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Comments on Approximating Discrete Probability 
Distributions with Dependence Trees 

S.  K. M.  WONG AND F.  C.  S .  POON 

Abstract-Chow and Liu introduced the notion of tree dependence 
to approximate a kth order probability distribution. More recently, 
Wong and Wang proposed a different product approximation. The aim 
of this paper is to show that the tree dependence approximation sug- 
gested by Chow and Liu can be derived by minimizing an upper bound 
of the Bayes error rate under certain assumptions. It is also shown that 
the method proposed by Wong and Wang does not necessarily lead to 
fewer misclassifications because it is a special case of such a minimi- 
zation procedure. 

Index Terms-Bayes error rate, classification, entropy, information 
theory, mutual information, pattern recognition, probability distri- 
bution, tree dependence. 

I. INTRODUCTION 
The problem of classification is one of the main concerns in the 

design of intelligent information systems such as pattern recogni- 
tion, inductive learning, and expert systems. In many of these ap- 
plications, the essential task is to estimate the underlying k-dimen- 
sional probability distributions from a finite set of samples. Because 
of the curse of dimensionality, the probability distribution function 
is often approximated by some simplifying assumptions, such as 
statistical independence. The independence approximation is sim- 
ple but may be unrealistic in certain applications. It was suggested 
by Lewis [ l ]  that the optimal product approximation can be ob- 
tained by minimizing a divergence measure between the true and 
approximate distributions. Some years ago Chow and Liu [2] in- 
troduced the notion of tree dependence to approximate a kth-order 
probability distribution by a product of k - 1 second-order com- 
ponent distributions. One can then reduce the problem to finding a 
dependence tree with maximum total branch weight of mutual in- 
formation [2], [3]. 

It was mentioned in [2] that the tree selection criterion is not that 
of minimizing the recognition-error rate (Bayes error rate). More 
recently, Wong and Wang suggested another product approxima- 
tion by minimizing an upper bound of the Bayes error rate. (This 
method is referred to as “Error Probability Minimax” in 141, [ 5 ] . )  

The aim of this correspondence is to show that the tree depen- 
dence approximation proposed by Chow and Liu can in fact be 
derived by minimizing an upper bound of the Bayes error rate under 
certain assumptions. Moreover, we show that the method sug- 
gested by Wong and Wang is a special case of such a minimization 
procedure. 

11. TREE DEPENDENCE APPROXIMATION BASED ON 

Before we discuss the approach proposed by Wong and Wang, 
we first show that the results of Chow and Liu can be obtained from 
a minimization procedure. 

Let X = (XI,  X,, . . . , X , )  denote a k-dimensional random 
vector. The component X ,  of X represents the ith discrete-valued 
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feature. Let W be a random variable whose values are used to label 
the classes. Let P ( x ,  U )  be the true joint probability distribution 
for X = x = (x l r  x 2 ,  , x , )  and W = w ,  where x is a value of 
the random vector X. The probability distributions that are permis- 
sible as approximations can be written as 

- 

” 
B ( x ,  w )  = n ~(x , , , Ix~ , , , , ,  U ) ,  o 5 j ( i )  < i ( 1 )  

r = l  

where ( m , ,  . . . , m,) is an unknown permutation of the integers 
1 , 2 ,  . . *  , n,  P(x , ,  Ix,,,,,, w )  the joint probability of x,, and w 
conditioned on the variable x ~ , , , ~ ,  and P ( x ,  Ixo, w )  by definition 
equal to P ( x , ,  U ) .  For notation convenience, we will drop the sub- 
script rn and denote, for example, .xm, by x ,  in subsequent discus- 
sions. 

Let ue denote the Bayes error rate. It was proved by Hellman 
and Raviv [6] that 

ue 5 f H ( w l X ) ,  ( 2 )  

where the entropy function H (  w I X )  is defined by 

H ( w l X )  = -e  P ( x )  C P ( w l x )  log P ( 0 l x ) .  

H ( o l X )  = H ( w )  - H ( X )  - c P ( w )  c P ( x l w )  log 

X W 

The function H ( w  I X )  can be rewritten as 

X 

( 3 )  

where 

H ( w )  = - c P ( w )  log P ( w ) ,  

H ( X )  = - c P ( w )  log P ( x ) .  
X 

In terms of the second-order approximation defined by ( 1 )  for 
each individual class w 

we obtain from (3), 

r i ( w l X )  = H ( w )  - H ( X )  - c P ( w )  c P ( x l w )  log P ( x l w )  

= H ( w )  - H ( X )  - c P ( w )  c I U ( X l ,  x,,,)) 
X 

” 

w I = I  

( 5 )  

where 

H,(X,) = -c P ( x , ( w )  log P ( X l ( W ) .  
l, 

If we assume that the H ( X )  is independent of the dependence tree 
chosen for each individual class, by minimizing H ( w  1 X )  defined 
above it follows: 

n 

min A(wlx)  = max C C I ~ ( x , ,  x,,,)), (6)  
w , = I  

which is the result obtained by Chow and Liu. Kruskal’s algorithm 
[3] can be easily applied to finding a tree with maximum total 
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Feature vector P(x I +) P ( x  I -) 
0 0 0 0.072 0.0728 

0.168 0.1352 0 0  1 

x = (x,, x*, x3) 

branch weight, 
,1 

B,  = c L ( X ; ,  X, , , , ) ,  ( 7 )  
, = I  

for each individual class w .  
On the other hand, one may assume that the probability distri- 

butions for all the classes can be approximated by the same depen- 
dence tree as suggested by Wong and Wang [ 3 ] ,  [4]. In this case, 
for 0 5 j ( i )  < i ,  the apriori probability distribution P ( x )  can be 
written as: 

n 

P(x)  = 11 W x / ( o ) .  (8)  
, = I  

By substituting the approximate distributions defined by (1) and (8) 
into (3) ,  one immediately obtains the following result of Wong and 
Wang: 

) min A(uJx) = max C P ( W )  z ~ ( x , ,  x / ( , ~ )  - ~ ( x , ,  x / ( , ) )  

( 9 )  
where 

Classification 

- 
+ 

The important point is that Chow and Liu’s method uses one 
tree structure for each individual class. In contrast, by adopting the 
same minimization procedure the result of Wong and Wang is ob- 
tained by using one tree structure for all classes. 

111. EXPERIMENTAL RESULTS 
Before presenting our experimental results, we will first dem- 

onstrate the restrictiveness of 1-tree method (Wong and Wang) in 
comparison with the 2-free method (Chow and Liu) by the follow- 
ing example. 

Example 1: Consider a sample with three features and two pat- 
tern classes ( W  = “+”  and W = “ - ” ) .  Each feature has a value 
of 0 or 1 .  The probability distribution within each class is shown 
in Table I and both P (  + ) and P (  - ) are equal to 0.5. 

Based on the exact probability distributions in Table I ,  the clas- 
sification for each feature vector x is determined by using the Bayes 
decision rule 

Decide +, if P ( x (  +) P (  +)  > P ( x (  - )  P (  - )  

or 
Decide -, if P ( x (  - )  P (  - )  > P ( x (  +) P (  +) .  

The classification results are listed in the last column of the Table 
1. 

There are three possible tree structures in this example: 

1 1 1  0.224 0.2556 - 

1 0 1 0 1 0.072 I 0.1092 I - I  

+ I  1 n o I 0.036 I 0.0348 I + 
1 0 1 1  0.288 0.2028 

I i 0 i I 0.084 I 0.10 

1)  2-tree Method (Chow and Liu): By ( 6 ) ,  tree ( a )  is selected 
from class “+”  and tree ( c )  for class “-”.  Using the Bayes de- 
cision rule and the approximate probability distributions 

P ( x (  + )  = P ( x , l + )  P ( x , ( x , ,  + )  P(x3 lx2 ,  + I ,  
p(X(-) = P ( X I ( - ) P ( X Z I X I ,  - ) P ( X ~ ~ X I ,  - ) ,  

one obtains the classification results shown in column 2 of Table 
11. By comparing these results to those of the original classifica- 
tion, no misclassification error is observed 

2)  1-tree Method (Wong and Wang): Based on (9), tree (b )  is 
selected to approximate both P (  x 1 + ) and P (  x I - ), namely, 

P ( x (  + )  = P ( x , (  +) P(X3IXI.  +)  P(XZlXb + I ,  
B ( x /  - )  = P ( X l (  - )  P ( x 3 ( x , ,  - )  P(x21x3,  - ) .  

The classification results obtained by using these approximate dis- 
tributions are shown in column 3 of Table 11. Note that there are 
two misclassifications in this case. 

The results of this example indicate that Wong and Wang’s 
method may lead to a higher number of misclassifications than 
Chow and Liu’s method. U 

We performed nine experiments using different probability dis- 
tributions. The primary objective of these experiments is to com- 
pare the accuracy of the approximate distributions between the 2- 
tree and I-tree methods. For each feature vector, we compare the 
original classification to the approximate one. The total number of 
misclassifications is used as a measure of the accuracy of the ap- 
proximate under consideration. 

In all our experiments, we used eight features, two classes, and 
various sample size up to 6172 feature vectors. In each sample we 
assigned a probability distribution for each class. As shown in Ex- 
ample I ,  based on the given distributions the original classification 
for each feature vector was determined by the Bayes decision rule. 

In sample 1 ,  we used 2578 featue vectors for class “+”  and 
3102 for class “-”.  According to Chow and Liu’s method, the 
following tree structures were selected: These two trees were then 
used to compute the approximate probability distributions. Based 
on these distributions, the classification for each feature vector was 
inferred from the Bayes decision rule. By comparing these results 
to those of the original classification, we obtained 19 misclassifi- 
cations. 

i’ 

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on October 09,2020 at 12:44:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. I I ,  NO. 3, MARCH 1989 335 

Sample # 

9 

Number of Misclassifications 
2-free I 1 -tree 0 Class - 

For the same sample, the tree structure for both classes selected 
by Wong and Wang’s method is shown below. By applying the 
Bayes decision rule to the distributions of the above tree, 22 mis- 
classifications were observed in this case. 

Q 

The experimental results of other samples are summarized in 
Table 111. In all cases except one, the 2-tree method performs better 
than the 1-tree method although some of the improvements are 
marginal. 

IV. CONCLUSION 
We have shown that the dependence tree approximation used by 

Chow and Liu can be derived by minimizing an upper bound of the 

TABLE I1 
COMPARISON OF THE ORIGINAL AND APPROXIMATE CLASSIFICATION 

-tree 

TABLE 111 
NUMBER OF MISCLASSIFICATIONS 

1 2  1 2 7 1  29 

Bayes error rate under certain assumptions. Based on our analysis, 
it seems that the I- tree method is more restricted than the 2-tree 
method. 

There is always a tradeoff between efficiency and accuracy. Ob- 
viously, Wong and Wang’s method has the advantage of being 
computationally more efficient, especially when the number of fea- 
tures is very large. However, if accuracy is the predominant factor 
in a particular application, Chow and Liu’s method is preferred. 
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