes which are not longer than a given one form a finite set.

We shall say that a generating scheme A that begins at an 1is stable
if ap has such a neighborhood that the generating schemes of the points of
K that lie in this neighborhood are not longer than A. For example, the
complex K of Figure 11 admits a generating scheme, beginning at any point

* No branch points can lie within a segment of a segment-like complex K. The com-

plex of Figure 11 consists of 5 segments. This remark does not apply to the set
of straight lines of K.
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with an arbitrary first direction. Here, for any point, except for the branch
points A, B, and the end points C, D of the zigzag that issue from B, the
scheme is stable.

The zigzags of the same type produce a mapping of the set of all their
beginnings (initial points) into the set of their ends. This mapping is linear
and nondegenerate (because the segments of K are not perpendicular to the
coordinate axes). We will make frequent use of these facts in what follows.

The set of all points of K which are vertices of zigzags that issue from
the point ap are called the class of points accessible from a5, or simply
the class of the point a5 on K. The class of a set of points is defined in
an analogous way. We call attention to the fact that the class of a point, and
hence the class of a denumerable set is a denumerable set. All generating
schemes of a point 4o, and of points belonging to the class of a5 lie in
the same class.

Now we can formulate the inductive lemma which will be proved in §§4-9.

Let us return to the function f on the tree E.

Suppose that w, 1is the upper boundary of the variation of the functions
f € F on the component difference B\ A,. A8 n-o, w,—O0.

Indeed, if E' is a realization of E constructed (see Appendix, Theorem
5) on the plane, then F will give rise to a family F' of equi-continuous
functions defined on the planar continuum E'. Since the diameter (see condi-
tion 3, and Figure 9) of the triangles T, tends to zero when n — o, and
since every component = '\A’,, lies in the triangle T, (m> n), it follows
that for large enough n the diameter of the component E'\A," will be so
small that the oscillation of any function f' € F' will be arbitrarily small
on every component. Therefore one can pick a sequence

My <1, ey
8o that @, < 1/r? when n> n,.

We shall next list the inductive properties of the tree D,, of the
homeomorphism of A, on D, and of the functions f'l'z'(xk) (m< n; k=1,2,3).
Here the tree D 1is a realization of A,. D lies in a three-dimensional
cube of a segment-like complex whose segments are not perpendicular to the
coordinate axes.

1. Let A be the set of points of D, which are images of the branch
points® of E that lie on A,. Let K, be the set of straight lines whose
segments form D,, and let C, be the class of the set of vertices of the

More precisely, one should say of the * points Ppn " because Theorem 4 is not
proved in the Appendix. In the sequel, branch points can be taken as the points

Pn and p, .
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closed zigzags on K.

Then:

a) C, 1is at most denumerable,

b) C, does not intersect A, (and hence not the class A, on K,),

c) no two points of A, belong to the same class on K.

2. On D, there is a finite number of simple generating schemes such
that from any point ao € D, one can start in any direction to generate the
scheme of one of the *‘ canonic” type.

3. Every function f € F is representable on D, in the form
3
f(x) = kjgl fZ(xk), where the x, are the coordinates of the point =x € D,
and the fZ(xk) are continuous functions which depend continuously on f(x).

4, If nr < n< np+q, then

| Fa(ea) — 1 ()| < (3+ —:——)i

—_ 2
Reyy—0r )T

Inductive lemma. If the tree D, the homeomorphism of A, on D,, and
the functions f:(xk) (k=1,2,3; m< n) have the properties 1 to 4, then
one can construct a tree Dp+i, a mapping of Ap+1 on Dp+s, and functions
f2+1(xn), with the same properties, by attaching to the point p, a branch-

segment s, that is not perpendicular to the coordinate axes.

Scheme of proof:

®
%?

i indicates the property i of the tree D, of the homeomorphism A,

onto D,, or of the function fg(xk). In the section that appears in any

rectangle, the property is derived from the properties that are con-

t
nt1
nected with this section by means of arrows.
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84. Inductive preservation of property 1

We will assume that D, has the property 1, and we will show what condi-
tions have to be imposed on s, in order that this property may be preserved
on D ., ~The conditions that onme finds are not very restrictive: the
direction may be chosen from an everywhere dense set of the second categury;*
the length can be arbitrarily small.

Let us now assume that on K,, that is on D,, to which there have been

added rays which extend the segments D,, the following conditions hold:
a) the class C, of the points of closed zigzags is at most denumerable;

b) the points of closed zigzags of K, are not accessible on K, from
the points of A, which are the images on D, of the branch points of E ;

c) no two points of A, are such that one is accessible from the other
on Kp.

Let us first restrict the selection of the direction of s, in such a way
that the condition a) is guaranteed on Dp+,. The number of the types of
zigzags 1s at most denumerable for every choice of s,, because the type is
determined by the initial and successive straight lines of K, and by the
direction of the path, i.e. by a finite sequence of elements of a finite set.
For each type there either is no closed zigzag, or there is one, or else all
zigzags of the given type are closed. This follows from the linearity of the
corresponding type of mapping of the initial straight line onto a finite one.
In case that all zigzags of a type are closed, we say that a closed zigzag is
stable. Obviously, it is sufficient that there be no closed zigzags on K,+q
in order that condition a) be satisfied on Dp+,.

Suppose that Dp+; has been constructed, and that the segment s, is not
perpendicular to the axes. The stable closed zigzags can occur only among
zigzags which have a common point with the straight line [ that supports s,.

Let M be such a point. It can be taken for the beginning of a closed
zigzag. Suppose that the equations of the straight line [ in the system of

coordinates in which the origin 0 has been translated to p, are given as

X, = bx,, X3 = cx,,
where neither b nor ¢ are zero, because the segment s, 1s not parallel
to the coordinate planes. For the sake of definiteness, let us assume that a
closed zigzag issues from the point M(xp,bxp,cxo) in the direction x, and

falls on | for the first time again exactly at the point M where it arrives
from the direction x,. Let the straight line at which the zigzag arrives at

* That is, from the complement of the sum of a denumerable number of nowhere dense

sets.
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the ith step, have the equations x5 = bjx4 *'ﬁii, x3 = cijxi ty ;. Neither
one of the coefficients b;, and c¢; can be zero. The second point of the
zlgzag has the coordinates xo,bixo + 81, caxo + y1. If the second direction
is, for example, x5, then the coordinates of the third point will be

byix, +b31 — B . bxot By byx, +sl — B + 1,
2 2

In general the coordinates of each point depend linearly on xo, and the
coefficients are determined by the intermediate straight lines. We assume that
the zigzag does not intersect | before it is closed. Then the last point will
have the coordinates

Lixo+ 11, Lixo+Dg  daXo 2

because the direction x, will lead to the point xp,bxg,cxo, and one obtains
bxo = loxg + Ap. For stable closure it is necessary that the equation be satis-
fied for all x5, i.e. b =1, and A, = 0. Hence, such a closed zigzag will
be stable only if | 1lies in the plane x5 = loxy. The corresponding directions
I will be called forbidden directions.

If the zigzag closes after it has been on | several times, a necessary
condition for stability is bicj = lp, where |[o5 1s some constant depending
on K, and on the type of the zigzag. Here 1 1is the difference between the
pumber of arrivals of the zigzag on | from the direction x, and the number
of departures from ! in this direction; j has a similar meaning for the
direction xg. If the direction of ! 1is not a forbidden one (i.e. bied # lo),
then there can exist no closed zigzags of the considered type. Suppose that
(lo - 12+ i2+ j24 0. Then the directions 1 for which b'c/ = I, form
nowhere a nondense set (a curve) in the space of directions. Therefore all
directions which are forbidden by some types of zigzag for which
(lo - D2+ i?2+ 240, lie on a denumerable set of smooth curves and con-
stitute an everywhere dense set of the second category of forbidden directions.

1f, however, i =0, j=0, and lp=1, then the closed zigzag will be
stable for b and ¢ arbitrary, and, in particular, if we direct | along
the straight line ¢ on whose segment q, € D, the point p, 1lies, where
the branch s, 1is attached. It is true here that some, but not all, points of
the zigzag (namely those lying on [ and g¢q) will run together. But it is
easy to see that on K, there is defined a stable zigzag and that the points
of g will belong to its class. But on g there are points A,. This yields
a contradiction with the condition c) which is satisfied by D.

The final result is as follows: one can choose the direction from an
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everywhere dense set of the second category so that Dp+; will satisfy the
condition a).

Let us now go over to the condition c¢). We consider two branching points of
E whose images lie on D, (in A,). The s, must be chosen so that it will
be impossible to connect the points from A, in D,4+, bY means of a zigzag.
For zigzags which do not contain points of s,, this is already so, because
the condition c¢) is satisfied on D,. The set of pairs of points A, is
denumerable. So is the set of all types of zigzags. Let us consider one of
these types and one of the pairs. The requirement that a zigzag of this type
connects these points leads to forbidden directions | for which such a con-
nection can occur, and, just as in the preceding proof, all forbidden
directions lie on a denumerable set of smooth curves. The condition b) leads to
the same type of requirement for the points A, and closed zigzags Kp+i.

We must now concern ourselves with the fulfillment of condition b) for the
points of An+,\\An (lying on s,) and with condition c) for pairs of such
points Ap+, of which at least one lies on s,. Having selected in the manner
described the direction ! from the everywhere dense set of the second cate-
gory (from the complement of the forbidden directions), we map o, on s,.

Thus we have constructed K,+;. Let us put on [ the points of the class
Ap.  This denumerable set must not intersect the images of the branching points
of B on sp. The same prohibition applies to the set of points of the closed
zigzags on K,+, and the classes (on K,+4) of these points. The set of for-
bidden points or, as we shall say, the ‘ taboo set” is at most denumerable
because of the way in which | is chosen.

The requirements a) and b) will be fulfilled on Dp+;, while the re-
quirement c) will hold on D, if we do not map the branching points of =
into the forbidden points s,. Such a mapping of s, on [ for which the
requirement ¢) on D,+; 1s also satisfied, will now be described. Here the
segment s, may be arbitrarily small. This fact will be used later.

Let us now assume that we have chosen s, and its size. On s, there is
a taboo set (at most denumerable) which cannot contain the images a of
branching points @ of & that lie on 0,. The mapping must be homeomorphic,
and we must take care that the points a are inaccessible to each other on
Kn+1.

Let us arrange the branching points of 5 on o, into a sequence
04, &g,.... (The point Pn is not included in this sequence.) The denumerable
set is everywhere dense on 0,.‘ Therefore, a similar’® mapping of this set on
.

If this is not the case then we add to the points O some points G, .

*¢ That is, an order preserving.
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an everywhere dense set s, can be extended to the homeomorphism o, on sp,.
We still have to map the points O on s,. Since there are no ends o, among
the 0o ;, the images a; of the ai are distributed in the interval s,‘, whose
closure is s

Let us consider on s, a denumerable system of intervals 8’:. 1< k<,
1< i< iy, such that

ik k ,
1) for every k i{zlei=s )

2) each of the intervals 8’:.. ..,3}:k is less than €, ;€, = 0 when

k—-.

If each of the intervals contains at least one point & ;, then the points
a; (j =1,2,...) form an everywhere dense set s,. Let us arrange all these
intervals into one sequence 51 (l=1,2,...).

Let us assume that the directions on o, and s, have been selected so
that p and p, are the left endpoints.

First step. We pick a nonforbidden point a; on §&,;. It will be the
image of a point @;. The points of the class of a; form on s, a
denumerable set. We add this set to the taboo set.

Second step. The point 03 divides o, into a left and a right part.
Let 0 ;; be a point O with smallest subscript in the left part, while a
has the same meaning for the right part. The point a4y divides the intervals
& into those that lie to the left of a;, those that lie to the right of ay,
and those that contain a,. Among the intervals that do not lie to the right
of ay, with a subscript greater than 1, we select the one with the smallest
subscript. On it we pick a nonforbidden point to the left of a4. This will
be aj;, the image of O ;;. We add to the taboo set all points of the class
of a;;. We select from the remaining intervals 8 which are not to the left
of ay, the one with the smallest subscript. In this interval we pick a non-
forbidden point a;,. to the right of a,. We add to the taboo set the points of
the class of aj,.

After the nth step, o, will be divided into 2" intervals by the 2"-1

points @, ail, air, Xy ailr"""airr...r

——

n-1 times

The (n + 1)st step. In each one of the 2" intervals we pick a point with
the smallest subscript and denote this subscript in the left-most interval by

ill...l , then by ill...lr y+.., 1in the right-most one by irr...r
Nl bl —_—
n times n-1 times n-1 times

The mapping of these 2" points i1y, 10 Yipp...r O sn takes place
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in exactly the same way as described in the second step. The image of @, the
point a, 1s always picked in the interval & which is not to the left of « i
the left end of the interval (O, aj ) from which @& was picked, and not to
the right of dj . Hereby one picks the interval with the smallest subscript
from all the intervals & having the given property. In the interval &, the
point « 1s picked between a; and a; from the nonforbidden points. Then

one adds to the taboo set all the points of the class of the point 4. After
this one constructs the image of the next point O until the (n *+ 1)st step

is completed.

The proofs that the mapping of the points & on a 1s defined after the
performance of all steps for all 0, that this is a similar (order preserving)
mapping, and that by the thus generated homeomorphism o, and s, retain the
properties a), b), and c¢), can be accomplished without difficulty.

§5. Lemma on generating schemes

Before we start the proof of the possibility of preserving the inductive
properties 2, 3, and 4, let us investigate more closely generating schemes of
segment-like complexes K. It is immaterial whether these schemes are simple
or double.

