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a b s t r a c t

Training part-of-speech taggers (POS-taggers) requires iterative time-consuming convergence-depend-
able steps, which involve either expectation maximization or weight balancing processes, depending
on whether the tagger uses stochastic or neural approaches, respectively. Due to the complexity of
these steps, multilingual part-of-speech tagging can be an intractable task, where as the number of lan-
guages increases so does the time demanded by these steps. WiSARD (Wilkie, Stonham and Aleksander’s
Recognition Device), a weightless artificial neural network architecture that proved to be both robust
and efficient in classification tasks, has been previously used in order to turn the training phase faster.
WiSARD is a RAM-based system that requires only one memory writing operation to train each sentence.
Additionally, the mechanism is capable of learning new tagged sentences during the classification phase,
on an incremental basis. Nevertheless, parameters such as RAM size, context window, and probability bit
mapping, make the multilingual part-of-speech tagging task hard. This article proposes mWANN-Tagger
(multilingualWeightlessArtificialNeuralNetwork tagger), aWiSARD POS-tagger. This tagger is proposed
due to its one-pass learning capability. It allows language-specific parameter configurations to be thor-
oughly searched in quite an agile fashion. Experimental evaluation indicates that mWANN-Tagger either
outperforms or matches state-of-art methods in accuracy with very low standard deviation, i.e., lower
than 0.25%. Experimental results also suggest that the vast majority of the languages can benefit from
this architecture.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Part-of-speech tagging (POS-tagging) is a common task in
natural language processing. It requires high accuracy since its
result is commonly used as input (or as part of the input) to other
tasks, e.g., syntactic parsing and machine translation. Multilingual
POS-tagging presents a further challenge. Not only its accuracy
must be high in every language, but also the tagger used must
have an agile language-independent architecture. Nowadays, two
different techniques are used: (i) several POS-taggers are trained
independently, which can create some overhead, or (ii) cross-
lingual POS-taggers are employed, which use previously annotated
relations between words of different corpora (composed of texts
in different languages) in order to remove tagging ambiguities
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(Naseem, Snyder, Eisenstein, & Barzilay, 2009; Snyder, Naseem,
Eisenstein, & Barzilay, 2008, 2009). In the first case, once a new
tagger is needed for a particular language, there is no technique
to speed up the parameter tuning procedure. In both strategies,
the architecture of the tagger is not truly language-independent.
This article proposes a tagger with both a language-independent
architecture and the ability to train taggers for new languageswith
little time spent on parameter tuning procedures.

Neural network models have proven useful in solving natural
language processing tasks (Caridakis, Karpouzis, Drosopoulos, &
Kollias, 2012; Hinoshita, Arie, Tani, Okuno, & Ogata, 2011; Klein,
Kamp, Palm, & Doya, 2010). Neural-based taggers have been pro-
posed since Schmid (1994), some of which employed the neuro-
symbolic paradigm, such as Ma, Murata, Uchimoto, and Isahara
(2000) andMarques, Bader, Rocio, and Hölldobler (2007). More re-
cently, a weightless neural-based tagger was proposed in Carneiro,
França, and Lima (2010). Despite the variety of techniques and
parameters adjustment employed, it is observed that every neu-
ral tagger created ever since has only been used for monolingual
part-of-speech tagging. This work explores the weightless neural
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paradigm for multilingual part-of-speech tagging through the pro-
posal of mWANN-Tagger(multilingualWeightless ArtificialNeural
Network tagger), in order to speed up the search of language-
specific parameter configurations.

Several other POS-tagger models were proposed, such as rule-
based ones (Brill, 1992, 1994) and those that work as a finite-state
machine that employs sliding windows (Sánchez-Villamil, For-
cada, & Carrasco, 2004, 2005). Of the very widespread probabilistic
graphical models for POS-tagging, hidden Markov models (HMM)
(Jurafsky &Martin, 2008; Manning & Schütze, 1999),maximum en-
tropy Markov model (MEMM) (McCallum, Freitag, & Pereira, 2000)
and Conditional random fields (CRF) (Lafferty, McCallum, & Pereira,
2001) constitute some of the most used techniques. However,
HMMs may present some drawbacks to correct classification: (i)
if the part of speech of a word cannot be inferred from the words
in its vicinity, or (ii) if a word was not presented in the training
corpus. The former problem was solved with the use of second-
order Markov models through the use of trigrams (Brants, 2000;
Petrov, Das, & McDonald, 2012). The latter incorporated the use of
features to the probabilistic nature of HMM, initially proposed in
Ratnaparkhi (1996).

Ratnaparkhi (1996) proposed the use of binary feature func-
tions fj (wi, ti) to represent that word wi appears with tag ti in
the corpus. Examples of feature functions can include information
about if theword ends in a particular suffix, if it is capitalized, if it is
a number and so on. This way, words could be substituted by a fea-
ture vector f (wi, ti), enabling the tagging of unpresented words.
These words do not appear in the training corpus, however some
of its characteristics could appear in the feature vector. A feature
fj (wi, ti) could assume the value 1 ifwi possesses the characteristic
associated to the feature, and 0 otherwise.

The model makes use of themaximum entropy formalism (ME),
which states that the probability which best represents a given
state of knowledge is the onewith highest entropy. This probability
is known as maximum entropy probability distribution or Gibbs
distribution (Levine & Tribus, 1978). The model was optimized by
maximizing the log-likelihood of this probability distribution.

