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Abstract

An interpretation of the Cerebellar Model Articulation Controller (CMAC) network as a member of the General Memory Neural Network
(GMNN) architecture is presented. The usefulness of this approach stems from the fact that, within the GMNN formalism, CMAC can be
treated as a particular form of a basis function network, where the basis function is inherently dependent on the type of input quantization
present in the network mapping. Furthermore, considering the relative regularity of input-space quantization performed by CMAC, we are
able to derive an expected (or average) form of the basis function characteristic of this network. Using this basis form, it is possible to create
basis-functions models of CMAC mapping, as well as to gain more insight into its performance. The developments are supported by
numerical simulations.q 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

ˆ estimate operator
i i norm
i i2 Euclidean norm
| | absolute value, city-block norm
d e ceiling operator:dxe � minnn $ x for integern
b c floor operation:bxc � maxnn # x for integern
Ak memory address (function) for thekth GMNN/

CMAC node
dA fractal dimension of a chaotic attractor
D dimension of the input space
E expectation operator
f(x) function to be approximated, unknown mapping
g(x) CMAC mapping
k (u,v) basis (kernel) function, GMNN/CMAC proximity

kernel
K the number of nodes of a GMNN/CMAC, CMAC

quantization constant
L range of a (scalar) quantizer
m (x) activation function
o length of a scalar (global-level) quantization cell
V input space
p (f,g) error measure/criterion
qk scalar quantizer associated with thekth network

node

Q quantization matrix
r (u,v) GMNN/CMAC address distance
R real space
R

D D-dimensional real space
T number of training-set samples
U length of a scalar (nodal-level) quantization cell
wk(x) weight selected byx at nodek
y scalar point in the output space
x, x point in the input space

1. Introduction

The Cerebellar Model Articulation Controller (CMAC)
was introduced by Albus (1971, 1975a, 1975b, 1979)
who, concurrently with Marr (1969), developed a functional
model of the mammalian cerebellum. The model takes
advantage of the high degree of regularity present in the
organization of the cerebellar cortex and offers numerous
advantages from the implementational point of view.
Furthermore, the network is inherently dependent on its
adjustable parameters in a linear way (which makes it attrac-
tive where the training is concerned), and so well-under-
stood linear algorithms (such as least mean squares
(LMS)) are applicable. The CMAC network has become
especially popular in the areas of robotics and control
where the real-time capabilities of the network are of parti-
cular importance (Miller et al., 1990; Tolle and Ersu¨, 1992).
Although a large portion of the reported results concerning
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CMAC focuses on employing the network in practical appli-
cations, several more rigorous theoretical analyses of the
CMAC mapping have also been considered (Parks and
Militzer, 1989; Cotter and Guillerm, 1992), and some
constraints on the classes of nonlinear mappings realizable
by this network have been identified (Brown et al., 1993).

It has also been pointed out (Kołcz, 1996) that CMAC
belongs to a wider class of neural network architectures,
which has been recently introduced as the General Memory
Neural Network (GMNN) (Kołcz and Allinson, 1995). In
particular, networks of this class can be interpreted as parti-
cular variants of basis function architectures (e.g., radial
basis function (RBF) (Broomhead and Lowe, 1988; Powell,
1992) and kernel regression (KR) (Ha¨rdle, 1990; Specht,
1991) networks), which provides additional insight into
the properties of their mapping. In (Kołcz and Allinson
1995), we suggested that networks of the GMNN type
whose structure is particularly regular could be modelled
by basis function networks, with the basis function being
an estimated (or average) version of the basis characteristic
of the particular GMNN variant. In this paper, we propose
such a representation of the CMAC network and demon-
strate its usefulness in predicting and analysing the network
behaviour. The paper is organized as follows: In Section 3
we introduce the general concept of CMAC mapping, parti-
cularly in the context of its equivalence with the GMNN
architecture. Section 4 discusses the input-space quantiza-
tion performed by CMAC, with emphasis being placed on
the case of uniform quantization; standard and modified
versions of CMAC encoding are considered. In Section 5
the expected form of the CMAC address distance is derived
(for the uniform quantization case) and compared with
experimental data. Section 6 provides performance compar-
ison between the CMAC network and its basis-function
model on a case problem of chaotic time-series prediction.
The paper is concluded in Section 7.

2. CMAC and its generalizations

2.1. General structure of CMAC mapping

The function of CMAC has its roots in the operation of a
biological cerebellar cortex and has an appeal due to its
intuitiveness and simplicity. Essentially, CMAC covers
the input space with a number of overlapping ‘sensors’ or
‘association cells’, such that each sensor is active for points
within a certain small region of the input space and a fixed
number ofK sensors is activated by any given input (see Fig.
1). Any particular input to the network generates a response
in the form of the combination of the sensors activated by
this input. In fact, the CMAC architecture incorporates a
linear array of memory cells (i.e., weights), with the sensors
playing the role of address decoders. Thus, any input point
activates exactlyK memory cells, whose contents are then
combined (e.g., by summation) into the output response of

the network. The set of activated sensors is unique for points
within a small region of the input space and, due to the
overlapping arrangement of the sensors, points lying close
to each other will lead to similar responses of the CMAC
network.

More formally, the CMAC network represents a multi-
variate nonlinear mapping

g : R
D . V! R; �1�

which domain is given by a compact (usually hyper-rectan-
gular) region,V, of the D-dimensional real space,RD,
whereas the output range is given byR. Typically, the
mapping produced by CMAC is piecewise constant.
Vector-valued variants of the network can be considered
as a direct extension of the scalar-valued case and will not
be treated here.

The objective of CMAC mapping is to approximate a
given continuous and smooth function,f, so that the
distance,p (g, f ), betweenf and its estimate,g, is mini-
mized. Of course, there exist numerous neural network
architectures (and other nonparametric regression estima-
tors) that can be used as function approximators. CMAC
belongs to a distinctive class of architectures that base
their operation on multiple quantization of the input
space, with the distinguishing feature of the CMAC network
within this class being the particular way in which the quan-
tization is performed. CMAC can be considered to consist of
a single layer of memory locations, an address-generating
unit and a summing unit, where for anyx [ V, K distinct
memory addresses are generated (withK being a fixed
number, usually much smaller than the total number of
available memory locations). The contents of the addressed
memory locations (i.e., weights) are subsequently summed
to provide the overall network response tox. The particular
form of memory addressing (which will be described later in
the context of CMAC quantization) employed by CMAC
ensures that input points close to each other inV will
share some memory locations, whereas points that are
distant in the input space result in the selection of unrelated
sets of memory weights. Thus defined, CMAC is character-
ized by a piecewise-constant response, although modifica-
tions to the basic architecture have been proposed (Lane et
al., 1992), where the addressed weights are additionally
modulated by external basis functions (e.g., B-splines),
which increases the smoothness of CMAC mapping.

It can be seen that the discrete nature of address genera-
tion present in CMAC mapping imposes a form of quantiza-
tion on the input space, wherebyV is partitioned into
adjacent disjoint regions, with points in a single region
addressing the same set ofK weights in CMAC memory.
In fact, the principle of implicit input-space quantization
present in CMAC mapping, combined with the constant
number of weights selected for any response computation,
can be extended to a larger class of architectures (i.e., the
GMNN), which may differ with respect to the particular

A. Kołcz, N.M. Allinson / Neural Networks 12 (1999) 107–126108



form of quantization (Kołcz and Allinson, 1995). The
general framework of the GMNN provides insight into the
operational principles of networks of the CMAC type and
allows the establishment of links between networks of this
class and basis-function architectures.

