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Abstract This paper deals with the design and the

implementation of an image recognition system based on

FPGA devices. It explores an n-tuple methodology using

node ‘grouping’ and the possible advantages offered by this

little-known technique. The paper is based on the imple-

mentation of this concept by an FPGA device. A novel

approach to the organization of the neural networks data in

the n-tuple memory is introduced. The system was tested

on a real-world recognition task—the recognition of road

signs. The test results are presented and discussed. It is

concluded that the designed system may be a powerful part

of more complex equipment for the solution of many rec-

ognition issues.

Keywords Image recognition � FPGA � Neural network �
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1 Introduction

At present, the requirements for electronic systems to

interact with humans are becoming more and more com-

plex. A growing demand for partial or fully autonomous

systems suggests that this is an area in which neural net-

works are applicable. Often, one of the main tasks of neural

networks is to recognize the object within the neighbour-

hood and to opt for the best action based upon image

understanding. This objective is usually very difficult and

time consuming. For this reason, specialised HW systems

are designed. Hence, the main topic of this presented work

is the implementation of n-tuple neural networks on an

FPGA. The n-tuple methodology was chosen because, in

hardware, it is very fast and is comparable with other

conventional methods in performance. The detailed com-

parison in different applications is published by Morciniec

and Rohwer [1].

The original n-tuple methodology of Bledsoe and

Browning [2] in 1959 was not realised until later that it

could be implemented by means of ‘deterministic’ logic

nodes. Hence this may be considered to be one of the

oldest pattern recognition techniques based on logic

node neural networks. This method was later popular-

ised by Aleksander [3, 4] and realised in HW [5–7]. In

the early 1990s, several SW simulations were created,

which led to the design of an improved SW system [8].

It included an image pre-processing stage [9] and image

recognition stage [10]. The system supported the rec-

ognition of binary, greyscale, and colour images. The

novel derivative for this colour image recognition was

published in [11, 12].

The n-tuple methodology was originated by Bledsoe and

Browning in 1959 for the purpose of recognising printed

characters and subsequently hand-written characters.

Nevertheless, the use of the n-tuple method is not limited

only to this purpose. In the past, systems utilising n-tuple

nodes were used in many different applications, e.g. face

recognition [13], texture recognition [14], control and

automation [15, 16], or in medicine [17].
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2 Background

2.1 N-tuple methodology

In principle, the n-tuple technique is equivalent to that of

using Single Layer Networks (SLNs) consisting of ‘deter-

ministic’ logic nodes. The term ‘deterministic logic nodes’

was originally used by Aleksander and Stonham over

30 years ago. It simply means that an n-tuple node can

perform all 2 to the power of ‘n’ logic functions and that,

after training, it can only respond to those training patterns

and, therefore, it is ‘deterministic’. The logic nodes of these

SLNs are realised by Random Access Memory (RAM).

Sometimes it is described as RAM-based networks [18] in

the literature. Each logic node consists of a RAM with an

n-bit address space (see Fig. 1). The following paragraphs

describe the n-tuple methodology in a simple way. An exact

mathematical description of the n-tuple recognition method

can be found in many articles, e.g. [13, 19].

The pattern which is applied to the address inputs consists

of ‘n’ sample points. These points are taken pseudo-ran-

domly from the input data. The pattern applied to the input is

termed an ‘‘n-tuple’’. All the logic nodes have to be initial-

ised (to zero state) before the training phase. During training,

each RAM stores a logic ‘1’ to the position given by relevant

sampled n-tuple data words. The recognition phase is based

on reading the stored data from the address given by n-tuple

data words which are sampled from the input image by the

same pseudo-random sequence. During recognition, the

RAM operates as a look-up table without requiring any

arithmetic or logical operations. Each SLN (or ‘‘discrimi-

nator’’) is composed of n-tuple nodes (the number of nodes is

defined by ‘k’) and the response is given by the summation

of all logic nodes in the layer. The bit width of response

depends on the number of nodes (see Fig. 1).

