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a b s t r a c t

Datasets with significantly larger number of features, compared to samples, pose a serious challenge in
supervised learning. Such datasets arise in various areas including business analytics. In this paper, a
new binary classification method called constrained subspace classifier (CSC) is proposed for such high
dimensional datasets. CSC improves on an earlier proposed classification method called local subspace
classifier (LSC) by accounting for the relative angle between subspaces while approximating the classes
with individual subspaces. CSC is formulated as an optimization problem and can be solved by an
efficient alternating optimization technique. Classification performance is tested in publicly available
datasets. The improvement in classification accuracy over LSC shows the importance of considering the
relative angle between the subspaces while approximating the classes. Additionally, CSC appears to be a
robust classifier, compared to traditional two step methods that perform feature selection and
classification in two distinct steps.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

High dimensional datasets are currently prevalent in many
business applications. The methodical collection of every facet of
the data has lead to a significant increase in its dimensionality.
Examples include but are not limited to financial services [43], e-
commerce [12] and marketing [32]. Other examples of datasets
with a high number of features are shown in Table 1.

Classification tasks on high dimensional datasets pose significant
challenges to the standard statistical methods and render many
existing classification techniques impractical [22]. The generalization
ability of many classification algorithms is compromised due to curse
of dimensionality arising from high number of features of the input
space [26]. Earlier studies have revealed the geometrical distortion
that arises in high dimensional data spaces, where the ratio of
distances between the farthest and nearest neighbors to a given target
is almost equal to 1 for a wide variety of data distributions and
distance functions [4]. Moreover, several statistical methods require
knowing class covariances a priori. In the case that class covariances
are unavailable, such estimates from sample data would be unreliable
due to small sample sizes. One common approach to address the
aforementioned challenges involves reducing the dimensionality of
the dataset either by using feature extraction [29] and/or feature
selection prior to classification [34,8].

Feature selection is usually performed in different ways through
filter, wrapper, and embedded methods. Filter methods access features
during a separate process prior to classification. Variables are given a
score according to a filtering function and are ordered accordingly.
Features with the lowest scores are discarded while the rest are used
from the classifier. Hypothesis testing and statistic tests such as t-test
have also been used as filtering procedures [17]. Wrapper methods on
the other hand use the classifier structure itself to evaluate the
importance of features based on the idea that the classifier can provide
a better estimate of accuracy than a separate independent process [6].
The main drawback of wrapper methods is that increased computa-
tional power is often required since the classification process has to
be repeated for each feature set considered. Metaheuristics used for
feature selection can also be classified as wrapper methods [40,30,47].
Embedded methods perform feature selection in a way so that the
classification algorithm is executed while variables are evaluated and
selected. Examples include the weighting of features in support vector
machines [18], where the authors developed the SVM method of
recursive feature elimination for feature selection, and the use of
random forests for feature evaluation [21]. In the later, feature elimina-
tion occurs for the attributes with the lowest raw importance score.

Feature extraction techniques transform the input data into a
set of meta-features that extract the relevant information from the
input data for classification. One popular technique called principal
component analysis (PCA) finds a set of linearly uncorrelated
variables called principal components from a set of observations
of possibly correlated variables [23,36]. PCA removes redundancy
by transforming the data from a higher dimensional space into an
orthogonal lower dimensional space. This transformation is
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performed in a way that the first principal component captures as
much variation in the data as possible, and each succeeding
component accounts for a decreasing amount of variance [42].
The number of retained principal components is usually less than
or equal to the number of original variables and are determined
using several criteria like the eigenvalue-one criterion, scree test
and proportion of variance accounted for.

The aforementioned dimensionality reduction techniques
decrease the complexity of the classification model and attempt
to improve the classification performance [34]. The choice of the
dimensionality reduction technique depends on the nature (e.g.
level of correlation, presence of outliers) of the data that is used
for classification.

