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Abstract 

A scanning n-tuple classifier is applied to the task of 
recognizing online handwritten isolated digits. Various 
aspects of preprocessing, feature extraction, training and 
application of the scanning n-tuple method are examined. 
These include: distortion transformations of training 
data, test data perturbations, variations in bitmap 
generation and scaling, chain code extraction and 
concatenation, various static and dynamic features. and 
scanning n-tuple combinations. Results are reported for 
both the UiVIPEN Train-ROlD’07 and DevTest-ROlD’02 
subset l a  isolated digits databases. 

1. Introduction 

The scanning n-tuple (or sn-tuple) classifier first 
described by Lucas and Amiri [l-31 has been 
demonstrated to be a good classifier for handwritten 
offline character recognition [ 1-41. The sn-tuple classifier 
trains and classifies quickly and can be implemented with 
relative ease. As will be shown, it can also be applied 
with various static or dynamic features, or combinations 
of both. For these reasons, and because it is implemented 
in a probabilistic framework, the sn-tuple classifier merits 
consideration for use independently or in concert with 
other classifiers in online recognition tasks. 

The sn-tuple method applies a novel combination of 
chain code feature extraction with a probabilistic n-tuple 
classifier. Unlike earlier n-tuple classification methods, 
the information-rich outline features of the image are first 
extracted by generating a chain code. The chain code is 
then sectioned into multiple, overlapping substrings of 
fixed length, each offset by 1 code element. Each 
substring is subsampled (decimated) to generate a short 
(typically 4 to 6 elements) string of length n - a “scanned” 
n-tuple - to be used as the feature or “address” for an 
n-tuple model [I]. 

This study describes an implementation of the sn-tuple 
classifier for recognition of isolated online handwritten 

0-7695-1263-1/01/$10.00 0 2001 IEEE 

digits drawn from the UNIPEN [5] data set. 
Preprocessing steps for scaling, generating a raster image, 
and chain code generation and handling are considered. 
The application of distortion transformations (also known 
as defect models) to training data [3, 6, 71 for training 
data augmentation and the use of smoothing [8] are 
described. Test data perturbations [7] and combinations 
of various sn-tuples are examined. 

2. The scanning n-tuple classifier 

The scanning n-tuple classifier is a variant of the 
memory-based standard n-tuple method [9]. The critical 
difference of the sn-tuple is the feature extraction [I]. A 
chain code is extracted from a binary image. The value of 
each chain code element may range from 0 to a-I. The 
chain code for each training exemplar is reduced to y 
substrings, each of length n, by sampling n sequential 
locations in the chain code with a fixed offset 6 2 1 
between each sample. These substrings are the sn-tuples 
described by this method: 

Let Y = {Yo, . . . , Y,,.,} be a chain code of length m from 
whichy sn-tuples are extracted, where y 5 m (typically, y 
= m and it is assumed that the end of the chain code can 
be defined to wrap back onto its beginning such that all 
indices into Yare evaluated modulus m). Then a set of y 
sn-tuples Sk are extracted from Y as follows: 

S, = { YI I I = (26 + k )  mod m , 0 5 1  < n } : 0 < k < y  (1) 

In training, for each class c I 1 5 c 5 Q each sn-tuple 
S,, is a single, discrete observation with 6 different sn- 
tuples possible. A memory address A ,  I 0 I j 5 U-“-1 
records the number of times t ,  each possible sn-tuple S, 
is observed for all training tokens. The total number of 
training tokens is retained as {TI ,  . . . ,TQ}. Hereafter 
assuming all class prior probabilities P(c) equal, the 
posterior probability that a digit is a member of class c 
given randomly observed sn-tuple S, is shown in (2): 