In principle, ‘‘n-tuple’’ classifier systems operate in a

multi-discriminator configuration (see Fig. 2). In the

training mode, each discriminator is trained on each class

of patterns. The class is dedicated to one object and is

formed by the set of similar images of this object (e.g. with

different rotation, scale, noise). The number of discrimi-

nators is equal to the number of classes which are defined

for future classification. The classification mode can be

started when all discriminators have been trained. Each

discriminator gives a response to an unknown input image.

The input image is assigned to the class which corresponds

to the discriminator with the highest response.

The discriminators’ responses are usually represented

either numerically (by the number of pass logic nodes or

the percentage value) or as a bar graph display. In general,

each bar in the bar graph display represents the degree of

compliance within a given class. Usually, the responses are

also displayed in the training mode. The monitoring of

these responses gives an indication of the amount of

training required and assists in determining possible over-

training or under-training of the neural networks.

2.2 Network with grouped n-tuple nodes

It is possible to utilise grouping methods in these types of

SLNs as in [8, 10]. The effect of grouping is to increase the

differences among responses to the discriminator (for the

given class) and other discriminators. The principle of this

method is based on creating groups of n-tuple nodes in

each SLN. Each group consists of the given number of

nodes, a summation unit, and a threshold unit (see Fig. 3).

The final response of each discriminator then constitutes

the sum of the groups’ responses.

2.3 Utilisation and memory requirements

Generally, an SLN composed of n-tuple nodes or grouped

n-tuple nodes can be used for the recognition of binary

images. In the case of greyscale images, it is necessary to

use a suitable method for converting them into binary

Fig. 1 Single layer network architecture Fig. 2 Multi-discriminator configuration
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images. In order to perform colour recognition, the net-

works are composed of ‘‘trixel’’ n-tuple nodes (TNT nodes)

as shown in [8, 10].

The memory requirements are given by the following

formula:

Mr ¼ Nd � 2n � Np

n
ðbits); ð1Þ

where Nd is the number of discriminators, Np the number of

selected pixels, n the type of tuple (n = 8 ) 8-tuple), and

Mr the memory requirements in bits

The variable Np has to be chosen in accordance with the

size of the tuple node and the group size.

3 HW implementation

3.1 General description

This recognition system is designed as a System on the

Programmable Chip (SoPC) architecture based on an

FPGA device. Several Qsys [20] components form the

system (Fig. 4). The Qsys interconnect ensures connec-

tivity and mutual communication. The Camera Unit toge-

ther with the Frame Buffer obtains image data from the

camera module TRDB-D5M (5 Mega Pixel Digital Camera

Package from Terasic Corp.). It also provides the conver-

sion of the raw image data to RGB (red, green, blue) colour

model and BW (black/white) format. The Frame Buffer

selects and stores data needed for image recognition. In

addition, the component may send full image data to other

components in the system. The Training Unit and Recog-

nition Unit are the next main (in the line with the Camera

Unit) components of the system; they are discussed later.

Further, the system contains two memory controllers—the

SRAM and SDRAM controllers. The external SRAM

memory (2 MB–1 M 9 16 bit) is connected to the SRAM

Controller and is used for storage of the neural networks

data. The latter controller—the SDRAM Controller—

manages data transfers to the 64-MB (32 9 16 bit)

SDRAM. This memory is used for video storage in this

project. Data from this memory can be displayed on the PC

monitor by means of the VGA Controller. The VGA

Controller works with a resolution of 800 9 600 at 75

frames per second (fps). The remaining three components

control the training and recognition process and commu-

nicate with the supervisory system. The core of the

supervisory software is implemented in the softcore CPU

NIOSII; this 32-bit processor controls the operations of all

the other components. This processor also communicates

with the high-level system (PC) via a UART (implemented

by the UART Controller). The on-chip memory serves as

the program and operational memory for the NIOSII. The

special user application on the PC controls the whole image

recognition process via the UART and NIOSII processor.

3.2 Camera unit with frame buffer

This is the key component of the system. It obtains data

from the external camera module and provides two outputs

which are the data stream for the video memory and image

data for n-tuple processing in the appropriate format. The

block diagram of this component is shown in the Fig. 5.

This component is connected to the camera module TRDB-

D5M via the Avalon Conduit Interface. It captures image

data in RAW format (resolution 800 9 600) and can con-

vert this data to the following formats: RGB 16 bit, Grey-

scale and BW. The selected format depends on the setting of

the component by means of the Avalon Slave Port.

