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Abstract: The continuous n-tuple classifier was 
recently proposed by the author as a new type of 
n-tuple classifier that is ideally suited to problems 
where the input is continuous or multi-level 
rather than binary. Results on a widely used face 
database show the continuous n-tuple classifier to 
be as accurate as any method reported in the 
literature, while having the advantages of speed 
and simplicity over other methods. The author 
summarises the previous work, provides new 
insight into how the system works and discusses 
its applicability to real-time face recognition. 

1 Introduction 

N-tuple classifiers have established a reputation as 
being the fastest possible classifiers for a wide variety 
of pattern recognition problems. The continuous n- 
tuple classifier offers a simple way of applying n-tuple 
classifiers to problems where the input is continuous or 
multi-level. In such cases, the continuous n-tuple classi- 
fier can offer superior recognition accuracy over the 
standard n-tuple classifier. The continuous n-tuple clas- 
sifier can be used in two ways; compiled and uncom- 
piled, as explained below. If the compiled version is 
used, then training is slower than the standard n-tuple 
classifier, but recognition speed is the same. Con- 
versely, in the uncompiled version, training speed is the 
same as the standard n-tuple classifier but recognition 
is slower. 

I .  1 Face recognition and identity 
verification systems 
Identity verification can be based on three principles: 

what you have (e.g. a door key or credit card) 
what you know (e.g. a pin number or password) 
what you are (e.g. fingerprint, face or some other bio- 

metric) 
Systems based on the first two principles involve low 
(or zero) computational overhead, but can be insecure 
and expensive to administrate. Biometric systems 
involve some kind of signal transducer to capture some 
aspect of the human form or behaviour, which forms 
the input to a pattern recognition/verification system. 
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For the case of face recognition, only recently has the 
combination of low-cost videohmage capture hardware 
and low-cost high-performance computing hardware 
made face recognition a viable alternative. 

Compared to other biometrics, face recognition has 
several distinctive features: 

can be used unobtrusivelyicovertly, in ways that iris 
scans or fingerprints cannot 

can potentially be used in conjunction with E-fit (elec- 
tronic photofit) to search for faces based on a witness 
description 

a face recognition system could as a byproduct of its 
normal function store a video stream for later human 
analysis, if a system was suspected of being invaded 

Many PCs already have a monitor-top camera for use 
in video-conferencing; this can be used in conjunction 
with face recognition software to protect access to the 
PC . 
This potential is already starting to be realised, but 
more work is needed to make systems faster and more 
accurate in real-world circumstances. 

Face recognition can be decomposed into two prob- 
lems; finding a face (or faces) in an image, and recog- 
nising the identity of that face. A related problem is 
that of facial gesture recognition, where the aim is to 
detect whether someone is smiling, laughing or frown- 
ing, etc. 

Finding a face in an image is also known as face reg- 
istration or face localisation. The degree of difficulty of 
this problem depends on several factors, such as the 
control one has over lighting and background condi- 
tions, whether the images are colour or monochrome 
and whether the images are still or on a video stream. 
In the case of a video stream, for example, motion 
detection can be used to help identify a face as it moves 
into the frame, or if the subjects can be made to per- 
form a certain gesture (such as blinking) then this can 
be used as a location cue. If the image is colour, then 
the range of possible skin tones for a given illumination 
condition is a small subset of the set of all possible col- 
ours. If the background can be controlled, then it 
might be possible to extract the head very simply as 
one of the main sources of brightness in the image. 
Hence, depending on the control one has over these 
factors, face localisation can be a hard or an easy prob- 
lem. 

There are two versions of the face recognition prob- 
lem (this is true for most biometrics); the recognition 
and the verification problem. In the case of verifica- 
tion, one only has to test the likelihood that the face is 
that of who it clalms to be, hence this involves testing 
the quality of match of an image against a single 
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model. In the case of face recognition, the problem is 
to find the best match of an unknown image against a 
database of face models, or to decide that it does not 
match any of them well. The practical importance of 
this distinction is the speed required; generally, if there 
are C subjects (i.e. people) in the database, then the 
recognition process will be C times slower than the ver- 
ification process. This may place practical limits on the 
algorithm used. 

