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Suppose by, ..., b, are self-adjoint elements in a finite von Neumann algebra M
with trace 7 and define a map ¥ from M to complex (n + 1)-space by the formula
Y(x)=(t(x), (b x), ..., T(b,x)). Next let B denote the image of the positive unit
ball of M under the map . B is called the spectral scale of <, by, ..., b,. It is clearly
compact and convex. The main theme of this work is that the geometry of the
spectral scale B reflects spectral data for the b,’s. For example, in the finite dimen-
sional case the operators commute if and only if the spectral scale is a polytope.
Thus, one can “see” that the operators commute from the shape of spectral scale.
In the case of a single operator, where the scale lies in the plane, the slopes of the
boundary fill out the spectrum of the operator, corners correspond to gaps in the
spectrum, and flat sports indicate eigenvalues. Analogous results hold when there is
more than one operator. In the commutative setting, the spectral scale “determines”
the (n+ 1)-tuple (z, by, ..., b,). However, an example is given that shows this is not
generally true in the noncommutative case. Finally, a matricial version of the
spectral scale is shown to be sufficient to completely determine the (n + 1)-tuple
(7,b1, s b,).  © 1999 Academic Press
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INTRODUCTION

The notion of the spectrum of an operator on Hilbert space arose in the
1920s and has played a major role in the theory of such operators ever
since. In view of the obvious value of this concept it is natural to try to see
if it is possible to find generalizations of this notion to n-tuples of operators
and a great deal of effort has been expended in this direction.

These attempts seem to divide naturally into two avenues of approach.
In the first one attempts to define a joint spectrum for commuting n-tuples
of operators «,, ..., a, in a Banach algebra 4. Here it is natural to try to use
the maximal ideal space of A4 to define the joint spectrum of aq, .., a,.
Although this definition is relatively easy, the resulting object depends on
the ambient algebra 4. This defect was repaired by Taylor in [ Tay] who
used homological techniques (the Koszul complex) to obtain a definition of
the joint spectrum that is independent of the ambient algebra. A good deal of
further work in this direction has been done. (See [ Bu, CR, Vas], for example.)

Hermann Weyl initiated another approach in the late twenties while he
was studying the quantization problem for the position and momentum
operators. Using the Fourier transform and the one parameter unitary
groups associated to these operators, he was able to obtain a functional
calculus (now called the Weyl functional calculus) for this pair of noncom-
muting operators [ We, Sect.45]. This work was extended to arbitrary
n-tuples of noncommuting self-adjoint operators by Anderson in his thesis
[A]. (Also, see [IN].) Work in this direction continues to this day. (See
[K], for example.)

Concepts of the “joint numerical range” have also been studied. (See
[Be, Cal, Ca2, Ch], for example.) In another direction, Chandler Davis
introduced his notion of the shell of an operator [ Dal-Da3]. This is a
convex compact subset of R* whose geometry reflects some spectral proper-
ties of the operator.

This paper is the first of several in which an entirely new geometric
approach will be employed to capture, in a single compact convex subset
of real (n + 1) space, the spectral data for all real linear combinations of an
n-tuple by, ..., b, of self-adjoint operators. With our present techniques we
need the existence of a faithful tracial state on the C*-algebra generated by
the b,’s. Although this a significant restriction, the theory applies in many
interesting cases. We expect that this new geometric approach to spectral
theory (together with modern techniques of computer graphics and imag-
ing) will give a useful procedure for computing (and “visualizing”) spectral
information in many cases, including, for example, in von Neumann
algebras generated by the left regular representations of discrete groups.
The theory also appears to dovetail nicely with Voiculescu’s notions of
“free probability” and “free entropy” [ DNV, Voi].
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Let us now describe our approach in more detail. The setting is as
follows. We have an n-tuple b,, ..., b, of self-adjoint operators that lic in a
finite von Neumann algebra M equipped with the faithful normal tracial
state 7. Let ¥ denote the map of M to C"*! defined by

Y(a)=(z(a), t(b,a), ..., 1(b,a))

and write B=¥(M "), where M ' ={ae M:0<a<1}. Since 7 is normal,
B is a compact convex subset of R**!. We call B the spectral scale of the
b’s relative to t (Definition 2.1).

In Section 1 we consider the special case where n = 1. The key result here
is Lemma 1.3 which shows that the images under ¥ of certain spectral
projections of b=5b, lie on the boundary of the spectral scale B. Building
on this result, Theorems 1.5 and 1.6 explore how spectral data for b corre-
sponds to geometric data for the boundary of B in R% For example, a real
number s is an eigenvalue for b if and only if the boundary of B contains
a line segment with slope s. Also, corners on the boundary correspond to
gaps in the spectrum. This correspondence is summarized explicitly in
Theorem 1.7.

In Section 2 we move on to the general case of n operators. Theorem 2.3
is a generalization of portions of Theorems 1.5 and 1.6 by means of which
we identify spectral data for real linear combinations of the b’s from the
geometry of the spectral scale B. Thus, Theorem 2.3 shows how spectral
data is stored in the geometry of B. Since B is convex and compact, the
extreme points of B and the equations of the supporting hyperplanes of B
contain all the geometric information about B. Hence they determine all of
the spectral data of any real linear combination of the b’s.

Let N denote the von Neumann subalgebra of M generated by b4, ..., b,
and the identity. Since we want to get information about by, ..., b, from the
spectral scale, we must be sure that it contains no extraneous information
introduced by the images under ¥ of elements of M that do not lie in N,
ie., that Y(M;)=Y(N{) (Theorem 2.4). The assumption that 7 is a trace
is the key to this result.

In Section 3 we study the question of the extent to which the spectral
scale “determines” the (n -+ 1)-tuple <, b, .., b,. More precisely, given
(n+ 1)-tuples 74, by, ..., b, and 7,, ¢4, ..., ¢, that determine the same spectral
scale, can we conclude that there is an unitary transformation that inter-
twines the tracial representations of the von Neumann algebras that they
generate? It is shown in Theorem 3.3 that the answer is yes in the case
where the n-tuples are abelian. However, we show in Example 3.4 that,
even in the finite dimensional, noncommutative case the answer may be no.

Thus, as is often the case in non-commutative situations, a first level
object such as B may not be provide sufficient data (see, e.g., [P, EW]).
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It seems necessary to introduce the complete spectral scale (Definition 3.5)
to obtain the desired unitary equivalence. This is a sequence of spectral
scales, where the nth term in the sequence is a spectral scale constructed
from the tensor product of M with the n x n matrices over C. The main
result in this section (Theorem 3.11) is that the complete spectral scales are
equal if and only if the von Neumann algebras that the n-tuples generate
are unitarily equivalent in their tracial representations. An important com-
ponent of the proof is Theorem 3.2 which shows exactly what information
is carried by B in terms of the »’s and the trace.

1. THE SINGLE VARIABLE CASE

In this section we begin with an analysis of the problem described in the
introduction for the case n=1. It is convenient to begin by introducing
some notation.

If M is a von Neumann algebra, we write

M ={aeM:0<a<l1}.

Also, for a self-adjoint element » in a von Neumann algebra and a real
number s, we denote the spectral projection of b for the interval (— oo, 5]
(resp., (—oo, s)) by pF (resp., p;). We use p* to indicate either of these
projections and we write p, when p = p_~. If p and ¢ are projections in a
von Neumann algebra and p < ¢ then we write

[p.q]l={a:p<a<gq}

for the order interval that they determine.
The following is a slight restatement of Theorem 2.2 in [AP].

