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a b s t r a c t 

Industry 4.0 encapsulates methods, technologies, and procedures that transform data into informed de- 

cisions and added value in an industrial context. In this regard, technologies such as Virtual Metrology 

or Soft Sensing have gained much interest in the last two decades due to their ability to provide valu- 

able knowledge for production purposes at limited added expense. However, these technologies have 

struggled to achieve wide-scale industrial adoption, largely due to the challenges associated with han- 

dling complex data structures and the feature extraction phase of model building. This phase is gener- 

ally hand-engineered and based on specific domain knowledge, making it time consuming, difficult to 

automate, and prone to loss of information, thus ultimately limiting portability. Moreover, in the pres- 

ence of complex data structures, such as 2-dimensional input data, there are no established procedures 

for feature extraction. In this paper, we present a Deep Learning approach for Virtual Metrology, called 

DeepVM, that exploits semi-supervised feature extraction based on Convolutional Autoencoders. The pro- 

posed approach is demonstrated using a real world Semiconductor Manufacturing dataset where the Vir- 

tual Metrology input data is 2-dimensional Optical Emission Spectrometry data. The feature extraction 

method is tested with different types of state-of-the-art autoencoder. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In recent years, industries have transitioned to collecting and

archiving huge amounts of data from their production processes,

leading to the so-called Big Data era. The challenges that Big Data

pose in industrial environments are various [1] and the scientific

community is in a continuous effort to propose innovative solu-

tions to address them. One of the main problems in Industry 4.0

[2] is how to exploit the available data in order to obtain informa-

tion that has business value. Increasingly, Machine Learning (ML)

technologies that generate data-driven statistical inference models

are being considered as a means of addressing this problem. 

In Semiconductor Manufacturing, data-driven models play an

important role in Advanced Process Control (APC) [3] where the

complexity of the processes involved does not allow the creation
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f accurate physical models. Technologies such as Virtual Metrol-

gy (VM) [4–6] , Predictive Maintenance [7] , Fault Detection and

lassification [8] , and Yield Prediction [9] have grown in popu-

arity, with consistent improvement in performance over time. In

articular, VM, first proposed by Chen et al. [10] in 2005, is ex-

ensively applied in the semiconductor and other data-intensive

anufacturing industries; its goal is to exploit the information al-

eady present in the system (eg. physical sensors measurements,

ool settings) in order to infer the value of a costly or unmeasur-

ble variable that is important for the operation of the produc-

ion process or for characterizing the production quality. Usually

his goal is achieved by means of supervised learning [11] meth-

ds where a Machine Learning model is created by leveraging la-

eled data where both the input and the output (the metrology

rediction) have been physically measured from past process runs.

n the Semiconductor Manufacturing (SM) literature, various VM

olutions have been proposed for different output values such as

hickness uniformity for Chemical Vapor Deposition [12] , plasma

lectron density [13] and etch depth [14] for Plasma Etching, and

emoval rate for Chemical-Mechanical Planarization [15] . Beyond
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Fig. 1. Flowchart comparing the approaches of classical Machine Learning and Deep Learning in treating the feature extraction phase. 
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1 The code repository for the work described in this paper is available at the 

following link: https://gitlab.dei.unipd.it/dl _ dei/DeepVM . 
M, VM technologies are now applied in many industries under

ifferent names, such as Soft Sensing [16] and Virtual Sensing [17] .

In VM problems, the input data often exhibit complex struc-

ures. In particular, it is common to encounter data in the form

f time series or with a multidimensional evolution, or both [16] .

raditional ML techniques that are usually employed in this con-

ext are not suitable for direct application to this sort of input data;

ather, a preliminary operation called feature extraction is required

here a set of informative values are extracted from the raw data

nd collected in a design matrix that can then be easily handled

y traditional ML algorithms. The feature extraction phase can be

erformed in two ways (as depicted in Fig. 1 ): 