( t ,  ITc 1 

c ( t u  IT, ) 
P(cIS,)= Q 

r=l 
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In the classification step, noting that P(&) is constant 
with respect to c and applying Bayes rule, the maximum 
likelihood classification result for observed chain code Y 
is assigned to the class c that maximizes P(S, I c) as shown 
in ( 3 ) :  

argrnax[P(S,lc)]= argrnaxfIP(c IS,) ( 3 )  
C k=O 

3. Implementation 

Stroke vectors from the raw data are mapped to a 
binary bitmap raster with black data pixels on a whte 
background. Before rasterization to a WxH (terms later 
referenced in Table 1 are given in bold italic) width-by- 
height bitmap the vector data for the entire digit are pre- 
scaled to fit within a (W-2)x(H-2) area to allow the 
mapping to leave a 1-pixel white border inside the border 
limits. In many experiments a 3x3 convolution kernel is 
applied (Fig. 1) at each original pixel to broaden the 
bitmap stroke width. In such cases, the vector data are 
pre-scaled to (W-4)x(W-4) to maintain the white pixel 
border. Three different scaling methods were applied: SI ,  
in which the datum aspect ratio was not, maintained and 
the width and height were independently scared: to fill the 
bitmap in both width and height: 5'2, in.which, the original 
aspect ratio was preserved (the bitmap was:typically filled 
in only 1 dimension); and S3, in which the height was 
scaled to fit the bitmap height and the aspect rario. was 
preserved unless the scaled width dimension exceeded the 
bitmap dimensions, in which case the width was scaled 

down to fill the available space. Typically, all strokes 
were rasterized into one bitmap. Alternatively, each 
stroke (iso stroke) could be rasterized to a separate 
bitmap. Chain codes from these separate bitmaps were 
then treated as if they were derived from one bitmap. 

Static chain codes were extracted (Fig. 1) from the 
contours of the black regions (static image information). 
Static chain codes are recorded in the order observed 
while scanning the bitmap in raster order (starting top- 
left; left-to-right, top-to-bottom); contours were mapped 
in a clockwise direction if first encountered at a wlute-to- 
black pixel transition (typically an exterior surface), or 
counter-clockwise if first found for a black-to-white edge. 
Dynamic chain codes were determined from the 
directional sluft of the stroke as each pixel was placed on 
the bitmap (dynamic stroke information). Dynamic chain 
codes are recorded in the order given by the original 
stroke sequence. Contour profile chain codes were not 
given as directional shifts, but rather by the scaled 
distance from the side of the bitmap to the first observed 
ink. The maximum distance was scaled to 0-2; when no 
ink was observed the code G-1 was used. 

a = 9 chain codes were extracted, where codes 0-7 
were the conventional 8-duection codes as shown in 
Figure 1. The ninth code was used to extend the ends of 
open chains. Ths  prevented, snztuple folding, balanced 
code representation; and' provided "end-of-chain" context 
information.. End: extension. was: always: done for code 
chains: that were very short, (as with, the chain 
corresponding to the hole in Figure. 1);when necessary to 
prevent the, wrapping, of an> sn-tuple sequence back onto 
itself. The number of end extension codes added depends 

Figure 1: Rasterization and chain code extraction, (a) Example zero rendered in 10x10 bitmap with 3x3 
kernel; original dynamic points given in alphabetic order, a-p. (b) Static chain code superimposed on 
corresponding bitmap locations from (a); 2 static chain codes starting at gray pixels: 
1222234444456666770001, 54321 076; 1" scanning 3-tuple with offset 6=5 is 134 (underlined digits). 
(c) 3x3 binary convolution kernel. (d) Directional chain code key for gray pixels with respect to central 
black pixel. Dynamic chain code is 654443222100076. Left contour profile chain code is 
... 872100001278 ..., where ... represents a variable number of 8 codes (end extension codes). 
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on the coverage range (given by n and 6) of the sn-tuple: 
sufficient end extension codes were added to allow each 
original chain code element to be represented an equal 
number of times by an equal number of sn-tuples. The 
ninth chain code was always used to extend contour 
profile chain codes. It was optionally used (end extend) 
to extend static and dynamic chain codes that were not 
wrapped back on themselves. 

Sn-tuples were extracted from each chain code either 
individually or by first concatenating all chain codes 
(merge chains) in the order observed into a single chain 
code representation. Typically, the end of each static 
chain code of length m was “wrapped’ back to the start to 
allow m sn-tuples to be mapped. Alternatively, m - (6 x 
(n- 1)) sn-tuples were extracted when neither wrapping 
(wrap) nor end extension was applied. 

For those sn-tuples that were seldom or never observed 
in training for a single class, the corresponding regions of 
the class probability density were optionally estimated 
(smooth) using modified Kneser-Ney smoothing [8]. 