THEOREM 1.1. If M and N are von Neumann algebras, ¥ is a normal
linear map from M to N and F is a face in Y(M "), then there are unique
projections p and q in M with p <q such that

Y F)n M =[p.q]

and F=Y([ p, q]).

The main results in this section are presented in Theorems 1.5 and 1.6
where it is shown how spectral data about » can be read off from the
geometry of B. The implications of these results are then summarized in
Theorem 1.7. This work is the basis for all subsequence material. These
theorems are fundamentally grounded in Lemma 1.3 below. It is convenient
to present part of the proof of this result as a separate lemma.
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LemMA 1.2. If b is a self-adjoint element in a von Neumann algebra M,

s is a real number, ce [p_, pf ] and ae M}, then the following statements
hold.

(1) We have (b—s1)(1—c)=(b—s1)(1—pF)=0 and the range
projection of (b—s1)(1—pF)is1—pF.
(2) Ifa’*(b—s1)(1—c)a'?=0, then a<p;.

(3) We have (s1—b)c=(s1—>b) p; >0 and the range projection of
(s1—b) py is p; .

4) If(1—a)?(s1—b)c(1—a)'?=0 then a=p_.

Proof. Tt is convenient to use the decomposition 1 =p, + (pf —p. )+
(1—p;) to view the elements under consideration as matrices. Thus we

have
by 0 0 1 00
b={0 s1 0], where ps{o 0 0]

0 0 b, 000
1 00
and pf=]0 1 0] .
0 00
Also, since p” <c<p; we get

1 00
c=[0 ¢ 0
0 0 O

(Of course, if p; = p, then the middle direct summands do not appear.
In this case, the calculations are even more straightforward.) With this we
have

b,—sl 0 0 0 0 0
(b—sl)(1—c)= 0 0 0 0 1-¢ 0
0 0 b,—s1||O 0 1
0 0 0
=0 0 0 =b-s)(1—pF)
0 0 by,—sl
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Next, since p} is the spectral projection of b determined by the interval
(—o0,s], we have b(1 —pF)=s(1—p}). Hence, (b—s1)(1 —c)=(b—s1)
(1—pF)=0. It is straightforward to show that the range projection of
(b—s1)(1—c)is 1 — pJ using spectral theory.

Next write

dy dypp dps

12 _ *
a "=~ =|djpp dyp dx

% %
ays  dzz dsz

With this it is easy to check that the diagonal entries in a'?(b—s1)(1—c)a'/?
are

a3(b,—sl) af;, ay(by—sl) aky, and ass(b, —s1) as;.
If a'2(b—s1)(1 —¢) a'? =0, then since b, —s1>0, we get
ay3(by,—sl)afs=ay(b,—sl)a¥=as3(b,—s1)a;; =0
and therefore
(by—sl)afy=(by,—sl)a¥=(by,—s1)a¥=0.

Since the range projection of (b—s1)(1—pF)is 1—pF and (1—pJ)ak
=a¥, we get

and so

Hence, a = (a'?)*<p}, as desired.
Thus, assertions (1) and (2) are true. Assertions (3) and (4) are proved
using analogous arguments. ||

LemMmA 1.3. If M is a von Neumann algebra with a faithful finite normal
tracial state t, b is a self-adjoint element in M and s is a real number, then
the following statements hold for each ce[p;,pf] and ae M{ .
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(1) If t(a)=1(c), then t(ba) = t(bc).

(2) If ©(a)=1(c) and t(ba)=1(bc) then ac[p;, p}1; moreover, if
c=pZE, then equality in the second equation obtains only for a=c.

Proof. To show that (1) holds, observe that
(b—s)(1—c)=(b—s)(1—pF)=0

by part (1) of Lemma 1.2 and so b(1 —c¢)>=s(1 —c¢). Since the trace is
central and preserves order, we have

2(b(1 —¢)a)=1(a"?b(1 —c) a"*) =t(as(1 —c¢)a'?)=1(s(1 —c) a). (%)

Similarly, we have bc <sc by part (3) of Lemma 1.2 and so
7(be(1 —a)) < t(sc(1 —a)). (%)

Using (*), (**), some simple algebra and the hypothesis in (1), we get

(ba) —t(bc)=1(b(1 —¢) a) — t(bc(1 —a))
=1(s(1 —c¢)a)—1t(sc(1—a))
= 1(sa) —7(sc)

=0.

Thus t(ba) = t(bc), as desired.
For (2), suppose t(a)=1(c¢) and 7(ba) =(bc). In this case we have

(1 —c¢)a)=t(a—ca) =1(c— ca) =1(c(1l —a))
and
t(b(1 — ¢)a) = t(ba— bea) = (bc — bea) = t(be(1 — a)).
Combining these observations with (x) and (x#) we get

7(be(l —a))=1(b(1 —c)a)=st((1 —c)a)=st(c(1 —a)) =t(bc(1 —a)).

()
Hence all of the terms in (%) are equal. In particular we have

(b(1—c)a)=st((1—¢)a)
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and
©(be(l1 —a)) =st(c(1 —a)).
Hence,
(aV*(b—s1)(1—=c)a?) =0
and
(1 —a)?(b—s1) c(1 —a)?) =0.
Since 7 is faithful we get
a'?(b—s1)(1—c)a'?=0
and
(1—a)?(b—sl)c(l —a)?=0.
Applying parts (2) and (4) of Lemma 1.2 we get
Py SCSpy,

as desired.
The final assertion in (2) follows from the fact that 7 is faithful. Indeed,
since a is comparable to p¥ and t(a)=1(pF), we must have a=p*. |

Remark. Observe that the fact that the trace is central seems to be an
essential ingredient in the proof of Lemma 1.3. It is for this reason that our
results only apply to finite von Neumann algebras.

We now review the previously introduced notations for the convenience
of the reader and also define some new ones.

Notation 1.4. The following notations have been previously introduced.

(1) Throughout this section M denotes a finite von Neumann algebra
with a faithful finite normal tracial state 7 and b stands for a self-adjoint
element in M.

(2) We use ¥ to denote the map defined by the formula

W(a) = (z(a), ©(ba))
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and we write
B=W(M}),

where M| ={aeM:0<a<l}.

(3) If p and ¢ are projections in M and p < ¢, then the order interval
that they determine is

[p.gl={aeM{:p<a<q}.

(4) If s is a real number, then we write pf, (resp., p;) for the
spectral projection of b corresponding to the interval (—oo,s] (resp.,
(—o0,s)) and we use pF to indicate either of these projections.

Now let us introduce some new notation.

(5) We define the lower boundary of B to be the set of points (x, y)
in B such that if (x, ') is in B, then y' > y, and the upper boundary to be
the set of points (x, y) in B such that if (x, ') is in B, then )’ < y.

(6) We denote the spectrum of b by a(b) and the point spectrum of
b by a,(b). Also, we write s,,;, and s,,, for the left and right endpoints of
the spectrum of b, respectively.

(7) For any (x4, x;) on the lower boundary, write f(x,) =x;. Thus,
the lower boundary is the graph of the function f. We call f the lower
boundary function determined by B. Note that the domain of f'is [0, 1]. As
usual, we say that f is differentiable at 0 (resp. 1) if the right (resp. left)
derivative exists at 0 (resp. 1).