• Hand-designed: the raw data is manually inspected to iden-

tify informative characteristics that can be represented as sin-

gle parameter features in a design matrix. Input from equip-

ment/process experts is usually required so that the process is

guided by physical knowledge of the system under examina-

tion. Semi-automatic feature extraction methods [18,19] are also

included in this category. Here subject matter expertise (SME)

is incorporated in an automatic feature selection procedure in

order to improve the quality of the extracted quantities. 
• Automatic: automatic procedures are employed to extract po-

tentially important features from the data. Such procedures are

generally based on computing statistical properties on the in-

put variables, sub-sampling, or averaging of different portions

of the input data [20–22] . 

oth these approaches present significant drawbacks: hand-

esigned feature extraction is extremely time consuming since it

equires a thorough graphical inspection of the data in order to un-

erstand which characteristics show variation that correlates with

he prediction target. Moreover, it is poorly scalable in a complex

nvironment like modern data-intensive and multi-stage manufac-

uring production and typically process specific since SME is in-

luded in the procedure. On the other hand, automatic feature ex-

raction methods are typically not able to capture all the valu-

ble information contained in the data leading to poor prediction

apabilities. Recently, more sophisticated feature extraction meth-

ds have been proposed in order to overcome the aforementioned

roblem. In [23] , a functional learning solution is presented that

ackles feature extraction in a supervised fashion for time-series

ata embedding it in the modeling phase. In [24] , an approach

ased on regularization [11] and Fused LASSO [25] is employed to

eal with Optical Emission Spectroscopy (OES) data [14] ; OES data

re paradigmatic of the need for a sophisticated feature extraction

echanism due to their 2-dimensional evolution with respect to

ime and wavelength (as will be detailed in Section 4 ). 

The 2-dimensional structure of OES data has characteristics

imilar to an image, suggesting the use of Computer Vision in-

pired methodologies. In particular, the convolution operation is

ighly effective at extracting local features from images. As a con-

equence, Convolutional Neural Networks are extensively employed

or problems like object localization and recognition [26] , face

ecognition [27] , and text recognition [28] . For this reason, in this

aper a VM approach, called DeepVM , that leverages an automatic
eature procedure based on deep convolutional autoencoders is pro-

osed. An autoencoder is a specific type of Artificial Neural Net-

ork (ANN) topology that is trained to reconstruct its input. Usu-

lly, the hidden layers of the network perform dimensionality re-

uction on the input, learning relevant features that allow satisfac-

ory reconstruction. Moreover, deep autoencoders exploit multiple

on-linear representational layers that learn complex hierarchical

eatures from the data features that can be highly informative with

egard to the underlying problem structure. 

The main contributions of the present work are as follows: 

• an exploration of the use of Convolutional Autoencoders in the

field of Semiconductor Manufacturing; 
• a comparison of various Autoencoder typologies presented in

the literature but not previously employed in VM; 
• a novel DeepVM multilayer feature extraction methodolgoy: in

contrast to other approaches that employ Autoencoders for VM

or soft sensing, and that only exploit the last layer of features

extracted by the network, DeepVM leverages all the layers of

the network, potentially proving a broader set of informative

features; 

urthermore, to foster reproducibility of the results obtained in

his work, the code and algorithm used to generate the results has

een shared in a public repository. 1 

The remainder of the paper is organized as follows:

ection 2 provides an overview of Deep Learning for feature

xtraction. DeepVM is introduced in Section 3 . Autoencoder

tructures are also reviewed in this section. In Section 4 the

emiconductor Manufacturing case study and the experimental

esults are described. Final remarks and directions for future work

re presented in Section 5 . 

. Deep Learning for feature extraction 

Deep Learning models have been applied to a wide variety of

roblems thanks to their inherent ability to treat complex input

ata without the need for time consuming and poorly scalable fea-

ure extraction procedures. Often, these methods are employed in

 supervised fashion to solve the problem at hand. The high rep-

esentational capabilities of DL make it a powerful automatic fea-

ure extraction method that can be used in combination with tra-

itional ML techniques. 

