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Stochastic Model for the Browning-Bledsoe
Pattern Recognition Scheme*

G. P. STECKt

Summary-A stochastic model is presentedwhich gives the prob- defined as a rectangular matrix of N zeros and ones. The
abilities of successful recognition of the Browning-Bledsoe recogni- elements of x are ordered, which means that x can be
tion scheme as a function of scheme parameters and pattern vari- t y

ability parameters. Also, procedures are given for estimating the v o , s

variability parameters from data so that the model can be used to N> 150 the number of distinguishable patterns is too
predict readability. The adequacy of the model is checked by com- enormous a number to be dealt with effectively. Conse-
paring estimated readability with observed readability for two sets quently, in the BB scheme the N elements of x are divided
of data, one with high variability and one with low variability. in some fashion, generally random, into t mutually exclu-

The Browning-Bledsoe recognition scheme is also treated as a
coding and decoding problem in which case the concepts of informa- sreoded set of ne mens eah.iTh pt is now
tion theory are useful. Finally, brief mention is made of the con- treated as t n-digit binary numbers requiring t 2" memory
nection between pattern recognition problems and classification addresses where nt = N.
problems in general, and the Browning-Bledsoe recognition scheme In the phraseology of Browning and Bledsoe, the or-
is compared and contrasted with other recognition schemes which dered sets of n elements into which the pattern is divided
make use of measurements on pattemns. are called n-tuples and the binary numbers assumed by an

n-tuple are called the states of the n-tuple. In order to sim-
I. INTRODUCTION plify future discussion, it is convenient to describe a pat-

rJ_HE BROWNING-BLEDSOE (BB) pattern recog- tern x by a column vector x of t 2" elements which has I
nition scheme' is a procedure whereby an unknown elements equal to 1 and the rest of the elements equal to
pattern is scored against a set of learned pattern zero; that is,

classes called an alphabet and identified as that member of
the alphabet which scored highest. Ties are, of course, pos-
sible and although this report is concerned with their a2
probability, it is not concerned with means of breaking
them.
The success of any recognition scheme may be measured

by the probability of correct recognition. This report pre- where
sents a stochastic recognition model which is used to inves-
tigate the functional dependence of successful recognition a(r-1) 2n+k±i
on the parameters of the recognition scheme itself and on if the rth n-tuple is observed to be in state k;
the variability parameters of the patterns presented to it. =
The BB recognition scheme can also be considered as a (0 otherwise.

coding and decoding problem, in which case some of the
concepts of information theory are useful as well as instruc- Thus x is a list of the occurrence or nonoccurrence of
tive. each state of each n-tuple. Those rows of x which corre-
The goal of the work described here has been to under- spond to observed states contain a 1; the rest contain

stand the recognition scheme sufficiently well so that the zeros. This means that exactly one of the numbers
parameters of the scheme can be chosen to attain any a,, a2, , a2- is a 1, exactly one of the numbers
desired probability of successful recognition. a2n+l, a2"+2, . . *, a2.2nis a 1, etc. An example of what is

meant by the foregoing is given in Fig. 1.
II. DESCRIPTION OF THE BROWNING-BLEDSOE The pattern presented in Fig 1 is a rather sloppy "A" and

PATTERN RECOGNITION SCHEME if the ordering of the pattern is by rows, this "A" could be
treated as the binary number 111000110110000100110 *

In the BB pattern recognition scheme, a pattern x i5 111001000100011010000011, where the leading zeros have
been suppressed. One of the many possible 5-tuples is

* Received April 20, 1961; revised manuscript received August 8, shown in the state 11001.
1961. This work was performed under the auspices of the U. S. Atomic
Energy Commission. The material in this paper has been presented at An unknown pattern is recognized by comparing it with
a Statistics Seminar, University of California, Berkeley, and has been ones that have been learned. This learning process is ac-
presented by invitation at the 1961 Annual Meeting of the Institute copihdnteflowgwa.Spsehelhbt
of Mathematical Statistics, Seattle, Wash.copihditeflownwa.Spsehelhbt

t Sandia Corp., Albuquerque, N. Mex. cnit fbptencassX 2 *X n ups
l W. W. Bledsoe and I. Browning, "Pattern recognition and reading cosit of b patr clsss X, 2 n ups

by Machine." Proc. EJCC, pp. 225--232; December. 1959. m representations of each are to be learned. For example,
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Fig. t-An example of an A show^n on an 8X 10 mosaic.