Local subspace classifier (LSC) utilizes PCA to perform classifica-
tion. During the training phase, a lower dimensional subspace is
found for each class that approximates the data [27]. In the testing
phase, a new data point is classified by calculating the distance of
the point to each subspace and choosing the class with minimal
distance. Although LSC is simple and relatively easy to implement,
it has its own limitations. LSC finds the subspaces for each class
separately without the knowledge of the presence of the other
class. While each subspace approximates the data well, however
these projections may not be ideal from a classification perspec-
tive. In this paper, we construct another classifier called con-
strained subspace classifier (CSC) which expands LSC by including
the relative orientation of the subspaces of two classes in an
integrated optimization model. LSC formulation is modified to
include the relative angle between the subspaces and is solved
efficiently using alternating optimization techniques. The perfor-
mance of CSC on publicly available datasets is evaluated and
compared with LSC and other classifiers.

The remainder of the paper is organized as follows. Section 2 gives
an introduction to LSC and Section 3 introduces the CSC. In Section 4
we demonstrate a first comparison on a toy dataset whereas in
Section 5 we present the computational experiment on six real
datasets along with their discussion as well as we provide the
comparative computational results for CSC against support vector
machine (SVM), PCA/SVM and Naive Bayes classifier. Lastly, in Section
6 we discus potential future extensions of this algorithm.

2. Local subspace classifier

Consider a binary classification problem. Let the matrices
X1ARp�m and X2ARp�l be given, whose columns represent the
training examples of two classes C1 and C2 respectively. The
number of samples in C1 and C2 are given by m and n respectively.
The number of features is given by p. Local subspace classifier
attempts to find two subspaces separately, one for each class that
best approximates the data. Let U1 ¼ ½uð1Þ

1 ;uð1Þ
2 ;…;uð1Þ

k �p�k and
U2 ¼ ½uð2Þ

1 ;uð2Þ
2 ;…;uð2Þ

k �p�k represent orthonormal bases of two k-
dimensional linear subspaces S1 and S2 that approximate classes
C1 and C2 respectively. We assume the dimensionality of subspaces
S1 and S2 to be same and equal to k without loss of generality. S1

and S2 attempt to capture maximal variance in classes C1 and C2

respectively by optimizing the following optimization problems:

maximize
U1 ARp�k

trðUT
1X1XT

1U1Þ

subject to UT
1U1 ¼ Ik ð1Þ

where Ik is the identity matrix of size k.
The solution to the optimization problem (1) is given by

eigenvectors corresponding to the k largest eigenvalues of matrix
X1XT

1 [15]. Similarly, the following optimization problem is solved
to obtain the orthonormal basis U2 representing S2:

maximize
U2 ARp�k

trðUT
2X2XT

2U2Þ

subject to UT
2U2 ¼ Ik ð2Þ

The orthonormal basis U2 is obtained by choosing eigenvectors
corresponding to the k largest eigenvalues of matrix X2XT

2. A new
point x is classified by computing its distance from subspaces S1

and S2:

distðx;SiÞ ¼ trðUT
i xx

TU iÞ ð3Þ
and the class of x is determined as

classðxÞ ¼ arg min
iA f1;2g

fdistðx;SiÞg ð4Þ

Though the subspaces S1 and S2 approximate the classes well,
these projections may not be ideal for classification tasks as each of
them are obtained without the knowledge of another class/sub-
space. Hence, from a classification performance perspective, these
subspaces may not be the best projections for the classes. In order
to account for the presence of another subspace, we consider the
relative orientation of the subspaces.

3. Constrained subspace classifier

Constrained subspace classifier finds two subspaces simulta-
neously, one for each class, such that each subspace accounts for
maximal variance in the data in the presence of the other class/
subspace. Thus, CSC allows for a tradeoff between approximating
the classes well and the relative orientation among the subspaces.
The relative orientation between subspaces is generally defined as
principal angles [19]. We briefly review principal angles between
subspaces below, which are further utilized to modify the for-
mulation of LSC to include the relative orientation among the
subspaces.

