
IEEE TRANSACTIONS ON COMPUTERS, MAY 1976

for each class, but in doing so it is necessary to use a procedure such
as that of Fukunaga and Koontz [4] to ensure that for class CZ, the
resulting feature vector has the maximum ability to separate class
Ci from the mixture of the remaining classes.

EXPERIMENTAL RESULTS

In order to test the heuristics presented in this correspondence
for attacking the problems of variable and dynamic dimensionality,
a small experiment was performed using the A's, L's, and T's of
Munson's data base. The data base contains one sample of each
character written by 147 different writers. Each sample is a 24 X 24
binary matrix, and 5 features were measured by summing the follow-
ing regions shown in Fig. 1:

xi = b + e + h

X2= c + f +i

X3= a + b + c

X4 = d + e +f

x5 = g+h +i.

The mean vectors are

=A= (60,42,41,49,46)

= (38,11,19,20,47)

,UT= (55,19,67,20,21),

and it can easily be seen that a feature like x5 is good in discriminat-
ing between L and T but not in separating A from L. The following
experiments were performed assuming normal class densities.

1) Bayes with equal a priori probabilities and five features.
2) ei' and five features.
3) ei' and five features. However, for all three classes feature 2

was deleted by our heuristic of setting X2 equal to its mean.
4) e,2 and three features: A -X2,X3,x4; L -X1,X2,X3; T - X2,

X3,X5.
5) e,2 and x2. Five features for A and three features for L and T:

L -X1,X2,X3; T -X2,X3,X5.
6) e,2 and x2. Five features for A, L and three features for T:

T -x2,x3,x5.
7) e,2 and x2. Five features, except for T, xi and X4 were set equal

to their means. (See Table I.)
Although the confusion matrices differed slightly, the error rate

for the Bayes' classifier 1) was identical to that based on e,2. The
remaining results reflect primarily the decrease in the number of
features used. From the confusion matrices it is evident that most
errors occurred by confusing A and L. Consequently we performed
several experiments using more feature measurements on hypothe-
sized A's and L's. In particular, notice that in 6) and 7) there is no
'difference between using the exact or approximated covariance
matrix for T.

CONCLUSIONS

Basing decisions in conventional as well as contextual recognition
systems upon the statistics, (x - Ai)t'-' (x -,i), 1 < i < k, is
a computationally attractive alternative to using optimal techniques,
particularly since one rarely knows enough about a problem to
achieve optimality anyway. When computing only these quadratic
$orms, one also has the options of easily reducing dinmensionality in
ny of the quadratic forms or of varying dimensionality dynamically
b ,using pi instead of the quadratic form. One achieves a degree of
de6sign independence in the recognition system, since instead of
solving a single k-class problem k 2-class problems are really being

In our experiments we have not observed any decrease in per-

9 6 9

a b c

d _ f

8 h i

9

6

9

Fig. 1. Partitioning of data matrix.

TABLE I
EXPERIMENTAL RESULTS

Experiment Error Rate (%) Features

A 1.4 5
B 1.4 5
C 2.9 4
D 5.2 3
E 3.6 5-A; 3-L,T
F 2.0 5-A,L; 3-T
G 2.0 5-A,L; 3-T

formance using our heuristics that cannot be explained by consider-
ing the number of feature measurements made.
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Matrix Transformations for N-Tuple Analysis of Binary
Patterns

H. C. RATZ

Abstract-The frequency of occurrence of logic functions of
binary N-tuples can be observed from sequences of binary pat-
terns. The logic functions considered here are AND, NOR, NAND,
OR, and an odd-even parity check; and the frequency parameters
are expressed as real matrix transformations on the probabili-
ties of the patterns. Some properties, inverses, and interrelation-
ships among the parameter sets are given, along with fast algo-
rithms to facilitate computational processes. The results permit
the outputs of convenient hardware logic operations to be con-
verted into other parameters for smoothing, detection, or infer-
ence purposes, or to estimate the pattern probabilities by inver-
sion. A measure of association among binary patterns is given as
one characteristic feature which can be derived from the ob-
served parameters.
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Index Terms-Binary patterns, conditional expectation, fast
algorithms, matrix transformations, N-tuple analysis, pattern
association measure.