The feature functions were incorporated to the Markovian ar-
chitecture of HMM to create a more robust probabilistic graph-
ical model, MEMM (McCallum et al., 2000). This model proved
to be very effective by incorporating the global knowledge from
probabilistic graphical models and the ability to tag unseen words
more precisely through the use of arbitrary features. However,
this model presented a drawback called the ‘‘label bias problem’’.
This means that if there are states with low-entropy transitions to
its following states, they will take little notice of an observation
(Bottou, 1991; Lafferty et al., 2001). In order to overcome this lim-
itation of MEMMs, Lafferty et al. (2001) proposed the CRF.

CRFs are defined according to two random variables, X over
data sequences and Y over label sequences. In POS-tagging tasks,
X range over natural language sentences and Y range over the
possible strings of tags associated with X. Also, CRFs can be used
in any possible graph G = (V , E), but for the POS-tagging task it is
recommended to use a chain-like graph. This particular case of CRF
was called HMM-like CRF by Lafferty et al. (2001). This is the only
kind of CRF that is detailed in this paper, since it is the one used
in POS-tagging tasks. CRFs substitute the notion of dependency
between states of HMMs and MEMMs by the use of features. This
way, CRFs work with undirected graphs, differently from HMMs
and MEMMs which use directed graphs. HMM-like CRFs employ
two distinct types of features: one that is defined for each pair of
states


y′, y


and another for each pair of state-observations (y, x).

Those maximum entropy models proved to be quite versatile
and able to tag texts quite accurately, especially CRF (Lafferty et al.,
2001). However, as the number of features grows, their accuracy
may diminish and the time spent during the training step increases
considerably. This article proposes a POS-tagger that employs a
one-pass learning model, whose optimal parameter configuration
can be thoroughly searched in feasible time. The choice of a non-
overtraining-prone model helps in producing taggers that keep a
high accuracy despite the complexity of the feature space. This
way, it is possible to create new accurate taggers more quickly.
Comparison of language-specific characteristics could benefit from
these studies.

A review of weightless neural models, especially WiSARD
(Wilkie, Stonham and Aleksander’s Recognition Device), is pre-
sented in Section 2, so that the reader is capable to understand
how the WiSARD model tags sentences (Section 3). The exper-
imental methodology used to test mWANN-Tagger capabilities
on tagging texts in languages of distinct natures is discussed in
Section 4. Experimental results are described and analyzed in
depth in Section 5. Conclusion and future work directions are pre-
sented in Section 6.

2. Weightless artificial neural networks and WiSARD model

Weightless Artificial Neural Networks (WANNs) are a set of
ANNmodels in which there is no synaptic weight balancing during
the training phase. This lack of synaptic weight is compensated
by the use of Random Access Memories (RAMs) inside its
neural nodes, whereas traditional neural network neurons do not
store any information, but only applies a multivariate nonlinear
continuous functionwhose arguments are either the outputs given
by the nodes in the previous layer or the network inputs.

There are several weightless artificial neural models, e.g., WiS-
ARD (Aleksander, Thomas, & Bowden, 1984), and its variants, WiS-
ART (a portmanteau of WiSARD and ART—Adaptive Resonance
Theory Grossberg, 1987) (Fulcher, 1992), AUTOWISARD (an unsu-
pervised learning extension ofWiSARD that allows automatic gen-
eration of new discriminators) (Wickert, França, & Prieto, 2001)
and others; Probabilistic Logic Nodes (Kan & Aleksander, 1987);
Goal Seeking Neuron (Filho, Fairhurst, & Bisset, 1991); General
Neural Unit (Aleksander & Morton, 1991); G-RAM (Generalizing
Random Access Memory) (Aleksander, 1990a), as well as its most
common implementation Virtual G-RAM (VG-RAM) (Mrsic-Flogel,
1991); Sparse Distributed Memory (Kanerva, 1988) and its integer
counterpart (Snaider, Franklin, Strain, & George, 2013), and others.
A detailed comparison between several weightless neural mod-
els can be found in Aleksander, Gregorio, França, Lima, and Mor-
ton (2009). This work adopts the WiSARD model with bleaching
(Carvalho, Carneiro, França, & Lima, 2013; Grieco, Lima, Gregorio,
& França, 2010), because it has the best trade-off between train-
ing agility, memory consumption and capability of avoiding satu-
ration. Besides, the neuralmodel proved promising inmonolingual
POS-tagging (Carneiro et al., 2010).

2.1. WiSARD model

The pioneering WiSARD n-tuple classifier constitutes the RAM-
based neural network chosen as the basis of mWANN-Tagger ar-
chitecture. Itsmain difference fromother RAM-basedmodels is the
use of a structure called RAM-discriminator, depicted in Fig. 1(a).
The discriminator receives inputs from a ‘‘retina’’ (a matrix of 0s
and 1s, see Fig. 1(a)) mapped to a set of N RAMs via n RAM address
bits and a summation device. The summation deviceΣ outputs the
number of RAMs that responded positively to an input pattern. A
set of address bits and RAMs constitutes a RAM node.

Mapping of retina pixels to the RAM nodes is effected via the
address bits, usually in a pseudorandom (invariant for a discrimi-
nator) and biunivocal fashion (one retina pixel is associated to one
and only one address bit of only one RAM).
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(a) RAM-discriminator structure.

(b) Multidiscriminator structure.

Fig. 1. WiSARD architecture.

(a) Training
patterns.

(b) RAM configuration at the end of the training
phase.

Fig. 2. WiSARD training procedure.

WiSARD, as any other weighted ANN, is capable of performing
pattern recognition tasks, thus it must be capable to generalize
in the case of unseen examples. This generalization capability is
guaranteed by the use ofmultiple RAMs and the summationdevice.