If one omits the beginning in a generating scheme, then the remainder can
be considered as the set of intersecting generating schemes starting with the
ends of the first rank (of the shortened system).

Lemma 1 (Figure 12). If the shortened systems A; of a given system A
are stable, and the initial point ag is not a branch point of K, then A

is stable.

Proof. Let €, > 0 be such a number that an €,-shift® of the initial
points a; of the shortened schemes will not lengthen these systems (see
definition of stability in 43). Furthermore, from the stability of A4; it

follows that the a; are not branching points of K. Since the complex K
is a closed set, there exists an €5, > 0 such that the plane, which is
parallel to the first plane of the scheme A and which is at a distance of at
least €, from it, intersects only those segments of K which contain ag
and the points a,.

By taking € < min (€4,€5), we obtain an €-neighborhood of the point ao.
The existence of this neighborhood proves the stability of the scheme A.
* We recall that the distance between the points (x4,x5,2x3) and (x;_,x;.xé) is

max (| z; -2{]).
1€i<3
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L
Y vV “dJ

Figure 12. The generating scheme apajap, has rank 1. The layers
of generating schemes of semineighborhoods are shaded.

Lemma 2. If no vertex of a generating scheme is a branching point, then
the generating scheme is stable.

Proof. The proof is accomplished by induction. If the rank of the scheme
is zero and the point ap 1s a free end, and not a branching point of K,
then, obviously, there exists in K a neighborhood of the point agy, which is
composed of points with the same property (see Figure 12, where the points
and a, are shown with the mentioned neighborhoods of stability). If the

ay

assertion of the Lemma 2 has been proved for a scheme of rank n, then its
truth for a scheme of the next higher rank follows from Lemma 1.

Lemma 3. Suppose that the generating scheme A with initial point a is
stable. Then for every positive € there exists a positive number & such that
every supporting plane that corresponds to the scheme A and leads away from
the point b of B is at a distance not greater than € from the correspond-
ing plane of the scheme A, provided that the initial point b 1is nearer than

O to the initial point a.

Proof. The generating scheme A has a finite number of supporting planes
Ilg(a) of each direction r = 1,2,3.

For the scheme B which leads away from the point & in the interval of
stability of the scheme A, there are defined planes, points, and zigzags of
the scheme B that correspond to planes, points, and zigzags of the scheme A.

(The converse is in general not true, because the zigzags of the scheme B can
terminate earlier.)

Let us consider the planes [I;(b). (This is the notation for the plane
which corresponds to the plane Ilg(a) in the scheme A.)
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The coordinate x, 1is the same for all the points II;(b); it depends
linearly on any coordinate of the initial point . It follows from this and
from the finiteness of the number of supporting planes of the scheme A, that
for every point b in a sufficiently small neighborhood of the point a all
planes of the scheme B are nearer than € to the corresponding planes of
the scheme A.

We note that the segments of a complex are always assumed to be non-
perpendicular to the coordinate axes. From the finiteness of the number of the
segments it follows that their inclination to the coordinate planes is bounded
from below. Hence, Lemma 3 implies that a sufficiently small change of the
beginning of a scheme will produce an arbi-
trarily small shift of the vertices of the
scheme. These vertices will not disappear.
These properties will be referred to as the
continuous dependence of a stable generating
system on its beginning. A finite number of
stable generating schemes A; depend in a
uniformly continuous manner on the beginning,
in the sense that for every € > 0 there
exists a & > 0 which is the same for all

these schemes.

Figure 13. Relative to Lemma
4. The thick arrows represent

the generating systems. Lemma 4 (Figure 13). Let us assume that
the class of the point b does not contain a

closed zigzag., Let A be a stable generating scheme which starts at a, and
let B be a stable generating scheme with beginning at b, whose first
direction is the same as that along which the scheme A leads into b. Then
the points a and b have neighborhoods ug and up such that if the scheme
A' (this is a scheme that corresponds to A but its beginning is at a € ug)
passes through the point b" € up, then the scheme B' (which corresponds to
B but leads away from b' € ub) has no points in common with A, provided
b # b

Proof. Let us consider the set of points of the schemes A and B.
Suppose that the shortest distance between two points is 7 > 0. We will pick
for the points a and b neighborhoods u, and up such that if ' € ug,
b' € up, then the points of the schemes A' and B' will be at a distance
less than 7/3 from the corresponding points of the schemes A and B. Such
neighborhoods can be found in view of the remark relative to the Lemma 3. These
are the neighborhoods sought.

G

Indeed, let a, b' and b" be the points mentioned in the hypothesis of
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the lemma. Suppose that the point y 1lies on A’ and B’ (Figure 13). As a
point of A’, it has a mate O on A. As a point of B’, it has a mate B
on B. We will prove that & and B coincide. Indeed, in the opposite case
they would be at some distance not less than 7 from each other. But the point
y is at a distance less than 75 /3 from its mate B, and at a distance less
than 7 /3 from O for the same reason. The obtained contradiction proves that
¢ = f. But this implies that the zigzag that connects b with S in B lles
entirely in A; 1in the opposite case one could connect b with 8 (= @) by
means of a zigzag through A 1n a different way. But the class of the point b,
by the hypothesis of the lemma, contains no closed zigzags. The scheme A' 1is
not longer than A. It contains y, which corresponds to @, and it contains
b", which corresponds to b. This implies that A’ contains a zigzag connect-
ing b and y of the same type as the zigzag (b Q) € A. On the basis of
similar arguments, the zigzags (bﬁ) = (ba) and (b'y) are of the same type.
The zigzags b'y and b"y must, therefore, also be of the same type. This,
however, contradicts the nondegeneracy of the corresponding type of linear
transformation because the points b’ and 5" had been assumed to be distinct.
This contradiction establishes Lemma 4.

In §8 we will make use of still another property of stable systems. We shall
call it the property N. A scheme A which leads away from the point ag € K,
has the property N if the point 0y lies on the segment A C K, where it
possesses nelghborhoods® u, and u, (in the case when ao 1s an endpoint of
K, Gdgo has a one-sided neighborhood) such that for all points ap € uy there
exists a generating scheme A'(aé) of the same type and not longer than A4,
and for all points ag € u, there exists a generating scheme A”(ag) of the
same type not longer than A.

Examining Figure 12 one can understand that these types do not necessarily
coincide, but may all three (type A, type A', and type A") be different.

The following lemma is true:

Lemma 5. Every stable generating scheme has the property N.

Thus Lemma 5 can be deduced from Lemma 6 just as Lemma 2 can be deduced
from Lemmna 1.

Lemma 8. Let A be a generating scheme that starts at ao in K. If
each of the shortened schemes A; of the scheme A has the property N, and
the point ap is not a branching point of K, then the scheme A has the
property N,

The proof of Lemma 6 is analogous to the proof of Lemma 1.

* That is, intervals which lie on A and have a, for a limit point.
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We introduce now the concept of a generating scheme (system) of intervals.

For this purpose we consider a generating scheme of points of the interval
u of the complex K. Suppose they are all of the same type (as, for example,
those of the scheme A’ of the points of the interval ug in the definition
of the property N). The set of corresponding points of these schemes form
intervals in which the zigzags of one type map the interval u. The corres-
ponding planes of these systems form layers. If the parallel layers do not
intersect then we have a generating scheme of the interval u. It consists of
the intervals of a scheme analogous to the ends which lie in the intersection
of K with the layers of the scheme that are analogous to the planes. The
interval of a scheme of rank 0 1is u; the set of all planes of the first
direction of the schemes of the points u is a layer of rank 1. It will lead
from u and will lead to the intervals of rank 1. And so on. From the com-
binatorial viewpoint, a generating scheme of intervals is constructed in the

same way as a generating scheme of points. In place of free ends we have here
free intervals.

The following concept was not introduced for the schemes (systems) of points.
An interval of a layer is the intersection of the layer with the coordinate axis
that is perpendicular to the layer. The generating schemes of points u
associate with each point u a point in each interval of the scheme and a
plane in each layer. This defines a linear mapping u on each interval of the
layer.

Applying the Lemmas 2, 3, and 5 to the tree D, which has the inductive
properties 1 and 2, we can establish that D, has a generating scheme that
leads from the point p,, and from each point of the class pp. This scheme
(system) is stable, has the property N and depends continuously on its
beginning. The scheme exists because D, has the inductive property 2, and
the class of the point p, does not contain branching points in view of
property 2. Thus, the lemmas are applicable to this scheme.

46. Inductive preservation of generating schemes

In §4 it was shown how one can add to D, a branch s, as small as we
please, in such a way that D,+, would have property 1. In order that Dp+,
may have the inductive properties 2, 3, and 4, it is necessary that s, be
small enough. Having chosen the direction of the straight line | in accord-
ance with &4, having selected € > 0 sufficiently small, and then s, 1in the
€-neighborhood p,, as described in ¢4, we find that all four inductive
properties hold on the constructed tree Dp+j.
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In this section it will be proved that if D, has the properties 1 and 2.
and i1f the direction | has been chosen correctly, then there exists an €> 0

such that if s, is placed in the €-neighborhood of p,, then D,+; possesses
the inductive property 2.

In accordance with the property 2, the tree D, has a finite set of types
of canonical generating schemes. We shall transform these types somewhat. We
shall try to obtain a finite number of generating schemes A; which pass
through p, and which are such that for every & > 0 there exists an € > 0
such that the planes of the canonic schemes of points lying outside a &-

neighborhood of the beginning a; of the scheme A, will not intersect the
€-neighborhood of pj,.

Suppose that the existing canonic types do not possess this property. Since
the number of types is finite, one of them must be nonregular. By this we mean
that this type contains generating canonic schemes which have planes arbitrarily
close to p, 1if there is no scheme that passes through p,. We select from the
sequence of initial points of the indicated schemes, a sequence that converges
to a, and we consider the set of limit points of the set of points of all
these schemes. This set of limit points cannot be a generating scheme. But it
contains p,, and by adding to some of its points (their number is, obviously,
finite) their generating schemes, we obtain the generating scheme of the point
a. The added points are all distinct from each other and from those that
existed before, because in the class of p, there are no points of closed
zigzags.

By Lemma 2, the obtained system is stable. Therefore, there must exist a
neighborhood of the point a such that the generating schemes which start in
this neighborhood must be schemes that correspond to this point, because of
stability. Let us replace {(in this neighborhood of a) the nonregular type
of generating schemes by the schemes that correspond to a. The obtained types
will be considered to be canonic. It is clear that the remainder of the
canonic nonregular type is regular. This can be proved easily by making use of
the linearity of the corresponding mappings.

Having performed this operation with all the old nonregular types, we
obtain new canonic types; we shall call them simply canonic types. A finite
number of the points a; have canonic schemes passing through p,. All non-
regular types are now in the intervals of stability of these schemes A;. From
the linearity of the mapping of the neighborhood of a, into the neighborhood
of p, with the aid of the corresponding zigzags of the canonic schemes, there

follows the following assertion.

For every 8> 0 there exists an € > 0 such that the €-neighborhoods
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of the point pp can be intersected by the planes of only those new canonic
schemes whose beginnings lie in a O - neighborhood of the points a;, and which

correspond to the A. in the sense of stability.

Let Ai be a canonic generating scheme
a that leads away from a; and passes through
pn. We shall consider the following generating
schemes (Figure 14):

bi fn 2 B;. the scheme that leads away from p,

in the same direction along which Ai arrived
Figure 14. The thick arrows
represent generating

schemes. C;» the generating scheme, leading away
from p,, whose first direction is different

from the ones along which A; leaves p, and arrives at p,, and from the

first direction of B;. (In case pp = a,, the scheme B; 1s not defined,

and we do not comnsider it.)

at pn.

All these schemes pass through p,, and they are, therefore, stable.

According to the inductive condition 1, the constructed generating schemes

have no points in common besides p,, and the B, and A; satisfy condition
4.

Let us consider the set of all the points of all three schemes. Let the
positive number 7 be the least distance between any two points of this set.
Applying Lemma 4 to Ai and Bi' we find a & - neighborhood of the point a;
and an €-neighborhood of the point p, such that A and B; will not
intersect if their beginnings lie in the indicated neighborhoods (for the
definitions of A’ and B' see Lemma 4). Applying Lemma 3 to the schemes

A;, B;, C, wefinda 6,> 0 and an €, > 0 such that all the points of

A:. B;, Ci will be at a distance greater than % /3 from their correspond-

ing points of Ai' Bi' Ci provided that the beginning of A; lies in a &,-
neighborhood of a, and the beginnings of the remaining schemes in an €,-
neighborhood of p,. Here C; is a scheme of the same type as Ci but

shorter.

Let us choose a positive number & less than &, and &,. For this we
find an €3> 0 such that the €jz-neighborhood of p, 1is intersected by the
planes of only those canonic generating schemes whose beginnings lie in & -
neighborhoods of the points a; and whose first directions are the same as
those of Ai' We choose a positive number € less than €,, €,, and €Eg3.
From the finiteness of the number of types Ai it follows that all the num-
bers € and & can be chosen uniformly for all i{. Consequently, we can
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obtain a system of O -neighborhoods of the points a;, and € -neighborhoods
of the p, such that the following statements are true.

A) The €-neighborhood of p, 1is intersected by the planes of only those
canonic schemes whose beginnings lie in & - neighborhoods of the points a
and which correspond to Ai'

P

B) The schemes A: and Bé do not intersect if their beginnings lie in
the indicated &- and €-neighborhoods.

