
A Scanning n-tuple Classifier for Online Recognition of Handwritten Digits

Eugene H. Ratzlaff
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598, USA
ratzlaff@us.ibm.com

Abstract

A scanning n-tuple classifier is applied to the task of
recognizing online handwritten isolated digits. Various
aspects of preprocessing, feature extraction, training and
application of the scanning n-tuple method are examined.
These include: distortion transformations of training
data, test data perturbations, variations in bitmap
generation and scaling, chain code extraction and
concatenation, various static and dynamic features. and
scanning n-tuple combinations. Results are reported for
both the UiVIPEN Train-ROlD’07 and DevTest-ROlD’02
subset l a isolated digits databases.

1. Introduction

The scanning n-tuple (or sn-tuple) classifier first
described by Lucas and Amiri [l-31 has been
demonstrated to be a good classifier for handwritten
offline character recognition [1-41. The sn-tuple classifier
trains and classifies quickly and can be implemented with
relative ease. As will be shown, it can also be applied
with various static or dynamic features, or combinations
of both. For these reasons, and because it is implemented
in a probabilistic framework, the sn-tuple classifier merits
consideration for use independently or in concert with
other classifiers in online recognition tasks.

The sn-tuple method applies a novel combination of
chain code feature extraction with a probabilistic n-tuple
classifier. Unlike earlier n-tuple classification methods,
the information-rich outline features of the image are first
extracted by generating a chain code. The chain code is
then sectioned into multiple, overlapping substrings of
fixed length, each offset by 1 code element. Each
substring is subsampled (decimated) to generate a short
(typically 4 to 6 elements) string of length n - a “scanned”
n-tuple - to be used as the feature or “address” for an
n-tuple model [I].

This study describes an implementation of the sn-tuple
classifier for recognition of isolated online handwritten

0-7695-1263-1/01/$10.00 0 2001 IEEE

digits drawn from the UNIPEN [5] data set.
Preprocessing steps for scaling, generating a raster image,
and chain code generation and handling are considered.
The application of distortion transformations (also known
as defect models) to training data [3, 6, 71 for training
data augmentation and the use of smoothing [8] are
described. Test data perturbations [7] and combinations
of various sn-tuples are examined.

2. The scanning n-tuple classifier

The scanning n-tuple classifier is a variant of the
memory-based standard n-tuple method [9]. The critical
difference of the sn-tuple is the feature extraction [I]. A
chain code is extracted from a binary image. The value of
each chain code element may range from 0 to a-I. The
chain code for each training exemplar is reduced to y
substrings, each of length n, by sampling n sequential
locations in the chain code with a fixed offset 6 2 1
between each sample. These substrings are the sn-tuples
described by this method:

Let Y = {Yo, . . . , Y,,.,} be a chain code of length m from
whichy sn-tuples are extracted, where y 5 m (typically, y
= m and it is assumed that the end of the chain code can
be defined to wrap back onto its beginning such that all
indices into Yare evaluated modulus m). Then a set of y
sn-tuples Sk are extracted from Y as follows:

S, = { YI I I = (26 + k) mod m , 0 5 1 < n } : 0 < k < y (1)

In training, for each class c I 1 5 c 5 Q each sn-tuple
S,, is a single, discrete observation with 6 different sn-
tuples possible. A memory address A , I 0 I j 5 U-“-1
records the number of times t , each possible sn-tuple S,
is observed for all training tokens. The total number of
training tokens is retained as {TI , . . . ,TQ}. Hereafter
assuming all class prior probabilities P(c) equal, the
posterior probability that a digit is a member of class c
given randomly observed sn-tuple S, is shown in (2):

(t , ITc 1

c (t u IT,)
P(cIS,)= Q

r=l

18

mailto:ratzlaff@us.ibm.com

In the classification step, noting that P(&) is constant
with respect to c and applying Bayes rule, the maximum
likelihood classification result for observed chain code Y
is assigned to the class c that maximizes P(S, I c) as shown
in (3) :

argrnax[P(S,lc)]= argrnaxfIP(c IS,) (3)
C k=O

3. Implementation

Stroke vectors from the raw data are mapped to a
binary bitmap raster with black data pixels on a whte
background. Before rasterization to a WxH (terms later
referenced in Table 1 are given in bold italic) width-by-
height bitmap the vector data for the entire digit are pre-
scaled to fit within a (W-2)x(H-2) area to allow the
mapping to leave a 1-pixel white border inside the border
limits. In many experiments a 3x3 convolution kernel is
applied (Fig. 1) at each original pixel to broaden the
bitmap stroke width. In such cases, the vector data are
pre-scaled to (W-4)x(W-4) to maintain the white pixel
border. Three different scaling methods were applied: SI ,
in which the datum aspect ratio was not, maintained and
the width and height were independently scared: to fill the
bitmap in both width and height: 5'2, in.which, the original
aspect ratio was preserved (the bitmap was:typically filled
in only 1 dimension); and S3, in which the height was
scaled to fit the bitmap height and the aspect rario. was
preserved unless the scaled width dimension exceeded the
bitmap dimensions, in which case the width was scaled

down to fill the available space. Typically, all strokes
were rasterized into one bitmap. Alternatively, each
stroke (iso stroke) could be rasterized to a separate
bitmap. Chain codes from these separate bitmaps were
then treated as if they were derived from one bitmap.

