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Three or more probability distributions may be pairwise compatible but not collectively 
compatible, in the sense that they admit no common extensions. However, pairwise 
compatibility proves to be a necessary and sufficient condition for collective compatibility when 
the underlying system of distribution schemes is “acyclic”. If this is the case, then (and only 
then) do the distributions admit a product extension, whose expression can be computed by a 
simple algorithm* 

The question of the compatibility of a given set of discrete probability 
distributions is fundamental tcl Probability eory and important for many 
problems in Se-t&++ and in ~nf~~matiod ~c;ieacc. & aa iiiiiifl~ui~rt cxteGsi;ion of I---_ _ 3-‘,&_- 

well-known measure-theoretical results, one can prove the existence of common 
extensions of discrete distributions if their sample spaces are assumed to be 
“almost independent” [6]. Under this hypothesis, the problem has infinite 
solutions. However, if the extensions are required to have a “multiplicative 
form”, then the solution is unique. When the hypothesis of independence is 
released, an answer for the question of compatibility is not yet known. 

In this paper; we give a suEcient condition: if the distributions in question are 
e aad the system of their schemes is 6%cyclic’9, then they are 

Me. - -_- .Vk,,, Weed9 a stronger resuit is proven; acyciic ~~~~~~~~~ 

ions is collectively co 

erty is the possibility of c 
are generated using a 

lsevier 
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that a product extension is nothing but a maximum-entropy extension defined 
over an acyclic system of distribution schemes. Section 6 contains the proof that 
the acyclicity of the system of the distribution schemes is a necessary and 
sufkient condition for the existence of a common extension of pairwise 
compatible distributions. 

Let X be a finite set of discrete variables, called attributes, which have 
associated finite sets of values. An X-&@e (or a tuple, if X is understood) is 
defined by a combination of possible choices of values for each attribute in X. If 
Y is a subset of X arid x is an X-tuple, theu x(Y) denotes its Y-component 
obtained by discarding from x the values of the attributes not in Y. 

A discrete probability distribution is a tern (X, Q p(x)), where: 
X is a finite set of attributes, 
52 is a finite set of X-tuples, 
p(x) is a normalized function that associates a nonnegative number 

with each tuple in Q. 
e sets X and 52 will be referred to respectively as the scheme and the space of 

the distribution. enceforth, it is understood that 52 is the Cartesian product of 
the value-sets associated with the attributes in X. The subset W of Q, defined as 

will be referred to as the characteristic relation of the distribution. 
n the following a discrete probability distribution will be specified by assigning 

its distribution function. Given a distribution p(x) over X, we can construct a 
“marginal” distribution for every nonempty subset Y of X, simply taking the 
restrktioro of p(x) to Y: 

p(y) = x p(x). 

nhwiw compatible if the rest+;- 
r-” ---- :ssaVI~~ of pi(Xi) and pj(Xj) to the set of the 

atible if there exists a common extension, that is, a distribution 
. . . , p&J as its marginals. 

ise co atibility is not s 
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r Let A, and C be binary attributes. e second-order distributions 

turn out to be pairwise compatible, but not collectively compatible. In fact, the 
existence of a common extension, p(abc), would give rise to the followi 
contradiction: 

0.5 =p*(Ol) =p(ool) +p(Oll) 

1) + P(wl+ [PW) + Pwo)1 
=p3(01) +p#ll) = 0. 

Testing the compatibility of a distribution system is equivalent to 
feasibility of a linear-programming problem, known as “multi-index transporta- 
tion problem” (see Section 6), for which the existence of necessary and sufficient 
conditions for feasibility is still an open problem. However a number of necessary 
conditions, in addition to the obvious conditions of painvise compatibility, are 
known [!I]. Among these, we want to mention the following set of inequalities, 
known as the Schell cuditions: 

where xi is the &component of X. From the ScheIl conditions it follows that the 
characteristic relation of any extension of p&), . . . , p&J is a nonempty 
(proper or improper) subset of the join, R*, of their characteristic relations, 
defined as 

where R2 ic the character%& relation of pf(~$! . . a___ a‘# _t ---- 

necessary condition for p&x~), . e . 9 ps(xs) to 

So, the nonemptiness of R* is a 
be collectkely compatibie . 

