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Abstract—A number of theoretical approaches related to the n-tuple classification system are reviewed including
Kanerva’s SDM, the n-tuple regression network, the Hamming distance framework and likelihood estimation. The
limitations of these methods are pointed out and resemblances that exist between them are underlined. Large-scale
experiments carried out on StatLog project datasets confirm the n-tuple method as a viable competitor to more popular
methods due to its speed, simplicity and accuracy on the majority of a wide variety of classification problems. A further
investigation into the failure of the method on certain datasets shows its inner workings and reveals two main problems:
difficulties with highly skewed class priors and more importantly, a mismatch between the scales involved in general-
ization, the amount of training data available, and the volume of the region in which data is likely to exist. This highlights
areas where improvements in the method are needed and further theoretical progress would be helpful.q 1998 Elsevier
Science Ltd. All rights reserved
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1. INTRODUCTION

Then-tuple classifier, invented by Bledsoe & Browning
(1959), is one of the oldest practical pattern recognition
methods based on distributed computation and amenable
to description in terms of neural network metaphors.
Although eclipsed in popularity by methods such as
multilayer perceptrons and radial basis function net-
works, then-tuple method continues to offer properties
which make it vastly superior for certain common
purposes. First among these properties is its speed of
operation. The training algorithm is a one-shot
memorization task, computationally trivial compared to
solving linear systems or minimizing non-linear func-
tions. Another advantage is the sheer simplicity of learn-
ing by memorization. If this can form the basis of a sound

pattern recognition principle, then it is arguable that bio-
logical systems could make use of it.

It is prudent to suspect that relatively poor perfor-
mance will accompany the speed and simplicity of the
n-tuple algorithm. There are many reports of satisfactory
results with the method (Bledsoe & Bisson, 1962;
Ullmann, 1969; Ullmann & Kidd, 1969; Aleksander &
Stonham, 1979a; Rohwer & Lamb, 1993; Tarling &
Rohwer, 1993) but few studies involving comparisons
with other methods (Rohwer & Cressy, 1989). Further-
more, most studies use just one or two small data sets.
Therefore a large experiment was carried out, in which
then-tuple method was tested on 11 large real-world data
sets which had been previously used by the European
Community ESPRIT StatLog project (Michie et al.,
1994) to test 23 other classification algorithms including
the most popular neural network methods. The results,
presented in Section 5.4, show no systematic perfor-
mance gap between then-tuple method and the others,
on seven of the 11 data sets tested. It is easy to recognize
the other four, without referring to any competing
methods, because then-tuple method performed no
better than random guessing. The experiments therefore
suggest that in most cases then-tuple method gives com-
petitive performance, and the cases when it does not are
clearly recognizable.
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When a fast and simple method proves to be a com-
petitive performer in a large set of experiments, one would
like to know why. Unfortunately, then-tuple method has
not yet yielded to theoretical analysis as well as the
optimization-based approaches which can be embedded
in Bayesian statistical theory (MacKay, 1992), but there
has been some progress. The main theoretical results are
reviewed, discussed and used as a vehicle for explaining
some relationships between the standardn-tuple method,
n-tuple methods incorporating linear regression, radial
basis function networks and the Kanerva associative
memory model. The theoretical tools are then used to
develop a semi-quantitative account of why the method
failed on four of the 11 datasets. The main theoretical
stumbling blocks are also indicated.

2. THE N-TUPLE RECOGNITION METHOD

The n-tuple recognition method is also known as a type
of ‘‘RAMnet’’ 1 or ‘‘weightless neural network’’. It forms
the basis of a commercial product (Aleksander et al.,
1984). It is a method for classifying binary patterns,
which can be regarded as bit strings of some fixed length
L. This is not an important restriction, because there is an
efficient preprocessing method, tailored to the RAMnet’s
generalization properties, for converting scalar attributes
into bit strings. This method is reviewed in Section 4. It is
also possible to generalize a special case of then-tuple
method from a classifier to a function interpolator.

2.1. Definition of the Standardn-tuple Method

A concise definition of then-tuple method is given here.
More descriptive definitions can be found elsewhere
(Aleksander & Stonham, 1979b; Alexander & Morton,
1995). Several (let us sayN) sets of n distinct2 bit
locations are selected randomly. These are then-tuples.
Collectively, they are called the ‘‘input mapping.’’ The
restriction of a pattern to ann-tuple can be regarded as an
n-bit number which, together with the identity of the
n-tuple, constitutes a ‘‘feature’’ of the pattern. The
standardn-tuple recognizer operates simply as follows:

A pattern is classified as belonging to the class
for which it has the most features in common
with at least one training pattern of that class:

(1)

This is thev ¼ 1 case of a more general rule whereby the
class assigned to unclassified patternu is

argmax
c

∑N
i ¼ 1

Qv

∑
v[Dc

dai (u),ai (v)

 ! !

(2)

wherev ranges overDc, the set of training patterns in
classc, Qv(x) ¼ x for 0 # x # v, Qv(x) ¼ v for x . v, d i,j is
the Kronecker delta3 (di, j ¼ 1 if i ¼ j and 0 otherwise) and
a i(u) is the ith feature of patternu:

ai(u) ¼
∑n¹ 1

j ¼ 0
uhi (j)2

j
: (3)

Hereuk is thekth bit of u andh i(j) is thejth bit location of
the ith n-tuple.

Small values ofv, greater than 1, are sometimes found
to be most effective (see Section 3.3).