C) In the transition from A, B;,, C; to A!, B, C. the points of
these schemes will be shifted over distances less than 7 /3 provided the

beginnings remain within the indicated neighborhoods.

Recalling the meaning of the positive number 7, we see that if the
beginnings lie in the indicated neighborhoods, then the schemes B;, Cé cannot
have any points in common besides the beginning. The same thing is true for
C. and A], B; and 4.

Let us inscribe a parallelepiped P 1in the obtained neighborhood of p,.
The edges of the parallelepiped are to be parallel to the coordinate axes, its
center is to be at p,, and one of its diagonals is to lie on gq,. Inside P

we attach to g, at p, a segment 2s, in the direction [ (see §3)
(Figure 15).

N

p
Zy !'
I [‘III.‘L

Z;

In

Figure 15. The attaching of . Figure 16. Generating scheme lead-

ing away from the point a on Dp+s.

The length of the segment s, will be restricted from above. In order to

preserve property 2 on Dp+4, 1t is sufficient that 2s, C P. We shall prove
this.

If the planes of the canonic generating scheme D,, which leads away from
some point of D,, do not intersect 2s,, then the scheme will remain to be
a generating scheme also on Dpj+;. In particular, this is known to be the case
for all points that lie outside the & -neighborhoods of the points a,. From
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the property A) it follows that it is sufficient to construct a generating
scheme leading away from each point of the & -neighborhood of a; in the first
direction of Ai' Let A be such a point. The canonic scheme AE which leads
away from a¢ on D, 1in the first direction of the scheme Ai' corresponds to
Ai because the & -neighborhood is smaller than the interval of stability.

Suppose that A intersects 2s, at the point x. Then A; intersects gqp
in some point x'; x+# x' 1if a= ai.' In the sequel we will assume that
a# a;. Let us pass a plane through x’. The first direction of this plane is
the same as that of Ci' Suppose that x” 1s the point of intersection of this
plane with g¢,. From the choice of the direction of 2s,, it follows that
" #x' and x.

Let us construct (Figure 16) generating schemes C; and B; leading away
from the points =x”. From the properties B) and C) of the €- and &-neighbor-
hoods it follows that the schemes A: and B:. as well as the schemes A;
and C: have no points in common, while B: and Cg have only the beginning

’ '

in common. It is easy to see that the planes A:, Bi' Ci' that do not pass

through x, x’, «”, cannot intersect P.

All the thus far considered generating schemes led away from D,. With
their aid one can construct, however, schemes which will lead away from an «
on D,4+s. The scheme A; does not lead to D,+, only because the point «x
is not free on it. Let us select a direction at this point for the first plane
of the scheme C.. The obtained plane intersects U,+; (in addition to the
point x) also at the point x" and at points of the first rank of the scheme
C;.
we pass to C;. B; leads away from the point x” on D. Since these schemes
do not intersect, except at the point =z", because they cannot have any points
in comon with A, and since the planes of the schemes A, B;, C; do not
intersect P (except for the four planes which are here being considered and

pass through x, x’', z"), we obtain a generating scheme that leads away

From the points of the first rank we leave along directions, along which

from a to Dp+;. Incase e; =p,, and a € 2s,, one does not have to

construct x”; the scheme C: is con-
zzizj structed at the point x' (Figure 17). The
proof is analogous to the preceding one.

The proof of the inductive fulfillment
of the property 2 on D,+y under the con-
ditions of the fulfillment of the properties
1and 2 on D, will be finished as soon as

Figure 17. Generating scheme we give the finite number of types of gen-

that leads from x on Dp+q. erating schemes. But we have actually done
L]

In case a = aj, the scheme A; remains a generating scheme on Dp+y .
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this in the construction of the generating schemes leading away from . Indeed,
it is easy to see that the set of types of schemes, which are here used (schemes

' 1

Ai' Bi' and C:) is finite, because they are not longer than the schemes Ai’

Bi' Ci which are the schemes of the canonic type on D,.

§7. Inductive preservation of the decomposition of functions

This section contains the construction of the representation of a function
(defined on a finite tree D) 1n the form of the sum of functions of the
coordinates.

Lemma 7. Let A be a scheme that leads away from a point ap of a complex
K, and let f(x) be a function, defined on K, which differs from zero at

the point ag only. Then there exists functions of the coordinates xp of the

point x such that for every point x € K

f(x) = z Fr(xe)s (%)

where the functions f,(x) differ from zero only at those points of the kth
axis which are the intersections of this axis with the planes of the scheme A.
Proof. Let us assume that f:(xk) = 0. If we substitute fﬁ into the
right-hand side of equation (*) then this equation will fail to hold only at
the point of rank 0 of the scheme A. We will call the function f:(xn) the
zeroth approximation to fk(xk). The function of the nth approximation,
f:(xk), will be constructed in such a way that the following conditions hold.
1) If the function fZ(xk) i1s substituted for f,(x,) 1in the equation (*),
then this equation will fail to hold only at the points of rank n of the
scheme A.

2) fZ(xk) = fZ'i(xk) (n=1,2,...), {1f the point =x, of the kth axis
does not lie on planes of rank n of the scheme A.

The functions of the zeroth approximation possess the property 1), and if
the rank of the scheme A 1s N, then the fz+1(’k) will satisfy, obviously,
all the requirements of Lemma 7. If the fz'l(xk) are constructed so that the
conditions 1) and 2) hold, then we set

17 (x) = 2 3 ().

k=1

The expression f(x) - f* *(x) = A*(x), the nth disjoint, is different from
zero at the points of rank n -1 of the scheme A. Let a be such a point,
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and suppose that the plane 7, which leads away from this point, intersects

the kth axis at the point xk(a). From the definition of the generating system
it follows that all the xk(a). that correspond to different a and n, are
distinct. Introducing corrections A} (%) = A'(a) for fy (xk) at the points
xy(a), we set fp(x,) = fk' (z,) + AR(x,). It is obvious that fy(x,) has the
properties 1), 2). Hence, one can construct all the f"+1(xk). This completes
the proof of Lemma 7.

Lemma 8. Let A be a scheme which leads away from the interval s of the
complex K, and let f(x) be a continuous function, defined on K, and
differing from zero on s only. Then there extist continuous functions fr(=)

of the coordinates of the point x such that for every point x € K

f(x)= 2 Fi (x),

where the functions fp(xp) are different from zero only on the intervals of
the layers of the scheme A,

The proof of this assertion is analogous to the proof of Lemma 7. All
points and planes are replaced by intervals and layers, while the functions
which differ from zero at separate points are replaced by continuous functions
differing from zero only on separate nonintersecting intervals at whose ends
they are zero. In particular, the disjoints and corrections will be such
functions.

Lemma 9. The assertions of Lemmas T and 8 are true for double schemes.

Proof. The proof of this lemma is again accomplished with the aid of the
distribution of corrections. At the points (intervals) from which two planes
(layers) issue, one may ignore one of them, obtain a simple system and make use
of the Lemma 7 (8). But then the corrections and disjoints of all ranks will
be equal. One can decrease the size of the corrections if one makes use of both
issuing planes (layers) for the “distribution of the corrections along two
directions” .

Suppose, for example, that the planes =, and m, of the directions =x,
and x,, respectively, lead away from the point . In order that the equa-
tion (*) may hold at the point ap, oOne may set

Al (X)) = 1,41 (x), f}(xl) = f1 (x1) - A}(xl)’

2 ) = 1A (x),  fa(x) = f3 (x2) + Al (x),

where, as before fj(xx) =0, Al(x) = f(x) — Z f#(xz) and where v, 7, >0,
B=1
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y, Ty, = 1. Then the equation (*) will fail to be satisfied at all ends of
rank 1, and one has to introduce the correction at a greater number of points
than one would have had to if one had ignored 7, by assuming that y, = 0.

In the final construction of the functions fk(xk) in §9, use will be made
of the distribution along two directioms.

Lemma 10. Suppose that we are given on a segment-like complex K two

cont inuous functions: an “old” one,
3
FO)= 2 Talxe)
k=1

where the ?;(xk) are continuous functions of the coordinates xp, of the
point x € K, and a “new’” one f(x), which differs from the old one only

on the interval s that possesses on K a generating scheme A (simple or
double). Then one can find ‘“corrections for ;1" which are continuous
functions gk(xk). differing from zero only on the intervals of the layers of
the scheme A, and which are such that if one writes fpxp) = fr(xp) + gp(x}),

then on the entire complex K

) =2 Felxn).

k=1
Lemma 10 is a direct consequence of the Lemmas 8 and 9 if one introduces

the function g(x) = f(x) - ?kx). The process of the distribution of the

corrections along two directions, which leads to the construction of the
3

g (x}) (kE: gk(xk) = g(z)), determines the disjoints A%(x), the corrections
=1

AR(x) = %) A'(x), and the approximations gj(x,) = gp '(x,) + AR(x,). It

is clear that one may consider the functions f:(xk) ?;(xk) + gZ(xk) as

3
approximations to the fk(xk); the disjoints f(x) - kE:I fZ(xk) and

corrections f7(x;) - f?'i(xi) will hereby be the same. The construction of
the fZ(xk) (k=123 n=0,1,2,...,N 1t 1), which was described above,
will be called the distribution of corrections.

Lemma 11. For the preservation on Dy, of the inductive property 3, it
is sufficient that the interval 2sp have a generating scheme on D, LJan.
The expansion of f(x) as a sum of functions f2+1 of the coordinates can
be accomplished through the introduction of corrections for fz with the aid
of the distribution of corrections along two directions determined, in

general, by the double generating scheme of 2sp.

Proof. Suppose that on D, U 2s,, the interval 2s, has a generating
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scheme. On D,, every continuous function can be expressed as the sum of

functions of coordinates (inductive requirement 3,). We select for the old
3

function f"(x) = klal fZ(xk). and for the new function, f(x) on Dp+;. On

D, U 2s, we define this function so that the difference between it and the old
function on 2s, is an even function relative to the midpoint of 2s,. Then

we will have the conditions of Lemma 10, from which follows the possibility of
the representation of f(x) on Dp+; as the sum of functions of the coordinates
by the method of the distribution of the corrections along two directions. If
each correction depends continuously on the expanded function (and this can,
obviously, be obtained from the conditions of Lemmas 7-11), then the expansion

3
f(x) = k}EI f2+1(xk) depends continuously on f. 1In §7 every correction depends

continuously on the expanded function.

If the branch s, 1is constructed as indicated in §§3-5, then the require-
ments 1,4+, and 2,+; will be satisfied on Dp,+;. The last requirement means
that there exists on D,+; a finite number of canonic generating schemes of
intervals. For this it is only necessary that (§5) the direction of s, be
chosen correctly and that the branch s, lie in a sufficiently small neighbor-
hood P of the point p,.

Lemma 12. Suppose that the conditions 1, and 2, are fulfilled on Dj.
If sp lies in a small enough neighborhood p'cCp of the point pp, then
2sp has a generating scheme on Dp U 2s,.

Proof. Let us consider the above constructed canonic generating schemes
of the points ZsA on Dp+4 with a given first direction (Figure 17). When
x changes on 2s,, then x’' runs through a one-sided neighborhood u of
the point p, on g¢,. Because of the stability of the schemes A and C,
there exists a semineighborhood u on the same side of p, for whose points

all schemes A' and all schemes C' will be of the same type (Lemma 5).

The points and parallel planes A and C do not intersect in pairs
(excepting at the point p,). From the continuous dependence of A" and C'
on the initial point x' 1t follows that if x' changes in a sufficiently
small neighborhood of the point p,, then the points and planes of the schemes
A’ and C' will be as close as we please to the corresponding elements of the
schemes A and C. Let 7 > 0 be the least of the distances between any
plane 7 of one of the schemes A, C and a point (not on 7 ) of one of these
schemes. Let € > 0 be the radius of a neighborhood of the point p, such
that the planes and points of the schemes A and C are shifted by not more

than 7/3 when the point =z’ varies over the €-neighborhood of p,. Then
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the intersection u with the €-neighborhood of p, will yield a semineighborhood
of the point p, which is an interval u having on D,+; nonintersecting
generating schemes (see &5) A* and C*.

This follows from the fact that all schemes A’ and C' are of the same
type; any two parallel layers of these schemes will, obviously, not be
separated by a distance greater than 7/3. If we now place the segment 2s,
in a small enough neighborhood P, of the point p, (namely such that x'
falls into o) then the interval 2s, will have a generating scheme on Dp4a
whose first direction will coincide with the first direction of A.

From the Lemmas 11 and 12 it follows that for the preservation of the in-
ductive property 3 on Dp+q it is sufficient that the segment s, be small
and have a properly chosen direction (§§3-5).

In §7 use is made of a generalization of the Lemma 12.

By the N-characteristic Xy of a generating scheme A, of the interval
u on K we shall mean the set of directions of the generating layers of the
intervals of rank less than N referred to these intervals. The N -
characteristic x, and K determine uniquely the elements of the scheme A4,
whose rank does not exceed N.*

Lemma 13. Suppose that the conditions 1, and 2, are fulfilled on D,.
For every N> 0, there exist a neighborhood P(N) of the point pp and

generating schemes of intervals u C P(N) such that
1) Among them there exist schemes A?fN with2any N-characteristic.
2) The intervals of the schemes A?fil and A>u<N' different from u, do
not intersect if the first directions of these schemes are distinct.

3) If the intervals uq € P(N), ug C P(N) do not intersect, then none

of the intervals of the schemes A and AXN will intersect.
1 ug
The proof of Lemma 13 is analogous to the proof of Lemma 12, and is left

to the reader.

