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ABSTRACT

In 1900 at the International Congress of Mathematicians in Paris, D. Hilbert posed 23

questions that later became known as Hilbert’s 23 problems. Number 13 remained unresolved

for over half a century until 1956 and 1957 when A. N. Kolmogorov and his student V. I.

Arnold, in a series of three papers, provided the solution. In this paper, I present Hilbert’s

13th problem as well as give my interpretation of Kolmogorov’s solution to this.
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1 Introduction

At the turn of the 20th century on August 8th, at the International Congress of Mathemati-

cians in Paris, France, a young, German mathematician by the name of David Hilbert listed

twenty-three problems. These problems, it was believed, would help mold mathematics for

the next century. Hilbert’s 13th stems from the solution of polynomial equations. The equa-

tion anx
n + · · · + a1x + ao = 0 produces a multi-valued, multi-variate, complex algebraic

function x = x (an, · · · , ao) of (n + 1)-variables. When n ≤ 4 there are explicit formulas

for these functions and they are compositions of a few arithmetic operations and roots. For

example, for n = 2, ax2 + bx + c = 0 yields x (a, b, c) =
−b±

√
b2 − 4ac

2a
. The works of P.

Ruffini, N. H. Abel, and E. Galois show that it is not possible to present a similar solution

for n ≥ 5. For n = 5, 6, one can present the solution by using arithmetic operations, roots,

and a specific algebraic function of one variable for n = 5 or two variables for n = 6. For

n = 7, the solution can be reduced to arithmetic operations, roots, and the following alge-

braic function of three variables: x7 + ax3 + bx2 + cx+ 1 = 0. Hilbert asked if this particular

function can, locally, be a composition of functions of two variables. He posed his question

the following way: Can this function be a composition of continuous functions of no more

than two variables? He conjectured that it is not possible to find such a solution.

We generalize this question: Can any function f (x1, x2, · · · , xn) of n ≥ 3 variables be

written as a composition of functions of no more than two variables? For precision, a

function of n variables˝ refers to a real function f : En → R where En

= {x ∈ Rn | 0 ≤ xi ≤ 1, i = 1, 2, · · · , n}. If there are no restrictions placed on the class of

functions then it is a simple exercise to show the answer is yes˝. If in that question we

consider continuous functions the answer remains affirmative and this will solve Hilbert’s

13th problem.

In section one of this paper, I prove the following theorem:

Theorem 1. Any function Fn of n-variables, n ≥ 3 can be written as a composition of
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functions of no more than two variables.

In 1956, A. N. Kolmogorov showed that any continuous function of several variables can

be constructed by a finite number of three-variable continuous functions. The following year,

Hilbert’s conjecture for continuous functions was disproven by the work of V. I. Arnold who

proved that functions of less than three variables could be used. Shortly thereafter, Kol-

mogorov simplified the work of Arnold. The second section of this paper is my interpretation

of Kolmogorov’s proof,

Theorem 2 (A.N. Kolmogorov). For every integer n ≥ 2 there exist continuous real func-

tions ϕq (x), defined on E1, such that every continuous real function f (x1, x2, · · · , xn), de-

fined on En, is representable in the form

f (x1, x2, · · · , xn) =
2n+1∑
q=1

χq

[
n∑

p=1

ϕq (xp)

]

where χq(t) are continuous functions of one variable.

A. G. Vitushkin and G. M. Henkin later proved that these inner functions, ϕq (xp) can

not be made to be C1 and in 1967, B. Fridman proved that a Lipschitz condition can be

imposed on ϕq (xp).

A natural question to ask is whether Hilbert’s function of three variables can be repre-

sented as a composition of algebraic functions of no more than two variables. The answer to

this question is still unresolved.
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2 General Functions

Consider a function of n variables Fn : En → R. In this section we will prove theorem 1.

Before proving this theorem, we must make some additional constructions. To do this,

first consider the following lemma:

Lemma 1 (Schröder-Bernstein Theorem). Given sets A and B, if there exists injective maps

f : A→ B and g : B → A then there exists a bijection h : A→ B.