With C classes to distinguish, the system can be
implemented as a network ofNC nodes, each of which
is a 1-bit random access memory (RAM); hence the term
RAMnet. (Equivalently, it is a network ofN RAMs, each
containing aC-dimensional bit vector.) The memory
contentmcia at addressa of the ith node allocated to
classc is set to

mcia ¼ Qv

∑
v[Dc

da,ai (v)

 !

: (4)

Note that symbola denotes any address value in range
[0, 2n ¹ 1] and a i(u) refers to one particular address
value generated by the input patternu.

In the usualv ¼ 1 case, the 1-bit content ofmcia is set if
any pattern ofDc has featurei and unset otherwise.
Recognition is accomplished by summing the contents
of the nodes of each class at the addresses given by the
features of the unclassified pattern. That is, patternu is
assigned to class

argmax
c

∑N
i ¼ 1

mciai (u)

 !

: (5)

To generalize then-tuple classifier to a function inter-
polator (Allinson & Kołcz, 1994b), a vectorm ia of the
appropriate numeric type for the range of the function is
stored at each addressa in each nodei. Training is
accomplished by assigning these vectors to the averages:

mia ¼
∑
v[D

Y(v)da,ai (v)

. ∑
v[D

da,ai (v) (6)

whereY(v) is the desired output for input bit stringv.
The network output, or response to an arbitrary input
patternu is

1
N

∑N
i ¼ 1

miai (u): (7)

2.2. Practical Experience

Simple theoretical considerations and practical experience
provide fairly strong guidance for setting the architectural
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1 RAMnets also include stochastic generalizations, pRAMs, to which
the n-tuple recognition algorithm is not applied. These are not con-
sidered here.

2 Relaxing the requirement that ann-tuple hasn different bit loca-
tions amounts to introducing a mixture of differently sizedn-tuples.
Note the restriction does not disallow a single pattern component
from being shared by more than onen-tuple.

3 The comma is unconventional, but is used here optionally for extra
clarity.



parametersn, N and v. To begin with, the fact that the
network response to an arbitrary pattern is essentially an
average over then-tuples [eqn (5)] means that the results
should become increasingly consistent with increasingN.
Because then-tuple method can process thousands of
patterns within seconds, there is little need for any data
analysis method other than explicit measurement of
the variation of performance as the input mapping
is re-randomized a few times for a givenN. N is
increased if the variation is unacceptably high. Practical
experience is that values of 100 to 1000 usually turn out
to be adequate. It is commonly observed that the net-
work’s output for the winning class exceeds that of the
second runner up by an uncomfortably small margin,
such as threen-tuples out of 1000, but that the correct
class nevertheless wins consistently. Perhaps most
n-tuples give a constant response to most patterns, so
effectively only a fraction of those in the network are
contributing to the decisions. This suggests that many
n-tuples could be trimmed from the network, but such
variations on the method are vulnerable to overtraining
and complicate the theory. The phenomenon deserves
further study.

Practical experience tends to favour small values of
the thresholdv, particularlyv ¼ 1. A possible rationale
for this is given in Section 3.3. Many considerations
apply to the choice ofn-tuple sizen. Experimentally it
usually is the case that bigger is better, up to an imprac-
tically large size (Rohwer & Lamb, 1993), which
requires an unreasonable amount of training data, but
n ¼ 8 is usually enough, andn ¼ 3 is sometimes ade-
quate. This can be explained qualitatively by observing
that information about the correlations among up ton bits
are available to the classifier. It never hurts to take
account of higher-order correlations, but it is plausible
that eighth-order correlations contain all that is needed
for most binary data sets. Another intuition is that the
training process should write to neither too small nor too
great a proportion of the 2n addresses at each node. Ifn is
too large, the sub-patterns occuring in the training data
will be unlikely to recur in the test data, whereas ifn is
too small, the memory cansaturate, in which case
mcai

¼ v for most memory locations, so most discrimina-
tive power is lost (Ullmann, 1969; Tarling & Rohwer,
1993). These issues are further complicated if the class
priors are highly skewed, so that one class has far more
training data than another. Although a precise theory is
not available, there are strong enough theoretical tools to
gain considerable insight, as is demonstrated in the
discussion of the experimental results.

3. THEORETICAL STATUS OF THE N-TUPLE
METHOD

The n-tuple classifier is a memory-based method. Such
methods differ from optimization-based methods, such as
back propagation of error through multi-layer perceptrons,

in two important ways. Firstly, ‘‘hidden’’ representations
(or ‘‘features’’) are selected randomly, and secondly,
training is a simple one-shot memorization task involving
these features. These differences give memory-based
methods an awesome advantage in training speed. Radial
basis functions obtain part of this speed advantage by
selecting features randomly (Broomhead & Lowe,
1988), and multi-layer perceptrons can often be trained
faster with little or no loss of performance by using fixed
random weights into the hidden layers (Gallant & Smith,
1987; Sutton & Whitehead, 1993). However, this does
not give the speed and simplicity that training by mere
memorization provides.

In spite of many useful advances (Bledsoe & Bisson,
1962; Ullmann & Kidd, 1969; Aleksander & Stonham,
1979a; Flanagan et al., 1992; Austin, 1994), there is no
theory ofn-tuple networks of the standard of the sophis-
ticated statistical techniques available with optimization-
based methods (MacKay, 1992). It is not particularly
difficult to design new training algorithms for then-
tuple architecture in order to make these statistical
methods applicable (Tattersall et al., 1991; Luttrell,
1992; Rohwer, 1995), but this approach sidesteps the
interesting questions instead of answering them. These
modified methods reduce the speed and simplicity advan-
tages as well.