Distortion transformations on training data were 
investigated. The training data were augmented with 6 
synthetic exemplars generated from each original training 
exemplar by means of the following distortions: * 5 O  slant 
(shear), &lo% dnft in the x velocity, and & 5 O  baseline 
slope. These specific values were based on limited past 
experience with other classifiers; variations or 
optimizations were not explored. 

Similarly, these same transformations were applied as 
perturbations to the test data. Each perturbed datum was 
separately classified and the best score (no weighted 
voting as in [7]) among all perturbation results for each 
character was retained. 

4. Experiments and results 

Experimental results were obtained on isolated digits 
using the UNIPEN 1.51 Train-ROlN07 subset l a  database 
and the DevTest-ROl/V02 subset l a  database. Because 
the DevTest set has only been released on a very limited 
basis, most results are evaluated using only the Train set. 
The 15953 digits of the Train set were segmented into 10 
approximately equal-sized homogeneous subsets as well 
as 10 heterogeneous subsets. Each writer’s data was 
equally distributed among all 10 homogeneous subsets, 
but in only 1 heterogeneous subset. Results were 
obtained for each set by combining 10 jackknife 
experiments. In each experiment, 8 different subsets were 
combined for training; a ninth subset was used for cross- 
validation and the tenth subset was used to test accuracy. 
Test results were obtained after retraining with the initial 
8 subsets plus the cross-validation subset. Although it 
was observed that approximately 0.5% of the data is 
mislabeled, no data were excluded in either training or 
testing, with one exception: any datum with an aspect 

ratio greater than 2.5 was not used in training. 
By visual inspection, 27 different allographs were 

selected as candidate archetypes for training. 
Approximately 2 to 3 exemplars of each archetype were 
manually clustered into subclasses in each jackknife 
training subset. Each training set of 8 subsets was then 
fully clustered into the final allograph subclasses in two 
steps. First, a bootstrap classifier was trained with the 
manually-clustered allographs. Then, the balance of the 
8-subset training set was fully clustered using this 
bootstrap classifier. The tested classifier was then trained 
using the fully subclassed training set. Additional 
trainingklustering cycles were tested, but found to reduce 
accuracy slightly. Observing that two of the final clusters 
typically had fewer than 20 exemplars, these two 
allographs were eliminated, leaving 25 archetypes, as 
shown by example in Figure 2. No further clustering 
algorithms or optimizations have been investigated. 

Figure 2: 
for bootstrapping. 

Example allograph archetypes used 

Ys55 L 7 T ?  78 v? 
O/ai  i d 1  L 1 2 8 3 ’ f - d  

Results on the jackknifed subsets for 27 varied 
combinations of preprocessing. training, and sn-tuple 
combination are shown in Table 1. Sn-tuple lengths of 2- 
6 were investigated; lengths beyond 6 were considered to 
be impractical due to large memory requirements. Each 
of the single sn-tuple methods shown was first trained 
using sn-tuple lengths from 2 to 6 and offsets from 1 to 
13.  Test subset results are mean values based on 
conditions found optimal on the cross-validation subsets: 
6-tuples generally performed best; the best-performing 
offset, 6, is presented. Standard deviations for the 
homogeneous results typically ranged from about 0.2% - 
0.6% while those for heterogeneous results ranged from 
1% - 3%. Rows 24-27 are for classification results using 
combinations of the aforementioned single sn-tuple 
methods. The hghest accuracies for the homogenous and 
heterogeneous sets are for sn-tuple combination method 
27 at 98.9% with a standard deviation (s.d.) of 0.2% and 
98.0% with an s.d. of 1.0%, respectively. 

Typically, only 10 to 20 percent of all possible sn- 
tuples were observed while training. Posterior 
probabilities were stored as a set of tables of 16-bit scaled 
log-probabilities indexed by allograph, one such table for 
each sn-tuple; omitting empty tables conserved memory 
space. Referring to Table 1 methods 22, 26, and 27. 
memory usage was 1.0, 19.3, and 4.4 megabytes, and 
classification speed was 440, 70, and 420 characters-per- 
second on a 300 h4Hz RS6000 workstation, respectively. 
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Table 1 : Classification accuracies for various experimental conditions for single (rows 1-23) and 
combined (rows 24-27) scanning n-tuples; bold table entries indicate distinguishing parameters. 
Column headings as follows (see text for further details): 
# method index 
WxH raster bitmap total width by height (WxH) 
Scale S f ,  S2, or S3; blank = S3 (see text for details) 
n tuple length for best results (last columns) on homo. and hetero. cross-valid. sets, respectively 
6 sn-tuple offset (best on training set for conditions) 
Krnl 1 or 3; width of convolution kernel applied to broaden strokes; blank for dynamic chain codes 
TY Pe D for dynamic chain code; PL, PR, PT, PB, for Left, Right, Top and Bottom contour profile, 