The RAM-discriminator is capable of informing either if a
pattern belongs to a given class or how similar it is to the examples
presented for that class. WiSARD, on the other hand, can classify a
pattern in one ormore of several classes. In order to do so,WiSARD
makes use of a multi-discriminator architecture (see Fig. 1(b)), in
which each discriminator di informs the similarity measure of the
input in relation to class i. The chosen classes are the ones whose
discriminator produced the highest measure, therefore, they are
the classes that are most similar to the input pattern. When using
WiSARD to tag parts of speech, each classwill be a distinct tag from
the tagset.
Training phase. The training phase of a WiSARD network consists
of two parts: (i) the initialization phase and (ii) the input pattern
training itself. During the initialization phase every memory
location is set to 0 and the input ‘‘retina’’ generates a pseudo-
random mapping, creating groups of k bits from the network
input array. These groups are organized into tuples. Each of these
n-tuples are associated to the input of a specific RAM. Fig. 1(a)
demonstrates how the input ‘‘retina’’ bits can be mapped into the
RAMs through some of n-tuples. (In the case of Fig. 1(a), n = 3.)

During the training phase itself, for each input pattern to be
trained, a 1 is written in the memory positions addressed by the
input of the RAMs belonging to the discriminator associated to the
class of the input. The training of a pattern of a capital ‘T’ is shown
in Fig. 1(a).

The training phase ends after all training data available have
been presented to the network to be trained. Unlike weighted
ANNs and some WANNs, in which the training phase requires an
iterative process in order to achieve convergence, WiSARD only
needs to be presented to the training data once for it to be fully
trained. As exemplified in Fig. 2, training consists of presenting all
three ‘T’-patterns of Fig. 2(a) to the network. They are passed as
input to the RAM nodes as illustrated in Fig. 2(b). In Fig. 2(b) each
RAMnode receives three inputs. Each RAM is fedwith tuples repre-
senting subpatterns of the training set on the retina. By the end of
the training phase, the network achieves a final configuration of its
RAM nodes. This configuration is shown in Fig. 2(b). It must be no-
ticed that classification can start at anymoment and does not have
to wait for the whole set of examples to be presented. Likewise, if
a fourth instance is detected, it can be trained after classification
had started.
Classification phase. By presenting an unseen example to the net-
work, in order to classify it, each discriminator produces a similar-
ity measure ri. As previously mentioned, this measure is attainable
by counting the number of RAMs whose memory positions are ad-
dressed by the n-tuple associated thereto. For example, see Fig. 3(a)
where a cross-shaped ‘T’ is presented to the network. The image
is mapped into n-tuples through the same procedure depicted in
Figs. 1(a) and 2. The memory positions addressed by the tuples are
marked in blue. Their content is then output by the RAM nodes.
Finally, the sum of the RAM outputs compose the discriminator
response: a similarity measure between the given pattern and the
class of the discriminator. The class whose discriminator produces
the highest similarity measure, rMAX, is the one which is associated
with the unseen input pattern. The confidence γ of this response is
calculated by using the formula γ =

rMAX−rMAX−1
rMAX

, where rMAX−1 is
the second highest measure. The higher the value of γ , the greater
the likelihood of the input pattern belonging to the given class.
Fig. 3(b) represents the comparison of discriminator responses. In
Fig. 3(b) a ‘T’ is presented to the network. Each discriminator out-
puts a response. The discriminator of class ‘T’ dT produces the high-
est response.

2.2. The bleaching technique and the end of ties

The use of large and usually noisy datasets showed to be
harmful to WiSARD learning capability. If a large amount of noisy
data is presented to the network during its training, several RAM
positions will be set to 1. This problem is called saturation. When
the network is saturated, its RAMs tend to output 1 formost inputs.
Bleaching is a technique proposed by Grieco et al. (2010) which
tries to minimize the harms of saturation. It proposes the storage
of integer values in the memory positions, instead of Boolean
values. Metaphorically, instead of memory positions being either
white (0) or black (1), they are represented by some shade of
gray, black being the highest value to appear in a memory position
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(a) Classification of a pattern by a discriminator. (b) Multidiscriminator response.

Fig. 3. WiSARD classification procedure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(a) RAM configuration at the end of the training phase. (b) Classification of a pattern. Bleaching threshold b = 2.

Fig. 4. WiSARD training and classification procedures with bleaching.
of a discriminator and white 0. Fig. 4(a) illustrates how the final
configuration of the RAM nodes of Fig. 2 would look in a WiSARD
with bleaching. According to the grayscale metaphor, black is
represented by the value 3 and white by 0.

Bleaching uses a same threshold b associated to every RAM
node, turning any memory position value lower than b into 0, and
1 otherwise. The bleaching threshold b starts as 1 and gets in-
cremented by one while there are still ties in the discriminator
responses. When there are no ties left, the class whose discrimi-
nator produces the highest response is the one which will be as-
sociated with the input pattern. An example of a classification
using the bleaching technique (with b = 2) is presented in Fig. 4(b).
In this example, the RAM nodes output integer values from 0 to 3.
Only the outputs higher than 2 are passed as 1 to the summing
device. The other outputs are passed as 0. Different values of b for
different RAMnodes could be used. Nevertheless, in this article, the
same value of b is used for every RAM node in a discriminator.

Despite the improvement achieved with plain bleaching, when
a WiSARD is trained with a large amount of data, ties might occur
even for a very high value of b. So, iteratively increasing b by 1
proves to be an inefficient procedure in these cases. This procedure
can become faster by storing every pre-bleaching integer output
from the RAMs, ordering them and then increase b according
to those values. This algorithm guarantees that at least one
discriminator response is lowered when b changes. This way, the
ties are eliminated faster than in the original bleaching algorithm.
3. mWANN-Tagger

mWANN-Tagger constitutes a multilingual language-indepen-
dent part-of-speech tagger. It is a solution to the training
performance problem that arises when the number of languages
used by a POS-tagger increases. It is intended to profit from the
efficiency of weightless artificial neural networks in classification
tasks and amethod to straightforwardly predict the optimal values
for some classification parameters. It is an evolution of WANN-
Tagger (Carneiro et al., 2010), a part-of-speech tagger whose
architecture is based on the WiSARD model. mWANN-Tagger can
be used in two distinctmodes, the training and the taggingmode. A
schematic diagram of the these modes are depicted in Fig. 5(a) and
(b), respectively. A more detailed explanation of the arguments of
mWANN-Tagger is given in Section 3.2. The training procedure is
better described in Section 3.3.