(8) If s and o are real numbers, then let L(s, o) denote the line with
the equation

—85Xg+ X =0
Also write
LT(s, a0) = {(xg, X1): —5X¢+ X, >0}
for the positive half-plane determined by L(s, o).

The next two theorems are the main theorems of this section.

THEOREM 1.5. With notation as in Notation 1.4, the following statements
hold.
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(1) The zero dimensional faces in the lower boundary (the extreme
points) are precisely the points of the form Y(p*), s € a(b). Further, we have

YU P(pS) M ={pS}.

(2) The one dimensional faces (the line segments) in the lower bound-
ary are precisely the sets of the form

F=¥[ps.ps1).  sea,b).
Further, for each such face we have
YUF) A My =[p7.p)]

and the slope of F is s.

(3) The map (xq, x1)— (1 —xq, ©(b) — x,) takes B to itself and inter-
changes its upper and lower boundaries. This map is a rotation by © about
the point (1/2, t(b)/2).

(4) The extreme points on the upper boundary are precisely the points
of the form Y(1 —p¥F), sea(b). Further we have

Tl =—pE) M ={1-pF}.

(5) The line segments on the upper boundary are precisely the sets of
the form

F=¥Y[1—-pt,1—p 1, sea,(b).
Further we have
S”_I(F)mez[l—p:,l—ps_]

and the slope of F is s.

Proof. (1) Fix s in a(b). If ae M{ and t(a)=1(pF), then z(ba) >
7(bpF) by part (1) of Lemma 1.3 and therefore ¥(pF)=(t(pZ), t(bpF))
lies on the lower boundary. Furthermore, by part (2) of Lemma 1.3 we
have that ¥(a)=¥(pZ) only if a= p*. In other words,

YUP(pEN M =1{pfE). (*)

To see that ¥(pF) is an extreme point of B, suppose

P(pE)=2¥(a,)+(1—2) Y(ay)=¥(la;+ (1 — 1) a,)
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for some a,, a, in M; and 0 <A< 1. In this case we have p* =la, +
(1—2) a, by (%) and, since projections are extreme points in M ;", we get
a;=a,=p*, as desired. To complete the proof of this part of the theorem,
we need only show that if ¥(a) lies on the lower boundary and ¥(a) #
Y(p¥) for all sea(b), then ¥(a) is not extreme point. This will be estab-
lished in the proof of the next part of the theorem, where it will be shown
that points on the lower boundary that are not of the form ¥(pF) lie in
the interior of line segments.

(2) First, fix seag,(b) so that p-<pt, W(p;,)#¥(p;S) and
b(pf—p;)=s(p} —p,). Observe that if ce [ p_, p;} ], then ¥(c) lies on
the lower boundary of B by part (1) of Lemma 1.3. Next, write p, =/Ap_ +
(1—2) p} for each 0 <A< 1. Thus, each p, isin [p;, pF] and P(p,) is
a typical point on the line segment joining ¥(p.) and ¥(p. ). Hence the
lower boundary of B contains the line segment joining ¥(p; ) and P(p;).
The slope of this line segment is

wbp ) —lbp) _t(b(bS —p;)) _

(pf)—p;s)  tpS —p;)

E

because b(p;" — p; ) =s(p — p; ).

Let F denote the line segment in the lower boundary of B that contains
Y([ps, pr]) and consider the endpoints of F. We have by Theorem 1.1
that there are projections p<g¢ in M such that [p,¢]=% " F)n M
and therefore p<p, <p} <q. If p<p., then since p; <p < g we would
have that ¥(p_) is in the interior of F, which is impossible, because ¥(p )
is an extreme point by part (1) of this theorem. Hence p = p . Similarly we
have ¢=p;. Thus, if seg,(b) then Y([p;, p,S]) is a line segment in the
lower boundary of B with slope s. Finally we have, ¥ Y[ p;, pFf 1) n M
=[p., p}] by Theorem 1.1.

To complete the proof of this part of the theorem (and finish the proof
of part (1)), we must show that line segments of this form together with
points of the form ¥(pZ) fill out the entire lower boundary of B. To this
end, fix a point (xq, x;) = ¥(a)=(¥(a), ¥Y(ba)) on the lower boundary of
B such that (x,, x;) # P(pF) for all sea(b). In this case we have

w(p, )=0<xo<l=1(p] ).

min

Hence, we may write

ri=sup {sea(b): 1(p;)<xo} and

r,=inf {sea(b): t(p;}) = x,}.
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Our next goal is to show that r; =r,. Note that since the spectrum is
closed, we have r; ea(b), i=1, 2. Also, we must have

w(p,)<xo<1(p;))

by the definitions of r; and r,. Since (x,, x;) # Y(pF) for all sea(b) by
assumption, we get

©(p, ) <xo<t(p))
Next observe that if s <r, and seo(b), then we have
w(p))<xo<t(p,)) (%)
by the definition of r,. Similarly, if r, <s and s € g(b), then
t(pr) <xo<t(p;) (%)

by the definition of r;. Now suppose that r; <r,. In this case since each r;
is in a(b), we would get

wW(p) <xo<1(p,) (5

by putting s=r; in (%) and s=r, in (). On the other hand, if we had
ry<s<r, and sea(b), then using (*) and (**) we would get

(pS)<xo<t(p;).

Since p; <p., this is impossible and so no such s exists. Thus if r, <r,,
then we must have that r; and r, form the endpoints of a gap in the
spectrum of 5. But in this case we would have p = p_ and

o(pr)=1(p,)s

contradicting (#*x). Hence we must have r,=r, =r.
With this we have

w(p, ) <xo<1(p,)

and therefore p~ <p}t. Hence r is an eigenvalue for b. Therefore
Y([p7,pr] is a line segment in the lower boundary by the first part of
the proof of this part of the theorem. Since 7(p, ) <xo<z(p,) and (x,, x;)
lies on the lower boundary, we get that (x,, x;) lines in interior of this line
segment, as desired.
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(3) For any ae M}, W(a)=(t(a),r(ba)) is in B and ¥(l —a)=
(1 —z(a), 7(b) —t(ba)) is in B. Thus, the map (x4, x;)+— (1 — xq, T(b) —x;)
takes ¥(a) to ¥(1 —a) and hence takes B onto itself. It is easy to check
that this map is a rotation by 7 about the point (1/2, 7(5)/2) and with this
it is evident that it switches upper and lower boundaries.

The final assertions in parts (4) and (5) follow immediately from parts
(1) and (2) and the symmetry property of B described in part (3). ||

Remark. Observe that if r is a real number such that r is not in the
spectrum of b, then p~ = pF = p, and there is an s e () such that p,=p~
or p,= pt. Indeed, since r¢ o(b), it is clear that p. = p*. If r <s.,,, then
pr=0=p_ . Similarly, if r>smp,, then p,=1=pF . If s <r <Smax
then r must lie in a gap in the spectrum of the form (s,, s,) as described
below. In this case we have p,=p ;1“ =p,,- Combining this with part (1) of
Theorem 1.5, we get that ¥(pZ) is an extreme point on the lower boundary
of B for all real s.

In the next theorem we shall discuss the geometry of the lower boundary
curve in terms of its differentiability. As usual a corner on the boundary of
a compact convex subset of R? is a point that admits two distinct lines of
support and a gap in the spectrum of b is a real interval of the form (s, s,)
such that each s; is in a(b), but (s, s,) na(b) = .