expiains wfiy the &si&utiows of Exa~s_i@ 1 zrc i~~~q&te. $&==~, +e 

characteristic relations of collectively compatible distributions have to answer the 
requirement of so-called “collective consistency” [ 11, which is a stronger 
condition than the join’s nonemptiness. Now we introduce the ion of collective 
consistency as well as the notions of pairwise consistency a 
which are fundamental to relational data theory [I]. 

em of schemes S = each Xi arbitrariiy choose a 
e say that the relations 

collectively consistent if there exists i) reiatio over X z L;l Xi (ca::ed an 



F. M. Malvestuto 

“extension” of R 1, . . . , I?,) such thct its projection onto Xi coincides with 
for all i; 
~Qi~~e co~~te~t if the pr~~jections of Ri and iii onto their common a~~~~~~~~ 

are the same, for all i and j; 
independent if the cardinality of their join is equal to the product of their 
cardi~a~ities. 

is easily seen that the p~~~~ise/collective compatib~ity of oven dist~butions 
implies th.e pairv&eJcollective consistency of their characteristic relations. It 
should be noticed that if the relations RI, . . . , Rs are collectively consistent, 
the:a tkk join I?* is the’ extension with the largest number of tulles. So, in 
order to test the collective consistency of given relations, we have to compute 

mpare each relation. with the homologous projection of the 
matc~t , then and only then are they ~lle~iv~~ly insistent. 

The following example demonstrates that the pairwise compatibility of given 
stributions and the collective consistency of their characteristic relations are 

not su~cient to assure t~~eir ~l~~ct~e ~rnpa~b~~ity. 

Let A, B and C be second-order attributes. The bivariate 

AC Pz BC P3 

00 0.1 00 0.3 00 0.4 
01 0.4 01 0.2 01 0.1 
10 CM 10 0.2 IO 0.1 
I’, _$I 1 1. . IP 0.3 I.1 0.4 

are pairwise compatibk and such that the join of their characteristic relations is 
no~ern~~. evertheless, they are incompatibk. In fact, the existence of an 
extension, ~~~~c~~ wound gke rise to the following contradi~ion~ 

0.4 = p1(01) = p(O10) + p(O11) 

e [Pwo + Puwl+ [Pow -o- PW)l 

=p&O) +pz(Ol) = 0.3. 

In Section 6 we shah trace those cases where pairwise compatibiiity is su%cient to 
assume collective compat~bili~~~ 

system of schemes. e att~butes are usually put in 
in more than one scheme; 
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S’, of the red 
be referred to as 

of S. The system S is called acyclic if the reduced system S’ 
is the case, the order where the schemes in S are one by one 
is called a peqect reduction ordering (p.r.0.). 

The scheme system S = {ABC, A 
reduces to in empty set. An 4fective p.r.o. is: BCF, ACE, A 

Scheme 
system Step 1 Step 2 Step 3 

Reduced 
system 

ABC ABC ABC ABC 
ABD ABD ABD 
ACE ACE 
BCF 

As the reduction procedure is a polynomial-time algorithm [f j, testing 
?_E acyciicity is an easy task (a linear algorithm iall be found in is]). 

Basic properties of acyclicity: 

1. Running intersection property [l] 

A scheme system S is acyclic if and only if there is an ordering X1, . . . , X, of 
its schemes such that for each i > 1 there exists j < i such that 

Such a permutation will be referred to as a mnning intersection ordering (r.i.0.). 
The intersections such as ,which represent t 

s in S, are nothing but t 
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A scheme system S = {Xl, . . . , X,] is acyclic if and only if every system of 
pairw.OW u ien consistent id;itiOllS OK% S is also collectiveiy consistent. 

dditional properties of acyclic systems can be found in [ 11. 

s 

t {Pl(~l)v l ’ l 
, ps(xs)} be a system of distributions over S = (XI y . . . , Xsj. 

and X = Ui Xi. If the distributions are coilectively compatible, consider the set of 
all possible extensions p(x). 