The conversion to a BW image uses a fixed threshold

that is set via the Avalon Slave Port or an automatic

threshold detection. The final RGB vectors enter the FIFO

memory and can be sent to the video memory by means of

the Avalon Master Port. This function makes it possible to

observe the captured image.

The remaining parts of the component create an appro-

priate data format for subsequent processing by the Training

and Recognition Units. The authors of this project designed

and implemented the new approach of image data buffering.

Compared with the conventional architecture [21], this

approach does not need a buffer for full image frame. They

usually store a full frame to memory and then pixels for

processing are selected; afterwards, these pixels are ran-

domly combined to form the n-tuples. The main disadvan-

tage of these techniques is higher memory requirements.

The Pixel Selector selects pixels for the next processing

stage. The full image contains 480,000 (800 9 600) pixels

of which 5 % are selected (i.e. 24,000 pixels). The pixel

Fig. 3 Principle of grouping
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data are fed into the Pixel FIFO, and the Pixel Selector

generates a ‘‘write enable’’ signal which allows writing of

pixels into the FIFO memory. The image frame is divided

into 15 segments in which pixels are selected with variable

intensity. The pixels more closely placed to the centre of

the frame have preference over those near the borders. The

Selector detects the start of the frame and then selects

24,000 pixels from each frame. The optional module for

performing image data processing can be inserted between

the RAW to RGB Convertor and Pixel FIFO.

After selection of the pixels, it is necessary to assemble

them in a pseudo-random manner before applying them to

the n-tuple memory nodes. In this case, an 8-tuple is used.

The random composition is made by means of an embed-

ded memory which is configured as a two-port RAM

memory with a capacity of 24,000 bits. The write port

consists of a 1-bit data input and a 15-bit address. The read

port consists of a 32-bit data output with a 10-bit address

input. The component generates a random write address; it

means that pixels are stored in random locations within the

Fig. 4 Block diagram of the system

Fig. 5 Camera unit with frame buffer
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memory. The correct write address and control signals are

created by the Pseudo-random address generator (Fig. 6).

A simple 15-bit Linear Feedback Shift Register (LFSR)

with a minimal polynomial of x15 ? x14 ? 1 is used. This

pseudo-random generator generates random numbers in the

range of 0–32,766; however, correct write addresses are in

the range of 0–23,999. For this reason, it is necessary to

check the value of the address vector. The LFSR also

implements a digital comparator which flags (by the signal

address valid) whether the generated address vector is

valid. Further, the generator contains a ‘‘gen. enable’’

signal which enables/disables its function and thereby

issues the next random number (address). The writing into

memory is allowed if several conditions are satisfied. If the

Pixel Fifo is not empty, the Address generator is activated

and the generated address vector is correct, the memory

write enable signal will be set to high in the next clock

cycle (via the D flip-flop). Also, the generated address

vector is registered by means of a 15-bit register. If the

memory write enable signal is high, the pixel of the image

will be stored at a random position in the memory. If the

‘‘gen. enable’’ signal is high then the next random address

will be released in the next clock cycle and, if the generated

address vector is not correct or if the pixel is not stored in

memory. In other words, this signal is high if the next

address vector is needed; either the current value of the

vector is not accepted or the new address vector for another

memory write is demanded. This approach makes it pos-

sible to use a simple pseudo-random generator imple-

mented as a LFSR. If the generator gives incorrect values,

the pixel data are held in the Pixel Fifo memory. It is

necessary to note that the implemented logic works with a

110-MHz clock in this project. It is a higher frequency than

50 MHz which is the maximum pixel rate. It must also be

taken into account that only 5 % of pixels are processed

this way; thus the delays caused by waiting for the correct

address vector are irrelevant. The pixels are stored in

memory and form 3,000 8-tuple nodes. As mentioned

earlier, the read data memory port is 32-bit wide which

means 750 double-words of data. This configuration of

memory was chosen for more effective data transfers inside

the system; four 8-tuples can be read within one read

transfer operation. The read port of the memory is con-

nected to the Qsys Interconnect via the Avalon Slave Port.