pair state .R^1 X12 X13 ---S1 XI pair state XI X2 X3 X

00 1 0 0 1 00 l 0 0 0
1 01 0 0 1 1 1 1 01 0 0 1 0

10 0 0 0 0 0 10 0 1 0 0
11 0 0 0 0 011 0 0 1 1

°° O 1. O 0 1 00 1 1 0 0
2 01 I 0 1 1 1 2 01 1 1 1 0

10 Q 0 0 0 0 10 0 1 1 I
11 0 0 0 0 0 11 0 0 01

00 0 0 0 0 0 00 0 0 1 1
3 01 1 0 1 0 1 3 00 1 1 0 0

10 0 1 0 0 1 t0 1 0 1 0
11 0 0 0 1 0 11 1 0 0 1

Fig. 2-The result of learning the representations of Xi. Fig. 3-The memory matrix.

the alphabet might consist of the letters A, B, C, * * *, Z side, as in Fig. 3. Note that the degree to which different
and the digits 0, 1, 2, 0*, 9 in which case b=36. Let the pattern classes difFer, .e., the "among class variability," is

kth representation of Xj be denoted by Xjk. Corresponding measured by the distribution of zeros in the rows of M. If
to the first representation of Xi, say xi,, are the I observed there is very little difference between pattern classes the
states of the different n-tuples. (Throughout this paper, rows of M will be mostly ones or mostly zeros. If there is a

pattern classes are described by upper-case letters and a rep- good deal of difference between pattern classes, then popu-
resentation of a pattern class is described by lower-case lar rows, i.e., states which occur often for several pattern
letters.) If the t-2n possible states are imagined to be classes, should bave many zeros; that is, they should not
listed vertically, then the learning of xi, consists of plac- occur for representations of other pattern classes. More
ing a I after each of the t observed states. In other words, precisely, if one considers the probability distribution over

this listing for xi, is precisely the column vector til. The n-tuple states which is generated by the random repre-
same is done for each of the representations X12, x,3, * , sentations of a pattern class and then averages these state
xi.. For example, if a pattern is divided into three pairs, probabilities over pattern classes, one obtains a probability
the list might look like the one given in Fig. 2. The column distribution over the rows of M. If this distribution is then
labeled Xi in Fig. 2 is obtained by logical addition of the used to obtain the expected number of zeros, say TV, in a

other columns (1.e., 0+0=0, 0+1=1+0=1+1=1) and row of M, then 1is a measure of the among class varia-
represents all the information available to the BB recogni- bility.
tion scheme concerning the pattern class Xl. A similar The memory matrix can now be formally defined.
column is obtained for each of X2, X3, * * *, Xb. Note that
the elements of the column vector labeled X0are random 11
variables; that is, if difFerent random representations of X hM2
had been chosen for learning, this column vector would A=
most likely difger from the one given. Note also that theZ
andte- digits 0, tico1, u2 n whchr casures theere p l. m

kith wihterepresentation sofX1bdeod byXesmblCorresodn mesrdnyteoitibtotoheosieherwro .
toth fis rersntto of X1 sayhere the bervedmtere is vher littl difrence bewendpatter colasse thersa

staes ofmesuethedifeet n-tules. (Throughoutyo this paper roso ilb otyoe o otyzrs fteei
patern classe arItedesribedtaby nupe-ase ldettersand aherep- goo del ofdifeenc bewebatencass,teyou
resentationlof a patter clthass aioisdeciedxbtloer-ae latosheersaeswihouefe frsvra atr

liste vericaly,ten te lernin of cnsiss ofplac occu for rereenastions of othermpattern classes. More

This litigmory1mtis prec hisely stheoumhecrtorth Theg a(n)= pusterh-tupleinstateswhcisgnrae;yteradmrpe

labeledXsc inFig.,is obtained by lotigicals additins ofite use tOobantherwiexpce. ubro zrs a ,i
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Note for the example given in Fig. 3 that element { 1 }. If p= 1, i.e., x, was a representation of Xi,
1100 1100 0011 then the identification of xp is correct. Further, the identi-

fication of xp is said to be "correct without tie" or "correct
1010 110 1100| with tie" according as J contains exactly one or more than
0100 0111 1010 one element. This emphasis on whether an identification is

00110001 1001) correct "with tie" or "without tie" is made for two reasons.

First, the mechanics of the model can separate the two
and cases, and estimation of two probabilities provides a bet-

1100' ter check on the adequacy of the model than estimation of
just one. Second, it is useful to separate the two cases if

1010 some kind of tie-breaking procedure is available. This de-
0100 fines the recognition process.

0011 In summary, the learning process consists in forming a
memory matrix M of zeros and ones, the rows of which

1100 correspond to a particular state of a particular n-tuple and
1110 the elements of that row specifying what types of patterns

M = 112< 0111 had a representation which put that particular n-tuple into
M3J that particular state. The net effect of this is that the

0001 density of ones in the columns of M measures the within
0011 class variability of the alphabet, and the expected number

1100 of zeros in the rows of M measures the among class varia-
bility of the alphabet.