THEOREM 1.6. With notation as in Notation 1.4, the following statements
hold.

(1) If s> Spin> then the left derivative of the lower boundary function
fat ©(p.) exists and is given by the formula

S (z(p;7))=sup {s ea(b): s <s}.

If §<Spmax, then the right derivative of the lower boundary function f at
(pt) exists and is given by the formula

S (z(p)))=inf {s' €a(b): s’ > s}.

(2) The points of nondifferentiability (corners) on the lower boundary
curve are in one-to-one correspondence with the gaps in the spectrum of b.

(3) For each real s, t((b—s1) p;)=1t((b—s1) p}). The line L(s,a)
is a line of support for B such that B< L' (s, «) if and only if

a=1((b—s1) p¥).
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In this case L(s, o) passes through ¥Y(pF). Moreover, we have
YU L(s,0) "M =[p;.p;)]

and ¥([p, ., pS 1) =L(s,a) " B.

(4) The set B has corners at ¥(0) and ¥Y(1). The lines L(S.,, 0) and
L(Smax> 0) are lines of support for B at ¥(0). The lines L(Smax> T(D — Spmax 1))
and L(Spin, T(b —Smin 1)) are lines of support for B at ¥(1).

Proof. (1) Since B is convex, the lower boundary function f is a
convex function and therefore for each x (0, 1),

JX)—f(x—h)
h

increases as /1 decreases to zero. Furthermore, the convexity of f also
implies that as 4 varies this quantity is bounded above by

S =fx)

1—x

Since bounded monotone sequences converge, this shows that left sided
derivatives exist at every point, including 1. A similar argument shows that
right sided derivatives also exist at every point, including 0.

Fix s € R such that s,;, <s. In this case a(b) N (— o0, 5) # & and we may
define

r=sup {s' €a(b): s’ <s}.

Note that r is in o(b) because the spectrum is closed. First suppose
(r—er)na(b)=¢ for some ¢>0. If we had r=s, then we would get
(r—e,r)nab)=(s—¢, s)na(b)= contradicting the definition of r.
Hence we have r <s in this case. Since the definition of r also implies that
(r,s) na(b) = &, we get that r is an isolated point in (b). Hence r e g,(b),
pr=p;,and Y(p;)=¥(pF) is the right hand endpoint of a line segment
in the lower boundary with slope r by part (2) of Theorem 1.5. Thus the
left derivative of f at 7(p;) is r, in this case.

Otherwise we can choose a sequence of distinct points {r,} <a(b)
increasing to r. The points ¥(p, ) lie on the lower boundary by part (1)
of Theorem 1.5. Moreover, since"pr_ converges to p,~ in the weak™*-topol-
ogy, and 7 is normal, o, = r(pr;) co;lverges to a=1(p,; ). However, a, does
not equal a for any n because 7 is faithful. Since p and p are spectral
projections of b, we have '

r Py —py ) Sb(p. —p ) <r(p; —p,)
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for each n. Applying 7 yields

ra(a—a,) < flo) — fla,) <r(e—a,)
and so

<) = /(o)

ox—a,

<r.

Since r, —» r and a, — a we conclude that the left derivative at a =1(p,")
equals r.
A similar argument proves the analogous statement for right derivatives.

(2) This follows immediately from part (1) of this theorem.

(3) Fix a real number s. If sea,(b), then we have b(p —p; )=
s(pS —p; ). Further, if s¢ o,(b), then we have p; = pS and so we again
get b(pt—p.)=s(pS —p;). Hence, in all cases we have (b—sl)
(p—p;7)=0 and so t((b—sl)p}t)=7((b—s1)p;). Next, if a=
7((b—s1) p¥), then we have:

—st(pF)+(bpF)=1((b—s1) pF)=a

and so P(pF) lies on L(s, a). Our next goal is to show that L(s, «) is a line
of support for B whose upper half-space contains B. To see this, it is useful
to consider several cases.

First suppose se g,(b). In this case ¥(p, ) and ¥(p,") are the endpoints
of a line segment in the lower boundary whose slope is s by part (2) of
Theorem 1.5. Since L(s, a) passes through Y(pF) and has slope s, L(s, o)
contains this line segment and is tangent to the lower boundary of B. As
this line supports B on the lower boundary, B< L1(s, «).

Observe that if s is an isolated point in ¢(b), then sea,(b). Hence, the
desired conclusions hold in this case by the previous paragraph.

Next suppose s€a(b)\o,(b) so that s is not an isolated point in a(b).
Since s¢o,(b) we have p~ = p = p,. Since s is not isolated in a(b), we
may use part (1) of this theorem to conclude that at least one of the one
sided derivatives of the lower boundary function takes the value s at 7(p,).
Hence B admits a line of support at ¥(p,) with slope s. Arguing as above,
we get that this line is L(s, o) and B< L'(s, ). Thus, the desired conclu-
sions hold for all s e a(b).

Next suppose that (s,, 5,) is a gap in the spectrum of b. In this case we
have p" = p_ . Further, if a; =7((b—s,) p}) and a; =1((b—s,) p,), then
we have that L(s,, «;) and L(s,, a,) are lines of support passing through
Y(p ;1“ )=Y(p 5) because s; and s, are in the spectrum of b. Hence if L is
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a line passing through ¥(p ;lr ) whose slope lies between s; and s,, then L
is a line of support for B that contains B in its upper half-space. Since
L(s, a) is such a line for all s, <s <s,, the desired conclusions hold for all
s such that s; <s<s,.

As s, €0(b), we have p =0, L(Sy,, 0) is a line of support for B at
¥(0) and B lies in LT (s,,;,,0). Now suppose s < s,,;,. In this case we have
p. =pt =0 so that L(s, 0) passes through ¥(0). Further, since L($,,0)
supports B on its lower boundary and s <s;,, L(s, 0) is a line of support
for B and B< L' (s, 0). Similarly, L(s .., 7(b —S$m.c1)) is a line of support
for B at ¥(1) and if s> s, then p” =pF =1 and L(s, 7(b—s1)) is also
a line of support for B whose upper half-space contains B.

Thus, in each case we get that if a =t((b—s1) pF), then L(s, a) is a line
of support for B and B< L'(s, «). Since all possible cases have been
checked, the proof of the “if” portion of the second assertion in part (3) is
complete.

Conversely, observe that with s fixed, as f ranges over R, the lines
L(s, f) are all parallel. Thus, there is exactly one f for which L(s, f) is a
line of support for B and B L'(s, B). Since the line L(s, «) has these
properties by the preceding paragraphs, we must have f=o. This com-
pletes the proof of the first three assertions in part (3).

For the final assertion, observe that the (possibly degenerate) line
segment F=L(s,«) N B is a face in B. Hence, F is either an extreme point
or else it is a line segment. If F is an extreme point, then it must have the
form {¥(pZF)} for some sea(b) by part (1) of Theorem 1.5. Moreover, we
must have p; = p}, since otherwise F would be a line segment by part (2)
of Theorem 1.5. Hence, in this case we have F={¥(p. )} ={%¥(p.; )} and

P F) A M =" (Lis,a) n M ={pS}=[p;.p)]

by part (1) of Theorem 1.5. Similarly, if F is a line segment, then we have
F=Y([p;,pS]) for some s in o,(b) and

PNF) M=% L(s,0))nM{ =[p;, p]]

by part (2) of Theorem 1.5.