This lemma allows us to prove an important base case:

Theorem 3. There is a bijection f : E1 → E2 and g : E2 → E3.

Proof. To begin, consider a function f1 : E1 → E2 such that a 7→ (a, 0) and another function

f2 : E2 → E1 such that (0.a1a2a3 · · · , 0.b1b2b3 · · · ) 7→ 0.a1b1a2b2a3b3 · · · . In general, decimal

representations for rational numbers are not unique. For example, .02 = 0.01999 · · · . For

the purpose of this proof, we will choose the decimal representation of every rational number

to be such that there are not infinitely many trailing zeros with the only exception being

0 = 0.000 · · · . I.e. for 1, we use 0.999 · · · and we write 0.01999 · · · for 0.02. Now that this

uniqueness has been established, both maps are injective and therefore, by Lemma 1, there is

a bijection f : E1 → E2. Next, consider a function g1 : E2 → E3 such that (a, b) 7→ (a, b, 0)

and another function g2 : E3 → E2 such that

(0.a1a2a3 · · · , 0.b1b2b3 · · · , 0.c1c2c3c4 · · · ) 7→ (0.a1c1a2c3a3 · · · , 0.b1c2b2c4b3 · · · ).

Both of these maps are injective and, again, by Lemma 1, there is a bijection g : E2 → E3.

Define ϕ to be just such a bijective map from E2 to E1. With this base case in mind, it

is a matter of extending the proof to the n-dimensional case to obtain:

Lemma 2. There exists a bijection ψn : En → En−1.
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Now that this is established, we may define ψn : En → En−1 to be ψn(x1, x2, · · · , xn−1, xn) =

(x1, x2, · · · , ϕ(xn−1, xn)). Finally, for n ≥ 3, denote χn : En → E2 to be

χn(x1, x2, · · · , xn−1, xn) = (x1, ϕ(x2, ϕ(x3, ϕ(· · ·xn−2, ϕ(xn−1, xn)))))

or in other words χn = ψ3 ◦ ψ4 ◦ · · · ◦ ψn−1 ◦ ψn.

We now have the components necessary to prove Theorem 1. We shall do this by induction

on n. For clarity, the base case and induction step will be split in two. We begin by proving

the base case.

Theorem 4. For any F : E3 → R, there exists a function f : E2 → R such that ,

F (x1, x2, x3) = f(x1, ϕ(x2, x3))

Proof. We wish to find a map f : E2 → R. To do this, consider a point (u◦, v◦) ∈ E2.

By Lemma 2, ψ−13 : E2 → E3 such that (u◦, v◦) 7→ (x◦, y◦, z◦) ∈ E3. Define f(u◦, v◦) =

F ◦ ψ−13 (u◦, v◦). Since the point (u◦, v◦) was chosen arbitrarily, this will work for all E2.

Finally, since f = F ◦ ψ−13

F = f ◦ ψ3

F (x1, x2, x3) = f(ψ3(x1, x2, x3))

F (x1, x2, x3) = f(x1, ϕ(x2, x3)).

Because of the definition of χn, we may also say χ3 = ψ3 and F3 = f ◦ χ3. Note also

that χn is a composition of functions of two variables. We may finally finish the proof of

Theorem 1 by establishing the inductive step.

Proof. Theorem 4 proves a base case for n = 3. Now assume the statement is true for all

j ≥ 3 up to and including n. So, for Fn : En → R, there exists f : E2 → R such that
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Fn = f ◦χn. Now consider Fn+1 : En+1 → R and χn+1 : En+1 → E2 where χn+1 = χn ◦ψn+1.