The main tools for understanding the standardn-tuple
network are reviewed here, and used to place then-tuple
net into context with similar methods. These tools are
used again to explain the experimental results.

3.1. Approaches Based on Hamming Distance

The most productive theoretical concept for understanding
then-tuple method has been ‘‘tuple distance’’ and its non-
linear statistical relationship with Hamming distance.

3.1.1.Tuple Distance and Hamming Distance.The main
theoretical results on then-tuple method provide a relation-
ship between a ‘‘tuple distance’’ relevant to the network’s
generalization properties, and the Hamming distance
between training and test patterns. The tuple distance
r(u, v) between patternsu andv is the number of tuples
(of a given input mapping) on which the patterns disagree:

r(u,v) ¼ N ¹
∑N
i ¼ 1

dai (u),ai (v): (8)

The number on which they agree,N ¹ r(u, v), will be
called the ‘‘tuple score.’’ An elementary argument based
on the random selection of then-tuple inputs from theL
bits available shows that patternsv which lie a fixed
Hamming distanceH(u, v) from any one patternu are
distributed binomially in tuple distance:

P(rlH) ¼
N!

r!(N ¹ r)!
1¹

H
L

� �n� �r

1¹
H
L

� �n(N ¹ r)

(9)
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More complicated expressions are available for more
constrainedn-tuple sampling procedures (Tattersall &
Johnson, 1984). Distribution eqn (9) gives an expectation
value forr of

r(H) ¼ 〈rlH〉 ¼ N 1¹ 1¹
H
L

� �n� �

(10)

and indicates thatr typically strays from this value by the
standard deviation

dr(H) ¼ N 1¹
H
L

� �n

1¹ 1¹
H
L

� �n� �� �

1
2

(11)

This is illustrated in Figure 1. If the patterns are nearby
(H p L), then a convenient approximation is

r(H) < N(1¹ e¹ n H
L ) (12)

The n-tuple sampling variations then maker(H) uncer-
tain by about

����������

r(H)
p

.
It is clear from eqn (12) that proximity in Hamming

distance plays a role in the generalization behaviour ofn-
tuple networks. Consider a network trained on just one
examplev of classc, and tested on a patternu Hamming
distanceH from v. Classifications are based on the net-
work response

∑N
i ¼ 1mciai (u) to patternu, which will be

aboutNe¹ n(H(u,v))=L. Hence one could say that the net-
work generalizes from training patternv to all patterns
within a Hamming distance of aboutL/n of v. Figure 1
shows a ‘‘clean’’ case in which the training patterns
within L/n of a test pattern are predominately of the

correct class. In our experience it is far more usual for
many incorrect patterns to populate this region as well,
but the classifier seems to work anyway. It would appear
that the training patterns nearest a test pattern tend to
match on tuples (‘‘overlap’’) no more often than patterns
of any other class.

3.1.2. Training Data Overlap on Tuples.A network
trained on a set of patterns {v1,…,vT} could respond
to patternu by any amount betweenN min(1, maxa
e¹ nH(u, va)=L) and N min(1,

∑
ae¹ n(H(u, va))=L), depending

on the correlations between the training patterns, as
manifest in ‘‘overlap effects’’. Unfortunately, this
circumstance limits the usefulness of tuple distance for
explaining the standardn-tuple method. Because of a
combinatorial explosion, there is no feasible method of
measuring tuple correlations. Similar problems crippling
an attempt of full formal analysis of the method
(Stonham, 1977) for datasets of arbitrary size have
been reported. However, some insight into the mechan-
ism of the RAMnet can be gained by analysis of the
experimental data.

Overlap effects are displayed in Figure 2. Figures 2(a)
and (b) show the network output for a test pattern as
training patterns are added in Hamming distance order
from the test pattern. For Figure 2(a), the threshold isv ¼ 1,
and for Figure 2(b) it isv ¼ `, effectively ignoring over-
lap in that the tuple scores are added for all the training
patterns. Figure 2(b) shows that distant patterns of the
incorrect class match the test pattern on manyn-tuples,
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FIGURE 1. Tuple score vs Hamming distance for a fixed test pattern u and training patterns {v 1,…,v T}. The score of u was computed for
the system trained on just one pattern v i. Distances between patterns of the same class are marked p , and W is used for different classes.
Eqns (10) and (11) are plotted as three s.d. error curves. The total number of patterns of the correct class (dotted line) and incorrect
classes (solid line) are plotted in the margins as functions of Hamming distance (top) and tuple score (right). The means of these
distributions are indicated by p and W marks. The ‘‘generalization distance’’ L/n is indicated by a vertical dotted line.



but Figure 2(a) shows that most of these subpatterns had
already turned up in closer training patterns. Figure 2(c)
shows the number of new RAM locations accessed as
training patterns are accumulated, regardless of whether
these are accessed by the test pattern. One class is dis-
advantaged by a smaller prior probability, and corre-
spondingly fewer training samples, but it has the
advantage that it populates new RAM locations more
rapidly. Whereas the more probable class is showing
signs of levelling off in this respect, the less probable
class is not, so it appears likely that if more data were
available (in the same proportions), then the test pattern
would be more likely to be classified correctly with the
less probable class. This scenario was frequently
observed in datasets with skewed priors, and motivates
the hypothesis that errors would have been reduced if
more data were available.