Up to now our constructions have not depended on whether the function f
belongs to the class F which is mentioned in the inductive lemma. In &9 the
expansion constructed here will depend on F. This will not destroy the
possibility of expanding any function on D, into the sum of functions of the
coordinates. We can, obviously, without loss of generality, assume that F 1is
a compact. It is easy to see that within the limits of F, the continuous
dependence of f; on f 1is uniform.

* In the N-characteristic one can indicate the directions of the layers that lead

away from the intervals which are not in the scheme Ay, because this scheme
may terminate earlier with a free end.
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§8. Arithmetic lemma

In this section there are proved two lemmas with whose aid there will be
obtained, in the next section, corrections along two different directions.

Lemma 14. Let

a-t-b+4c=d, (1

where
bal, [0], le[<<3 6, @)
1d| <1 (3)

Let

a' =a+ Aa, (4)
where | Aa| <1+, 5)
0<e<<b< L. (6)

Then one can determine numbers Ab(a,b,c, Aa) and Ac(a,b,c, Aa) such
that if

b -=b+4Ab, ¢ =c+ Ac (7
then
[0 1, 1 1<<34 04k, (8)
a—+b+4cd=d 9)
| Ab |, IAC|<maX(I IAa[——g%l, e) (10)

and, such that

the dependence of Ab and Ac on a,b,c, Aa, which vary
within the restrictions (1) to (6), be continuous and that (11)
as Aa— 0, Ab and Ac will tend to zero.

Proof. We shall prove first that under the conditions of the lemma
|bc| <440, (12)
Indeed, from (1) it follows that b + ¢ = d - a. Therefore,
|b+c|<|d|*+]|al. But since according to (2) and (3), |a| <3 +6, |d]|<1,
it follows that |b + ¢| < 4 +6. From (12) and (2) we obtain
2340 Eb-+tc)>2 6. (13)
In order to satisfy the requirements of the lemma, we define Ab and Ac
as
Ab = —pla, 0<qy, <1, (4
Ac = —xAa, 0<~q. <. (14)
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It vy, +‘yc = 1, then (9) will be fulfilled.

If here Vb and Ye depend continuously on a,b,c, Aa # 0, then (11) is

satisfied. In order to select Yb and Y. SO that the inequalities (8) will
not be violated, we introduce

No=3-+0—bt5, N =3+0—c+—,
_ . (15)
N =3+04b+ 5, N =340+4c+ 5.

These numbers, which are positive because of (2), give the leeway which one has
for the introduction of the corrections Ab and Ac¢; thus, for example, )‘1;
shows how much one may add to b in order that the sum b’ may not exceed

3+6+€e/2 (see (8)).

The inequality (13) shows the correction Ag, which does not exceed 2 in
absolute value, can be made to satisfy (8) by selecting y, and y_ in (14)
between 0 and 1. Namely, if Aa > 0, we set

A At
=_° P S— (168)
o= —"FT—"> .= s
TV A v
and if Aa < 0, we let
Ay Al
Yo = """y e = ——"TTT—. (16b)
Ay A Ay A

We shall prove that (1)-(7), (14), (15), (16a), and (16b) imply (8), (9),
(10), (11). Indeed, (9) is satisfied because of the obvious equation Y + Ye = 1.
From (12), (13), and (15) we obtain

2<)\§C-|—)\§t=2(3-{—0+—§~)j:(b-}—c)<15, (17)

and therefore, y, and y_. will depend continuously on a,b,c, Aa when
Aa #0. Since 0< Yo Ve <1, the condition (11) is satisfied. PFrom (5),
(6), and (7) it follows that
[ Aa |
AE+F

1+¢
<—5—<L
+ +
Therefore, |[Ab| < Ay, |Ac| <A . But from (15) it follows that

|6F M | <B404e |cFAE|<3+0+e,
and because of (7), (14), (16a), and (16b), |b'|<3+0 +€, |c'|<3+0 teE,

i.e. (8) is fulfilled. It remains to prove that (10) holds. In case | Aa| < g,
(10) 1s, obviously, a consequence of the relations 0<y, <1, 0<y <1.

4
From (15) and (2) it follows that )‘b c > €/2. Hence, in view of (17),
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Yo,c” €/30. From this we have in accordance with (14) that

|Ab|, |Ac| > |Aa| €/30. Therefore, in case |Aa| > € it follows that

|Ab| > €%/30, |Ac| > €?/30. But since (see (14) and (16))

|Abl +|Ac| = |Aa|, it now follows that |Ab| <|Aa| - €2/30,

|Ac| < |Aa| - €2/30, namely the condition (10) and Lemma 14 have been proved.
Lemma 15. Let

atbte=d (1)
lal, 161, |lc| <346, (2)
ld| <1-+e. 3)

Let
d=d-+ Ad, (4)

where
| Ad | <1+ (5)
01, 0<e<. (6)

Then one can determine the numbers Aa(a,b,c, Ad) and Ab(a,b,c, Ad) so that
if

ad=a+Aa, b =04 Ab (7)
then
a—+4b+c=d, (8)
@1 <3404e (0] <3404, ©)
la—Ab| <340+ (10)
and that

the dependence of Aa and Ab on a,b,c, and Ad, which
vary within the given (see (1)-(6)) limits, will be con- (11)
tinuous, and if Ad 2 0 then Aa and Ab will go to zero.

Proof. For the fulfillment of the inequalities (9) it is sufficient that
0<Aa<hy or —2 <Aa<0, (12)
0L Ab <N, or — Ay << A0,

where

M =3)04+e—a N =3104ctaq

Mi=304e—b ry=3-F0-F¢c|b, (13)
since o« and b satisfy relation (2).
In order that (10) be satisfied, it is sufficient that
0 Ab <N, or — g < AL, (14)
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where
MNe=340+—4a MNp=3+40+—q (15)
again because of (2).
Setting now
M =min(N, Me), X5 = min (A ), (16)
we find that
AN >, M4 > (17)

Indeed, by (1) we have, a +d=d - c. Therefore, |a+b|<|d]+]|c]|

and, by (2) and (3),
la4-b| <4-406-+e (18)

But because of (13), A} + X/ =6+ 20 + 26 - (a + b). Hence, it follows
from (18) that A} + A > 2. At the same time we have, in view of (13) and
(15), that )\; + )\22 =6+20+ 2e> 2. 1In accordance with (16), the first
inequality of (17) has been established; the second one can be proved to be
valid in a similar way.

Now we set

Aa=1,Ad, Ab=y,Ad, (19)
where if Ad > o0,
At Ap (208)
Ta = y b= — a
T A Ay
and if Ad < 0,
AT A
Yo=—2e, p=———. (20b)
Ay A 2+

We shall prove that (1)-(7), (13), (15), (16), (19), (20a), and (20b)
imply (8), (9), (10), and (11).

Indeed, from (20) we obviously obtain Ya + Yy = 1, which implies (8) in
view of (19), (1), (4), and (7). From (2), (13), (15), and (16) it follows that
every A 1is positive, and, hence, that O <ya <1, 0K< b < 1. Since, if
Ad #0, the y, and y, depend continuously on a,b,c, and Ad (see (20a)
and (20b)), it now follows that (11) must be fulfilled because of (19).

Finally, from (17), (3), and (16) we obtain

Ad 1+e —Ad
+ + < 2 <l’ - -
Ay 3y Ag 2,

<< @)
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Taking into account the fact that A 1is positive, we obtain with the aid of
(20a), (20b), (19) and (21) the inequalities

0L Aa<l N, or —0\7 < Aa<0,
0LAb<N, or —); <AKKO

These inequalities and (16) imply the relations (12) and (14). From (12) follows
(9), and (14) implies the inequality (10). This completes the proof of Lemma 15.

89, Inductive preservation of property 4

In this section it will be shown how one must distribute the corrections in
the method of §7 in order to fulfil the inductive requirement 4,4+, .

In §3 we introduced the numbers n,. The oscillation of any function f of
the considered class F on any component of the complement of A, 1in E does
not exceed 1/r> provided n > ny. In particular, this will be the case on
each branch o, if n2> n..

We will denote by f"(£) the function defined on A, which coincides on
A, with f € F, and also its continuous extension (over any A, (m> n) and
on the entire H) which is constant on each component of the complement of A,
in E. That such an extension exists, and is unique, follows directly from the
fact that the intersection of A, with the closure of each component E\An
consists of one point. The function which corresponds to f"(£) on D, we
will denote by f™(x) on X. Let us introduce the function

") = [ () — [ (x) (1)

(np < m< onp+q). On Dp this function is zero, depends continuously on
f € F, and does not exceed l/rQ anywhere in view of the definition of r
and f™(x).

Let nr < n< nr+;. Suppose that D, and fZ(xk) are determined so that
the requirements 1,, 2,, 3, and 4, are satisfied. Then (for n = n, this is
trivial)

) — 18 00 (3 5 0

Our problem consists of selecting s, and f,
3,+1 and 4,44 will be fulfilled.

("k) so that the requirements

From here on, till the end of this section, r will be kept fixed. In
order to shorten the formulas in all estimates, the factor 1/r2 will be
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 117
omitted. Thus, the inequality (2) will be written now in the form

| o) — i () | <34 @)

This can be considered as a temporary change of the scale of the f -axis, or
one can suppose that we are confining ourselves to the case r =1, 1/r%= 1,
because the remaining cases can be treated in an analogous manner.

Thus, let us assume that on D, the requirements 1,, 2,, 3,, and 4, are

satisfied. Then on D,

3

gn(x)= 2 gk(x), (3)

k=1

where gj(x,) =fp(x,)~ f;"(x,) when n> n., and when n = n, gp(xy) = 0,
g"(x) = 0. As usual, the x, are the coordinates of the point x. In (3)
x € Dp. The fulfillment of the requirement 4, on D, means that

| gh(x) | <340, )
where we have introduced the notation
n-— flr

nep1— 0, ' (5)

We will construct Dp+; in accordance with §7, and will select functions

612 =

gz+1(xk), which depend continuously on f € F, 1in such a way that if

x € Dn+1
3
Mg ) = g (), (6)
ko1
g ) | <3 O, (7)

Here, n, <nt 1< nr+,, and one has to assume that

(k) = T (xe) 4 gk (xe)s (8)

in order to prove 3,4+, and 4,4+, .

When n increases from n, to n,+;, then 0, increases from 0 to 1,
and when n increases by 1, 6, increases each time by 1/(np+y - n;). We
choose €, 0< €< 1/(np+q — n,). Then O, + € < O,4q. This will be kept
fixed in the remainder of this section.

Construction of 2s,. On D, there exists a point p, where s, 1is to
be attached.

n

Let us consider the rays !’ and 1 (Figure 18), into which the point
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pn divides the line containing g,. When the direction s, has been chosen,
then the three coordinates which pass through 2s, will intersect these rays.
Let us now select the direction 2s, so that one of these rays ' (it will
be called the principal ray) will intersect the planes of one direction; this
direction will be called the principal direction. The planes of the remaining
two directions will intersect the ray 1” (it will be called the minor
direction). One of these planes is chosen arbitrarily and is called the minor
plane. Finally, this entire operation can be performed by not picking s, from
the forbidden directions of §4, which is now assumed. The direction s, has
been chosen.

The following assertions are true.

A. PFrom every sufficiently small semineighborhood upr of the point p,
on the principal ray, one can start on D, a double scheme A of the interval
upr sSo that two layers will lead away from the intervals of ranks 1,2,...,N,
where N 1s taken equal to [30/€%] + 1 (in order to have N€2/30 > 1), and
such that among the directions of the layers of rank 1 there is no principal
direction.

From every sufficiently small semineighborhood up of the point p, on a
minor ray one can start on D, a double scheme B of the interval up so
that two layers will lead away from the intervals of ranks 1,2,...,N, and
that the first direction is the principal one. The symbol N has the same
meaning here as in the preceding paragraph. The scheme C with the same N-
characteristic can be started from the semineighborhood upr 1f this neigh-
borhood is small enough. Finaily, if the interval up 1is sufficiently small,
then, on D,, one can start from this neighborhood a double generating scheme
D whose first direction is a minor direction and for which the splitting takes
place in the intervals of ranks 1,2,...,N.

B. If the mentioned semineighborhoods upr and up are small enough,
then the intervals in the construction of A will not intersect except for
those which coincide by construction (on 1' and l").

These assertions are consequences of Lemma 13 of §7.

The segment 2s, of the direction selected above, is attached to p, 1in
the neighborhood P of p, which is now chosen in such a way that the
following three requirements are satisfied:

1) The oscillation of each function gZ(xk), which corresponds to f € F,
in P must be less than €/4.

2) The neighborhood P must be so small that under the condition that
sp C P it is possible to map 0 on sp (see §4), and to satisfy the
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requirements 1lp+4, 2p41 (§84, 6).

! n

and 1
directions must fall within the above constructed (see assertions A and B)

semineighborhoods upr and up of the point p, on gq, if 2s, CP.

3) The projection of 2sp on 1 along the principal and minor

Figure 18. A double generating scheme of the interval 2s, on
Dp+1 U 2s,. On the left, the first layers are shaded; on the
right the representation is more schematic.

A sufficiently small neighborhood P of the point p, will satisfy the
requirement 1) because of the equicontinuity of the functions f € F, the
continuous dependence of gZ(xk) on f € F, and the possibility of applying
the Arzela-Ascoli lemma to the functions gZ(xk) and f € F. Earlier (§§4, 6)
it was established that for a sufficiently small P the requirement 2) is
satisfied. Finally, the possibility of fulfilling the requirement 3) for small
enough neighborhoods P 1s a consequence of the assertions A and B.