1010 The reading process consists in taking one row, as deter-
0ioot J mined by the unknown pattern, from each of the I matrices

Mr, adding them together to obtain scores and identifying
This defines the learning process. the pattern(s) with the highest score(s).
Now suppose an unknown pattern (a representation of The parameters of the BB recognition scheme are:

Xp), xp, is presented for recognition. To it corresponds a which denotes the size of the alphabet considered and is
column vector x . The matrix product,

whc deoe th ieo h lhbeosdrdadi
column vectorX~.The matrix product, determined by the job to be done; n and t, which are deter-

Sp! = (SplX * * , Sp)b'. M mined by the amount of detail needed to resolve the alpha-
bet into its different patterns; and m, which denotes the

where xp' denotes the transpose of , gives a column vec- number of experiences in the learning process.
tor S, where Spj is the score of xp against the pattern class The parameter m should be large enough so that a new
Xj. To phrase this another way: if t, is listed vertically representation of a pattern should have a high probability
alongside M and if all rows of M which correspond to zeros of selecting rows of M which have been selected before by
in xp are deleted, then one obtains a submatrix of M This that class of pattern. However, the property of patterns
submatrix, say U, and the rows which comprise it are said which makes the BB recognition scheme work is that cer-
to be "selected" from M by xp. Since t, is a random repre- tain states are virtually impossible for a particular type of
sentation of Xp it follows that the elements of U are ran- pattern. This and only this property gives incorrect pat-
don variables. The sums obtained by adding within the terns low scores in the score matrix. Consequently, if m is
columns of U form the score matrix, Sp . taken too large, many "impossible" states are observed and
To illustrate what is being accomplished, consider the incorrect patterns get higher scores because the number of

memory matrix of Fig. 3 and take ones in M cannot decrease as m increases. This phenome-

4p' = (100010000010). non of disappearance of zeros in M as m increases is called
saturation. This phenomenon of saturation is unfortunate.

The submatrix of M selected by
c e consists of the first, Usually in sampling problems the more observations one

fifth, and eleventh rows of M; consequently, has, the more information one has about the statistical

1100 population in question. Here the opposite is true: beyond
U= 1100 and Sp' (3 2 1 0). a certain point the more observations one has, the less in-

formation one has about the population of patterns. For-~1010 tunately there are ways out of this difficulty.

LeJdnoe h st fj' frwhc Instead of forming the memory matrix M of ones and
zeros to denote the occurrence or non-occurrence of events,

maximum Sp one can form M from the relative frequencies with which
--I. the n-tuples are in their various states. Recognition

is attained. If pCJ, the identification of xp, is said to be schemes based on a memory matrix formed from frequen
"correct." In the example, the set J consists of the single cies are also considered by Browning and Bledsoe.1

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on October 20,2020 at 02:02:56 UTC from IEEE Xplore.  Restrictions apply. 



1962 Steck: Browning-Bledsoe Pattern Recognition Scheme 277

XVhile the recognition scheme using frequencies will gen- UI11, 12, ,U. , ,
erally perform better than the scheme using zeros and ones
in the sense of recognition ability, the scheme using fre- U21, U22, , U2j, , L2b
quencies will generally perform less well in the sense of Z
speed and storage requirements. If b=36 (which corre-
sponds to an alphabet of English capital letters and the Utl, Ut2, ut, * *,ttb
ten digits), then a single IBM-704 computer word of 36
bits is sufficienit to store one row of M. However, if rela-
tive frequencies from 0.00 to 0.99 are expected, then ap- First, it is assumed that these variables are completely
proximately seven computer words are required to specify independent. This means that the responses of different
a row of M. Thus, using a frequency scheme with n-tuples n-tuples are assumed independent, which is a reasonable
of length n. requires roughly the same computer memory assumption if no two n-tuples are looking at the same part
capacity as using a "zero and one" scheme with n-tuples of of the pattern. Additional remarks justifying this assump-
length n+3. Consequently the question of which scheme tion will be made below. The independence assumption
is best in some over-all sense is still open. Some remarks also means that the elements of a row are independent,
concerning the choice of an optimum memory matrix and which is certainly tenable if the patterns are thought of as
the relation of the BB scheme to other pattern recognition varying independently. Second, it is assumed that Ulj,
schemes are given in Section VIII. U2h, * * , Utj are identically distributed B(1, 1-p) ran-

In Section III the notions of within pattern and among dom variables. (The symbol B(n, p) denotes a binomially
pattern variability are imposed on the recognition scheme distributed random variable with parameters n and p.)
to obtain a stochastic recognition model. This assumption is unrealistic since some n-tuples will gen-

erally be considerably better for recognition purposes than
III. STOCHASTIc RECOGNITION MODEI others; however, this nonuniformity of n-tuple response is