t is well-known that the two following definitions of the extension p*(x) of 

P&13, l * l , ps(xs) are equivalent [4]: 
(a) p*(x) is the extension, uniquely determined as the one with the largest 

Shannon “entropy” 

(b) p*(x) is the extension, uniquely detebrmined as the one factoring in the 
form 

P*(X) = aI(x,) 9 9 9 a&).. 

where the 
constraints: 

implicit functions ai’S are determined to satisfy the marginal 

p*(Xi) =pi(Xi) (i = 1, . . . 9 S). 

urn-entropy extensions 
Proportionai Fitting 

by an iterative prccedure, called . 
v 41 

The following theorem stresses the connection ‘that there exists between 
entropy maximization and relational join. 

y cjrtension can be written as 
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where 

the su ation being exterded over ali the values X1, . * . , Xi-11 Xi+19 . . . , xs 

consistent with q. So, pi(Xi) vanishes if a&) vanishes. This implies that the 
c~a~acte~stic relation subset of the characteristic re~at~~~ of 42&i) 
and, therefore, that RS is a subset sf the rkracteristic 

the other hand, as state above, the Shell cenditiows 
c~aracte~stic relation of any extension of p&), . . . , ~~(~~) is a subset of the join 
of R 1, . . . , & Hence the c~a~acte~~tic relation of ~*(~) must piscine with the 
join of RI, . . . , R,- El 

The maximum-entropy extension takes a very simple expression in the case that 
X l, . . . , X8 form a partition Qf X = lJi Xi- 

Let p(x) be an arbitrary extension of pl(xl), . . . , pl(xS). In information 
theory the so-called “mutual information” [7], defined as 

Wj%@i)l- Hb(x)31 
i 

is knit to be a nonnegative quantity. Therefore, we have 

H[&)l s C ff[Pi(xi)] = Wp*Mi. •J 
i 

system {p&), . . . , p&)) of ~~~i~~~u~ a 
extension if and only if their characteristic relatbns are i~~epe~~e~t. 



pi > 0 for all i, the chara~~e~sti~ relation of p(x) has the same cardinality as 
the Cartesian product of the ~hara~te~stic relations of p&j, . . . , p&j. Cl 

Let S={&,.. . , X,} be a system of d&ribution schemes and 
X = Ui Xi. kach system of distributions over S admits a multiplicative extension if 
and only if the schemes in S are pairwise disjoint. 

It is a consequence of Theorem 3 by the light of the fact that, the pairwise 
disjointness of the schemes in S is a necessary and sufficient condition for the 
independence of each system of relations over S. Cl 

We have seeu a case where the computation of the maximum-entropy 
extension is easy, it being enough to take the product of the component 
dist~butions. 

We are now interested in trading the general case where the ~nctio~~al 
expression of the m~mum-entropy extension can be dete~iued a priori, that is, 
without explicitly knowing the compozlent distributions. Such a property is 
desirable for we avoid resorting to the l[PFP when computing maximum-entropy 
extensions. We shall prove (see Theorem 7) that this is the case when the system 
of distribution schemes given is acyclic. 

5, Given a scheme system S = {XI, . . . , X$} 9 let & be the set of unique 
attributes of Xi and I$ =: Xi - Zi be the set of its common attributes. Let X = Ui Xi 
and Y = Ui I!;. If {P~(xJ, . . . , p&j} is any system of collectively compatible 
distributions over S, the maximum-entropy extension p*(x) can be written as 

p*(x) = ~i(xi~~Pi(Yi)lp *(Y h 

where p*(y) is the ~irnurn-en~o~y exte~ion of pl( yl), . . . , ps( ys), being ~~(y~~ 
the res~*c~on Of pi(Xj) t0 yi. 

t us take the implicit form of the maximum-entropy extension 

p*(x) = a&) . . l a,(x,). 

nforcing the marginal constraint pi(ai j = p *(=ii), Gus &~&II 

pi(xij = a&i jbi(yi), 
where 
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one has 

PitYi) = QiiYi)ci(Yi)9 

where 

Combining the expressions of pi(X,) aad pi 

@(xi) = [Pi~.~i)lPi(Yi)lci~Yi). 

Hence 

P*(x) =’ [n Pi(xi)lPi(YiJ]c(Y 1, 
i 

where C(y)= ni Ci(yi). 

It remains to be proven that c(y) coincides with the maximum-entropy 
extension pyyj of pl(yl), . . . , ps(ys). On account of the fact that by definition 
c(y) has a factorized form, it suffices to check only that c(y) is a common 
extension of pl(yl), . . . , pJy,), that is, for all i, 

PitYi) = C dY)9 . 

the summation being extended over all y with &component equal to yi. But, this 
follows from the fact that pi(yi) must coincide with the restriction to x of 

Pi&i) 
p*w= [9,;i;;r C(Y). I 0 

Note that (1) is a special case of (2). 
The following theorem is an extension of Theorem 5. 

eorena 6. Given a cyclic scheme system S = {Xl, . . . , X,}, let { Vh} be the set of 
the reducing factors of S, and S’ = (?&] be the reduced system. If 

~Pl(xl), e l . , pS(xS j) is any system of collectively cc-mpatible distributions over S, 
the maximum-entropy extension p*(x) can be written as follows 

p*(x) = 
\ (31 

h k 

where p’(w) is the maximum-entiropy extensiorz of the dktri5ution systems 

~Pkb-kb 
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is taken by applying to Sm the two above operations of deletkm and re- 
duction. That is, if *:I is the subset of #:I formed by its common attributes, 
then Sm+I is obtained by deleting the redundant elements of the set { YirI}, so 
that Im+I c Im. If we denote by {qzj} the set of such redundant elements, one 
has 

I} be the last nonempty reduction. If the system S is cyclic, then 
each attribute of fll appears in two or more of its component schemes. Then, 

apply eorem 5 repeatedly n - 1 times. Taking into account that { pi,(yizl)} and 
{p. 

lm+l 
@!““I)} have the same maximum-entropy extension p*(~[~+~l), we find h+l 

Combining these results, we have 

i 

nr Pim+,(x!~~“) 
im+l p “(x’“‘) 

m=l,...,n-2 n PiJUt n ai.-,(Y!~_l”) l 

Irn iti- 

s i~:~“~ is a subset of { Ezl}, then each fraction 

reduces to 

1 
I Jm 

ce 



Existence of exmsions and product extensions 

f { Vh} is the set of the interaction factors of the scheme system S, we have 

i.dentical to (3) after setting 

IIn virtue of this theorem, in a11 the cases where the underling scheme system is 
redu~b~~ (S # S’), we can the amputation cost of the . 

extension by app~~ng the to the dist~but~ons ~~(~~) r 
original distributions JJ&). eover, in the case that the schem 
acyclic, the following theo s that we need not resort to the 
the maximum-entropy extension has a closed-form expression. 

7. Given an acyclic scheme system S = {XI, . . . , X,}, let { Vh} be the set 
$educ~~~ factors of S. If (PI(q), . . . , p,(q)) is any system of collectively 

~o~putible d~~.butio~ over S, the ~~~~~u~-e~~opy exter- ;ion p*(X) can be 
written as follows 

i I 
(5) 

The formula (4) hokk ak0 ?f S is acychc. Moreover, Sa = ( 
partition of A?] and, therefore, by Theorem 4 

Then, the fo~u~a (4) reduces to (5). Sa 

In Se previous section, we were able to give a closed-form expression to the 
m~~~~umae~tropy extension of any acyclic system of collectively compati 
distributions. Sn this section, wc intr uce a class of ~~ctio~a~ expressions, 

call ~NM&X~ fo ruct extensions of given 

distributions. 
characteristic property of acy??k 
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system S= {X,, . . . , X,), consider a functional 

f(x) = 
i 

expression such as 

where f(X), pi(Xi) and ji~~ tVh) are distribution symbols and each Vi is a suitable 
(nonempty) subset of a certain Xi. We say that f(X) satisfies the “unity sum 
property” if the following procedure, which we call simplification procedure, 
terminates with success. 

two operations to the functional expression f(X) re- 
ither can be further applied. 