To take advantage of the GMNN interpretation of CMAC
mapping, we briefly outline the concepts of the GMNN
architecture before the structure of CMAC quantization is
discussed in more detail.

2.2. The GMNN framework

In many practical realizations of basis-function networks
(e.g., RBFs), the size of the basis set may pose serious
computational challenges (in terms of achieving ‘reason-
able’ training and response times) when the number of
basis functions is large (e.g., when there is one basis func-
tion per training point and the training set contains many
elements). One of the reasons for such situations is the
infinite (or unbounded) support of popularly used basis
functions (e.g., Gaussian). Considering that the ‘mass’ of
basis functions is usually well localized inV, many of
them will produce near-zero values for any given evaluation

point, with only a small portion affecting network output.
Hence, the process of evaluating all the network’s basis
functions is superfluous and hinders network performance.
Several approaches to deal with this problem have been
proposed. In particular, the number of basis functions parti-
cipating in any computation can be reduced to those which
are significantly different from zero at the current evaluation
point (Moody and Darken, 1989), or alternatively, only the
basis functions that are nearest to the current evaluation
point are taken into account. Other methods of dealing
with large training sets involve data clustering (Specht,
1991) and subset selection (Broomhead and Lowe 1988)
(where only a small portion of the possible set of basis
functions is used to define the network).

The GMNN represents a formalization of an approach
where only (and exactly)K basis functions participate in
any network-output computation. This requirement makes
the support (or receptive field) of every basis function finite,
and inherently imposes aK-fold quantization on the input
space. The latter property stems from the fact that (by defi-
nition) exactlyK bases overlap (or are ‘active’) at any parti-
cular point inV. For each of theK ‘active’ functions, it is
possible to identify a set of neighbours (i.e., basis functions
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Fig. 1. Outline of the CMAC mapping. Every point in the input space ‘excites’ a fixed number (i.e.K) of association cells (K � 3 in this case), which in turn
specify the physical memory locations containing adjustable weights. The weights can be simply added to produce an output. As illustrated here, points close to
each other in the input space (i.e. points A and B) will share more association cells than points distant in the input space (i.e. points A and C, or pointsB and C).
Grey boxes in the figure indicate the association cells and memory weights selected for point A. In principle, the space of association cells (memory addresses)
can be much larger than the actual size of the physical memory (weights).



that become ‘active’ when the support boundary of the
current basis is crossed), which are adjacent but nonoverlap-
ping with this particular basis. By repeating this argument
recursively, it can be seen that each member of the original
K ‘active’ basis functions has associated with it a set of
functions that partition the input space into an arrangement
of adjacent but nonoverlapping cells (where a cell is equiva-
lent to the support region of one basis function), thus defin-
ing a quantization overV. Consequently, the whole network
definesK individual quantization layers, where it is assumed
that no two cells belonging to different layers can be iden-
tical. Note that when the individual quantization-cell
arrangements are superimposed, a new (global-level) quan-
tization ofV results, with resolution higher than any of the
K individual layers (see Fig. 2). In this way, by varying the
form of the individual quantizers and their number,K, the
effective resolution of input quantization can be controlled.

Thus the GMNN can be defined to consist essentially of a
memory layer (divided intoK units), an address-generating
unit, which generatesK addresses for anyx [ V, and an
output unit combining the contents of the selected locations
into the final network response (Fig. 3 illustrates the GMNN
architecture). The selected memory weights are normally
modulated by the network’s basis functions, although the
basis functions of a GMNN do not have to be necessarily
‘graded’ (i.e., variable within their support), but can also be
‘flat’ (i.e., constant—for example, equal to one—within
their region of support). Direct correspondence to CMAC
mapping can be clearly seen.

One of the main properties of the GMNN architecture is
that, even in the simple case of ‘flat’ basis functions (which
is also characteristic of the CMAC network), it is possible to
identify a set of (alternative) basis functions associated with
the network, where the basis functions are ‘graded’
(although they may have a piecewise-constant form) and
are inherently dependent on the type of quantization
performed by the network.

To understand the nature of this alternative basis-function
description, let us first examine the operation of a GMNN
when the basis functions—according to their original defi-
nition—are ‘flat’. In such a case, any input to the network
results in a selection ofK ‘active’ quantization regions (one
for each network layer, or node), which in turn point atK
distinct locations in the network’s memory layer. The
contents of the selected memory locations are subsequently
summed (or averaged) to yield the overall network output

g�x� �
XK
k�1

wk�x� or g�x� � 1
K

XK
k�1

wk�x� �2�

wherewk(x) denotes the weight selected in thekth memory
node byx. With certain modifications to the format of the
memory contents, other forms of network response are also
possible—see (Kołcz and Allinson, 1995) for details. It can
be seen that theK network quantization nodes represent in
fact K address generating units, which select appropriate
memory addresses for the given network input. In this
form, the GMNN can be interpreted as a generalization of
a look-up table, whereK locations are accessed at a time,
instead of just one. More flexibility is introduced when the
basis functions are ‘graded’. In such a case the memory
weights are additionally modulated by the basis functions,
which leads to network responses of the form

g�x� �
XK
k�1

wk�x�mk�x�
or

g�x� �

XK
k�1

wk�x�mk�x�
XK
k�1

mk�x�
�3�

wherem k(x) denotes the basis function associated with the
cell selected byx at nodek. Note that each cell can have a
distinct basis, so not only the value but also the functional
form of m k(x) is dependent onx. To avoid confusion
between various interpretations of basis functions discussed
in this paper, the basis functions associated with the quanti-
zation cells will be termed activation functions. Note that as
long the address-generation part of the network mapping is
fixed during its operation, the network response (as defined
by Eqs. (2) and (3)) is linear with respect to the adjustable
parameters (weights), with clear advantages as far as
network training (i.e., minimization of the error function
p ( f, g)) is concerned.
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Fig. 2. A superposition of distinct low-resolution quantizations leads to a
global VQ of a higher resolution.



The response of a GMNN is inherently local, as it
involves only theK activation functions that are non-zero
for the current evaluation point. The region of the input
space given by the union of the support regions of theK
activation functions effectively provides a neighbourhood of
influence,N(x), for a given input point,x—that is, the
network response ofx can be affected only by the points
in V that lie within N(x). Alternatively, it can be said that
only those input points that share at least one quantization
cell with x can have their response related tog(x). This
property can be quantified by the address distancer (x, y)
and proximity k(x, y) functions, which are equal to the
number of distinct and identical addresses, respectively,
generated for the argumentsx andy.