It implements an auto-increment read pointer in which the

whole memory is mapped as one 32-bit word in the

memory space and a new read address is released auto-

matically. This function simplifies the address calculation

to other components in the system; the main benefit of this

component is that a buffer for a full image is not needed. It

represents a significant reduction of memory requirements.

The amount of reduction is dependent on the coverage of

an input image. In our case, the reduction of memory

requirements is approximately 95 % within a 5 % cover-

age. Another advantage is lower time consumption because

the random selection and forming of image pixels are

performed already during data storing.

3.3 Training unit

The purpose of this component is to train neural networks

consisting of 8-tuple nodes (each node composed of 8

image pixels). The component reads 8-tuples from the

embedded memory in the Camera Unit that define the

memory position (for neural network data) where logic

high will be stored. Other memory positions remain

unchanged. Before training the first image frame, it is

necessary to clear the neural networks memory to ensure

logic low value on all positions. In this project, neural

network data are stored in an external SRAM memory with

a 16-bit memory data bus. The memory requirements for

one discriminator are 768,000 (256 9 3,000) bits, where

3,000 is the number of 8-tuple nodes each of which

requires 256 bits. On account of a more effective access to

the memory, the following structure of the neural network

data in the memory was designed—see Table 1: The data

for a particular discriminator (class) are not stored in the

continuous memory area but the ‘‘column structure’’. Data

of particular discriminators are organized as columns

within the memory area. For example: data for the dis-

criminator (class) 1 is stored in the LSBs of the memory

words, class 2 in bits with index 1, and so on. In Table 1, it

is shown that 512 (0x200) bytes are needed for keeping one

n-tuple of 16 discriminators. For that reason, the memory

offset for the next n-tuple is always 0x200. Because of this

designed memory structure, the formula for the memory

requirements (1) has to be modified in the following way:

Mr ¼
fmo �Wb � 2n � Np

n
ðbits); ð2Þ

Fig. 6 Pseudorandom address generator
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where Wb width of memory data bus, Np the number of

selected pixels, n size of tuple (n = 8 ) 8-tuple), Mr

memory requirements in bits and fmo memory organization

factor

Memory organization factor is defined as

min fmo 2 Njfmo �
Nd

Wb

� �
; ð3Þ

where Wb is width of memory data bus and Nd the number

of discriminators.

From this formula, it is obvious that the memory is fully

and effectively utilised if the number of discriminators is

an integral multiple of the memory data bus width.

The authors of this project assumed the use of 16 classes;

this means that 12.288 Mbit of memory are needed. The

process of training is as follows: at first, 8-tuples are read

(4 9 8-tuples in one 32-bit vector) from the embedded

memory. The word on the position defined by the value of

the 8-tuple and its order is read from the SRAM memory. In

this word, the appropriate bit (determined by the chosen

class) is set to high. Afterwards, the modified word is

written back on its position. Training is complete once all

8-tuples (in this case 3,000 ) 750 vectors) are read. In

addition, the component can determine the networks’

responses to the training data. This response may be useful

for training process control.

The component is controlled by means of control reg-

isters via the Avalon MM interface. By these registers, the

user can start training and setup values (grouping and

group threshold) for response calculations.

3.4 Recognition unit

This component determines the responses of the neural

networks based on the currently unknown images. As well

as the Training Unit, it reads n-tuple data from the

embedded memory. The data are loaded into a small FIFO

memory; this means that the delay caused by their reading

occurs only at the beginning of the recognition process.

The rest of the process is determined only with the latency

of the SRAM (memory for neural networks data). The

component’s Avalon ports are able to work with any type

of memory (an appropriate controller is needed). Respon-

ses of (up to) 16 networks may be calculated in parallel

because of the designed data structure of the memory

(introduced in previous chapter). The word from the

SRAM memory represents neural network data for 16

discriminators (depends on the width of the memory bus).

Hence, only one read operation is required for each n-tuple.

From this, the time needed for obtaining the responses of

Wb (width of memory data bus in bits) classes can be

derived. The requirements Tr recalculated to this number of

discriminators is given by the following formula:

Tr ¼
ðMl � NnÞ þ 8

fs
ðlsÞ; ð4Þ

where Ml is latency of reading from memory (in clock

cycles), Nn the number of n-tuples and fs the frequency of

system clock (in MHz). Note to formula: constant 8 rep-

resents latency of component’s pipeline.

