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Abstract

A number of theoretical approaches related to the n-tuple classification system are
reviewed including Kanerva’s SDM, the n-tuple regression network, the Hamming—
Distance framework and Likelihood Estimation. The limitations of these methods are
pointed out and resemblances that exist between them are underlined. Large scale
experiments carried out on StatLog project datasets confirm the n-tuple method as a
viable competitor to more popular methods due to its speed, simplicity, and accuracy
on the majority of a wide variety of classification problems. A further investigation into
the failure of the method on certain datasets shows its inner workings and turns up
two main problems: difficulties with highly skewed class priors and more importantly,
a mismatch between the scales involved in generalisation, the amount of training data
available, and the volume of the region in which data is likely to exist. This highlights
areas where improvements in the method are needed and further theoretical progress

would be helpful.

keywords: n-tuple classifier, Hamming distance, regression network, Kanerva model, CMAC

code, review, benchmarking, StatLog.
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1 Introduction

The n-tuple classifier, invented by Bledsoe and Browning in 1959 (Bledsoe & Browning,
1959), is one of the oldest practical pattern recognition methods based on distributed com-
putation and amenable to description in terms of neural network metaphors. Although
eclipsed in popularity by methods such as Multilayer Perceptrons and Radial Basis Func-
tion networks, the n-tuple method continues to offer properties which make it vastly superior
for certain common purposes. First among these properties is its speed of operation. The
training algorithm is a one-shot memorisation task, computationally trivial compared to
solving linear systems or minimising nonlinear functions. Another advantage is the sheer
simplicity of learning by memorisation. If this can form the basis of a sound pattern recog-
nition principle, then it is arguable that biological systems could make use of it.

It is prudent to suspect that relatively poor performance will accompany the speed and
simplicity of the n-tuple algorithm. There are many reports of satisfactory results with the
method (Aleksander & Stonham, sh1979a; Bledsoe & Bisson, 1962; Ullmann & Kidd, 1969;
Ullmann, 1969; Tarling & Rohwer, 1993; Rohwer & Lamb, 1993) but few studies involving
comparisons with other methods (Rohwer & Cressy, 1989). Furthermore, most studies use
just one or two small data sets. Therefore a large experiment was carried out, in which the
n-tuple method was tested on 11 large real-world data sets which had been previously used
by the European Community ESPRIT StatLog project (Michie et al., 1994) to test 23 other
classification algorithms including the most popular neural network methods. The results,
presented in section 5.4, show no systematic performance gap between the n-tuple method
and the others, on 7 of the 11 data sets tested. It is easy to recognise the other 4, without
referring to any competing methods, because the n-tuple method performed no better than

random guessing. The experiments therefore suggest that in most cases the n-tuple method
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gives competitive performance, and the cases when it does not are clearly recognisable.
When a fast and simple method proves to be a competitive performer in a large set of
experiments, one would like to know why. Unfortunately, the n-tuple method has not yet
vielded to theoretical analysis as well as the optimisation-based approaches which can be
embedded in Bayesian statistical theory (MacKay, 1992) but there has been some progress.
The main theoretical results are reviewed, discussed, and used as a vehicle for explain-
ing some relationships between the standard n-tuple method, n-tuple methods incorporat-
ing linear regression, radial basis function networks, and the Kanerva associative memory
model. The theoretical tools are then used to develop a semi-quantitative account of why
the method failed on 4 of the 11 datasets. The main theoretical stumbling blocks are also

indicated.

2 The n-tuple recognition method

The n-tuple recognition method is also known as a type of “RAMnet”! or “weightless
neural network”. It forms the basis of a commercial product (Aleksander et al., 1984). It is
a method for classifying binary patterns, which can be regarded as bit strings of some fixed
length L. This is not an important restriction, because there is an efficient preprocessing
method, tailored to the RAMnet’s generalisation properties, for converting scalar attributes
into bit strings. This method is reviewed in section 4. It is also possible to generalise a

special case of the n-tuple method from a classifier to a function interpolator.

! RAMpnets also include stochastic generalisations, pRAMs, to which the n-tuple recognition algorithm is

not applied. These are not considered here.
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2.1 Definition of the standard n-tuple method

A consise definition of the n-tuple method is given here. More descriptive definitions can be
found in (Alexander & Morton, 1995; Aleksander & Stonham, 1979b). Several (let us say V)
sets of n distinct? bit locations are selected randomly. These are the n-tuples. Collectively,
they are called the “input mapping.” The restriction of a pattern to an n-tuple can be
regarded as an n-bit number which, together with the identity of the n-tuple, constitutes a

“feature” of the pattern. The standard n-tuple recogniser operates simply as follows:

A pattern is classified as belonging to the class for which it has the most

(1)

features in common with at least 1 training pattern of that class.

This is the 8§ = 1 case of a more general rule whereby the class assigned to unclassified

pattern w is

N
arglnax 266’ Z B () oi(v) )

=1 VED.

where v ranges over D,, the set of training patterns in class ¢, Og(z) = @ for 0 < z < 0,
Ogy(z) = 0 for x > 6, 6, ; is the Kronecker delta® (§;; = 1if i = j and 0 otherwise.) and

a;(u) is the ith feature of pattern u:

Here uy, is the kW bit of u and n:(7) is the jm bit location of the it n-tuple.