3.1. Tagset

In order to create a multilingual POS-tagger, a universal tagset
is proved necessary as the tagger requires a fixed amount of tags.
This happens because there must be both a correlation among the
grammatical categories of every language and a normalization of
the tagsets. Thus, any distinction between the datasets is reduced.
Only the parameters of the tagger need calibration. This is impor-
tant because one of the goals of this work is to investigate a cor-
relation between the indices of synthesis and the values of those
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(a) Training mode. (b) Tagging mode.

Fig. 5. The modes of mWANN-Tagger.
Table 1
Tagset of mWANN-Tagger.

N Noun ADJ Adjective
ADV Adverb V Verb
PRON Pronoun DET Determiner
ADP Adposition NUM Cardinal Number
CJ Conjunction MW Measure Word
PART Particle INTJ Interjection
PUNC Punctuation MISC Miscellaneous

arguments. Furthermore, Petrov et al. (2012) results corroborate
the use of a universal tagset instead of specific ones for each lan-
guage.

The tagset used in this article (Table 1) is similar to the one used
in Petrov et al. (2012), except that it has a separate tag for measure
words, as it is an important grammatical category of far eastern
languages, and another one for interjections. Another similar com-
mon tagset was adopted in Naseem et al. (2009).

3.2. mWANN-Tagger arguments

mWANN-Taggermodules use eight arguments calibrated in dif-
ferent ways, according to:

• Ending frequency, the number of distinctwords that endwith a
particular sequence of characters. As there are many sequences
of letters that do not add relevant information about the part
of speech of a given word, then only the sequences that occur
in the end of at least X words will count for the creation of the
tagger. X is the ending frequency value;

• Size of the smallest ending, the smallest number of characters
that a word endingmust have in order to be considered an end-
ing candidate. This argument is used to avoid short sequences
of letters, because there are languages whose endings usually
do not have less than X letters. For instance, in English -y is
the only one-letter ending, informing that the word is proba-
bly an adjective (ugly, fairy and others). Examples of two-letter
endings include-ed (verb ending associated with both the past
and the participle form, e.g., liked, formed, cried and landed) and-
nt (adjective ending related to participle forms borrowed from
Romance languages, e.g., constant, consistent, reluctant and sen-
tient);

• Size of the largest ending. This argument is used to avoid cre-
ating enormous dictionaries and thus try to mitigate the effects
of overtraining;

• Size of the smallest root is an argument analogous to the
‘‘size of the smallest ending’’. This value is important because it
avoids considering word endings that are almost the size of the
word itself. One trivial example is theword ugly and the ending-
ly (denoting adverbs like properly, hardly and others). As ug is
a small character sequence, mWANN-Tagger would choose-y
(adjective) as ugly’s ending, instead of-ly (adverb). Another ex-
ample is the word bed that carries the ending-ed, which usually
represents verbs in the past and participle forms. Nevertheless,
bed is a noun and not a verb;

• Amount of words before the current one is one of the two ar-
guments that represent the context window. Context windows
that are too small may leave important information unconsid-
eredwhen tagging a certainword. On the other hand, large ones
can also be hazardous to the tagging process, because of the in-
troduction of toomuch specificity, therefore producing an effect
called overtraining;

• Amount of words after the current one is the other argument
related to the context window size;

• Probability discretization degree. As described above,
mWANN-Tagger uses aWiSARD architecture, so it must receive
only Boolean entries. The grammatical category probabilities
must be discretized into bit arrays;

• Number of RAM address bits is an argument that determines
howgeneralizing the taggerwill be. If the size of the input retina
is equally divided into the RAMs address bits, then onemay con-
sider that n, the size of the RAM input address, determines the
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(a) Mapping matrix example lines.

(b) Sentence and its corresponding annotated version.

(c) Training pattern example with B = 1, A = 1 and T = 14 tags.

(d) Training pattern example of the ending -rrow.

Fig. 6. mWANN-Tagger procedure of transcoding sentences into probabilities.
number of input bits to be correlated. N , the number of RAMs,
is a consequence of the choice of n:

N =
bits in the input retina

n
. (1)

It has been shown (Aleksander, 1990b) that the generaliza-
tion capacity of the mechanism diminishes with the number of
RAMs.

It is worth discussing a concept introduced in this work, the
ending relevance. The relevance of an ending is important to deter-
mine the possible endings that can substitute words that appear
in the tagging mode but that did not show in the training mode.
It is a function of four arguments of mWANNTagger: ending fre-
quency; size of the smallest ending; difference between the largest
and the smallest ending, and the size of the smallest root. These ar-
guments were used as a language-independent alternative to the
manual selection of endings that prove to be relevant to the POS-
tagging task. The manual selection of the endings requires a pre-
vious knowledge of morphological and semantical characteristics
of a language. Thus, the ending relevance alternative is required
by the tagger, as one of mWANN-Tagger’s main objectives is to be
language-independent.