Let Ak(x) denote the address selected forx in the kth
memory node (corresponding to thekth quantization
layer). The address distancer (x, y) is defined as (r : V2!
{0,...,K})

r�x; y� �
XK
k�1

�Ak�x� ± Ak�y��: �4�

The address proximity,k (x, y), betweenx andy is given by
the number of nodal addresses they share (k :V2! {0,...,K})

k�x; y� �
XK
k�1

�Ak�x� � Ak�y�� � K 2 r�x; y�: �5�

Note that the address proximity function (proximity func-
tion, for short) quantifies only thepotential similarity
between the network response atx and y, as it does not
take the memory weights into account. It was shown
(Kołcz and Allinson, 1995) that under a general class of
error-correcting learning rules (including the popular LMS
algorithm (Widrow and Stearns, 1985)) the response of a
trained GMNN can be expressed as

g�x� �
XT
t�1

Dtk�x; xt� �6�

where the parameter set {Dt} T
1 is determined during network

training. In particular, the analysis presented in (Kołcz and
Allinson, 1995) considers an iterative update rule where at
each (e.g.,jth) iteration step one (saytth) training point is
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Fig. 3. GMNN architecture: steps involved in the network mapping are indicated. The networks consists ofK quantization nodes, each having a number of cell-
selectors (depicted as theS(x)-blocks). In each case, the quanitzation cell selected by the input is assigned a unique identifier (depicted asI(x)), which is then
converted to a memory address (depicted asA(x)) used to access the contents (depicted asW(x)) of the module’s memory. An equivalent process is carried out
for each quantization module of the architecture and the contents of the addressed memory locations are combined to produce the network output.



presented to the network, and all (K) weights contributing to
the network output for this input are subsequently updated
by the same amount:

wk ← wk 1 Dt
j �7�

whereDt
j is proportional to the instantaneous error produced

by the network for thejth presentation of thetth training
point. As shown in (Kołcz and Allinson, 1995), once the
training process is complete, the basis function parameters
{Dt} T

1 of Eq. (6) are given by

Dt �
XTj

j�1

Dt
j �8�

whereTj is the number of times thetth training point has
been presented to the network during the learning process.

Eq. (6) is equivalent to the response of an RBF network,
where the basis functions are associated with the training-set
points and their ‘heights’ are given by {Dt} T

1. Unlike most
implementations of an RBF network, however, the basis
functions here are position dependent and piecewise constant.

2.2.1. Equivalent representations of the GMNN
In the discussion so far, the formulae describing the

GMNN response have been expressed with the emphasis
on the fact that exactlyK memory locations are active
during each such computation. However, an alternative
(and fully equivalent) description is achieved when all
memory locations are accounted for explicitly. In particular,
let ai(x) denote the activation function associated with the
ith (i � 1,...,M) memory location, such thatai(x) � 1 if the
ith location is selected by the inputx. Otherwiseai(x) is
equal to 0.M represents the total number of addressable
locations of a GMNN. Note that the activation functions
m k (x) of Eq. (3) represent a generalization over the func-
tionsai(x), as they are allowed to vary within their activation
regions.

Using this notation, the two network output formulas of
Eq. (2) can be equivalently expressed as

g�x� �
XM
i�1

wi·ai�x� and g�x� �

XM
i�1

wi·ai�x�
XM
i�1

ai�x�
�9�

wherewi is the weight associated with theith memory loca-
tion. Thus the network output is given as a linear (in the
parameters) expansion in terms of the activation functions
associated with the memory. In the simplest case given
above, the activation functions are binary, but they can
have other fucntional forms (and become equivalent with
them k(x) functions introduced by Eq. (3)). Of course, onlyK
of theM activation functions in Eq. (9) are nonzero for any
particular input. Note that under this presentation, the
address proximityk (x, y), betweenx andy can be expressed
as a scalar product of the activation vectors [a1(x),...,aM(x)]

and [a1(y),...,aM(y)], i.e.,

k�x; y� �
XM
i�1

ai�x�·ai�y�: �10�

For the special case of theN-tuple network (Bledsoe and
Browning, 1959; Tattersall et al., 1991) it has been demon-
strated how a certain modification of the network memory
architecture (and modifications to the training regime)
enable a normalization of the GMNN response with respect
to the basic set, thus making it possible to achieve responses
analogous to the normalized RBF and KR networks (Kołcz
and Allinson, 1996). Here, we use the alternative GMNN
representation to prove this result for the general case. Let
us assume that theith addressable location contains two
fields wi and ci. During a one-pass training procedure
(where each training point is presented to the network in
turn), the training set {xt, yt} T

1 is used to update the
addressed locations in the following way

wi � wi 1 yt·ai�xt� �11�
ci � ci 1 ai�xt�
for i � 1,...,M. Thus after the training is finished, thewi and
ci fields of theith memory cell have their values equal to:

wi �
XT
t�1

yt·ai�xt� �12�

ci �
XT
t�1

ai�xt�

respectively. The output of this modified network architec-
ture is then defined as

g�x� �

XM
i�1

wi·ai�x�
XM
i�1

ci·ai�x�
�13�

which, using Eq. (12) and Eq. (10), can be expanded to

g�x� �

XM
i�1

XT
t�1

yt·ai�xt�
 !

·ai�x�
XM
i�1

XT
t�1

ai�xt�
 !

·ai�x�

�

XT
t�1

yt
XM
i�1

ai�xt�·ai�x�
XT
t�1

XM
i�1

ai�xt�·ai�x�

�

XT
t�1

ytk�x; xt�
XT
t�1

k�x; xt�
: �14�
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Hence, the GMNN is in this case output-equivalent with a
kernel regression network (Ha¨rdle, 1990), with the proxi-
mity kernel,k , as the basis function. In a way analogous to
the kernel-regression network, the introduction of counter
(i.e., ci) fields to the GMNN memory cells (as explained
above) allows us to normalize the response of a GMNN
network trained with the NLMS algorithm from the form
given by Eq. (6) to

g�x� �

XT
t�1

Dtk�x; xt�
XT
t�1

k�x; xt�
�15�

when the network response is modified to the one given by
Eq. (13) and the counter fields are set according to Eq. (11)
(note that only one pass through the training set is necessary
to set the counter fields). Extensions of these results to the
case of GMNN architectures with arbitrary (i.e., ‘graded’)
activation functions are presented in (Kołcz, 1996).

The advantage of the fully expanded representation is that
we can treat the GMNN as a basis function network
(although the centres of the basis functions {ai}

M
1 do not

correspond to the training set points as is often the case
for the RBFs) and apply its standard formalism, for example
to solve the least squares problem (Girosi et al., 1995). On
the other hand, in practical computations, direct manipula-
tion of the memory vector may lead to very large (and very
sparse) systems of equations due to the large address space
of a GMNN. An implementation of a GMNN (e.g., the
CMAC network) may not physically realize all its addres-
sable memory cells, and hashing techniques are commonly
applied to manage the memory efficiently.

It can be seen that it is possible to build and analyse basis-
function models of GMNN architectures, with the basis set
given by {k (x, xt)} T

1. This approach would be quite difficult,
however, as the proximity functions do not have a clear
functional form and are realized in a GMNN inherently,
as a result of theK-fold quantization performed by the
network. We suggest, however, that in certain cases,
where the quantization performed by a GMNN is particu-
larly regular, it makes sense to attempt to derive an expected
form of the proximity function, which could be further used
to gain insight into the operation of the network and perhaps
to create an approximate basis-function model of it. In the
remainder of this paper, we derive such an approximate
basis for the CMAC network and assess its utility in predict-
ing CMAC performance.

3. The structure of CMAC quantization

Each of theK nodes of a CMAC network performs a
variant of scalar-product (vector) quantization of the input
space—that is, each of theD components of an input vector
is quantized individually, which results in hyper-rectangular

quantization cells oriented along the coordinate axes inR
D.

Each of theK vector quantizers hasD scalar components
(one per input-vector dimension), and conversely, each
coordinate of an input vector is quantized byK scalar quan-
tizers (one per network node). The interdependencies
between theK scalar quantizers of the CMAC network are
common across allD input coordinates, hence the scalar-
input case (D � 1) will be treated first.

