
Probability Table Compression Using Distributional Clustering for Scanning
N-Tuple Classifiers

Jianying Hu Eugene Ratzlaff
IBM T.J. Watson Research Center

1101 Kitchawan Road, Route 134 Yorktown Heights, NY 10598
{jyhu, ratzlaff}@us.ibm.com

Abstract

A method for compressing tables of probability distri-
butions using distributional clustering is presented and ap-
plied to shrink the look-up tables of a scanning n-tuple
handwritten character recognizer. Lossy compression is re-
alized by clustering n-tuples that are observed to induce
similar class probability distributions. A new distance met-
ric called ”weighted mean KL divergence” is introduced to
assess similarity and account for the cumulative effect of
merging two distributions. After compression, cluster mem-
bership is rebalanced in an annealing-like process. The
proposed method is evaluated on three isolated-character
subsets of the UNIPEN database. Compression ratios in
excess of 2000:1 are demonstrated for 5-tuple classifiers.

1. Introduction

The scanning n-tuple (sn-tuple) classifier first introduced
by Lucas and Amiri [7] provides accurate, high speed
recognition for offline or online character data [7, 8] at
the cost of large memory requirements. The sn-tuple is a
maximum-likelihood classifier applied to chain code feature
sequences, where the probability of observing the complete
code is given by the ensemble probability for observing all
of the scanned n-tuples derived from the chain code.

For each sample of a character class ci, the sn-tuple al-
gorithm generates a variable length chain code that is sub-
sampled into tuples of length n with features f1, f2, · · · , fn,
where each code f ranges from 0 to σ − 1. In train-
ing, we assume a uniform distribution of the class prior
probabilities p(ci) for the set of Q character classes
C = {c1, c2, · · · , cQ} and estimate the probability dis-
tribution P (C|Ti) of the observed n-tuples at each i =
{1, 2, · · · , σn − 1}. In decoding, given a sequence of
observed n-tuples τ = (t1, t2, · · · , tM), where tk ∈
{T1, T2, · · · , Tσn−1}, k = 1, 2, · · · ,M , the sn-tuple clas-
sifier assumes that the n-tuples are mutually independent.
Using the Bayes rule and assuming a uniform distribution
of class prior probabilities, it can be shown that the poste-

rior probability of the input belonging to class ci, p(ci|τ),
is determined by the product of the conditional probabilities
of class ci given each individual n-tuple. Thus the classifier
selects the character class with highest posterior probability
as given by:

c = argmaxi

M∏
k=1

p(ci|tk). (1)

where each p(ci|tk) is drawn from the σn × Q probability
look-up table generated in training.

Unfortunately, these look-up tables can become very
large with commonly used values of n ≥ 5 and σ = 8,
making it impractical for embedded applications. Hoque et
al. have addressed this issue using chain code decomposi-
tions [5]. Comparing a compressed 8-tuple with an uncom-
pressed 5-tuple, they demonstrate a 12X memory savings
with improved ensemble accuracy [5, 4]. Cho et al. have
applied quantization and EM mixture models with discrep-
ancy tables for 21:1 compression and nominal accuracy loss
[2]. In this paper we present a new method using distribu-
tional clustering that performs with nominal accuracy loss
at 20:1 compression, but which can scale to compressions
of more than 5000:1 with only moderate increases in the
error rate.

The rest of the paper is organized as follows. In Section
2 we first briefly review the concept of distributional clus-
tering. We then introduce a new distance measure called
weighted mean KL divergence to quantify the effect of
merging two different distributions, followed by a two-stage
clustering procedure to group n-tuples into a given number
of events. Experimental results on standard UNIPEN data
[3] are presented in Section 3 and we conclude in Section 4.