3.2. Related Methods

Tuple distance can be used to compare then-tuple net-
work to Kanerva’s sparse distributed memory, then-
tuple regression network, single-layer lookup perceptron,
and the familiar radial basis functions network. The
n-tuple network can also be interpreted as a crude
likelihood estimator.

3.2.1.The Kanerva Model.Then-tuple network is related
to Kanerva’s sparse distributed memory model (Kanerva,
1988; Songcan & Jun, 1992), which has also been devel-
oped theoretically using an ‘‘overlap’’ measure similar to
eqn (12). Although intended mainly as an associative
memory, it is easily generalized for classification
problems or function interpolation problems. The inter-
polation version is presented here.

Instead ofn-tuples, a set ofN bit strings are randomly
selected from a uniform distribution. These are used as
centresy i of hard-sphere radial basis functionsf i of
binary vectorsv:

fi(v; r) ¼
1 H(yi ,v) # r)

0 H(yi ,v) . r)

(

(13)

with a somewhat carefully chosen radiusr. Memory
space for a vector in the range of the function to be
approximated is associated with each centre. The memory
at centrei is set to

m(K)
i ¼

∑
v[D

Y(v)fi(v; r)∑
v[D

fi(v; r)
(14)

during training. HereY(v) is the desired output for input
patternv. The outputY(v) and memorym(K)

i can belong
to any space in which a weighted average can be defined.

For classification problems,Y(v) is an indicator func-
tion, and for an associative memory,Y(v) ¼ v.
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FIGURE 2. (a) Actual network response to a test pattern u; (b)
accumulated network response (as though patterns never over-
lapped on any tuples); and (c) the number of new RAM cells
addressed as a function of training patterns {v 1,…,v T}. Light
lines are used to indicate the discriminator associated with the
class that generated u, dark lines denote the other class. The
training data is sorted by the Hamming distance to the test
pattern.



The network response to test patternu is

y(K)(u) ¼

∑
i

m(K)
i fi(u; r)∑

i
fi(u; r)

(15)

which is

y(K)(u) ¼

∑
v[D

Y(v)
∑

i
fi(v; r)fi(u; r)∑

v[D

∑
i

fi(v; r)fi(u; r)
(16)

in terms of the training data. (A further thresholding
operation is required if a the output is to be a bit string.)
Each training patternv contributes its desired output
Yc(v) to an average weighted by

N ¹ r(K)
r (v,u) ¼

def
∑

i
fi(v; r)fi(u; r) (17)

the number of centres within Hamming distancer of both
the training pattern and the test pattern. Evidently,
N ¹ r(K)

r (u,v) plays a role similar to the tuple score,
with centres within distancer of both patterns being
counted instead ofn-tuples. Due to the random place-
ment of centres, the expectation ofN ¹ r(K)

r (u,v) is
also a functionr(K)

r (H(u, v)) of the Hamming distance
H(v,u), although it is more complicated than eqn (10)
or eqn (12). The exact form is a sum of products of
binomial coefficients which can be approximated by

r(K)
r (H)

< N 1¹

∫1

H=L

dx

2p
����������������

x(1¹ x)
p e

¹
(r ¹ L=2)2

L=2
1

(1¹ x)

0

B

B

@

1

C

C

A

ð18Þ

for 0 p H p L.
To carry the comparison further, observe that the inter-

polative n-tuple network [eqns (6) and (7)] can be
regarded as a special case of the Kanerva network
[eqns (14) and (15)] if the Hamming distance in eqns
(14) and (15) is replaced with a Hamming distance
restricted to a tuple. Specifically, a Kanerva centrey ia

can be associated with each memory locationa at each
n-tuple i by defining all bits ofy ia arbitrarily except for
those involved in theith input mapping. These bits must
form subpatterna:

∑n¹ 1
j ¼ 0 yhi (j),a2j ¼a. The Hamming

distance is replaced by
∑n¹ 1

j ¼ 0 (1¹ dyhi (j),uhi (j)
) andr ¼ 0.

3.2.2.The n-tuple Regression Network. The fact that the
n-tuple network response to a test pattern is dominated by
the (Hamming) nearest training patterns suggests that it
might be formally related to a nearest neighbour method
or a local basis function method. A modified method
makes the most of this resemblance. Called the single-
layer lookup perceptron (Tattersall et al., 1991), it treats

the interpolativen-tuple network response of eqn (7) as a
weighted sum of basis functions:

yc ¼
∑N
i ¼ 1

mciai (u) ¼
∑N
i ¼ 1

∑2n ¹ 1

a ¼ 0
mciada,ai (u): (19)

From the latter form, the network can be regarded as a
linear transformation applied to the outputs of the rather
unusual basis functionsda,ai (u), one for each combination
of i anda.

Training is easily accomplished by a least mean
squares (LMS) method.

Eqn (19) can be related to a basis function expansion
in the the exponentials appearing in eqn (12):

yc ¼
∑
a

wcae
¹ n

H(u, va)
L (20)

provided that patternsva and weightswca can be found
such that

mcia ¼
∑
a

wcada,ai (va): (21)

[Plugging eqn (21) into eqn (19) and using eqn (8) gives
eqn (20) within eqn (12).]