3.1. The scalar case (D� 1)

According to the constraints of the GMNN architecture,
no two nodal quantization cells of the network should be
identical. Limited to the scalar case, none of the quantiza-
tion intervals produced by theK scalar quantizers should be
the same—that is, at any input point, the quantization inter-
vals to whichx belongs in the individual quantization layers
overlap, but no two cells belonging to different layers can be
exactly the same. Let [0,R] denote the input domain (i.e.,
V). In order to provide a clear explanation of CMAC quan-
tization we will define a (finite) sequence of threshold points
within V

0� t1; t2; :::; tN � R �16�
which specify the maximum desirable resolution of the
overall network quantization. A further constraint requires
that, at any layer, border points between quantization cells
can occur only at the positions determined by the threshold
points {ti}

N
1 . These constraints still leave much flexibility as

to how the individualK quantizers of the network are
designed (e.g., the cells of a single quantization layer can
vary in length, and not all thresholds have to be utilized as
inter-cell border points). CMAC quantization results if we
additionally require that each quantizer partitionsV into
cells that extend for exactlyK inter-threshold intervals
(with the possible exception of boundary cells, which may
be truncated). As a result, all threshold points are utilized
(thus leading to the maximum desired quantization resolu-
tion) and the quantization-cell arrangements produce a char-
acteristic staggered pattern, which is particularly clear if all
quantizers are uniform (which is the case whenti 2 ti21�
const). Fig. 4 illustrates scalar CMAC quantization for the
case ofK � 4 and non-uniform placement of thresholds. It
should be mentioned that an identical type of scalar quanti-
zation is used by B-spline networks (whereK corresponds to
the spline order) (Lane et al., 1992), although the quantiza-
tion methods of CMAC and tensor-product B-splines
(Bartels et al., 1987) differ forD . 1.

In the following discussion we will consider the case of
uniform CMAC quantization, where {ti}

N
1 define a uniform

partition ofV into N 2 1 equal length unit intervals, i.e.,

t2 2 t1 � t3 2 t2 � ::: � tN 2 tN21 � o� const �17�
whereas the individual CMAC quantizers have cells of
lengthU � Ko. As the input space is given by an interval
of finite length, each quantizer will have a finite range,
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which (without loss of generality) will be assumed to be
0,...,L 2 1 for all scalar quantizers. In the uniform case,
the staggered arrangement of CMAC quantizers is particu-
larly clear. In fact, given one of the quantizers, the remain-
ing K-1 quantizers can be obtained by translating the
original quantization-cell arrangement byo, 2o,...,(K 2
1)o. Furthermore, starting with any pointx [ V, increments
(or decrements) ofDx by o at a time will cause exactly one
of the quantizers (at each step) to change its output forx 1
Dx with respect to the values produced forx. Hence, for
Dx $ Ko � U, the pointsx and x 1 Dx will share no
quantization cells. The following table provides an example
of the outputs produced by CMAC quantizers (K � 4) for
consecutive, equally spaced points, with the interpoint
distance equal too.

�18�

The first column indexes the displacements (in multiples of
o) from the starting point, assumed here to be 0.

3.2. The multidimensional case (D. 1)

When D . 1, the quantization described for the one-
dimensional case is performed in a similar manner for
each component of the input vector. Each of theK vector
quantizers of the network now consists ofD individual
scalar-quantizer components, one per each input dimension.
As can be seen, this design guarantees that no twoD-dimen-
sional quantization cells are the same and, at the same time,
that any two cells belonging to different quantization layers
will differ additionally in the sense that none of their
D projections on the coordinate axes will be the same
(irrespective of whether the cells overlap or not). Fig. 5
illustrates CMAC quantization in a 2-dimensional case
for K � 4.

Depending on the particular case, the overall resolution
obtained for individual dimensions ofV may vary. Also the
relative order of staggered quantizers can be different for
different dimensions. It has been proposed (Parks and
Militzer, 1991) that the latter flexibility is used in order to
optimize certain topological properties of CMAC mapping,
and this will be discussed later.

A natural way to describe CMAC vector quantization
of V is by representing theK network quantizers with a
D-by-K matrix, Q, where thedth row of Q represents the
outputs of theK scalar quantizers corresponding to the
dth dimension. Conversely, thekth column of Q repre-
sents thekth network quantizer and itsD scalar com-
ponents. Thus, thekth column of Q will be identical
for points in the same quantization cell at thekth
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Fig. 4. Illustration on non-uniform scalar CMAC quantization for the case ofK� 4 (individual quantization layers are labelled as: a, b, c, d). A border between
quantization intervals at a given threshold position is allowed for one layer only (see text for details).



network node (layer). Thedth row, on the other hand,
will be constant for points whose projections on thedth
coordinate axis lie in the same (scalar) global-level quan-
tization interval. For any input point,x � [x1,...,xD], the
quantization matrix is given by

�x1; :::xD� ! Q�x� �

q1�x1� ::: qK�x1�
q1�x2� ::: qK�x2�

· ::: ·

q1�xD� ::: qK�xD�

26666664

37777775 �19�

One of our main objectives is to analyse how the address
distance of the CMAC network changes with respect to the
input space distance. Of course, such dependence is highly
local, especially in theD-dimensional case. However, we
will attempt to estimate the expected dependence ofr on the
input-space distance. Such an approach is viable consider-
ing the rather regular quantization performed by CMAC at
each node and makes sense especially in the case where all
CMAC quantizers are uniform (which is favoured in prac-
tical applications due to ease of implementation).

As a consequence of scalar uniform quantization, each
of the individual CMAC quantizers partitions the input
space into hypercubical cells (of side U), whereas super-
imposing theK quantizations layers leads to a uniform
quantization of V into hypercubical cells of sideo.
Therefore, both the individual quantizers and the
global-level quantization can be considered as (trun-
cated) lattice quantizers (Gersho and Gray, 1992), with
the lattice points given by the quantization-cell vertices.
Figure 6 provides an illustration of the lattice structure
of CMAC quantization. The square grids corresponding
to individual quantizers are given in different shades of
grey, for better visualization. The overlapping structure
of cells is clearly indicated. The global-level cells corre-
sponding to top-left corners of cells belonging to indivi-
dual layers are also shown. The characteristic placement
of these points along diagonals in the input space can be
seen. The particular pattern is typical for the original
form of CMAC encoding, as introduced in Albus
(1975b), and is the result of preserving the relative
ordering of staggered scalar quantizers across all input
coordinates.
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Fig. 5. Illustration of the spatial arrangement of overlapping neigbourhoods for the VQ performed by CMAC in a 2-dimensional case. The neighbourhoodof
influence for x is here given by a square of side 2U 2 o.



As suggested in Parks and Militzer (1991), a more
uniform coverage of the input space takes place when the
relative ordering of scalar CMAC quantizers is different for
different dimensions. We consider these modifications here
as they become significant later in this paper. To be able to
see the available options of CMAC encoding, note that the
global-level CMAC quantization lattice can be obtained by
tiling an elementary (or generating) hypercube of sideU
(indicated by the outlined square in Figure 6). The generat-
ing hypercube itself containsKD global-level quantization
cells,K of which correspond to the chosen reference vertices
(top-left corners in this particular 2-dimensional example)
of the nodal quantization cells. The positions of the refer-
ence vertices inside the generating hypercube can be
expressed as integer coordinates in the range 0,...,K 2 1,
and because of the staggered nature of CMAC scalar quan-
tization, allD coordinates of any two vertices must be differ-
ent. Using such notation, the vertex coordinates
corresponding to the original CMAC code are given by
the following matrix (K� 4,D� 4), where rows correspond
to the vertices:

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

26666664

37777775 �20�

Any other relative positioning of scalar quantizers can be
obtained by reordering (i.e., performing a permutation) the
elements of columns in Eq. (20) (where each column can be
treated independently), with the total number of options
equal to (K!)D. For example, an alternative to Eq. (20)
might have the form of

