
Joint Feature and Classifier Design foir OCR

Dz-Mou Jung and George Nagy
Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, 12180-3590, USA

Abstract

Shaft-invariant, custom designed n-tuple features
are combined with (I probabilistic decision tree to clas-
sify isolated printed Characters. The feature probabil-
ities are estimated using Q novel compound Bayesian
procedure in order to delay the fall-off in c lass i jh t ion
accuracy with tree size due to Q small sample set. On
Q ten-class confusion set of eight-point characters, the
method yields error rates under 1% with only 9 train-
ing samples per class.

1 Motivation

We address the restricted problem of automating
the design of a recognition system for isolated single-
font, single-size characters. Such a kernel algorithm
is essential for adaptive recognition along the lines in-
vestigated in [14, 11.

In view of our ultimate objective of truly omnifont
(multilingual) recognition, we need to automate the
design not only of the classifier, but also of the fea-
tures, so that the system can accommodate any type-
face that it might encounter. And, in order to sat-
isfy the requirement of adaptivity on short segments
of text, we must be able to design the entire system
using only a few training samples of each class.

Features based on expansions of the patterns, such
as moment invariants or orthogonal kernel transforms
(Fourier, Haar, Walsh, Hadamard), are optimal for
pattern reconstruction, but reveal differences between
the character classes only incidentally. On the other
hand, intuitively attractive structural features fail the
criterion of complete automation. We are not aware of
any method for completely automatic feature design.

We can, however, design good pixel-based classi-
fiers for two categories, which can be used as features
in a binary tree classifier. Pixel-based classifiers called
n-tuples were introduced by Bledsoe and Browning at
the Eastern Joint Computer Conference [2], investi-
gated extensively in [9, 10, 11, 12, 31, reviewed fa-

vorably in [13], and revived recently in [19]. These
researchers applied n-tuples directly to multicategory
classification, without exploiting the considerable ad-
vantage to be gained by designing each tuple explicitly
for two-category classification. Yet the superiority of
n-tuples resides precisely in the possibility of configur-
ing them to discriminate between two arbitrary sets of
prototype characters. This possibility is best realized
through hierarchical classification.

In a binary tree classifier, the patterns arriving at a
node are partitioned into two categories, each of which
is usually a mixture of several character classes. Each
node decision is determined by whether the n-tupk
assigned to the node fits or does not fit the unknown
pattern. The leaves of the tree carry the label of a
single character class. Several leaves may correspond
to the same character, and leaves may also be labeled
as “reject”. Since the average depth of the tree is
typically only 12 or 14, only a few n-tuples must be
tested to classify an unknown character.

Tree-based classification also has a long pedigree.
Distinguished antecedents include, among many oth-
ers, fuzzy trees [15, 61, CART (Classification and
Regression Trees) [4], inductive learning trees [16],
feature-based trees [20, 211, Olivetti’s OCR system for
office documents [7], and Shlien’s multi-trees [17, 181.
Our trees derive from the probabilistic design algo-
rithm presented in [5], aind the excellent information-
theoretic analysis of [8].

2 N-tuples for two-category discrimi-
nation

A typical 7-tuple for a c-e vs. n-r dichotomy is
shown in Fig. la. The n-tuple fits the design proto-
types “c” and “e” (Fig. lb) in p = 4 different shift
positions (for instance, if the coordinate of the upper
left corner of the “e” prototype is (O,O), with x in-
creasing to the right and y down, then the tuple fits
“e” when the topmost ‘b2 of the tuple moves to (3,5),
(4,5), (0,13), (1,13), and (2,13).), and it fails to fit ei-

0-8186-7128-9/95 $4.00 Q 1995 IEEE
1115

... .UCXXXUUO(. . . .