3.3. Input pattern assembling

mWANN-Tagger employs an n-tuple classifier in order to tag
sentences and thus, its inputmust be an array of bits. However, the
tagger is trained on an annotated corpus, i.e., a dataset of annotated
sentences composed by pairs (x, tag(x)) (see Fig. 6(b)). Hence,
mWANN-Tagger requires an input assembling procedure, so that
each sentence of size l in the annotated corpus is transcoded into l
bit arrays, one for each term in the sentence.

At first, mWANN-Tagger assembles anm×nmappingmatrix.m
is the number of distinct terms of the corpus (words, punctuation,
ciphers, foreign words and so on) plus the number of relevant
endings obtained from the corpus, as described in Section 3.2,
plus 1, to include a general case. The lines of the mapping matrix
associated with the relevant endings are used in the tagging mode
if there is no line in the mapping matrix associated to a new term
that is presented to the tagger. If there is no line in the mapping
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Fig. 7. Probability discretization procedure.

matrix associated neither to this new termnor to any of its possible
endings, the general case is used.

Each line of the mapping matrix contains n = T + 1 cells. One
of these cells stores the term (or ending) associated with the line.
The other T cells store the empirical probabilities p of term (or
ending) of the line w being tagged as any one of the T existing
grammatical categories (in this work, T = 14, see Table 1). The
empirical probability p of a term w being tagged as a category ti is
calculated through the formula

p(w, ti) =
C(w, ti)

|T |
j=1

C(w, tj)
(2)

where C(x, y) represents a counting function that returns the
number of times the term x is tagged as y.

Examples of lines of the mapping matrix are shown in Fig. 6(a),
where examples of endings include-rrow (that stands for words
like barrow, arrow and sorrow),-ness (for boldness and randomness)
and-ate (for rotate and adequate). The default case appears at
the bottom of the figure, represented by a single hyphen (-).
The process of assembling the mapping matrix is similar to the
procedures used in dictionary-based models (Gnecco, Kůrková, &
Sanguineti, 2011a, 2011b).

After mWANN-Tagger assembles the mapping matrix, the
tagger creates training patterns for every term of each sentence
in the training corpus (see Fig. 5(a)). Each pattern is composed by
the empirical probabilities of every term (or ending) in the context
window of its corresponding term. The pattern is represented by
B + A + 1 lines, each one representing one term of the context
window, i.e., B terms before, A terms after and the current term.
Each of these lines contain the T empirical probabilities associated
to its respective term (or ending) according to themappingmatrix.
If there is a gap with no term in the context window, the empirical
probabilities must be filled with 0.0 for every corresponding tag.
Examples of training patterns are depicted in Fig. 6(c) and (d). Both
figures use B = A = 1. It is important to note the lack of a term in
the contextwindow in Fig. 6(c) and the use of an ending in Fig. 6(d).

Next, the taggermust transcode the probabilities of the training
patterns into bit arrays in order to train these patterns, as shown
in Fig. 5(a). This transcoding procedure depends on a discretization
process, since probabilities lie in the continuous range [0, 1]. A
probability discretization degree d is employed in order to transcode
a probability into a bit array. This degree represents the number of
bits in which the probabilities must be discretized. It transcodes
a probability p into a bit array with the first ⌈p × d⌉ positions
markedwith 1, andwith 0 elsewhere. This is equivalent to say that
if the interval [0, 1] were divided into d slices, the discretization
of probability p into d bits depended on how many slices this
probability (fully or partially) fills, as represented in Fig. 7.

When the training patterns are transcoded into bit arrays, the
tagger can execute the training procedure itself. mWANN-Tagger
trains the pattern as a traditional n-tuple classifier with bleaching
(see Section 2.2). The tagger associates one discriminator di to each
tag ti. Thus, when a pattern is trained and it is associated with the
tag ti, the content of the RAM nodes of di must be updated.

The tagging mode is quite similar to the training mode, as
shown in Fig. 5(b). In this mode, non-annotated texts are pre-
sented to the tagger. Afterwards, it converts the texts into pat-
terns containing probabilities, according to the mapping matrix.
This conversion occurs in the same way training patterns are cre-
ated. Therefore, mWANN-Tagger creates one pattern for each term
w of a non-annotated text. The tagger, then, transcodes these prob-
abilities into bit arrays, which are used as input to the n-tuple clas-
sifier. Finally, the discriminator di with the highest response is the
one chosen by mWANN-Tagger. The tag ti associated to this dis-
criminator is the one output by the tagger as the most probable
grammatical category of a term w.

The tagger uses a context window in its POS-tagging task. This
means that the network only needs local knowledge in order to be
trained accurately, differently from probabilistic graphical models.
These models use belief propagation algorithms (Baum, Petrie,
Soules, & Weiss, 1970; Pearl, 1982), so that the knowledge about
the problem is propagated to all of its nodes. Peres and Pedreira
(2010) corroborate the mWANN-Tagger approach by suggesting
that the use of local knowledge in certain domains may keep the
method as powerful as if its knowledge were totally global.

4. Experimental methodology

Distinct languages were used in the experiments to test
mWANN-Tagger capability for tagging texts in languages of dis-
tinct characteristics. For each language, several mWANN-Tagger
parameter configurations were tested, until the optimal one was
found. The languages chosen to be used in the experiments can be
seen in Section 4.1.