Definition 1. Let U1ARp�k and U2ARp�k be two orthonormal
matrices spanning subspaces S1 and S2. The principal angles
0rθ1rθ2rθ3r⋯rθkrπ=2 between subspaces S1 and S2,
are defined recursively by

cosθi ¼ max
xm AS1

max
yn AS2

xTmyn

subject to x>
m xn ¼ 1; y>

m yn ¼ 1 for m¼ n

x>
m xn ¼ 0; y>

m yn ¼ 0 for man
8m;n¼ 1;2;…; k: ð5Þ

where xm and yn are the column vectors of U1 and U2 respectively.
Intuitively, the first principal angle θ1 is the smallest angle
between all pairs of unit vectors in the first and second subspaces.
The rest of the principal angles are similarly defined.

Theorem 1. Let U1ARp�k and U2ARp�k be rectangular matrices
whose column vectors span the subspaces S1ARk and S2ARk

respectively. Let M¼ U>
1 U2ARk�k, using singular value decomposi-

tion we can express M by

M¼ YCZ> ð6Þ
where Y >Y ¼ Ik, Z

> Z ¼ Ik and C ¼ diagðσ1;σ2;…;σkÞ.

Table 1
Examples of high dimensional datasets.

Dataset Reference

Customer relationship management data [39]
Covariation information of stocks [7]
Text datasets for classification [20]
Data collected from surveys [2]
Netflix dataset [3]
MRI data [24]
Mass spectroscopy data [14]
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If we assume that σ1Zσ2Z⋯Zσk then the principal angles are
given by cosθk ¼ σkðMÞ 8 i¼ 1;2;…; k.

Proof. See Bjorck and Golub [5].□

The cosines of the principal angles are also sometimes known
as canonical correlations.

3.1. Seeking a distance metric

We consider the metric that defines the relative orientation
between S1 and S2 spanned by U1 and U2 respectively to be the
projection F-norm [13] defined by

dpF ðU1;U2Þ ¼
1ffiffiffi
2

p JU1U
>
1 �U2U

>
2 J F ð7Þ

The projection F-norm is obtained by embedding the Grass-
mann manifold in the set of n-by-n projection matrices of rank p.
The choice of the metric preserves convexity. It can be represented
in terms of the sines of principal angles as follows.

The right hand side norm can be expressed as

‖U1U
>
1 �U2U

>
2 ‖2F ¼ trððU1U

>
1 �U2U

>
2 Þ> ðU1U

>
1 �U2U

>
2 ÞÞ ð8Þ

‖U1U
>
1 �U2U

>
2 ‖2F ¼ ‖U1‖2F þ‖U2‖2F �2‖U >

2 U1‖2F ð9Þ
Using Theorem 1, (9) becomes

¼
Xk
i ¼ 1

λiþ
Xk
i ¼ 1

λi�2
Xk
i ¼ 1

cos 2θi ð10Þ

¼ kþk�2
Xk
i ¼ 1

cos 2θi ð11Þ

¼ 2
Xk
i ¼ 1

sin 2θi ð12Þ

where λi are the eigenvalues of Uj 8 i¼ 1;2;…; k and j¼ f1;2g.
Hence the projection F-norm becomes

dpF ðU1;U2Þ ¼
1ffiffiffi
2

p JU1U
>
1 �U2U

>
2 J F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i ¼ 1

sin 2θi

vuut : ð13Þ

3.2. Formulating CSC

The projection metric is utilized to incorporate the relative
orientation between subspaces in LSC. The formulation of LSC is
modified as shown below to obtain the constrained subspace
classifier (CSC):

maximize
U1 ;U2 ARp�k

trðUT
1X1XT

1U1ÞþtrðUT
2X2XT

2U2Þ�C JU1U
>
1 �U2U

>
2 J2F

subject to UT
1U1 ¼ Ik ð14aÞ

UT
2U2 ¼ Ik ð14bÞ

where the parameter C controls the tradeoff between the relative
orientation of the subspaces and the approximation of the data.