ψn+1 : En+1 → En is bijective so define Fn : En → R as Fn = Fn+1 ◦ ψ−1n+1. Therefore,

Fn+1 = Fn ◦ ψn+1

Fn+1 = f ◦ χn ◦ ψn+1

Fn+1 = f ◦ χn+1

And so any function of n-variables with n ≥ 3 can be written as a composition of functions

of no more than two variables proving Theorem 1.
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3 Continuous Functions

In this section, we wish to prove theorem 2. For sake of ease, I will consider the case for

n = 2, however for any n ≥ 3 it is a direct extension. Therefore, we prove the following:

There exists real continuous functions ϕq
1 (x1) and ϕq

2 (x2), defined on E1, q = 1, · · · , 5,

such that every continuous real function f (x1, x2), defined on E2, is representable in the

form f(x1, x2) =
5∑

q=1

χq (ϕq
1 (x1) + ϕq

2 (x2)) where χq(t) are continuous functions.

The proof consists of three parts.

3.1 Constructions of Families of Rectangles in E2

In this part, we will construct five families of unions of intervals Aq
k,p =

⋃
i

Aq
k,pi
⊂ E1 in

which



p = 1, 2 where p represents the interval of each sub-dimension

1 ≤ q ≤ 5 where q represents the individually familiy member for each p

1 ≤ i ≤ mk where i is the sequence of subintervals, mk ∈ N the number of subintervals

k = 1, 2, 3, · · ·

and p, q, i, k ∈ N. For each q and fixed k, the intervals Aq
k,pi

will be non-intersecting and as

k →∞ the length of each of these intervals will decrease and the limit will be zero. Finally,

any point x ∈ E1 will be contained in at least four of the Aq
k,p families. With these intervals,

we may then construct families of rectangles Sq
k,1,2 ⊂ E2 such that, for fixed q, the rectangles

Sq
k,1i,2j

are non-intersecting and that any point (x1, x2) ∈ E2 is contained in no less than

three families for fixed k.

We begin the series of constructions with the Aq
k,p intervals. For this construction, p = 1
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and p = 2 will be done similarly and thus we will only present p = 1.

Fix k and for each q construct the family member Aq
k,1 of unions of intervals the following

way:

• Each Aq
k,1 ⊂ E1

• Aq
k,1 =

⋃
i

Aq
k,1i

=
⋃
i

[αi, βi] where βi < αi+1

•
∣∣∣∣Aq

k,1i

∣∣∣∣ = |βi − αi| <
1

k
for all i

One final condition that must be adhered to will be presented as a lemma for future reference.

Lemma 3. For fixed k, every x ∈ E1 will be contained in no less than four Aq
k,1.

Proof. Divide E1 into intervals of length less than δ =
1

k + 1
. Around each endpoint, consider

another interval sufficiently small in length as to not allow any of the new intervals to intersect

with one another (say δ4). Inside each of these new intervals, choose four more points in

such a way that they, along with the initial point, are equidistant from one another inside

of their respective intervals. Finally, around each of the five points construct another set of

non-intersecting intervals of sufficiently small length (say δ30). Let each of these intervals be

the gaps for the five q-families. By their construction, none of these gaps intersect anywhere

on E1. Therefore, should a point exist in a gap on any q-family, it would be impossible

to exist in a gap in another q-family. Therefore, every x ∈ E1 exists in no less that four

Aq
k,1.

With the construction of the Aq
k,p intervals complete, we move now to the next construc-

tion; the rectangles Sq
k ⊂ E2. Let Sq

k = Aq
k,1 × A

q
k,2. Given this, Sq

k will adhere to similar

properties as that of Aq
k,p. Namely,

• Each Sq
k ⊂ E2

• Sq
k =

⋃
i,j

Sq
k,1i,2j

=
⋃
i,j

(
Aq

k,1i
× Aq

k,2j

)
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• Sq
k,1i,2j

are non-intersecting

An important final condition will, once again, be presented as a lemma for future reference.

Lemma 4. The system of all rectangles Sq
k, with constant k and variable q, cover the unit

square E2 so that every point in E2 is covered at least 3 times.