2. Distributional Clustering of N-Tuples

Consider the random variable over character classes, C,
and its distribution given a particular n-tuple Ti, denoted
P (C|Ti). The idea behind distributional clustering of n-
tuples is that if two distinct n-tuples, Ti and Tj induce sim-

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

ilar class distributions, they can be clustered together and
represented by a single distribution which is the weighted
average of the individual distributions:

P (C|Ti ∨ Tj) =
P (Ti)P (C|Ti) + P (Tj)P (C|Tj)

P (Ti) + P (Tj)
. (2)

To be more general, from now on we will use the notion
of class distribution given a particular event, Ei, denoted
P (C|Ei). Tuples belonging to the same cluster are treated
as identical events and induce the same class distribution.
Since we now only need to store one distribution per event
as opposed to one per distinct n-tuple, this paradigm leads
to a compression ratio of σn : M , where M is the number
of events. The small overhead of a look up table mapping
any n-tuple to an event is in most cases negligible compared
to the size of the probability table.

2.1. The Effect of Merging Two Distributions

Given two distributions P (C|Ei) and (C|Ej), the infor-
mation theoretic measure for the difference between them is
the Kullback-Leibler (KL) divergence measure defined as:

D(P (C|Ei)‖P (C|Ej)) = −
Q∑

k=1

p(ck|Ei) log

(
p(ck|Ei)

p(ck|Ej)

)
.

Unfortunately this measure has two undesirable properties:
it is not symmetric, and it is infinite when a class has non-
zero probability in the first distribution and zero probability
in the second.

Baker and McCallum [1] introduced a related measure
called “KL divergence to the mean”, defined as:

P (Ei)

P (Ei ∨ Ej)
· D(P (C|Ei)||P (C|Ei ∨ Ej))

+
P (Ej)

P (Ei ∨ Ej)
· D(P (C|Ej)||P (C|Ei ∨ Ej)). (3)

In information theoretical terms, this measure can be un-
derstood as the expected amount of inefficiency incurred
if, instead of compressing two distributions optimally with
their own code, we use the code that would be optimal for
their mean. This measure not only avoids the two undesir-
able properties of the classic KL measure, but is also more
suitable for clustering as it measures directly the effect of
merging two distributions into one.

For the purpose of n-tuple clustering in the context of
character recognition, we wish to further modify this mea-
sure to take into account the cumulative effect of merging
two distributions on the final classification. As shown in
Equation 1, each n-tuple encountered in the input character
is treated as an independent event and the class likelihood
of all the events are accumulated to produce the final score.
Thus, the true cost of merging two distributions should be

further weighted by the prior probability of the joint event –
the less frequently two events are likely to occur, the smaller
the impact of merging their distributions. We call this new
measure the ”weighted mean KL divergence”, defined as:

Df (Ei, Ej) =

P (Ei) · D(P (C|Ei)||P (C|Ei ∨ Ej)) +

P (Ej) · D(P (C|Ej)||P (C|Ei ∨ Ej)). (4)

This is the distance measure we will use to cluster the
n-tuple distributions.

2.2. Clustering Algorithm

Given the distance metric defined above and the desired
number of clusters M , the optimal solution to the n-tuple
clustering problem is the one which minimizes the total
within-cluster distance out of all possible permutations. Un-
fortunately this is a combinatorial problem with exponential
complexity. Various techniques have been proposed before
to achieve a locally optimal solution in polynomial time,
including the well known K-means and hierarchical clus-
tering methods [6]. We have developed a method based
on the greedy agglomerative approach proposed by Baker
and McCallum [1] (referred to as the Baker method from
now on). Our method contains an initialization stage and
a refinement stage, requiring a total computation time of
O((M + 1)2(σn −M) + αMσn), where α is a small inte-
ger (e.g., 3).

The first stage, initialization, is very similar to the Baker
method, the main difference being the distance measure
used (Equation 4 vs. Equation 3):

• Sort the n-tuple distributions into a list ordered by de-
creasing mutual information with the class variable,
defined as: I(C|Ti) = H(C) − H(C|Ti), where H()
represents entropy and H(C) is constant for all tuples.

• Initialize M + 1 clusters as singletons with the top
M + 1 tuple distributions on the list

• Iterate until the last tuple distribution on the list has
been processed

– Merge the two clusters with minimum distance
(Equation 4).