Feature embedding has a pivotal role in learning problems that

eal with extremely complex data. In recent years, the diffusion of

L technologies has paved the way for sophisticated automatic fea-

ure extraction methods that are able to effectively compress the

ata in a lower dimensional representation without loss of infor-

ation. The advancements in Computer Vision are the foundation

f the incredible success of these technologies where DL based

eature extraction mechanisms are widely employed: Romero et

l. [29] employs a stacked Convolutional Autoencoder for unsuper-

ised feature learning on remote sensing images. The unsupervised

https://gitlab.dei.unipd.it/dl_dei/DeepVM
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Fig. 2. The DeepVM architecture. 
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pre-training of the autoencoder, combined with a supervised fine-

tuning, makes it possible to cope with the high-dimensionality of

the data and the limited dataset size. The proposed method out-

performs traditional methods such as Principal Component Analy-

sis (PCA) and its kernel counterpart version, kPCA. Moreover, the

deep architecture performs significantly better than shallow alter-

natives. 

In [30] a Convolutional Neural network is used to extract infor-

mative features from hyperspectral images. The employed method

is trained in a supervised way, layer-by-layer, for a classification

problem. In particular, the task is to identify different regions (e.g.

water, tree, asphalt) in satellite images. 

Sun et al. [31] employs DL for face representation. The method

relies on the use of CNNs to reduce the dimensionality of the sig-

nificant regions of the input face, yielding a series of “DeepID” that

collectively provides the input for a face verification model. 

In the semiconductor industry, the diffusion of DL based auto-

matic feature extraction methods is still in its infancy, however,

some recent papers have employed them to solve complex prob-

lems in manufacturing, especially in the context of smart monitor-

ing. Lin et al. [32] developed a single layer autoencoder for screen-

ing test escapes. In particular, the autoencoder is trained in an un-

supervised fashion on non faulty chips only by using the Euclidean

distance as a cost function. Then, the faulty chips are identified

because of the higher reconstruction error. Lee et al. [33] designed

a Denoising Autoencoder for wafer fault monitoring, showing the

ability of the model to extract noise tolerant features from the

data that led to high predictive capabilities. Two examples are also

present in the literature for soft sensing tasks: In [34] the authors

leverage a structure based again on Denoising Autoencoders to es-

timate oxygen levels in a coal-fired thermal power plant, while in

[35] Deep Autoencoders are applied to a VM system for etching, in

which time-series data are available as input. We remark, however,

that no previous work in VM has adopted deep autoencoder-based

solutions for OES or 2-dimensional input data. 

In [16] we proposed a Deep Learning architecture for etch-rate

prediction based on CNNs. DeepVM differs substantially from our

previous work. In fact in [16] a CNN was trained from scratch

to predict the etch rate; DeepVM instead exploits autoencoders

trained on a reconstruction task in order to provide an automatic

feature extraction method whose features are then fed to var-

ious regression algorithms. Since DeepVM is an automatic fea-

ture extractor, it also provides improved flexibility in the sense

that its features can also be used for tasks other that etch rate

prediction. 

3. DeepVM 

DeepVM consists of two main blocks (see Fig. 2 ), namely, a

feature extraction module and a modeling (regression) one. While

such blocks are typically present in VM solutions, the peculiarity
Fig. 3. DeepVM feat
f DeepVM is the feature extraction block that is based on a deep

utoencoder and does not require hand-engineered procedures. 

The proposed feature extraction method exploits the represen-

ational power of a CNN composed of three convolutional layers

lternating with average pooling layers. The use of average pool-

ng guarantees that smooth features are extracted, that are usu-

lly suitable for regression problems. Fig. 3 depicts in detail the

roposed feature extraction procedure: The CNN is trained as de-

cribed in Section 3 ; then, the features extracted by each average

ooling layer are flattened and concatenated to form a final feature

ector whose size is one-third of the original one. 

The features from the autoencoder are fed to a modeling re-

ression block that is trained in a supervised way to perform the

M target prediction. 

We remark that the procedure is generic, that is, the deep au-

oencoder and the regression approach can be arbitrarily chosen. In

his work we compare the performance of ‘standard’ [36] , denois-

ng [37] and variational [38] autoencoders for the feature extrac-

ion and of LASSO [11] , Ridge Regression [11] and Support Vector

egression (SVR) [39] for the modeling. 

For the sake of self-containedness, we devote the rest of this

ection to providing a basic overview of Neural Networks and Au-

oencoders, referring interested readers to the literature for more

etailed descriptions. Support Vector Regression is also briefly de-

cribed, as it is the best performing of the regression algorithms

nvestigated (as will be shown in Section 4 ) ( Fig. 4 ). 