As has b oaveraged out so that the assumption is at least reasonable.As has been observed in Section II, the probability of(Rm beththeptrnobeecgidisaer-
correct recognition is influenced adversely by within pat- sent tion of X. )
tern variability and influenced favorably by among pattern F
variability. To fix the ideas, imagine a typical n-tuple and inally, it is assumed that the other variables, Umk,

anwerefm=1 2 , k= 1, 2,*., b, k#j, are identically dis-a new representation of Xi.M=1 5 1t k1 )k
This new pattern selects I rows of M, one of which could tributed B(1, 1-q) random variables. This final assump-

look like the following tion is the only one which could be considered unreasonable
as well as unrealistic for, obviously, some patterns will be

10(01001100 01101. more alike than others (for example, an "O" is much more
like a "Q" than it is like an "X"). This feature of patterns

For successful recognition of X1, a zero in the first position is not averaged out and would seem to affect the recogni-
of the selected row is not desired; the other zeros are de- tion model in such a way that in reality P1=P(correct
sired. This motivates the definition of two parameters p without tie) is smaller than predicted by the model, and in
and q (p and q are independent parameters and do not reality P2=P(correct with tie) is larger than predicted by
necessarily sum to one) which denote, respectively, the the model. In other words, the effect of "look alikes" is to
probability of a zero where it is not wanted and the proba- increase P2 at the expense of Pi and probably even to
bility of a zero where it is wanted. Obviously it is desirable reduce PH+P2.
that p be small and q be large. Let us now return to the assumption that the responses

XVith m, n, t, and b fixed, p and q are functions of pattern of different n-tuples are independent. This assumption is
variability, p being small if the within-class variability is not realistic but the fact is that the correlations involved
small and q being large if the among-class variability is are small as soon as the n-tuples have some separation. To
large. The random element in the recognition problem is illustrate this, consider a situation in which the assumption
then the random variation of the patterns about typical of independence is strictly true for any pair of nonoverlap-
patterns. While no means have as yet been found to relate ping n-tuples. Consider some pattern, say an A, blocked in
the parameters p and q directly to pattern variability, on a mosaic as in Fig. 6, and generate a random representa-
they are in an intuitive sense measures of this variability tion of this pattern in the following way. Let each black
and are sufficient to describe the efect of pattern variability square in the original pattern have a probability of 0.2 of
on recognition ability. becoming white and let each of the boundary white squares
The stochastic recognition model is described as follows, in the original pattern have a probability of 0.2 of becom-

When a random representation of ATj is presented for recog- ing black-all these choices being made independently.
nition it selects I rowvs of M as described above. Thus to the The result of repeating this construction is a collection of
random representation of X, corresponds the random random representations of A, perhaps blotchy but recog-
matrix U with I rows and b columns. Let the elements of nizable, for which nonoverlapping n-tuples respond inde-
U be pendently.
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In this extreme example all the "noise" in the pattern is l2 I

introduced independently at each point of the pattern. For P.

other patterns, like the typed and handwritten characters
considered in this paper, part of the noise is of this kind be-
cause of the photocell mosaic interpretation of the pat- ./
tern; the rest arises because of scale changes, shifting, and
other distortions. Distortions, too, generally lead to fairly
localized dependences and separated mosaic points will not /
be highly correlated. (It is granted, however, that sepa-

-P

rated mosaic points can be highly correlated-for example,
if the only distortion is one of shift.) 2 I

Furthermore the n-tuple independence assumption was q

checked for the handwritten data used by comparisons of Fig. 4-Graphs of P1 and P2 for b=36 and t==24
the following kind. Let F and G denote two 2-tuples and (6-tuples on a 144 point mosaic).
let FG denote the 4-tuple obtained by appending G to the
end of F. If F and G respond independently then, and only If the recognition scheme embodies a tie-breaking pro-
then, P(F is in state i) P(G is in state j) - P(FG is in state cedure which breaks a tie correctly with probability a, then
ij) =0, where if i is the state 01 and j is the state 11, then the probability of successful recognition is P=Pi+aP2.
ij is the state 0111. Many such differences were checked
and almost all of them found to be suitably small. IV. ESTIMATION OF VARIABILITY PARAMETERS
Under the above independence and distributional as-

sumptions, the score matrix Since no effort will be made to determine p and q from
the patterns themselves, it is necessary to describe them in

Si' = (Sjl, Sj2, . S, * *, Sjib) terms of the memory matrix M. Intuitively, as m increases,

consists of b random variables where S*is a B(t, I-p) both p and q should decrease as M becomes more satu-

random variable and Sj, k #j, is a B(t, 1-q) randomn vani- rated, and as n increases both p and q should increase asrandom~~~~~~~~~~~~vaialandnialSeatkaedkicvaryin
is anBn1Iin)admai

able. The unknown pattern is then identified as that mem- M is essentially desaturated. Since varying m and n in

her of the alphabet which scores highest, assuming no tie. either direction produces both good and bad effects (p and

It follows then that the unknown pattern Xi is recog- q increasing or decreasing together) it is necessary that any

nized "correct without tie" or "correct with tie" accord- description of p and q in terms of M should include a de-

ing as scription of how they behave with m and n.

