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Abstract: The N-tuple approximation network 
offers many advantages over conventional neural 
networks in terms of speed of operation and its 
ability to realise arbitrary nonlinear mappings. 
However, its generalisation/selectivity properties 
depend strongly on the form of input encoding 
being used in the system. The paper analyses the 
suitability of use of the CMAC code for the 
N-tuple networks, and compares its properties 
with existing schemes. It is argued that the appli- 
cation of this type of encoding can provide desir- 
able monotonic mapping between input and 
pattern space distances without the penalty of 
very long binary patterns as is the case for bar- 
chart encoding. Additionally, similarities between 
the classic N-tuple and CMAC networks are high- 
lighted. 

1 Introduction 

Two major applications of N-tuple neural networks [SI 
are pattern recognition [3, 41 and arbitrary function 
approximation [7]. In both cases the input to the system 
is transformed into a binary pattern which is entered 
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onto the system retina (traditionally envisioned as a rec- 
tangular array of binary pixels, see Fig. 1). Groups of N 
pixel locations of the retina are subsequently chosen in a 
way characteristic of the sampling algorithm being used. 
In most cases the sampling process is random. Although 
complete sampling is most common (i.e. each pixel is 
taken only once) under- and oversampling are possible. 
Each N-tuple of the pattern input addresses a separate 
N-tuple memory whose contents are interpreted differ- 
ently for each architecture. 

For pattern recognition systems, the input to the 
network is usually a pattern representing a discrete func- 
tion over the discrete domain of the network’s retina. The 
contents of each N-tuple memory contain set bits in loca- 
tions corresponding to addresses which were picked by 
the training patterns. The width of the memory words 
depends on the number of classes to be distinguished. 
The class response of the network to a random trial 
pattern is equal to the number of N-tuple memories 
which produce a 1. For proper discrimination, the 
response of the network should be substantial only for 
patterns close to the trained class. Allinson and Johnson 
[4] showed that the response decreases (approximately) 
exponentially with the Hamming distance between the 
test pattern and the pattern cluster contained in the 
N-tuple memories. 

The function approximation network accepts the 
input of a D-dimensional numeric vector, whose co- 
ordinates are converted into a binary form and the 
resulting pattern is then presented to the network’s 
retina. The sampled N-tuple subpatterns serve as 
addresses to a set of tuple memories, each containing 
numeric weights in an arbitrary format. The addressed 
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words are summed to produce an output response, 
similar to the classic perceptron scheme, but with no final 
thresholding. The least mean squares scheme is usually 
used for training. The output is generated by a form of 
interpolation between stored responses, which requires 
that the number of N-tuple addresses shared by any two 
different input vectors decreases with their distance 

It is clear that the points lying close together in the 
input space should be assigned patterns close in the 
binary space using the Hamming metric. The function of 
the input encoding is to provide this property while 
keeping the pattern size as small as possible to minimise 
the memory requirements. Some codes (e.g. the barchart 
code) fail to satisfy the requirement, which makes it 
necessary to look for other more effective solutions. 

In this paper the approximation N-tuple network is 
considered. The CMAC-type coding scheme is analysed 
from the point of its validity for input encoding of a 
general N-tuple system. It is shown that the CMAC is, in 
fact, a special case of the N-tuple approximation 
network. 

1 . I  CMAC network 
The CMAC is a supervised neural network, similar to the 
perceptron in its operation, but one which employs a 
special kind of nonlinear mapping in the input variable 
encoding [ l ,  21. The mapping results in the property that 
only points located very close to each other in the input 
space share any weights. The code is generated by trans- 
forming a D-dimensional input vector space into a K -  
dimensional address space, where K is an arbitrarily 
chosen association coefficient, a major parameter of the 
CMAC architecture, responsible for its generalisation 
properties. The result produced by the CMAC is com- 
puted as a sum of selected weights. The transformation is 
a stepwise process which proceeds as follows (Fig. 2): 

(i) Each variable, x i ,  of the input vector, x x o ,  .cl,  ..., 
x D -  ,I, is assigned a K-dimensional field vector Mi[mio ,  
mi,,  . . . , mi,. ,I, where the field positions (codewords) are 
calculated according to [6] : 

This is equivalent to passing each variable over a set of K 
overlapping quantisers, each having the quantisation step 
of K ,  and each shifted by one input resolution element 
with respect to its neighbours. 