Small values of 6, greater than 1, are sometimes found to be most effective (see section
3.3).

With ' classes to distinguish, the system can be implemented as a network of NC

nodes, each of which is a 1-bit random access memory (RAM); hence the term RAMnet.

?Relaxing the requirement that an n-tuple has n different bit locations amounts to introducing a mixture
of differently sized n-tuples. Note the restriction does not disallow a single pattern component from being

shared by more than one n-tuple.

*The comma is unconventional but is used here optionally for extra clarity.
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(Equivalently, it is a network of N RAMs, each containing a C-dimensional bit vector.) The

th

memory content mg;, at address a of the i node allocated to class ¢ is set to

Meja = 69 Z 6oz,ozi(’l)) . (4)

veD,

Note, that symbol a denotes any address value in range [0,2" — 1] and a;(u) refers to one
particular address value gererated by the input pattern u.

In the usual # = 1 case, the 1-bit content of m.;, is set if any pattern of D, has feature
a; and unset otherwise. Recognition is accomplished by summing the contents of the nodes
of each class at the addresses given by the features of the unclassified pattern. That is,

pattern u is assigned to class

N
argimax (Z mciai(U)) : (5)

=1

To generalise the n-tuple classifier to a function interpolator, a vector m;, of the appro-
priate numeric type for the range of the function is stored at each address a in each node

. Training is accomplished by assigning these vectors to the averages

mi = Z Y(U)(Sa,ai(v)/ Z 6oz,ozi(’v)7 (6)

veD. veD.

where Y (v) is the desired output for input bit string v. The network output, or response

to an arbitrary input pattern w is

1

The 6 = oo version of the classifier (4), (5) is recovered when Y (v) is the indicator function
for the class ¢(v) of v: Y (v) = 6. .v). Experimental experience with the § = oo version
of the classifier is disappointing (Bledsoe & Bisson, 1962), possibly for the reasons given
in section 3.3, and this may bode ill for the interpolator, which is little studied. However,
the interpolator is at least of theoretical interest for its connection with the Kanerva model

explained in section 3.2.1.
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2.2 Practical experience

Simple theoretical considerations and practical experience provide fairly strong guidance for
setting the architectural parameters, n, N, and 8. To begin with, the fact that the network
response to an arbitrary pattern is essentially an average over the n-tuples (5) means that
the results should become increasingly consistent with increasing N. Because the n-tuple
method can process thousands of patterns within seconds, there is little need for any data
analysis method other than explicit measurement of the variation of performance as the
input mapping is re-randomised a few times for a given N. N is increased if the variation is
unacceptably high. Practical experience is that values of 100 to 1000 usually turn out to be
adequate. It is commonly observed that the network’s output for the winning class exceeds
that of the second runner up by an uncomfortably small margin, such as 3 n-tuples out of
1000, but that the correct class nevertheless wins consistently. Perhaps most n-tuples give a
constant response to most patterns, so effectively only a fraction of those in the network are
contributing to the decisions. This suggests that many n-tuples could be trimmed from the
network, but such variations on the method are vulnerable to overtraining and complicate
the theory. The phenomenon deserves further study.

Practical experience tends to favour small values of the threshold 6, particularly 8 = 1.
A possible rationale for this is given in section 3.3. Many considerations apply to the
choice of n-tuple size n. Experimentally it usually turns out that bigger is better, up to an
impractically large size (Rohwer & Lamb, 1993), which requires an unreasonable amount of
training data, but n = 8 is usually enough, and n = 3 is sometimes adequate. This can be
explained qualitatively by observing that information about the correlations among up to n
bits are available to the classifier. It never hurts to take account of higher-order correlations,

but it is plausible that 8th rder correlations contain all that is needed for most binary data
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sets. Another intuition is that the training process should write to neither too small nor
too great a proportion of the 2™ addresses at each node. If n is too large, the sub-patterns
occuring in the training data will be unlikely to recur in the test data, whereas if n is too
small, the memory can saturate, in which case m.,, = ¢ for most memory locations, so
most discriminative power is lost (Ullmann, 1969), (Tarling & Rohwer, 1993). These issues
are further complicated if the class priors are highly skewed, so that one class has far more
training data than another. Although a precise theory is not available, there are strong
enough theoretical tools to gain considerable insight, as is demonstrated in the discussion

of the experimental results.

3 Theoretical Status of the n-tuple method

The n-tuple classifier is a memory-based method. Such methods differ from optimisation-
based methods, such as Back Propagation of error through multi-layer perceptrons, in two
important ways. Firstly, “hidden” representations (or “features”) are selected randomly,
and secondly, training is a simple one-shot memorisation task involving these features.
These differences give memory-based methods an awesome advantage in training speed.
Radial Basis Functions obtain part of this speed advantage by selecting features randomly
(Broomhead & Lowe, 1988), and multi-layer perceptrons can often be trained faster with
little or no loss of performance by using fixed random weights into the hidden layers (Gallant
& Smith, 1987; Sutton & Whitehead, 1993). However, this does not give the speed and
simplicity that training by mere memorisation provides.