Consider first the variability parameter p. Let Xi repre-
Sjj > max SJk or Sjj = max Sjk. sent a particular type of pattern, let lrijr, (zIrijr= 1), denote

ki7~j k
2 the probability that a representation of Xj puts the rth

The probabilities of these events are found to be n-tuple in the ith state, and let Zjr denote the number of
zeros in thejth column of MA after m alphabets have been

P, P(correct without tie)r learned. Zjr is then the number of states of the rth n-tuple
t / \ not selected by the m random representations of Xi, and

(S= h and max S/k< h can be expressed as
t 2n

- Z P(Sjj = h) * [P(S k < h kk # j)]bi- Zjr = Z Yj,
h=l

I Fh b-i
Ptt-h(l -tp)h qt\ A8

where Yi is 0 or 1 according as at least one of the m repre-

f-1 )h i - =)Z s sentations of Xj selects the ith state of the rth n-tuple or
not. Also,

and
P 7j= 1) =(1 - 7r,ir)m.

P2 = P(correct with tie)
t t\ t ,_l Therefore,
( ) p (1 - p) )qts(- q)8 E[Zj] E£1.
hlh =o s

- [ ~( t)gt-s(1 - q)s]} P(Y971 = 1)

An IBM-704 computer program has been written which =i 1-Wj)
computes these probabilities for p=0.01(0.Ol)O.5O and= ()sy
q-0.10(0.Ol)0.99 as a function of t and b. (The notation Gr() say
n=a(b)c means that X ranges from a to c in increments of The probability that another, independent, representa-
b.) Typical graphs of Pi and P2 appear in Fig. 4. tion of X3 selects a state of the rth n-tuple not previously
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selected is pected number of zeros in the row of M, selected by a ran-
pir(m) = E3 ,rijr(l - wur)m dom pattern is

iir = E /3irWf ir.
Gjr(m) - Gjr(m + 1).

Note that Pjr(m) is the variability parameter p specialized Let
to a particular type of pattern and a particular n-tuple. 1
This fact together with the form of the above equations W = W3'r;
suggests defining a function G(m), where bi G(m) denotes r

the expected number of zeros in M. Then then TV can be thought of as the expected number of zeros

1 1 in a typical row of M selected by the unknown pattern.
G(m) = E E Gjr(m) = E E E (1 -7rijr)rn. With probability p, one of these zeros will be in the posi-

bi j r bi j r i tion corresponding to what the unknown pattern really is;

Suppose G can be written in the following form, consequently the probability of a zero in some position
other than that, which is q, is defined as

G(m) =>E (1 - pi)m, where E3 Pi 1,
S-~~~~~~~~~ ~ ~~~~~ . T1\TV W p

where the Pi are parameters depending on the variability b-i ) ( b-I b
of the patterns and the choice of n-tuples; that is, p repre- Tt t ~~~The variability parameter q iS then estimated from the
sents some kind of average of the Wjr, j= 1, 2, b, equation
r= 1, 2, , t. G(m) therefore represents an average ex-
pected number of zeros in a column of a typical Mr, the ff7 1 jy =->3Ew ->3>3> k,iWir,average being taken over all types of patterns and n- l r b j
tuples. In this formulation it makes sense to define the
variability parameter p by where T.ij, and 11 ir are the observed values of 1rijr and Wj7,

p^(m) = 3E 1P - p,);tJ respectively, by using

= G>,(m) - G,(m + 1). q= p
b-1

In this last expression the dependence of p and G on m and
n is indicated. The dependence on the particular n-tuples A very similar expression for q arises from considering
used is assumed though not indicated. the matrix M as a transmission channel. This idea is devel-
Now let Z(m) denote the observed number of zeros in M oped in Section V.

after m representations of the alphabet have been learned.
Then V. INFORMATION THEOREITIC ASPECTS OF

THE BB RECOGNITION SCHEME

G(m) =-Z(m) In information theory a channel consists of a pair ofhi
abstract spaces X and Y and a probability distribution

is an empirically obtained graph of the function G(m), and over Y for each x. The elements of X are the inputs to the
its first difference, (m) =G(m)-G(m+1), is an estimate channel and the elements of Y are the outputs of the chan-
of p(m), though a poor one since it ignores neighboring nel. In the context of the BB pattern recognition scheme
p's. However, without a model for p(m) as a function of X is the space of patterns and Y is the space of states of
m, no standard "best" estimates exist and some arbitrari- an n-tuple.
ness is inevitable. In order to effect some averaging on m, As before, let 7i,r denote the expected number of zeros
the estimates ?(m) given in Table I were obtained from in the ith row of Mr. If an unknown pattern selects row i
the parabola fitted by least squares to the 21 numbers, then the conditional distribution over the space of pat-
d(m+k), k=O, 1, 2, * , 10, where terns, X, is uniform over the patterns represented by l's

a(k) = (1/3)KVk[ k-1) + 1\(k) + i\(k + 1)] . in the ith row of Mr. Consequently the amount of informa-
a (k) (IL3) (k 1) + 'A (k) + A'(k 1)]. tion required to specify the unknown pattern when the ith