Proof. Consider a point (x1, x2) ∈ E2. By Lemma 3, x1 will belong to at least four Aq
k,1(

say A2−5
k,1

)
and x2 will belong to at least four Aq

k,2

(
say A1,3−5

k,2

)
. Then the point (x1, x2) will

miss only two of the five Sq
k families, in this case the point will belong to S3−5

k , and thus any

point (x1, x2) ∈ E2 will belong to at least three Sq
k families.

3.2 Constructions of Inner Functions

Now that we have a sequence of families {Sq
k}, k = 1, 2, · · · , we shall choose a subsequence

of these families. Call this subsequence {Sq
r}, r = 1, 2, · · · . We now establish and prove the

following lemma

Lemma 5. There exists continuous functions ψq (x1, x2) = ϕq
1 (x1) + ϕq

2 (x2) on E2 for

q = 1, · · · , 5 with the following properties:

• For all r, q, ψq
(
Sq
r,1i,2j

)⋂
ψq
(
Sq
r,1m,2n

)
= ∅ as long as (i, j) 6= (m,n)

• ϕq
1, ϕq

2 are non-decreasing continuous functions.

To prove this lemma we proceed with the following. We begin the construction of ψq

by first constructing ϕq
p (xp) = lim

r→∞
ϕq
p,r (xp) with ϕq

p,r constructed inductively on r for both

p = 1 and p = 2. For r = 1, define

ϕq
1,1 (x1) =


cq1i,1 for x1 ∈ Aq

1,1i
; cq1i,1 ∈ Q

⋂
[0, 1]

connects linearly for x1 ∈ E1 ∼ Aq
1,1

8



and

ϕq
2,1 (x2) =


cq2i,1
√

2 for x2 ∈ Aq
1,2i

; cq2i,1 ∈ Q
⋂

[0, 1]

connects linearly for x2 ∈ E1 ∼ Aq
1,2

where ϕq
p,1 are increasing step functions on Aq

1,p. Due to the choice of values ψq
1 (x1, x2) =

ϕq
1,1 (x1) + ϕq

2,1 (x2) satisfies the first condition of the lemma for r = 1.

Remark. If cq1j ,1 + cq2j ,1
√

2 = cq1k,1 + cq2k,1
√

2 for cqpi,1 ∈ Q then cqpj ,1 = cqpk,1.

For r = 2 the construction is as follows. Consider an ε1-neighborhood of the graph

of ϕq
1,p where 0 < ε1 ≤

1

4
min

∣∣∣ψq
1

(
Sq
1,1i,2j

)
− ψq

1

(
Sq
1,1m,2n

)∣∣∣, where (i, j) 6= (m,n). Call this

neighborhood of the graph of ϕq
1,p, U1. Next consider horizontal lines L such that L

⋂
U1 6= ∅

and consider δ1 to be the infinum of the length of L
⋂
U1 for all these lines. Next choose k

large enough so that each
∣∣∣∣Aq

k,1i

∣∣∣∣ < δ1. Now, construct the functions ϕq
2,p, similarly to that

of ϕq
1,p, such that

ϕq
1,2 (x1) =


cq1i,2 for x1 ∈ Aq

2,1i
; cq1i,2 ∈ Q

⋂
[0, 1]

connects linearly for x1 ∈ E1 ∼ Aq
2,1

and

ϕq
2,2 (x2) =


cq2i,2
√

2 for x2 ∈ Aq
2,2i

; cq2i,2 ∈ Q
⋂

[0, 1]

connects linearly for x2 ∈ E1 ∼ Aq
2,2

with the stipulation that
∣∣∣∣ϕq

1,p (xp)− ϕq
2,p (xp)

∣∣∣∣ < 1

2
ε1. This will ensure that ϕq

p,2 is also

inside the ε1-neighborhood. Now, ψq
2 (x1, x2) = ϕq

2,1 (x1)+ϕq
2,2 (x2) satisfies the first condition

of the lemma for r = 1, 2.