One way to arrange this is to choose all the patternsva

so they are separated from each other by tuple distanceN;
i.e. none of the patternsva match each other in anyn-
tuple. (This is possible if and only if the number of these
patterns is no more than 2n.) In this situation there is at
most onea for any givenn-tuple i and addressa i such
that ai(va) ¼ a, which may be calleda(i,a) when it
exists. Then the choice

mcai
¼

wca(i,a) a(i,a) defined

0 a(i,a) not defined

(

(22)

satisfies eqn (21). Such a network acts like the radial
basis function network [eqn (20)] with a (Hamming4)
spherically symmetric local basis function of radius
roughly L/n centred on each patternva, even though
the patternsva do not appear in the implementation of
eqn (19), and to the benefit of computation speed, no
distance calculationsH(u, va) are ever performed.

If the training patterns meet the separation condition,
they can be identified with the basis function centresva.
To see this, observe that the assumed one-to-one corre-
spondence between patterna and addressai(va) in theith
n-tuple memory implies that the set of memory locations
corresponding to one pattern is disjoint from the set
addressed by any other. Therefore the LMS optimization
problem involving eqn (19) will be symmetric with
respect to theN parametersmciai (va) for eacha and c.
Hence these parameters will all be equal in the solution,
and one can meaningfully definemca ¼ mciai (va). The
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4 The method can be modified so that the efective basis functions
have more nearly Euclidean-spherical receptive fields (Kołcz &
Allinson, 1994).



network response to a test pattern of eqn (19) can then be
rewritten by replacing the sum over addresses with a sum
over training patterns:

yc ¼
∑N
i ¼ 1

∑
a

mciai (va)dai (va),ai (u) (23)

Then it is clear from eqns (8) and (20) that one can
identify mca ¼ wca.

The interpretation of a single-layer lookup perceptron
as an effective radial basis function network with a
function centre on each training pattern requires the
patternsva to be tuple-separated byN. This condition
would be valid at least to a good approximation if their
Hamming separation were large compared toL/n. The
analysis of our experiments typified by Figures 1 and 7
does not suggest that this is likely to happen, and even in
principle it may not be easy to arrange this and ensure
good coverage of the pattern space by the local effective
basis functions. For this, the data needs to just happen to
be arranged so that each training pattern of a class is
aboutL/n bits away from its nearest neighbour. To do
as well as possible on both conditions, all other neigh-
bours should be much further away, but the triangle
inequality requires the next nearest neighbour to be
within 2L/n bits. If the data just happened to be suitably
arranged for this interpretation, then a suitable choice of
n-tuple sizen could be stated in terms of the nearest
neighbour distancedNN asn ¼ L/dNN.

Even if the training data is not distributed so that a
basis function interpretation is possible with the training
points serving as function centres, it may still be possible
to obtain a basis function interpretation by finding a

solution, at least approximately, to eqn (21). In any
case, there is no reason to suppose that the method will
fail when the interpretations do.

3.3. Then-tuple Classifier as a Crude Likelihood
Estimator

An alternative to using tuple distance to formulate a
theory ofn-tuple networks is to view them as probability
estimators. Withv ¼ `, eqn (4) for the memory content
mcia, can be interpreted as an estimate of the probability
Pi(alc) (up to a normalization factor) that a data point
from a given classc will have subpatterna in n-tuple i.
Assuming these distributions for differentn-tuples to be
independent of each other, the joint distribution over all
the sub-patterns taken together is

P(alc) ¼
∏

i
Pi(alc): (24)

This can be used for maximum likelihood classification,
or converted to posterior class probabilities using Bayes’
rule with class priorsP(c), if they are available. The
independence assumption lacks plausibility, because it
would be remarkable for the correlations required to
make the classes distinguishable not to be reflected in
correlations between then-tuples, but nevertheless,
good results have been reported with this formulation,
which has been reinvented from time to time (Bledsoe
& Bisson, 1962; Sixsmith et al., 1990; Badr, 1993).
Aside from its implausibility, its main practical problem
is that factors of zero appear if a naive estimate of
Pi(alc) is used for subpatterns which never appear in
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FIGURE 3. 1 þ (log T )=( ¹ log e) truncated to 0 for T , e (dark lines) for e ¼ 0.25, 0.05, 0.005 and 0.0001, and Q v(T) (light lines) for v ¼ 1, 2 and 3,
as functions of T. This shows that eqn (25) can be a reasonable approximation at integral values of T in some circumstances, particularly
for e → 0 with v ¼ 1.



the training data. In practice these are replaced with a
small ad hoc positive constant, saye, leaving scope
for more principled approaches to estimating these
probabilities.

Then-tuple method with finite threshold can be seen as
a scaled and translated approximation to the logarithm of
eqn (24). Specifically, if test patternu has sub-patterns
a(u), and theTc training patterns from classc supply the
tallies Tcia ¼

∑
v[Dc

da,ai (v) used to estimatePi(alc) by
Tcia/Tc, then for suitable choices ofe andv, the network

responses in eqn (5) will approximately satisfy

N ¼
log(TN

c P(a(u)lc))
¹ log e

¼
∑N
i ¼ 1

1þ
log Tc þ log Pi(a(u)lc)

¹ log e

� �

¼
∑N
i ¼ 1

1þ
log Tcai

¹ log e

� �

<
∑N
i ¼ 1

Qv(Tcai
)

(25)
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FIGURE 4. Hamming distance between two CMAC/Gray-transformed integers vs their arithmetic difference, for 3 3 104 randomly chosen
pairs of integers. K ¼ 8 and a ¼ 5. The relationship is linear for Hamming distances up to K, and the transformed distance is bounded
below by K for greater Hamming distances.