.1. Artificial Neural Networks 

Artificial Neural Networks are the foundation of DL technolo-

ies. An ANN is the interconnection of simple units called neurons

n a multilayer structure that emulates, in a rudimentary way, the

uman brain. We can distinguish three different types of network

ayer, namely, input, hidden, and output layers. The input layer pro-

ides the input values to the network. The output layer provides

he output of the network and its structure is chosen to match the

haracteristics of the output; in particular, a regression function is

mployed when the output is continuous i.e. y ∈ R , while a clas-

ification function (e.g. softmax) is used [11] when the output is

ategorical which means y ∈ {0, 1, …, K } where K is the number

f classes. Hidden layers apply a transformation to the previous

ayer’s output, with the transformation depending on the structure

f the hidden layer itself. 
ure extraction. 
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Fig. 4. DeepVM from development to production. 

Fig. 5. Generic structure of a FNN. It is possible to distinguish the input layer (blue) 

output layer (green) and L hidden layers (red). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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Fig. 6. Output of the i th neuron of the k th layer of a FNN. The notation W 

l 
i, : 

indi- 

cates the i th row of the matrix W 

l . 

Fig. 7. Representation of the max pooling operation over a two-dimensional input 

using 2 × 2 regions. 
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Various ANN structures have been developed over the years.

he simplest one is the so-called Feedforward Neural Network

FNN) ( Fig. 5 ) where the neurons are connected in a directed graph

ithout any feedback loop. In this case, the hidden neurons apply

 non-linear activation function σ to an affine transformation of

he previous layer output. We can thus associate a matrix W 

l and

 bias vector b l to each hidden layer l whose output can be com-

uted as follows: 

 

l = σ (W 

l y l−1 + b l ) (1) 

Here σ ( ·) denotes element-wise application of the activation

unction σ . Given the number of neurons in l th layer q l , and the

umber of neurons in layer l − 1 q l −1 , the matrix W 

l has size
 

l × q l −1 and the bias vector b has length q l . The output of the

 l − 1) th layer is a column vector of dimension q l −1 ( Fig. 6 ). 

Common choices for activation functions σ are the sigmoid ,

anh and rectifier linear unit (ReLu) [40] . The ReLu function is of-

en a good choice because of its similarity to a linear function and

hanks to its constant gradient that does not vanish during training

36] . The ReLu function is defined as: 

(x ) = max (0 , x ) (2) 

n recent years, more complex networks called Convolutional Neu-

al Networks (CNNs) have gained popularity thanks to their perfor-

ance in Computer Vision applications. CNNs exploit a multilayer

tructure similar to FNNs but with different types of hidden lay-

rs, that appear in an alternating fashion. In particular we can dis-

inguish three kinds of hidden layer: (i) convolutional, (ii) pooling,

iii) fully connected. 

(i) Convolutional layers are similar to the one employed in FNNs

ut in this case, each neuron applies the activation function to the

onvolution of the previous layer output with a kernel W 

l plus a

ias term b l . The output of the l th convolutional layer can then be

omputed as follows: 

 

l = σ (W 

l ∗ y l−1 + b l ) (3) 

sually, multiple kernels are employed; therefore (3) is computed

ultiple times. Since the convolution operation can be applied in

ny dimension, it is common, in the presence of 2D data (images)

o preserve the original input structure. The different outputs ob-

ained using different kernels are then stacked and treated as chan-

els (for further details see [36] ). (ii) Pooling layers perform a sub-

ampling of the previous layer output, usually by averaging ( av-

rage pooling ) or taking the maximum value ( max-pooling ) over a

ontiguous region of values. In Fig. 7 a graphical explanation of

ax-pooling is provided. 

(iii) Fully Connected (FC) layers are the same as those em-

loyed in FNNs. Usually FC layers are placed at the end of the net-

ork. Since the structure of a FC layer is one-dimensional, multi-

imensional data are usually first flattened into a 1D vector. 