For r = 3, choose ε2 > 0 such that ε2 ≤
1

4
min

∣∣∣ψq
2

(
Sq
2,1i,2j

)
− ψq

2

(
Sq
2,1m,2n

)∣∣∣ for (i, j) 6=

(m,n) and ε2 <
1

2
ε1, and construct ϕq

3,p similarly to the previous two constructions so

that
∣∣∣∣ϕq

2,p (xp)− ϕq
3,p (xp)

∣∣∣∣ < 1

2
ε2. ψq

3 (x1, x2) = ϕq
3,1 (x1) + ϕq

3,2 (x2) now satisfies the first

condition of the lemma for r = 1, 2, 3.

9



Continue this process to obtain a sequence
{
ϕq
r,p

}∞
r=1

of continuous functions inside of

nested εr-neighborhoods where
∣∣∣∣ϕq

r−1,p − ϕq
r,p

∣∣∣∣ < 1

2r−1 ε1 and {ψq
r}
∞
r=1 where ψq

r (x1, x2) =

ϕq
r,1 (x1) + ϕq

r,2 (x2). Given the construction, εr <
1

2r
ε1 and thus as r → ∞, εr → 0

therefore ϕq
r,p converges uniformly to a limit function ϕq

p and lim
r→∞

ϕq
r,p = ϕq

p. We also get

ψq (x1, x2) = lim
r→∞

ψq
r (x1, x2) = lim

r→∞

(
ϕq
r,1 (x1) + ϕq

r,2 (x2)
)

= ϕq
1 (x1) + ϕq

2 (x2). Due to the

construction, the properties of ϕq
1, ϕ

q
2, and ψq, described in lemma 5, hold.

3.3 Construction of Outer Functions

We finally shift our focus to the desired parent function f . The following is the construction

and proof.

In the previous section, we constructed a subsequence {Sq
r} of {Sq

k}. We will now fix this

subsequence and refer to it as Sq
k, k = 1, 2, · · · . For our function f , we will construct a new

subsequence of this {Sq
k}. We will refer to this new subsequence as {Sq

r}.

On each Sq
k,1i,2j

, define
(
x1cqk , x2c

q
k

)
to be the center of each rectangle. Define Mo =

sup ||go|| where go (x1, x2) = f (x1, x2). go is on a compact set and thus it is uniformly continu-

ous on this set. For this, it is possible to find a δ > 0 such that when d [(x′1, x
′
2) , (x

′′
1, x

′′
2)] < δ

then |go (x′1, x
′
2)− go (x′′1, x

′′
2)| < 1

6
Mo. Choose k such that the diameter of each Sq

k,1i,2i

is less than this δ. Label this value r = 1. This will start a subsequence of k. Define

∆q
r,1i,2j

= ψq
(
Sq
r,1i,2j

)
. Let t ∈ ∆q

r,1i,2i
and define χq

1 (t) =
1

3
go
(
x1cq1 , x2c

q
1

)
. Finally, for the

intervals outside of these, connect the pieces linearly. For any point (x1, x2) ∈ E2 we can

guarantee that it is covered by at least three of the Sq
1 . The choice of which three cover

the point is irrelevant so assume the three are q = 1, 2, 3. To finish, consider the function

g1 = go − f1 where f1 (x1, x2) =
5∑

q=1

χq
1 (ψq (x1, x2)) and any point (x1, x2) and deduce it’s

norm. This is

||g1|| = ||go − f1|| = max
E2
|go − f1| = max

E2

∣∣∣∣∣go −
5∑

q=1

χq
1 (ψq (x1, x2))

∣∣∣∣∣
10



max
E2

∣∣∣∣∣go −
3∑

q=1

χq
1 (ψq (x1, x2))−

5∑
q=4

χq
1 (ψq (x1, x2))

∣∣∣∣∣
≤ max

E2

∣∣∣∣∣go(x1, x2)−
3∑

q=1

χq
1 (ψq (x1, x2))

∣∣∣∣∣+ max
E2

∣∣∣∣∣
5∑

q=4

χq
1 (ψq (x1, x2))