N) Delete all the unique attributes of an extreme scheme. If Xi 
an empty set, then delete the distribution symbol pi( 
CATION) Del&e pi(Xi) and Ph(Vh) if Xi = Vh. 

If the algorithm reduces f (X) to nothing, we say that it terminates with success. 
If f (X) is a functional expression that satisfies the unity sum property, then it 

does denote a proper distribution over X, when given J!&xl), . . n A- I}. ’ 9 Ys\*s/ 

. The functional expression 

satisfies the unity sum property. 

The functional expression 

is said to satisfy the marginal constraint f (Xi) = pi(Xi) if the following procedure, 
W 1 selective simplification procedure, terminates with success. 

ns to the functional expression f(X) re- 

DELETION) Delete all the unique attributes of an ex- 
reduces to an empty set, then delete the 

d Ph(V’) if Xj = Vk. 

es wi uxess. 
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i 

is called a ~~~d~~~ fade over the scheme S , if it satis~es the set 
Of ~~rg~al ~nstrai~ts f (Xi) =pi(XJ f4X ;nll e case, each sys’rem of 
collectively compatible distributions over S a&nits an extension that has f(X) as 
its functional expression. Srrich extensions will be referred to as pmdwt 

tw?mions. 
note that the ~n~iona~ expression of Example 4 is not a product form 

since it does not satisfy the marginal ~nstrai~t 

f(ABC) =p,(ABC). 

however, the following ~nctio~a~ expression defined over the same scheme 

is a product form. 
The fol!ow~ng theorem states a fundamental property of product exte~sious. 

Product extensions maximize Shannon's mtrop~ 

Let f(X) anal p(X) be respectiveiy a product exibt=asiitn ad an); &ki 

extension of the d~st~but~o~ system ~~~(~~~~ :’ . . ) ps[x,))- Using the wel~~~u~wn 
information-theoretical inequality [7] 

we have 
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(ii) tire number of Vj,‘s is less or equal to s - 1, 
(iii) each v, ik is subset of two or more &Yi’S. 

The statement (i) is an immediate consequence of the unrqueness of 
maximum-entropy extension. The statement (ii) follows from the successful 
termination of the simplification procedure. As to (iii), for the simplification 
procedure to terminate with success it is necessary that each Vh be a subset of 
some X”. Now, assume that (iii) is false. Then, there is a V’,& that is subset of only 
one scheme Xi*. It is evident that in such a case the selective simplification 
procedure cannot terminate with success, since the distribution symbol p,,.(V&) 
cannot be deleted. Cl 

The following theorem states that acyclicity is a necessary and sufficient 
condition for the existence of product forms. 

ea I.@, A scheme system admits a product form if and only if it ik acyclic. 

(if) Let S={Xp... , X’} an acyclic scheme and (V’} be the set of its 
reducing factors. Then, the functional expression associated with S, 

f(x) = II Pi(xi) /II Ph(h)9 
i 1 h 

is a product form, that is, it satisfies each marginal constraint f (Xi) = pi(Xi). TO 
QBP it it ic cmlffi&amt tn rmm thm r?rale-~&ra &mnl+~tinn nrnmachr~ nrmrdino tn 9 LFY” 1.) 1s .” “U.a,Y.WS.C l ” 1U.a Cl.., UY*“W&.V” UAAAAYAA .“U&.“a. y.“-YY.w wwwv.-‘^‘b Wm. I 

p.r.0. whose last element is Xi. 
(only if) It suffices to prove that if pi(Xi) is deleted by simplification, then also 
can be deleted by reduction. Now, this is an immediate consequence of the 

fact that by TheoreLl 9 the vh’s of a product form are subsets of @to or more 
schemes Xis. •I 

A general way to test the compatibility of given distriMSons is solving an 
roblem of linear programming, whose variables are the values of a 

etical distribution defined in the Cartesian product of Qr , l i c , as: 
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the solution, n(x,, . . . , x,), of the algebraic system 

I c ( Jrxp..., X,) =pi(X,i (i = 1, . . . , S), 

I ( Jr Xl9 . . . ,x,)30, 

th,at mini&es the “inkasibility form” 

W= 22 c X,9 . . . , X&(Xlr * l l 9 X,), 

whose c-coefficients are defined as follows 

c(x, *..*,xs)= I 0, if (xl, . . . , xS) is consistent, 
1, else. 