4.1. Datasets

Eight languages were chosen for the experiments in order
to obtain a sufficient amount of data for the evaluation task.
These languages are listed below along in this subsection with the
reasons for their choice.
• Mandarin Chinese (ISO-639-1 code: ZH - Zhōngwén) was cho-

sen because it is a very isolating language. Derivational and in-
flectional morphemes are almost absent. Themajority of words
is composed purely by roots (usually one or two) (Li & Thomp-
son, 1981; Norman, 1988);

• English (ISO-639-1 code: EN) belongs to the Germanic
branch of the Indo-European languages, which possesses
Indo-European compositional constructions and an inflectional
system.However, English inflection systemwas drastically sim-
plified through the ages (verb conjugation no longer depends
on person or number, case system ceased to exist and others).
In addition, English borrowed severalwords fromFrench, for in-
stance table and independence. The latinization of English vocab-
ulary contributed to increase its derivational index of synthesis.
Because of its simplified inflectional system, a simple compo-
sitional structure and its indirect influence of Latin derivation
rules, English was chosen as one of the languages to be used
in the experiments (Baugh & Cable, 2002; Blake, 1992; Hogg,
1992);

• Japanese (ISO-639-1 code: JA) belongs to an isolate language
family, the Japonic one. Thus, Japanese has some unique mor-
phological structures. But, due to Chinese influences, Japanese
borrowed several words from Early Middle Chinese, which
nowadays constitute its Sino-Japanese vocabulary. Thesewords
are composed only by roots (usually one or two). This caused
Japanese compositional index of synthesis to be somewhat
high, even Japanese not being an isolating language like the Chi-
nese ones (Loveday, 1996);

• Portuguese (ISO-639-1 code: PT), as a Romance language,
makes almost no use of word compounds. Latin, through abol-
ishing the compositional structures, required new forms of
word creation and, consequently, new derivational suffixes
and prefixes were introduced (Chase, 1900). This causes all
Romance languages to have a low compositional index of
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Table 2
The corpora used in the experiments.

ISO-639-1
code

Corpus Number
of terms

ZH Penn Chinese Treebank 6.0 (Xia et al., 2000) 1 099570
EN Brown Corpus (Francis & Kučera, 1964) 1 166194
JA TüBa-J/S—Tübinger Baumbank des Japanischen

Spontansprache (Hinrichs et al., 2000)
156871

PT Bosque (Floresta Sintá(c)tica) (Afonso et al., 2002) 213999
IT TUT—Turin University Treebank (Bosco et al., 2000) 76938
DE NEGRA Corpus (Skut et al., 1997) 337959
RU Set of shuffled sentences from Russian National

Corpus (Boguslavsky et al., 2002)
166308

TR METU-SabancıTurkish Treebank
(Oflazer et al., 2003)

53981

synthesis and a somewhat high derivational one. Furthermore,
Portuguese employs contractions, which prevents its composi-
tional index of synthesis from being very low. Portuguese was
chosen to be part of the experiments because of these crite-
ria, and also because it simplified Latin noun declension and
turned its plural marking into a simple agglutinative structure
(Williams, 1938);

• Italian (ISO-639-1 code: IT), just as Portuguese, has a low com-
positional index of synthesis and a somewhat high derivational
one. But, differently from Portuguese, its plural form keeps the
fusional structure of Latin. Italian also employs a larger amount
of contractions than Portuguese does, thus making its composi-
tional index of synthesis a little bit higher than Portuguese one.
Italian is used in this article because it is a Romance language
that keeps Latin fusional inflection system not only in verbs but
also in nouns (Maiden, 1995);

• German (ISO-639-1 code: DE – Deutsch), as a member of the
Germanic branch of the Indo-European languages, employs
compounding as one of the word formation techniques. It also
makes heavy use of derivation and its inflection system was
not simplified as the English one was. German, as a language
that keeps most word building techniques from the Germanic
branch, and that has not suffered a massive latinization of its
vocabulary, is a good candidate language to be used in the ex-
periments (Carr, 1939; Neef, 1998);

• Russian (ISO-639-1 code: RU), of all Indo-European languages
listed in this work, is the one that kept most of the Indo-
European word building techniques. Word compounds are
quite common in Russian, derivational affixes are extensively
used and its inflectional system is huge and complex. This
language is among the ones chosen for the experiments as it
represents the very synthetic fusional languages (Levin, 1978;
Townsend, 1975);

• Turkish (ISO-639-1 code: TR) is commonly known as a highly
agglutinative language. Besides, as a counterweight to Russian
fusional structure, Turkish is used in the experiments repre-
senting the group of languages that are very synthetic and
purely agglutinative (Lewis, 2001).

One annotated corpus was used for each language (their de-
tailed information are in Table 2). During the selection procedure
the tagsets of the original corpora were converted into the uni-
versal one, as mentioned in Section 3.1. Thus, the datasets used in
the experiments are somewhat normalized as their tagsets are the
same.

5. Results and discussion

The robustness of mWANN-Tagger can be verified according to
two criteria: (i) if the tagger tags sentences both accurately and
precisely, and (ii) if it is quite fast in any of its phases, empiri-
cally showing the advantages of information-storage training al-
gorithms. This way, two distinct experiments were carried out:
(i) a comparison between the best results presented by mWANN-
Tagger with state-of-art methods (see Table 5), and (ii) a measure-
ment ofmWANN-Tagger time costs in training and tagging phases.
The accuracies of mWANN-Tagger are compared with the accu-
racies of a CRF trained with the same endings produced by the
preprocessing step of mWANN-Tagger. A comparison with the ac-
curacies obtained by Petrov et al. (2012) is also made. Both models
are described in more detail in Section 5.1. The same CRF model
was used for a time cost comparison with mWANN-Tagger. The
time spent by both models are discussed in Section 5.2.

A good performance of mWANN-Tagger in the experiments of
Sections 5.1 and 5.2 would empirically show that mWANN-Tagger
can be used as an agile and precise language-independent POS-
tagger.