From calculations in Section 3.1:

‖U1U
>
1 �U2U

>
2 ‖2F ¼ 2k�2 trðU >

1 U2U
>
2 U1Þ ð15Þ

Hence the optimization problem becomes

maximize
U1 ;U2 ARp�k

trðUT
1X1XT

1U1ÞþtrðUT
2X2XT

2U2ÞþC trðUT
1U2U

T
2U1Þ

subject to UT
1U1 ¼ Ik ð16aÞ

UT
2U2 ¼ Ik ð16bÞ

It is important to note here that when C¼0, CSC reduces to LSC.
Additionally, for larger positive values of C, the relative orientation
between subspaces reduces, while for larger negative values of C,
the relative orientation increases.

3.3. Algorithm

Here we introduce an alternating optimization algorithm to
solve (16a). For a fixed U2, (16a) reduces to:

maximize
U1 ARp�k

trðUT
1ðX1XT

1þCU2U
T
2ÞU1Þ

subject to UT
1U1 ¼ Ik ð17Þ

The solution to (17) is obtained by choosing the eigenvectors
corresponding to the k largest eigenvalues of symmetric matrix
X1XT

1þCU2U
T
2.

Similarly, for a fixed U1, (16) reduces to

maximize
U2 ARp�k

trðUT
2ðX2XT

2þCU1U
T
1ÞU2Þ

subject to UT
2U2 ¼ Ik ð18Þ

where the solution to (18) is again obtained by choosing the
eigenvectors corresponding to the k largest eigenvalues of sym-
metric matrix X2XT

2þCU1U
T
1. We define the following three

termination rules:

� Maximum limit Z on the number of iterations,
� Relative change in U1 and U2 at iteration m and mþ1,

tolmU1
¼ JU ðmþ1Þ

1 �U ðmÞ
1 JFffiffiffi

q
p ; tolmU2

¼ JU ðmþ1Þ
2 �U ðmÞ

2 JFffiffiffi
q

p ð19Þ

where q¼pk.
� Relative change in objective function value of (16) at iterationm

and mþ1,

tolmf ¼ Fðmþ1Þ �F ðmÞ

jF ðmÞ j þ1
ð20Þ

For proof of convergence see Theorem 2.
The algorithm for CSC can be summarized as follows:

Algorithm 1. CSC (X1;X2, k, C).

1. Initialize U1 and U2 such that UT
1U1 ¼ Ik, U

T
2U2 ¼ Ik.

2. Find eigenvectors corresponding to the k largest eigenvalues
of symmetric matrix X1XT

1þCU2U
T
2.

3. Find eigenvectors corresponding to the k largest eigenvalues
of symmetric matrix X2XT

2þCU1U
T
1.

4. Alternate between 2 and 3 until one of the termination rules
is satisfied.

Theorem 2. Algorithm 1 converges.

Proof. Let Sl be a subspace of the space SL, where L is the
dimensionality of the original data points and l is the reduced
dimensionality of those points when projected onto the subspace
Sl. There is a choice of γ many such subspaces where

γ ¼ L!
l!ðL� lÞ! ð21Þ

with each subspace choice having a basis whose elements are the
vector columns of U i ¼ ½u1 u2 … ul�ARL�l where ukARL with
k¼ 1;2;3;…; l and i¼ 1;2;3;…; γ.

Each choice of U i corresponds to a covariant matrix of the
projected data points that has a trace given by Ti � trðU iTXXTU iÞ.
Since there is a finite number of subspaces, we also have a finite
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number of bases U i and therefore a finite number of values for
the Ti.