Now we select a neighborhood P that satisfies the requirements 1), 2),
and 3). In P we pick 2s, with the above chosen direction. We construct the
mapping o, on s, as in §4. On Dp+4 = D, U s, the conditions 1,+; and

2n+1 are fulfilled because of 2).

Let us now construct on D, () 2s, (Figure 18) a double generating scheme
of the interval 2s, of the following structure:

1. The initial interval 2s, has two generating layers whose directions
are the principal and the minor ones.

2. From the interval of the first rank, which lies on the principal
direction, there starts a scheme A (see assertion A). From the remaining
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intervals of the first rank to which the layer of the first direction leads,
there issues the scheme C (see assertion A).

3. From the intervals of the first rank to which the layer of the minor
direction leads, there start in the same way the schemes B (from up), and
D (from the rest).

This construction is actually a generating scheme (double one). Indeed, the
schemes A, B, C, D, and D, do not intersect (except in the general intervals
on upr and up). Since (except for the initial intervals) these schemes do
not have intervals on upr and up, their layers of rank greater than 1 do
not intersect upry and uy, and hence not 2sp,. The layers of the first
rank do not intersect 2s, because of the definitions of the principal and
minor directions.

We will call the obtained scheme the large scheme.

Each zigzag of the large scheme which leads away from 2s, either passes
through at least N intervals distinct from 2s,, where the large scheme
splits, or else terminates with a free end of lower rank. In any case, from all
the intervals of rank 1,2,...,N 1in the large scheme, which enter into the
schemes A and C, and from the intervals of ranks 2,3,...,Nt 1 in the large
scheme, which enter into the schemes B and D, there issue two layers. This

follows from the assertions A and B.

Construction of the functions gz+1(xk)‘ We have seen (see (3)), that on

3
gn(x) = 2 ghlxe).

k=1

This formula can be considered to be the definition of g(x) 1n the coordinate
parallelepiped, stretched out over D, in the product of the regions of
definition of the functions gZ(xk) (k=1,2,3). On Dp+q, there is defined
the function g"**(x) = f**M(x) - f""(x). The function gz“(xk) is to be

found so that on Dp+, we would have

g () = 3 gt (xa). (%)

k=1

In this manner, when =x € D, and, in particular, at the point p,,

3
\! n+1
) gh (n) = g (%),
k=1

We determine g" '(x) on 2s, so that the function

grti(x) — gn(x) = A, (x) %
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on 2s, be even relative to the middle of this interval. It is obvious that
the function Ag(x) 1is defined and continuous on D, UJ é—sn and is different
from zero only on 2s,.

We shall determine the functions g:+1(xk) so that the equation (*) is
fulfilled everywhere on D, |J2s,. We can do this by distributing the correc-
tions along two directions that correspond to the larger scheme.

For the zeroth approximation to gz+1(xk) we take og2+1(xk) = gZ(xk). 1f
one substitutes the zeroth approximation in equation (*) for gz+1(xk), the
equation will be destroyed only on 2s,. We obtain the first approximation
from the zeroth one by making corrections on the intervals of the layers of
rank 1 of the large scheme. If x € 2s,, and if, for example, =x; and =x,
are points (of these intervals of layers) that correspond to x, we obtain

Al(x) = 118, (%),

A} (%) = 12 (2).
But then if y; typ, =1, and if

n+1

181 (xy) == 0g1 " (x) + Al (%),
gt () = g5t (k) + AL (xa),

1g5 %" (x3) = °g5 " (%),

the equation (*) will be vitiated on the intervals of the first rank only. In
general, for the (i -1)st approximation the equation (*) will be destroyed on
Dnp U 2s, only on the intervals of the large scheme of rank i - 1. The ith
approximation is then obtained from the (i - 1)st one by making corrections
on the intervals of layers of rank : of the larger scheme. If x belongs to
the layer u of rank i — 1 of the large scheme, and if, for example, u,
and uz are intervals of layers that issue from u, while =x5(x) € uy, and
x3(x) € ug correspond to x, and if the (i - 1)st disjoint at the point =x
is

3

Aimi(0) = gm+1i(x) — 2 gkt (x), (10)

k=1

then we set

A (%3 (1)) = 1281 (),

: (1)
Az (X3 (%)) = 134i-1 (x),
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where y, * y3= 1. (We do not assume that y, and ys; are constants. They
are functions of x, and will be determined later.) Now we suppose that

‘ge ™ (xy) = i1g3 " () + A (%2) and so on (12)

and that the ith approximation is constructed so that the equation (*) is
vitiated only on the intervals of rank :{ of the large scheme. The process
described in §7 is called the distribution of corrections. Thanks to the con-
struction of the large scheme, it proceeds in two directions when 1 < i <N
or 2< i< N+t 1, and later terminates as in the case of a simple generating
scheme when all intervals of some rank remain free.

We still have to take care of y,; and ¥y, for every distribution of the
corrections, so that (see (7))

gt | <3404y

and all corrections Aé(xk) will be continuous, will vanish at the ends of the
intervals of the layers of the large scheme, and will depend continuously on

x and f € F, Under these conditions the equation (*), i.e. (6), will be
satisfied because of the results of the lemmas of §7; and, in view of (5), (6),
(7), and (8), the fulfillment of the conditions 3,+; and 4,+; will have
been established.

Lemma 16. Suppose that the layer of the direction x5 leads to the
interval u of rank 12> 1 of the large scheme, and that the layers of the

directions x5 and xg3 lead away from it. Let =x € u. Then

[ 1gh ™ (xe) | <340, (F=1,23), (13)
| S g ) < 1. (14)
k=1

Proof. Since u is an interval of rank i, 1t has not been touched

previously in the distribution of the corrections: "1gg(xk) = g)(x,). Hence

(13) follows from (4), while (14) follows from the estimate of g"(x) (see
definition g"(x)).

Lemma 17. In the hypotheses of Lemma 16, let Ai- 1(x) be continuous on

uw, vanishing at the ends of the disjoint u (see (10)), and depend contin-
uously on f € F, Furthermore, suppose that

| A () | <1 4e

Under these conditions one can find corrections Alg (x), A% (x) so that
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ﬁ,

UIAMMINuH<mM“A

2) 1@ ) 1, | g T ) | < 3 A O,
3) As(x) + Ag() = — Ar_y (),

4) A;(x) and A;(x) will depend continuously on f € F, and, when
Ai_i(x) -0, Aé(x) -0 and Ai (x) — 0. (Here it ts assumed in accordance
with (12), that ‘gl*i(x,) = i "*1<xk) + AR (g ().

Proof. The numbers o = -1 "+1(x1) b=t 1gzﬂ(xg). ¢ = t-t "+1(x3).
d=g"(x) (by Lemma 16), and s=A; (x), 6 =6, and € satisfy the condi-
tions of the arithmetic Lemma 14. The conclusions of that lemma coincide in
these notations with the conditions of the present lemma if one sets

Aj(x) = Ab, As(x)=Ac
Remark. It is obvious that Lemmas 16 and 17 remain valid if one makes a
permutation of x4, x5, x3 1n their hypotheses and conclusions.

Lemma 18. If the first disjoints Ag(x), Ai(x), AQ(x) do not exceed
1t+e:

[Ag() I <T4e  [AMX]I<STte [8:()] <14,

and if the functions of the first and second approximations 1gz+1(xk),

2 n+1(1k) are less than 3 + Op4q:

PR ) | <3+ 0upn 12887 (x0) | <346y,

then one can find gz+1(1k),

Fgett (xe) | <34 By,

so that the equation (*) will be satisfied. If Ao(x) and A,(x), 182+1 and
2gz+1, depend continuously on x and f € F, then 82+1("k) can be

selected to be continuously dependent on x and f €F,

Proof. The Lemma 17 is in this case applicable to all intervals of the
large scheme whose rank is greater than zero and from which issue (lead away)
two layers. This is true, because in the use of Lemma 17 for the distribution
of corrections the ‘Ai decreases only when i increases. Making use of the
conclusion 1) of Lemma 17, we see that if from the beginning of the large
scheme up to a given one of its intervals there have been N intervals from
which issued two layers, then in this distribution of corrections the quantity
Ai is less than max (|1 +€ - Ne?/30|,€). But in the large scheme each
zigzag with a free end either has at least N first intervals from which two
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layers issue, not counting the beginning, or all intervals of the zigzag up

to the free one, included, have two issuing layers. Bearing in mind that

NeZ30 > 1, we see that in both cases all corrections An+1 are in absolute
value less than €. In the further distribution of the corrections with the
aid of simple generating schemes of intervals of rank N + 1, as in Lemma 8
within ¢§7, the functions gZ(xk) will receive corrections whose absolute value
is less than €, on the new intervals. But on these intervals

L@t xe) | <| gh(xe) | +e <3404 <34 bnyyy

and since on the intervals of lower rank the inequality follows from Lemma 17

(rank > 1) and from the hypothesis of Lemma 18 (rank 0 and 1), the latter
lemma is proved.

If one now determines Ag, A,;, Ag, 1g2+1, Qggﬂ so that they satisfy

the conditions of Lemma 18, then, obviously, the construction of the function

gz+1 under the requirements 3,+; and 4,4+, will have been accomplished. Let

us first consider the distribution and corrections from the interval of the
zeroth rank 2s,. Here Ap(x) = g ) - g™ (), og2+1(xk) = gZ(xk). Ao (x)
depends continuously on x and f, and vanishes at the ends 2s, of the dis-
joint. For the sake of definiteness, let us assume that the coordinates of the
principal and minor directions of the point x € 2s, are x; and =x,. Let

us and u, be the corresponding intervals of the first rank of the large
scheme, and let x' € uq, "€ up, be points which correspond to x (Figure
18). We will write also x(x), x2(x), x(x1), x(x2), x(x'), xz2(x1), etc. to
indicate this correspondence.

Lemma 189. If the point x lies in the above-defined neighborhood P of
the point pp, then

3
| D gat)| <1+t
k=1
if x€2s,, then

L) | =1 g () —g"(x) | <1+
Proof. At the point pp = (pnyiPnyePny) € Dn

3
QA 4ip,)=g"(p,)
k-1
(see definition g"(x)),

I gn(pn) I \< l-

Because of the conditions on the neighborhood P, we find that in it
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AR AT

Using this and the preceding inequality, we obtain the first conclusion of the

lemma.

The function |g™*%(x) - g™(x)| is even (see the definition of g™(x)) on
2sp, and it vanishes at the endpoints of this segment. Therefore, it will be
sufficient to establish the second conclusion of the lemma on

By the definition of g" we have

sp-

g (p,) — g"(p,) =0

and
| g"+1(x) — g"ti(p,) | <L

The first requirement on P guarantees the fulfillment of the inequality

g0 — g (p) | <) e,

which together with the preceding inequality proves Lemma 19.

Lemma 20. For every x € 2s, one can find At(x)  and Ad(x) [we will
wvrite also A%(xi) and A;(xg) for Ai(x(ﬁq)) and Aé(x(xg)) respectively]
such that

1) AL+ Ay (x) = A (x),

2) | TRt (xy) | = ]0g2+1(xk)+ A;lg(xk){ <3+ 6n+1’

3) %+t (1) — A} (r(m)) |[<T3 40,4+

4) A%(x) and A;(x) depend continuously on x and Ao(x). and when
Ao(x) = 0 so does A;(x) - 0.

Proof. The numbers

a=0°gitt(x), b="0gy"(x), c="1gy""(x)

S=g""1(x), 06::-0_ and ¢

n
satisfy (because of the fulfillment of condition 4, and by the definition of
0, and € in Lemma 19) all the requirements of the arithmetic Lemma 15.
Applying it, we obtain the conclusion of Lemma 20 if we set

Al (x) = Aa, Ay(x) = Ab.

1 1

n+
g, » Wwe have
FAr(x) | <1+e and |'gi+i(x,) | <346,

In order that the condition of Lemma 18 be satisfied, it is still necessary

to determine A: and ng” so that | As(x)| < 1+ € and

In particular, for this definition of A; and
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|2g2+1(xk)| < 3 4+ 6,+,. For those intervals of the large scheme where it

splits, i.e. for all, except uy C u,, this can be done with the aid of Lemma
11.

We introduced the point x“(x) with the coordinates xZ' whereby the
point 1" and its coordinates are functions (linear) of the point x, or of
any of its coordinates, and conversely. We thus have

Tgat(x,) = 0gpti(x) + Ax(x) (= x).

The remaining functions of the first approximation coincide with the
functions of the zeroth approximation. Let us suppose that in accord with the
distribution of the corrections along the directions of the large scheme,

2gnil(x)) = g+l (x]) 4 A% (x)), where A} (x;) = — A}(x(x)).
Because of the choice of Al(x) (see Lemma 20),

| AT(x) | < 1e
Lemma 21. In terms of the above notation

| 2gpti(x) | <346,

Proof. According to conclusion 3) of Lemma 20,
' €
MQHWW—MWUMI<3+6n+E’

where x; 1is the coordinate of an arbitrary point x € 2s,, 1in particular
x(x”). In view of the first requirement on P (and u", obviously, lies in
P),

| g+t (m) —ogit () | <
Whence,

HQ“UW~MWQMI<3+%+§e<3+m%

which was to be proved, because AZ(x1) = —A3 (x(x1)).

