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Three or more probability distributions may be pairwise compatible but not collectively
compatible, in the sense that they admit no common extensions. However, pairwise
compatibility proves to be a necessary and sufficient condition for collective compatibility when
the underlying system of distribution schemes is “acyclic”. If this is the case, then (and only
then) do the distributions admit a product extension, whose expression can be computed by a
simple algorithm.

1. Introduction

The question of the compatibility of a given set of discrete probability
distributions is fundamental tc Probability Theory and important for many
problems in Statistics and in Informaiion Science. As an immcdiaic cxicnsion of
well-knowa measure-theoretical results, one can prove the existence of common
extensions of discrete distributions if their sample spaces are assumed to be
“almost independent” [6]. Under this hypothesis, the problem has infiniie
solutions. However, if the extensions are required to have a “multiplicative
form”, then the solution is unique. When the hypothesis of independence is
released, an answer for the question of compatibility is not yet known.

pairwise compatible and the system of their schemes is “acyclic”, then they are
coliectively compatibie. indeed, a sironger resuii is proven: acyclic scheme
systems are uniquely determined as the the ones for which any family of pairwise
compaiible distributions is collectively compatible, too. From another peint of
view, acyclic systems can be chaacterized by the existence of product extensions.
An immediate consequence of such a property is the possibility of constructing
extensions, whose functional expressions are generated using a polynomial
algorithm, known as “reduction procedure”.

Sceiion 2 and Section 3 contain the mathematical background. Ir Section 4 the
definiticn of maximum-entropy extension is intrccuced and the compuwational
advantages of acyclic systems of distribution schemes are shown. Secticii 5 deals
with “product forms”, whose notion is formally defined. There we shall prove
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that a product extension is nothing but a maximum-entropy extension defined
over an acyclic system of distribution schemes. Section 6 contains the pioof that
the acyclicity of the system of the distribution schemes is a necssary and
sufficient condition for the existence of a common extension of pairwise
compatible distributions.

2. Distributions and extensions

Let X be a finite set of discrete variables, called attributes, which have
associated finite sets of values. An X-tuple (or a tuple, if X is understood) is
defined by a combination of possible choices of values for each attribute in X. If
Y is a subset of X and x is an X-tuple, then x(Y) denotes its Y-component
obtained by discarding from x the values of the attributes not in Y.

A discrete probability distribution is a tern (X, 2, p(x)), where:

X is a finite set of attributes,
L is a finite set of X-tuples,
p(x) is a normalized function that associates a nonnegative number
with each tuple in Q.
The sets X and €2 will be referred to respectively as the scheme and the space of
the distribution. Henceforth, it is understood that € is the Cartesian product of
the value-sets associated with the attributes in X. The subset R of €2, defined as
R={x:p{x)>0},
will be referred to as the characteristic relation of the distribution.

In the following a discrete probability distribution will be specified by assigning
its distribution function. Given a distribution p(x) over X, we can construct a
“marginal” distribution for every nonempty subset Y of X, simply taking the
restriction of p(x) to Y:

p(y)=2 p(x).
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Given a system of probability distributions p,(x,), ..., ps(xs), we say that they
are

pairwise compatible if the restrictions of p,(x;) and p;(x;) to the set of the
common attributes coincide, for all i and j;

collectively compatible if there exists a common extension, that is, a distribution
over X =; X;, that has p;(x,), . . ., p,(x,) as its marginals.

The following example demonstrates that pairwise compatibility is not sufficient
for collective compatibility.



Existence of extensions and product extensions 63

Example 1. Let A, B and C be binary attributes. The second-order distributions

ABp,  ACp, BC p;
0 05 00 0 00 0.5
01 0 01 05 010
10 0 10 05 10 O
11 05 1110 11 05

turn out to be pairwise compatible, but not collectively compatible. In fact, the
existence of a common extension, p(abc), would give rise toc the following
contradiction:

0.5 = p,(01) = p(001) + p(011)

<[p(001) + p(101)] + [p(011) + p(010)]
=p3(01) +p,(M) =0.

Testing the compatibility of a distribution system is equivalent to testing the
feasibility of a iinear-programming probiem, known as “multi-index transporta-
tion problem” (see Section 6), for which the existence of n=cessary and sufficient
conditions for feasibility is still an cpen problem. However a number of necessary
conditions, in addition to the obvious conditions of pairwise compatibility, are
known [9]. Among these, we want to mention the following set of inequalities,
known as the Schell ccaditions:

p(x)slnin{pl(xl)’ R | ps(xs)};

where x; is the X;-component of x. From the Schell conditions it follows that the
characteristic relation of any extenmsion of p,(x;),...,ps(x;) is a nonempty

(proper or improper) subset of the join, R*, of their characteristic relations,
defined as

R*={xeQ:x,€R,,...,x,€R,},

where R, is the characteristic relation of p,(x;). So, the nonemptiness of R* is a
necessary ccondition for p,(x,),..., ps(x;) to be collectively compatibie. This
explains why the disiributions oi Exampic 1 are incompatibic. Indsed, the
characteristic relations of collectively compatible distributions have to answer the
requirement of so-called “collective consistency” [1], which is a stronger
condition than the join’s nonemptiness. Now we introduce the notion of collective
consistency as well as the nciions of pairwise consistency and independence,
which are fundamental to relational data iheory [1].

Given a system of schemes S = {X, ..., X}, for each X; arbitrarily choose a
relation R;. We say that the relations Ry, . . . , R, are

collectively consistent if there exists ¢ reiation over X =i, X; {(caiicd an
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“extension” of Ry, . . ., R;) such that its projection onto .X; coincides with R;,
for all i;

pairwise consistent if the projections of K; and R; onio their common atiribuies
are the same, for all i and j;

independent if the cardinality of their join is equal to the product of their
cardinalities.

It is easily seen that the pairwise/collective compatibility of given distributions
implies the pairwise/collective consistency of their characieristic relations. It
should be noticed that if the relations Ry, . .., R, are collectively consistent,
then their join R* is the extension with the largest number of tuples. So, in
order to test the collective consistency of given relations, we have to compute
their join and compare each relation with the homologous projection of the
join. If all of them match, then and only then are they collectively consistent.
The following example demonstrates that the pairwise compatibility of given
distributions and the collective consistency of their characteristic relations are
not sufficient to assure their collective compatibility.

Example 2. Let 4, B and C be second-order attributes. The bivariate
distributions

AB p, AC p, BC ps
00 0.1 00 0.3 00 0.4
01 0.4 01 02 01 01
10 G4 10 0.2 10 0.1

11 01 i 0.3 1 04
*

are pairwise compatibl¢ and such that the join of their characteristic relatiosis is
nonempty. Neveriheless, they are incompatible. In fact, the existence of an
extension, p(akc}, wouid give rise to the following contradiction:

0.4 =p,(01) = p(010} + p(011)
<[p(010) + p(110)] + [p(001) + p(011)]
= p3(10) + p,(01) = 0.3.

In Section 6 we shall trace those cases where pairwise compaiibiiity is suificient to
assume collective compatibility.

3. Acyclic scheme systems

Let §={X, ..., X,} be a system of schemes. The attributes are usually put in
two classes; common attributes, being those involved in more than one scheme;
and unique attributes, appearing in exactly one scheme.

A sciieme is extreme if it contains one or more unique afiribuies.

Consider the following algorithm, sometimes called reduction procedure (1, 3].
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Reduction procedure

Apply the following two operaticns to the scheme system S={X,,..., X,}
mppnfpdlv until neither can he fur _hgg app!i_.é;

(a) (DELETION) Delete all the unique attributes of an extreme scheme.

(b) (REDUCTION) Delete a red: dant scheme.

By “reduced system” we mean the result, S’, of the reduction procedure. The
redundant schemes deleted by reduction will be referred to as the reducing factors
of S. The system S is called acyclic if the reduced system §' is an empty set. If this
is the case, the order where the schemes in S are one by one deleted by reduction
is called a perfect reduction crdering (p.r.0.).

Example 3. The scheme system S = {ABC, ABD, ACE, BCF} is acyclic since it
reduces to an empty set. An cifective p.r.o. is: BCF, ACE, ABD, ABC.

Scheme Reduced
system Step 1 Step 2 Step 3 system
ABC ABC ABC ABC -

ABD ABD ABD - -

ACE ACE - - -

BCF - - - -

As the reduction procedure is a poiynomial-time algorithm [1], testing
acycliicity is an easy task (a linear aigoriithm can be found in {8]).

Basic properties of acyclicity:

1. Running intersection property [1]

A scheme system S is acyclic if and only if there is an ordering X, ..., X; of
its schemes such that for each i > 1 there exists j <i such that

(XIU' . 'UX,'_I)nX,'=Xan,‘.

Such a permutation will be referred to as a running intersection ordering (r.i.0.).
The intersections such as X;N X;,which represent the structural links among
the schemes in S, are nothing but the reducing factors of S. Moreover, if
X....., X;isar.i.0., then X, ..., X, is a p.r.o.
Finally, it should be noticed that in the search for an optimal permutation the
choice of the first element #(1) is immaterial, since for each X, there is an ordering

of S with X,;, = X;, that enjoys the running intersection property.
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2. Relational Cnnsrgtengy prope: rty {1]

A scheme sysiem S = {X,, ..., X,} is acyclic if and only if every system of
pairwise consistent relations over S is also collectively consistent.
Additional properties of acyclic systems can be found in [1].

4. Maximum-entropy extensions

Let {pi(x1), ..., Dps(x;)} be a system of distributions over S ={X, ..., X}
and X =, X;. If the distributions are coilectively compatible, consider the set of
all possible extensions p(x).

It is well-known that the two following definitions of the extension p*(x) of
Pi{x1), - - . , Ps(x;) are equivalent [4]:

(a) p*(x) is the extension, uniquely determined as the one with the largest
Shannon “entropy”

H[p(x)]= -2, p(x)log p(x).

(b) p*(x) is the extension, uniquely determined as the one factoring in the
form

pr(x)=ay(xy) - - - a(x;),

where the implicit functions a@’s are determined to satisfy the marginal
constraints:

p*x)=px) (@=1,...,s)

Maximum-entropy extensions can be computed by an iterative procedure, called
Iterative Proportional Fitting Procedure (IPFP) [2, 4].

The following theorem stresses the connection that there exisis between
entropy maximization and relational join.

Theorem 1. The characteristic relation of the ma.ximum-entrapy extension of a

system of {(collectively compatible) distributions is given by the join of iheir

characteristic relations.

Proof. As the maximum-entropy «xtension can be written as

p*(x) =a\(xy) - - - aslx,),

the characteristic relation of p*(x) is given by the join of the characteristic
relations of a;{x;), ..., a,(x;). Now, consider the marginal constraint p,(x;) =
p*(x;). We have

pi(ri) = a(x)bi{y:),
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where
b; (Y,) y al(x' °t -«-—1(~x—-ual+l(""c+l} e &a.;(x ),

the summation being extended over all the values xy, ..., % 1, Xi41, ..., X,
consistent with x;. So, p;(x;) vanishes if a;(x;) vanishes. This implies that the
characteristic relation R; of p;(x;) is a subset of the characteristic relation of a;(x;)
and, therefore, that the join of R,,..., R, is a subset of the characteristic
relation of p*(x).

On the other hand, as stated above, the Shell conditions imply that the
characteristic relation of any extension of p,(x,), . . . , ps(x;) is a subset of the join
of R;, ..., R,. Hence the characteristic relation of p*(x) must coincide with the
joinofRy,...,R. O

The maximum-entropy extension takes a very simple expression in the case ihat
Xi, ..., X, form a partition of X =, X,

Theorem 2. Let X,, ..., X, be pairwise disjoint schemes and X = J; X;. The
maximum-entropy extension p*(x) of an arbitrary system of distributions
pi(x1), - . ., ps(x;) over S ={X,, ..., X;} can be written simply

P*(x)=pi(xy) - - - ps(x;). ¢))

Proof. Let p(x) be an arbitrary extension of p,(x;), . .., pi(x;). In information
theory the so-called “mutual information” [7], defined as

> Hlp,(x)] - H[p(x)},
is known to be a nonnegative quantity. Therefore, we have

Hip(x)]= 2 Hipix)]=Hip*x)} O

Extensions of form (1) are cailed multiplicative [6]. The following two theorems
characterize multiplicstive extensions and ¢oi regparxd to weli-known resuits in the

wnod T o o
measure theory {see Theorem 1 and Theorem 2 in {6f).

Theorem 3. A system {pi(x,), - . . , Ps(xs)} of distributions admits a multiplicative
extension if and only if their characteristic relations are independent.

Proof, (if) The functional expression

px)=py(xy) - - -ps(xs)

is normalized to the unity and, therefore, defines a distribution. Moreover, it
satisfies the marginal constraints.
{only if} Let p(x) be a muliiplicaiive extension. As p(x)>0 if and only if
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pi(x;) >0 for all i, the characieristic relation of p(x) has the same cardinality as
the Cartesian product of the characteristic relations of p,(x,), ..., ps(x;). O

Thesrem 4. Let S={X,,...,X;} be a system of distribution schemes and
X =\J; X;. Each system of distributions over S admiis a multiplicative extension if
and only if the schemes in S are pairwise disjoint.

Proof. It is a consequence of Theorem 3 by the light of the fact that, the pairwise
disjointness of the schemes in § is a necessary and sufficient condition for the
independence of each system of relations over S. [

We have seen a case where the computation of the maximum-entropy
extension is easy, it Deing enough to take the product of the component
distributions.

We are now interested in tracing the general case where the functional
expression of the maximum-entropy extension can be determined a priori, that is,
without explicitly knowing the compcient distributions. Such a property is
desirable for we avoid resorting to the IPFP when computing maximum-entropy
extensions. We shall prove (see Theorem 7) that this is the case when the system
of distribution schemes given is acyclic.

Theorem 5. Given a scheme system S = {X,, . .., X,}, let Z; be the set of unique
attributes of X; and Y; = X; — Z; be the set of its common attributes. Let X =, X;
and Y=U); Y. If {p1(x1),...,Dpsx.)} is any system of collectively compatible
distributions over S, the maximum-entropy extension p*(x) can be written as

p*e)=| T o)l |p* ), @

where p*(y) is the maximum-entropy extensior. of p\(yy), - - . , ps(¥s), being p.(v;)
the restriction of p(x;) to Y.
Proof. Let us take the implicit form of the maximum-entropy extension
p*(x) = al(xl) e as(xs)'
Enforcing the marginal constraini p;{x;) = p*{%;}, wc obtain
pi(x:) = ai(x.)bi(y,),
where

bi(y:) = 2 ay(xy) - - - A= 1(Xi-1)8i01(Xir1) * - a5(x;),

the summation being extended over all the values x, . .., Xy, Xinq, . . -, x, that
[ 4

turi out to be coliectively consistent with x;. Summing p,(x;) over all Z,-values,
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one has

pi(y:) =b{y:)ei(y:),
where

clyi) = 2 a;(x;).

Combining the expressions of p,(x;) and p,(y,)}, one finds
ai(x;) = [pi(x:)/ p(y:)leA:)-

Hence ’

p°)= | TP Ipi(n) ey,

where c(y) = I ci(y.)-

It rcmains to be proven that c(y) coincides with the maximum-entropy
extension p*(y) of pi(y1), - - . , ps(ys). On account of the fact that by definition
¢() has a factorized form, it suffices to check only that c¢(y) is a common
extension of p,(y,), - . - , ps(¥;), that is, for all i,

py)= 2 c(y),

the summation being extended over all y with Y;-component equal to y;. But, this
follows from the fact that p;{y;) must coincide with the restriction to Y; of

p*(x)= [H 2ix) ]

Note that (1) is a special case of (2).
The following theorem is an extension of Theorem 5.

Theorem 6. Given a cyclic scheme system S = {X,, . .., X,}, let {V,} be the set of
the reducing factors of S, and S'={W,} be the reduced system. If
{pi(x1), - . . , Ps(x:}} is any system of collectiveiy ccmpatible distributions over S,
the maximum-entropy extension p*(x) can be written as follows

r[ pi(xi) *(W)
HPh(Uh) HPk(Wk)

pr(x)= (3)

where p*(w) is the maximum-entropy extension of the distrivution system:
{pi(wi)}.

Proof. Let S, ={Xil:i,=1,..., s} be the system § of distribution schemes given.
Given S, = {X'; i €l,} f'n' m=1, the system S, ,={X™"% el .}

Lo
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is taken by applying to S, the two above operations of deletion and re-
duction. That is, if Yi™ is the subset of XI™! formed by its common attributes,
then S,,,, is obtained by deleting the redundant elements of the set {Y!™]}, so
that I,,,, = ,. If we denote by {YI"]} the set of such redundani elements, one
has

{yimly = {Yi*h u {xi71).
Let S, ={XI"l} be the last nonempty reduction. If the system § is cyclic, then
each attribute of X!"! appears in two or more of its ccmponent schemes. Then,
apply Theorem 5 repeatedly n — 1 times. Taking into account that {p, (y!"))} and

{p...,(xI"*1} have the same maximum-entropy extersion p*(x!™*), we find

n+1

P =TT G/pu O | - PG,

| e ={T1pep )| - o6,

pra = [ﬂ i P, (V0 ”)] -p*@e).

L Za-1

Combining these results, we have

1 p,,.. 7 oin
prx) =[] p,-(x,-)l T = p*a)

m=1,...,n—-2 !-[Pim()'.[-,': ) I Pin—l(yg::-—lll)'
m ) B

As {XU"*11} s a subset of {Y™1}, then each fraction

1 2. el /TL PO,

In+1
reduces to
1/T1 2,04,
jm
Hence
I pix;) ”
, P

MM, (i) I, G5

.....

p*(x)=
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If {V,} is the set of the interaction factors of the scheme system S, we have

{Vi} = m=1U w1 {Y{'_"]},

pensy

and finaily

n FANGH] *® n
prin = 120 e 4
“ " fpuon TP, GED” @

identical to (3) after setting X" =W and {XI"} = {W,}. O

In virtue of this theorem, in ail the cases where the underlying scheme system is
reducible (S #S'), we can reduce the computation cost of the maximum-entropy
extension by applying the IPFP to the distributions p.(w,) rather than to the
original distributions p,(x;). Moreover, in the case that the scheme system is
acyclic, the following theorem shows thai we need not resort to the IPFP since
the maximum-entropy extension has a closed-form expression.

Theorem 7. Given an acyclic scheme system S = {X,, . .., X}, let {V,} be the set
of the reducing factors of S. If {py(xy), . .., ps(x;)} is any system of collectively
compatible distributions over S, the maximum-eniropy exter;iion p*(X) can be
written as follows

p*@) =TI /TLoaton) ©

Proof. The formula (4) holds alsc if S is acyclic. Moreover, §, = {xt"l} is a
partition of X"l and, therefore, by Theorzm 4

p*(w["!) = H p;n(wgrl)_

Then, the formula (4) reduces to (5). O

§. Product extensiens

@ the previous section, we were able to give a closed-form expression to the
masxi xum-entropy extension of any acyclic system of collectively compatible
distributions. In this section, we introduce a class of functional expressions, we
call product fornis, by means of which it is easy to construct extensions of given
distributions. We shail provc that the existence of a product form is a
characteristic preperty of acyrlic systems of distribution schemes. Given a scheme
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system S = {X,, ..., X;}, consider a functional expression such as
10 =112 /TL2aVa),

where f(X), p:(X;) and p, 'V,) are distribution symbols and each V,, is a suitable
(nonempty) subset of a certain X;. We say that f(X) satisfies the “unity sum
property” if the following procedure, which we call simplification procedure,
terminates with success.

Simplification procedure
Apply the following two operations to the functional expression f(X) re-
peatedly until neither can be further applied.
(a) (DELETION) Delete all the unique attributes of an extreme scheme. If X,
reduces to an empty set, then delete the distribution symbol p,(X)).
{b) (SIMPLIFICATION) Delc:e p,(X;) and p,(V,) if X, =V,,.

If the algorithm reduces f(X) to nothing, we say that it terminates with success.
If f(X) is a functional expression that satisfies the unity sum property, then it

does denote a proper distribution over X, when given {2, (x)), ..., p.{x,)}.

Example 4. The functional expression

(ABC)psAD)p«(BE)
P1(AB)
satisfies the unity sum property.

f(ABCDE) =2+

The functional expression

fXx)= Ijlp,-(X,-) / I,]p,.(V,.Z%

is said to satisfy the marginc! constraint f(X;) = p,(X,) if the following procedure,
which we call selective simplification procedure, ierminates with success.

Selective simplification procedure

Apply the following two operations to the functioral expression f(X) re-

peatedly until peither can be further appli=d.

(a) (SELECTIVE DELETION) Delete all the unique attributes of an ex-
treme scheme X; (j #i). If X; reduces to an empty set, then delete the
distributicn symboi p,{X)).

(b) (SIMPLIFICATION) Delete p,(X;) and p,(V,,) if X, =V,

If the algorithm reduccs f(X) to p,(X;), we say that it terminates with success.
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The functional expression

10 =T %) /T put¥a)

is called a product form over the scheme § = {X,, ..., X}, if it satisfies the set
of marginal constraints f(X;) = p,(X;) for all X;. If this is the case, each sysiem of
collectively compatible distributions over S admits an extension that has f(X) as
its functional expression. Such extensions will be referred to as product
extensions.

We note that the functional expression of Example 4 is not a product form
since it does not satisfy the marginai constraint

f(ABC) =p,(ABC).

However, the following functional expression defined over the same scheme
system

— p(ABC)p,(AD)p5(BE)
fABCDE) = (@pa(B)

is a product form.
The following theorem states a fundamental property of product exterisions.

Theorem 8. Product extensions maximize Shannon’s eitropy

Proof. Let f(x) and p(x) be respectiveiy a product exiession and aity oiner
extension of the distribution system {p,(x,),~ .., p,(x,)}. Using the well-known
information-theoretical inequality {7]

—3 p(x)log p(x)< -2, p(x) log f(),

we have
HIp()} < -3 p(3)] S og )~ 5 tog puto) |

As the p;’s und the 2, 's arz also marginals of p, the right side reduces to
2 Hipx)) = 2 Hipa(a))

which is exactly the entropy of f(x). [

Theorzin 9. If the functional expression

F00 =T 2% /TIpsVi)

is a product form, then
(i) the V),’s are unique,
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(ii) the number of V,’s is less or equal to s — 1,
(iii) each V,, is a subset of two or more X’s.

Proof. The statement (i) is an immediate consequence of the umqueness of
maximum-entropy extension. The statement (ii) follows from the successful
termination of the simplification procedure. As to (iii), for the simplification
procedure to terminate with success it is necessary that each Vj, be a subset of
some X;. Now, assume that (iii) is false. Then, there is a V,. that is subset of only
one scheme X,.. It is evident that in such a case the selective simplification
procedure cannot terminate with success, since the distribution symbol p,.(V,.)
cannot be deleted. O

The following theorem states that acyclicity is a necessary and sufficient
condition for the existence of product forms.

Theorem 19. A scheme system admits a product form if and only if it is acyclic.

Proof. (if) Let S={X,,..., X,} an acyclic scheme and {V,} be the set of its
reducing factors. Then, the functional expression associated with S,

10 =T1p%) [Tlpu(Vo.

is a product form, that is, it satisfies each marginal constraint f(X,) = p,(X,). To
see it, it is sufficient to run the selective simplification procedure according to a
p.r.o. whose last element is X;.

(only if) It suffices to prove that if p,(X;) is deleted by simplification, then also
X, can be deleted by reduction. Now, this is an immediate consequence of the

fact that by Theorein 9 the V,’s of a product form are subsets of tvc or more
schemes X;s. O

6. Collective compatibility

A general way to test the compatibility of given distributions is solving an
equivalent problem of linear programming, whose variables are the values of a
hypothetical distribution defined in the Cartesian product of Q,, ..., G;:

2*={(xy,....x)x,€82,,...,x,€62}.

A vecior (x,, . . ., x,) in §2* is said to be consistent if its components, x,, . . . , x;,
interpreted as singleton relations over X, ..., X;, are collectively consistent. If
this is the case and x is their extension to X =, X,, then (x,, . . ., x,) is called
the representative vector of x. The linear-programining problem consists in finding
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the solution, 7 (x,, . . ., x,), of the algebraic system

2 Xy, ..o x)=pix) (@E=1,...,5),
x(xy,...,x)=0,
that minimizes the “infcasibility form”
w=>c(Xy, ..., %), ..., x),
whose c-coefficients are defined as follows

0, if(x,,...,x)is consistent,
1, else.

c(xl,...,xs)={

Note that w measures the probability of the subset of @* formed by all
inconsistent vectors. Now, let z(x,, ..., x,) be the solution computed by the
symplex algorithm. If the minimum value of w is zero, then all inconsistent
vectors have a zero probability. So s defines 2 proper extension of

pl(xl)’ LA ’ps(xs):
p(x)=n(x,,..., x),

where (x,, ..., x,) is the representative vector of x. Bui, if the minimum of w is
positive, then no extensions exist. However, it is not always neccssary to resort to
the symplex algorithm for determining the compatibility of given distributions.

For example, in case of partitions compatibility is always out of the question.

Theorem 11. Let S={X,,...,X,} be a scheme system and X =\J;X;. The
following conditions are equivalent:
(i) S is a partition of X,
(iij there exists a product exiension of each system {p(x,),...,ps(x;)} of
distributions over S,
(iii) there exists a common extension of each system {py(x,),...,p(x,)} of
distributions over S.

Proof. The implication “if (i), then (ii)”” follows from Theorea: 2.

The implication “if (ii), then (iii)” is trivial.

Finaily, in order to prove the implication “if (iii), then (i)”, by way of
coniradiction assume that it is false. Then, there exists a scheme system
S ={X,, ..., X,} that enjoys the property (iii) even if it is not a partition. But, if
S={X,,...,X,)} is not a partition then in 2* there is a vecior (x7, ..., xJ) that
does not correspond to any X-tuple, that is, an inconsistent vector. Define the
foliovwving distributions with schemes X, ..., X|:

_[1, ifx;isequaltox],
px) = {0, else.
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Then, from the property (iii) it follows ihat the characteristic relations of
pi(xy), . . ., ps(x;), that is, the vector (xj,...,xJ), is collectively consistent.
However, we showed that (x7, . . ., xJ) is not consistent. This contradiction is the
proof that the property (iii) holds for partitions only. O

At this point, we are able to answer the original question of compatibility. The
following theorem states that the pairwise compatibility of given distributions is a
necessary and sufficient condition for their collective compatibility if and only if
the system of the distribution scheme is acyclic. Here the key point is that a
product form is made up of the distributions in question and a certain set of their
marginals. Therefore, for a product form to represent an extension it is sufficient
that the distributions in question agree on those marginals, that is, be pairwise
compatible.

Theorem 12. Let S={X,,...,X,} be a scheme system and X =\, X,. The
following conditions are equivalent:
(i) S is acyclic,
(ii) there exists a product extension of each system {p,(x,),...,ps(x,)} of
pairwise compatible distributions over S,
(iii) there exists a common extension of each system {p,(x,),...,p;(x,)} of
pairwise compatible distributions over S.

Proof. The implication ‘““if (i), then (ii)” follows from the observation that
Theorem 7 continues to hold even if the hypothesis of collective compatibility is
replaced by that cf pairwise compatibility, which is enough to make the product
form (5) an extension of the marginals given.

The implication “if (ii), then (iii)” is trivial.

Finally, the implication “if (iii), then (i) is proved by contradiction. Assume
there exists a cyclic scheme system § = {X,, ..., X,} such that any system of
pairwise compatible distributions with schemes X,.....X, admit a common
extension. Now, since the scheme system is cyclic, by virtue of the above-
mentioned Relational Consistency Property there exists a system of relations
R,, ..., R,, that are pairwise consistent but not collectively consistent. On the
other hand, if {p,(x,),...,p,(x,)} is any system of pairwise compatible
distributions having R, . . ., R, as their characteristic relaiions, then there exists
a common extension, which implies R,, ..., R, are collectively consistent. This
contradiction shows that the sufficiency of pairwise compatibility for collective
compatibility does not apply to any cyclic scheme system. [
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