(4) We have that L(s,;,,0) and L(Syax, T(b —Smax1)) are lines of
support for B at ¥(0) and ¥(1), respectively, by part (3) of this theorem.
Next, using the symmetry of B described in part (3) of Theorem 1.5, we get
that L(syax, 0) is a line of support for B at ¥(0) and L(Spyin, 7(6 — Smin 1))
is a line of support for B at Y(1). If 5., = Smax =5, then b =51 and B is the
line segment joining (0, 0) and (1, ©(b) =(1, s)). In this case ¥(0) and ¥(1)
are the endpoints of this line segment and so are degenerate corners of B.
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Otherwise we have s, <Sn.x,» and again, there are two distinct lines of
support for B at ¥(0) and P(1). |

We now summarize how the geometry of B and spectral data for b are
related. There are five mutually exclusive possibilities. In each case a
geometric property of the lower boundary corresponds to an equivalent
spectral property of the operator 5. We have already reviewed the nota-
tions of a corner on the lower boundary of B and a gap in a(b). A flat spot
on the lower boundary is a nonempty line segment on the lower boundary
curve and a round point is a point that does not lie in the interior of a flat
spot and where the lower boundary curve is differentiable.

THEOREM 1.7. As above, let f denote the lower boundary function
associated to the set B. If x is in (0, 1), then the following assertions hold.

(1) The point (x, f(x)) is in the interior of a flat spot with slope s if
and only if [ is differentiable at x, there exists a unique se€a,(b) such that
wW(pr)<x<t(p;) and f'(x)=s.

(2) The point (x, f(x)) is a round spot at the left end of a flat spot
with slope s if and only if f is differentiable at x, there exists unique s € a,(b)
such that ©(p;)=x<t(p}) and f'(x) =s.

(3) The point (x, f(x)) is a round spot at the right end point of a flat
spot with slope s if and only if f is differentiable at x, there exists unique
sea,(b) such that t(p;)<x=1(p;)) and f'(x)=>s.

(4) The point (x, f(x)) is a round spot that is not the endpoint of a flat
spot and the tangent line at (x, f(x)) has slope s if and only if f is differen-
tiable at x, there exists a unique s in o(b)\o,(b) such that 1(p; ) =x=1(p})
and f'(x) =s.

(5) The point (x, f(x)) is a corner such that the slopes of the lines of
support for B at (x, f(x)) lie between s, and s, if and only if f is not differen-
tiable at x, there exists unique gap in o(b) with endpoints s, <s,, t( p;: )=
x=1(p,), the left derivative of f at x is s, and the right derivative of [ at
X IS S,.

Proof. The statements as follow easily from Theorems 1.5 and 1.6. |

Remark. Write N={b}", the von Neumann algebra generated by b
and the identity. Since the extreme points of B are images of spectral
projections of b, and ¥ is weakly continuous, we get that B=¥(M )=
Y(N ).

We conclude this section by presenting several illustrations of the set B.
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In the next example we consider the measure space { X, u}, where
X=[0,1/4]u{1/2} U[3/4,1]

w is Lebesgue measure on [0, 1/4]1 U [3/4,1] and p{1/2} =1/2.
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r: 3 i 1
(o, )=T(p;,,)

2. GENERALIZATIONS TO HIGHER DIMENSIONS:
THE SPECTRAL SCALE

We now turn to the case when n> 1. Let us begin with a formal defini-
tion of the object of interest.



A GEOMETRIC SPECTRAL THEORY 277
DEerINITION 2.1. We continue to use M to denote a finite von Neumann
algebra with faithful normal tracial state 7. Fix self-adjoint elements

by,...b, in M. The spectral scale of by, .., b, relative to t is the set
B=Y(M{)<=R"*" where ¥: M > C"*"' is defined by

¥(a)=(z(a), 1(bya), .., ©1(b,a)).
Also, for each nonzero vector t= (¢4, ..., t,) € R” write
by=t1by+ -+ +1,b,.

Next, define the map ¥, from M to C? by ¥,(a) = (z(a), ©(b,a)) and write
B, =W.(M). Finally, write n, for the map from R"*' to R* by

nt(x0> X1y e xn) = (x0: tlxl + e+ [nxn)'
The basic tool for studying the spectral scale in »+ 1 dimensions is a

reduction to the two-dimensional case considered in Section 1, effected by
means of the preceding definitions. The following lemma is basic.

LEmMMmA 2.2. We have W, =mn,°¥ and B, =mn.(B).

Proof. For the first assertion we have

¥(a)=(t(a), (b))
=(t(a), t((tyby + -+ +1,b,) a))
=(t(a), e(bya) + -+ +1,7(b,a))
=n(t(a), 1(ba), ... 1(b,a))
=7 (¥(a)).

Since

the second assertion is true. ||

For any nonzero te R"” and any se R let p,*; and p_ denote the spectral
projections of b, determined by the intervals (—oo, s] and (— oo, 5). Also
write P(t, s, a) for the hyperplane in R"*! defined by the formula

—SXo+H X+ - HI,X, =
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and let PT(t, s, o) denote the half-space defined by the inequality
—SXo+H X+ - F X, =
The following is a generalization of portions of Theorems 1.5 and 1.6.

THEOREM 2.3. If M is a finite von Neumann algebra with faithful normal
tracial state t, by, ..., b, are self-adjoint elements of M and B denotes their
spectral scale relative to t, then the following statements hold for each non-
zero vector te R" and each real s.

(1) Ifx is an extreme point of B, then there is a projection p in M such
that

Y(p)=x and YU (x)n M} ={p}.

Further, Y(pg,) and ¥(p,,) are extreme points of B.

(2) We have t((by—s1)pl)=1((by—s1)p.,). The hyperplane
P(t, s, ) is a hyperplane of support for B with B PT(t, s, &) if and only if

a=1((b—s1) psy.

In this case we have Y(pE) e P(t, s, o).

3) If a=1((by— sl)pt’x), then F=P(t,s,a)nB is a face in B.
Moreover,

PPt s, )M =[pe,, pe]

and
=Y Py Pes))-

(4) If we put f=1((by—s1)(1—pE)), then the hyperplane P(t, s, )
is a hyperplane of support for B that passes through the points Y(1 —pZ)).
This hyperplane is parallel to the supporting hyperplane P(t,s,a) and we
have B< P*(t, s, p).

Proof. (1) Fix an extreme point x in B. Since {x} is a face of B there
are projections p < ¢ in M such that

YU x)n M =[p.q]

by Theorem 1.1. Since ¥(p)=x= ¥(q), we get that ©(p)=1(gq). Further,
since 7 is faithful and p <¢, we must have p =¢. Hence

P (x)n M ={p},

as desired.
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For the final assertion in part (1) suppose ¥(pf,) = ¥Y(da, + (1 — 1) a,),
where 0 <A< 1 and the g,’s are in M ;'. In this case, we have

V(pi) =mP(pi,) =n(Y(a, + (1= 1) ay)) = ¥ (da, + (1 — 1) a5)

and therefore pF = 2a, + (1 — 1) a, by part (2) of Lemma 1.3. As projec-
tions are extreme points in M, we get pF, =a, =a,, as desired.

