
gradient algorithm is applied on the same training set using differ- 
ent values for ?, and only the best error probability is retained. 
The error probability, averaged over the four training sets, is 
reported in Fig. 1. 
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Recognition of chain-coded handwritten 
character images with scanning *tuple 
method 

S. Lucas and A. Amiri 

Indexing terms: Character recognition, Handwriting recognition 

A method of applying n-tuple recognition techniques to 
handwritten OCR, whch involves scanning an n-tuple classifier 
over a chain-code of the image, is described. The traditional 
advantages of n-tuple recognition, i.e. training and recognition 
speed, are retained, while offering superior recognition accuracy, 
as demonstrated by results on three widely used data sets. 

Introduction: There is currently much interest in high-performance 
OCR for off-line applications such as the processing of handwrit- 
ten forms, and on-line applications such as user-interfaces in pen- 
based personal organisers. 

N-tuple systems are commonly used in OCR systems where 
speed is important. They have the advantage over most other tech- 
niques of offering both extremely fast training and extremely fast 
recognition even when implemented in software. Furthermore, 
should greater speed be necessary, they have simple hardware 
implementations. The only disadvantage is that recognition accu- 
racy (on many problems, including OCR) tends to be not quite as 
good as more computationally intensive methods, such as multi- 
layer perceptron neural networks, or statisticdstructural feature- 
based methods [l]. 

Here we present a new OCR method. Each character is first 
captured as a binary image and then chain-coded [2] to convert it 
to a I-D string of symbols. The details of this procedure are not 
important; suffice to say that all the important information in the 
image i.e. the edges left by the trace of the pen, is now encoded in 
the chain-code string. A modified n-tuple system called the scan- 
ning n-tuple (sn-tuple) is then used to model and recognise these 
chain-code strings. 

N-tuple clussi3ers and scanning n-tuple: In standard n-tuple classifi- 
ers [3] the d-dimensional (discrete) input space is sampled by rn n- 
tuples. The range of each dimension in the general case is the 
alphabet C = {0, ..., 0-1) but most n-tuple methods reported in 
the literature are defined over a binary input space where o = 2 

and C = {O, 1). 
Each n-tuple defines a fixed set of locations in the input space. 

Let the set of locations defining thejth n-tuple be n, = {U,,, u12, ..., 
ujJl < ujz 5 4 where each uli is chosen as a random integer in the 
specdied range. This mapping is normally the same across all 
classes. For a given d-dimensional input pattern x = x(1) ... x(dj 
an address b,{x) may be calculated for each n-tuple mapping n, as 
shown in eqn. 1. 

n 

b,(x) = Cz(a,ic) x o k - 1  (1) 
k = l  

These addresses are used to access memory elements, where 
there is a memory n ,  for each class c in the set of all classes C and 
n-tuple mapping nl. We denote the value at location b in memory 
n, as n,[b]. The set of all memory values for all the n-tuple map- 
pings for a given class we denote M,, the model for a class e. The 
size of the address space of each memory ne, is P. 

During training the value at location ncl [b] is incremented each 
time a pattern of class c addresses location b. During recognition, 
there are three established ways of interpreting the value at each 
address: binary, frequency weighted and probabilistic [4]. Only the 
probabilistic version will be derived here for the case of the scan- 
ning n-tuple, but results are also quoted below for the standard 
binary n-tuple classifier. 

The difference between the n-tuple and the sn-tuple is that 
whereas each n-tuple samples a set of fixed points in the input 
space, each sn-tuple defines a set of relative offsets between its 
input points. Each sn-tuple is then scanned over the entire input 
space. The input space is now a variable length string y of length 
llyll rather than a fxed-length array. 

We redefine sn-tuple address computation as follows for offset 0 

relative to the start of the string as shown in eqn. 2 
n 

b p ( Y )  = Ed0 + a j k )  x ok-l (2) 
k = l  

The probability that this address is accessed by a pattern from 
class c is given in eqn. 3 where N,, = C,= $“-I n,,[b]. 

( 3 )  

From this we calculate the probability of the whole string given 
sn-tuple model M,, under the assumption that the n-tuples at dif- 
ferent offsets in the string are statistically independent: 

llyll -max( a3h V&{ 1, ... ,n}) 

P ( Y l M 2 j )  = n ~ ( b J ( Y ) I % )  (4) 
o=l 

As pointed out by Rohwer [4], the assumption of statistical 
independence between n-tuples is unrealistic, but there exists as yet 
no superior alternative. Note that eqn. 4 is very similar to the 
equation for the probability of a sequence given the statistical n- 
gram language models used in speech recognition [5], except that 
now we are able to model long-range as well as short range corre- 
lations. The probability of a string y given all the sn-tuple models 
of class c is given in eqn. 5. 

m 

W M C )  = r p ( Y I & )  (5) 
j = l  

Subsequent pattern classification proceeds according to Bayes’ 
theorem. If the prior class probabilities are assumed to be equal, 
as they are here, then the maximum likelihood decision is to assign 
the pattern to the class c for whch P(yIM,) is a maximum. 