Static chain codes were extracted (Fig. 1) from the
contours of the black regions (static image information).
Static chain codes are recorded in the order observed
while scanning the bitmap in raster order (starting top-
left; left-to-right, top-to-bottom); contours were mapped
in a clockwise direction if first encountered at a wlute-to-
black pixel transition (typically an exterior surface), or
counter-clockwise if first found for a black-to-white edge.
Dynamic chain codes were determined from the
directional sluft of the stroke as each pixel was placed on
the bitmap (dynamic stroke information). Dynamic chain
codes are recorded in the order given by the original
stroke sequence. Contour profile chain codes were not
given as directional shifts, but rather by the scaled
distance from the side of the bitmap to the first observed
ink. The maximum distance was scaled to 0-2; when no
ink was observed the code G-1 was used.

a = 9 chain codes were extracted, where codes 0-7
were the conventional 8-duection codes as shown in
Figure 1. The ninth code was used to extend the ends of
open chains. Ths prevented, snztuple folding, balanced
code representation; and' provided "end-of-chain" context
information.. End: extension. was: always: done for code
chains: that were very short, (as with, the chain
corresponding to the hole in Figure. 1);when necessary to
prevent the, wrapping, of an> sn-tuple sequence back onto
itself. The number of end extension codes added depends

Figure 1: Rasterization and chain code extraction, (a) Example zero rendered in 10x10 bitmap with 3x3
kernel; original dynamic points given in alphabetic order, a-p. (b) Static chain code superimposed on
corresponding bitmap locations from (a); 2 static chain codes starting at gray pixels:
1222234444456666770001, 54321 076; 1" scanning 3-tuple with offset 6=5 is 134 (underlined digits).
(c) 3x3 binary convolution kernel. (d) Directional chain code key for gray pixels with respect to central
black pixel. Dynamic chain code is 654443222100076. Left contour profile chain code is
... 872100001278 ..., where ... represents a variable number of 8 codes (end extension codes).

19

on the coverage range (given by n and 6) of the sn-tuple:
sufficient end extension codes were added to allow each
original chain code element to be represented an equal
number of times by an equal number of sn-tuples. The
ninth chain code was always used to extend contour
profile chain codes. It was optionally used (end extend)
to extend static and dynamic chain codes that were not
wrapped back on themselves.

Sn-tuples were extracted from each chain code either
individually or by first concatenating all chain codes
(merge chains) in the order observed into a single chain
code representation. Typically, the end of each static
chain code of length m was “wrapped’ back to the start to
allow m sn-tuples to be mapped. Alternatively, m - (6 x
(n- 1)) sn-tuples were extracted when neither wrapping
(wrap) nor end extension was applied.

For those sn-tuples that were seldom or never observed
in training for a single class, the corresponding regions of
the class probability density were optionally estimated
(smooth) using modified Kneser-Ney smoothing [8].

Distortion transformations on training data were
investigated. The training data were augmented with 6
synthetic exemplars generated from each original training
exemplar by means of the following distortions: * 5 O slant
(shear), &lo% dnft in the x velocity, and & 5 O baseline
slope. These specific values were based on limited past
experience with other classifiers; variations or
optimizations were not explored.

Similarly, these same transformations were applied as
perturbations to the test data. Each perturbed datum was
separately classified and the best score (no weighted
voting as in [7]) among all perturbation results for each
character was retained.