I. INTRODUCTION
The analysis of blocks or patterns of n binary digits forms

the basis for many studies in pattern recognition, uniform
block coding, and the design of both algebraic and switching
functions of binary variables [5], [12], [15], [21]. A sequence of
such blocks may be observed from a source of patterns which
are inputs to switching functions for analysis or recognition
purposes, or as synchronized parallel channels of binary vari-
ables. The matrix transformations presented here are in ordi-
nary real arithmetic and operate on a vector F of the probabil-
ities of all 2n possible binary patterns, rather than on the pat-
terns themselves as in the case of transformations involving
dyadic operations (see, for example, [9]). Hence, an analysis of'
Athe patterns can be made by observing the relative frequencies
of all 2n components of F; or, by directly observing functions
of all the various N-tuples formed from the binary cells in the
patterns. We discuss five such functions as matrix transforma-
tions of the vector F to give new 2n-dimensional column vec-
tors of observed parameters. Four of these parameter vectors
represent logic operations on the binary pattern components
while the fifth is a parity check on the N-tuples.
Each transformation is presented in recursively partitioned

form, as are the inverses and the interrelationships among the
parameter vectors where they exist. All nonsingular matrix
transformations are factored into direct product matrices to
provide fast algorithm computational methods. Computation-
al complexity is important in image encoding [8] and some in-
dication of the complexity of the arithmetic operations in-
volved in these transformations is given.
As an application of these transformations, we introduce a

measure of association among binary patterns which includes
patterns that are not used with equal frequency.

II. NOTATIONAL REPRESENTATION
First we define a notation which permits the description of

sets of binary patterns, including different probabilities of oc-
currence if required. The sequence of 2n integers

k = 1, 2, 3,..* 2n

enumerates the complete set of uniform blocks of n binary
digits each, which can all be represented in an unique way by
writing the number (k - 1) in the equivalent binary number
form. A convenient notation is obtained by letting these or-
dered binary digits be the components of an n-dimensional
vector. We define this vector as

fl(k -1) =(bn. bn- ***, bj,** b1)
where

(k - 1) = E 2j-1 bj < 2n -1.
j=1

Thus, a value of the index k will be associated with that par-
ticular pattern obtained by writing (k - 1) in binary notation
and then as the components of an n-dimensional vector, f,(k -
1).
Next we define a 2n-dimensional column vector

F= [fk] = (fl,f2,---,f2n)T
whose components are indexed by k and are each associated
with the binary pattern given by j3(k - 1). The values of the
components fk are the relative weights, frequencies of use, or
probabilities of the corresponding binary block patterns. This
notation enables transformations using real arithmetic on the

probabilities of binary patterns to represent certain opera-
tions on the binary patterns themselves. The only restriction
on the components of F is that they be normalized as proba-
bilities.
We can treat, as a special case, a type of problem in which

we are concerned only with the m. different unique members
of a set of binary patterns and not with their probabilities, by
taking the fk values for the members of that set as equal to
1/m and fk = 0 for the (2n- m) others. In this way, the vector
-mF defines the set because its components mfk are 1 or 0 ac-
cording to whether the corresponding pattern ,B(k - 1) is a
member.of the set or not.

III. TRANSFORMATIONS
The analysis of patterns of n binary cells may use features

derived by classification schemes based on sets of N-tuples in
the patterns. The total number of such N-tuple combinations
is 2n for N from 0 to n, and these can all be enumerated
uniquely by the index

i = 1, 2, 3, ..., 2n

where a particular N-tuple is defined by the positions of the
l's in f(i - 1). Then features or parameters may be derived
from logic relationships applied to those particular cells of a
pattern selected by an N-tuple. We consider four such logic
relationships; namely, AND or "conjunction," NOR or "disjunc-
tion," NAND, and inclusive -OR.

In the conjunctive classification scheme, we obtain as ob-
served parameters, the frequency of occurrence of the con-
junction of those binary variables selected by the l's in j(i -
1) over the set of patterns described by F. Such a scheme
transforms the probabilities of the patterns given by F into 2n
parameters giving the probabilities of conjunction for all the
possible N-tuples. This latter ordered set of parameters forms
a 2n-dimensional column vector

* = [Alil-
The observation of ' from the source F can be expressed as a
matrix transformation by

= UnF
where U,, is a square matrix of order 2n. It has the following
simple recursive structure:

Un+1
Un Un] with Uo = I

and 0 is an n X n square array of O's.

In the disjunctive classification scheme, we apply a NOR-
gate operation to the cells selected by the l's in 3(i - 1), and
again form a 2n-component column vector of the parameters
which result from taking the observed binary positions in all
possible combinations. This scheme transforms the source
patterns as defined by F and 3(k - 1) into an observed vector
of parameters

Q= [wj.

In matrix form the transformation is

Q = NnF
where Nn is a square matrix of order 2n. It has the following
simple recursive structure

N+= [Nn Nn] where No = +1.