The algorithm for training the scanning n-tuple is as follows: all 
the memory contents are initialised to zero. For each pattern 
(string) of each class and for each mapping n,, we scan the map- 
ping along the string y from beginning to end by adjusting an off- 
set o. In each case we increment the value at memory n,,[b,,(y)] 
where the address calculation b,,(y) is defined in eqn. 2. 

Although the sn-tuple introduces a new loop in the training and 
recognition stages (iteration over all offsets o) optimal results with 
the sn-tuple method can be achieved with just a few sn-tuples. For 
example, the results shown below use just 4 sn-tuples, compared to 
40 n-tuples. Each architecture achieves a training rate of about 
2000 characters per second and a recognition rate of about 200 
characters per second on a SUN Classic rated at 55MIPs. 
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n-tuple 
sn-tuple 

Testing 

To give some idea of statistical significance, further experiments 
were conducted based on a random sampling methodology. For 
each entry in Table 2, 10 experiments were performed. For each 
experiment, a training set and disjoint test set of 500 characters 
per class for each set were created by randomly sampling the 
CEDAR training set. The results show the recognition accuracy 
obtained when applying both the binary and probabilistic n-tuple 
systems both to the image or, as sn-tuples, to a chain-code of the 
image. The advantages of adopting both a probabilistic interpreta- 
tion and a scanning mode of application are clear. The reason the 
results are poorer than those for the CEDAR set in Table 1 is that 
fewer samples were used for training (500 against -2000 per class). 
We also tested a conventional n-gram model [5] using this random 
sampling methodology on the same sample set. Best results 
obtained were 92.5% with n = 6. The sn-tuple gives superior per- 
formance because it is able to model longer-range constraints 
owing to its use of non-consecutive offsets. 

TabIe 2: Results of 10 experiments (mean with standard deviation 
in brackets) comparing performance of binary n-tuple 
and probabilistic n-tuple applied to image, and scanned 
across chain-code (string) 

Essex CEDAR Concordia 

3,900 19,000 15659 
1,800 2,300 2000 

YO Yo Yo 

90.6 91.8 89.6 
91.4 97.6 92.8 

Bin 
Prob 

Conclusions: N-tuple recognition methods have long been estab- 
lished as extremely fast and robust, while offering good perform- 
ance. The sn-tuple as applied here retains these advantages while 
offering superior accuracy. The recognition rate of 97.6% at 200 
characters ps (cps) on the CEDAR data compares well with a 
range of other techniques recently quoted [I], where the fastest 
method scored 96.1% at 66cps and the most accurate method 
scored 98.9% at lOcps. 

Fixed image Scanning (chain-code) 
86.0% (0.37) 92.1% (0.41) 
62.5% (0.27) 69.5% (0.24) 
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MMlC internal electric field mapping with 
submicrometre spatial resolution and 

igahertz bandwidth by means of high f requency scanning force microscope testing 

A. Leyk and E. Kubalek 

Indexing terms: MMIC, Scanning probe microscopy 

High frequency scanning force microscope (HFSFM) testing 
enables, among other measurements, the probing of device 
internal electric potential distributions within monolithic 
microwave integrated circuits (MMICs) with both high spatial 
and temporal resolution. Two planar components of the electric 
field can be calculated from this data and their local distribution 
can be mapped. For the first time 2-D distributions of electric 
field components on an interdigital capacitor within an MMIC at 
frequencies up to 6 GHz were evaluated from HFSFM potential 
measurements, demonstrating the submicrometre spatial 
resolution and gigahertz bandwidth of this new MMIC internal 
electric field mapping technique 

Introduction: The rising complexity and bandwidth of modern 
monolithic microwave integrated circuits (MMICs) requires 
advanced techniques for external and internal node testing and 
failure analysis [l]. A test system needs to have sufficient spatial 
resolution for submicrometre structural dimensions, and a simulta- 
neously sufficient bandwidth for gigahertz signals [2]. Promising 
solutions to meet these requirements have been reported, using 
new scanning force microscope based test systems [4 ~ 71. 
Improvements led to a high frequency scanning force microscope 
(HFSFM) test system, presently capable of measuring electric 
potentials up to lOOGHz [3]. MMIC internal electric field map- 
ping by electro-optic testing proved helpful for failure analysis [5, 
61, but suffers from limited spatial resolution above l p .  Direct 
comparisons with quantitative topography measurements of the 
tested MMIC are not possible. The use of an HFSFM test system 
overcomes these disadvantages and enables MMIC internal elec- 
tric field mapping with submicrometre spatial resolution and giga- 
hertz bandwidth in direct comparison with quantitative 
topographical micrographs of the tested MMIC, as demonstrated 
in this Letter. 

System setup and operation modes: The HFSFM, depicted in Fig. 
1, is centred on a commercially available SFM. The probe consists 
of a conducting atomically-sharp doped silicon tip fwed to a canti- 
lever, and it can be moved at a constant distance from the MMIC 
surface by an xyz piezo-scanner. Owing to different distance- 
dependent tip-MMIC interactions, the tip is either attracted or 
repelled from the surface of the MMIC. This results in a bending 
of the cantilever, which is optically detected and analysed by a 
lock-in amplifier. In topographic mode, the distance between the 
tip and the MMIC surface is within a few nanometres, so the van 
der Waals interaction becomes dominant, enabling quantitative 
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