In spite of many useful advances (Austin, 1994; Aleksander & Stonham, sh1979a; Flana-
gan et al., 1992; Bledsoe & Bisson, 1962; Ullmann & Kidd, 1969), there is no theory of

n-tuple networks of the standard of the sophisticated statistical techniques available with
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optimisation-based methods (MacKay, 1992). It is not particularly difficult to design new
training algorithms for the n-tuple architecture in order to make these statistical methods
applicable (Tattersall et al., 1991; Luttrell, 1992; Rohwer, 1995), but this approach sidesteps
the interesting questions instead of answering them. These modified methods reduce the
speed and simplicity advantages as well.

The main tools for understanding the standard n-tuple network are reviewed here, and
used to place the n-tuple net into context with similar methods. These tools are used again

to explain the experimental results.

3.1 Approaches based on Hamming Distance

The most productive theoretical concept for understanding the n-tuple method has been

“tuple distance” and its nonlinear statistical relationship with Hamming distance.

3.1.1 Tuple distance and Hamming distance

The main theoretical results on the n-tuple method provide a relationship between a “tuple
distance” relevant to the network’s generalisation properties, and the Hamming distance
between training and test patterns. The tuple distance p(u,v) between patterns w and v

is the number of tuples (of a given input mapping) on which the patterns disagree:

N
plu,v) =N — Z‘Sai(u)m(’v)' (8)

=1
The number on which they agree, N — p(u,v), will be called the “tuple score.” An elemen-
tary argument based on the random selection of the n-tuple inputs from the L bits available

shows that patterns v which lie a fixed Hamming distance H(u,v) from any one pattern u

are distributed binomially in tuple distance:

o= e (- (-7) ) (- 5) )



The Theoretical and FExperimetal Status of the n-tuple Classifier 10
More complicated expressions are available for more constrained n-tuple sampling proce-

dures (Tattersall & Johnson, 1984). Distribution (9) gives an expectation value for p of

ot = ol = (1- (1-2)), (10)

and indicates that p typically strays from this value by the standard deviation

=51 2" (- ()]

This is illustrated in figure 1. If the patterns are nearby (H < L), then a convenient

approximation is

p(H)~ N (1—e"T). (12)

The n-tuple sampling variations then make p(H ) uncertain by about \/p(H).

It is clear from (12) that proximity in Hamming distance plays a role in the generalisation
behaviour of n-tuple networks. Consider a network trained on just one example v of class
¢, and tested on a pattern v Hamming distance H from wv. Classifications are based on

al . . H(U,D)
the network response chmi(u) to pattern w, which will be about Ne ™™ T . Hence

=1

one could say that the network generalises from training pattern v to all patterns within
a Hamming distance of about L/n of v. Figure 1 shows a “clean” case in which the
training patterns within L/n of a test pattern are predominately of the correct class. In
our experience it is far more usual for many incorrect patterns to populate this region as
well, but the classifier seems to work anyway. It would appear that the training patterns
nearest a test pattern tend to match on tuples (“overlap”) no more often than patterns of

any other class.
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3.1.2 Training Data overlap on tuples

A network trained on a set of patterns {vy,...,vr} could respond to pattern w by any

amount between N min(1l,max,e™"" 2~ ) and Nmin(1,> ,e " L ), depending on
the correlations between the training patterns, as manifest in “overlap effects”. Unfortu-
nately, this circumstance limits the usefulness of tuple distance for explaining the standard
n-tuple method. Because of a combinatorial explosion, there is no feasible method of mea-
suring tuple correlations. Similar problems crippling an attempt of full formal analysis of the
method (Stonham, 1977) for datasets of arbitrary size have been reported. However, some
insight into the mechanism of the RAMnet can be gained by analysis of the experimental
data.

Overlap effects are displayed in figure 2. Figures 2a and 2b show the network output
for a test pattern as training patterns are added in Hamming distance order from the test
pattern. For figure 2a, the threshold is 8 = 1, and for figure 2b it is § = oo, effectively
ignoring overlap in that the tuple scores are added for all the training patterns. Figure 2b
shows that distant patterns of the incorrect class match the test pattern on many n-tuples,
but figure 2a shows that most of these subpatterns had already turned up in closer training
patterns. Figure 2¢ shows the number of new RAM locations accessed as training patterns
are accumulated, regardless of whether these are accessed by the test pattern. One class is
disadvantaged by a smaller prior probability, and correspondingly fewer training samples,
but it has the advantage that it populates new RAM locations more rapidly. Whereas the
more probable class is showing signs of levelling off in this respect, the less probable class
is not, so it seems likely that if more data were available (in the same proportions), then
the test pattern would be more likely to be classified correctly with the less probable class.

This scenario was frequently observed in datasets with skewed priors, and motivates the
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hypothesis that errors would have been reduced if more data were available.

3.2 Related methods

Tuple distance can be used to compare the n-tuple network to Kanerva’s sparse distributed
memory, the n-tuple regression network or single-layer lookup perceptron, and the familiar
radial basis functions network. The n-tuple network can also be interpreted as a crude

likelihood estimator.

3.2.1 The Kanerva Model

The n-tuple network is related to Kanerva’s Sparse Distributed Memory model (Kanerva,
1988; Songcan & Jun, 1992), which has also been developed theoretically using an “overlap”
measure similar to (12). Although intended mainly as an associative memory, it is easily
generalised for classification problems or function interpolation problems. The interpolation
version is presented here.