(2) We have (b,—s1)(pS,—pe,)=0, so that t((b,—s1) p)=
©((b¢ —s1) p, ). Now suppose a denotes this common value. With this we
get that

_Sr(pfs)+[lf(blpfs)+ +tnr(bnpt_,_._s): _Sr(pt,is)+f(btpt,is):a

and therefore ¥(p) e P(t, s, «). Let L(s, «) denote the line in R? deter-
mined by the equation

—SXpt X =

and note that by Part (2) of Theorem 1.6, L(s, o) is a line of support for
B, and that B, lies in L] (s, a). Now fix ae M . Since ¥,(a) lies in this
upper half-plane, we have

o< —st(a)+t(t;bra+ -+ +t,b,a)= —st(a)+ tyt(bia)+ -+ +1,7(b,a)

and so ¥(a)e PT(t, s, «). Hence, P(t, s, «) has the desired properties.

Conversely, observe that with t and s fixed, as f ranges over R, the
hyperplanes P(t, s, ) are all parallel. Thus, there is exactly one f for which
P(t, s, B) is a hyperplane of support for B and B< P'(t, s, B). Since the
hyperplane P(t, s, «) has these properties by the preceding paragraph, we
must have f=o.

(3) Since P(t,s, o) is a supporting hyperplane for B by part (2),
F=P(t,s,0) n B is a face of B. Hence, there are unique projections p <g¢
in M such that

P(F) A M =[p.q]

and Y([p,q])=F by Theorem 1.1. If ae M and ¥(a)e P(t, s, a), then
Y(a)e P(t, s, 0) n B and therefore

[p.q1=¥ " F)nM{ =P (P(t,s,0) " B)n M

=YY P(t,s,0)) " M.
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To complete the proof of this part, we need only show that p= p -~ and
q=p.,- For this, note that since ¥(pg,) € F by part (2), we get

PP <P <q.
Next observe that we have

Lt(sa O() th = Tt([pt,_sa pt-,'—s])

by part (2) of Theorem 1.6. On the other hand, we have n (P(t, s, o)) =
L(s, o) and 7, (B)= B, and so

Y([p, q]) =n(¥([p, q]) =7 (F)
=7n(P(P(t,s,a) " B))= L,(s, ) N B,

= Syt([ljtjy p:s])>

and therefore p. <p<g<p/,. Hence p_,=pand p} =q.

(4) If y=2((b_—(—s)1) pE, _,), then we have that P(—t, —s, )
is a hyperplane of support for B that contains ¥(p*, _) and
BcP'(—t, —s,7) by part (2) of this theorem. Now observe that
b—t: _bt and pft, —s 1 _pti-' Hence y:T((b—t_(_S) 1) pft, —s) =
—1((by—s1)(1—piE))=—pand so P(—t, —s,y)=P(—t, —s, —f)=P(t, s, f)
and PT(—t, —s, —B)=P'(t,s, B). 1|

THEOREM 2.4. If M, 7, and by, ..., b, are as in Theorem 2.3, and N is the
von Neumann subalgebra of M generated by by, ..., b, and the identity, then
P(M{)=¥(N).

Proof. This follows easily from Theorem 3.2 below. It may also be
established as follows. Since M is finite, 7 is normal and N = M, there is a
conditional expectation E that maps M onto N and preserves the trace
[ Tak, Proposition 2.36, page 332]. Specifically, we have

for each a in M. The map FE also has the property that E(ba)=bE(a) for
ae M and be N [Tak, Theorem 3.4, p. 131]. Hence
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3. INVARIANCE PROPERTIES OF THE SPECTRAL SCALE

A natural and fundamental question to ask at this point is: Does the
spectral scale “determine” the n-tuple b, ..., b,? Our purpose in this section
is to address this question. It is convenient to change our notation slightly.
Let us begin by formally recording some of the new notation that will be
employed.

Notation 3.1. (1) Throughout this section M and N continue to stand
for finite von Neumann algebras with finite faithful normal tracial states 7,,
and 7,. However, we no longer assume that N < M. Instead, we shall
assume that

M={by,..,b,}" and N={cy, ... c,}",

where b4, ..., b, (resp., ¢4, ..., ¢,) are self-adjoint.

(2) We write B and C for the spectral scales of b4, ..., b, and ¢4, ..., ¢,
relative to 7,, and 7, determined by the maps ¥,, and ¥, as defined in
Definition 2.1.

(3) Recall that the states 7,, and 7, determine representations of M
and N via the GNS construction. We write {7,,, H,,, &5,) and {ny, Hy, &y}
for the representations, Hilbert spaces, and canonical cyclic vectors that
arise from this construction. Thus, for a € M, we have

nala) € B(H,y,) and tafa) = (mpla) Epr, Eag)-

(4) Finally, recall that if 7, and 7, are representations of a C*-algebra
A on Hilbert spaces H, and H,, then n; and 7, are equivalent if there is
a unitary transformation ¥ mapping H, to H, such that

urm (x) =7m,(x)u

for each x e 4. Let us abuse this notation slightly and say that the tracial
representations of M and N are equivalent if there is a unitary transforma-
tion mapping H,, onto H, and such that

ué==%&y and um(b;) =mnlc;) u, i=1,.,n

Thus, in this section we shall assume that the spectral scales, B and C are
equal and ask if the tracial representations are equivalent. It turns out that
the answer is yes if M and N are abelian, but a simple 3 x 3 matrix example
shows that the answer in the general case is no. However, if we pass to
matrices over M and N and require that the spectral scales be “completely
equal,” then it will be shown in Theorem 3.11 that the tracial representa-
tions are equivalent even in the noncommutative case.
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We begin our study by presenting some equivalent reformulations of the
assumption that B=C, ie., different ways of viewing the information
content of the spectral scale. As in the previous section we write p*, for the
spectral projection of b, corresponding to the interval (— oo, s] or (— o0, ).
Let us write ¢F for the analogous spectral projection of ¢,.

THEOREM 3.2. With notation as in Notation 3.1 and Section 2, the following
statements are equivalent.

(1) B=¢C

(2) B.=C, for each nonzero t in R";

(3) tamlpE) =1n(qE,) for each s in R and each nonzero t in R™;
(4)  T2(bF)=15(C¥) for each k in N and each nonzero t in R™

(5) Talf(be)) =7N(f(c,)) for each nonzero t in R" and each bounded
Borel function f on R.

Proof. (1)=>(2). This follows immediately from Lemma 2.2.
(2)=(1). Suppose B# C. Relabeling if necessary we may assume that
there is a vector x = (Xx,, ..., X,,) such that

xe B\C.

To complete the proof of this implication, we need only show that B, # C,
for some nonzero te R”. Since C is compact and convex and x ¢ C there is
a hyperplane that strictly separates C from x [ Val, Theorem 2.10, p. 25].
Thus, there is a vector (¢, .., t,) € R**1 and a real number f such that for
any y = (g, .., ¥,) € C we have

t0x0+ +tnxn<ﬂ<loy0+ +[nyn'
Hence
(an t1x1+ +tnxn)7£(y09 llyl+ +Znyn)'
In other words, with t= (¢, .., t,) we have 7,(x)#=r(y) for every ye C.
Hence 7,(x) e B,\C, and B, # C,.
(1)=(3). Fixing s and t, there is precisely one value of a such that
P(t, s, o) is a hyperplane of support for B and B< P'(t, s, «). Since B= C,

o has the same properties with respect to C and so

P(t,s,a)nB=P(t,s,a)n C.
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Hence, by part (3) of Theorem 2.3 we have

Yl pess P ])=P(t,s,0) nB=P(t,s,0) n C=¥Yn([q., 4]

and therefore we get that 7,,(pF)=1,(¢%,).