FIGURE 5. RAMnet’s performance on Cut20 as a function of tuple size n for different values of a and K. The error bars of size 6 1 standard
deviation are centred around the mean performance measured for 10 runs.



as illustrated by Figure 3. For integer tallies, the approx-
imation becomes arbitrarily accurate forv ¼ 1 ase → 0.
Hence the standardn-tuple method could be justified this
way if the independence assumption were acceptable and
the absence of sub-patterns in the training data could be
taken as strong evidence that the corresponding prob-
abilities are tiny. Essentially, the method counts the
number of factors ofe in eqn (24).

4. PREPROCESSING OF SCALAR ATTRIBUTES

A RAMnet classifies bit strings, but the attributes of the
patterns in the StatLog data sets are mostly real numbers
or integers. Given that generalization from numerical
attributes should be related to arithmetic differences,
and generalization in RAMnets is related to Hamming
distances, it is important to transform numbers into bit

strings in such a way that numerical proximity is
transformed into Hamming proximity. A memory-
efficient method tailored to the generalized Hamming
distance underlying RAMnet generalization has been
provided by Allinson (Allinson & Kołcz 1993, 1994a),
using a combination of CMAC and Gray coding tech-
niques. The prescription for encoding integerx is to con-
catinateK bit strings, thejth of which (counting from 1)
is (xþ j ¹ 1)=K rounded down and expressed as a Gray
code. The Gray code of an integeri can be obtained as the
bitwise exclusive-or ofi (expressed as an ordinary base
two number) withi/2 (rounded down). This provides a
representation inaK bits of the integers between 0 and
(2a ¹ 1)K inclusive, such that if integersx andy differ
arithmetically byK or less, their codes differ by Ham-
ming distancelx ¹ yl, and if their arithmetic distance isK
or more, their corresponding Hamming distance is at
least K. This is illustrated in Figure 4, and more
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FIGURE 6. Results for n-tuple ( X) and other algorithms.



comprehensive illustrations are elsewhere (Allinson &
Kołcz, 1993).

Because tuple score decays exponentially with
Hamming distance by eqn (12), there should be relatively
little ill effect if a training pattern further thanL/n bits
away from a test pattern is replaced by another training
pattern further thanL/n bits away (although Figs 1 and 7
indicate thatL/n is averyapproximate estimate). Thus if
there areA scalar attributes, one can expect the non-
linearity of the CMAC/Gray mapping to do little harm
if K . (L=A)=n.

There areaK bits per attribute, so this condition is

a , n: (26)

Scalar differences up to6 K fall within the linear region
of the mapping. This represents a fraction(2K)=(2a ¹ 1)K
or about 21¹a of the largest separation allowed. With
a , n, the ‘‘generalization Hamming distance’’
(L=A)=n¼ (aK)=n corresponds to a scalar separation of
6 (aK)=n, which is the fraction (2a)=(n(2a ¹ 1)) <
(a=n)21¹ a (for a . 1) of the largest possible scalar
separation.

For a ¼ 1, the mapping becomes the ‘‘thermometer
code’’, in which integerx is mapped to a bit string with
the lastx bits set and the remainingK ¹ x/K unset. IfK is
adjusted to preserve the input interval, then largera
values give shorter codes, which should be similarly

effective as long asa , n and scalar attributes separated
by more than fraction 21¹a of their dynamic range can be
regarded as dissimilar as far as generalization is concerned.

Figure 5 shows the test set classification accuracy as a
function of n for a 100-bit thermometer code, a 48-bit
(a ¼ 3, K ¼ 16) code and a 40-bit (a ¼ 5, K ¼ 8) code for
one of the datasets studied. For small values ofn, the
longer codes perform better, presumably because they
are linear over a larger fraction of the dynamic range.
However, with increasingn, the ‘‘generalization dis-
tance’’ shrinks, so more and more of the linear region
of the longer codes is ignored by the RAMnet, eliminat-
ing their advantage. Meanwhile, accuracy improves with
n, eventually levelling out. This is probably due to
making higher-order correlations available, as well as
reducing saturation effects.

5. THE EXPERIMENTS

Extensive experimental trials were conducted in order to
benchmark and study then-tuple algorithm.

5.1. Selection and Preprocessing of Statlog Data Sets

The European Community ESPRIT project 5170, the
StatLog project, was designed to carry out comparative
testing and evaluation of classification algorithms on
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TABLE 1
Descriptions of data sets used

Name Classes Largest
prior

Attributes Training
patterns

Testing
patterns

Description

BelgianII 2 0.924 57 real 2000 1000 Classify measurements on simulated large
scale power system as leading to stable or
unstable behaviour.

Cut50 2 0.941 50 real 11 220 7480 Fifty measurements from a candidate
segmentation point in joined handwritten
text. Classify as suitable cut point or not.
Commercially confidential data.

Cut20 2 0.941 20 real 11 220 7480 Best 20 attributes (by stepwise regression)
from Cut50.

Technical 91 0.230 56 4500 2580 Commercially confidential. Appears to be
generated by a decision tree. Most attribute
values are 0.

DNA 3 0.525 180 Boolean 2000 1186 Sequences of 60 nucleotides (four-valued)
classified into three categories.

SatIm 6 0.242 36 integer 4435 2000 3 3 3 pixel regions of Landsat images.
Intensities in four spectral bands. Classified
into six land uses at central pixel.

Chromo 24 0.044 16 20 000 20 000 Images of chromosomes, reduced to 16
features.