Instead of n-tuples, a set of N bit strings are randomly selected from a uniform distribu-

tion. These are used as centres £; of hard-sphere radial basis functions ¢; of binary vectors

1 H(g,v)<r
di(v;r) = ( ) ) (13)
0 H(&,v)>r)

with a somewhat carefully chosen radius r. Memory space for a vector in the range of the

function to be approximated is associated with each centre. The memory at centre 7 is set

to
Z Y (v)pi(v;r)
m§K) _ UGDZ: o (14)

during training. Here Y (v) is the desired output for input pattern v. The output Y (v)

(%)

and memory 7712»K can belong to any space in which a weighted average can be defined.
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For classification problems, Y(v) is an indicator function, and for an associative memory,
Y(v) =wv.
The network response to test pattern w is
Z mEK)qbz(u, T)
7
Sown
i

y () =

which is
> Y(”)Z@(U;T)@(U;T)
y () = U5 Z (16)

D di(vir)gi(u;r)

veD ¢

in terms of the training data. (A further thresholding operation is required if a the output
is to be a bit string.) Fach training pattern v contributes its desired output Y.(v) to an

average weighted by
N — p) (v, u) & Z oi(v; )i ), (17)

the number of centres within Hamming distance r of both the training pattern and the
test pattern. Evidently, N — pgK)(v,u) plays a role similar to the tuple score, with centres
within distance r of both patterns being counted instead of n-tuples. Due to the random
placement of centres, the expectation of N — pgK)(v,u) is also a function pgoK)(H(u,'u)) of

the Hamming distance H(v,u), although it is more complicated than (10) or (12). The

exact form is a sum of products of binomial coefficients which can be approximated by

G (H)~ N (1 / 1 b -ttt (18)
~ - — ¢ =
Pr /L 272 (1 — )

for 0 € H < L.

To carry the comparison further, observe that the interpolative n-tuple network (6), (7)
can be regarded as a special case of the Kanerva network (14), (15), if the Hamming distance
in (14) and (15) is replaced with a Hamming distance restricted to a tuple. Specifically,

a Kanerva centre &, can be associated with each memory location « at each n-tuple ¢ by
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defining all bits of £, arbitrarily except for those involved in the jth input mapping. These
n—1
bits must form subpattern a: Z fm(j)ﬂQj = a. The Hamming distance is replaced by
=0
n—1
1-46 dr=0.
JZZ%( é-ni(J)’um‘(J)) anar

3.2.2 The n-tuple regression network

The fact that the n-tuple network response to a test pattern is dominated by the (Hamming)
nearest training patterns suggests that it might be formally related to a nearest neighbour
method or a local basis function method. A modified method makes the most of this
resemblance. Called the n-tuple regression network (Allinson & Kotcz, 1994b), or the single-
layer lookup perceptron (Tattersall ef al., 1991), it treats the interpolative n-tuple network

response (7) as a weighted sum of basis functions:

N N 2™-1
Yo = D Mciay(uy = 2 D Meiado oi(u): (19)
=1 1=1 a=0

From the latter form, the network can be regarded as a linear transformation applied to the
outputs of the rather unusual basis functions é o, (u), one for each combination of 7 and a.
Training is easily accomplished by a least mean squares (LMS) method.

Expression (19) can be related to a basis function expansion in the the exponentials
appearing in (12),

HUVy)
L

Yo = Z Wege " (20)
provided that patterns v, and weights w., can be found such that
Mejq = chaéa,a,‘(’va)' (21)

(Plugging (21) into (19) and using (8) gives (20) within approximation (12).)
One way to arrange this is to choose all the patterns v, so they are separated from each

other by tuple distance NV; ie., none of the patterns v, match each other in any n-tuple.
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(This is possible if and only if the number of these patterns is no more than 2".) In this
situation there is at most one @ for any given n-tuple ¢ and address a; such that a;(v,) = «,

which may be called a(7,a) when it exists. Then the choice

Weq(io) a7, )defined

Mea; = (22)

0 a(t, a)not defined
satisfies (21). Such a network acts like the radial basis function network (20) with a
(Hamming?) spherically symmetric local basis function of radius roughly L/n centred on
each pattern v,, even though the patterns v, do not appear in the implementation (19), and
to the benefit of computation speed, no distance calculations H(u,v,) are ever performed.
If the training patterns meet the separation condition, they can be identified with the
basis function centres v,. To see this, observe that the assumed one-to-one correspondence
between pattern ¢ and address a;(v,) in the ith n-tuple memory implies that the set of
memory locations corresponding to one pattern is disjoint from the set addressed by any
other. Therefore the LMS optimisation problem involving (19) will be symmetric with
respect to the N parameters m ;,(v,) for each a and c. Hence these parameters will all
be equal in the solution, and one can meaningfully define m., = Mg, w,)- The network

response to a test pattern (19) can then be re-written by replacing the sum over addresses

with a sum over training patterns:

N
Yo = DD Mein; (0a)Oas(Va),0i (1) - (23)
=1 a

Then it is clear from (8) and (20) that one can identify mg, = weq.
The interpretation of an n-tuple regression network as an effective radial basis function

network with a function centre on each training pattern requires the patterns v, to be tuple-