4. Experiments and results

Experimental results were obtained on isolated digits
using the UNIPEN 1.51 Train-ROlN07 subset l a database
and the DevTest-ROl/V02 subset l a database. Because
the DevTest set has only been released on a very limited
basis, most results are evaluated using only the Train set.
The 15953 digits of the Train set were segmented into 10
approximately equal-sized homogeneous subsets as well
as 10 heterogeneous subsets. Each writer’s data was
equally distributed among all 10 homogeneous subsets,
but in only 1 heterogeneous subset. Results were
obtained for each set by combining 10 jackknife
experiments. In each experiment, 8 different subsets were
combined for training; a ninth subset was used for cross-
validation and the tenth subset was used to test accuracy.
Test results were obtained after retraining with the initial
8 subsets plus the cross-validation subset. Although it
was observed that approximately 0.5% of the data is
mislabeled, no data were excluded in either training or
testing, with one exception: any datum with an aspect

ratio greater than 2.5 was not used in training.
By visual inspection, 27 different allographs were

selected as candidate archetypes for training.
Approximately 2 to 3 exemplars of each archetype were
manually clustered into subclasses in each jackknife
training subset. Each training set of 8 subsets was then
fully clustered into the final allograph subclasses in two
steps. First, a bootstrap classifier was trained with the
manually-clustered allographs. Then, the balance of the
8-subset training set was fully clustered using this
bootstrap classifier. The tested classifier was then trained
using the fully subclassed training set. Additional
trainingklustering cycles were tested, but found to reduce
accuracy slightly. Observing that two of the final clusters
typically had fewer than 20 exemplars, these two
allographs were eliminated, leaving 25 archetypes, as
shown by example in Figure 2. No further clustering
algorithms or optimizations have been investigated.

Figure 2:
for bootstrapping.

Example allograph archetypes used

Ys55 L 7 T ? 78 v?
O/ai i d 1 L 1 2 8 3 ’ f - d

Results on the jackknifed subsets for 27 varied
combinations of preprocessing. training, and sn-tuple
combination are shown in Table 1. Sn-tuple lengths of 2-
6 were investigated; lengths beyond 6 were considered to
be impractical due to large memory requirements. Each
of the single sn-tuple methods shown was first trained
using sn-tuple lengths from 2 to 6 and offsets from 1 to
13. Test subset results are mean values based on
conditions found optimal on the cross-validation subsets:
6-tuples generally performed best; the best-performing
offset, 6, is presented. Standard deviations for the
homogeneous results typically ranged from about 0.2% -
0.6% while those for heterogeneous results ranged from
1% - 3%. Rows 24-27 are for classification results using
combinations of the aforementioned single sn-tuple
methods. The hghest accuracies for the homogenous and
heterogeneous sets are for sn-tuple combination method
27 at 98.9% with a standard deviation (s.d.) of 0.2% and
98.0% with an s.d. of 1.0%, respectively.

Typically, only 10 to 20 percent of all possible sn-
tuples were observed while training. Posterior
probabilities were stored as a set of tables of 16-bit scaled
log-probabilities indexed by allograph, one such table for
each sn-tuple; omitting empty tables conserved memory
space. Referring to Table 1 methods 22, 26, and 27.
memory usage was 1.0, 19.3, and 4.4 megabytes, and
classification speed was 440, 70, and 420 characters-per-
second on a 300 h4Hz RS6000 workstation, respectively.

20

Table 1 : Classification accuracies for various experimental conditions for single (rows 1-23) and
combined (rows 24-27) scanning n-tuples; bold table entries indicate distinguishing parameters.
Column headings as follows (see text for further details):
method index
WxH raster bitmap total width by height (WxH)
Scale S f , S2, or S3; blank = S3 (see text for details)
n tuple length for best results (last columns) on homo. and hetero. cross-valid. sets, respectively
6 sn-tuple offset (best on training set for conditions)
Krnl 1 or 3; width of convolution kernel applied to broaden strokes; blank for dynamic chain codes
TY Pe D for dynamic chain code; PL, PR, PT, PB, for Left, Right, Top and Bottom contour profile,

respectively, and P4 for all four contour profiles combined; blank for static chain code
Is0 Stroke Y if each stroke was rasterized to a separate bitmap (bo stroke)
Merge Chains Y if all chain codes concatenated to form 1 chain code (merge chains)
Wrap N if chain codes were not wrapped, Y or blank if wrapped (wrap)
End Extend Y if end-of-stroke code extensions were added at ends of chain code (end extend)
Trans NT if no pre-training data transformations applied, NP if perturbation method not used
Smooth N if modified Kneser-Ney smoothing of training data not applied (smooth)
Homo Train classification accuracy for homogeneously jackknifed Train-RO1 NO7 data set (%)
Hetero Train classification accuracy for heterogeneously jackknifed Train-ROIN07 data set (%)

21

DevTest results are reported for comparative purposes.
Because the ground-truth labels for the 8598 isolated
digits of the DevTest set were unavailable, this set was
manually ground-truth labeled. When the most likely
label for a datum could not be inferred by appearance or
apparent intent of the writer (based on stroke direction
and sequence and in comparison to other related
examples), or when the datum was clearly not a digit, the
datum was truthed as a nondigit, but was not removed
from the test set. Using the test conditions given for
method 26 in Table 1 and the full Train set for training,
the classification accuracy for the (mostly) heterogeneous
DevTest set was 98.2%.