BelgianI 2 0.5664 28 real 1250 1250 As Belgian II with a smaller simulation.
Attributes thought to be least informative
omitted from simulation.

Tsetse 2 0.508 14 real 3500 1499 Classify environmental attributes for
presence of Tsetse flies.

Letter 26 0.045 16 16-valued 15 000 5000 Images of typed capital letters, described by
16 real numbers discretized into 16 integers.

Shuttle 7 0.784 9 real 43 500 14 500 Classification problem concerning position of
radiators on the Space Shuttle. Noise-free
data.



large scale applications. About 20 data sets were used to
estimate the performance of 23 procedures. These are
described in detail by Michie et al. (1994). Each of the
larger data sets (with many more than 1000 samples)
were randomly split into training and testing partitions.
Different methodologies (cross-validation and bootstrap)
were applied to the smaller data sets. This study used the
large data sets, which are summarized in Table 1. There
are 11 of these.

5.2. Experimental Details

The CMAC/Gray parameters used wereK ¼ 8 anda ¼ 5,
giving 40-bit representations of the integers in [0, 248].
All scalar attributes were linearly rescaled and rounded
to obtain integers in this interval. In the Letter data set
(see Table 1), where the attributes can take on only 16
values, it would be more reasonable to use a one-out-of-N
encoding with strings of 16 bits, but the CMAC/Gray
procedure was used anyway for the convenience of
uniformity.

The thresholdv was set to 1 in all the experiments
reported here, then-tuple sizen was set to 8, andN

was set to 1000n-tuples. These values forn and N
yield the best classification results and have been deter-
mined experimentaly as discussed in Section 2.2. The
results reported are averages over 10 different random
input mappingsh. Usingn ¼ 6 gave similar results.

5.3. Time and Memory Requirements

Computation time requirements were insignificant in
these experiments, which were carried out with a Cþþ

program on a SUN Sparc workstation. For example, an
eight-tuple network can be trained on the 2000 57-
attribute training patterns of the BelgianII data set in
about 49 s. Sixteen of these seconds are required just to
read in the data; another four to do the CMAC/Gray
conversion of the floating point attributes; and the final
29 to train the RAMnet itself. Testing the same 2000
patterns takes slightly longer, 37 s instead of 29, because
a loop over classes is needed within the loop overn-
tuples. Detailed timing statistics are not published for
the algorithms used in the StatLog project, but it is
clear that popular neural network algorithms such as
back propagation and even the relatively fast radial
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FIGURE 7. Tuple score vs Hamming distance: (a) classification error ( p ¼ 952, W ¼ 970) due to high number of NN from the incorrect
class; (b) correct classification ( p ¼ 803, W ¼ 564) resulting from the domination of NN patterns of the correct class; (c) classification
error ( p ¼ 805, W ¼ 884) caused by exceptionally large number of patterns from the incorrect class in the tail of the distribution (skewed
priors); (d) correct classification ( p ¼ 996, W ¼ 994) owing to the smaller tuple overlap on patterns from the correct class.



basis functions are slow by comparison. The algorithm is
highly parallelizable, so if it were important for the
RAMnet to be even faster, special purpose parallel hard-
ware could be designed or purchased (Aleksander et al.,
1984). It would be feasible for a biological system to
implement a highly parallel, but otherwise trivial calcu-
lation along these lines.

The storage requirements were moderate in most
cases. In the most extreme case (Shuttle) 128 kB of
RAM per class was required.

5.4. Results

The classification results for each algorithm attempted
with each data set are presented in Figure 6. Table 2
gives a brief description of each algorithm with the
symbol used to represent it in the figure. The classifica-
tion error rates increase from left to right, and are scaled
separately for each data set, so that they equal 1 at the
error rate of the trivial method of always guessing the
class with the highest prior probability, ignoring the input
pattern. The arrows indicate the few cases in which per-
formance was worse than this.

As remarked in Section 5.2, the results plotted for the
n-tuple recognition algorithm are averages over 10

randomly selected input mappings. If the corresponding
standard deviations were plotted as error bars in Figure 7,
they would be obscured by the dots representing the
means.

6. ANALYSIS OF RESULTS

The n-tuple method delivered competitive accuracy on
six of the data sets tested (Shuttle, Letter, Tsetse,
BelgianI, Chromo, SatIm), performed modestly on one
(DNA) and failed entirely on the other four (BelgianII,
Cut50, Cut20, Technical). Further experimental and theo-
retical analysis was carried out to explain the failures.

The available tuple-distance theory is not amenable to
treating overlap effects, even though Figures 1–3 (and
many like them) show these to be important. Therefore
we generated and inspected many detailed Hamming dis-
tance vs tuple score plots such as Figure 1 in order to
develop a qualitative impression of the validity of this
theory when there are many training patterns.

Ignoring overlap effects, a test pattern should be
assigned to the class of most of the training patterns
that lie nearer to it, in Hamming distance, than aboutL/n.
A glance at Figure 7 shows that the distribution of tuple
distances bears no systematic relationship toL/n, but
nevertheless it was found that the closest patterns did
tend to determine the decision, at least when the class
priors were roughly equal. Figures 7(a) and (b) show
examples of this, which was by far the most common
situation encountered. Figure 7(c) shows an error due
to overlap effects, abetted by a highly skewed prior.
The four troublesome datasets had highly skewed priors
and predominately showed this pattern, although the very
easy Shuttle dataset also had highly skewed priors.
Figure 7(d) shows a relatively rare situation in which
overlap effects rescued a pattern which would have
been misclassified, judging by its Hamming-near neigh-
bours. It would appear that although overlap effects are
quantitatively important, they tend not to alter the con-
clusion that the near neighbours determine the decision,
at least when the priors are relatively uniform.