Since each successive correction does not exceed, in the above described
process, the preceding disjoints, we obtain from the mentioned fact that
| A2(x1)| < 1+ €, the result that |As(x)| < 1 + €. Bearing in mind Lemma 21,
we can convince ourselves that our chosen lﬁz(xk) does, indeed, satisfy the
conditions of Lemma 18. This lemma has been proved, and we obtain functions
gz+1(xk) that fulfil all the requirements that were stated in the beginning
of this section, and the inequalities (6) and (7). If we suppose (see (8)) that
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Al (x3) = f;’ () + gzﬂ(xk)»

then we obtain a decomposition which has the properties 3,+1, 4,+1.

This completes the proof of the inductive lemma, because for n = 1, it is
trivial.

[+9]
Thus, the tree X = U1 D,, the homeomorphism of X on E, and the
n=

decomposition of a function from F into the sum of functions of the
coordinates on D, have been constructed under the requirements of the
inductive lemma.

810. Proof of Theorem 3

As a result of the application of the processes described in the preceding
section, one obtains trees D, that are realizations of A,, where

@
X= U D, realizes E in the form of a subset of the three-dimensional
n=1

space.

On each tree, every function f € F can be represented as

3
f(X)=Z fﬁ (xk),
k=1
where the continuous functions fz of the coordinates x) of the point x € D
depend continuously on F. The sequence fz("k) converges uniformly as
n—c. This follows from the fact that |fj(x,) - f;:r(xk)l is not greater
than 4/r2 when nr < n< nr+; and, hence,

| el — Fr () 1 <) 5 (n>n),

I=r
Let us denote by fk("k) the limits of these sequences. The sum of these three
functions is a continuous function f(x4,x2,x3). For the point (x,,x2,x3) € Dy,

3

3 fE ) =1(x) for all m>n.
k=1

Therefore we have also for the limit the result
3
2 fa(xg) = f(x) at each point x€D, for any n.

k=1

@
But U D, 1is an everywhere dense subset of its closure in X. The
=1
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3

continuous functions f(x) and . p fk(xk) coincide, therefore, on the
=1

entire tree X.

The proof will be complete if we can establish the continuous dependence of
fp(xp) on f.

Let €> 0 be given. Let us consider an N so large that
| fR(x) = ()| <€/3 for all n>N and for all fg+ fp which correspond
to any function f € F.

In view of the requirement 3,, the functions fZ(xk). with a fixed n=N
depend continuously on f € F. Therefore, f has a neighborhood of radius &
such that for f' € F and |f' - f| <& it is true that

lfLN(’k) - ff(xk)| < €/3 for all xp. From this it follows that for every
€> 0 there exists a &> 0 such that 1f |f' - f| <8, then
|f;(xk) - fk(‘k)| < €, which was to be proved.

In this manner, for every family F of real equi-continuous functions f(&)
defined on a tree B, each of whose points has a branching index less than or
equal to 3, one can realize the tree in the form of a subset X of the three-
dimensional cube E° in such a way that every function of the family F can

be represented in the form
3
&)= ) fe(x)
k=1

where x = (x4,x2,x3) 1is the image of f €E in the tree X, the fk(xk)
are continuous real functions of a single variable, and f, depends
continuously on f in the sense of uniform convergence.

This is Theorem 3.
It implies Theorem 1, as was indicated in the Introduction.

APPENDIX

The space of the components of the level sets of a continuous function

That the set of the components of the level sets of a continuous function,
defined on a square, is a tree is clear from Figure 19. Here we will assign an
exact meaning to these words by following A.C. Kronrod [4] who introduced
the concept of the space of the components of level sets, and K. Menger (3]
who has made a study of trees. The theorems proved below are the main tools in
both parts of the work. At the end of the Appendix there is placed (for the
nonspecialists) a list of the basic concepts of point-set topology.

114



CONTINUOUS FUNCTIONS OF THREE VARIABLES 129
A. Comnstruction of the metric space 1}
Let a continuous real function f(a) be given on a continuum A (Figure

19). The set of a level, or a level set, is the set of all points a for which
f(a) has the same value. The set of a level is thus a closed set; the level
sets do not intersect, and constitute
all of A. Each set of a given level
consists of components, continua that
do not intersect each other.

Let us consider the entire set Tf

of all components of all level sets of

the continuous function f(a). 7}
will be called the space of components
of the level sets of f(a). We define
a metric on this space so that 7}

becomes a metric space. The components

of the level sets of f(a) are subsets
of A and are points in T}. Any

given component will be denoted, the

first time, by a capital letter, and

after that by the same small letter. Figure 19. The set of levels, the

As is known, the oscillation of a space of components, and the graph
of the function. Some components

function on a set is the difference are denoted by numbers. The branch-

between its upper boundary and its ing index of the points 1, 50, “
lower boundary on the given set. The qyﬁ Tf 1s 1, of the points 2, 47,

4°, 5%4s 2, of the point 3 is 3.
oscillation of a continuous function on The corresponding components thus

a compact is finite and non-negative. do not divide A, divide A into
2 parts, or into three parts, res-
Let K, and K, be components of pectively.

a level set of a continuous function
f(a) on a continuum A. By P(K4,K7), we denote the lower boundary of the
oscillation f(a) on all continua F C A that contain K; and Ky:

P (K, Ky) = inf  [max f (a) — min f (a)].

KiyksCFCA a€f a€F

If one now defines the distance between points k; and ko, of the space
of components as p(kq, k) = P(K4,K2), then Tf becomes a metric space. It
is, indeed, obvious that

0-<p(ky, ky) =p (g, k1) << p (%1, k3) -+ p (R, k).

In order to prove that p(ki, kp) = 0 implies k4 = ky, We have to make
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use of the next lemma.

Lemma 1. For every open set E (E C A) which contains a component K of
a level set of a function f(a) that is continuous on the continuum A, there
exists a 6> 0 such that if p(k,ky) < 8, then the component K, 1is con-
tained in E.
Proof. If the lemma were not true (Figure 20), there would exist a sequence
of components K, such that p(k,k;) < 1/n even though, for every n, K,
would contain a point b, exterior to E. But

7 S by the definition of k, k ther ist £
’/ﬁfﬁéﬁéf ) p(k, kp) ere exist for
e SeodeVy) n=1,2 ... continua F, C 4, each of which
1= - contains K and K, with the same n, and such
2 ;422%?; ' that the oscillation of f(a) on F, 1is less
Foo than 2/n. Therefore, the values of f on F,
‘P Ky bn must differ from the values of f(a) at the
/ points of K by less than 2/n. The sequence
i:/ Z A of the points b, (n=1,2,...) that are exterior
to £ have, because of the compactness of A\\E,
Figure 20. For Lemma 1. a limit point b € A\\E. The lower topological
If for every p(k,kp) the limit 1t F, of the connected subsets F, of the
components K, have points A
b, exterior to E, then compact is not empty, since it E?ntains K.
K will have a point b Thus the upper topological limit 1t F, 1is con-

exterior to E. The heavy

curve is IEFn. nected. At the points of the upper limit, f(a)

takes on the same value as on K, because in
every neighborhood of such a point there are points of F, for every n (no mat-
ter how large), but these f(a) will differ from f(a) (a € K) by less than 2/n.

The upper limit, obviously, contains also KCE and b € A\\E. This
contradicts the fact that K 1s a component contained in E, because the
upper limit, a connected set where f(a) 1is constant, must lie entirely in
one component. This establishes the lemma.

On the basis of Lemma 1, it follows from p(ks, ko) = 0 that K; and K,
both lie in any given open set if this set contains either K; or K,. But
this can happen only if K, = K, because otherwise the distance between K,
and K, in A would be positive.

The metric in Tf has thus been defined. The topology induced by this
metric in Tf coincides with that of the work [4] if A 1s locally connected.
A.S. Kronrod introduces a topology in T _ with the aid of neighborhoods which
are defined as sets K that intersect with some open sets E C A. It can be
easily seen that the topology on 7} depends only on the decomposition of A
into components.
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B. Two representations connected with a continuous function

Let us consider two representations, or mappings (Figure 19):

1. t(a) maps A on Tf and mates any point a of the continuum A with
the point t € 7}, where t is the component T C A which contains a.

2. f(t) maps Tf into the real axis f and mates any point t € Tf with
a number f, the value of f(a) at the points of the component T C A that
corresponds to t € Tf'

The use of the same letter f for f(a) and f(t) should not lead to any
misunderstanding because these functions have entirely different definitionms.
We will say that the function f(e) defined on A generates the function f£(t)
on Tf‘

If A is locally connected, then each of these mappings is continuous.

1. Since f(a) 1is continuous, it is true that for every € > 0 there
exists a & > 0 such that the oscillation of f(a) on any set of diameter
less than & 1is less than €. Because of the local connectedness of A4, any
S-neighborhood of a point a € A has a connected subneighborhood ug(a).
Obviously, if b 1is contained in us(a), the components Ka and Kb of the
level sets that contain a and b are such that p(kq,kp) <E.

2. If k4, ko are two points of 1} that correspond to K,, K;, and if
plkiky) < €, a3 € Ky, ag € Ko, then |f(ay) - f(az)| < €, because the
oscillation of a function is not less than its increment. Thus,
| flk) — f(k2)| <E.

The continuity of t(a) and f(t) has thus been proved.

If on A there is given a continuous function g(a) which is constant
on each component of every level set of the function f(a), then g(a) also
generates a continuous function g(t) on Tf (namely one which is equal to
g(a) at each point of the corresponding component), and we have g(t(a)) = g(a).
Indeed, for every € > 0 there exists a & > 0 such that the oscillation of
g(a) on any set of diameter less than & 1is less than €. Let Es(T) be a
S - neighborhood of the component T C A, 1i.e. the set of points of A all of
whose points are nearer than a distance & from T. By Lemma 1, t(T) has
in Tf a neighborhood all of whose components lie in the interior of Eg(T).
Hence, we have found, for the givem € > 0, a neighborhood of the point
t € Tf in which |g(t) - g(t4) | < €. This establishes the continuity of
g(t).

Let us now consider the counterimages of points for the mappings t(a)
and f(t). The counterimage t € 7} is a component T C A, 1i.e., a connected
set.
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Definition [7]. A continuous mapping is said to be monotone if the
counterimage of every point is connected.

By means of a monotone mapping one can transform a square with its boundary
into a sphere, but not into a torus as we will see later. A monotone trans-
formation is, so to speak, a contraction without “gluing together ” . Under

monotone mappings there are preserved certain topological properties of sets.

It is for this reason that the monotoneness of
t(a) yields some information on the space 7}.
In the mapping f(t), the counterimage of a
point is the set of all points 7} where f(t)
takes on one value, i.e. the set of all components

of a set of one level of f(a).

From here on, A will be assumed to be

locally connected, so that the functions t(a)

and f(t) are continuous.

Figure 21. To Lemma 2. The Lemma 2. Every point t € T} has a neigh-
construction of the neigh- borhood 1 .
borhood EeT of the com- orhood u(t) as small as we please (i.e. for
ponent T. every open subset E C T} that contains t,

there exists an open set u(t), t € u(t) CE)
such that its boundary consists of some points of two level sets of f(t).

Proof. Let T be the component that corresponds to ¢, and let QO be
the value of f(a) at the points of T. Let us consider (see Figure 21) the
open set Eg of all points a € A, where | fa) —a| < €. E; contains T,
and let EET denote the component of E; that contains T (EET is a region
because A 1is locally connected. If a point lies in EeT' then the entire
component containing this point of the level set f(a) will, obviously, lie
in Egp. It is clear that on the boundary of Egp, f(a) = O t €. We shall
show that the image ug(t) of the region Eg, under the mapping t(a)
satisfies the requirements of Lemma 2 for a small enough positive €.

1. u€(t) is an open set in 7} that contains t € Tf'

This assertion is established by the application of Lemma 1 to EET and
to the components contained in this region.

2. Suppose that K 1is a component which under the mapping t(a) is
transformed into one of the boundary points of ue(t); then K 1is contained
in the boundary of Egrp.

The truth of this assertion can be proved by the application of Lemma 1
to the regions containing K.

3. For a sufficiently small positive €, the oscillation of the function
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f(a) on Eg, and on the continuum EE} is as small as we please. This implies
that for a positive €, small enough, ug(t) is an arbitrarily small neighbor-
hood of t.

This proves Lemma 2.

It follows from Lemma 2 that a level set of the function f(t) is a zero-
dimensional subset of T, since each of its points has an arbitrarily small
neighborhood whose boundary is not intersected by the level set.

We have thus proved the next theorem.

Theorem 1. The real continuous function f(a), defined on a locally
connected continuum A is the product of two continuous mappings: a monotone
mapping t(a) of the continuum A on the space T} of the components of the
level sets of the functions f(a), and a mapping f(t) of the space 7} on
the real axis, under which the counterimage of every point f is of zero
dimension. The function g(a), which is continuous on A and constant on each
component of the set of the level f(a), generates a function g(t) continuous

on T} such that g(a) = g(t(a)).

C. Singly connected sets

Definition. A locally connected continuum M is said to be singly
connected [7] if it cannot be represented as the sum of two continua whose
intersection is not connected.

For example, the circle and the torus are not singly connected.

Remark. This definition is equivalent to the following ones.

A locally connected continuum is singly connected if every compact subset
of it that divides it has a component that divides it.

A locally connected continuum is singly connected if every continuous
mapping of it on a circle is homotopic to a mapping on a point.