∣∣∣∣∣
= max

E2

∣∣∣∣∣go(x1, x2)−
3∑

q=1

1

3
go
(
x1cq1 , x2c

q
1

)∣∣∣∣∣+ max
E2

∣∣∣∣∣
5∑

q=4

χq
1 (ψq (x1, x2))

∣∣∣∣∣
= max

E2

∣∣∣∣∣31

3
go(x1, x2)−

3∑
q=1

1

3
go
(
x1cq1 , x2c

q
1

)∣∣∣∣∣+ max
E2

∣∣∣∣∣
5∑

q=4

χq
1 (ψq (x1, x2))

∣∣∣∣∣
<

3

18
Mo +

2

3
Mo =

5

6
Mo

Now consider g1 = go − f1. This, again, is a continuous function on a compact set

and therefore it will be uniformly continuous and attain its maximum. Due to the uniform

continuity we can, similar to the construction of go, find a δ that satisfies ε =
1

6
M1 =

1

6
||g1||.

Because of the construction of g1, it is clear that M1 ≤
5

6
Mo. Again, choose k large enough

to make the diameter of each Sq
k,1i,2i

less than the chosen δ. This will become r = 2 of the

subsequence of families of rectangles. Now, define a new function χq
2(t) =

1

3
g1
(
x1cq2 , x2c

q
2

)
for t ∈ ∆q

2,1i,2i
with a similar structure to χq

1 elsewhere. Again, any point (x1, x2) ∈ E2

is covered by at least three Sq
2 and so we get a similar estimate as before. Finally, define

f2(x1, x2) =
5∑

q=1

χq
2 (ψq (x1, x2)) and g2 = g1 − f2 then examine ||g2||. We get a similar set of

inequalities. This is

1

6
M1 +

2

3
M1 =

1

6

(
5

6
Mo

)
+

2

3

(
5

6
Mo

)
=

(
5

6

)2

Mo.

Repeat this process to obtain sequences of functions {fr}∞r=1 where fr (x1, x2) =
5∑

q=1

χq
r (ψq (x1, x2)),

{gr}∞r=1 where gr = gr−1 − fr, and {χq
r} where χq

r (ψq (x1, x2)) =
1

3
gr−1 (x1, x2) inside of each

Sq
r,1i,2j

, and connected similarly to the previous iterations outside. Given the construction,

||gr|| ≤
(

5

6

)r

||f || =

(
5

6

)r

Mo. Then, ||χq
r|| ≤

1

3
||gr−1|| ≤

1

3

(
5

6

)r−1

M . Therefore, the
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series of continuous functions
∞∑
r=1

χq
r (ψq (x1, x2)) on the closed, bounded interval E1 will con-

verge uniformly to the limit function χq (ψq (x1, x2)). Because q was never specified, we also

get
∞∑
r=1

5∑
q=1

χq
r (ψq (x1, x2)) =

5∑
q=1

χq (ψq (x1, x2)). Now, gr = gr−1 − fr thus fr = gr−1 − gr. If

we consider ||fr|| we will obtain

||fr|| = ||gr−1 − gr|| ≤
(

5

6

)r−1

Mo +

(
5

6

)r

Mo < 2

(
5

6

)r−1

Mo.

This will ensure that the series
∞∑
r=1

fr is absolutely convergent. Therefore, if we consider this

series we get
∞∑
r=1

fr =
∞∑
r=1

(gr−1 − gr) = (gr−1 − gr) + (gr−2 − gr−1) + (gr−3 − gr−2) + · · · be-

cause of the above estimates, we may rearrange the right side in any way we want to obtain
∞∑
r=1

fr = go+g1−g+1+g2−g2+g3+g3+· · · = go = f . Thus,
∞∑
r=1

fr = f . Finally, fr (x1, x2) =

5∑
q=1

χq
r (ψq (x1, x2)) thus we get f (x, y) =

5∑
q=1

χq (ψq (x, y)) =
5∑

q=1

χq (ϕq
1 (x) + ϕq

2 (y)). This

completes the proof of Theorem 2.
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