(3)=(5). Suppose (3) holds. In this case, (5) holds when f'is the charac-
teristic function of the interval (— o0, s) or (—o0, s], for any s€ R. Since
these intervals generate the Borel structure of R, and 7,, and 7, are normal
and linear, (5) holds when f'is the characteristic function of any Borel set.
Since any bounded Borel function can be uniformly approximated by linear
combinations of such characteristic functions, (5) holds in general.

(4)=(5). If (4) holds, then (5) holds if fis any polynomial. Since such
polynomials are weakly dense in the von Neumann algebras generated by
b, and ¢, and the traces are normal, we get that (5) holds for every bounded
Borel function.

(5)=(3),(4). These implications are trivial.

(5)=(2). First take f to be the characteristic function of the interval
(—o0,s) or (—oo,s] so that f(b,) = p,. Applying (5) we get t,/(p,) =
tn(qE,). Next, define the function g on R by the formula g(7) = ¢/(¢) so that
g(by)=bpE, and argue as above to conclude that 7,/(bpE) =15(cq,).

Thus we have

(TM(pt,is)’ TM(btpt,is)) = (TN(qt,is)a TN(ctqt,is))

for every nonzero t and all real s. Since these are precisely the extreme
points on the lower boundaries of B, and C, respectively by part (1) of
Theorem 1.5, the lower boundaries coincide. Applying part (3) of Theorem 1.5,
we see that the upper boundaries also coincide and therefore B, = C,. |

The following lemma, which is well known folklore, will be employed in
the sequel.

LemMA 3.3.  The tracial representations of M and N are equivalent if and
only if
Tl @(bys s b)) =Tn(P(Cys oo €4))
for every monomial ¢ in n (commuting or noncommuting) variables.

Proof. 1f ¢ is a monomial, let us write ¢(b) and ¢(c) for ¢(b,, ..., b,) and
¢(cy, ..., n,) to simplify the notation. First, suppose that z,,(¢(b)) =7(¢(c))
for every monomial ¢ and write

Ut p($(b)) Ear =7n(d(€)) En.
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Next, extend this definition by linearity to the case where ¢ is a polyno-
mial. If ¢, and ¢, are two such polynomials, then we have

(7 ae(D;) TalP1(D)) Ears Tar(Pa(b)) Ear)
= Ta(P2(b)* b;4,(b))
=Tn(@2(€)* ¢;¢:(c))
= (mn(c)) Tn(¢i(e)) Ens malPa(e)) En)
= (mn(c;) umtp($1(b)) Sars umtprPa(b)) Ea).

Since such polynomials are dense in H,, and H,, u extends to a unitary
transformation from H,, to H, with the desired properties.

Conversely, if the tracial representations of M and N are equivalent, then
we have

Ta(d(e)) = (nn(d(e)) S En)
= (u*mpP(b)) uly, &n)
= (p(@(b)) Sars Ear)
=7u(d(b)). 1

Let us begin by considering the abelian case, which is relatively easy.

THEOREM 3.4. If M and N are abelian and the spectral scales of b, ..., b,,
and ¢y, ..., ¢, relative to t,, and T, are equal, then the tracial representations
of M and N are equivalent.

Proof By Lemma 3.3, it is enough to show that if ¢, (xl, ey Xpy) =

x’lc X ki denotes a monomial in the commuting variables x,, ..., x,,, then

Tl Pry, o, (D15 s D)) = Tl i, ok, (C1s s €1))-

To show this, note that we have 7,,(b%) =1 y(c¥) for each k € N and each
te R” by part (4) of Theorem 3.2. Fixing k, we have

b¢=(t;by+ -+ +1,b,) =Xt - t];"¢kl, k(D15 s By),

where the sum is taken over all monomials ¢, with ky+ --- +k,=k.
Similarly we have cf =X 141 -+ thn¢y 4 (cy, .o ¢,). Applying the trace yields
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Z tkl e nTM ¢k1 ey (blﬂ ooy bn))
=Z IIICI e t:nTN(qskl,“., kn(cla () cn))'

Since these polynomials in 74, ..., ¢, are equal, we may equate coefficients.
Thus (b, ..k, (D1s s b0)) =Tn(Psy, i (€15 s ¢,)) fOT €very monomial of
total degree k, as desired. |

As noted above, it turns out that equality of the spectral scales is not
sufficient to guarantee that the n-tuples are unitarily equivalent in their
tracial representations in the general noncommutative case. The following
simple 3 x 3 matrix example shows what can go wrong.

ExaMPLE 3.5. Write

1 0 0 0 x y 0 x
by=c;=]0 2 0|, b,=|{x 0 z|, and c¢,=|x" 0 Z]|,
0 0 3 y z 0 y oz 0

where x, y, z, X', ', and z’ are positive real numbers. It is clear that
{bl,bz},,:M:Mat3(C) and {61,62}”=N=Mat3(C).

We have B=C if and only if B, = C, for every vector t in R” by part (2)
of Theorem 3.2. Moreover, B, = C, if and only if the spectra of b, and c,
are the same and the traces of corresponding spectral projections are equal
by part (3) of Theorem 3.2. This amounts to requiring that b, and ¢, have
the same eigenvalues with the same multiplicities and this occurs if and
only if the characteristic polynomials of b, and ¢, are equal.
It is easy to check that we get this equality if and only if x, y, z, X', ',
and z' satisfy conditions
x2+y2+22:xr2+y12+212
xyz=x'y'z’ (*)
3X242)?+22=3x"2+2y2 + 2
Next, it is straightforward to calculate that
Tadb1babyby) =4x2 4+ 62 + 1222

Hence, we have t,/b,b,b,b,) =7t x(cc5¢,¢5) if and only if

Ax? + 6%+ 1222 =4x"> + 6)'2 + 1222 (%)
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Further, since the determinant of

I 1 1
32 1
4 6 12

is —4, if both (x) and (*x) hold, then we get 7,,(b;b,b,b,) =1n(c1c5¢1¢5)
if and only if

x>=x2 3y*=y? and Z=72
Since all entries are positive, it follows from these conditions that x = x’,
y=y',and z=7".

Thus if we can find x, y, z, x', ' and z' such that ( =) holds, but
(x, y,z)#(x', ¥, Z'), then we will have B, = C, for every nonzero vector t
(so that B= C by Theorem 3.2), but that 7,,b,b,b,b,) #ty(c,crci¢,) (SO
that the n-tuples are not unitarily equivalent in their tracial representations,
by Lemma 3.3). It is easy to check that these conditions are met if we take

x=3, y=2, z=1

and
X=v5+33  y=V12-63 Z=v3./3-3

Thus, the nonabelian analogue of Theorem 3.4 is false. If the spectral
scales of b4, ..., b, and ¢, ..., ¢, are equal, the tracial representations of M
and N need not be equivalent.

Our remaining goal in this section is to show that such an equivalence
does hold if the spectral scales are “completely” equal. That is, they are
equal when we pass to the matrix analogue of this notion.

We shall find it convenient to view ¥,(a) as a diagonal matrix in
Mat,, , ;(C). Thus we have

Tyla) 0 0
¥, (a)= 0 TM(:abl) 0
0 0 o 1y(ab,)

DerFNITION 3.6.  For each positive integer m define
Wg\rln): Matm(M) - Matm(n+ 1)(C)
by the formula

Pir(Lag)) =[¥ulay)]
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and write
B™ = w(Mat,(M);").