It does not follow from singly connectedness that every simple closed curve
on M can be contracted, without breaking it, into a single point.

Lemma 3 [7]. The monotone image Fo of a locally connected continuum Fj
is a singly connected, locally connected continuum.

Lemma 4 [7]. Under a monotone mapping of a compact, the complete counter-
image of a continuum is a continuum,

Proof of Lemma 4. In the opposite case, this complete counterimage could
be divided into two nonintersecting closed sets A and B, whose images Al
and B’ would intersect. If C' were a point of intersection of the images,
then its counterimage would intersect A and B, while at the same time it
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would lie in A UB, and hence would not be connected. Therefore, the mapping
would not be monotone.

Proof of Lemma 3. F,, the continuous image of a locally connected con-
tinuum, is a locally connected continuum. Let A, and B, be continua in F,,
AU By = Fy.  In view of Lemma 4, the counterimages of A, and By, the sets
Ay and B,, are continua. Obviously,
Ay U By = Fy. Therefore, A,() B, is
connected in view of the singly connected-
ness of F;. But A,(] B, is the image
of Ay (Y By and hence is a connected set.

This completes the proof of Lemma 3.
Lemma 5 [7]. The Fuclidean cubes of

W any dimension, and the sph dimen-
N t\x y dimension, an e spheres of dimen
N \\ stons 2 and higher, are singly connected.
' jébveringfi;ii ;éovering/} Proof. Let us assume the opposite,
and suppose, for the sake of definiteness,
Figure 22. To Lemma 5. If it that the square E = AUB, where A and
were true that A B = E, .
ANB=FyUF, then the B are continua whose intersection A () B
region G, which separates the consists of two nonintersecting compacts,
point a € F; from the point _
b€ F, would intersect the i.e. ANB=F;UFy. Let the distance
sets A, B that connect a and between F; and F, be greater than
b. This would contradict that h> 0. We will consider spherical neigh-
G is connected because .
ANB=F,UF, lies in the borhoods with radius h /3 of all points
exterior of G. of F, and F,. These neighborhoods

cover F,U F,. It is possible to select
from them a finite number of neighborhoods, and it is clear that they can be
so chosen that F, and F, are covered, but their coverings do not intersect
(Figure 22). It is obvious that the square is broken up by a finite number of
curves each of which consists of a finite number of circular arcs, into parts
of three types: those which are part of the covering of F,, those which
belong to the covering of F, and remaining ones. The coverings of F; and
F, are at a distance greater than h/3 from each other. Therefore the
remaining regions separate them. Let a« € F; and b € F,. Every broken line*
that intersects a and b must intersect one of the regions of the remaining
points. We consider it an obvious fact for E (a cube or sphere) that among
the considered regions there is one G which separates a and b. We note
only that this assertion is not true for a torus and other nonsingly connected
sets. The continua A and B both contain a and b. Hence G contains

* And, hence, every continuum.
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some points of A (which are not in B) and points of B (which are not in
A, because A B=F,; UF,). Both sets A G, B[ G are closed and do not
intersect, and their sum is Ei because AU B = E. This contradicts the
connectedness of E: This contradiction shows that the hypothesis on the in-
correctness of Lemma 5 was false. Hence Lemma 5 is true.

By combining Theorem 1 and Lemmas 3 and 5, we obtain the following im-
portant property of Tf‘

Figure 23. To Lemma 6. The locally connected one-dimensional

continuum T that contains the cycle ambna can be broken

into two connected parts (B 1is the heavy curve, A =T \ B)
by means of a nonconnected intersection.

Theorem 2. The space of the components of the level sets of a continuous
function defined on a singly connected locally connected continuum is a singly
connected locally connected continuum. In particular, the space of the com-
ponents of the level sets of a function that is continuous on a cube of any

dimension and on a sphere of dimension greater than 1 is such a continuum.

D. Trees

Definition. A tree is a locally connected continuum that does not contain
homeomorphic images of a circle [3].

Since a tree i1s a locally connected continuum, any two points of it can be
connected by a closed arc, and since the tree does not contain a homeomorphism
of a circle, the arc is unique.

Lemma 6 [7]. A one-dimensional singly connected continuum is a tree.

Proof. Let us assume that such a continuum has two points a and b
[Figure 23], which can be connected by nonintersecting arcs amb and anb.

In view of the one-dimensionality of T, the point a« has a neighborhood U,

whose closure does not contain b, and whose boundary is of zero dimension.
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Let KaU be the component of the point a in this neighborhood. Because of
the local connectedness of T, K,U 1s an open set in T. Let us consider
T\\KaU. This closed set consists of the components, continua T,, so that

T = (KqU) U (UTq). In particular, among these continua there is a component
a

Ta, 3 b. Let us suppose that B=Ta, and 4 = T\B. Obviously, AU B=T,
B 1is a continuum, and A 1is a compact. We will show that A is connected.
Indeed, from the fact that T = (KqU) |J (UTa), it follows that

a

T\B= (KU (U Ta) = U ((KJDUTa). It is easy to see that each set
a.:;la.b a# @y

(Kb U T, 1s connected. This implies that T\\B. and hence A, 1s connected.

Let us show also that 4 1B contains the boundary of U. Indeed
ANB=BNT\B, i.e. ANB 1is the boundary of B = Ty and, hence, is
contained in the boundary K,U, which is contained in the boundary of U.
Each of the arcs amb and anb intersects the boundary of U, since a 1is
in the interior of U, and b 1is in its exterior. Suppose that pu and v
are the first points of intersection of these arcs with the boundary of U
starting from a. A[) B contains g and v, since it is obvious that these
points are not contained in K,U, but do lie in B, namely in the boundary
of B. From the zero-dimensionality of the boundary of U it follows that
AN B 1is not connected, because a zero-dimensional connected set cannot have
two distinct points. Thus, we have obtained a decomposition of T 1into the
sum of two continua A and B whose intersection is not connected. This
means that T 1is not a singly connected, locally connected continuum. This
contradiction to the hypothesis of the lemma proves that T cannot contain
homeomorphisms of a circle. Hence, T 1is a tree, which was to be proved.

Lemma 7. The space of the components of the level sets of a real contin-
uous function defined on a compact is at most one-dimensional.

Proof. From Lemma 2 it follows that each point ¢t € 1} has an arbitrarily
small neighborhood whose boundary is contained in the sum of two level sets of
f(t) and is, therefore, either empty or zero-dimemsional. Therefore, the
space Tf is at most one-dimensional.

It is obvious that the space T} can be zero-dimensional only in the case
that the function f 1s a constant. Eliminating this case, when Tf is a
single point, we can draw the following conclusion from Theorem 2, and from
the Lemmas 6 and 7.

Theorem 3 [4]. The space of the components of the level sets of a real
continuous function defined on a locally connected, singly connected continuum.

is a tree.
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The space of the components of the level sets of a real continuous function

defined on an n-dimensional cube or on a sphere of dimension n> 2 is a tree.

The branching index of a point of a tree 1s the number® of parts (compon-
ents) into which the tree falls after the given point is removed from the tree.
If the tree T 1is the space of the components of the level sets of a
continuous function, then the branching index of a point of the tree is related

to the structure of the component to which this point belongs.

Theorem 3% [4]. The number of parts into which a component of a level set
of a continuous function divides the region of definition of this function is
equal to the branching index of the corresponding point of the space of the
components.

Proof. Indeed, the mapping f(a) sets up a single-valued correspondence
between the region of definition of the function f and the space of the
components (Figure 19).

E. Structure of trees

We have seen that any two points of a tree can be connected by means of a
simple arc, and by just one exactly. With the aid of this property one can
obtain, following Menger [3]. a convenient representation of trees, and can
study their structure by reducing the investigation to finite trees, i.e. to
trees with a finite number of branching points. We will confine ourselves to
the consideration of trees which do not have any points with a branching index
greater than three, since we use only this type of tree in Parts I and II of
the present work.

Let E be a tree whose points have branching indices not greater than 3.
From the compact E we pick a denumerable everywhere dense set A:aj,ap,...
The pair of points a3, ao determines in Ea unique simple arc aj3,a,, which
we denote by o0y . From the remaining points ag,a4,... we pick the first
point that is not contained in oo, and we denote it by as3. There is a
unique simple arc aJs in E. We denote by p, the point nearest to ag
on the arc 0g. (This point may happen to be a3 oOr a5.) Next, we denote
the arc asp, by 04, and, setting oo=A;, AU oy = A, we see that
when i =1, the simple arc o the point p, and the finite trees Ai'

A

i1 have the following properties:
1) Ay, =800,
2) ;N A =p;,

* Or the power, or cardinal number of the set of parts, if this set is infinite.
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3, Ai contains all points a, (k< it 1).

If the finite trees Ai (i=1,...,n) are constructed, and all Ai+1 ,
Ai' o, p; G=1,...,n-1) satisfy the conditions 1), 2,), 3,), then it
is easy to construct An+1' For this purpose we select, from the points of A
that have not been included in An, the point with the smallest subscript. Let
it be G 4or In view of 3n+1) the subscript of this point is greater than n.
Hence, if we include it in An+1 we guarantee the fulfillment of condition 3.
The simple arc a1;n+2 C E that connects these points 1is uniquely determined.
Suppose that p = 1is the first point from e ,, on a,e ,, . We denote the
simple arc a ,,p, by o . Then the conditions 1) and 2 ) are satisfied.
In this manner we can determine An, 0. p, forall n>1, and the condi-
tions 1)), 2)), 3,) are all satisfied.

Each finite tree An has no point whose branching index is greater than
3. Indeed, in the opposite case there would be four simple arcs adr
(r=1,...,4) that would intersect at a. Let us denote by B_ the set of
those points of the tree that can be connected with a by means of simple
arcs that intersect the arc ad’_ (excluding, obviously, the point a). Such
sets, for different r, will intersect each other, because the simple arc
that connects two points of An is unique. The components of the set E\a
(which is open in the locally connected continuum E) are open. Hence, any
two points of such a component can be connected by a simple arc. This shows
that every set Br constitutes an entire component of E\a. Therefore, there
should be at least four such components. But this is impossible, because the
branching index of every point of the tree is less than 4.

Because of condition 31‘)' and of the fact that A 1s everywhere dense

/ S

ua,==z.

=1

3

a, ®
o The subsets =\ U A, do not divide

® n=1

S

E, because UlAn is connected, and
2 n=

G=A through the addition of some limit points
N’ to a connected set, its connectedness is

not destroyed. In particular, the points
4]

of the set E\ U An do not divide the
(l, n= 1

tree E 1into separate parts. The points

Figure 24. The heavy curve is Ay, of a tree which do not divide the tree are
A, and A, do not satisfy the

requirement 4) of Lemma 8. called ends of the tree.
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 139

Before we give the conclusions of the study of the structure of a tree, we
will change the construction of A, so that the points p, will not be ends of
A}. Suppose, for example, that og has for one of its ends a, the point Py
We join an1 to o0p, and obtain a simple arc which we denote by aé. If one
of the ends of o is Pry then we join %, to o5, and obtain the simple
arc 03 = aé(J onQ, and so on, until either the end og is not a [ point
for any m, or ad infinitum. In the first case we set og = ogew. In the
second case, let | be a limit point of the ends alg. It will not divide E,
because it it did, then | would separate a4 from some point a, € A,* and
I would then belong to one of the sets A,. By the construction of o, I
could not be a limit point of ends of A,. It follows that [ # pm for any m,
and we have obtained for this second case that age" = aql. After such a treat-
ment of both ends of 05, we pick from the arcs o, the first one which is
not contained entirely in ogew, and repeat the same treatment of its ends.
Hereby we will not touch the completed arcs; and, continuing this process, we
will obtain a new system z&ﬂe". pge", ogew, whose elements we will denote
simply by A,h Pns On. This system will have, in addition to the properties
1), 2), 3), also the property

4) pm¥pn if m#n**

We have thus proved the following lemma.

Lemma 8. Every tree E whose points have no branching index greater than

3 can be represented in the form

e o]
-
==y 4,

n-1
where the A, are finite trees composed of arcs 0, attached at the points
Pn so that:

n A, =04,

2) An+1 = An U on'

3) 0,0 Anp= py,

4) pm¥pn if m# n, and the points p, are not ends of An.

One can show that only the points Pn have a branching index greater than
two, and that Lemma 8 without the condition 4) 1s true for every tree. This
implies the next theorem.

Theorem 4 [3]. Every tree E consists of a set that is everywhere dense

Because the components of E\l are regions.

The old p’'s could coincide (Figure 24) if one connected successively two branches
to p, the end of A. The new construction prevents this, and since A has no
points with branching index greater than 3, property 4) is satisfied.
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in B and is composed of the points of an at most denumerable set of simple
arcs which do not intersect pair-wise in more than one point, and of a set con-
sisting of the ends of B (which can be everywhere
dense in E and have the power of the continuum).
The branching index of the points of B is at
most denumerable, and greater than two only in a
denumerable set of points (namely, at the points

of intersection of simple arcs indicated above).

It is obvious that the representation of the
tree in the form of Lemma 8 is not unique. The
proof of Theorem 4 will not be given here, because

this theorem is not being used in the present
work.

Let us also consider the structure of the
components of the remainder 'E\AN . This set is

open in E; its components are regions, and in
each of them any two points can be connected by

means of a simple arc, without passing outside the
component.

Figure 25. To Theorems 4,
6, 7.

Lema 9. Let E, o, p.. A (n=1,2,...)

n n
be the objects defined in Lemma 8. Then the following statements are true.