Define the set of all values of fT1; T2; T3;…; Tγg and also define

the corresponding set of fU1;U2;U3;…;Uγg. Similarly for the
second class of data points and the corresponding set of subspaces

define the set of values of the traces fS1; S2; S3;…; Sγg and also

define the corresponding set of subspace basis fV1;V2;V3;…;Vγg
where Sj � trðV jTYYTV jÞ.

Let n and nþ1 be two consecutive iterations. Then the
objective function at each iteration r is given by

Fr ¼ Tir þSjr þMirjr where

Tir � trðU iTr XXTU ir Þ

Sjr � trðV jTr YYTV jr Þ

Mirjr � trðU iTr V jrV jTr U ir Þ ð22Þ

For r¼n we fix jr¼ jn (that is we fix Sjn) and find in that maximizes

Fn ¼ Tin þSjn þMinjn ð23Þ
Effectively, we solve

arg max
in A f1;…;γg

fTin þMinjn j jn ¼ constantg ð24Þ

For r¼ nþ1 we fix ir ¼ inþ1 ¼ in (that is we fix Tinþ 1 ¼ Tin ) and find
jnþ1 that maximizes

Fnþ1 ¼ Tinþ 1 þSjnþ 1 þMinþ 1 jnþ 1

¼ Tin þSjnþ 1 þMinjnþ 1 ð25Þ

Effectively, we solve

arg max
jnþ 1 A f1;…;γg

fSjnþ 1 þMinjnþ 1 j in ¼ constantg ð26Þ

Therefore,

Fnþ1�Fn ¼ ðTin þSjnþ 1 þMinjnþ 1 Þ�ðTin þSjn þMinjn Þ
¼ ðSjnþ 1 �Sjn ÞþðMinjnþ 1 �Minjn Þ ð27Þ

Since jnAf1;…; γg then Sjnþ 1 þMinjnþ 1 and Sjn þMinjn are terms of
the same sequence.

Therefore from (26) we have that

Sjnþ 1 þMinjnþ 1 4Sjn þMinjn ð28Þ
From (27) and (28) we get that Fnþ1�Fn40. Hence Fnþ14Fn.

Therefore, the sequence fFng is increasing.
Since fU ig and fV ig are finite sets then fTig, fSjg and fMijg are

also finite sets. Therefore, fTig, fSjg and fMijg have maxima. Since
each element of fFng is a linear combination of elements from fTig,
fSjg and fMijg then fFng also has a maximum. That means fFng is
bounded from above.

We have proven that fFng is an increasing sequence of real
numbers and also bounded from above. Therefore, it converges.□

4. Illustrating examples

We consider two examples here showing the effect of changing
the relative angle between subspaces generated by LSC. The
datasets are generated from two bivariate normal distributions
N 1ðμ1;Σ1Þ and N 2ðμ2;Σ2Þ representing classes C1 and C2. Each
class consists of 100 randomly generated points from N 1 and N 2

respectively. The parameters of N 1 and N 2 for the two classes are
shown in Table 2. The LSC and CSC are trained on the data with
k¼1. The values of Z, tolmf , tol

m
U1

and tolmU2
are chosen to be 2000,

1e�6, 1e�6 and 1e�6 respectively. The value of C is set to �103

for Example 1 and 103 for Example 2. The classification accuracies
are obtained via leave-one-out cross validation (LOOCV) [25]. The
subspaces obtained for each of the training folds in example 1 and
example 2 are shown in Figs. 1 and 2 respectively. The average
classification accuracies and the average relative angle θ
(0rθrπ=2) between the subspaces for LSC and CSC are reported
in Table 2. In example 1, increasing the relative angle between the
subspaces clearly improves the classification accuracy by E 24%.
However in Example 2, decreasing the relative angle between the
subspaces shows better classification performance and outper-
forms LSC by E 11%. These examples show that the relative
orientation of the subspaces should also be considered in addition
to capturing the maximal variance in data.