Now consider the variability parameter q. Again let lriir row of Mr is received at the output of the channel (i.e.,
denote the probability that a representation of Xj puts the selected) is given by
rth n-tuple in state i. The probability that a random pat- b-Wir(/ 1 1
tern selects the ith state of the rth n-tuple is then _- t ) log - -- = log (hb- Wr).

b E3 iriyr I3,ir, say. (All logarithms are to the base 2 )2

If'7r dntsteepcenubrozeointethow 2 See, for example, Amidl Feinstein, "Foundations of Information
of Mr after m alphabets have been learned, then the ex- Theory," McGraw-Hill Book Co., Inc., New York, N. Y., ch. 3; 1958.
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The equivocation of the channel is obtained by averaging Therefore,
the above expression over i. From the previous section the

P

probability of an unknown pattern selecting the ith row of Z (-hrlJ ir-P
Mr was 3ir, (Zi3ir = 1); therefore the equivocation asso- qr* b 1
ciated with the rth n-tuple is

l'Jlr -P
EA- Z jir(b - Wlir) b- 1

For a particular n-tuple, this was the expression derived

If the types of patterns are assumed to be equally likely, earlier, and q* = (1/1)1q,* q.
i.e., the probability distribution over X is uniform, then
the amount of information required to specify a pattern VI. MODELS FOR THE BEHAVIOR OF p,t(m)
before transmission is log b, and the transmission rate, Rr, In Section IV, p,(m) was defined by pjL(m)=Gt,(m)
is defined by -Gn(m+1), where G7,(m) denoted the average expected

number of zeros in a column of a typical Mr, the average
Rr = log b- Er being taken over pattern classes and n-tuples. The func-

tion G,(m) was assumed to be of the form

= Z Oir[log b - log (b - Wir)], (since Fir=2n
/ t G,,(m) = (1- p)m, where pi = 1,

-=1

= log H I 1 and pi is the average probability of a random pattern put-
2 SWirI ting a typical n-tuple into the ith state.

b J Two one-parameter classes of functions to approximate
pn(m) were examined to see whether they could provide a

That is the transmission rate is the amount of information rationale for estimation of p (m). Both of these classes of
* * ~~~~~~~~functions fit the data reasonablv well.needed before transmission less what is needed afterwards. Fios fitlthe dat easoal well.

The relationship that exists between R and q is devel- F
oped as follows. If R,= 1, that is, the rth n-tuple transmits function, the pi (in some order) were assumed to be a geo-

metric series;taisp=aep[ai1jTnapone bit, then all that is known about the unknown pattern 2that is, pi=a exp [-a(i-2)] Then ap-
. . . | 1 n~~~roximating the sum by an integral yields the following

is which half of the alphabet it is in. In other words, on the prxmting tesmblrpnaimf n
average the row of M, selected by the pattern will be half functional form for p(m),
ones and half zeros. Similarly, if Rr"=k, then the row of Mr r2n
will have on the average b( 11-1/2k) zeros. The probability pi(m In, a) = Pp(l -Pi)) -

J (1 - ae-ax)me-axdx
is p that a zero occurs where it is not wanted, and if it is
assumed that the other zeros are uniformly distributed [ 1-(1 - a)m+i]Ia(m + 1).
among the other b- 1 positions, then the variability pa-
rameter could be defined by (call it q* to distinguish it from Second, the assumption that different 1-tuples respond
the q previously defined) independently with the same probability of being in

their least frequent state implies that exactly (7) of the

b(1 -2-Rr-1) /b(1-2-R,) Pi=ak(1-a)"-k, k=O, 1, . . , n, where a denotes the
qr* _ P ) + (1- p) ) average probability that a 1-tuple is in its least frequent

\ b-i / \. b-i / state. Consequently,

I- b2.Rr p-(m | n,2 a) = E() ak(l - a)n-k[l - ak(l - a)n-k]m.
b- k=o k

But The second function provides a slightly better fit to the

/WTV dir data than the first; however, neither fits well enough for
2-Rr = 11(1 -__ the purpose of estimating p. There are two reasons for this.

t b ~~~~~~~First,both Pi and P2 underestimate p for small m and then

overestimate p when m is larger. Second, P1 is very sensi-
,-.IIlt(i_/3irWir>8 tive to variation of p-changing p by 0.02 can change P1

b / by as much as 0.1 in the range of p's encountered in Table

1 3L. A. Kamentsky, "Simulation of three machines which read rows
~ 1 - - E/3jrWjrq. of handwritten arabic numbers," IRE TRANS. ON ELECTRONIC COMPUTERS,

b .rr ~~~~~vol. EC-10, pp. 489-501; September, 1961.