1. The boundary of every component K of the set E\AN consists of one
point, namely of the point [ (m=mn(N,K) 2 N).
©

2. Any two points of E\ Ul An lie in different components of E\AN
n=

for N sufficiently large.

Proof. 1. Let us suppose that this boundary has two distinct points a,
b € Anﬂ E (Figure 26, 1). The points « and b have nonintersecting
connected neighborhoods because = is locally connected. Suppose that
a' € u, 1k 1is a point of the first of these neighborhoods u,, and
b' € up ( K one of the second neighborhood. The points a' and b’ can be
connected by means of a simple arc which lies entirely in K, while the points
a and b belong to AN as points of the boundary of K and can, therefore,
be connected by a simple arc ab in AN' The arcs ab and ao'b’ do not
intersect. From the fact that it is possible to connect o« and o' by a
simple arc in u,, and b and b’ by a simple arc in uy, Wwe conclude that
in E there is a curve aa’b’ba that contains a homeomorph of the circle.
Thus, the bougdary of K must be a single point.

Since U o, is everywhere dense in B (by Lemma 8), there exists an
n=0
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CONTINUOUS FUNCTIONS OF THREE VARIABLES 141

arc o, that intersects the region K. Among such arcs, let o, be the one
with least subscript. Obviously, = > N. Since A”d,1 contains this arc

(condition 2), Lemma 8), and since Am does not intersect K, o intersects
the boundary of K. But this boundary is a single point that belongs to AN

and, hence, to Am . Therefore (condition 3),Lemma 8) the truth of the first
statement has been established.

Figure 26. To Lemma 9. The heavy line is
the tree AN’

1. If the boundary of a component of the
complement of AN had two distinct

points a« and b, then E would con-
tain a homeomorph of a circle.

2. For sufficiently large N, AN will c
¢ o]

separate any two points a, b € B\ U A
n=1 d 2

[+ ]
2. Suppose that a« and b are two points of 'E\ U An. acd and bed

n=1

are simple arcs connecting « and b with the point d € A,, ¢ is the last
point away from d that lies on both these arcs (Figure 26, 2). This point can
coincide with only one of the points a, b, d, and we can, therefore,

assume that a # c. In this case ¢ separates a from d, for if a and d
should belong to the same component of the open set E\c. one would be able to
connect them by a simple arc not passing through ¢, and E would contain a
homeomorph of the circle, because this arc would not coincide with the simple

arc acb. Therefore, ¢ € AN for some N because it can be seen from Lemma
[e 0]

8 that the points =\ U An do not divide E . This AN separates a
n=1

from b, for the points a« and b can be connected by a simple arc ach,
and hence by no other one. This establishes Lemma 9.

F. Realization of trees

All trees can be imbedded homeomorphically in a plane. We construct a
planar set that is homeomorphic to a given tree = whose points have branching
indices not greater than three. In this we follow Menger [3]
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[ee]

Let E = lleSn be the representation given in Lemma 8. We will select
n=

in the plane a straight line segment and an open triangle T, containing s0o-
Let us map 0o on so homeomorphically with the aid of the homeomorphism fa.
Then there will be on sy a point p, which is the image of p1. We can
construct an open triangle T,, of diameter less than d; (this positive
number will be defined later) with vertex at p,, which does not intersect

Dy = so, except at the point p,, and whose closure lies in T,.

We select within T; a point and connect it with p,. Then we obtain a
segment s;. We map o, homeomorphically on s,. We have constructed a
homeomorphism f, of A, on Dy = sgU s4.

Suppose that we have constructed on R? complexes of segments (segment-
like complexes) Di from the segments s; with the aid of the triangles Ti

and the points p,, and also let f ., be the homeomorphism Ai+1' on D,
where i, j=1,2,..., n -1 (see Figure 9) and
1;) Di= so,

2) Dy, =D, Us,
2

4 BNTIN s =py.

5) if i>j, T,NT,

T.

13

J
61.) the diameter is less than di > 0,

= 0 or else 7.CT.,
l J

7,) f; maps A, , the same way as f, , (i> 1).

Let the arbitrary positive number dn be given. On An there exists, in
general, a point P, € g, (k €< n) (if there is no such point, then A" is
the resulting tree). The homeomorphism fn determines, on Dn, a point
P, € Spo the image of Ppr It is easy to select in the triangle Tk a small,
open triangle Tn so that the following conditions hold:

1) one of this triangle’s vertices is P

2) T, CT

3) T, does not intersect s,

4) Tn does not intersect ?i (i < n) if Tk does not lie in Ti'

5) the diameter Tn is smaller than d .

Having picked in Tn a point, and connected it to p , we obtain a seg-
ment which we denote by L Obviously, by mapping o, homeomorphically on
a+y On A, so that the
conditions 1;) to 7i) will be satisfied. We have thus proved the truth of the
following lemma.

s, We determine the required homeomorphism f
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@

Lemma 10. Let E= UlAn be the representation given in Lemma 8. Let d,
n=

be a positive number. In the plane R? one can construct (with the aid of the

segments s, the points pp. and the triangles T,) complexes D, and

homeomorphisms f An“Dn such that the conditions 1)-7) are satisfied

for any n= 2, 3,....

Now, let B, A , Doy 0, s Ppe P Tpw f, (n=1,2,...) be such a
system of objects, and suppose that dn >0, dn -0 as n 0.

®
Lemma 11. In the notation given above, X = U D, is a tree that is
n=1

homeomorphic to E ., and the homeomorphism can be constructed so that it
coincides with f =~ on An if n=12,....
Proof. We define a sequence of mappings fr'l (n=1,2...) of B in X,

1
namely on D, so that on A f,

o

coincides with f . We obtain f, on E
as fn((pn(vf)): the product of a continuous mapping @  of all of E on AL
and f which transfers An on Dn homeomorphically. Such a mapping will
coincide with f_  on An if @  keeps every point of An unchanged. We have,
therefore, defined a mapping @, on A so that an(f) =& (&€ A). Every
component K C E\ An has a unique boundary point Pn (m = m(K,n) > n) in
accordance with assertion 1 of Lemma 9. Let us set @ (&) = Pk, n) (€ € K.
Now, (pn((f) is everywhere defined; we will show that this mapping is continuous.
The point & € 'E\ An has a neighborhood K which is transformed into the same
point as &. We still have to prove the continuity at the points of An . We
will point out a neighborhood for such a point &, which will be transformed
into an arbitrarily previously given neighborhooa ug . A connected neighbor-
hood v C ug of the point & will do. (This neighborhood exists because of
the local connectedness of &=.) The points 7 of this neighborhood of 3
will go into its interior by the transformation cpn. Indeed, this is obvious
for the points n € A . Let 7€ E\An. Then 7 will be contained in
some component K of the set EN\ An. Let p = p(K,n), be the boundary of
K. Firstly, p € v, because the points 7 and & of the region v can be
connected by a simple arc lying in v. On this arc one can find a point of
the boundary K because the initial point 7 of this arc belongs to K
while the end & does not belong to K; this is the point p (Lemma 9).
Secondly, the image of p under the mapping @  1is p by the definition of
CPn . The continuity of <Dn has thus been proved, and it implies the con-
tinuity of f.(£) = f,@.(EN.

The sequence of mappings f‘; (n=1,2,...) converges uniformly on .

Let a positive € be given. From the fact that dn —+ 0, 1t follows that
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for n > N(E) dn < €. We will show that at every point f € 'E, and for any
n> NE®), p(f (), f)\'{(e)(f)) < €. This follows from the fact that the image
of ¢ under the mapping f,'1 lies in the triangle 7’" (m > N(E)), when

P, € DN(E)' or on D in accordance with the conditions 1) to 7) of Lemma 10.

J
ke

l—\
l—7
|~
L —7
<\

Figure 27. To Lemma 11. The heavy line tree
Dg 1s homeomorphic to Ag that separates

& and 7. Some of the triangles T,

(m > 6) have been drawn, for which pg € Dag.
Among them T(é.M) and T('r;.M) M > 6)

have been shaded. They contain the images of
¢ and 7 under all mappings f, (n> M).

DL ﬂ/g D
~

Thus, f = lim f"1 is a continuous mapping. Obviously, it coincides with
n-o

f’1 on An. We shall prove that to distinct points of & there correspond
o4
distinct images in X. This is obvious for the points &e U A, . The
® n=1
points {" and n of E\ Ul An lie, for sufficiently large N, in
n:
different components, K,, K, of the complement of AN (Lemma 9). From this,
and from the definition of f' with the aid of properties 3) and 4) of
n
Lemma 8, it follows that from some M on (M > N) the images &, 7 under
!
fm (m> M) 1lie in different triangles T(f.M)' T(n.M)' whose closures inter-
sect DN (Figure 27). From the condition 5) of Lemma 10 we now see that
T<§’M)ﬂ T("fl.M) = 0, which shows thatm O # fap. Inmexactly the same way,
one can consider the case when &€ U An, n € E\ U1 An . The image of
n=1 n=
the entire tree B under the mapping f contains all of Dn, and hence it
is X . Therefore, f 1is a reciprocal one-to-one continuous mapping of the
compact £ on X, 1i.e. it is a homeomorphism. This implies that X is a
tree. Lemma 11 has thus been established.

The process used in the proofs of Lemmas 10 and 11 for the construction of
the tree X, and of the mapping f in accord with the conditions 1) to 4)
of Lemma 8, for E, A, o,
the method of attaching branches. Our result can then be formulated as follows.

p, (n=12,...) and d 0, can be called
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Theorem 5 [3]. Let there be given a tree E vhose points have no branching
indices greater than three; then one can construct in the plane, by the method of
attaching branches, a tree X, homeomorphic to &, and a homeomorphism f
between = and X.

The next more general theorem can be proved in an analogous way.

Theorem 6 [3]. Every tree B has a homeomorphic image in the plane.

A set M 1s sald to be universal for a class Aa if each set A, has a
homeomorphic image in M.

Theorem 7 [3]. If in the representation of Theorem 4 the set of points of
intersection of the simple arcs is everywhere dense, and if the branching
index of E at every one of its points is n (respectively, denumerably
infinite), then the tree is universal for the class of all trees whose branching
index does not exceed n (respectively, for all trees). The trees which are
described above do actually exist.

Theorems 6 and 7 are not used in this work. The reader can provide the
proofs himself, or he can find them in the work [3]. We note without proof that
the space of the components of the level sets of a continuous function defined
on a square can be a universal tree. An example (for the case n = 3) is the
function F(x,y) constructed in Part I (§ 2) of this work.

Concepts and theorems of point-set topology used without further comment

1. Concepts ([6], Chapters VII and vIII; [7); [8]; [9]).

Metric space. Topological space. Open and closed sets, boundary. Continuous
mapping and homeomorphism. Everywhere dense set. Connectedness.

A compact is a metric space in which one can select from every infinite
sequence a convergent subsequence. A continuum is a connected compact. The
component of a point of a set (or simply a component of a set) is the largest
connected subset that contains the given point.

A set is locally connected if every neighborhood* of any point contains a
subneighborhood of this point.

A set 1s zero-dimensional if in any neighborhood of each of its points
there is a neighborhood of the same point whose boundary is empty.

A set is one-dimensional if in any neighborhood of each of its points
there lies a subneighborhood of the same point whose boundary is zero-

dimensional.

* Here and in the sequel, a neighborhood of a point is any open set containing

this point.
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A region is an open connected set. A simple arc is a set that is homeomorphic
to a segment of a straight line. The set A separates B from C if every
continuum that contains B and C contains A. If A separates b € BC M
from ¢ € CC M, then one says that A divides M.

The point x belongs to the upper topological limit IEAQ of the sets
Mi (¢t =1,2,...) 1if in every one of its neighborhoods there lie points of an
infinite number of the sets Mi‘ The point belongs to the lower topological
limit 1t Mi if in every one of its neighborhoods there are points of all but
a finite number of the sets Mi‘

2. Theorems.

A metric space which is a continuous image of a compact is a compact, of a
continuum is a continuum, of a locally connected continuum is a locally con-
nected continuum [6].

A reciprocal one-to-one continuous mapping of a compact is a homeomorphism
[6]. A continuous mapping of a compact is uniformly continuous.

The components of a compact are continua; the components of an open set in
a connected space are regions [5].

In a region of a locally connected continuum any two points can be connected
by means of a closed arc ([3]; [7]Z [9]).

The intersection of a decreasing sequence of continua F, 2 Fo D Fz D ..
is a continuum [6] .

If the sets BCM and CCM lie in different components of M\\A.
then A separates B from C. If the closed set A of a locally connected
continuum M separates B from C, then B and C 1lie in different
components of M\\A.

A set that consists of two noncoinciding simple arcs with common ends
contains a simple closed arc (homeomorph of a circle). The sum of four simple
arcs aa’, a'b’, b'b, ba have the same property if a'b’ [l ba = 0 and
aa' (1 b6’ = 0.

In a compact, the upper topological limit of a sequence of connected sets
is connected, provided the lower topological limit is not empty [6].

A connected zero-dimensional set consists of ome point [8].

A uniformly continuous function defined on a set that is everywhere dense
in a compact, can be extended to a function over the entire compact. This
extension is unique.

A reciprocal one-to-one, and similar (order preserving) correspondence
between two sets s, and s, Where s, 1s a denumerable everywhere dense

subset of a segment I, and s, 1s a denumerable everywhere dense subset of a
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segment I,, can be extended to a homeomorphism between the segments. Such an
extension is unique.

(1]

(2]

(4]

[s]

6]

(8]

[9]
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