It follows that the time needed for evaluation of one

discriminator is the same as the time for the evaluation of

Wb discriminators. For that reason, the real-time con-

sumption related to one discriminator depends also on a

relationship between the number of discriminators and the

width of the memory data bus.

The final computed responses are obtainable via the

component’s response registers which are mapped by

means of the Avalon Memory Mapped Interface. The

grouping is supported by the component as well. The

component contains a few control registers for the com-

ponent’s setting. The desired group size and group

threshold can be set; the permitted range is from 1 (without

grouping) up to 15. However, it is necessary to take into

account that the group size must be a divisor of the total

number of used n-tuples (in given class). In this project,

3,000 8-tuples are used and this means that grouping fac-

tors of 7, 9, 11, 13 and 14 are not utilisable. The value of

the grouping factor has no impact on the recognition speed.

3.5 System control

As mentioned in section HW implementation—General

description, the whole system is controlled by the softcore

CPU NIOSII. The firmware only controls the operation of

the components and ensures communication with the

supervisory system (the PC in this case) via the Avalon MM

Interface. However, all sophisticated operations related to

image processing and n-tuple operations are performed by

Table 1 Memory structure

Word

index

Memory address Class

0x000000 0x000200 0x000400 … 0x176E00

0 (LSB) 1st tuple 2nd tuple 3rd tuple … 3,000th

tuple

1

1 1st tuple 2nd tuple 3rd tuple … 3,000th

tuple

2

2 1st tuple 2nd tuple 3rd tuple … 3,000th

tuple

3

3 1st tuple 2nd tuple 3rd tuple … 3,000th

tuple

4

… 1st tuple 2nd tuple 3rd tuple … 3,000th

tuple

…

15 (MSB) 1st tuple 2nd tuple 3rd tuple … 3,000th

tuple

16
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the above-introduced components. This means that no

CPU’s computing time is needed for these operations. The

utilisation of a softcore processor is very profitable and a

modern way to control the components in the FPGA devi-

ces. It enables simpler debugging and testing of the system.

The processor also can perform more complex control

algorithms which can be difficult for a user. This was

exploited to control the training process when training on

real images from the camera (not during the test images

training). An algorithm was tested so that the processor

could terminate the training process if defined conditions

were satisfied. The use of two termination conditions was

tested. The first condition limited the maximum number of

frames. Second, the training can be terminated if a defined

number of successive frames yield responses which are

equal or higher to the defined response value. The param-

eters of this algorithm may be set by the supervisory system.

Of course, this algorithm might be implemented by the

supervisory system as well. The recognition process is very

simple and can be described in a few steps:

1. The supervisory system sends command requiring

recognition. It also transfers grouping and group

threshold parameters.

2. The CPU sends a command to the Camera Unit to

capture a frame from the camera and process it to a

suitable form for the recognition process.

3. The CPU sets the grouping parameters and starts the

recognition process by setting the start bit in the

control register of the Recognition Unit.

4. The CPU detects activity of the Recognition Unit by

means of its status register. If the recognition process

is finished, the CPU reads the responses and sends

them to the superior system. Afterwards, the process

can continue by step 1 or be finished.

The process of training is very similar; instead of the

Recognition Unit, the Training Unit is used.

4 Experimental results

In this section, a real-world recognition task was used to

test the designed HW system. The performed tests had two

main goals. The first objective was to verify the HW sys-

tem. The second objective was to present the possibilities

of system utilisation in a real recognition task and to show

the influence of different system settings.

4.1 Description of recognition task

As mentioned above, a real-world recognition task was

chosen. This task was road signs recognition which is a

really difficult problem. The presented system should be a

powerful part of a more complex system for the solution of

this problem. The main task of the recognition system was

to classify the images of signs with a slightly different

position, rotation and size. So the supervisory system

should include processing for the sign detection and pro-

cessing for the normalization of position, rotation and size.