Again, if we apply a NAND logic operation to each selected
N-tuple, a different set of 2n parameters is obtained. These
result from a matrix transformation on F described by a
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square matrix A, of order 2n with the following recursive
structure:

n+l [A An]
LI An,J

where Ao = 0

and 1 is a n X n square array of l's.

Finally, the 2n parameters resulting from employing an in-
clusive-OR logic operation on each N-tuple, are obtained from
a matrix transformation on F by a square matrix V1n of order
2" with recursive structure as follows:

V [+1 Vn Vn1] where Vo =0.

However, the An and Vn matrices are singular and will not be
considered further since the complete pattern probability dis-
tributions cannot be recovered from the observed parameters
in these cases.

IV. RELATIONSHIPS AMONG THE TRANSFORMATIONS
The conjunctive transformation is equivalent to a multi-

variable analysis if we regard the cells [bj] of the patterns as'
binary random variables. Then F is the joint probability dis-
tribution function of the joint event k; namely, that the pat-
tern is given by 3(k - 1). If the complete set of multivariate
moments of all orders among the binary random variables are
observed, then the 2n components of F can be derived. There
are n first-order moments and (n) moments of the rth order,
namely,

E(bjlbj2 . . . bjq ... bj,) =(mr)
where m takes on the values given by

m = E 2jq-1 + 1 and fl(m 1)l2 = r.
q=1

Thus, the parameters resulting from the transformation Un
are the multivariate moments of all orders if the elements of
the patterns are regarded as random binary variables.
The characteristic function of the joint probability distribu-

tion F is its multivariate Fourier transform, which is the ex-
pected value of the kernel

rik = exp / [r/(i - 1)] * [3(k - 1)]1
where the exponent contains an inner vector product. In nor-
malized form, this is [7]

1 2n
E(rik) = Xi = ,f-ZE (_l)3('-lf(k-1)fk

This is an orthonormal transformation with inverse

fk = E(_ y)(i-1).* (k-1)4i

and
2-n < -2= f <.1.

Once again, the 2nparameters 1,4J, can be taken as the compo-
nents of a column vector 4j, and the above transformations
written as

4=RRnF and F=Rn,,
where the transformation matrix Rn is proportional to a
Hadamard matrix [4] of order 2n with the simple recursive
structure

Rnl = Rr = /[Rn Rn1R11 n+l =72 Rn, -Rn where Ro = 1.

The R,, -matrix is related to a matrix of the Walsh functions
by a reordering of the rows [20]. A closer examination of the
R,, transformation shows that the rik are selective parity func-

tions, that is,

rik =( (k 1)

=-1, iff(i-1) * ,(k-1) is odd

=+1, if 0(i -1) ^ ,B(k -1) is even.

Then the 2n parameters folj are the average frequency of pari-
ty checks for all possible selections of the n binary cells in the
pattern.
The elementary properties of the parameters follow directly

from the definitions. For example the ranges are

°O < fk < 1 0:< {i < 1

O<2n.fk l O<,,.<.j.
In the case of purely random patterns, fk = 2-n for all k, and
then

M(r) = 0 and ¢/(r) = w,(nr) = 2-

The first-order parameters are the ones for which the index i
satisfies

l(i- 1)2=1,
that is,

i = 2j-1 + 1, (j = 1, 2, 3,* , n),

and are designated by the subscript s, so that

s = 2, 3, 5, 9, 17, ...

and for these we have

k2 = -As and ws + j/s = 1.

The Rn transformation is orthonormal and self-inverse, but
the Nn and Un transformations representing logic operations
are not orthogonal. However, they are nonsingular and their
inverses have the following simple recursive structure:

Un_1 1 = [U 1]and Nn 1 = IN1-N1

where UV' = No = +1.
Introducing three new square matrices of order 2n, namely,

Tn, Dn, and Sn, we can write the relationships between the
parameter vectors as follows:

Tn *= 4=D,nQ and v' = SnQ

or, alternatively,

TnUn = Rn = DnNn, and Un = SnNn; Nn = SnUn.
All the transformations Tn, Dn, and Sn and their inverses can

. be constructed recursively, and are summarized here without
further derivation. In all cases, we have

SO = To = To' = D = So = 1.