Observe that elements in B are self-adjoint matrices. Let { C”} denote
the corresponding sequence of sets determined by N and ¥,.

We call the sequence {B"™} the complete spectral scale of by, .., b,
relative to t,,.

Note that B™"Y) = B is the usual spectral scale. The use of matrix levels in
the noncommutative setting is increasingly being recognized as appropriate
and useful; see [ E], for example. In fact, the complete spectral scale is an
example of a matrix convex set as defined in [W, EW].

It will be shown in the final theorem of this section that the tracial
representations of M and N are equivalent if and only if the corresponding
complete spectral scales are equal. It is convenient to present the proof in
a series of Lemmas.

Given noncommuting variables x;,.., x, and nonnegative integers
ki, ., k,, we now write ¢ = i (X1, .., X,,) for the sum of all monomials
in which x; appears k; times. We call ¢ a cycle polynomial.

Throughout the remainder of this section, we use the notation developed
above. Thus, B and C are the spectral scales of the n-tuples b4, ..., b, and
€1y €y and { B} and {C"} denote the respective complete spectral
scales relative to 7,, and 7.

Lemma 3.7. If B=BY=CY=C, then

7'-M(¢(bl’ RE] bn)) = TN(¢(CI’ (8] Cn))

for every circle polynomial ¢ in n variables.

Proof. This is established by repeating virtually verbatim the second
paragraph in the proof of Theorem 3.4. The only difference is that ¢,
now stands for a cycle polynomial. ]

Recall that if t=(¢,, ..., ¢,) is a vector in R”", then b, =¢,b,+ --- +1,b,,.
We now extend this notation to include the case where the coefficients are
complex. Thus we write b, =t,b,+ --- +1,b,, for te C".

LemMA 3.8. If B=C then t,(b7')=1tx(c}) for every me N and te C".
Proof. Observe that

b:n = Z lrlnl "'tnmn¢m1,4..,mn(b19"-; bn)y
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where ¢, ., is a cycle polynomial. Moreover, we have

TM(¢m1, s mn(bl 5 e bn)) = TN(¢m1, s mn(cl > v cn))

for every cycle polynomial by Lemma 3.7. Hence

TM(b:n)z Z trlnl "'l;nnTM(qul,.“,mn(bla ooy bn))
m+ - +my=m
= z trlnl e t’:"TN(¢m1, s mn(cla ey Cn))
my+ - +m,=m
=1y(ct"),

as desired. ||

Let £ stand for the normalized trace on Mat,,(M). Thus, if a=[a,]
is in Mat, (M), then

1
rﬁl’}’)(a) = m (talan) + - +tad@nm)).

Write 4™ for the corresponding trace on Mat,,(N).

We now wish to define certain self-adjoint elements of Mat,,(M). Let
v, ;. x denote the m xm matrix whose (i, j)-entry is b, and whose other
entries are all zero. Now write (where ¢ denotes ./ —1)

Viik it i=},
b, i x=<ViixtViix if i<j, 1<i, j<m, 1<k<n.
YV k= ik if i>],

Observe that each b, ; , is self-adjoint and has at most two nonzero entries.
Also, there are m’n such matrices. Write ¢; ;& for the corresponding
elements of Mat,(N).

We now use the b, ; ,’s and ¢, ; ;’s to define two auxiliary spectral scales
that will be useful. For a € Mat, (M), write

CDS(;)(ZI) = (T%)(a)a Tgtrln)(bl, 1, la)» weey Tg’;)(bi, j,ka)a ooy T%)(bm, m,na))a
where the indices {i, j, k} are ordered lexicographically and let B” denote

the spectral scale of {b, ; ,: 1 <i, j<m, 1 <k <n} relative to (7. Finally,
define @” and Cy™ analogously.

LEMMA 3.9. The complete spectral scales { B"™} and {C"™} are equal if
and only if BYY = CV for every positive integer m.
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Proof. Fix a=[a,] in Mat, (M) . The (i, j)-entry of ¥{(a) has the
form

Taday) 0 0
0 Talbiay) - 0
0 0 TM(b,,a,])

On the other hand we have

1
— Tadbray) if i=j
m
(m) 1 .
Ty (bi,j,ka): %TM( (a +a1)) if i<
1

P T bp1a; —1a;

) if >

Thus, each t47)(b, ; ,a) is completely determined by the values 7,/(b.a;)
for 1 <i, j<m and conversely, each 7,,(b,a;) is determined by the values
of T4P(b; ; 1a).

If B" = C™ then there is a’ = =[a};] in Mat,(N); such that ¥{)(a) =
P(m(a’). With this, we get that 7,/(a ,j) =1y(ay) for 1 <i, j<mand 7,,(bray)
=tylcray) for 1 <i, j<m, 1 <k <n. Hence 7(b; ; ra;)=1y(c; ; ray) for
cach index triple i, j, k and therefore B = C™. The proof of the converse
is similar. |

Next we want to consider complex linear combinations of the b; ; ,’s and
the ¢, ; i ’s. If t=(¢; ;1) € C™™, let us write

btzzti,j,kbi,j,k and Ct=ztl-’j’kcl-’j’k.

LemmA 3.10.  If the complete spectral scales {B"™} and {C"™} are
equal, then

Tald B(by, s b)) =T(P(Cys ooy €4)
for every monomial ¢ in n noncommuting variables.

Proof. Write ¢(by, .., b,)=0b; ---b, and let b, _, denote the matrix
whose first upper diagonal consists of b, , b, , .., b, _, the (m, 1)-entry is b,
and all other entries are zero. Thus, we have
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Similarly, we have ¢(cy,..,c,)=¢;---¢, and we may define ¢, _,
analogously.
Next define t=(z; ; ;) by the formulas

1 .
[i,i+1,li:§’ 1<l<m9
l .
ti+l,i,li= _59 1<l<ms
1
ll,m,lmzis
1
t1,1,= 5
ti =0, otherwise,

and observe that te C™™ because 1 < [;<n for each j. With these choices
we get by=b, , and e =¢; ;.

Next, note that since {B"} ={C"}, we get that the spectral scales
B$” and Cy™ are equal by Lemma 3.9 and therefore

ey

by =T el
by Lemma 3.8. Hence, we have

w5 ((by, )™ =5 () =P (ed) =157 ((eyy, )™

m

0 b, ”
(b ..1,)" = ' )
[
Lo, 0
—bllblz "blm 0 A 0
_ 0 b/2b13“'bzl 0
| 0 0 b, by b,
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Similarly, we have

T%)((cll,...,l ") =talcy ey ) =TN(d(Cys s €4))

and therefore

Tl (D1, s b)) =TGP ((by )™ =737 ((ey, 1))

m m

=tn(dlcrs o cn))- 1

THEOREM 3.11. The tracial representations of M and N are equivalent if
and only if their complete spectral scales { B"™} and {C'™} relative to T,
and 7, are equal.

Proof. First suppose {B™}={C"}. In this case we have
Tald(by, ... b)) =1n(d(cy, ..., c,)) for every monomial ¢ by Lemma 3.10.
Hence, the tracial representations of M and N are equivalent by
Lemma 3.3.

Conversely, if the tracial representations are equivalent, then the
implementing unitary u induces corresponding equivalences at all matrix
levels. Hence, the complete spectral scales agree. ||
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