(ii) The field vectors M O ,  M I ,  ..., M D - l  are concat- 
enated positionwise to produce the address vector V, 
whose co-ordinates are used to address their respective 
weight memories during the response computation. The 
same address vector is used for every output dimension 
of the network. 

(iii) When the system does not possess adequate 
memory resources, i.e. the length of the address vector is 
too high, hashing procedures are used to reduce the 
effective address length. The resulting noise is known as 
hashing collisions [ 6 ] .  

Two of the most important features of the CMAC archi- 
tecture are the speed of operation (i.e. few weight addi- 
tions, since K is usually small) and very high convergence 
rate. 
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2 Space transformations 

The input to the system consists of a D-dimensional 
vector X of integer co-ordinates, each within the range of 
L discrete values, i.e. 

= [ X O  > x l ,  . . . > X D -  1 1  

where xi = 0, 1, ..., L - 1 for i = 0, 1, ..., D - 1. Each of 
the co-ordinates is transformed independently into a 
binary pattern by means of a code C ,  

c :  x+ cx, cx=  [CX,,  c x , ,  ...) CX,- , ]  

In the simplest case C is a natural binary code. If W 
designates the number of bits necessary to represent each 
co-ordinate of this vector then the total length of the 
pattern is D W. The code C is generally an 'into' 
mapping, as there can be patterns with no corresponding 
input vectors. Such redundancy may be necessary to 
enforce the desired properties of generalisation. 

The final binary pattern is subjected to the Hamming 
vector distance metric given by 

h(CX, C Y )  = 1 h(Cxi ,  Cy,), 
D -  1 

h(CX, C Y )  E [0, D .  W ]  
i = O  

and 

h(CXi, CY,) E CO, W l  
As distances between subpatterns provide additive contri- 
butions to the total Hamming distance (owing to the 
independent encoding of the vector co-ordinates), a 
similar relationship in the input space makes it easier to 
analyse the distance mapping properties of the encoding 
transformation. Therefore, the city-block distance is used 
as the metric function of the input space, i.e. 

D -  1 

d(X, Yl = 1 I xi - yi I, d ( X  Yl E CO, D . ( L  - 1)1 
i = O  

3 Desired code properties 

The major requirement of a satisfactory input code is 
that it maintains the distance relationships between 
points in the input and pattern spaces, i.e. 

VX, Y ,  2: d(X,  Y) < d(X, Z) =. h(CX, C Y )  < h(CX, C Z )  

If we define a distance mapping function g, as 

g,(r) = min {d(CX, C Y ) :  d(X, Y) = r }  

for integer 0 6 r 6 D . ( L  - 1) 

then in the desired mapping g, should be monotonically 
increasing at each point X of the input domain. In other 
words, if vectors belong to a certain spherical neighbour- 
hood in the input space, then their encodings should 
belong to a corresponding neighbourhood in the pattern 
space. Because the dynamic range of the Hamming dis- 
tance is usually lower than that of the input-space dis- 
tance and depends on the amount of redundancy 
employed by the specific code, the strictly monotonic dis- 
tance mapping is impossible over the whole input 
domain. The requirement of the monotonic distance 
mapping is quite strict but it can be relaxed to some 
extent if we note that, owing to the properties of N-tuple 
sampling, the response of the network is not a linear 
function of the Hamming distance between patterns, C X  
and C Y ,  but an exponential one. Consequently, if the 
Hamming distance increases beyond some threshold 
value, the response will be small enough to render the 
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distance relationship irregularities above this value insig- 
nificant. Therefore, if g ,  is locally increasing within some 
neighbourhoo'd of every point in the input domain, and 

process assumes that all bits in the input pattern have the 
same relative importance. This is certainly not the case 
with the natural binary notation, where the bits are 

input vector quantiser blocks code vectors address hashing 

vo v1 vK-1 
virtual-address vector 

Fig. 2 The CblAC network 

remains sufficiently bounded from below outside this 
neighbourhood, the mapping provides satisfactory dis- 
crimination properties as far as the N-tuple system is 
concerned. The locally monotonic mapping can be for- 
mulated as follows, 

3R, T,,, VX g,(r) is monotonically increasing 

for integer r 0 < r < R 

and 

g,(r) 2 T,", for integer r > R 

The radius R determines the size of the monotonicity 
neighbourhood (a closed ball in metric space 
terminology) of the distance mapping at each point of the 
input space; whereas T,,, designates the lower bound on 
the pattern space distance outside this neighbourhood. 
Additionally, if Tn = max, {gx(r ) :  0 < r < R ) ,  it is desir- 
able that T,,, I2 Tn, so that the transformation does not 
distort distanc:e relationship in regions of monotonicity. 
R ,  $, and T,,, constitute the distance mapping param- 
eters. 