Given that Hamming neighbours tend to determine the
classification outcome, it seems sensible to suspect that
test patterns in the four problematic data sets have a
shortage of good neighbours. It turns out that they simply
do not have enough neighbours at all, within the distance
scales relevant to RAMnet generalization. To generalize
properly, a test pattern must have at least one training
pattern within a Hamming distance of aboutL/n. Distrib-
uted evenly overA CMAC/Gray-mapped scalar attri-
butes, this is a scalar difference of about(a=n)21¹ a,
with the attributes scaled to lie between 0 and 1, as
explained in Section 4. Therefore each training pattern
can provide information about any test pattern which
falls within a hypercube of volume roughly(a=n21¹ a)A.
The number of such cubes required to cover the region of
attribute space where test data is likely to appear can be
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TABLE 2
Synopsis of algorithms with symbols used in Figure 6

RAMnets

(X) n-tuple recogniser

Discriminators
(') Back propagation in a one-hidden-layer MLP
(;) Radial basis functions
(K) Cascade correlation.
( ! ) SMART (projection pursuit)
( # ) Dipol92 (based on pairwise linear discriminators)
(*) Logistic discriminant
( B ) Quadratic discriminant
(() Linear discriminant

Methods related to density estimation
(a) CASTLE (probabilistic decision tree).
(b) k-NN (k nearest neighbours).
(g) LVQ (learning vector quantization)
(d) Kohonen topographic map
(«) Naive-Bayes (estimate assuming independent

attributes)
(z) ALLOC80 (kernel function density estimator)

Decision trees
(a) NewID (decision tree)
(b) AC2 (decision tree)
(c) Cal5 (decision tree)
(d) CN2 (decision tree)
(e) C4.5 (decision tree)
(f) C4.5 (decision tree)
(g) IndCART (CART variation)
(h) BayesTree (decision tree)
(i) ITrule (decision tree)



crudely estimated by approximating this region as a
hyper-rectangle with edge lengths given by the eigen-
values of the sample covariance matrix of the training
data. Any eigenvalues smaller than(a=n)21¹ a should be
rounded up to this value, because the covering cubes
must be at least this thick. The number of ‘‘generaliza-
tion hypercubes’’ required to cover the data region is
therefore roughly

∏A
i ¼ 1max(1,li =(a=n)2a¹ 1) for 1 , a

# n, where thel i are the eigenvalues. Figure 8 shows
this lower bound on the number of training samples
required, for each dataset studied, takinga ¼ 5 and
n ¼ 8 as in the experiments.

Aside from Technical and DNA, the problematic data-
sets stand out as several orders of magnitude more
deficient in training data than the others, some of
which are mildly deficient according to this crude esti-
mate. DNA is special in that its Boolean attributes were
treated as integers, so its data distribution will be highly
non-gaussian and therefore poorly described by the
covariance matrix. The Technical data set turned out to
be coverable by just one hypercube, according to this
estimate. Presumably then, each of its patterns looks
the same to the RAMnet, and this accounts for its failure.
Perhaps a non-linear rescaling of its attributes, such as
histogram equalization, would help. This possibility
remains to be pursued.

It is not possible to address the data deficiencies by
supplying more data, especially when several orders of
magnitude more samples are needed, but it is possible to
tweak the RAMnet parameters to enlarge the ‘‘general-
ization cubes’’. However, there is less room to maneuver
than one would like. To enlarge the cubes,n must be
decreased, but this risks degradation of performance
due to loss of high-order correlation information, as indi-
cated in Figure 6. Decreasingn also requires decreasing
a, if the constrainta # n is to be respected, keepingL/n
within the linear region of the CMAC/Gray mapping.
Low a values give less memory-efficient representations
of scalars, at any given resolution. Systematic experi-
ments varying the parameters did not produce significant
improvements on the four problematic data sets (or the
others). A more far-reaching improvement in the
algorithm is required.

7. CONCLUSIONS

Extensive experimental trials, on a scale uncommon for
any algorithm, were carried out with then-tuple classi-
fier. The fact that this was possible at all testifies to the
method’s speed, which derives from its simple principle
of learning by one-shot memorization of random
features. In six of the 11 datasets tested, this speed and
simplicity can be enjoyed without sacrificing classi-
fication accuracy relative to 23 other slower methods,
including the most popular neural network methods.
Clearly, then-tuple algorithm should be considered by
every neural network researcher before a more sophisti-
cated and therefore slower method is applied.

The theoretical tools available for then-tuple method
were reviewed and used to place it into context with other
algorithms. These tools were also used to explain what
went wrong on the four data sets which gave poor results.
One problem is that skewed class priors tend to be
problematic in a way that is difficult to quantify using
current theories of ‘‘overlap effects’’. A more funda-
mental problem is that one parameter, then-tuple size
n, controls both the distance-scales associated with
generalization behaviour, and the complexity of the
random features used to discriminate classes. For some
data sets it is not possible to find one setting suitable for
both of these considerations.

In spite of its imperfections, then-tuple method
demonstrates that its underlying principle, learning by
memorization of random features, is a powerful one. It
should be rewarding to develop the theory further,
especially by inventing practical approximations to
describe overlap effects, and to invent improved methods
which incorporate the underlying principle in a more
flexible way.
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