Then

T = T[1 -'] and 7)4 = 1 [2T-1 01

Dn+i= ['D 2D ]andDfl+1ADn1 DT-]1

and

snl = Sn+l = [s -S] and S = [D-1 j-1]

V. IMPLEMENTATION AND FAST ALGORITHMS

The transformations and their inverses are useful in investi-
gating the relationships among the parameter vectors for a
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given input pattern set. It is to be noted that the inverses in-
volve subtractions as well as additions while the direct trans-
formations U,, and N, involve addition only. Moreover, as n
increases, the zeros predominate in these latter transforma-
tion matrices which contain 3n ones. A simple measure of
computational complexity is the number of operations by a
two-input adder/subtractor to effect the transformation; i.e.,
one les's than the number of nonzero elements in a row. Using
this definition, the complexity of the transformations, Un, Nn,
Un-', Nn-1 is (3n - 2n). For the orthonormal Rn transforma-
tion, the corresponding measure is (22n - 2n). Thus, the Un
and Nn transformations have a computational advantage over
the Rn transformation, since they require only a fraction of
the number of operations. This fraction is an order of magni-
tude for n = 9, and decreases exponentially with increasing n.
Nevertheless, in all cases, the amount of computation required
for large n is prodigious using a one step transformation.

Because of the recursive structure of all the matrices, we
can derive so-called "fast" algorithms based upon a theorem
of Good [11] which we will restate here in a convenient nota-
tion. Let Mn be a nonsingular square matrix of order 2n con-
structed recursively according to

aM=[aMn bM,I[l= cMn, dMn IJ'
where Mo = 1.

The matrix M, is called the nth "direct power" of the matrix
M1. Except for A, and Vn, all the transformations we use are
of this general type and fast algorithms result from the ability
to factor such 2n X 2n matrices into the product of n identical
factors. For this purpose we define Gn(Ml) as the 2n X 2n ma-

trix constructed from the four elements of the 2 X 2 matrix Ml
as shown in the following examples:

a baO

Gj(Mj)= [c b1= M1; G2(M1)L
d c(McdO

00 c d

G3(M1)

a b 0

O O a

00 0
0 0 0

c d O

0 0 0 0 0

b OO O O

0 a b OO

0 OO a b
0 0 0 0 0

0 0 c d 0 0 0 °

0 0 0 0 C d O O

,0 0 0 0 0 0 c d

Note that G,, (M1) has, at most, 2n+1 nonzero entries. Now the
theorem of Good [11] states that a matrix constructed rec-
ursively as for M,, may be factored into n factors G,(Ml).
This factoring is the basis of fast algorithms since the 22n
products in Mn are replaced by at most n2n+1 products.
Each of the transformations U1, N1, Uj1, N-71 contains one

zero, so that Gn(U1), for example, requires 2n-1 operations of
the two-input add/subtract type. The factoring requires acas.
cade of n such matrix multiplications for n2n-1 operations in
all. Similarly, the orthonormal transformation factors into a
cascade of n factors, each requiring 2n operations, for a total
of n2n in all. The computational operations required by the
direct transformations for the case when n = 3 are illustrated
diagrammatically in Fig. 1.

All the transformations Tn, Dn, and Sn and their inverses
are direct product matrices. They can be constructed rec-
ursively, and can be implemented by fast algorithms through
factoring into i identical factors for each of the type Gn(Ml)

+1 +

U3= [G3 Uo]3 N3 2[G3 (N1)]
-I +1 3

R3 = [G3 (RI )]

Fig. 1. Fast computational algorithms with n = 3.

and of order 2n. The T1, Dl, and S1 matrices each contain one
zero, so that a 2n- order transformation will require n2n-1 op-
erations of the fast algorithm. Therefore, we can conclude that
the same number of computational operations are required to
obtain the 43 set of parameters using the Rn Hadamard trans-
formation, as are required to obtain either the I-AND or the
Q-NOR set of parameters and then to convert them to the 4)
set.

VI. APPLICATIONS

The application of these transformations in the analysis of
patterns occurs when hardware considerations dictate that the
observed parameters are to be the N-tuples of AND gates or
NOR gates so that the U or N transformations are appropriate,
or parity counters as with the R matrix [12], [13]. If we adopt
the conjunctive classification scheme of the U-transformation,
then we formulate the basis for the conditional probability
computer described by Uttley [19] in which conditional proba-
bilities are calculated from the ratio of two {/-coefficients that
differ by one in order.
The computation of conditional probabilities can form the'

basis for the design of a character identification system [6]
and the frequency of logic conjunctions can be obtained di-
rectly with counters and logic gates. The R-transformation
has the advantage of being orthogonal and leads to a condi-
tional expectation computer using the X coefficients as de-
rived from parity counters on the N-tuples of the observed
data [18].