*The method can be modified so that the effective basis functions have more nearly Euclidean-spherical

receptive fields (Kolcz & Allinson, 1994).
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separated by N. This condition would be valid at least to a good approximation if their
Hamming separation were large compared to L/n. The analysis of our experiments typified
by figures 1 and 7 does not suggest that this is likely to happen, and even in principle it
may not be easy to arrange this and ensure good coverage of the pattern space by the local
effective basis functions. For this, the data needs to just happen to be arranged so that each
training pattern of a class is about L/n bits away from it’s nearest neighbour. To do as
well as possible on both conditions, all other neighbours should be much further away, but
the triangle inequality requires the next nearest neighbour to be within 2L /n bits. If the
data just happened to be suitably arranged for this interpretation, then a suitable choice of
n-tuple size n could be stated in terms of the nearest neighbour distance dyy as n = L/dyy.

Even if the training data is not distributed so that a basis function interpretation is
possible with the training points serving as function centres, it may still be possible to
obtain a basis function interpretation by finding a solution, at least approximately, to (21).

In any case, there is no reason to suppose that the method will fail when the interpretations

do.

3.3 The n-tuple classifier as a crude likelihood estimator

An alternative to using tuple distance to formulate a theory of n-tuple networks is to view
them as probability estimators. With # = oo, expression (4) for the memory content m;,
can be interpreted as an estimate of the probability P;(alc) (up to a normalisation factor)
that a data point from a given class ¢ will have subpattern a in n-tuple ¢. Assuming these
distributions for different n-tuples to be independent of each other, the joint distribution

over all the sub-patterns taken together is

Plalc) = HPi(Oé|C)- (24)
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This can be used for maximum likelihood classification, or converted to posterior class
probabilities using Bayes’ rule with class priors P(c), if they are available. The independence
assumption lacks plausibility, because it would be remarkable for the correlations required
to make the classes distinguishable not to be reflected in correlations between the n-tuples,
but nevertheless, good results have been reported with this formulation, which has been
re-invented from time to time (Bledsoe & Bisson, 1962; Sixsmith et al., 1990; Badr, 1993).
Aside from its implausibility, its main practical problem is that factors of zero appear if a
naive estimate of P;(alc) is used for subpatterns which never appear in the training data.
In practice these are replaced with a small ad hoc positive constant, say ¢, leaving scope for
more principled approaches to estimating these probabilities.

The n-tuple method with finite threshold can be seen as a scaled and translated approx-
imation to the logarithm of (24). Specifically, if test pattern u has sub-patterns a(u), and
the T, training patterns from class ¢ supply the tallies T,;, = Z bo,ay(v) used to estimate

VeD.
Pi(ale) by Teio/Te, then for suitable choices of € and 6, the network responses in (5) will

approximately satisfy

log (TCNP(O‘(U)|C)) N log T: + log P;(a(u)|c)
P e s (14
—loge = —loge
N N
log T,
= 1 L) o= T... 2
> (1 ) = o) (25)

as illustrated by figure 3. For integer tallies, the approximation becomes arbitrarily accurate
for 8 = 1 as ¢ — 0. Hence the standard n-tuple method could be justified this way
if the independence assumption were acceptable and the absence of sub-patterns in the
training data could be taken as strong evidence that the corresponding probabilities are

tiny. Essentially, the method counts the number of factors of € in (24).
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4 Preprocessing of scalar attributes

A RAMnet classifies bit strings, but the attributes of the patterns in the StatLog data sets
are mostly real numbers or integers. Given that generalisation from numerical attributes
should be related to arithmetic differences, and generalisation in RAMnets is related to
Hamming distances, it is important to transform numbers into bit strings in such a way that
numerical proximity is transformed into Hamming proximity. A memory-efficient method
tailored to the generalised Hamming distance underlying RAMnet generalisation has been
provided by Allinson (Allinson & Kolez, 1993), (Allinson & Kolez, 1994a), using a combi-
nation of CMAC and Gray coding techniques. The prescription for encoding integer z is to

concatenate K bit strings, the jm of which (counting from 1) is x"}i;_l, rounded down and

expressed as a Gray code. The Gray code of an integer ¢ can be obtained as the bitwise
exclusive-or of 7 (expressed as an ordinary base 2 number) with ¢/2 (rounded down). This
provides a representation in a /" bits of the integers between 0 and (2* — 1)K inclusive, such
that if integers @ and y differ arithmetically by K or less, their codes differ by Hamming
distance |z —y|, and if their arithmetic distance is K or more, their corresponding Hamming
distance is at least K. This is illustrated in figure 4, and more comprehensive illustrations
are given by (Allinson & Kolcz, 1993).

Because tuple score decays exponentially with Hamming distance 12, there should be
relatively little ill effect if a training pattern further than L/n bits away from a test pattern
is replaced by another training pattern further than L/n bits away (although figures 1 and
7 indicate that L/n is a very approximate estimate). Thus if there are A scalar attributes,

one can expect the non-linearity of the CMAC/Gray mapping to do little harm if K > %.
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There are a/ bits per attribute, so this condition is

a< n. (26)

Scalar differences up to £ K fall within the linear region of the mapping. This represents a

2K

fraction I

or about 2'~% of the largest separation allowed. With a« < n, the “gener-

» LIA _ oK
n

alisation Hamming distance = 2% corresponds to a scalar separation of :l:%, which

2a
n(2¢-1)

is the fraction ~ 22179 (for a > 1) of the largest possible scalar separation.