5.1. Comparison of accuracy results with the state of the art

Table 3 presents the best parameter configuration of mWANN-
Tagger for each language of the dataset. As mentioned in the
beginning of Section 5, those results were compared with the CRF
model and with the results obtained in Petrov et al. (2012). The
CRFmodel was used to experimentally show that mWANN-Tagger
was competitive or even better than stochastic models that take
advantage of employing features, e.g. word endings, to tag words.
A traditional chain-structured CRF was employed. The model used
the same endings produced by mWANN-Tagger preprocessing
step. Those endings compose the feature vector of the CRF model.
The amount of endings used in each language can be found in
Table 4. The CRF implementation was made using MALLET toolkit
(McCallum, 2002). This toolkit was chosen because it is written in
the same programming language of mWANN-Tagger and because
itwas developed by the academic group of Prof. AndrewMcCallum,
one of the creators of CRF (Lafferty et al., 2001; McCallum, 2003).
The experiments of CRF were run in the same machines the ones
of mWANN-Tagger ran.

Thework of Petrov et al. (2012)was also compared tomWANN-
Tagger because it represents the state of the art in multilingual
POS-tagging. Petrov et al. (2012)’s work consisted of creating a
universal part-of-speech tagset and implementing a POS-tagger
to show how a universal tagset could produce a better result in
part-of-speech tasks than a set of customized tagsets. Petrov et al.
(2012) used an instance of a well-known stochastic POS-tagger
whose main advantage is its robustness and its fast training. They
used an implementation of the Trigrams’n’Tags POS-Tagger (TnT-
Tagger) (Brants, 2000), which is a statistical POS-tagger that uses
second order Markov models.

Both CRF and TnT-Tagger make use of the advantages of belief
propagation algorithms (Baumet al., 1970; Pearl, 1982) to acquire a
global knowledge of the text. On the other hand, mWANN-Tagger
uses only the words inside its context window, which is usually
small (2 to 4words). The contrast between the knowledge acquired
to tag sentences can be noticed in the graphical representations
of the models depicted in Fig. 8. Finally, both the tagger used
in this paper and the one used in Petrov et al. (2012) share
some properties, such as acting on distinct independently trained
languages and using a single standardized tagset.

According to Table 5, mWANN-Tagger accuracy values are con-
sistently higher than the ones obtained by CRF. mWANN-Tagger
has a higher accuracy than those reported by Petrov et al. (2012)
in 6 out of the 8 languages compared. 3 of them being consistently
higher. In Portuguese mWANN-Tagger was competitive with the
work of Petrov et al. (2012). The standard deviation of mWANN-
Tagger accuracy is lower than 0.25% whereas the average one of
the TnT-Tagger is 2.25%. The standard deviation of CRF ranges from
as low as 1.0% in English to as high as 3.6% in Italian.
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(a) HMMmodel. (b) Chain-CRF model. (c) mWANN-Tagger model.

Fig. 8. Relation structures between tag nodes and term nodes.
Table 3
Best mWANN-Tagger parameter configuration for each language.

ISO-639-1 code ZH EN JA PT IT DE RU TR

Ending frequency 5 3 1 2 2 2 1 1
Size of smallest ending 3 2 5 2 2 2 2 3
Size of largest ending 4 4 5 4 3 5 4 6
Size of smallest root 3 2 1 2 2 2 1 0
Context window [2, 1] [1, 2] [2, 1] [2, 2] [2, 1] [1, 1] [1, 1] [2, 2]
Prob. discret. degree 142 107 45 82 70 100 61 113
# RAM address bits 95 66 27 60 39 61 52 32
Mean accuracy 93.53% 97.65% 98.61% 96.80% 96.15% 96.93% 97.01% 92.26%
Accuracy std. deviation 0.10% 0.03% 0.12% 0.13% 0.19% 0.16% 0.13% 0.23%
Table 4
The average amount of endings used per fold for each language.

ISO-639-1 code Number of endings per fold

ZH 329.7
EN 4350.0
JA 1150.3
PT 3896.9
IT 714.5
DE 8225.3
RU 6691.7
TR 16286.9

Table 5
Comparison between accuracy results obtained by mWANN-Tagger, CRF and the
TnT-Tagger used in Petrov et al. (2012).

ISO-639-1
language code

mWANN-
Tagger

CRF Petrov et al.
(2012)

Uses same
corpus?

ZH 93.53% 86.48% 93.4% Yes
EN 97.65% 96.35% 96.8% No
JA 98.61% 96.54% 98.0% Yes
PT 96.80% 94.29% 96.8% Yes
IT 96.15% 92.02% 95.8% No
DE 96.93% 94.48% 97.9% Yes
RU 97.01% 93.10% 96.8% Yesa
TR 92.26% 80.31% 89.1% Yes
a By the time this article was written, only a set of shuffled sentences of the

RussianNational Corpuswere freely available off-line. Due to some technical and/or
copyright problems, the rest of the corpus was only accessible on-line.

5.2. Time performance

After mWANN-Tagger best parameter values were found, the
tagger was tested 100 times with this configuration in order to
measure its performance. The same evaluation methodology was
made with CRF. Only one 10-fold cross-validation procedure was
executed because CRF takes a long time to converge. Table 6 con-
tains the time spent by mWANN-Tagger and CRF during the train-
ing and the tagging steps, for every sentence of each language
corpus.

The time spent by mWANN-Tagger in the training step is 2 or-
ders ofmagnitude lower than CRF. On the other hand, CRF tags sen-
tences up to 80 times faster than mWANN-Tagger. The time spent
in bleaching technique is potentially the main cause of mWANN-
Tagger being slower than CRF. This can be mitigated by using
multiple threads during the tagging step, since WiSARD archi-
tecture is highly parallelizable (Gregorio & Giordano, 2014). The
time spent by CRF during the training step can be explained by its
convergence-dependable nature and, possibly, to the large number
of features produced (see Table 4). Preliminary experiments were
Table 6
Average time spent by mWANN-Tagger during each step for each term of every
language.