1.2 N-tuple classifiers 
Conventional n-tuple systems [I] have the desirable fea- 
tures of superfast single-pass training, superfast recog- 
nition, conceptual simplicity, straightforward 
hardware and software implementations and accuracy 
that is often competitive with other more complex, 
slower methods. Due to their attractive features, n- 
tuple methods have been the subject of much research. 
See Rohwer and Morciniec [2] for a thorough review. 

In conventional n-tuple-based image recognition sys- 
tems, the locations specified by each n-tuple are used to 
identify an address in a lookup table. The contents of 
this address either use a single bit to indicate whether 
or not this address was accessed during training, or 
store a count of how many times that address occurred. 

While the traditional n-tuple classifier deals with 
binary-valued input vectors, methods for using n-tuple 
systems with integer-valued inputs have also been 
developed. Allinson and Kolcz [3] have developed a 
method of mapping scalar attributes into bit strings 
based on a combination of CMAC and Gray coding 
methods. This method has the property that for small 
differences in the arithmetic values of the attributes, the 
Hamming distance between the bit strings is equal to 
the arithmetic difference. For larger values of the arith- 
metic distance, the Hamming distance is guaranteed to 
be above a certain threshold. However, where practical, 
the continuous n-tuple method described in this paper 
should be preferable, since it incorporates the exact 
arithmetic distance between attributes. 

The continuous n-tuple method also shares some sim- 
ilarity at the architectural level with the single-layer 
look-up perceptron of Tattersall and Johnston (41, 
though they differ in the way the class outputs are cal- 
culated and in the training methods used to configure 
the contents of the look-up tables (RAMS). The contin- 
uous n-tuple method was first proposed by the author 
[5],  and since tested more thoroughly [6]. This paper 
summarises the previous work, provides fresh insight 
into how the system works and discusses its applicabil- 
ity to real time face recognition on video streams. 

2 The continuous n-tuple classifier 

The d-dimensional input space is sampled by m n- 
tuples. Each n-tuple defines a fixed set of locations in 
the input space. Let the set of locations defining thejth 
n-tuple be 

n3 = {a,1,a,2,...,a,,I1 5 a3% 5 d }  (1) 
where each aJL is chosen as a random integer in the 
specified range. 

The continuous n-tuple classifier stores the vector 
defined by each n-tuple on each image explicitly. 
Hence, each n-tuple simply defines a sparse subset of 
the original image vector. This is illustrated in Fig. 1, 
which shows a continuous n-tuple sampling of a face 
for the case of n = 3 and m = 3; note that in practice m 
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has to be much larger than this 
ance. 

to get good perform- 

Fig. 1 Illustration of the continuous n-tuple sampling process 
A set of random n-tuples are chosen, where each n-tuple defines a set of n 
locations in image space In the continuous n-tuple method, the grey-level val- 
ues at each point are extracted and stored without any further processing For 
the compiled version of the continuous n-tuple method, some further quantisa- 
tion is necessary, for example, mapping from 256 levels of grey down to 8 

By sampling the image in this way, we can deal 
directly with patterns defined as vectors of real num- 
bers, or as grey scale images, as we have for the face 
recognition experiment described below. 

Hence, for a given pattern vector x = x(1) ... x(d) we 
forin a projection of this 

Denote the kth training vector of n-tuple j for the cth 
class as Y;~, .  

The 'training algorithm' is simply to extract and 
store all these vectors from the set of training images. 

Recognition of an unknown image x is performed as 
follows: For the j-th projected vector, z,(x) = x(Ujl) ... 
x(a,,) we find the closest (under distance metric 0) 
stored vector for each class. We then sum (over all j )  
these distances to find the recognition score Y ,  

Y3 (x) = z(a31). . .z(a3n) (2) 

nz 

( 3 )  
j=1 

for each class e, and assign class membership to the 
class with the minimum total. This algorithm is sum- 
marised in Table 1. 

Table 1: Algorithm for performing pattern classification 
with the continuous n-tuple classifier 

Continuous n-tuple recognition algorithm 
Classifies pattern x in input array into class C E  C 

Step 1: 

Step 2: 

Step 3: 

Initialise recognition vector 
r is a ICI-dimensional vector of real numbers 
For each class c E C 

Sum distances over all projected vectors for xeach 
class 
For j =  1 to m 

Set r, = 0.0 

Set z,(x) = x(a,,) ... x(a,J 
For each class c E C 

Set r, = r, + min,D(yC,,, zi) 
Classification 
Assian x to class c where r.. s r X d #  c 

In the experiments reported below we choose a Man- 
hattan (city-block) distance metric 

n. 