For a = 1, the mapping becomes the “thermometer code”, in which integer x is mapped
to a bit string with the last & bits set and the remaining K — 2/ K unset. If K is adjusted to
preserve the input interval, then larger a values give shorter codes, which should be similarly
effective as long as @ < n and scalar attributes separated by more than fraction 2'~% of
their dynamic range can be regarded as dissimilar as far as generalisation is concerned.

Figure 5 shows the test set classification accuracy as a function of n for a 100-bit
thermometer code, a 48-bit (¢ = 3, X' = 16) code and a 40-bit (¢ = 5, K = 8) code
for one of the datasets studied. For small values of n, the longer codes perform better,
presumably because they are linear over a larger fraction of the dynamic range. But with
increasing n, the “generalisation distance” shrinks, so more and more of the linear region
of the longer codes is ignored by the RAMnet, eliminating their advantage. Meanwhile,

accuracy improves with n, eventually levelling out. This is probably due to making higher-

order correlations available, as well as reducing saturation effects.

5 The experiments

Extensive experimental trials were conducted in order to benchmark and study the n-tuple

algorithm.
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5.1 Selection and pre-processing of StatLog data sets

The European Community ESPRIT project 5170, the StatLog project, was designed to
carry out comparative testing and evaluation of classification algorithms on large scale
applications. About 20 data sets were used to estimate the performance of 23 procedures.
These are described in detail in (Michie et al., 1994). Each of the larger data sets (with
many more than 1000 samples) were randomly split into training and testing partitions.
Different methodologies (cross-validation and bootstrap) were applied to the smaller data
sets. This study used the large data sets, which are summarised in table 2. There are 11 of

these.

5.2 Experimental details

The CMAC/Gray parameters used were K = 8 and a = 5, giving 40-bit representations of
the integers in [0,248]. All scalar attributes were linearly rescaled and rounded to obtain
integers in this interval. In the Letter data set (See Table 2), where the attributes can
take on only 16 values, it would be more reasonable to use a one-out-of-N encoding with
strings of 16 bits, but the CMAC/Gray procedure was used anyway for the convenience of
uniformity.

The threshold € was set to 1 in all the experiments reported here, the n-tuple size n
was set to 8, and N was set to 1000 n-tuples. These values for n and N yield the best
classification results and have been determined experimentaly as discussed in section 2.2.
The results reported are averages over 10 different random input mappings n. Using n = 6

gave similar results.



The Theoretical and FExperimetal Status of the n-tuple Classifier 21

5.3 Time and Memory requirements

Computation time requirements were insignificant in these experiments, which were carried
out with a C+4 program on a SUN Sparc workstation. For example, an 8-tuple network
can be trained on the 2000 57-attribute training patterns of the BelgianIl data set in about
49 seconds. Sixteen of these seconds are needed just to read in the data; another 4 to do
the CMAC/Gray conversion of the floating point attributes; and the final 29 to train the
RAMnet itself. Testing the same 2000 patterns takes slightly longer, 37 seconds instead
of 29, because a loop over classes is needed within the loop over n-tuples. Detailed timing
statistics are not published for the algorithms used in the StatLog project, but it is clear
that popular neural network algorithms such as Back Propagation and even the relatively
fast Radial Basis Functions are slow by comparison. The algorithm is highly parallelisable,
so if it were important for the RAMnet to be even faster, special purpose parallel hardware
could be designed or purchased (Aleksander et al., 1984). It would be feasible for a biological
system to implement a highly parallel but otherwise trivial calculation along these lines.

The storage requirements were moderate in most cases. In the most extreme case

(Shuttle) 128kB of RAM per class was needed.

5.4 Results

The classification results for each algorithm attempted with each data set are presented
in figure 6. Table 1 gives a brief description of each algorithm with the symbol used to
represent it in the figure. The classification error rates increase from left to right, and are
scaled separately for each data set, so that they equal 1 at the error rate of the trivial
method of always guessing the class with the highest prior probability, ignoring the input

pattern.
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As remarked in section 5.2, the results plotted for the n-tuple recognition algorithm
are averages over 10 randomly selected input mappings. If the corresponding standard
deviations were plotted as error bars in figure 6, they would be obscured by the dots
representing the means.
Algorithm codes appear in Table 1. Classification error rates increase from left to right,
and are scaled separately for each data set, so that they equal 1 at the error rate of the
trivial method of always guessing the class with the highest prior probability, ignoring the

input pattern. The arrows indicate the few cases in which performance was worse than this.

6 Analysis of Results

The n-tuple method delivered competitive accuracy on 6 of the data sets tested (Shuttle,
Letter, Tsetse, Belgianl, Chromo, Satlm), performed modestly on 1 (DNA) and failed
entirely on the other 4 (Belgian II, Cut50, Cut20, Technical). Further experimental and
theoretical analysis was carried out to explain the failures.

The available tuple-distance theory is not amenable to treating overlap effects, even
though figures 2, 1 and 7 (and many like them) show these to be important. Therefore we
generated and inspected many detailed Hamming distance vs. tuple score plots like figure
1 in order to develop a qualitative impression of the validity of this theory when there are
many training patterns.

Ignoring overlap effects, a test pattern should be assigned to the class of most of the
training patterns that lie nearer to it, in Hamming distance, than about L/n. A glance
at figure 7 shows that the distribution of tuple distances bears no systematic relationship
to L/n, but nevertheless it was found that the closest patterns did tend to determine

the decision, at least when the class priors were roughly equal. Figures 7a and 7b show
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examples of this, which was by far the most common situation encountered. Figure 7c
shows an error due to overlap effects, abetted by a highly skewed prior. The 4 troublesome
datasets had highly skewed priors and predominately showed this pattern, although the
very easy Shuttle dataset also had highly skewed priors. Figure 7d shows a relatively rare
situation in which overlap effects rescued a pattern which would have been misclassified,
judging by its Hamming-near neighbours. It would appear that although overlap effects are
quantitatively important, they tend not to alter the conclusion that the near neighbours
determine the decision, at least when the priors are relatively uniform.

Given that Hamming neighbours tend to determine the classification outcome, it seems
sensible to suspect that test patterns in the 4 problematic data sets have a shortage of good
neighbours. It turns out that they simply don’t have enough neighbours at all, within the
distance scales relevant to RAMnet generalisation. To generalise properly, a test pattern
must have at least 1 training pattern within a Hamming distance of about L/n. Distributed
evenly over A CMAC/Gray-mapped scalar attributes, this is a scalar difference of about
%21_“, with the attributes scaled to lie between 0 and 1, as explained in section 4. Therefore
each training pattern can provide information about any test pattern which falls within a
hypercube of volume roughly (%21_“)A. The number of such cubes required to cover the
region of attribute space where test data is likely to appear can be crudely estimated by
approximating this region as a hyper-rectangle with edge lengths given by the eigenvalues
of the sample covariance matrix of the training data. Any eigenvalues smaller than %21_“
should be rounded up to this value, because the covering cubes must be at least this thick.
The number of “generalisation hypercubes” required to cover the data region is therefore
roughly ﬁmax(l,/\i%Q‘l_l) for 1 < a < n, where the A; are the eigenvalues. Figure

=1

8 shows this lower bound on the number of training samples required, for each dataset
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studied, taking @ = 5 and n = 8 as in the experiments.

Aside from Technical and DNA, the problematic datasets stand out as several orders
of magnitude more deficient in training data than the others, some of which are mildly
deficient according to this crude estimate. DNA is special in that its Boolean attributes were
treated as integers, so it’s data distribution will be highly non-Gaussian and therefore poorly
described by the covariance matrix. The Technical data set turned out to be coverable by
just 1 hypercube, according to this estimate. Presumably then, each of its patterns looks
the same to the RAMnet, and this accounts for its failure. Perhaps a non-linear rescaling
of its attributes, such as histogram equalisation, would help. This possibility remains to be
pursued.

It is not possible to address the data deficiencies by supplying more data, especially
when several orders of magnitude more samples are needed, but it is possible to tweak the
RAMnet parameters to enlarge the “generalisation cubes”. However, there is less room to
maneuver than one would like. To enlarge the cubes, n must be decreased, but this risks
degradation of performance due to loss of high-order correlation information, as indicated in
figure 5. Decreasing n also requires decreasing a, if the constraint @ < n is to be respected,
keeping L/n within the linear region of the CMAC/Gray mapping. Low a values give less
memory-efflicient representations of scalars, at any given resolution. Systematic experiments
varying the parameters did not produce significant improvements on the 4 problematic data

sets (or the others). A more far-reaching improvement in the algorithm is required.

7 Conclusions

Extensive experimental trials, on a scale uncommon for any algorithm, were carried out

with the n-tuple classifier. The fact that this was possible at all testifies to the method’s



The Theoretical and FExperimetal Status of the n-tuple Classifier 25
speed, which derives from its simple principle of learning by 1-shot memorisation of random
features. In 6 of the 11 datasets tested, this speed and simplicity can be enjoyed without
sacrificing classification accuracy relative to 23 other slower methods, including the most
popular neural network methods. Clearly, the n-tuple algorithm should be considered by
every neural network researcher before a more sophisticated and therefore slower method is
applied.

The theoretical tools available for the n-tuple method were reviewed and used to place it
into context with other algorithms. These tools were also used to explain what went wrong
on the 4 data sets which gave poor results. One problem is that skewed class priors tend
to be problematic in a way that is difficult to quantify using current theories of “overlap
effects”. A more fundamental problem is that one parameter, the n-tuple size n, controls
both the distance-scales associated with generalisation behaviour, and the complexity of
the random features used to discriminate classes. For some data sets it is not possible to
find one setting suitable for both of these considerations.