Table 2
Average classification accuracies and relative angle between subspaces generated
from LSC and CSC in two examples.

DATASETS N 1 N 2 LSC CSC

μ1 Σ1 μ2 Σ2 Acc
(%)

Angle
(θ)

Acc
(%)

Angle
(θ)

EXAMPLE

1
9
10

� �
4 1:1
1:1 4

� �
2
5

� �
4 0
0 3

� �
74 0.54 92 0.99

EXAMPLE

2
3
5

� �
4 �2
�2 6

� �
10
10

� �
5 2
2 5

� �
87 0.92 97 0.16
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−5 0 5 10 15
−10

−5

0

5

10
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20

class 1
class 2
subspace S1
subspace S2

Fig. 1. Data points generated by N 1 and N 2 in example 1 and the subspaces
generated by LSC and CSC in each of the training folds.
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5. Numerical experiments

The performance of CSC is evaluated on six publicly available
datasets and they are summarized in Table 3. Four of them (DLBCL,
Breast, Colon, DBWorld) are high dimensional ð#features⪢#samplesÞ
and two of them (Mushroom, Spambase) have significantly more
samples than features.

The performance of CSC is evaluated for different values of C,
and compared to that of LSC. The values of Carechosen in such a
way that the relative angle between the subspaces varies uni-
formly. The relative angle between the subspaces is evaluated in
terms of the projection metric dpF. The value of dpF varies between
0 and k, where k is the dimensionality of the subspaces. The value
of k is chosen as {1, 3, 10}. Experiments are performed with a
2.60 GHz Intel Core i5 CPU running OS X with 8.0 GB of main
memory. The classification performance is evaluated using LOOCV
technique.

The classification accuracies as a function of C for different
values of k are shown in Fig. 3(a)–(f). C0 represents the results of
LSC since for C¼0 the CSC reduces to LSC. C�1, C�2 correspond to
Co0 and Cþ1, Cþ2 correspond to C40. As mentioned earlier,
positive values of C decrease the relative angle between the
subspaces while negative values of C increase the relative angle.
The values of Z, tolmf , tol

m
U1

and tolmU2
are chosen to be 2000, 1e�6,

1e�6 and 1e�6 respectively.

For DLBCL and Colon datasets, classification accuracy is
improved by reducing the relative angle between subspaces for
k¼3, k¼10 and k¼1, k¼3 respectively. In the case of Breast
dataset, increasing the relative angle for k¼1 considerably
improves the classification accuracy. For the DBWorld dataset the
classification accuracy of CSC was almost identical to that of LSC.

With respect to the lower dimensional datasets, CSC performed
at least as good as LSC. In the case of Spambase dataset, CSC was
able to slightly increase the accuracy of classification for positive
values of C. The penalty parameter C gives the flexibility to adjust.

5.1. Computational comparisons

We provide the comparative computational results for CSC
against SVM, PCA/SVM and Naive Bayes classifier summarized in
Table 4. PCA was used to reduce the dimensionality of the datasets
prior to SVM classification. Through PCA, components that corre-
spond to 80% of the total variance were used for classification. The
contributed variance of the factors maintained exceed the 70%
threshold [38] due to the relative small amount of samples
compared to the number of features of the data. SVM was trained
using a Radius Basis Function (RBF) kernel. The pair of parameter
settings (k, C) used in CSC in each dataset was: DLBCL (3, 2Eþ10),
Breast (1, �5Eþ03), Colon (3, 5Eþ09), DBWorld (1, 2Eþ03),
Mushroom(10, �1Eþ03) and Spambase (10, 5Eþ03). Naive Bayes
classifier shows the lowest overall accuracy. CSC demonstrates
competitive behavior with respect to dataset dimensionality. The
performance of SVM degrades in high dimensional datasets and
the combined use of PCA/SVM does not perform well as the
number of features decreases. However, CSC remains robust
although it does not necessarily achieve the highest accuracy in
every experiment.