4.2 Database of input images

For the presented tests, artificially generated images were

used for testing due to the fact that one of the tasks was to

verify the implementation of neural networks in HW. For

that reason, a program named SourceImageGen for gen-

erating the datasets of images with different positions and

rotation was created. The test database included 11 clas-

ses—road signs (see Fig. 7). The resolution of source

images was 800 9 600 pixels.

There were six datasets for each class which differed in

the position of the sign and its angle of rotation. These

datasets were generated by SourceImageGen and the

parameters for each dataset are shown in Table 2. The

program output are the binary files with pseudo-randomly

mapped and thresholded pixels, which are used for recog-

nition from the image of a road sign. This feature signifi-

cantly reduces the amount of data which have to be

transferred to the HW system. The program performs the

same pseudo-random selection and forms the data in the

same way as in HW. That ensures the possibility to upload

binary data directly to the HW system memory (2-port

RAM Embedded Memory in Camera Unit—see Fig. 5)

through the JTAG interface.

4.3 Tests and results

The tests can be divided into three groups. The first group

includes the datasets 1 and 2 where the angle of rotation

Fig. 7 Road sign classes
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was varied. The second group works with datasets 3 and 4

where the position was varied. The last group used the

datasets 5 and 6 where both variations were recombined.

Table 2 shows that the differences between the two data-

sets in the same group were small. The reason for this was

the possibility to use different datasets in the training and

classification modes. A detailed overview of the tests is

shown in Table 3. Each test included several measurements

with different neural network settings—G1T1 (Group

size 1, group threshold 1), G4T1, G4T2, G4T3, G4T4,

G8T8, G15T13.

Tests 1, 3 and 5 were performed to verify the neural

network implementation by the FPGA device. According

to the theoretical assumptions, all discriminators must have

a 100 % response for given classes in the cases where the

same datasets are utilised in both modes. This verification

was successful for all classes and tests.

Test 6 was chosen for the illustration of results which

are reached by this recognition system. For the illustration

of the obtained results, a bar graph is presented in Fig. 8. It

shows the maximum and minimum levels of responses in

the case that input images belong to the class 4 (speed

limit—50) and G8T8 neural network settings. The figure

indicates the similarity between Class 4 and Class 5 (speed

limit—90) but the difference between the minimum

response of the Class 4 discriminator and the maximum

response of the Class 5 discriminator is still sufficient for

reliable recognition.

The bar graph in Fig. 9 shows the levels of responses for

different neural network settings. Each column displays the

range of discriminator’s responses to correct class (full fill),

to other classes (hatched fill) and the differences (dotted

fill). By comparing of each column, it is possible to observe

a benefit of grouping method with a higher group threshold

against grouping with a too low group threshold or without

grouping (G1T1). On the other hand, too high group

threshold in combination with a higher group size can

cause significant reduction of responses to correct class. It

means that the differences between correct and other

classes can be decreased.

The second bar graph (Fig. 10) shows the differences

between responses to correct and other classes for different

neural network settings (see legend of graph) and for all

tests. The bar graph clearly shows that the differences are

really high for appropriate neural network settings and,

therefore, the designed system could be successfully used

for road sign recognition system in the future.

It is impossible to say generally which network setting is

the best or acceptable. The suitable network parameters are

dependent on many factors like target application, quality

of image acquisition (noise, clutter, etc.), similarity of

classes and others.

4.4 System performance

This part specifies the time consumption and the memory

requirements of the recognition process. Initially, the

parameters of HW system are summarised. Eleven test

classes were used. Each image consisted of 480,000 pixels,

matching the resolution of 800 9 600 pixels. For the rec-

ognition process, 5 % of pixels were selected; this repre-

sents 24,000 pixels. If the formula (1) is applied to these

values, the memory requirement is 8.448 Mb. This value is

the minimum needed for representation of the discrimina-

tors. However, because of the exploited memory organi-

zation introduced in the chapter HW Implementation, the

formula (2) must be used. By this formula, 12.288 Mb of

memory is required. This value is equal to that using 16

discriminators. The difference between these two values

represents an overhead of the memory organization. It can

seem to be markedly disadvantageous. However, it is only

a trade-off between the memory requirements and the time

required to obtain the responses. If a large number of dis-

criminators are assumed, then this overhead is marginal.