In spite of its imperfections, the n-tuple method demonstrates that its underlying princi-
ple, learning by memorisation of random features, is a powerful one. It should be rewarding
to develop the theory further, especially by inventing practical approximations to describe
overlap effects, and to invent improved methods which incorporate the underlying principle

in a more flexible way.
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Figure 2

Figure 3

Figure 4
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Tuple score vs. Hamming distance for a fixed test pattern w and training patterns
{vy,...,vr}. The score of u was computed for the system trained on just one pattern
v;. Distances between patterns of the same class are marked *, and o is used for
different classes. Functions (10) and (11) are plotted as 3 standard deviation error
curves. The total number of patterns of the correct class (dotted line) and incorrect
classes (solid line) are plotted in the margins as functions of Hamming distance (top)
and tuple score (right). The means of these distributions are indicated by * and o

marks. The “generalisation distance” L/n is indicated by a vertical dotted line.

a) actual network response to a test pattern u; b) accumulated network response (as
though patterns never overlapped on any tuples) and ¢) the number of new RAM
cells addressed as a function of training patterns {vq,...,vr}. Light lines are used
to indicate the discriminator associated with the class that generated w, dark lines
denote the other class. The training data is sorted by the Hamming distance to the

test pattern.

1+ _I—O‘ﬁ)% truncated to 0 for 7" < € (dark lines) for e = 0.25,0.05,0.005 and 0.0001, and
O¢(T') (light lines) for # = 1,2 and 3, as functions of T'. This shows that (25) can be a
reasonable approximation at integral values of T in some circumstances, particularly

for ¢ — 0 with 8 = 1.

Hamming distance between two CMAC/Gray-transformed integers vs. their arith-
metic difference, for 3 x 10? randomly chosen pairs of integers. K = 8 and a = 5. The
relationship is linear for Hamming distances up to K, and the transformed distance

is bounded below by K for greater Hamming distances.



Figure 5

Figure 6

Figure 7

Figure 8
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RAMnet’s performance on Cut20 as a function of tuple size n for different values of
a and K. The error bars of size + 1 standard deviation are centred around the mean

performance measured for 10 runs.

Results for N-tuple (®) and other algorithms.

Tuple score vs. Hamming Distance: a) Classification error (¥=952, 0=970) due to
high number of NN from the incorrect class; b) Correct classification (¥=803, 0=564)
resulting from the domination of NN patterns of the correct class; ¢) Classification
error (x= 805, 0=884) caused by exceptionally large number of patterns from the
incorrect class in the tail of the distribution (skewed priors); d) Correct classification

(¥=996, 0=994) thanks to the smaller tuple overlap on patterns from the correct class.

The number of hypercubes required to cover the space occupied by data. The datasets
on which n-tuple classifier performed poorly are printed in bold face. A star denotes

the existence of skewed priors.
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RAMnets.

(®) n-tuple recogniser.

Discriminators.

() Back Propagation in a 1-hidden-layer MLP.

(#) Radial Basis Functions.

(©) Cascade Correlation.

(&) SMART (Projection persuit).

(@) Dipol92 (based on pairwise linear discriminators).
(6) Logistic discriminant.

(©) Quadratic discriminant.

(®) Linear discriminant.

Methods related to density estimation.

a) CASTLE (Probabilistic decision tree).

B) k-NN (k nearest neighbours).

v) LVQ (Learning Vector Quantisation).

) Kohonen topographic map.

) Naive-Bayes (Estimate assuming independent attributes).
) ALLOCS80 (Kernel function density estimator)

o TN TN TN

6
€
Decision trees.

(a) NewlD (Decision Tree)
(b) AC? (Decision Tree)
(c) Calb (Decision Tree)
(d) CN2 (Decision Tree)
(e) C4.5 (Decision Tree)
(0
)
)
)

CART (Decision Tree)
(g) IndCART (CART variation)
(h) BayesTree (Decision Tree)
i) ITrule (Decision Tree)

Table 1: Synopsis of Algorithms with symbols used in Figure 6.
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Name Largest Prior Training Patterns Description
Classes Attributes Testing Patterns
Classify measurements on simulated
Belgianll | 2 | 0.924 57 real 2000 | 1000 | large scale power system as leading to

stable or unstable behaviour.

50 measurements from a candidate seg-
mentation point in joined handwritten

Cut50 2 0.941 50 real 11220 1 7480 text. Classify as suitable cut point or
not. Commercially confidential data.
Cut20 9 0.941 920 real 11220 | 7480 Best 20 attributes (by stepwise regres-

sion) from Cut50.

Commercially confidential. Appears to

Technical | 91 | 0.230 56 4500 | 2580 | be generated by a decision tree. Most

attribute values are 0.

Sequences of 60 nucleotides (4-valued)
classified into 3 categories.

DNA 3 | 0.525 | 180 Boolean | 2000 1186

3x3 pixel regions of Landsat images. In-
SatIm 6 | 0.242 36 integer 4435 | 2000 | tensities in 4 spectral bands. Classified
into 6 land uses at central pixel.

Chromo | 24 | 0.044 16 20000 | 20000 Images of Chromosomes, reduced to 16

features.

As Belgian IT with a smaller simulation.
Belgianl | 2 | 0.5664 28 real 1250 | 1250 | Attributes thought to be least informa-
tive omitted from simulation.

Classify environmental attributes for
presence of Tsetse flies.

Tsetse 2 0.508 14 real 3500 1499

Images of typed capital letters, de-
Letter 26 | 0.045 | 16 16-valued | 15000 | 5000 | scribed by 16 real numbers discretised

into 16 integers.

Classification problem concerning posi-

Shuttle 7 | 0.784 9 real 43500 | 14500 | tion of radiators on the Space Shuttle.

Noise-free data.

Table 2: Descriptions of data sets used.