0 3 0 3

1 1 2 2

2 0 1 1

3 2 3 3

26666664

37777775 �21�

Generally, given a particular optimality criterion and
the value of D and K, all such matrices could be
analysed by exhaustive search, where, due to the natural
symmetry of this problem, many distinct permutations
lead to identical matrices, thus reducing the actual
number of options. A variant of this approach was
considered in Parks and Militzer (1991), where the
number of possibilities was additionally reduced by
allowing vertices to be positioned only at points whose
coordinates are generated by

ck � ��k 2 1�d1 mod K; :::; �k 2 1�dD mod K� �22�
(for k � 1,...,K), where {d1,...,dD: dd [ {1,...,K}} repre-
sent a set of integers relatively prime toK andck denotes
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Fig. 6. Illustration of the uniform CMAC quantization scheme (in the standard version) for the 2-dimensional case, withK � 4. The overlapping square
quantization lattices, corresponding to the individual network nodes, are drawn in different shades of grey for clarity. Characteristically for standard CMAC
encoding, the top-left corners of nodal quantization cells are positioned diagonally in the input space, as indicated. The outlined square corresponds to the
generating hypercube of the quantization lattice.



the vertex corresponding to thekth quantization layer.
Let P denote the number of positive integers belonging
to {1,...,K} and relatively prime toK. Then, the number
of possible choices of {d1,...,dD}, considering that the
order of elements inside this set is irrelevant, isPD/D!,
which is considerably less than the number of all possi-
ble generating matrices—that is, (K!)D. Results obtained
using this method for a range ofD and K parameters
have been published in Parks and Militzer (1991).

4. Derivation of CMAC address distance and proximity
functions

It can be seen that addresses generated by CMAC for two
input points,x andy, will be determined by the quantization
matricesQ(x) and Q(y) produced for these two points. In
particular, thekth components of the address vector gener-
ated forx andy will be identical as long thekth columns of
Q(x) andQ(y) are the same. On the other hand, if thekth
network quantizer produces different outputs forx andy for
at least one dimension, thenQ(x) and Q(y)—and hence
A(x) andA(y)—will be different. To facilitate further analy-
sis we will introduce a ‘change’ matrix,C(x, y), which
quantifies the relationship betweenQ(x) andQ(y). Namely,
the cdk component ofC is equal to 1 if the corresponding
components ofQ(x) andQ(y) are different, and is 0 other-
wise, i.e.

cdk � �qk�xd� ± qk�xd 1 Dxd��: �23�
The number of ‘1’s inC determines the number of different
components inQ(x) andQ(y), and can be considered as a
generalized Hamming distance between these two matrices.
It can be seen that the address proximity betweenx andy is
equal to the number of columns ofC that contain no ‘1’s.

4.1. The CMAC address distance

Let us consider the behaviour ofr(x, y � x 1 Dx) in the
case where the offset vector,Dx, contains just one non-zero
component

Dx � �:::; 0;Dxd; 0; :::� �24�
that is, when the vectorsx and y differ at one coordinate
only. Considering the nature of CMAC quantization, allK
scalar quantizers of thedth dimension will produce the same
output as long as bothxd andyd � xd 1 Dxd lie in the same
global-level quantization interval of lengtho. Depending on
the position ofxd in the global-level quantization interval
and on the sign ofxd, the pointxd 1 Dxd will lie in a different
global-level quantization interval for some |Dxd| , o (with
one of the nodal quantizers changing its output foryd).
However, a change of the global quantization interval will
occur for |Dxd|� o, irrespective of the initial position ofxd.
Therefore, increments of |Dxd| in steps ofo (starting with
|Dxd|� 0) will incrementr in units of 1, until the saturation
value,K, is reached, which corresponds to allK quantizers

producing different outputs forxd andyd. This behaviour can
be quantified by

r�xd; xd 1 Dxd� � r�xd� � buDxdu=ocK

� buDxdu=oc if buDxdu=oc , K

K otherwise

(
�25�

where buxdu/oc represents a quantized version of the offset
Dxd, andb·c is the ‘floor’ operator. For any starting position,
xd, the address distance becomes a function of the offsetDxd

(or more exactly its absolute value), and generally (for
D . 1), it is a function of the vector displacementDx. In
order to simplify the notation, but also to emphasise the
dependence ofr (x, x 1 Dx) on Dx, we will denote
r (x, x 1 Dx) by r (Dx).

Let us now consider a more complex case whenDx has
exactly two non-zero components (say corresponding tox1

andx2). In this case only two rows ofC can be affected. To
facilitate the analysis, letQ(Dxd) designate the set of quan-
tizers for whichqk(xd 1 Dxd) ± qk(xd). The relationship
between the elements ofC as a function of the spatial displa-
cement,Dx, can be described by three individual cases (the
zero entries inC are omitted for clarity):

1.r (x1)� r(x2)� a andQ(Dx1)� Q(Dx2). Consequently,
address changes occur at precisely the same positions and

a � r�Dx� , r�Dx1�1 r�Dx2� � 2a: �26�
The table below illustrates this case whenK � 6 anda � 4.
The changes due toDx1 andDx2 are indicated by ‘1’s in the
columns corresponding to the affected quantizers.

: �27�

2. r(Dx1) � a andr(Dx2) � b andQ(Dx1) > Q(Dx2) � B.
The address changes fully complement each other leading to

r�Dx� � r�Dx1�1 r�x2� � a 1 b: �28�
The table below provides an example of this case fora � 2,
b � 4 andK � 6.

: �29�

3. A combination of cases 1 and 2, where there is a partial
overlap between the setsQ(Dx1) andQ(Dx2). It follows that

max�a;b� , r�Dx� , a 1 b

In the illustration belowa � 4, b � 3 andK � 6.

: �30�

It is clear that this analysis extends naturally to the case of
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an arbitraryDx, and generally

maxd�r�Dxd�� # r�Dx� #
X
d

r�Dxd�: �31�

Therefore,r(x, x 1 Dx) has its values located between
the quantized versions of theiDxi∞ and iDxi1 norms (with
the saturation effects taken into account)

maxd�buDxdu=ocK� # r�Dx� #
X
d

buDxdu=ocK : �32�

From the above analysis it is obvious that if for any coor-
dinateuDxdu $ Ko thenr (x, x 1 Dx) becomes saturated toK,
irrespective of the other components of the displacement
vector. Therefore, we will concentrate on the case where
none of the scalar displacements leads to a saturation of
r , i.e.,

r�Dxd� � ad , K d � 1; :::;D: �33�
Let us also initially make an assumption that the combined
effect of all components ofDx does not lead to a saturation
of r , i.e.,

s �
XD
d�1

ad , K �34�

whered denotes the quantized normuDxu. In this case some
columns ofC will consist of ‘0’ entries only, and for certain
offset vectors it is possible that there will be exactly one ‘1’
per occupied column ofC. (An occupied column ofC
contains at least one ‘1’.) Letamax denote the maximum
scalar distance, i.e.,

amax� maxdad �35�
with the corresponding dimension denoted bydmax. Conse-
quently, the possible range ofr is limited to

amax # r�Dx� # s: �36�
In the following derivation we will assume that rows ofC
are mutually uncorrelated (on average), and that, for each
dimension, the ‘1’ components can be distributed in the
corresponding row ofC with equal probability. Let us
consider the effects of the scalar components ofDx on C
in a sequence, withDxdmax taking effect first. Thus, after the
first step, exactlyamax columns ofC are occupied and the
remaining set of ‘empty’ columns will be denoted byC �
{ C1; :::;CK2dmax

}. The next (say dth) considered scalar
offset, Dxd, setsad ‘1’s among the elements of thedth
row, with the probability of changing the ‘empty’ (i.e.,
containing no ‘1’s) status of any particular element ofC
given by

1 2

K 2 1

ad

 !
K

ad

 ! � ad

K
: �37�

Hence, when all elements ofDx are considered, the prob-
ability that a particular element ofC will become occupied
(by a ‘1’) is given by

XDÿ
d�1

d±dmax

� ad

K
� s 2 amax

K
, 1: �38�

Eq. (38) above can, in fact, be considered as an approxima-
tion to the formula of the probability that the column is
going to be affected by at least one component ofDx,
which is given by

1 2
YDÿ
d�1

d±dmax

� 1 2
ad

K

� �
�

XDÿ
d�1

d±dmax

� ad

K
�39�

2
X
d1;d2

ad1
ad2

K2 2
X

d1;d2;d3

ad1
ad2

ad3

K3 :::^
YDÿ
d�1

d±dmax

� ad

K

0BB@
1CCA:

As can be seen, whenad/K p 1, the higher terms of Eq.
(39) can be ignored, thus leading to formula (38).

Considering that all elements ofC have the same prob-
ability of becoming occupied (and can be treated indepen-
dently from one another), and by using Eq. (38), the
expected number of occupied columns is given by

�K 2 amax� s 2 amax

K
�40�

which leads to the expected value ofr (givenamax ands) to
have the form of

E�r�s;amax�� � amax 1 �K 2 amax� s 2 amax

K

� s 2
amax�s 2 amax�

K
: �41�

Given the value ofs , the maximum scalar distance,amax,
can take values in the ranges� ds=De,...,s with equal prob-
ability. Hence, the expected value ofr , dependent on the
value ofs only, can be obtained as

E�r�s�� � 1
s 2 s1 1

Xs
amax�s

E�r�s;amax��

� 1
s 2 s1 1

Xs
amax�s

s 2
amax�s 2 amax�

K

� �
: �42�

The sum (Eq. (42)) can be split into three components,
which evaluate to

s

s 2 s1 1

Xs
amax�s

1� s

s

�s 2 s1 1�K
Xs

amax�s

amax
s�s 1 s�

2K
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s

�s 2 s1 1�K
Xs

amax�s

a2
max

� s�s 1 1��2s 1 1�2 s�s2 1��2s2 1�
6K�s 2 s1 1�

� 1
K

ss 1
�s 2 s��2�s 2 s�1 1�

6

� �
: �43�

Hence, Eq. (42) can be expressed as

E�r�s; s�� � s 2
s�s 1 s�

2K

1
1
K

ss 1
�s 2 s��2�s 2 s�1 1�

6

� �

� s 2
�s 2 s��s 1 2s2 1�

6K
: �44�

As expected (see Eq. (32)),E[r(s ,s)] depends on the quan-
tized norms,iDxi∞ andiDxi1, of the displacement vector. It
can be seen thatE[r (s ,s)] represents a quadratic function in
s , which is especially clear in the special case ofs � 1,
when Eq. (44) reduces to

E�r�s; sus� 1�� � s 2
s2 2 1

6K
: �45�

By substitutings � ds=De (where d·e represents the ‘ceil-
ing’ operator) into Eq. (44) and approximating it by
ds=De . s=D 1 0.5, the following quadratic relationship
is obtained

E�r�s�� .
s�6K 1 0:5 1 1

D 2 s�1 2 1
D��1 1 2

D��
6K

�46�

where for fixed parametersK and D, E[r ] is a function
(representing a parabola) ofs only. It can be seen that

this parabola is positive for values of between 0 and

smax�
6K 1 0:5 1 1

D

�1 2 1
D��1 1 2

D�
�47�

wheresmax is approximately equal to 6K when 6K q 1
and D q 1. Of course,r can take values in the range
0,...,K only, whereas the parabola (Eq. (46)) peaks at
speak . 3K with the (approximate) maximum of 1.5K.
Elementary calculations determine the relevant range of
the parameter as 0,...,s sat . 1.3K, in which r increases
monotonically with s and has its values in the range
0,...,K. If the distance-function formula (Eq. (46)) is to
be used outside the range constrained by the assumptions
stated in its derivation, its value should be clipped to the
saturation level fors $ s sat. Figure 7 shows examples
of E[r (s ,s)] for K � 5 and 20, andD � 2,3, and 10. In
the graphs, the saturation level (K) and the city-block
distance (i.e., they � x line) are also indicated. It can
be seen that, for larger values ofD (i.e. 1=D . 0), the
corresponding curves lie very close to each other, espe-
cially in the relevant region ofs , s sat, where they
follow approximately the relationship

E�r�s�� .
s�6K 2 s�

6K
� s 1 2

s

6K

� �
: �48�

4.2. Estimation accuracy

In the derivations presented above, certain simplifying
assumptions have been made about the properties of the
‘change’ matrix C. Although the assumption about the
independence of element changes (from 0 to 1) occurring
along the individual input variables (i.e., rows ofC) is
certainly valid, the assumption about the uniformity of
distribution of the changes within each row ofC is less
accurate. Note that a row ofC corresponds to one input
variable and that there is a deterministic offset relationship
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Fig. 7. The estimated CMAC address-distance function for a selection ofK andD parameters. The saturated (toK) city-block distance is provided as a
reference. The input and address distances are normalized with respect toK. It can be seen that the distance function converges for values of the parameterD
greater than 2, and the convergence is faster for largerK (e.g. the right side of the figure).



between the scalar quantizers for each variable. Therefore,
as the value of, the saydth, variable increases (decreases),
elements ofC will change from 0 to 1 in some predictable
order, which depends on the initial value ofxd, the direction
of change (i.e., an increase or a decrease) and the offset
relationship between the scalar CMAC quantizers for the
dth dimension. In fact, due to the high regularity of the
original CMAC encoding, the changes occurring in this
case tend to occur in the neighbouring elements of each
row of C. On the other hand, for some of the modified
CMAC encodings (Parks and Militzer, 1991), the changes
occurring within each row ofC will be distributed more
evenly (in a deterministic sense). Thus, it can be expected
that for the modified CMAC encoding the agreement
between the estimated and actual CMAC distance could
be slightly better.

To compare the estimate (Eq. (46)) with the actual
CMAC address distance, we performed a set of simulations
where for every value ofs2000 random offset vectors (with
|Dx|� s ) were generated and the resulting address distances
were averaged. As shown in Fig. 8 (for the example cases),
the average CMAC address distance and its estimate,
provided by Eq. (46), are in fairly good agreement, although
the actual CMAC address distance saturates toK at a slower
rate than the estimate. However, it should be pointed out
that in the region of disagreement—that is, at the values of
s for which the saturation takes place (i.e.,s $ K)—the
assumptions taken during the derivation of Eq. (46) are no
longer valid. Results obtained for other combinations of the
D andK parameters were analogous to the ones presented in
Fig. 8.

4.2.1. Dependency on the actual CMAC quantization
Although certain idealizing assumptions have been used

to arrive at our estimate ofr , they are not related to the

particular variant of the CMAC quantization used (as long
as uniformity is preserved for each scalar quantizer). In
particular, our estimate does not depend on the permutations
of columns in matrixQ (Eq. (19)), so Eq. (44) applies both
to the standard CMAC encoding as well as to the modified
scheme proposed by Parks and Militzer (1991), where
different relative positioning of the quantization lattices is
allowed. In fact, since in the latter case the individual scalar
quantizers are more ‘de-coupled’, one could expect that the
assumption about the independence of changes occurring
along individual rows ofC should be more accurate.

In order to assess if the alternative CMAC quantization
schemes could lead to a better agreement with our estimate,
the evaluation of the averaged CMAC distance was also
performed for the case of the modified (optimized)
quantization, as proposed by Parks and Militzer (1991).
Although the average values ofr obtained in this case
were almost identical with the ones obtained for standard
CMAC encoding, the deviations from the average tended to
be smaller, which agrees with our predictions. Fig. 9 illu-
strated this point forK � 40 andD � 20 (analogous effects
were observed for other values ofD andK).

The formulas obtained for the expected CMAC address
distance can be used directly to create the expected form of
the (address proximity) basis function associated with the
CMAC network, by means of Eq. (5), i.e.,

E�k�s�� � K 2 E�r�s��: �49�
We compared the estimated formk of with the actual
CMAC proximity kernels for the 2-dimensional case for
both the standard and modified CMAC encodings. The
results are given in Figs. 10 and 11, respectively, where it
can be seen that the optimized CMAC leads to a higher
shape uniformity of proximity kernels, and also to their
better agreement with the estimated form ofk .

Note that the estimate of the CMAC proximity kernel,
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Fig. 8. The estimated and average CMAC address-distance functions are compared forK � 20 and a selection of theD parameter. The input and address
distances are normalized with respect toK. Close correspondence between the estimates and actual (averaged) distances exists fors , K (i.e., normalized less
than 1). For greater values ofD (right side of the figure) both the expected and average distances are less sensitive to the particular values ofD and tend to
converge to distinct paths fors . K.



however useful, has certain limitations in practice, as the
CMAC proximity function is piecewise constant, whereas
the estimate derived in this study represents a continuous
function. However, as the examples presented below illus-
trate, the estimated CMAC kernel function can be used
successfully to predict the performance of the actual
CMAC network and to choose its important parameters,
such as the number of quantizers,K.

5. Numerical example

5.1. Problem setting

To compare the performance of CMAC and its model
(with expected address proximity as the basis function) we
considered the problem of predicting the chaotic Mackey-
Glass series, which has received much attention in the
neural network community (Lapedes and Farber, 1987;
Moody and Darken, 1989; Moody, 1989). The series arises
as a solution to the following difference-delay equation

x�t 1 1�2 x�t� � 2bx�t�1 a
x�t 2 t�

1 1 x�t 2 t�10 �50�

where botht andt are integers. When the parametersa and
b are set toa � 0.2 andb � 0.1, respectively, the series
becomes chaotic fort � 17 and has a characteristic time of
tchar < 50 (i.e., it almost repeats itself with that period). For
this case the fractal dimension of its strange attractor is
equal to dA < 2.1. When the delay parameter,t , is
increased, higher-dimensional chaos results.

The prediction problem consists of estimating the future
value of the series, based on a number of its past
instances—that is, the following function has to be esti-
mated (provided that it exists)

x�t 1 DF� � f �x�t�; x�t 2 D�; :::; x�t 2 �M 2 1�D�� �51�

whereD represents the delay andDF the prediction offset.
According to Takens’ theorem (Takens, 1981), the number
of past samples should be at least as large as the embedding
dimension of the series so that the prediction of a chaotic
time series is feasible. Analysis of the embedding dimension
for this case presented in the literature gave positive results
for M � 4 (Farmer and Sidorowich 1987; Aleksic, 1991).
Following Farmer and Sidorowich (1987), the value of the
time-delay parameter was chosen asD � 6, whereas the
future prediction offset was selected asDF � 85 . tchar.

Following the experiments presented in the literature, we
chose training-set sizes ranging from 100 to 5000 samples.
The estimation (generalization) accuracy was quantified by
the normalized prediction squared error given by

pn �

����������������������������X
test set

�x�t�2 x̂�t��2X
test set

�x�t�2 E�x�t���2

vuuuuuut �52�

which represents the average Euclidean distance between
the test vector and its estimate, normalized with respect to
the standard deviation of the test set. This error measure is
insensitive to the absolute values of the time-series data,
which facilitates comparing the results of different methods
for different data sets. Whenpn � 1 the prediction is no
better than providing the average value of the past series
samples, whereas in the ideal casepn � 0. No noise is
assumed to be present in the time-series data. Consequently,
the problem is equivalent to multivariate interpolation over
a 4-dimensional space.

5.2. Network configurations

The CMAC network and its model were considered in the
variants of a normalized RBF (NRBF) (Eq. (15)) and a KR
network (Eq. (14)), where in both cases the network
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Fig. 9. Examples of the average behaviour of CMAC address distance for the standard and optimized versions of quantization (see text for details). It can be
seen that the average behaviour of the distance function is almost identical in both cases, although the modified CMAC encoding is characterized by smaller
deviations. The input and address distances are normalized with respect toK.



response is normalized with respect to the basis set. All
variants of the network were implemented with standard
CMAC encoding and hashing collisions were not resolved.

5.3. Training regime

Most practical implementations of the CMAC network

rely on iterative procedures to find the network weights by
solving the associated set of linear equations (assuming that
the quantization part of the network is fixed). Although
application of direct methods is also possible, it requires
solving very large and very sparse linear systems, so the
computation times tend to be very long (Parks and Militzer,
1992). Moreover, only a small percentage of the potentially
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Fig. 10. Comparison between the expected (estimated) and actual CMAC address-proximity functions for a 2-dimensional case and a selection of centre
(reference) points.



addressable CMAC locations will be affected by any parti-
cular training set, and practical implementations of the
network often realise the CMAC memory (weights) using
hashing techniques, so that only the portion of the CMAC
address space visited by the training-set points is actually
implemented. In such situations, application of iterative
techniques greatly simplifies the learning process (which

can be particularly important in hardware implementations
of the network, e.g., Kołcz and Allinson, 1994).

The original training procedure proposed by Albus 1975a
and 1975b) represents a special case of the well-known
normalized LMS algorithm (NLMS) (Widrow and Stearns,
1985), where the learning adaptation rate is fixed (to the
value of 1) such that the instantaneous CMAC error is
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Fig. 11. Comparison between the expected (estimated) and actual CMAC address-proximity functions for a 2-dimensional case and a selection of centre
(reference) points; optimized CMAC quantization used.



brought to zero at each iteration step. In fact, the normalized
(rather than standard) LMS weight-update scheme provides
an easy and secure way of selecting the adaptation rate,
which can take any value in the (0, 2) interval (Tarrab and
Feuer, 1988). The properties of the Albus’ procedure and its
various modifications have been analysed extensively by
Parks and Militzer (1992) who also traced the origins of
this adaptation scheme to the work of Karczmarz (1937).
Certain improvements over the original scheme can be
obtained by applying the relaxation principles to choose
the order in which the training points are presented to the
network (e.g., by always choosing the point for which the
adaptation of weights will lead to the largest decrease of the
instantaneous error produced by the network—Ellison,
1988). Despite potential problems affecting the convergence
properties of the NLMS learning scheme applied to CMAC
(which might occur if the underlying system of linear equa-
tions is unstable), the NLMS appears to work satisfactorily
in practice and has been widely used in various applications
of CMAC (Miller et al., 1990; Tolle and Ersu¨, 1992; Lane et
al., 1992).

In the simulations considered in this work the NLMS
learning scheme was used to train both the CMAC network
and its basis-function models incorporating the estimated
proximity-kernel function (Eq. (44), Eq. (49)). The use of
iterative learning algorithms facilitates the comparison
between the basis-function and the CMAC architectures
because, although the former can be solved using standard
matrix techniques (e.g., QR or singular value decomposition
(Watkins (1991)), the latter (as explained above) evaluates
its basis functions implicitly, and for any particular excita-
tion only a small fraction of the network-memory locations
is available for adaptation.

In the off-line learning scheme, four cases were consid-
ered, corresponding to the training-set sizes ofT� 100, 500,
1000 and 5000. For each value ofT, the NRBF network was
trained using the normalized LMS algorithm (NLMS) with
the adaptation rate equal to 1 (i.e., at each iteration step the
network weights were adapted so as to nullify the instanta-
neous error at the current training point), for a fixed number
of 100 iterations through the whole training set. During each
training epoch, the training-set points were presented to the
network sequentially. In all cases the test set consisted of
500 points of the series immediately following the training
set.

5.4. Selection of the optimal smoothing parameters

Both the NRBF and KR networks can have, in principle,
different smoothing parameters at each basis. However,
since in the estimated-kernel models of CMAC the smooth-
ing remains constant throughout the network (and is
controlled by the parameterK), only this case was consid-
ered. Even in this simplified case, however, the optimum
bandwidth of the basis has to be chosen, based on the infor-
mation provided by the training set. Generally, the band-

width parameters can be adjusted simultaneously with the
rest of the network’s parameters (e.g., weights) to minimize
some global error criterion. However, such an approach is
equivalent to nonlinear optimization because of the
nonlinear dependence of the network response on the band-
width; consequently the optimization process is difficult and
liable to be trapped in local minima of the error function
(Tarassenko and Roberts, 1994). Therefore, we adopted a
hybrid scheme where the bandwidth is chosen first, and then
adaptation of the weights follows. Heuristic schemes of
bandwidth selection are often based on the nearest-neigh-
bour properties of the training set. For networks with Gaus-
sian units, for instance, Moody and Darken (1989) suggest
setting thes parameter of the basisk (x) � exp(2ixi2

2/s ) to
the average squared Euclidean distance between nearest
neighbours in the training set. Similar heuristics can also
be designed if the kernel function depends on a non-Eucli-
dean norm of its vector argument.

We chose to combine the heuristic method with the leave-
one-out cross-validation scheme (Ha¨rdle, 1990). Cross vali-
dation is often used in KR networks and, as pointed out by
Specht (1991), it usually exhibits a fairly wide region of
‘good’ bandwidth choices, preceded and followed by
regions of worse performance. For the case of the KR
network, a heuristic (i.e., nearest neighbour) choice of band-
width served as the starting point in a local optimization
procedure to identify the region of the best bandwidth.
This optimum bandwidth choice was then extended to
NRBF networks, which have essentially the same architec-
ture (apart from training) as KR networks.

Fig. 12 shows the cross-validation results for the selection
of K obtained for CMAC implementing a KR network and
for a KR network utilizing the estimated CMAC kernel, (Eq.
(46)). It can be seen that, although the absolute values of the
cross-validation errors are somewhat different, both
networks identify the optimal values ofK as lying in the
same range. Note that the range of ‘best’K is fairly inde-
pendent of the training-set size.

The number of quantizersK was in each case used to
determine the size of the uniform scalar-quantization cell,
which was obtained by dividing the effective range of each
input variable (estimated from the training data) byK.
Uniform quantization was then combined with the standard
(i.e., not optimized) arrangement of CMAC quantization
lattices for the individual input dimensions.

5.5. Test-set performance

Fig. 13 shows the test-set results achieved by CMAC and
its NRBF and KR equivalent models. The model networks,
employing smooth basis functions, obtained better approx-
imation accuracy, although it can be seen that the LMS
training brought the performance of CMAC to that of the
KR model network. The differences in performance can be
attributed to the inherent irregularity and piecewise-
constant nature of CMAC basis functions, as well as the

A. Kołcz, N.M. Allinson / Neural Networks 12 (1999) 107–126124



(unresolved) hashing collisions present in its mapping. In
fact, Brown et al. (1993) have shown that for the class of
piecewise-constant functions defined over the CMAC quan-
tization lattice, the network can realize any additive func-
tion (i.e., aD-variate function that can be represented as a
sum ofD univariate components), but is inherently incap-
able of implementing an arbitrary function from this class.
In this respect, a basis-function model of the CMAC
network is more flexible, as it can potentially approximate
any smooth mapping (CMAC may offer certain advantages
if the original function has a piecewise-constant form as
well). Further larger-scale experiments should be carried
out to better assess the performance of basis-function
models with respect to the original CMAC network.

6. Conclusions

The quantization performed by the CMAC network has
been described in the context of equivalence between
CMAC and the more general GMNN architecture. Particu-
lar emphasis was placed on the case of uniform quantiza-
tion, which is particularly regular and amenable to formal
analysis.

In particular, we have derived the formula for the
expected address distance function of the CMAC network
and shown how it can be used to create an approximate
basis-function model of this architecture. The closed-form
approximate basis derived in this work allows us to create
RBF- and KR-like models of the CMAC network where
each basis function is associated with one training point,
which differentiates them from the more straightforward
interpretation of CMAC, where the basis functions are
equivalent to the memory activation functions (i.e., they
take only 0 or 1 values). The result obtained here allows
us to compare CMAC with other basis function networks
(e.g., RBFs), even in the case where the response of the
CMAC network has inherently a piecewise-constant form.
In the latter case, the utility of the continuous-basis estimate
of the CMAC proximity kernel lies mainly in the area of
providing a means of estimating optimal values of CMAC
parameters (e.g.,K) for a particular training set and thus
facilitating network design. Of course, the actual response
of the CMAC network remains piecewise-constant, unless
additional smoothing operators (e.g., B-splines) are applied.
The obtained estimated CMAC distance function (used to
define the basis) was compared with the averaged results of
actual simulations of the CMAC network. Close agreement
between the actual and the predicted behaviour of the
CMAC distance function was demonstrated (especially in
the case of optimized CMAC encoding).

The performance of CMAC and its basis-function
models was also compared on a benchmark problem of

A. Kołcz, N.M. Allinson / Neural Networks 12 (1999) 107–126 125

Fig. 12. Optimum selection ofK via cross-validation for the KR network implemented by CMAC and its model. It can be seen that both the original network
and its model lead to a similar choice of optimal parameters. Interestingly, the region of ‘best’K seems to be fairly independent of the training-set size.

Fig. 13. Comparison between the performance of the CMAC network and
its basis-function models in the considered configurations. The NRBF and
KR networks utilizing the estimated CMAC kernel can be seen to perform
better than the actual CMAC network in these configurations (see text for
discussion). CMAC-regres and CMAC-norm correspond to CMAC imple-
mentations of KR and NRBF networks, respectively.



Mackey-Glass chaotic time-series prediction. Although the
approximation errors produced by both networks were
comparable, we found the actual CMAC to be characterized
by poorer performance than its model, which may be attrib-
uted to the piecewise constant nature of its response and the
detrimental effect of unresolved hashing collisions.
However, the model produced very good agreements as
far as the selection of optimum network parameters was
concerned.

We believe that the interpretation of CMAC mapping
presented in this paper offers increased understanding of
CMAC operation (which can be also extended to networks
of similar structure). The basis-function model of the
network and its utility in practical applications will be a
matter of further research.

Some additional aspects of this work are also presented in
(Kołcz, 1996).
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