The SRAM memory with a 16-bit data bus and a reading

latency of three matched clock cycles was used. By using

formula (4), the response times for the discriminators can

be calculated; this is 81.89 ls from 1 up to 16 discrimi-

nators. If 11 discriminators are used, then the time

requirement for one discriminator is longer and this means

that a time of 81.89 ls is required to obtain all 11

Table 2 Datasets parameters

Dataset Parameters

Position Rotation Number of variation

1 Constant ±58, step 18 11

2 Constant ±4.58, step 18 10

3 ±2 px, step 1 px Constant 25

4 ±3 px, step 2 px Constant 16

5 ±1 px, step 1 px ±58, step 18 99

6 ± 1px, step 1 px ±4.58, step 18 90

Table 3 Summary of tests

Test Used datasets

Training mode Classification mode

1 Dataset 1 Dataset 1

2 Dataset 1 Dataset 2

3 Dataset 3 Dataset 3

4 Dataset 3 Dataset 4

5 Dataset 5 Dataset 5

6 Dataset 5 Dataset 6
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responses. This time does not include the time needed to

control the components. In theory (image processing is not

taken into account), the designed system may evaluate over

12,000 unknown images per second. The same number of

images can be evaluated even if 16 discriminators are used.

From another point of view, the system with a frame rate of

1 fps may obtain responses of up to roughly 195,000 dis-

criminators per second. Indeed, enough memory space is

assumed.

The following chart generally summarizes the previous

two paragraphs. It shows the trend of two coefficients

(defined by the authors) depending on the number of

classes. The first of them is the Coefficient of Acceleration

(CA); it means the speed benefit of the designed memory

organization. In other words, it expresses the ratio between

the number of memory read operations needed for recog-

nition not using (sequential organization is assumed) and

using our designed memory organization. The latter coef-

ficient is the Coefficient of Memory Requirements (CMR).

It expresses the ratio between memory requirement needed

for our and for classical sequential memory organization.

It is clear from the chart that our designed memory

Fig. 8 Responses for ‘Class 4’

images and G8T8 configuration

Fig. 9 Levels of responses for different neural network settings Fig. 10 Comparison of minimum differences
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organization is beneficial to the cases where the number of

classes is in multiples of bus width or for larger numbers of

classes. If we consider a large number of classes, we obtain

the coefficient of acceleration approaching 16, and the

CMR approximately 1. We may say that for an infinite

number of classes, the speed benefit of our memory orga-

nization is equal to the width (16 in our case) of used

memory; memory requirements remain unchanged (iden-

tical with sequential organization). However, this is only

theoretical consideration.

The training process takes a significantly longer time.

The Training Unit has to perform 3,000 read–modify–write

cycles. In the experiments, the used SRAM memory has a

writing latency of four clock cycles. In total, 21,007 clock

cycles are needed. This matches approximately to 190 ls

(Fig. 11).

4.5 FPGA resources

The FPGA resources are acceptable. The Recognition

Unit needs 905 logic elements (LEs) and the Training

Unit only 241 LEs; each unit consumes 128 bits of

embedded memory. In comparison with these, the

Camera Unit is the most demanding; it requires 1,784

LEs and 60,302 bits of memory. However, these values

include a component part for streaming the full image

to the SDRAM memory to display it. As long as this

functionality is not needed, some resources could be

saved. The whole system (shown in Fig. 4) consumes

7,125 LEs. The maximal frequency of this design is

approximately 130 MHz. All tests and measurements

were performed on a Cyclone IV device from Altera

Corp. The development kit DE2-115 from Terasic

Corp. was exploited.

5 Comparison with other methods

and implementations

This section presents and compares the obtained results in

two domains: in recognition performance domain and from

the point of view of the processing speed. For comparison,

the following conventional classification algorithms were

chosen:

• Nearest neighbour algorithm

• Minimum mean distance algorithm

• K-nearest neighbour algorithm

These methods were implemented in software by the

National Instruments Vision Builder for Automated

Inspections (NI VBAI). All mentioned methods used the

sum distance metrics (city block metrics). In the case of the

k-nearest neighbour algorithm, the tests with three different

k-parameters were performed.