(4) 
2 1  1 
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i.e. the sum of the absolute differences along each 
dimension of the vector. Experiments were also made 
using an unweighted Euclidean distance metric, but 
with significantly poorer results. 

The advantages of the continuous n-tuple method are 
twofold. First, it directly incorporates a useful distance 
metric, and therefore offers better generalisation than 
the basic n-tuple method. This is because previously 
unseen points in the input space of a particular n-tuple 
are assigned values according to the closest recorded 
point from the training data. Evidence of this can be 
found in Table 3 and Fig. 3. Secondly, it allows us to 
deal directly with continuous or multi-level input 
spaces. There is no sacrifice in training speed (training 
speed should theoretically improve slightly, but this 
was not measurable in practice). However, recognition 
time given a direct implementation of the algorithm is 
significantly poorer, and gets worse linearly with 
respect to the number of stored exemplars. One solu- 
tion to this that may be practical is to perform some 
quantisation of the input space (denote the number of 
quantisation levels as 0) and pre-compile the minimum 
distances to each stored class vector for each n-tuple 
from each possible address location. The algorithm for 
performing this simple compilation is given in Table 2. 
In this way, we get exactly the same recognition speed 
as the conventional n-tuple classifier, with something 
close to the recognition accuracy of the continuous n- 
tuple classifier. The only sacrifice now is training time; 
we have to step through all possible addresses (of 
which there are a") in the address space of each n-tuple 
to set up the distance values for those addresses, and 
this must be repeated for each n-tuple and each class. 
For the face recognition problem described below, the 
results indicate that this is not only practical, but actu- 
ally benefits the accuracy as well. Also, see Section 4.3 
for discussion of how either a lazy or an approximate 
version of this compilation algorithm can be performed 
online. 

Table 2: Algorithm for mapping a continuous n-tuple 
classifier into a standard n-tuple classifier 

Algorithm to transform continuous n-tuple 
into standard n-tuple system 
transforms set of vectors y; into look-up table n., 
q(x) is a quantisation function that 
maps each continuous scalar value x, 
into an integer in  the range O...(o- 1) 
t is an n-dimensional vector use as temporary storage 

Algorithm: 
For j :=  1 t o m  
For a := 0 to (# - 1) 
For i : =  0 to ( n -  1) 
flil := (aid) mod U 

For each class c E C 
Set nc]al = mink (o(q(y@, t)) 

The continuous n-tuple method clearly has a close 
relationship with nearest-neighbour classifiers. In fact, 
each n-tuple acts as a kind of distance-weighted near- 
est-neighbour classifier for that subset of the input 
space. However, due to the fact that each n-tuple is a 
tiny projection of the original pattern (and indeed, typ- 
ically only about 10-20% in total of the original pat- 
tern space needs to be sampled for optimum 
performance), the continuous n-tuple method is much 
more efficient. It also tends to perform more accu- 
rately. Note that if we use parameters of n = d (in this 
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case d = 92 x 112 = 10304) and m = I ,  then the contin- 
uous n-tuple method exactly implements a one-nearest- 
neighbour classifier. 

2. I Visualisation 
Fig. 2 illustrates a typical compiled continuous n-tuple 
memory. These plots show the contents of particular 
duple sampling pixel locations (11, 41) and (33, 54). 
Each one has been trained on five samples from sub- 
jects (classes) 0 and 1, respectively, the first two people 
in the ORL (see below) database. The black circles 
indicate the values that occurred for each of the five 
training samples for each class. The blackness of each 
square is proportional to the Manhattan distance 
between that square and the closest circle. While the 
contents of each continuous n-tuple memory are differ- 
ent for each class, there often exists a good deal of 
overlap between classes. Despite this, when the aggre- 
gate is taken over hundreds of different n-tuples, the 
classes do generally become clearly separable. 