28 M. Maggipinto, A. Beghi and S. McLoone et al. / Journal of Process Control 84 (2019) 24–34 

Fig. 8. (a) Structure of an autoencoder. X is the input, X is the compressed version 

of X and ˆ X is the reconstructed version of X . (b) Encoder employed in the VM es- 

timation. During fine tuning the pre-trained parameters of the encoder network are 

adjusted in a supervised way to achieve better performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Bayesian network describing a VAE. 
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ANNs provide an approximation function y = f ∗( x ; θ ), that is

parametrized by a set of coefficients θ (matrices and biases in

FNNs, kernel/matrices and biases for CNNs) to an arbitrary com-

plex continuous function f [36] . The creation of the predictive

model thus requires the estimation of the parameters θ that best

approximate the desired output. The estimation process consists of

the minimization of a cost function defined according to the out-

put layer properties. Common choices are Mean Squared Error for

regression and cross-entropy for classification. Usually, a gradient-

descent based algorithm is adopted, with the gradient computed

using backpropagation [41] . 

3.2. Autoencoders 

Autoencoders are composed of two main blocks: an encoder

part that compresses the input into a low dimensional represen-

tation containing the informative content of the data; a decoder

part that is trained to reconstruct the input from the features ex-

tracted by the encoder. Once the unsupervised pretraining is com-

pleted, the encoder part is thus a powerful automatic feature ex-

tractor that, augmented with a suitable output layer, can then be

fine-tuned [36] in a supervised way to obtain the desired estima-

tion performance. 

Fine-tuning allows the parameters of the encoder to be ad-

justed to extract features that are the most effective in address-

ing the specific target estimation problem. This operation is per-

formed by adding a further layer to the encoder block. Based on

the problem at hand (See Fig. 8 (b)), the encoder can be followed

by either a classification or a regression output layer. In this lat-

ter case, a linear output layer is added to the encoder and the re-

sulting network is trained in a supervised fashion. Note that previ-

ously computed encoder weights provide the starting point for the

stochastic gradient descent algorithm. As a consequence, fine tun-

ing is expected to refine the features extracted in an unsupervised

fashion. 

Autoencoders can be created using various Neural Network

structures. In this paper we propose a Convolutional Autoencoder

where the underlying ANN exhibits a convolutional structure as

described in Section 3.1 . Various kinds of autoencoder have been

proposed in the literature, as briefly described in the following

subsubsections. 

3.2.1. Standard autoencoders 

Standard autoencoders are simply trained to reconstruct the

provided input by employing the encoder-decoder structure de-

scribed above. In the following we will refer to standard autoen-

coders as ‘autoencoders’. 
.2.2. Denoising Autoencoders 

A Denoising Autoencoder (DAE) has the same structure as a

tandard autoencoder but it uses an augmented version of the

riginal input where Gaussian noise has been added. The model is

hen trained to reconstruct the original input removing the noise.

n this way, a set of features that effectively characterize the struc-

ure of the data and are not affected by the presence of noise is

ypically obtained. For more details on DAEs we refer interested

eaders to [37] . 

.2.3. Variational Autoencoders 

Variational Autoencoders (VAEs) have been proposed in [38] as

 generative model that learns a model of the data distribu-

ion to generate new samples from it. Their auto-encoding struc-

ure makes them appealing from a feature extraction perspec-

ive, since they provide an embedded representation of the input.

he idea behind VAEs is to implement a probabilistic model de-

cribed by the Bayesian network of Fig. 9 where X represents the

ata and Z is a latent vector that is not available in the dataset.

he joint probability density induced by the network of Fig. 9 is

 ( x , z ) = p ( x | z ) p ( z ) where p ( z ) is a prior distribution, typically

ultivariate Gaussian. Training the model by maximum likelihood

ould require marginalizing out the latent variables z but this is

ot feasible due to the size of z , hence, a variational approximation

s made, introducing an approximate posterior q ( z | x ). In particular,

n a VAE, both p ( x | z ) and q ( z | x ) are modeled with neural networks

arametrized by θ and φ , respectively. The model is then trained

y maximizing the variational lower bound [38] : 

 (θ, φ) = E q φ(z| x ) [ log p θ(x | z) ] − D KL 

(
q φ(z| x )) ∥∥p(z) 

)
(4)

For more details on VAEs we refer interested readers to [42] . 