. U O U -::
. . X U . .-.
.XXXXXXXXXX
.XXX)IOCWCW
.XX11)00LUU .-.
.xx1(xxx.. .. .xxxxx.. ...
Tzuuu.....
.UOU
.XXU(.-. wuu. xmu..-..xxu.. xxm.. wuu. xmu.xxxx
. . X X

(c)
Figure 1: An n-tuple generated from four proto-
types. (a) A 7-tuple with 4 black (’b’) pixels and
3 white (‘w’) pixels. (b) Prototypes of the positive
classes “e” and “c”, where ‘x’ represents a black
pixel and ‘.’ white. (c) Prototypes of the negative
classes “nyr and “r”.

ther the prototype “n” or “r” (Fig. IC) in any position
(in the best-fit position, only q = 5 of the 7 elements
of the tuple fit either the “n” or the “r”, An example
best-fit position is when the topmost ‘b’ of the tuple is
shifted to (3,2) of the “n”.). It is clear that a one- or
two-pixel variation in any of the four characters would
not prevent a fit on “c” and “e”, or cause a false fit
for “n” and “r”: the tuple is “noise-resistant.’’

We say that this n-tuple was designed for positive
prototypes “c” and “e” and negative prototypes “n”
and “r”, with design parameters n = 7 , p = 4,
y = 5 . In general, having a high value of n decreases
the probability of a (perfect) fit of characters of the
classes represented by the positive prototypes, but in-
creases the probability of a misfit of characters of the
classes represented by the negative prototypes.

High values of p generally result in a high probabil-
ity of fitting any member of the positive classes. Low
values of y yield a low probability of fitting charac-
ters from the negative classes. Good n-tuples therefore
have high p and low q .

The tree-design procedure requires that n-tuples
that appear on any path be class-conditionally inde-
pendent. Computations of pairwise correlations indi-

cate that our tuple generation procedure does indeed
satisfy the independence criterion.

The input to the n-tuple generator program consists
of the design parameters (n , p, y) and of the bitmaps
of the positive and negative prototypes. The program
either produces an n-tuple that satisfies the specifica-
tions or returns after exhausting its time allocation.
(In that case, it is called again with a different set of
prototypes.) During the design of a single classifica-
tion tree, the n-tuple generator may be called several
thousand times.

3 Decision tree design

In principle, the design of a probabilistic tree re-
quires only the iteration of two steps [5]:

1. Choose the next leaf node to be expanded.

2. Select the best feature for the chosen node.

The first step is accomplished by choosing the node
with the maximum entropy, calculated from the class
probabilities at each of the current leaves.

In the second step, the positive and negative classes
are determined by clustering the design samples cor-
responding to the prevalent node class probabilities.
One or more prototypes are then chosen from each
positive character class and each negative class to
serve as input to the n-tuple generator. The class-
conditional feature probabilities corresponding to the
returned n-tuple are estimated, and the class proba-
bilities of the two child nodes are computed.

A well-known phenomenon with decision trees is
that their classification accuracy declines when the
trees are extended beyond a certain point that de-
pends on the number of design samples. This prob-
lem arises because as the tree grows we must estimate
an increasing number of leaf class probabilities using a
constant number of design samples. (The a priori class
probabilities of the classes at the root are essentially
distributed among all the leaves.)

Breiman et al. advocate using only part of the
training samples in tree design and saving the rest
for cross-validation [4], but we adopt a different ap-
proach, called Compound Bayesian Estimation. The
parameters to be estimated are the class-conditional
feature probabilities for each tuple X used in the tree.

The value of the parameter of the Bernoulli process
that models whether a tuple X fits an independently
drawn sample of a given class depends both on the
prototypes on which the tuple was generated and on
the character class.

1116

0 0 e e Table 1 : Average erroir rate on sets of nine trees.

Figure 2: Enlarged character bitmaps sampled
from Helvetica 8-point e’s. The top, middle,
and bottom rows are originals, 2nd-, and 5th-
generation photocopies, respectively.

Instead of using a fixed a priori probability distri-
bution for the Bernoulli parameter, we estimate the a
priori distribution by generating additional (predictor)
n-tuples, which we test on the design samples. The
underlying assumption is a form of ergodicity, which
stipulates that the ensemble distribution of the fit-
probabilities of predictor n-tuples generated by iden-
tical processes on the design sample is the same as that
of the n-tuples on the (unavailable) test samples. The
a priori distribution itself is assumed to be a Beta dis-
tribution, whose two parameters are estimated using
the predictor n-tuples and the design samples. The a
priori a priori (sic) distribution of the parameters of
the Beta distribution are assumed to be uniform over
(-1,9] x (-1,9].

4 Experimental data

We prepared three “stress” Helvetica data sets for
designing and testing our n-tuple-based decision trees.
Each data set is of one of three print qualities. Fig. 2
shows examples of e’s. The top, middle, and bottom
rows contain originals, 2nd-generation, and 5th- gen-
eration copies, respectively.

Each of the 3 data sets contains 10 alphabetic
classes of 1,000 8-point characters each. The total
number of samples is therefore 90,000. All samples
are scanned at 300 dpi, which is generally considered
the limiting sampling rate for 8-point characters. The
10 classes are: a, c, e, n, 0, r, s, U, x, z. We expect the
major confusion classes to be a-s, c-e-o, r-n- U, and

For each print quality, 100 characters per class are
randomly selected and reserved for training purposes.
The remaining 900 characters of each class constitute
the test set. In the experiments to be described, each
tree was designed on only a very small fraction of the
training sets.

x-z .

Hel-2 0.044 0.095

5 Experimental results

Table 1 shows the average accuracy of nine trees
designed with compound Bayesian estimation (called
Compound Bayes Trees), compared with those de-
signed with maximum likelihood estimation. Each
tree was designed on different samples of only three
characters of each class, and tested on the 9000-sample
test set. The size of the training set was set at three
because at each node one sample is required for de-
signing the n-tuple, and at least two are necessary
to estimate the two parameters of the Beta distribu-
tion. The expansion of the nodes was halted when the
tree size reached 1024 leaves. The median error-rate
compound Bayes tree for the original characters made
only 36 substitution errors of the following 7 types:

e + o 22 (22 e’s were mistaken as 0 ’s)
0 - c 5 a - + s 3
o - e 2 0 - + U 2
a - + u 1 c - + r 1

The Maximum Likelihood Trees reached zero esti-
mated error at every node long before this limit was
reached, and therefore could not be expanded further.
This is an intrinsic disadvantage of small-sample max-
imum likelihood estimation. Although the variances
in the error rate are large, the Compound Bayes Tree
maintains an advantage over the Maximum Likelihood
Tree on every pair generated from the same training
set. Both the Bayesian and the Maximum likelihood
trees are well balanced.

The most encouraging; aspect of the results shown
in Table 1 is that they confirm our hypothesis: pre-
dictor features improve the accuracy of the estimation
of the node class probabilities sufficiently to construct
large trees from very small training samples. Indeed,
the error rate decreases nearly monotonically for each
doubling of the tree size. The errors are concentrated
at very few leaf nodes.

As a check on the contribution of the information
from the predictor n-tuples, we also carried out similar
experiments using simple Bayesian estimation based
on the uniform a priori density for the parameter of
the Bernoulli process. The resulting error rate was
much higher than with either of the above procedures.

In total 81 trees (including simple Bayes trees),
56,401 node-n-tuples, and 156,200 predictor n-tuples

1117

were generated. On average the design of each Com-
pound Bayes Tree for original characters took 13.5
hours of CPU time on a SUN SPARC 10 with 32
MB RAM, and about 70% longer on fifth-generation
copies. Testing each tree on 9000 isolated characters
took 90 seconds, but this included considerable over-
head for collecting statistics.

6 Conclusion

Our experiments suggest that Compound Bayesian
Estimation often allows extending the useful size of
probabilistic classification trees beyond that possible
with either maximum likelihood estimation, or with
simple Bayesian estimation.

Even at its current rate of development, the method
yields respectable classification accuracy on a confu-
sion set of noisy characters of small point size. The de-
sign is completely automated and produces both fea-
tures and classifier custom-tailored to a small design
sample. Our current research addresses the many is-
sues, including segmentation, that must be resolved
for practical application of the method.

Acknowledgments

This work has been conducted in the New York
State Center for Advanced Technology (CAT) in Au-
tomation, Robotics and Manufacturing at Rensselaer
Polytechnic Institute. The CAT is partially funded
by a block grant from the New York State Science
and Technology Foundation. The sponsorship of the
Central Research Laboratory, Hitachi, Ltd. is grate-
fully acknowledged. We are indebted to A. Shapira
for the n-tuple generation program, and H. S. Baird,
R. G. Casey, and C. N. Liu for valuable suggestions.

References

[l] H.S. Baird and G. Nagy, “A Self-correcting 100-Font
Classifier,” Proc. SPIE Symp. Document Recognition,
SPIE Vol. 2181, 106-115, Feb. 1994.

[a] W.W. Bledsoe and I. Browning, “Pattern Recognition
and Reading by Machine,” Proc. EJCC, 225-233, 1959.

[3] R. Bakis, N.M. Herbst, G. Nagy, “An Experimental
Study of Machine Recognition of Handprinted Numer-
als,” IEEE Trans. SMC-4, 2, 119-132, July 1968.

[4] L. Breiman, J.H. Friedman, R.A. Olshen, C. J. Stone,
Classification and Regression Trees, Wadsworth &
Brooks, Monterey, CA 1984.

[5] R.G. Casey and G. Nagy, “Decision Tree Design Us-
ing a Probabilistic Model,” IEEE !i!?Qns. IT-30, 93-99,
1984.

[6] R.L.P. Chang and T. Pavlidis, “Fuzzy Decision Tree
Algorithms,” IEEE Trans. SMC-7, 1, 28-35, Jan. 1977.

[7] G. Ciardiello, M. T. Degrandi, M. P. Roccotelli, G.
Scafuro, M.R. Spada, “An Experimental System for
Office Document Handling and Text Recognition,”
Proc. ICPR-9, Rome, 739-743, 1988.

[8] R. M. Goodman and P. Smyth, “Decision Tree Design
from a Communication Theory Standpoint,” IEEE
Trans. IT-34, 979-994, 1988.

[9] L. A. Kamentsky and C. N. Liu, “Computer-
Automated Design of Multifont Print Recognition
Logic,” IBM J. Res. and Dev. 7, 1, 2-13, 1963.

[IO] L. A. Kamentsky and C. N. Liu, “Theoretical and
Experimental Study of a Model for Pattern Recogni-
tion,” Computer and Information Sciences, Spartan,
Washington, DC 194-218, 1964.

[Ill C. N. Liu, “A Programmed Algorithm for Designing
Multifont Character Recognition Logics,” IEEE Trans.

{la] C. N. Liu and G. L. Shelton, “An Experimental Inves-
tigation of a Mixed Font Print Recognition System,”
IEEE Trans. EC-15, 6, 916-925, December 1966.

[13] M. Nadler, ((The State of the Art in Optical Character
Recognition,” in Machine Perception of Patterns and
Pictures, Inst. of Physics, Teddington, Middlesex, 3-
18, Apr. 1972.

[14] G. Nagy and G.L. Shelton, “Self-corrective Character
Recognition System,” IEEE Trans., IT-12, 2, 215-222,
Apr. 1966.

[15] T. Pavlidis and F. Ali, “Computer Recognition of
Handwritten Numerals by Polygonal Approximation,”
IEEE Trans. SMC-5, 610-614, 1975.

[16] J.R. Quinlan, “Induction of Decision Trees”, Machine
Learning 1, 1, 81-106, 1986.

[17] S. Shlien, “Multiple Binary Decision Tree Classifiers,”
Pattern Recognition 23, 7, 757-763, 1990.

[18] S. Shlien, “Nonparametric Classification Using
Matched Binary Decision Trees,” Pattern Recognition
Letters 13, 83-87, 1992.

[19] F.W.M. Stentiford, “Automatic Feature Design for
Optical Character Recognition Using an Evolutionary
Search Procedure,” IEEE Trans. PAMI-7, 3, 349-355,
May 1985.

[20] Q.R. Wang and C.Y. Suen, (‘Analysis and Design of
Decision Tree Based on Entropy Reduction and its Ap-
plication to Large Character Set Recognition,” IEEE
Trans. PAMI-6, 406-417, 1984.

[21] Q.R. Wang and C.Y. Suen, “Large Tree Classifier
with Heuristic Search and Global Training,” IEEE
Trans. PAMI-9, I, 91-102, 1987.

EC-13, 586-593, Oct. 1964.

1118