5. Discussion

The scanning n-tuple method as implemented herein is
an effective classifier for online digits. The 98.1%
classification accuracy for the DevTest-RO 1N02 test set
(though it may be slightly optimistic given a potentially
cleaner ground-truth) compares favorably to the value of
96.1% reported for a hybrid KP neural network [lo].

The benefits of several experimental options can be
compared in Table 1. The use of a convolution kernel to
broaden the strokes improves results except for the
smaller bitmaps (compare methods 1, 5; 11, 12).
Maintaining the aspect ratio when possible while always
filling the height (S3) is preferred over filling the bitmap
(Sl) or always preserving the aspect ratio (S2) (methods
1, 7, 8). For the static sn-tuple, neither isolating strokes
nor concatenating chain codes is best (methods 1, 9, 10).
Perturbation, smoothing, and training data
transformations are all useful (methods 1-4). For the
dynamic sn-tuple, isolating each stroke, leaving each
chain code unwrapped and extending the ends of the
chain code are important (methods 16-19).

Combining sn-tuple methods based on different feature
types is quite powehl (methods 1, 25-26). Not only does
the error rate drop significantly when combining the best-
performing static, dynamic and contour profile methods,
but the performance of such combination methods is also
maintained (methods 24, 25; 26, 27) while using fewer
memory resources with methods that are lower-
performing in isolation (methods 1, 4, 6; 16, 19).
Somewhat surprisingly, combinations of only static sn-
tuples (results not shown) with different values of n and 6
did not outperform the single methods as has been
observed for digit images [1-41.

6. ConcPusions

This study suggests that the fast and uncomplicated
scanning n-tuple classifier is a viable classifier for
isolated online handwriting recognition. The conventional

static sn-tuple method has been extended to include
dynamic and contour profile features. The application of a
broadening kernel, pre-transforming training data,
perturbation, smoothing, and isolation of chain codes
were all demonstrated to improve accuracy in this
context. Stroke isolation and extension was introduced
and shown to be valuable for the dynamic sn-tuple
method. Contour profile sn-tuples were found useful in
combination. The combination of static, dynamic and
contour profile sn-tuples was especially powerful, where
hgh accuracy and high speed can be achieved with
reduced memory resources.

Future work will consider optimizations of memory
resources, speed, and allograph clustering, as well as
extension to problems with a larger number of classes.

Acknowledgments

The author thanks Michael Perrone and John Pitrelli
for helpful comments and Jayashree Subrahmonia for
helpful discussions and encouragement regarding th~s
study.

7. References

[l] Lucas, S. & Amiri, A., “Statistical syntactic methods for
high performance OCR,” IEE Proc.-Ji’s. Image Signal
Process., 143(1), pp. 23-30, (1996).

[2] Lucas, S. & Amiri, A., “Recognition of chain-coded
handwritten characters with the scanning n-tuple method,”
Electronics Letters, 31(24), 2088-2089 (1995).

[3] Lucas, S.M., “Improving scanning n-tuple classifiers by
pre-transforming training data,” Proc. Ftfh Int ’1. Workshop
on Frontiers in Handwriting Reco., 143-146tris (1996).

[4] Tambouratzis, G., “Improving the classification accuracy
of the scanning n-tuple method,” ICPR2000, 1050-1053
(2000).

51 Guyon, I., Schomaker, L., Plamondon, R., Liberman, M. &
Janet, S., UNIPEN project of on-line data exchange and
recognizer benchmarks, Proc. of the 12th Int’l. Con$ on
Pattern Recognition. ICPR’94,29-33 (1 994). IAPR-IEEE.

61 Baird, H.S., “Document Image Defect Models,” H.S. Baird,
H. Bunke, and K. Yamamoto, eds., Structured Document
Image Analysis. Springer Verlag, 1992, pp.546-556.

71 Ha, Thien M. & Bunke, Horst, “Off-Line, Handwritten
Numeral Recognition by Perturbation Method,” IEEE
Trans. PAMI, 19(5), 1997.

[8] Chen, S.F., Goodman, J., “An Empirical Study of
Smoothing Techruques for Language Modeling,” Tech.
Rep. TR-10-98, Harvard University, 1998.

[9] Rohwer, R. & Morciniec, M., “The Theoretical and
Experimental Status of the n-tuple Classifier,” Neural
Networks, 11(1) 1-14 (1998).

[I O] Hkbert, J.F., Parizeau, M., Ghazzali, N., “A new fuzzy
geometric representation for on-line isolated character
recognition,” Proc. 14th Int ’1. Conference on Pattern
Recognition, ICPR ’98, 1121-3 (1998).

22