Since it is sometimes important to analyse properties 
of the distance mapping only for points belonging to a 
certain subset A of the input space, the distance mapping 
over a set is defined as 

g,(r, A) = min {d(CX, CY): d(X, Y) = r A Y E A} 

for integer r 0 < r < D . ( L  -- 1)  

4 Comparison of different codes 

4.1 Binary code 
The binary code provides a natural representation of an 
integer variable, but has very nonlinear and non- 
monotonic properties as far as the pattern space is con- 
cerned. Specifically, integer values differing just by one 
level can have their Hamming distance anywhere 
between one and the maximum. The N-tuple sampling 
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ordered in the increasing level of significance. Another 
deficiency of the natural binary encoding is the relatively 
small dynamic range of the pattern space distance 
(W + I ) ,  when compared with the input range (2"). 

4.2 Gray code 
The Gray code does not improve the dynamic range of 
the pattern space distance but results in a more regular 
distance mapping. Because of its properties, integer vari- 
ables differing by one level have exactly one bit position 
changed in their Gray code representation. Therefore, in 
very small neighbourhoods the distance mapping is 
monotonically increasing. 

4.3 Concatenated Gray code 
The concatenated Gray code [8] provides some remedy 
to the small dynamic range of the Gray code. The encod- 
ing process assigns each scalar integer variable a K -  
dimensional code vector, where each co-ordinate 
corresponds to a Gray code of the input offset by a shift 
value, 

CX = [G(x), C(X + s,), . . . , G(x + s K -  ,)I 
for integers 0 < si < L and 1 G i < K 

There are different arrangements of the shift values si and 
for a particular K and range of input variables it is pos- 
sible to find some optimal configuration, in which the 
irregularities of the Gray code are averaged. The distance 
of one in the input space is transformed to the distance of 
K in the pattern space. Although this code is more 
regular, the distance mapping is monotonic only for 
neighbourhoods with a radius of one, as for the Gray 
code. Additionally, large values of concatenated fields 
result in large distances between neighbouring patterns. 

4.4 Barchart code 
The barchart, or thermometer, code has long been recog- 
nised as that having ideal properties since it results in 
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identical distances in both input and pattern spaces. The 
major disadvantage of using this code is its length. which 
for a multidimensional input might simply become 
impractical. 'Tattersall [7] has proved that for this code 
the number o f  common weights shared by distinct points 
decreases exponentially with their input/pattern distance. 

4.5 CMACcode 
To begin, let us limit the number of input dimensions to 
just one. In this case the field vector M generated for the 
input Xis  identical to the address vector V, since no con- 
catenation takes place. A discrete metric over the vector- 
field space is chosen, because this distance directly relates 
to the number of fields shared by two different inputs. 
Owing to the quantisation encoding of the CMAC, the 
distance in the field vector space is a clipped version of 
the input distance, which can be expressed as 

0 < d(Cx, Cy) < K 

Thus the distance mapping is monotonically increasing 
(though not strictly) over the whole input domain. 
Namely, 

d(Cx, Cy) = I x  - y l  mod ( K  + l), 

r foro < r < K )  
vx ' x ( r )  = i K for K < r < L j  

so the function has clear linear and saturated regions. We 
define the CMAC neighbourhood O(x) of a point X as a 
set of input points whose distance from the centre is not 
saturated. It follows directly that each neighbourhood 
contains (excluding boundary conditions) 2 K + 1 
points. For a multidimensional input, the CMAC system 
considers any two addresses as different if not all the cor- 
responding fields are identical. However, for the N-tuple 
encoding application, each field is equally relevant and 
the metric in the field vector space is defined as a direct 
extension of the 1-dimensional model. Instead of thinking 
of the global pattern as a K-dimensional vector of con- 
catenated field subvectors, we consider it as a D- 
dimensional vector of K-dimensional field subvectors. 
Using the previously derived expression for the distance 
in the field vector space, the new distance is naturally 
extended to 