Fig. 2 
These plots show the contents of particular tuple sampling pixel locations (11, 
41) and (33, 54) with U = 16, therefore each memory is a 16 x 16 matrix. Each 
memory has been trained on five samples from subjects 0 and 1, the first two 
subjects in the ORL database 

Illustration of a typical compiled continuous n-tuple memory 

3 Results 

The continuous n-tuple classifier was tested on the 
Olivetti Research Laboratory (ORL) database, availa- 
ble from http://www.orl,co.uk/facedatabase.html. The 
database consists of four hundred images; ten each 
from 40 people, each image is 92 x 112 pixels, and 
there is considerable intra-subject variation. The data- 
base has been widely used by other researchers, which 
makes it a useful benchmark. All the systems quoted in 
Table 3 use five images for training and five for test- 
ing, but many of these are only based on one or two 
partitions of the dataset. To make the results presented 
in this paper (i.e. the n-tuple results) statistically signifi- 
cant, each result is based on 100 random partitions of 
the dataset (again, into five images for training and five 
for testing). N-tuple points were drawn from a uniform 
distribution over the entire image, using the default 
pseudorandom number generator built into the java.- 
math library. 

The probabilistic decision-based neural net 
(PDBNN) results are taken from Lin et al. [7]. Self- 
organising map results combined with convolutional 
neural net (SOM + CN) results, together with the 
results of eigenfaces [SI, top-down HMM and pseudo- 
2D HMM are taken from Lawrence et al. [9] and 
Samaria and Harter [ 101. The humble nearest-neigh- 
bour classifier actually performs surprisingly well. This 
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Table 3: Error rates on the test data together with training and classification times 
for the ORL database 

Method 

PDBNN 

SOM + CN 

Top-down HMM 
Pseudo-2d HMM 
Eigenfaces 

n-tuple (4:500:2) 

cont n-tuple (4:500:256) 

cont n-tuple* (2:500:16) 

1-NN (10304:1:256 

Error rate (%I 
4.0 20 min 

3.8 4h 

13.0 nla 
5.0 n/a 

10.0 n/a 
11.6 (2.8 : 5.5 : 21.5) 

3.79 (1.7 : 0.5 : 7.5) 

3.59 (1.4 : 1.0 : 7.0) 

4.1 (1.6 : 1.0 : 9.5) 

Train i ng t i  me 

0.9s 

0.9s 

2 min 

0 

Classification time 

< 0.1s 

< 0.5s 

nla 

240s 

n/a 
0.025s 

0.33s 

0.013s 

I s  

Cont n-tuple” indicates the compiled version of the continuous n-tuple with 16 levels of quan- 
tisation. The n-tuple methods are suffixed with the parameters ( n  : m : s) in parentheses. The 
results show the mean for each experiment together with the standard deviation, and the min- 
imum and the maximum error in parentheses. All results quoted in the Table use five images 
per class for training and the remaining five per class for testing. The various n-tuple results 
and one-nearest-neighbour (1-NN) classifier are each based on 100 experiments, each one 
using a different random partition of the data 

is based on a city-block distance metric; a Euclidean 
distance version performs significantly worse. The fig- 
ures in parentheses indicate that the nearest-neighbour 
classifier was implemented as a continuous n-tuple sys- 
tem with n = 10304 and m = 1. Of particular note is the 
fact that the compiled version (cont-n-tuple”) with the 
quantised input space (o = 16), and cut down n-tuple 
size (n = 2) actually gives the best performance, and is 
also the fastest method for recognition, capable of rec- 
ognising 76 images per second. The two-minute train- 
ing time seems a reasonable price to pay for this, and is 
significantly faster than training the PDBNN or the 
SOM + CN architecture. All n-tuple timing results are 
based on a Java implementation running on a 200 
MHz Pentium PC. 

0 2 4 6 a 10 

Fig.3 Variation of test set error rate with respect to number of Sam lex 
used for training for the continuous n-tuple classifier (cont-n-tuple) antthe 
standard n-tuple classij?er (n-tuple) 
For both systems, values of n = 3 and m = 200 were used. This gives poorer 
results than with n = 4 and m = 500 for example, but allows the experiments 
to be run more quickly and exhibits the same trend. Each point on the graph 
represents the mean of five experiments, with error bars + I  standard deviation 
from the mean. Each experiment used a different random partition of the 
dataset, and a different set of randomly chosen n-tuples 
-0- cont-n-tuple 
~ ~ _ _  n-tuple 

ous n-tuple classifier performs more accurately than the 
1-NN method on this task. The test showed an accept- 
ance of this hypothesis with a probability of 0.992 (i.e. 
confidence of 99.2%). 

3. I 
Zraining samples 
An investigation was made into how the error rate var- 
ied for the continuous and the standard n-tuple classi- 
fier with respect to the number of samples used for 
training. To speed things up, values of n = 3 and m = 
200 were used. Fig. 3 shows the average test-set error 
rate for one training image per class through to nine 
training images per class. Each point on the graph is 
the mean of five experiments, each experiment based 
on a different random partition of the data. 

Variation of error rate with number of 

4 Discussion 

4.7 Memory requirements 
For the ORL dataset, extensive tests have shown that 
recognition accuracy is not highly dependent on the 
value of n, providing that n > 1. As shown above, good 
results are obtained with n = 2, m = 500 and 0 = 16. 
Consequently, the amount of RAM needed pes class 
(i.e. per person) is (162 * 500 = 125 kbytes). 

4.2 Recognition speed 
Table 3 gives the recognition speed per image for the 
compiled continuous n-tuple classifier as being 0.01 3 s 
per face image, given a 40-class problem. This is 
already fast enough to classify 76 images per second, 
but for verification purposes where a face is matched 
against the model of a claimant this can be multiplied 
by a factor of 40, i.e. it could verify approx 3000 
images per second. There are two cases where this 
unprecedented speed might still be inadequate: 
* if it was required to match against thousands of sub- 
jects in real-time 

The significance of the difference between the cont-n- 
tuple (4:500:256) and the 1-NN method was tested as 
follows. For 100 random partitions of the data set, the 
error rate of each method was measured to give 100 
paired samples. A single-tailed t-test was then made to 
test the significance of the hypothesis that the continu- 

0 if the face is at an unknown location, scale and rota- 
tion in the image; a complete recognition system might 
comprise a simple face locator (perhaps based on a 
continuous n-tuple classifier trained on thousands of 
faces) which returns multiple-face registration hypothe- 
ses. 
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There are many algorithms for face localisation. These 
may be based on general facial properties [ l l ,  121, or 
on finding the optimal affine transformation between a 
particular face image and the image to be recognised. It 
is interesting to note that an efficient implementation 
of the latter method is given by Matas et al. [13] which 
shares a random sampling methodology with the con- 
tinuous n-tuple system. The system of Matas et al. uses 
a Sobel distribution of sample points, as opposed to 
the uniform distribution employed here. 

Hence, there may arise situations where it is neces- 
sary either to further increase the speed of the continu- 
ous n-tuple system, or to make the system more robust 
in the face of small registration errors (and hence able 
to cope with imprecise face registration). There are sev- 
eral ways of of achieving this. The first is to make the 
software faster or use a faster PC; the current imple- 
mentation is written in Java and the timing measure- 
ments were made on a 200MHz PC. A C++ version 
might gain a factor of two in speed. PCs are continuing 
to follow Moore’s law in their exponential speed 
increase against time. 

Secondly, when the continuous n-tuple system has 
been compiled, it is just as straightforward to build in 
parallel hardware as a conventional n-tuple classifier. 
The implementation consists of some RAM, one sum- 
mation unit per class (or one to cycle over all classes) 
and some simple logic to pick the winning class or 
decide if there is a conflict. 

The third possibility would be to build a tangent-dis- 
tance metric [14] into the system. This would make the 
system less sensitive to small shifts in image registra- 
tion, and this possibility is currently being investigated. 

Finally, in the case that a video stream of images is 
available, there are many ways in which the dynamic 
information implicit in the video sequence can be 
exploited; see McKenna et al. [I51 for an example. 

4.3 Real-time training 
A real-time training algorithm can be outlined as fol- 
lows. The case of n = 2 is particularly easy to visualise, 
as shown in Fig. 2. The contents of each continuous n- 
tuple memory for each class may be plotted on a two- 
dimensional grid consisting of B x B squares. Prior to 
training, all squares on the grid are set to infinity. 
When a particular pair of input values occur (i.e. the 
grey level values for the points indexed by this n-tuple 
are extracted from a training image), these index a par- 
ticular square on the grid which is set to zero. All other 
squares are given values equal to their distance (e.g. 
Manhattan distance) on the grid from the indexed 
point. The cost of this operation is proportional to B x 
B (or in general d) for the first training pattern. There- 
after, the cost decreases every time that a square not 
previously referenced is indexed, since it is only neces- 
sary to update the values at each square in each direc- 
tion from the indexed point until a square is reached 
that already has a lower distance value than the dis- 
tance to the indexed point. This means that when train- 
ing the system on a video sequence of a new face, the 
first few frames would take a relatively long time to 
train (but still very fast compared to other architec- 
tures, and depending on the setup parameters and host 
system, perhaps still in real time), with the speed 
increasing until a face is so well known that new frames 
only cause minor, inexpensive updates to continuous n- 
tuple memory. 
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A simplified version of this algorithm has already 
been implemented, whereby each n-tuple training vec- 
tor updates only the set of points within a given radius 
r of the training vector. Using r = 10, 0 = 32, n = 2 
and m = 100 it was possible to train on 200 images in 
1.1 s of CPU time. Hence, even for m = 500 it should 
be possible to train at a rate of 36 frames per second, 
which is more frames per second than most PC video 
capture systems can supply. 

4.4 Possible extensions 
Conventional n-tuple classifiers have already been 
given probabilistic interpretations [ 16-1 91, but these 
have been based on the frequency of occurrence of par- 
ticular combinations of n-tuple values. There are some 
interesting possibilities for combining probabilistic 
approaches with the explicit distance metric method 
used in the continuous n-tuple classifier. 

The current implementation uses a distance metric 
that operates directly on intensity information, which is 
sensitive to variations in contrast and brightness. The 
system might therefore perform even better if the 
images were first subjected to some simple global or 
local normalisation operators. However, such pre- 
processing would slow the system down, and any 
improvements have to be traded off against the loss of 
speed. The lighting conditions in the ORL database are 
quite consistent, and this may explain why the system 
performs so well without any pre-processing on this 
database. 

It can be argued that different regions of the image 
provide more recognition information than others. One 
suggestion (by the anonymous referees and others) has 
been to modify the sampling process to reflect this. 
This would be an attractive way to improve perform- 
ance, since it would not imply any extra computational 
cost; indeed, if we sampled the space more efficiently, 
we might even be able to get better accuracy with fewer 
n-tuples, hence further improving the speed. An initial 
experiment was made to explore this idea, where a 
radial elliptical sampling process was used. Each point 
was defined by a randomly generated angle (from a 
uniform distribution in the range 0 - 2 4  and a ran- 
domly generated length in the range 0-1. These points 
in polar co-ordinates were then mapped onto an ellipse 
centred on the image. The motivation behind this was 
that faces are roughly elliptical, and that more informa- 
tion might be in the centre of the image, which is natu- 
rally favoured in the radial sampling process. Ten 
experiments were then run to compare the radial ellipti- 
cal (RE) sampling with the uniform random (UR) sam- 
pling, using n = 2 and m = 100. The RE method had 
an average error rate of 17.6% while the UR method 
had an average error of 5.2%. From this we can con- 
clude that the RE method is significantly worse than 
the UR method. Perhaps some other sampling method 
might prove to be even better than UR, but this 
remains to be seen. 

5 Conclusions 

A new n-tuple classification method has been described, 
called the continuous n-tuple classifier. The system is 
conceptually simple and straightforward to implement 
either in hardware or software. A comprehensive set of 
results on the ORL face database demonstrate that this 
method is extremely competitive with other 
approaches, in terms of accuracy, training time and 
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recognition time. In particular, with n = 2 and yyz = 500 
we can train the system at a rate of 36 frames per sec- 
ond, perform classification (for a 40-class problem) at 
76 frames per second, and achieve an average error rate 
of just 3.59% on the ORL database. 

In its current form, the system is capable of perform- 
ing multi-class face recognition in real-time on video 
streams, providing that the face can be located in the 
image. This is a significant proviso, however, and one 
future avenue of research would be to test continuous 
n-tuple systems for locating faces. 

Finally, there is nothing explicitly related to faces 
built into the continuous n-tuple classifier, although the 
fact that the system works so well when only sampling 
10% of the input space seems to corroborate the notion 
that neighbouring pixels are highly correlated. It would 
therefore be interesting to test the system on other 
image recognition problems. 
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