– Create a new cluster consisting of the next tuple
distribution in the sorted list.

In the second stage, refinement, the cluster membership of
each n-tuple is adjusted using the following annealing-like
process, repeated α times:

• Compute the within-cluster distance between each n-
tuple distribution and its cluster center using Equation
4.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

• Sort the n-tuple distributions in the order of decreasing
within cluster distance.

• For each n-tuple Tk in the sorted list, suppose its clus-
ter assignment is Ei:

– Compute its distance, Df (Tk, Ek) to all cluster
centers.

– Find the cluster Ej with the minimum distance.

– If j �= i then move Tk to cluster Ej and update
distributions P (C|Ei) and P (C|Ej).

3. Experimental Results

The proposed method was evaluated on the UNIPEN iso-
lated handwritten characters in categories 1a (digits), 1b
(upper case) and 1c (lower case), using the complete Train-
R01/V07 subsets for training and the full DevTest-R01/V02
subsets for testing [3]. 5-tuples from static (offline) bitmap
chain code features were used with σ = 9 and offset δ = 7
[8]. For the digits, uppercase and lowercase categories we
used 14, 133, and 170 allographs, respectively. Uncom-
pressed probability distributions were first trained, then sub-
sequently compressed using distributional clustering, then
further compressed 2-fold by quantizing [2] 4-byte floats to
scaled 2-byte log-probabilities.

Figure 1 shows the error rate for digits classification as
a function of the combined compression from both distri-
butional clustering and quantization. All compression ratio
reported here reflect only the size reduction in the probabil-
ity look-up tables and do not account for the added overhead
of mapping sn-tuple addresses to event addresses.

Results using three different clustering methods are plot-
ted in Fig. 1: the Baker method, the weighted mean KL
divergence without refinement (referred to as ”Weighted
Mean”), and the weighted mean KL divergence with refine-
ment (referred to as ”Refined Weighted Mean”). Results of
Refined Weighted Mean were all generated with 3 iterations
of the annealing process defined in Section 2.2 (i.e. α = 3)
and reflect the full method proposed herein. As shown in the
plot, the proposed method using weighted mean KL diver-
gence measure performs significantly better than the Baker
method. With a total compression of 20:1 the drop in ac-
curacy is statistically insignificant. The error rate gradually
increases almost linearly with the log of the compression
ratio until reaching about 5000:1. At this point the num-
ber of n-tuple distributions begins to approach the number
of character classes and the error rate rises precipitously as
the number of classes exceeds M as seen with the last two
points.

The available 5000:1 compression provides two orders
of magnitude more compression than that reported by other
methods [2, 5], though without the potential for improving

accuracy as with Hoque et al.. At a compression of 5905:1
the 7.0% error rate using distributional clustering is slightly
lower than the 7.6% error rate of a 2-mixture model with a
compression of only 146:1 (without discrepancy table) [2].

4

6

8

10

12

14

16

1 10 100 1000 10000

E
rr

or
 ra

te
 (%

)

Compression ratio

Baker
Weighted Mean
Refined Weighted Mean

Figure 1. Error rate vs. compression ratio for
digit recognition.

Results for compression of the uppercase and lowercase
probability tables are shown in Fig. 2. The fact that the
behavior of the algorithm in both cases is very similar to that
shown in the digit recognition case demonstrates that the
algorithm scales remarkably well to problems with much
larger numbers of classes. This is further demonstrated by
the plots in Fig. 3, where the relative error rate (additional
error normalized by uncompressed error) is plotted against
compression ratio for all three tasks.

10

15

20

25

30

35

40

45

1 10 100 1000 10000

E
rr

or
 ra

te
 (%

)

Compression ratio

LC Weighted Mean
LC Refined Weighted Mean
UC Weighted Mean
UC Refined Weighted Mean

Figure 2. Error rate vs. compression ratio for
uppercase and lowercase character recogni-
tion.