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on October 20,2020 at 02:02:56 UTC from IEEE Xplore.  Restrictions apply. 



1962 Steck: Browning-Bledsoe Pattern Recognition Scheme 281

Fig. 5-Examples of A and B from the BTLHW data.

TABLE I
PREDICTED AND OBSERVED RECOGNITION RATES

Parameters Estimates Predicted Observed
Data -__- _ -___

|nX m CR p2 P1 P2

BTLHW uncentered 6 25 900 0.236 0.119 0.18 0.20 0.13 0.23
6 40 360 0.189 0.089 0.14 0.23 0.10 0.29
8 25 900 0.371 0.226 0.16 0.17 0.18 0.19

BTLHW centered 6 25 900 0.228 0.079 0.30 0.26 0.18 0.30
8 25 900 0.352 0.155 0.31 0.23 0.23 0.27

TYPE 3 10 477 0.625 0.041 1.00 0 0.84 0.02
4 10 477 0.590 0.055 1.00 0 0.84 0.02

Fig. 6-Examples of A and B from typewritten data.

I (see Fig. 4)-and this means that even small systematic ing spot scanner to a 1OX15 mosaic. (It was necessary to
errors in estimating p must be avoided. drop 6 points from the 150-bit mosaic to convert patterns

If these systematic errors are to be eliminated, it will be to 144 bits so that programs written for the BTLHW data
necessary to postulate pi which decrease more slowly than could also be used for these data. The points dropped were
a geometric series. This is currently being explored. the four corners and the points adjacent to the corners in

the bottom row.) The TYPE data consist of about 20 rep-
VII. EXPERIMENTAL RESULTS resentations of an alphabet containing the capital English

The stochastic recognition model described above has letters, the digits 2 thru 9, the solidus (/), and the pound
been tried on two sets of data in several experimental sit- sign (#). The digits 0 and 1 were arbitrarily eliminated as
uations. One set of data was obtained from the Bell Tele- being too similar to the letters 0 and I. Examples of A and
phone Laboratories and will be referred to as the "BTL B from this set of data are shown in Fig. 6.
Handwritten" data (BTLHWV).4 These data consist of 50 The degree of fit between model and experiment is shown
handwritten representations of an alphabet containing the in Table I. As before, n denotes the size of the n-tuple and
capital English letters and the digits 0, 1, * , 9 (obtained m denotes the number of alphabets learned. In each case
from 50 different people) which have been digitized by a b= 36 and t= 144,/n. The quantity CR denotes the number
12X 12 photocell mosaic. Some samples of "A" and "B" are of characters read. (The characters read were different from
shown in Fig. 5 to indicate the extreme within-character those learned.) The quantities 4, p, Pi, and P2 are estimates
variation. The BTLHW data were used in two ways: of q, p, P1=P(correct without tie), and P2=P(correct with
1) "as is"; and 2) with preprocessing to center the center tie), respectively. The estimate q* was 10 percent to 40
of gravity of the pattern. The experimental results are percent larger than q and was not used. Finally, P1 and P2
shown in Table I. are the observed values of P1 and P2.
The second set of data (TYPE) was obtained from a The results in Table I clearly show the effect of "look-

typewriter by photographing (the camera appears to be alikes" in producing the inequalities P1>P1 and P2<P2.
off-center) the typed characters and digitizing with a fly- In spite of this deficiency the model furnishes useful quali-

tative and quantitative information regarding the recogni-

4For comments concerning this BTL data and the BB recognitionY
scheme, see the following correspondence:

W. H. Highleyman and L. A. Kamentsky, "Comments on a char- VIII. FINAL REMARKS
acter recognition method of Bledsoe and Browning,"' IRE TRANS. ON
ELECTRONIC COMaPUTERS, VOl. EC-9, P. 263; June, 1960. The BB recognition scheme consists basically of two

W. W. Bledsoe, "Further results on the N-tuple pattern recognition aspects. One of these is novel and the other is essentially
method,"^ L. Uhr, "zA possibly misleading conclusion as to the inferiority
of one method for pattern recognition to a second method to which it is classical. The classical aspect is contained in the score
guaranteed to he superior,"' and W. H. Highleyman, "Further comments equation
on the N-tuple pattern recognition method," IRE TRANS. ON ELECTRONIC 54J .
COMPUTERS, vOl. EC-10, PP. 96-97; March, 1961.S- :*M
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where t is a vector of measurements on the pattern to be vertical grids, curvature, or whatever. In the BB scheme
recognized and the matrix M is determined from making measurement is made of random properties of the pattern,
the same measurements on known representations of the and the numerical values of the measurements are 1 or 0;
patterns in the alphabet considered. The above equation 1 if the pattern possesses the property and 0 if it doesn't.
firmly embeds the BB recognition scheme in the body of If special attention is paid to properties represented by
statistical literature associated with classification prob- n-typles with high transmission rate, it is possible that
lems in general.5 The novel aspect of the BB scheme con- measurements will be made which are more useful in
sists in what it measures. In many other recognition classifying patterns than topologically oriented ones.
schemes based on measurements, well defined and specific Toward the end of Section II the suggestion was made
measurements are made-be they connectivity, number of that a memory matrix M should be sought which would
branch points, number of intersections with horizontal and be in some sense optimum. The statistical theory of classi-

See, for example, C. R. Rao, "Advanced Statistical Methods in
fication provides a rationale for determining such an M.

Biometric Research," John Wiley and Sons, Inc., New York, N. Y.; 1952. Work in this area will be reported at another time.

Correspondence

On the Number of Types of Self- work consisting of self-dual majority decision dual functionf for the complementary vector
Dual Logical Functions* elements.3-5 5' are complementary to each other, where com-In this letter, the number of self-dual logical plementary means that if one of the two takes

When a switching network for a certain functions and the number of their symmetry the value of 1 (or 0), the other has the value
logical function f is known, functions, obtained types are enumerated with a modified Slepian's of 0 (or 1).
from f by variable transformations (permuting method. A self-dual function f is a function for which
and/or complementing one or more variables), The dualfunctionf (xi, x.,,) of a logical X3)
can easily be realized in the same network by function f (xi, .* * ,x,) is a function defined f =f.
relabeling anl/or changing the polarity of in- by the formula obtained from the definition of For a self-dual function, the values of f for
put leads. Two logical functions are defined to f(xl, . .) through exchanging the opera- mutually complementary input vectors are
belong to the same type, when one of the two tions of logical product and logical sum +, complementary to each other, as indicated by
can be transformed into another by a variable namely, (2) and (3).
transformation. It is, then, an interesting f(x1, - -, x; + ) = f(x, * - , x , t).(1) The value of f for ', therefore, is automat-
problem to enumerate the number of the types ically determined by the assignment of the
in a given set of logical functions. By DeMorgan's theorem, (1) can be re- value for 4. Hence, there exist 22n-1 of self-dual

The number of symmetry types of Boolean written as logical functions of n variables.
functions of n variables was obtained by f(x , x) =f'(x1', - x'), (2) Herewith,itistohenotedthattheself-
D. Slepian1 in 1953. Recentlv B. Elspas2 has 1, duality of a logical function is a type property,
enumerated the number of self-complementary where y' denotes the complement of y. namely, that either all or none of a symmetry
symmetry types of Boolean functions. Let an assignment of the states of input type is self-dual. Thus the self-dual functions

The logical function, expressed by a net- variables xili, x2=42, x* .n=f, be denoted of n variables can be classified with the aid of
work consisting purely of self-dual logical ele- by S2=(i, i, * 0 and be called an input variable transformations.
ments, such as parametrons and magnetic cores vector. The complementary vector 5' of an input The set of possible variable transformations
without bias input, is also self-dual. Conversely vector I is defined as a vector which has the will hereafter be denoted by 0,,, which forms a

any self-dual function can be realized in a net- complemented components of . For example, finite group. The number Pn of symmetry types
the complementary vector of the vector (0, 0 of the self-dual functions of n variables can be
1) is (1, 1, 0). enumerated by applying P6lya and Slepian's

* Received June 20, 1961; revised manuscript received, Eq. (2) means that the value of a function f formula1;
September 11, 1961. This paper is based on an article for an inputvetradhea]eote
which was published in Japan by the same author-"On vetrSadtevleo h 1
the number of types of self-dual logical functions," J. pn= --L ncxc, (4)
Information Prscessing SOc. Japan, vol. 2, pp. 17-21;* 2~n ! c
February, 1961. (In Japanese.) a H. Takahashi, "sComputing Machines," Iwanami

BoDolepan ,"tOns thenuXaamlber of symJmetry types of Book Co., Tokyo; t19Z58. (Ien Japanese)fo iialCrut were C stands for a cnuaeclass in the
no. 2, pp. 185-193; 1953. Kyoritsushuppan Book Co., Tokyo; 1960. (In Japanese). group 0,,, nc is the number of elements belong-

2 B. E,lspas, "self-complementary symmetry types of 5 5. Muroga, I. Toda, and S. Takasu, "Theory of ma- ing to the class C, xc is the number of the self-
Boolean functions," IRE TRANS. O.N ELECTRONIC COM- ]ority decision elements," J. Franlklin Inst., voL. 271, PP. dua fucin whc. r nain neh
PUTERs, vol.EC-9 pp. 264-266; June, 1960. 576-418;May, 1961. da ucln hc r naln ne h
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