6. Conclusion and future research

In this paper, a new classification algorithm, called constrained
subspace classifier, was proposed and designed for high dimen-
sional datasets. We have shown that the proposed algorithm
outperforms LSC. In addition to approximating the classes well
by individual subspaces, CSC also accounts for the relative angle
between the subspaces by utilizing the projection metric. An
efficient alternating optimization technique is also proposed. CSC
has been evaluated on publicly available datasets and is compared
to LSC. The improvement in classification accuracy shows the
importance of considering the relative angle between subspaces
while approximating the classes. Additionally, CSC seems to be
effective when introduced for lower dimensional subspaces. The
robust nature of CSC reveals that it can serve as a one step method
for for preprocessing-free classification. To this end, CSC presents

−5 0 5 10 15
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10

15

20
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class 2
subspace S1
subspace S2

−5 0 5 10 15
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−5

0

5

10

15

20

class 1
class 2
subspace S1
subspace S2

Fig. 2. Data points generated by N 1 and N 2 in example 2 and the subspaces
generated by LSC and CSC in each of the training folds.

Table 3
Summary table of datasets used for experiments. The first four datasets, namely
DLBCL, Breast, Colon and DBWorld are high dimensional since the number of
features greatly outnumbers the number of samples. The last two (Mushroom and
Spambase) are not high dimensional since the number of samples is greater than
the number of features.

Dataset Reference # Samples # Features

DLBCL [37] 77 5469
Breast [41] 77 4869
Colon [1] 62 2000
DBWorld [20] 64 4702
Mushroom [35] 8124 126
Spambase [28] 4601 57
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an advantage over other popular models for high dimensional
binary classification.

Potential future research directions include a cost sensitive
version for imbalanced classification problems where the sample
numbers of one class greatly outperform the samples of the other.
Imbalanced classification problems are common in many business
analytics areas [33] and in quality control [46]. In this setup one of
the most popular cost sensitive algorithmic schemes is SVM;
however, it is well known that it does not perform well for such
large number of features. Therefore, alternative algorithms able to
simultaneously handle high dimensional datasets and the problem
of imbalanced classes are particularly useful for a number of
applications.

Fig. 3. Classification accuracy of CSC for (a) DLBCL, (b) Breast, (c) Colon, (d) DBWorld, (e) Mushroom and (f) Spambase datasets. C0 represents the results of LSC. C�1, C�2

correspond to Co0 and Cþ1, Cþ2 correspond to C40 used for CSC.

Table 4
Computational comparisons with corresponding classification accuracies Acc (%).
Naive Bayes demonstrates the lowest overall accuracy. Performance of SVM
degrades in high dimensional datasets. PCA/SVM does not perform well as the
number of features decreases. CSC remains robust although it does not necessarily
achieve the highest accuracy in every experiment. Parameter settings k, C of CSC
also appear on the table.

Dataset SVM PCA/SVM Naive Bayes CSC k C

DLBCL 94.8 97.5 75 97.4 3 2Eþ10
Breast 68 68 62.5 63.6 1 �5Eþ03
Colon 75.9 92.1 71.4 90.3 3 5Eþ09
DBWorld 88 88 57.1 89 1 2Eþ03
Mushroom 100 100 88.1 98.9 10 �1Eþ03
Spambase 91 66 56.3 87.9 10 5Eþ03
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Another extension is the development of the stream mining
version that will incrementally retrain as new training data
samples arrive in the form of a data stream. Incremental learning
is useful in cases where the full retraining of a model is not
desired. Such extensions have been proposed for generic SVM
[9,11] and other classifiers [31,16,10,12].

Lastly, a robust optimization version of this algorithm needs to
be proposed for handling datasets that are inexact or uncertain. In
these cases the robust counterpart of the optimization problem
needs to be defined and the solution corresponds to the worst case
realization of the uncertain data [45,44].
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