Another example of the application of the parameters de-
fined by these transformations is in the derivation of features
or measures for pattern recognition purposes. For example, we
may define a measure of the degree of association among pat-
terns of a given set, or a measure of the distance between sets
of patterns; and we may, in general, take different frequencies
of occurrence into account. To do this, we indicate the first-
order parameters with a subscript s, and the two sets of binary
patterns defined by F1 and F2 vectors will have corresponding
first-order parameters 0s1, Cs2, etc. Then the average Ham-
ming distance between the two sets of binary patterns as given
by [16] is

d = n2-2 2nXl2
2 2 CA

= E [Wsl + Ws2 - 2wslws2] = E [/sl + Cs2- 2isi's2]-
s s

Now a measure of the degree of association A among one set
of m patterns can be derived by setting F2 = F1 to obtain

A = E 2nl sl 2 = n - 2d < n -log2(m)
s

545



IEEE TRANSACTIONS ON COMPUTERS, MAY 1976

where 2d is descriptive of the "diameter" of the pattern space
occupied by the set; that is, it is a measure of spread. The "ef-
fective volume v" occupied by the given set of patterns in
terms of points in the total binary space is

m < v = 22d = 2n/2A < 2n points.

If the source consists of all possible patterns but they occ?r
with unequal frequency then A will exceed zero and as the fre-
quency of one pattern increases to predominate over all others
the value of A increases towards n.

VII. CONCLUSIONS
The matrix transformations presented here can be em-

ployed in the design of networks for analyzing binary patterns
[10], [12], [14]. The three matrix transformations Rn, Un, and
Un are nonsingular, so that if the observations are complete
(all N-tuples) then the probability distribution of the patterns
(given by F) can be obtained with the inverse matrices. The N
and U transformations describe logic operations for the pro-
cessing of pattern data and involve fewer operations (about
one-half, direct or inverse) giving a computational advantage
over the orthogonal R transformation. The latter has been
used for processing two-dimensional pictures [17] and for gen-
eralized spectral analysis [2]. Moreover, the AND and NOR op-
erations can be implemented in hardware for fast convenient
processing and the results subsequently converted to the over-
all equivalent of the orthogonal R transformation with no net
increase in computational complexity. All the transformations
and inverses that exist can be calculated using fast algorithm
techniques. Thus, different types of smoothing can be ob-
tained from the different transformations by removing the
higher order parameters and then applying the inverse trans-
formations. For example, smoothing of binary pattern images
occurs when higher order parameters in the orthonormal ex-
pansion are neglected [1]; but, this can now be translated into
a form that is applicable when NOR gates are used for data ac-
*quisition. As an example of a quantity, descriptive of observed
patterns, a measure of association has been defined for a set of
binary patterns which can be derived from either the NOR,
AND, or parity parameters.
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A Note on Atrubin's Real-Time Iterative Multiplier

LAKSHMI N. GOYAL

Abstract-This correspondence presents a new multiplication
algorithm for Atrubin's one-dimensional real-time iterative
multiplier such that all the cells including the first cell in the
array are identical in all respects, for the no-delay case.

Index Terms-Arithmetic, iterative array, multiplication, on-
line multiplier, real-time multiplier.

I. INTRODUCTION

In his paper "A one-dimensional real-time iterative multi-
pler," [1] Atrubin presented the design of a real-time multi-
plier. His multiplier consists of a one-dimensional iterative bi-
lateral array of cells (finite state machines) such that when the
digits of two integers are presented to the cell at the extreme
left end of the array a pair at a time, the same cell indicates
the product digits at the rate of one per cycle. He had further
shown that for the no-delay case the extreme left-hand cell or
the initial cell had to be different from the rest of the cells
which were all identical finite state machirtes in terms of the
memory space needed as well as the control. In this correspon-
dence we shall show that a no-delay real-time multiplication
can be achieved'by an identical set of cells including the initial
cell, without increasing the complexity of the individual cell.

II. STRUCTURE OF THE MULTIPLIER

For the sake of simplicity, we shall use, wherever possible,
the notation used by Atrubin.
Suppose the two integers to be multiplied are

n
A = Ea(i)2',

1=0

m
B = Eb(i) 2',

1=0

a(i) Etli,o

b(i) C 11,01

where m and n are arbitrary.
Let the product be given by

Manuscript received July 17, 1974; revised January 31, 1975. This
work was supported in part by the National Science Foundation
under Grant US-NSF-GJ-38204.
The author is with the Department of Computer Science, Universi-

ty of Illinois at Urbana-Champaign, Urbana; IL 61801.

546