n- I 

d(CX, C V )  = -x-d(Cxi, Cy,) 
i = O  

D- 1 
= 1 xi - yiI mod ( K  + 1) 

i = O  

0 < d(CX,  CY) < D .  K 

with each O(x) containing D .  (2 . K + 1) points. In con- 
trast with the 1-dimensional case, the distance mapping 
here is monotonic only when no saturation occurs for 
any dimension, i.e. only for points in Q(x). Therefore g, is 
locally (and strictly) monotonically increasing in the 
largest spherical neighbourhood which fits in O(x), and 
has the parameters 

R = K ,  T , = K ,  T , , ,=K 

Fig. 3 shows the plot of the function d(CX, C[8, 81) for 
the CMAC ( K  = 4) encoding of a 2-dimensional ( L  = 16) 
input. The most important difference between the input 
and field vector spaces is that large distances between 
integer vectors owing to significant changes in few vari- 
ables will only still produce small distances in the trans- 
formed space. This is caused by the clipping mechanism 
in the distance mapping. 
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To arrive at  the final binary pattern each discrete field 
position is substituted with its actual form, i.e. an integer 

0 2 4 6 8 1 0 1 2 1 4  
X 

Fig. 3 CMAC uertor .field space neighbourhood /or 2-dimensional 
input space 

in the range: 0, ..., r(L - l)/Kl, which can be repre- 
sented by the natural binary or an alternative code of 
length W .  Increments by one in the field space distance 
correspond to one field position changing its value, and 
hence changing its binary representation. Furthermore, 
note that within the CMAC neighbourhood each field 
position differs numerically by at most one from that of 
the centre, i.e. 

I m..  - m!?nt'r 
LJ ' I  I < 1 

f o r j = 0 , 1 ,  ..., K - 1  and i = O , l , . . _ ,  D - 1  

Each change of a field position results in a nonzero 
Hamming distance increase in the range of 1, ..., W .  
Consequently, in regions where the field space distance 
mapping is not saturated, the global distance mapping g, 
is monotonically increasing (with a varying but nonzero 
increment), with the parameters 

R = K ,  T , = K . W ,  T , , , = K  

As situations where T,"! < zn are possible, points close to 
each other in the input space can be mapped into distant 
patterns, and distant points into similar patterns. Fortun- 
ately this problem can be solved by the additional appli- 
cation of Gray coding as shown in Section 4.7. Fig. 4 
shows the three levels of abstraction in the CMAC input 
encoding that have been distinguished. 

CMAC vector space 

I v o  I v1 I v2 I v3 I 

CMAC field space 1, 
i L  

Fig. 4 
mpui and K = 4 

Different desirrprlons .I [he CMAC rode f o r  a 2-drmen~~onul 

4.7 Use of Gray code for field position representation 
in the CMAC coding 

It has been noted that inside the neighbourhood each 
field position of the pattern vector changes only by one 
(increment or decrement) in the algebraic sense. If the 
field positions are represented in Gray code rather than 
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Table 1 : Distance mapping properties of the CMAC code 

Code Monotonicity neighbourhood CMAC neighbourhood 

CMAC Inside r < g.(r) 4 r . W O < r < K  r 4 gx{r, n ( X w r  ' W O G r 6 D . K  
K 4 r 4 D .  (L - 1 )  D , K <g,{r, Q ( X ) }  G D . K .  W D ,  K $ I  i D (L - 1) 

CMAC/Gray Inside g , ( r )  = r  O < r < K  s,O. n(W} =L 0 G r i D . K  
K < r  < D .  ( L  - 1 )  D . K G g , { r ,  n ( X ) }  < D . K ,  W D . K S r  G D .  ( L  - 1 )  

Outside K < g , ( r )  < 0 . K . W 

Outside K < g,(r )  4 D K . W 

the natural binary one, these changes will result in an 
increment by one in the Hamming distance. Therefore, 
the constraints on the distances inside and outside the 
monotonicity neighbourhood are reformulated to 

R = K ,  T n =  K,  Tu,= K 

which correctly preserves the distance relationships. 
Additionally, the use of Gray code does not influence the 
field word length W, which has the same value as in the 
natural binary notation. Table 1 outlines the properties 
of y, for different neighbourhoods with and without addi- 
tional Gray coding. 