ISO-639-1
language code

Training step Tagging step

mWANN-
Tagger (ms)

CRF (ms) mWANN-
Tagger (ms)

CRF (ms)

ZH 0.20 19.36 2.35 0.03
EN 0.87 95.89 5.59 0.22
JA 0.05 7.36 0.44 0.02
PT 0.10 6.71 0.52 0.02
IT 0.05 4.16 0.33 0.02
DE 0.08 11.22 0.40 0.03
RU 0.04 7.72 0.23 0.02
TR 0.25 9.86 2.21 0.03

made with the MEMM architecture. They showed that MEMM ac-
curacy is lower than that of CRF, but the former trains up to 10
times faster than the latter. Nonetheless, its training time perfor-
mance is still considerably lower than that of mWANN-Tagger.

The high amount of features may have also implied in the low
accuracy of CRF, shown in Table 5. The high amount of features
possibly caused overfitting of the model. This hypothesis could
be corroborated by checking how the number of features used
decreases from simple models like ME (Ratnaparkhi, 1996) to the
more sophisticatedMEMM (McCallum et al., 2000). In CRF (Lafferty
et al., 2001) the number of features employed is very small. For
example, the number of possible endings/suffixes decreases from
every ending X , such that |X | ≤ 4 in Ratnaparkhi (1996) to only 9
English-specific suffixes in Lafferty et al. (2001). This indicates that
there are some impairments to the usage of CRF for multilingual
POS-tagging. This problem can possibly be solved by a less naive
process of ending choice. However, the strategy can increase the
overhead of the preprocessing step.

The time spent at each step depends on the value of the tagger
parameters. During the preprocessing step mWANN-Tagger cre-
ates both themapping and the training files, so, any parameter that
affects the size of these filesmakes the time elapsed increase or de-
crease accordingly. The parameters that are directly proportional
to the increase of the size of both files, and thus of the time spent in
the preprocessing phase, are the both the size of the smallest ending
and the size of the largest ending (affecting the size of the mapping
file), and the two parameters A and B that change the context win-
dow size (affecting the size of the training file). The ones that are
inversely proportional are the ending frequency and the size of the
smallest root, responsible for the size of themapping file. However,
the preprocessing step took less than 1 s in almost every language.
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As the CRF model uses almost the same preprocessing step, it was
not included in the comparison made in this section.

The time spent in the training and tagging steps highly depends
on the size of the input retina. It is directly proportional to the prob-
ability discretization degree and to the context window parameters,
as the former increases the amount of bits used for each probabil-
ity representation and the latter the amount of words, and, thus,
the probabilities, in the context window.

The time spent during the tagging step also depends on the
number of RAMnodes of the network. As the number of RAMnodes
increases, so does the time to choose the best bleaching threshold.
Considering that during the tagging step the mapping file must be
accessed in such a way that the probabilities of every word can be
obtained, parameters that affect the size of this file also affect the
time spent at this step. Nevertheless, their effect on the increasing
(or decreasing) of the tagger performance during this step is still
rather low when compared to that of the other three parameters.

6. Conclusion and future work

This article introduced a novel part-of-speech tagger that uses a
weightless artificial neural network architecture, mWANN-Tagger.
Its architecture allows for a one-pass training technique:mWANN-
Tagger’s training phase is faster than any other tagger to this
date. Although its tagging phase is not faster than traditional
stochastic models, it is still capable of tagging in an agile fashion.
Compared with state-of-art methods, mWANN-Tagger’s accuracy
matched or outperformed them, thus confirming that methods
that use local knowledge can perform better than the ones using
belief propagation algorithms, e.g., Markovmodels and conditional
random fields.

The main intuition of this tagger was to use the ending and/or,
analogously, the beginning of words. Nevertheless, it lacked the
ability to successfully tag the parts of speech of languages that pos-
sess a nonconcatenative morphology, for instance Arabic, Hebrew,
Syriac and others (McCarthy, 1981). This is left for a future investi-
gation.

This work showed that mWANN-Tagger is capable of training
and tagging sentences in a quite agile fashion. However, the as-
sembling of the mapping matrix and the use of endings avoid the
tagger to use one of benefits of the weightless paradigm: the abil-
ity to train new example during runtime and thus improve itself.
An improvement in the assembling of themappingmatrix, consid-
ering the interleaving between the training and the tagging phases
wouldmakemWANN-Tagger be able to train newexamples during
runtime, becoming a more versatile tagger.

There is evidence indicating a strong correlation between the
index of synthesis and the best architecture for each language
(Carneiro, 2012). Herein it is conjectured that the optimal param-
eter configuration of the tagger could be obtained through a func-
tion of the index of synthesis of a given language (Greenberg,
1960). So, an immediate direction for extending mWANN-Tagger
would be to study how thesemeasures correlate,which constitutes
work in progress.

Another possible mWANN-Tagger extension is to use com-
putational linguistics techniques oriented to Semitic languages
(Cohen-Sygal & Wintner, 2006; Kiraz, 2000, 2001), so that these
languages would have their parts of speech accurately tagged. Fi-
nally, mWANN-Tagger could be used as the basis of a weightless
neural-based grammar induction system. This system could em-
ploy a mutual learning architecture, because mWANN-Tagger has
a fast performance during both the training and the tagging steps,
and is also capable of learning during runtime. This mutual learn-
ing architecturewould consist in usingmWANN-Tagger to tag sen-
tences with the k most probable sequences of parts of speech,
which would then be used to train the grammar induction system.
After a couple of iterations, this system would be capable of deter-
mining which of these k sequences is the correct one. If that were
not the onemWANN-Tagger classified as themost likely sequence,
then the tagger would be trained with this new sequence.
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