Furthermore the special software application in MAT-

LAB was programmed. It implements the image recogni-

tion based on the n-tuple method by the same way as done

by the hardware described above. The results obtained by

this application can be used to verify the presented hard-

ware implementation and to compare software and hard-

ware solutions.

The hardware system introduced in [16], which is based

on the same n-tuple method, was chosen to compare system

the performance of the two different architectures.

The benchmarks use the Test 2 which is described in

Table 3. In this kind of test ?different datasets are

exploited for the training phase (Dataset 1) and the clas-

sification phase (Dataset 2). Each run of the test was

repeated 1,000 times and the results were averaged to

obtain relevant data.

Table 4 summarizes the results of the benchmarks. It is

evident that the time requirements of the classification

algorithms realised by NI VBAI are almost identical. The

achieved speeds are around 170 fps. In terms of recogni-

tion performance, the minimum mean distance algorithm

reached the smallest false rate (FR) from the tested con-

ventional methods, but still did not reach 0 % like the

n-tuple method. The misclassification was observed mainly

in the cases of these road signs: speed limit 50/speed limit

90 or children/pedestrian crossing.

The software implementation of the n-tuple method in

MATLAB produced the same responses like the HW

realisation but the time requirements were significantly

higher. All software tests were performed on a PC Intel

(R) Core2 Quad CPU Q9550 @ 2.83 GHz, 3 GB RAM.

Table IV also presents the results of two hardware

implementations. However, it is necessary to note that the

Fig. 11 Coefficients of memory requirements (CMR—solid) and

acceleration (CA–dashed)
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speed of the HW realisation by Bonato [16] is estimated for

the same configuration (number of n-tuple nodes). This

HW architecture is based on the use of the embedded

memory inside the FPGA; it makes it possible to imple-

ment memory configuration optimized for given n-tuple

network.

From the values in Table 4 it is clear that the time

requirements of Bonato’s architecture are slightly higher.

However, the amount of embedded memory is significantly

limited and it does not allow the implementation of larger

number of classes and higher input image resolution. The

novel memory organization presented in this article solves

this disadvantage and makes it possible to use a conven-

tional external memory with similar time requirements.

6 Conclusion and future work

This paper has introduced a new hardware implementation

of n-tuple neural networks based on an FPGA device. The

presented novel structure for memory organization offers

effective access to the data memory for the processing of

more classes at one time. It enables very fast image rec-

ognition in a relatively simple HW architecture. This arti-

cle also provides a brief overview of the n-tuple theory

with grouping methods and presents the possibility of its

utilisation for the road sign recognition. The system per-

formance and the required FPGA resources are included for

the estimation of possible system performance.

The comparison of the presented hardware solution with

other methods and architectures is summarized in Table 4.

The values in this table show that our approach is com-

parable to the solution published in [16] and it is not lim-

ited by the size of the embedded memory. This advantage

makes it possible to recognize the images in high resolution

and/or higher number of classes.

Unfortunately, the comparison of the ‘learning’ capa-

bility of n-tuple networks with conventional feature

extraction systems is not particularly fair to both techniques.

The classical n-tuple classifiers have the generalisation prop-

erties (i.e. their probabilistic nearest matches). They can

tolerate variations in the input image. It is also of a great

importance that the parameters of the object in the image do

not have to be analysed. On the other hand, the conventional

methods—namely Feature Extraction—usually provide con-

cise and reasonably accurate measurements of an object

within an image. However, it is difficult to determine how

many and which features should be extracted after the initial

edge detection (i.e. perimeter, area, shape factor, min/max

enclosing rectangles, centre of area, min/max radius, etc).

From the theoretical point of view, it is evident that the con-

ventional methods mentioned above require a lot of different

operations which are needed for feature extraction. Contrarily,

the n-tuple classifiers only need reading from memory and

simple ‘add’ instructions in the recognition phase. For these

reasons, the time requirements should be lower.

This research should lead to a complex recognition

system placed inside a car which would facilitate the

tracking and recognition of road signs. Nevertheless, the

developed HW implementation of an n-tuple neural net-

work is not limited only to this purpose and could be used

for miscellaneous tasks of image recognition.
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