.3. Regularization 

Linear regression is a well known prediction algorithm that as-

umes a linear input–output relationship y = θT x parametrized by

he vector θ that is learned during training in order to minimize

he prediction error, usually measured in terms of the MSE, on a

raining set. This simple method is however prone to overfitting

hen the number of features is high with respect to the num-

er of training samples or in the presence of collinearity between

eatures. For this reason, regularization approaches are employed

here a penalty on the parameters vector norm is introduced in

he cost function reducing the model complexity and biasing it

owards simpler functions. The most common regularization ap-

roaches are Ridge regression , which introduces the L 2 norm of the

arameters ‖ θ‖ 2 2 as the penalty term, and LASSO , which employs

he L 1 norm of the parameters ‖ θ ‖ 1 as the penalty term. LASSO

lso has the attractive property of inducing sparsity in the solution.

ver the years, these methods have been extended and adapted

o different use cases. Of particular interest is the Fused LASSO
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Fig. 10. Comparison between Directional Etching (left) and Isotropic Etching (right). 
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Fig. 11. An example of OES data during the Etching process. 
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25] which provides an effective approach to dealing with data that

xhibit a temporal evolution. Specifically, a penalty on the differ-

nce of consecutive coefficients 
∑ T 

t=1 ‖ θt−1 − θt ‖ 2 2 is added to the

ormal LASSO cost function. This generates a sparse model thanks

o the LASSO regularization while encouraging the coefficients for

onsecutive time instants to be “similar”. This is a desirable prop-

rty since it promotes selection of entire portions of the time se-

ies that are relevant for the prediction task while discarding the

thers, making the final model more interpretable. The same does

ot apply for the standard LASSO which instead treats different

ime instants independently without taking into account their tem-

oral evolution. 

.4. Support Vector Regression 

Support Vector Regression aims at finding a hyperplane y = <

, x > + b such that the prediction error on the output variable y

s less then a predefined constant ε. To obtain a smooth function,

he norm of the parameters w is required to be small. This problem

an be expressed as a convex optimization task: 

min 

1 

2 

‖ w ‖ 

2 

subject to 

{
y i − < w, x i > −b ≤ ε

< w, x i > + b − y i ≤ ε

(5) 

o make the solution feasible, a set of slack variables ξi , ξ
∗
i 

are in-

luded in the problem resulting in: 

min 

1 

2 

‖ w ‖ 

2 

subject to 

{
y i − < w, x i > −b ≤ ε + ξi 

< w, x i > + b − y i ≤ ε + ξ ∗
i 

(6) 

his problem is then solved by using Lagrangian multipliers to give

n effective linear regression method, that can also be extended to

on-linear problems by using non-linear kernels [39] . 

. Experimental results 

.1. Semiconductor Manufacturing case study 

Etching is a key step in the realization of integrated circuits,

n which a masked silicon wafer is hit by a high-speed stream

f plasma of an appropriate ionized gas mixture in a vacuum

hamber. The exposed surface is thus etched away because of the

hemical and mechanical stress released in the collision. In mod-

rn manufacturing, the majority of etching processes require direc-

ional etching, where the material is etched perpendicularly to the

afer surface ( Fig. 10 ). This is achieved by accelerating the ions

ith a voltage bias [43] . Plasma etching processes suffer from the

nfluence of various factors that may alter the final quality of the

roduct, in particular, chamber mismatch, non-uniformity across

he wafer and within die, and surface composition/roughness [44] .
or this reason, it is important for process control and quality as-

essment to understand the resolution and directionality of etch-

ng. In this regard, the etch rate , i.e. the thickness of the eroded

urface per unit time, provides important information. However,

easuring the etch rate requires a post-processing metrology step

hat is both time-consuming and extremely costly. It is thus piv-

tal for cost reduction and production performance to estimate the

tch rate from cheap and easy to obtain measurements. To this

nd, Optical Emission Spectroscopy (OES) sensing of the plasma

an be used to observe changes in the plasma chemistry dur-

ng etching, thus providing the foundation for VM solutions that

xploit historical data to build predictive models for etch rate

stimation. 