respectively, and P4 for all four contour profiles combined; blank for static chain code 
Is0 Stroke Y if each stroke was rasterized to a separate bitmap (bo stroke) 
Merge Chains Y if all chain codes concatenated to form 1 chain code (merge chains) 
Wrap N if chain codes were not wrapped, Y or blank if wrapped (wrap) 
End Extend Y if end-of-stroke code extensions were added at ends of chain code (end extend) 
Trans NT if no pre-training data transformations applied, NP if perturbation method not used 
Smooth N if modified Kneser-Ney smoothing of training data not applied (smooth) 
Homo Train classification accuracy for homogeneously jackknifed Train-RO1 NO7 data set (%) 
Hetero Train classification accuracy for heterogeneously jackknifed Train-ROIN07 data set (%) 
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DevTest results are reported for comparative purposes. 
Because the ground-truth labels for the 8598 isolated 
digits of the DevTest set were unavailable, this set was 
manually ground-truth labeled. When the most likely 
label for a datum could not be inferred by appearance or 
apparent intent of the writer (based on stroke direction 
and sequence and in comparison to other related 
examples), or when the datum was clearly not a digit, the 
datum was truthed as a nondigit, but was not removed 
from the test set. Using the test conditions given for 
method 26 in Table 1 and the full Train set for training, 
the classification accuracy for the (mostly) heterogeneous 
DevTest set was 98.2%. 

5. Discussion 

The scanning n-tuple method as implemented herein is 
an effective classifier for online digits. The 98.1% 
classification accuracy for the DevTest-RO 1N02 test set 
(though it may be slightly optimistic given a potentially 
cleaner ground-truth) compares favorably to the value of 
96.1% reported for a hybrid KP neural network [lo]. 

The benefits of several experimental options can be 
compared in Table 1. The use of a convolution kernel to 
broaden the strokes improves results except for the 
smaller bitmaps (compare methods 1, 5; 11, 12). 
Maintaining the aspect ratio when possible while always 
filling the height (S3) is preferred over filling the bitmap 
(Sl) or always preserving the aspect ratio (S2) (methods 
1, 7, 8). For the static sn-tuple, neither isolating strokes 
nor concatenating chain codes is best (methods 1, 9, 10). 
Perturbation, smoothing, and training data 
transformations are all useful (methods 1-4). For the 
dynamic sn-tuple, isolating each stroke, leaving each 
chain code unwrapped and extending the ends of the 
chain code are important (methods 16-19). 

Combining sn-tuple methods based on different feature 
types is quite powehl  (methods 1, 25-26). Not only does 
the error rate drop significantly when combining the best- 
performing static, dynamic and contour profile methods, 
but the performance of such combination methods is also 
maintained (methods 24, 25; 26, 27) while using fewer 
memory resources with methods that are lower- 
performing in isolation (methods 1, 4, 6; 16, 19). 
Somewhat surprisingly, combinations of only static sn- 
tuples (results not shown) with different values of n and 6 
did not outperform the single methods as has been 
observed for digit images [ 1-41. 

6. ConcPusions 

This study suggests that the fast and uncomplicated 
scanning n-tuple classifier is a viable classifier for 
isolated online handwriting recognition. The conventional 

static sn-tuple method has been extended to include 
dynamic and contour profile features. The application of a 
broadening kernel, pre-transforming training data, 
perturbation, smoothing, and isolation of chain codes 
were all demonstrated to improve accuracy in this 
context. Stroke isolation and extension was introduced 
and shown to be valuable for the dynamic sn-tuple 
method. Contour profile sn-tuples were found useful in 
combination. The combination of static, dynamic and 
contour profile sn-tuples was especially powerful, where 
hgh  accuracy and high speed can be achieved with 
reduced memory resources. 

Future work will consider optimizations of memory 
resources, speed, and allograph clustering, as well as 
extension to problems with a larger number of classes. 
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