5 Code length considerations 

The above considerations show that the relationship 
between distances in the input and pattern spaces 
remains monotonic in the relaxed sense. Another issue, 
however, is the number of bits required by this code. As 
each field is encoded by W bits, the total number is 
D .  K . W, which compares favourably with the barchart 
code [which requires D . ( L  - 1) bits] if K . W 4 L. - 1. 
Fig. 5 provides the length of the CMAC code for input 
dimension for L = 256 and different values of the associ- 
ation coefficient K .  

Fig. 5 
Junction . f K  for L = 256 

C M A C  code length in hits per input uector dimension as a 

6 Comparison between the CMAC network and 
the SLLUP 

The approximation N-tuple network is sometimes called 
a single layer lookup-table perceptron (SLLUP) [7]. It 
appears that this network is very similar to the CMAC 
architecture and, indeed, the CMAC network is a special 
case of the N-tuple approximation system. The CMAC 
architecture can be considered as a N-tuple system where 
N is equal to the length of the address co-ordinate o f  the 
K-dimensional address vector produced by the CMAC 
encoding, and the number of samples taken is K (and so 
is the number o f  N-tuple memories), i.e. 

which results in the total memory requirement of P ,  = 
K 2 N c .  Additionally, the samples are taken in an ordered 
fashion, so that a single sample/tuple comprises exactly a 
single address vector co-ordinate. By introducing random 
sampling, the CMAC system would be transformed into 
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a classic N-tuple system but, of course, the neighbour- 
hood properties in the new mapping would be different. 
By using a smaller value of N the SLLUP requires less 
weight storage than the original CMAC, i.e. 

with the reduction with respect to CMAC of 

Therefore, the need for address hashing may be simplified 
or even omitted. On the other hand, the number of 
weights contributing to each output computation is 
increased, thus making the network operation more 
complex. 

For the N-tuple approximation network, using the 
CMAC algorithm for input co-ordinate encoding will 
benefit the network's discriminatory properties for an 
appropriate value of the association coefficient K .  The 
particular choice of this value will be affected by the 
memory capabilities of the system. 

7 Examples 

Figs. 6-10 shows the neighbourhoods in the pattern 
space for a 2-dimensional input and different code types. 

Fig. 6 Binary encoding 

The input vector variables are integers with L = 64 levels 
each, and the neighbourhood centre has been chosen at 
the point (32, 32). Darker regions correspond to larger 
distances. The increased regularity in the shape of the 
neighbourhood for the CMAC case can clearly be seen. 

A number of quality measures have been proposed 
[XI, which express how well a function follows the 
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monotonicity constraint. One such method relies on Table 2: Code quality comparison 

accumulating the deviations from a monotonic increase, code Measure 

Binary 5.47 
Gray 4.75 
Concatenated Gray '2 13 
CMAC ( K  - 4) 1.32 
CMAC Gray ( K  = 4)  1 1 

Fig. 9 ('W4C G r q  c,nwJiny nirh K 7 4 

on a point-to-point basis, for an arbitrary choice of the 
neighbourhood centre, and then producing an averaged 
result. This measure can be expressed as 

0 

+ c (h(C(Y + 11, CX) - h(CY, (:XI> 
y = x -- 1 

x for x >, 0 
(x) = { 0 for x < 0 

The higher the value of the measure the lower the quality 
of the code. Table 2 summarises the measured quality of 
different codes for the I-dimensional input (L = 64). 

182 

Fig. 10 Concatenated Gray  encoding with K = 2 and shgts of0 and 1 

8 Conclusions 

The CMAC code provides the local monotonic- 
increasing property in the distance mapping from the 
input vector space to the pattern space. The radius of the 
monotonicity neighbourhood around each input space 
point X i s  given by the association coefficient K. The use 
of a Gray code for field co-ordinate encoding is necessary 
to avoid pattern distance ambiguity between points 
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inside and outside the neighbourhood. Adjustment of the 
CMAC association coefficient allows a tradeoff between 
the size of the monotonicity neighbourhood and the 
length of the code. Further, the CMAC system is a 
special case of an N-tuple approximation network. By 
using random N-tuple sampling it can be transformed 
into a SLLUP and the hashing part of the CMAC system 
can be omitted, since the requirement on the memory size 
is relaxed for small values of N. 
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