Another interesting observation that can be made from
Figures 1 and 2 is that the refinement procedure results

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

0

25

50

75

100

125

150

175

1 10 100 1000 10000

R
el

at
iv

e
in

cr
ea

se
 in

 e
rr

or
 ra

te
 (%

)

Compression ratio

Digit
LC
UC

Figure 3. Relative error increase vs. compres-
sion ratio for digit, uppercase and lowercase
character recognition.

in only marginal performance improvement, especially at
lower compression ratios. This is somewhat surprising,
since our calculations show that in virtually every case re-
finement reduces the total within-cluster weighted mean KL
divergence by about 10%. One reason why this consistent
reduction in total distribution distortion is not reflected in
the final performance could be that there are other factors,
such as mutual information, which are not considered in the
refinement process.

It has been shown that ensemble classification of online
handwriting with different sn-tuple features results in in-
creased accuracy [8], and that this advantage holds true de-
spite compression using mixture models [2]. We also cre-
ated an ensemble classifier by pairing the static sn-tuple
method with a dynamic feature scanning 5-tuple method
and observed similar results using compression by distribu-
tional clustering. For example, at a compression of 200:1
the static+dynamic ensemble error rate for digit recogni-
tion was only 3.3% (up from 3.0% without compression),
whereas the separate error rates for the static and dynamic
feature sn-tuple classifiers were 5.4% (up from 4.7%) and
6.2% (up from 5.6%), respectively.

4. Conclusions and Future Work

Distributional clustering with weighted mean KL diver-
gence provides several advantages for compressing proba-
bility tables such as those used by scanning n-tuple classi-
fiers. This compression method incurs a negligible speed
penalty and works for small as well as large numbers of
classes. A desired compression ratio can be selected from
a wide range, up to as much as 2000:1 or more for 5-
tuples. Developers can target a particular memory footprint

by evaluating the ratio of the sizes of the original and the
desired compressed tables to determine the required com-
pression ratio. Furthermore, the synergies of combining
multiple scanning n-tuple classifiers having different fea-
ture types to achieve higher accuracy are maintained with
compression by distributional clustering; in fact, combining
classifiers somewhat ameliorates compression lossiness.

The proposed method also has a few limitations. The
time to compute grows significantly with increasing n and
M. In addition, the method’s lossiness can be quite differ-
ent for different tasks. and appears to rise dramatically with
increasing compression as M approaches the number of fun-
damentally unique classes. This suggests that compression
might be significantly more lossy when smaller values of n
are used with a large number of classes.

In principle this compression method can work for any
probability table, especially those that have some distri-
butions that are similar or are infrequently observed or
sparsely populated. For the scanning n-tuple, we believe
this method may well work in conjunction with the chain
code decompositions of Hoque et al. [5], or the mixture
models or discrepancy tables of Cho et al. [2], or various
combinations of these three. In addition, further compres-
sion using log-probability quantization to one byte instead
of two should be examined. Future work in this area should
focus on combining and extending combinations of these
different compression methods.

References

[1] D. Baker and A. McCallum. Distributional clustering of
words for text classification. In SIGIR’98, pages 96–103,
Melbourne, Australia, August 1998.

[2] S. Cho, M. Perrone, and E. Ratzlaff. EM mixture model prob-
ability table compression. In Proc. ICASSP’03, Hong Kong,
2003.

[3] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and
S. Janet. Unipen project of on-line data exchange and rec-
ognizer benchmarks. In Proc. ICPR’94, Jerusalem, Israel,
August 1994.

[4] S. Hoque. Personal communication. 2004.
[5] S. Hoque, K. Sirlantzis, and M. Fairhurst. A new chain-code

quantization approach enabling high performance handwrit-
ing recognition based on multi-classifier schemes. In Proc.
ICDAR’03, Edinburgh, England, August 2003.

[6] A. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

[7] S. Lucas and A. Amiri. Recognition of chain-coded handwrit-
ten characters with the scanning n-tuple method. Electronic
Letters, 31(24), 1995.

[8] E. Ratzlaff. A scanning n-tuple classifier for online recogni-
tion of handwritten digits. In Proc. 6th ICDAR, Seattle, US,
September 2001.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

	footer1:

