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Abstract— This paper presents a numerical algorithm for the parallel computations ®, in the Kolmogorov
superpositions f(X) = > gl ®, 0 £(X,), X = (x;,...,%,) and X, = (x; +qa,...,x, + qa), thereby providing the
final step in their numertcal lmplementatton The first step consisting of the f-independent computation of the functions
€(x,) = D=1 apY(x, + qa) with a fixed 1 and constants a and o, in a hidden layer in the Hecht-Nielsen feedforward
neural network has been accomplished previously. The step taken in this paper is the implementation of the output
layer of the network that computes an arbitrary known continuous real-valued function f defined on the unit cube £".
Employed for the purpose is an iterative method which is intended as a basis for the possible development of adaptive
methods that build on this approach. Each function ®, is obtained iteratively through a series ., <I>f] which is
determined on an f and q dependent subsequence dZ ,dk ,dk .. of rational coordinates dq = (dk I dk ) such that
&, is determined at the coordinate points § (dq ). Tl he paper also includes alternative constructions of the functlons @,
and a brief discussion of the differentiability of ®, 0 £(x,), together with a previous result it gives a constructive proof
of Kolmogorov’s theorem. © 1997 Elsevier Sczence Ltd. All Rights Reserved.
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1. INTRODUCTION rational numbers dy = S iy, i, =0,1,...,y—1

and k =1,2,3,.... We observe that v depends on »,

Let n>2, m > 2n and v > m+ 2 be given integers;
let x = (xq,...,%,) and X, = (x; +4a,...,x, +qa),
where a = [y(y—1)]"". Th1s paper presents the
numerical implementation of the functions ®, in
Sprecher’s (1996a) version of the Kolmogorov (1957)
superpositions:

= ®,0¢(x,)
q=0

. (1
E(Xq) = Z ap"/)(xp + qa)
p=1

with fixed transfer functions &(
monotonic increasing, oy =1, o, = > 721y~ (p=1)B(r)
for p > 1,and B(r) = (n" — 1)/ (n — 1). Implementing
the function 3 and its affine translates and linear
combinations £(x,) independently of fis the first step,
accomplished previously (Sprecher, 1996a), where a
suitable function 1 is defined pointwise on the set of

X,) in which 9 is

Requests for reprints should be sent to David A. Sprecher,
Department of Mathematics, University of California Santa
Barbara, California 93106, USA; e-mail: sprecher@math.ucsb.edu.
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as do in turn also the function 1 and constants «,, and
from the arguments given previously (Sprecher, 1965)
we can deduce that also the above 1 belongs to class
Lip(In2/In+~). By sacrificing Lipschitz continuity the
dependence on n of ¥ and constants o, can be
eliminated (Sprecher, 1993; Katsuura & Sprecher,
1994; Sprecher, 1996b). This paper deals with the
second step — the implementation of m + 1 parallel
functions @, that compute an arbitrary continuous
real-valued function f:£" — R defined on the unit
cube £” in n-dimensional Euclidean space. In the
context of the feedforward neural network of Hecht-
Nielsen (1987), this paper deals with forming the
output layer of the network. The iterative method
which we employ for this is intended as a basis for the
possible development of adaptive methods that build
on this approach. The functions ®, in eqn (1) are
constructed iteratively as functions &,(y,) of the
single variable y, with a numerical algorlthm which
produces for each q a series of functions &7 7(¥4) such
that [lim, o> i ( Vg) = @4(y,). Each function
®J(y,) is determmed by f at the points y, = &,(df )
of a subsequence {dZ ,df ,dj ...} of coordinate
points df = (dk 1 dZ ns (see Figure 3 below);
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the rational numbers d,f’ » = pt4 Z’:':z 7, p=
1,2,...,n, are connected with the expansion a =
b =D =77+ T

While the target function f is assumed to be
completely known in the constructions of this paper,
it is already shown by Kurkova (1992) that eqn (1)
can be used to approximate an arbitrary function f
(see also below). The use of m + 1 instead of 2n 4 1
summands in eqn (1) follows the observation in the
same paper that increased accuracy (rate of conver-
gence) for the approximation f(x) = > ¢Lo > j-o <I>£ )
£(x,) for a given number r of iterations is possible by
increasing the number of functions ®, from its
minimum number of 2n+ 1 to m+ 1 > 2n+ 1. This
can give a computational advantage when an objec-
tive is accuracy as a measure of speed of computation
since non-linear iterations are replaced with parallel
computations. The implementable numerical algor-
ithm that we develop gives several alternatives for
the approximation of £, leading to eqn (1), and these
are discussed in Section 5. In Section 6 we touch on
the question of differentiability of @, o £(x,).

On the mathematical side, this paper and Sprecher
(1996a) provide a complete constructive proof of
Kolmogorov’s theorem.

2. COMPUTATIONS OF

Referring to Sprecher (1996a), let (i;) = [i;] =0, and
forr>1let

() 0 when i,=0,1,...,vy—-2
i)y =
1 when i,=v-1

i) 0 when i,=0,1,...,v-3
L] =
1 when i,=~v-2,v-1

r—1
m, = (i,) (1 +Z [f] x --- % [i,_l])
s=1
forr=1,2,...,k
n -1
n—1"

Then for k= 1,2,3,...,

B(r) =

k
Bld) = 3 2y e 2)

r=1

where d; = ¥, i,y and i, = i, — (v — 2)(i,). This
uniquely determines a continuous function 1
&€ — £ that is extended beyond the unit interval £
through the definition ¥(x + 1) =v(x) + 1. From
the defining eqn (2) we derive the following
simplified procedure for finding the values (dy):
We note that ¢(d,) =iy™', and when i, <vy—2
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for r>1 then (i,)=0, so that i, =i, m,=0.
Consequently

k
Y(de) =y iy
r=1

when no digits i, = — 1 for r > 1 are present in the
sequence (iy, i, ..., ) defining the rational number
d,. When digits i, = v — 1 for r > 1 are present in such
a sequence, we compute 1(d;) by applying appro-
priate cases of the basic pattern of consecutive clusters
of digits i,

(ul dlgltS i, =79— 2)(“2 dlglts ir =9- 1)
X (u3 digitsi, = v — 2)(uq digitsi, = v — 1)

according to the following rule. Let i, be a digit such
that i, <y-1ifu=1,o0r i, <vy—-3if u>1. Let
k =u+u + uy + u3 + uy, then with the convention
0, =0 we have

U
W) = P(d,) + (y—2) D v
r=1
Uy U3
+ 7—ﬂ(u) Z 9= =r + (’7 _ 2)Zv—ﬁ(u+u1+u2+r)
r=1 r=1

U,
+ ,Y—ﬂ(“) ZA QU Ty —Uy T
r=1

Table 2 of Sprecher (1996a) gives the 10,000 values of
(d,) corresponding to k = 4. The rational numbers
Al =d+q ¥ ,4" can be used to simplify the
computations of the translates 1(d; + ga) as follows:
Let

6 = i H0)

r=k+1

Because v — 2 > m > q we have from Lemma 1 of
Sprecher (1996a)

Y(dy + qa) = Y(df) + g

and if we set

n
bk = € Z Oép
pr=1

then

n

E(dy + qa) = Y _ opi(dyy + ga)

p=1

=Y o, (d],) + gbi = £(d]) + by
p=1
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E(dz)_y—ﬂ(kﬂ) ‘J L E(d )+()’ 2)b +y—f3(k+1)

5(d}) E(@d]) +(v - )b,

FIGURE 1. The function 8(d/; y,).

Clearly limy_, by =0 and given functions ®,, we ways, of which we present here one, using only the
have the following approximate formula for rational constructions that are necessary for the purpose.
numbers: Additional detail and justification are contained in

Section 4, and alternative implementations are given

Z 3, o [¢( dq ) + qbe] ~ Z o, o & dq in Section §.

DEFINITION 1

Let 0: R — £ be an arbitrary continuous function

3. THE IMPLEMENTATION OF &,

with o(x) =0 when x <0, and o(x)=1 when

The functions ®, are implementable in a number of x > 1. For each number {(df), df = (d{ |,...,d{ ),

f:(x)

[ @2o50) || @lotxy | [@resx,) ]

output
layer

(%) i) O7(yn)
fr-lgdk,)

' 6(dy %) 0@disy) | o | 6(F:ya)
s(dk,) Ede) |- | &@D)
w(dgl)--- Y(dy, ) CHTE
W(dz?,,.)' . w(d:’n ) W(din,.n)' .
dl?,l"' d}‘,l... dpy-

Osm df,n"' d’:’n... d;"'n

hidden
layer

input
layer

FIGURE 2. Schematic representation of the implementation aigorithm.
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we set

8(df;y,) = a(v?* D (y, — €@])) + 1)
— o(y?* D (y, — £@) - (v - 2)by)).

Clearly 0<6(d}y,) <1 and 6@df;y,)=1 for
£(d}) <y, <€(df) + (v —2)b (see Figure 1). We
remark that the numbers v°**1D appearing in this
definition are not uniquely determined. They can
be replaced for each k by any number
0 < I < PH+D,

NotEe

For the remainder of this paper, let . E" — R be a given
continuous function with known uniform norm | f||,
and 1 and € numbers such that 0 < (m—n+1)/
(m+1))e+ (2n/(m+ 1)) <n < 1. This implies that
€< 1— (n/(m—n+1) and fixing n and € in this way
is sufficient to guarantee the convergence of the
following algorithm:

The Implementation Algorithm

Starting with fj = f, iterate the following steps for
r=1,2,3,... (consult Figure 2).

I.  Input layer
Given the function f,_;(x), determine an integer
k, such that |f,_i(x)—/fimi (X)) <ell £l
when |x, — x,| < 4% for p=1,...,n. This
determines the rational coordinate points
di =(d,,...,d{,), where

kr
d p=dkrp+q2’y—r
r=2

II. Hidden layer
Forg=20,1,...,m:
II-1 Compile the values ¢(d} )
II-2 Compute the linear combinations E(dk )=
Zp—l apd)(dqr)
II-3 Compute the

0(df 5 y,)-

III. Output layer
I11-1 Compute the one variable functions

one-variable functions

(I)r(yq m+1 Zfr dk ky}’q)»

qg=0,1,...,m.

III-2 Substitute the transfer functions £(x,) to
compute the multi-variable functions
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o} 0 £(x,) = +12ﬁ (di,)0(d] ;€(x,)),

g=0,1,...,m.

I11-3 Compute the function

—i i@joﬁ(x

q=0 j=1

This completes the r” iteration loop and gives the
r* approximation to f. Now replace r by r + 1 and
go to step L. |

To each r there correspond 7"’ rational numbers dj,
from which we compute in the input layer m + 1 lists
each of n x 4% rational numbers dq As seen in Figure
2, we compile from these in the h1dden layer m + 1
lists each of n x v* entries Y(dy ' »), and from these we
compile, in turn, m + 1 tables each with 4" entries
£(d]) and m+1 tables each with v nxk entries
0(dZ ;¥,). We note in passing that the sets {d{ } of
rational numbers are not mutually exclusive for fixed
k, and variable ¢, ¢ = 0, 1,...,m, and neither are the
corresponding lists of compiled values {y(d{)}. In
the output layer we use these tables together with the
tables of v"* % values f,_, (di,) to compute the output
functions ®; and f,(x). The prescribed iteration
loops producing these tables are possible because
the functions fy=/ff1,f2,... and @4(y,) are
continuous, and formulae III-2 and III-3 can be
obtained with direct computations since the func-
tion 3 and as well as all constants are given
numerically. Section 5 includes further comments
concerning the implementation of the functions

7 (vg)-

4. MATHEMATICAL ARGUMENTS AND
PROOFS

The central theorem assuring that the implementation
algorithm produces functions which convergence to
produce eqn (1) is Theorem 1 below. The proof of this
theorem relies on certain properties of the functions
defined earlier, and we begin by establishing these.
The first is noting that the support of each function
6(d/; y,) is the open interval

UA@]) = (€@) -7, g(df)

+ (7 = 2)bg + PR,

ie., 6(df;»,) =0 when y, & U{(d}), as depicted in
Figure 1 (see, however, the remark following Defini-
tion 1). These intervals are pairwise disjoint for fixed g
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and k: If £(d) # £(af) then U(d]) N U} (@) = &
(Lemma 4 in Sprecher, 1996a). From this fact we
derive the following estimate for formula III-1:

Lemma 1
For each value of q and r,

Proof
In view of the observations following Definition 1 and
the above,

|

<I>frl()’q) Jro1

m+1

1
m+1 ;fr—l(dk,)g(d;?,;yq) .
kr

1
= 1 e (de)l

m

and the lemma follows. [

We conclude that a typical graph of ®.(y,) is as
depicted in Figure 3.

The functions f,_; and &; as implemented
above are connected through the following essential
inequality:

THEOREM 1
Forr=1,2,3,... we have the inequalities
m
1A= || frca(®) =Y @G0 &(xg)|| < mllfral.
g=0

Iterating the inequalities in Lemma 1 and Theorem 1
give at once

1
—_'_‘Ify-l(dk,) j

451
COROLLARY 1
Forj=1,2,3,...,
1050l < —— | 1] 3)
BN =41
‘f(X)—Z D@0 t(x,)| <IN 4)
g=0 j=1
From this corollary it follows that
. r . 1 r—l X
q(yq) S Z “q)‘jl(yq)l S T |f| Z Tfl
= m 7=0
1 >,
1Y < oo (5)
=0

Accordingly, each series of functions )/, @é( Vq)
converges absolutely for each value of ¢ to a
continuous function ®,(y,) as r— oo; eqn (1)
follows from the fact that n'|f|| — 0 as r — oc.
Expressed directly in terms of the functions
0(df;&(x,)) (and hence the function o) and the
numbers f(d, ), estimate (4) gives the approximate
equality

m

~ ) Z Zfdk (4 €(x,))

q=0 j=1 4f
(see in this connection Kurkova, 1992).

Proof of theorem 1

A version of the proof of this theorem can be found in
Lorentz (1966). Presented here is a proof that relates
to the specific constructions and notation of this
paper. To simplify the arguments, we include now the
value d; = 1 in the definition of the rational numbers
di. The proof is based on the following additional

D;(3,)

E(d¥)
| J \ ,

&(di)

Yq

1 1
mfr—l(d k)

FIGURE 3. The function & (y,).
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property of the functions 1 and (x,) (see Sprecher,
1996a): Consider for each integer g the family of
closed intervals

Ei(dY) = [————W( 1 i

v-1)
q Y4, -k q
- + 0 +d]
yy-1) -1 k
2 —
- [_%7"‘+dk,7 — qv""+dk].

It is easily verified that for fixed g and & these intervals
are separated by gaps (open intervals) of width
(y—1)"'y7%. From these intervals we obtain for
each & the m+ 1 families of closed (Cartesian
product) cubes

SHAD) = EY(df,) x - x ENdZ,), q=0.1,...,m.
whose images under £(x,) are the closed intervals
T{(df) = (&), £(d) + (v — 2)b]-
A direct calculation shows that
if x € S{(d]) then £(x,) € T{(d)). (7

Let k be fixed. To gain insight into the mechanics of
superpositions and the proof, let us examine the effect
of the mapping £(x,) for a given value of g on a single
cube S7(d]). As a first approximation, the surface
y, = &(x,) for x € S{(d/) can be taken to be a tilted
plane as in Figure 4, with its lower left hand corner at
the point (d7,£(df)). Intuitively, the mapping £(x,)
acts like a cookie-cutter, removing S¢(d/) from the
coordinate space and giving it a unique image T}{(d;)
on the y,-axis. The images of any two cubes have
empty intersections for fixed ¢ (and k) as d/ varies
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over its domain, and this property enables the local
approximation of the target function f(x) on the
surfaces y, = £(x,) for x € S{(d]). Loosely speaking,
we can view £(x,) as replacing the coordinate system
with 'y"Xk local coordinate systems (surfaces) corre-
sponding to the 4"** cubes S{(d/). Continuity
requires these surfaces to be separated by gaps,
however narrow, in which f(x) cannot be approxi-
mated, and it is there that each stage of the
implementation iteration introduces ¢-dependent
errors that cannot be made arbitrarily small with
£(x,4). Kolmogorov’s ingenuity comes to bear on the
problem most profoundly here by introducing
parallel schemes through the affine translations of
the families of cubes S{(d) such that each family
intersects the gaps of the other families in a prescribed
manner.

Returning to eqn (6), we note that the gaps
separating the intervals do not intersect for fixed &
and variable ¢. Therefore, any point x € £ can be
contained in at most one gap and consequently can be
excluded from at most one of the m + 1 intervals
Ej(d]), and so must be contained in at least m of
them. Thus, if x € £" is an arbitrary point, then we
deduce that there are at least m — n+ 1 values of g
for which x € S{(d/). We see at once from eqn (6)
that dy € El(d}) for each ¢, and consequently
d; € N0 SE(dy). It therefore follows that there are
at least m — n + 1 cubes containing both x and some
grid-points d;.

Now let &, be a given integer for which Step I of the
Implementation Algorithm holds; let x € £" be an
arbitrary point. Let g;, j = 1,...,m — n + 1, be values
for which x € S(d}). For the point d,, € S;”(d) we
have

| fro1(%) = fro1(die )| < el ol (®)

and in view of eqn (7), &(x,) € T,Zf (d,ff) when

yq fr-l(x) o
E@L)+(y -2)b,
( Z,)+\r
E@f)
T (df)
9% st.(dt)

1
;0 E(x,) = froi(dh,)

FIGURE 4. The mapping £(x,).
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X € S,Zf (d,‘g), so that III-2 gives
& o&(x,) = fr 1(dy, )9(dk 1€(xg,))

= ﬁfr—l (dg,)-

Together with eqn (8) this shows that

<

el il

o A0 -

(j=1,...

QZjog(qu)
,m—n+1).

For the remaining values of ¢ we have the estimate in
Lemma 1. Thus,

LA = | fraa Zcb 0 £(,)
m-n+1
<"y [mHﬂ 1) - 8 06(x,)|

+?fr—l +T I|fr—1ll
—n + 1
< —e——
< el frall 2 Ao
< nllf;»ln
and the theorem follows. [ |

5. NOTES ON THE FUNCTIONS &,(y,)

i) From the perspective of computing, superposi-
tions can be interpreted as a device which enables the
computation of f(x) through m + 1 iterative parallel
computations of which not less than m—n+1
approximate f at any point x € £" using neighbour-
ing points d; =~ x, not necessarily all distinct, and at
most n of these introduce an error as specified in eqn
(6). The implementation of the functions ®,(y,) as
well as the proofs of convergence are predicated on
the knowledge of f on an everywhere dense set in £” as
well as its uniform norm. For computational efficiency
we standardized the sets of points at which the
functions in the hidden layer are determined and
evaluated, and the evaluation of fin the output layer is
limited to the coordinate points dj . Prescribing the
evaluation of f in this manner may not always be
appropriate, however, since actual data arising in
applications may not include the values f(dy ), or
these may not be efficiently computable. In such
cases the implementation of the output layer can be
modified to use arbitrary values fi (xk) as long as
xk € Sk (dk ). An examination of the proof of
Theorem 1 shows that this produces the same end
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result. More generally we can, for example, replace
the functions ®}(y,) with functions

-, 1
Fr) =g o+ 2 [A-106E) = 6@ 5 3,)]
a
where ¢, = i[maxf,_; + minf,_;]. These functions

have a smaller oscillation than the corresponding
functions ®, and clearly || ®} | = ||®}||. The functions
6(d; s i Va) are convenient because thelr supports are
localized, and this may be of particular interest with
dynamic target functions whose values, rather than
being prescribed in advance, may change locally. The
disadvantage of the functions 9(d,‘c”; yg) lies in the
fact that they may introduce large oscillations into
each individual computation ®; even when we take
advantage of functions of the type ®;. Any such
oscillations, however, decrease with increasing r, and
they are anyway diminished in the sum of the
functions ®; over g.

ii) We note that the function 1 is strictly mono-
tonic increasing, and that the functions £(x,) map the
n-dimensional cubes S{ (d/ ) onto the non-degenerate
intervals T} (dk) Wthh are used to construct local
approx1matlons to f(x). An alternative implementa-
tion algorithm can be developed by approximating
each £(x,) with a sequence {§,fr(xq)} of continuous
functions with the property that for each coordinate
point d/ the image of the cube S}/ (d/ ) is the number
&(df) mstead of the interval T} g (@7). In this case,
rather than composing @ 7(Yg) w1tﬁ the functions
0(dk ;Vq)s W€ can use for each ¢ interpolating
functions G, obtained by passing arbitrary inter-
polating curves through the points (§(dk,)
(1/(m+1))f,_1(d,)) or through the points ({(dy),
(1/(m+1))f,_1(x{)) for x| € S{ (d), subject only
to the condition ||Gq|| < (1/(m+ 1)|[f,_1]| (see III-2
and Lemma 1). This requires, however, that we know
for each g the linear order of the points £(d]f) on the
yg-axis fork = 1,2,3,.... An alternative construction
of functions @, that also requires knowledge of this
order can be found in Katsuura and Sprecher (1994).
This linear order can be determined from the specific
numerical construction of £(df). We observe in
passing that for each value of ¢, the piecewise linear
curves f : £(d]) — df joining the coordinate points
d! in the order induced by the function £(x,)
converge to a Peano (space-filling) curve as k — oo.
To proceed in this way, we approximate the
function ¢ with a sequence {u;} of continuous
monotonic non-decreasing functions with the property
that the image of the interval E,(dy) is the number
(dy). Toward this end we introduce continuous
functions w(d;;x):R — £ defined as follows (see
Figure 5):
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w(d;;x)

/1)_,‘\4

FIGURE 5. The function w(d,; x).

DEFINITION 2
For each rational number d;, and £k = 1,2,3,...,

w(dy; x) = o(Y¥ (v = ) (x — di) + 1)
—o(*(y = D)(x—dp) — 7 +2).

We observe that 3, w(dy; x) = 1 and w(dy; dy) = 1s0
that the functions

Yi(x) =Y Plde)w(dh; x)
dy

are such that ;(d;) =1¢(d;). They have the
property that v (x) = ¢¥y(d,) when x € Ey(dy) for
each rational number d,. The next step is to apply
the functions 1 (x) to the translations of ¢ and their
linear combinations £(x,). Since v >2n+2 > g+ 2,
it follows that w(d/;d{) =1 and also that

Zw(d,‘j;x-}—qa) =1.
4

for fixed ¢ and k. Defining

P(x +ga) = > P(di + qa)w(df; x + qa)
dq

we have
LEMMA 2

klim Vi (x + qa) = Y(x + qa).
Proof

Let k be given. By construction, if d; and d; are
consecutive rational numbers, then |¢(dy +qa) —
W(d} + qa)| < 27%147! (Sprecher, 1996a). Now, if x
is given, then for each k there are consecutive rational
numbers d;, < dj such that d; < x < d; and using the
fact that vf(dy + ga) = ¥(dy + gqa) for all rational

numbers dj, we find that

i (x 4 qa) — ¥(x + qa)|
< [ (x + qa) — Y{(dk + qa)|
+ [¥(x + qa) — Y(di + qa)|

S 2. 2_k+1’)’_1
and the lemma follows. [ ]

Now let

Yi(x, + qa) = Z Y(dy,, + qa)w(d,‘jp; x, + qa).
a7
and define the functions
n
£Z(xq) = Z ap"/)k(xp + qa)
p=1

We have

COROLLARY 2
For each value of g we have

klimOOEZ(Xq) = §(Xq).

We can now replace the functions ®(y,) in I1I-2 with
interpolating functions G;(y,) such that

. 1
Ggo&(df) = m—ﬁ.ﬁ—l(dk,)
and

1
e _ -
Gl < 7 el

and we modify the implementation algorithm accord-
ingly. Alternatively, we could replace the functions



Kolmogorov’s Superpositions 11

6(d/;y,) in the implementation algorithm with the
functions

é(d,?;yq) = 0(75(k+1)(yq —&df) +1)

¥q — &(4))

whose supports are the open intervals (£7(d])—
A AkED) ,5 Jd]) + P&+ (see, however, the remark
following Definition 1). It is easy to see that
Theorem 1 and Corollary 1 remain valid with
these new constructions.

iii) Consider a function f(x) given as an aggregate
of values

_ a('yﬂ(k“)(

(x; /(x))

and the functions ®y(yq), ®1(¥1),---,
representing it also as aggregates of values

(y0§ q)O(yO))7 (yl;(pl(yl))a EEEE) (ym; q)m(ym))

These functions, related to f through eqn (1), give an
alternative system for the listing of the values y = f(x)
in the following sense. A point a in the range of f
determines the level-set F, = {x: f(x) =a} in the
domain of f; that is, the different solutions x of the
equation f(x) = a have the same image in the range of
£, so that the inverse image of a does not distinguish
between the points of its level-set. The transfer
functions £(x,), however, do distinguish between the
sets F,N S/ (d), so that different solutions of the
equation f( ) = ¢ may have different images in the
ranges of @} o £(x,) for each ¢ and k,. At the same
time, however, the values of f corresponding to the
solution set =, = {x,:£(x,) = b} give the same image
in the range of ®; o £(x,).

iv) A given target function f(x) arising in appli-
cations may not be specified on an everywhere dense
set, but interpolating functions can still yield useful
results, even with incomplete data that may also
not be distributed uniformly. Interpolating functions
G,(y,) of a single variable, however, do not
necessarily provide useful interpolated values f( )
because neighbouring points £ (dq) on the yq-ax1s do
not always correspond to nelghbourlng points d in
gn

The following specific question is posed by Hecht-
Nielsen (1987):

@, (¥m)

Suppose that a function f:£” — R is specified
through data that is mostly concentrated in an
n-dimensional region D" C E" and sparsely
distributed in E" — D". We wish to interpolate
values f(x) subject to certain prescribed
conditions imposed on f: Let N designate the
total number of given data points in the region
D". Can interpolating functions G,;V (vq) be
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constructed such that G;V (yg) — ®,(y,) as

N — oo and for which:

a) Equation (1) with the given transfer func-
tions holds at the points at which f'is defined.

b) The functions Gu(x) =3 ¢l G;V o £(x,)
interpolate values of fsubject to its prescribed
properties.

The measure of the reliability of such interpolations
can be a comparative one that relates to alternative
(multi-variable) interpolation methods.

6. NOTES ON SUPERPOSITIONS WITH
DIFFERENTIABLE &, 0 £(x,)

The function 3 is monotonic, and the Lebesgue
theorem tells us that it is differentiable almost
everywhere (except for a set of measure zero). Like
the corresponding functions in other versions of
Kolmogorov’s superpositions, 1 is singular:
¥'(x) = 0 almost everywhere, and 9'(x) = +co or
no derivative exists elsewhere (see below). In this
section we make a first attempt to determine classes of
functions f that are obtainable with differentiable
functions ®,(y,) and differentiable composite func-
tions @, o £(x,). The character of ¢ tells us that these
are distinct problems, since it is clear that for the
composite function @, o £(x,) to have partial deriva-
tives there must exist a certain symmetry (comple-
mentary relationship) between the differentiability
properties of ®,(y,) and that of £(x,), as determined
by . The complete differentiability profile of ¢ is
obtained as follows (Sprecher, 1966): The number

Di(x) :h[i_% ﬂ(_)_c_-'_h})l__Qp@

is the derived number of v at x when the limit exists; we
also use the notation Dy(x—) and Dy(x+) when the
left or the right limits exist, respectively.

We now set
y—=2 _ =
6k—T1'7 k=(’7-2) Z v
v rek+1

[see the intervals in eqn (6) above] and have

LemmA 3
For each rational number dy,
Dij(di—) = +o0
Dijp(dp+) =
Dy((dy + 6)—) =
Dy((dy + 6)+) = +oo0.

Consider the open intervals Ei(dy) = (dy, dy + &)
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and the gaps Gi(dy) = (di + 6, d; +~7%) separating
them, and let

U = {d} U{d;+ 6}

V= {x:x € ﬁ Ek,(dk,)}

r=1

W= {x:x € ﬁ G,(d,)}.
r=k

Then V has Lebesgue measure 1, &/ and W have
measure 0, E=UUVUW and UNYV=VNW=
UNwW = J, and we have

THEOREM 3

Y’ (x) =0 when x € V;
¥’ (x) = 400 when x € W;

no derivative exists when x € U.

Lemma 3 and Theorem 3 are easily verified with direct
calculations, or they can be derived with minor
modifications from Sprecher (1966). The observation
made at the beginning of this section suggest that
smooth functions ®,(y,) are not expected to be very
useful and this is confirmed in the following.

THEOREM 4
If the function ®,(y,) is differentiable with bounded
derivatives throughout its domain, then ®, 0 &(x,) has
vanishing first order partial derivatives almost every-
where.

The proof is a direct consequence of the chain rule
which applies to each composite function ®, o £(x,)
almost everywhere: setting £, = £(x,) we have

08, 0%, d v,
a—xp—-ég'a;w(xp‘i‘qa)—'éé_—q 0=0

almost everywhere, and hence also 49f/9x, =0
almost everywhere. Consequently, no continuously
differentiable function other than f'= const. is repre-
sentable with differentiable functions ®,(y,) having
bounded derivatives.

To determine classes of functions ®,(y,) for
which @, o £(x,) is differentiable we have to introduce
the following concepts (for further discussion see
Bruckner, 1994, chapter 5).

DEFINITIONS
Let I be a closed interval, and ®:/ — R a continuous
function. Then:

3-1 @ is of bounded variationif sup 3 | f(b;) — fla;)| <
oo where the supremum is taken over all
sequences of non overlapping intervals in 1.

D. A. Sprecher

3-2 ® is of generalized bounded variation if I is the
finite or countable union of sets on each of which
® has bounded variation.

3-3 The point x is a point of varying monotonicity of ®
if x has no neighbourhood in which @ is either
constant or monotonic.

The reader is reminded that every function of
bounded variation can be written as the difference of
two monotonic increasing continuous functions.

THEOREMS

5-1 If ®, 0 &(x,) has first order partial derivatives then
@, is of generalized bounded variation.

5-2 If ®,0&(x,) has bounded first order partial
derivatives then ®, is of bounded variation.

5-3 If ®,0&(x,) has continuous first order partial
derivatives then ®, is of bounded variation and in
addition m{®(K)| = 0, where K is the set of points
of varying monotonicity of ®,.

These theorems give necessary conditions for the
stated differentiability of the composite functions
®, 0 £(x,) and they specify the classes from which the
functions ®, must be drawn, but for the reasons noted
above these conditions are not sufficient. Further
discussion of these statements entails considerations
and arguments quite alien to the setting of this paper,
and they offer no insight into our understanding of
superpositions. They are therefore omitted. Proofs
can be found in Bruckner (1994), Chapter 5, Section 4.
The converse question, that of characterizing classes
of functions &, for which f has given differentiation
properties, remains completely open. It is clear that
the results of this section could have been stated in the
more general setting of arbitrary monotonic singular
functions 1,,(x,) instead of translates ¥(x, + qa).
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MATHEMATICAL SYMBOLS

X vector (xp,...,X,)

X, vector (x; +qa,...,x, + qa) where a =
oy -]~

® o€ composite function ®(¢)

R real time

& unit interval [0, 1]

e n-dimensional unit cube

dy rational numbers S>¥_ iy, i, = 0,1,...,

v—1

[i:]
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rational numbers dj + ¢ 3%,y
vector (di1,...,dk )
vector (df |,...,d],)

(i1>:0and
() {0 when i, =0,1,...,v—2
L =
’ 1 when i,=v-—1
forr > 1
[i1] = 0 and
i) {0 when i, =0,1,...,v—3
L] = .
1 when ii=v—-2,v—1
forr>1

m, = <lr> (1 +r2:: [ls] XX [ir—l])

By ==,

n—1

Continuous function ¢: R — £ such that
o(x) =0 for x <0 and o(x) =1 for
x> 1.

the uniform norm