Note that w measures the probability of the subset of * formed by all 
inconsistent vectors. Now, let n(x,, 
symplex algorithm. If the minimum 
vectors have a zero probability. 

l l 9 x,) be the solution computed by the 
value of w is zero, then all inconsistent 
So n defines a proper extension of 

where (x1, . . . , x, j is the representative vector of x. Ikit, if the minimum of w is 
positive, then no extensions exist. IIowever, it is not always necessary to resort to 
tb_e symplex algo&bnn for A=+~-&&3 .AVCV.~98~l~~L~g the compatibility of given distributions. 
For example, in case of partitions compatibility is always out of the question. 

1. Let S = (Xl, . . . , X,) be a scheme system and X = ui Xia The 
condition are equivalent: 

0 i 
(ii) 

. . . 
( ) 1n 

S is a partition of X, 
there exists a product extension of each system (p,(x,), . . . , p,(x,)) of 
distributions over S, 
there exists a common extension of each system (pl(xl), . . . , p&J) of 
distributions over S. 

The implication “if (i), then (ii)” follows from Theoreai 2. 
“if (ii j 3 the!l (iii)‘9 is trivial. 

Finally, in order to prove the implication ‘&if (iii), then (i)“, by way of 
contradiction assume that it is false. Then, there exists a scheme 
S=(&*..., X,} that enjoys the property (iii) even if it is not a partition. 
(s=(X,,.. . , X,} is not a partition then in * there is a vector (x T, . . 
does not correspond to any X-tuple, that an inconsistent vector. 
following distributions with schemes X1, . . . , X,: 

1, 
Pi(%) = (0, 

if Xi is equal tQ XF, 
else. 
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Then, from the property (iii) it follows that the characteristic relations of 
PlW9 l l * 9 

p,(xJ, that is, the vector (XT, . . . 9 X3 is collectively consistent. 
owever, we showed that (XT, . . . 9 x,*) is not consistent. This contradiction is the 

proof that the property (iii) holds for partitions only. Cl 

At this point, we are able to answer the original question of compatibility. The 
f~~lowi~~ theorem states that the pairwise compatibility of given distributions is a 
necessary and sufficient condition for their collective compatibility if and only if 
the system of the distribution scheme is acyclic. re the key point is that a 
product form is made up of the distributions in question and a certain set of their 
marginals. Therefore, for a product form to represent an extension it is sufficient 
that the distributions in question agree on those marginals, that is, be pairwise 
compatible. 

. Let S={X,,... , X,) be CL scheme system end X = Ui Xi. The 
following conditions are equivalent: 

(i) S ;is acyclic, 
(ii) there exists a product extension of each system {pl(xl)9 . . . 9 pS(xS)} of 

pair-wise compatible d~t~~bu~o~ ouer S, 
(iii) there ex&~ a common extension of each system (P~(x&~ . . . 9 pg(xS)) of 

painvise corn~a~b~e d~t~bu~o~ o&r S. 

The ~plication “if (i), then (ii)” follows from the observittion that 
m 7 continues to hold even if the hypothesis of collective compatibility is 

replaced by that cf pa&wise ~mpatibi~ty, which is enough to make the product 
an extension of the marginals given. 

“if (ii), then (iii)” is trivial. 
Finally, the implication “if (iii), then (i) is proved by contradiction. Assume 

there exists a cyclic scheme system S = {XI, . . . 9 if”} such that any system of 
pairwise compatible distributions ~lth SC!SXII: -X; . . . . X, admit a corrmon 
extension. Now, since the scheme system is cyclic, by virtue of the above- 

elational Consistency perty there exists a system of relations 
that are pairwise consistent but not collective1 consistent. On the 

9 . . . 9 p,(xJ} is a;rry system of airwise compatible 
dist~but~ons ba~ng bc, 9 . . . 9 rustic re~at~ons~ then there exists 
a common extension, whit re collectively consistent. This 

ise c~rnpat~bi~~~ for collective 
s not apply to any cyclic scheme system. Cl 

es 
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