We propose using the DeepVM algorithm described in the pre-

ious sections to build such a VM solution. In particular, differ-

nt structures corresponding to different choices of the autoen-

oder and the regression module will be analyzed and their per-

ormance compared using a case study provided by an industrial

artner involved in the manufacture of storage media. The case

tudy dataset consists of OES spectra and associated etch rate val-

es for N = 1554 wafers processed through a single etch cham-

er. The OES data, which serves as the VM model input, has a

omplex 2-dimensional structure, with time and wavelength evo-

ution, as depicted in Figs. 11 and 12 . The 2-dimensional struc-

ure of OES suggests the use of Computer Vision inspired tech-

ologies, thus motivating the use of models based on CNNs, that

ave outperformed other methods in many Computer Vision tasks

45] . CNNs are able to extract hierarchical sparse features [36] from

omplex data like images. As such, the proposed method is ex-

ected to provide a powerful feature extraction model for OES

ata. 

.2. Experimental settings 

Since, to the best of our knowledge, there are no publicly avail-

ble datasets for comparing Deep Learning based VM approaches

n Semiconductor Manufacturing, it is difficult to define the state-

f-the-art. Consequently, to asses the quality of the proposed pro-

edure, DeepVM will be compared with popular VM approaches

hat exploit simple feature extraction procedures. Also, a compar-

son is proposed with a recent approach for VM with OES data

ased on Fused LASSO [24] . 

The simple automatic feature extraction approach exploited for

omparison can be summarized as follows: (i) a set of statistics is

efined (mean, variance, skewness, kurtosis, maximum and mini-
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Fig. 12. An example of OES data during the Etching process for a fixed time sample (left) and a fixed wavelength (right). 
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mum value); (ii) these statistics are computed over the time evo-

lution of each wavelength of the OES data. The resulting ’simple

features’ are then used in our experiments as inputs to the LASSO

and Ridge Regression models. The approach based on Fused LASSO

proposed in [24] can be divided in the following main steps: (i) a

dimensionality reduction of the wavelengths is performed and the

‘most informative’ wavelengths selected; (ii) Fused LASSO is per-

formed on the retained wavelengths. We refer interested readers

to [24] for details of the procedure. 

The training and development of the proposed algorithm has

been realized using Keras [46] with Tensorflow [47] . An adam op-

timizer has been employed using Mean Squared Error (MSE) as

the cost function. Specifically, the training operation has been per-

formed in two steps: unsupervised pre-training, where the MSE

measures the reconstruction error of the AE followed by super-

vised fine-tuning where the MSE measures the prediction error of

the model for the targets y . It is worth remarking that a fine-tuning

procedure (as discussed in Section 3.2 ) is employed to obtain more

representative features, while the final prediction algorithm is re-

alized using a SVR that takes as input the concatenation of all the

features coming from the pooling layers of the encoder as depicted

in Fig. 3 . 

The performance of the proposed method has been assessed us-

ing 20 Monte-Carlo cross validation (MCCV) [48] cycles with a test

set composed of 30% of the total number of process runs available,

i.e. N test = 0.3 · N and N train = 0.7 · N = N − N test . The same procedure

has been employed to estimate the performance of the benchmark

methods. 

To estimate the hyperparameters of the employed regression

algorithms, 5 Monte-Carlo cross validation cycles have been per-

formed on a validation set composed of 30% of the available train-

ing data, i.e. N val _ t est = 0.3 · N train . 

The metrics employed to quantify model prediction capabilities

are the MSE and R 2 score. 

4.3. Results 

The mean and standard deviation of the performance indexes

computed over 20 MC cross validation cycles are reported in

Table 1 . DeepVM with ‘standard’ autoencoder plus SVR is the best

approach both in terms of R 2 and MSE. Moreover, it can be seen

that irrespective of the type of autoencoder employed, DeepVM

provides at least one solution that outperforms the other ap-
roaches. These two considerations confirm the ability of Deep

earning methods to provide good feature extraction capabilities

or VM. The lower performance provided by VAEs may be ex-

lained by the generative nature of such models that typically re-

uire more data to be trained. Moreover, the KL term in the lower

ound tends to limit the capacity of the encoder; this effect could

e reduced by adding a hyperparameter that tunes the capacity

f the model. However, such an approach has not been explored

n this paper since validating the added hyperparameter would be

xtremely expensive in terms of computational resources. A more

etailed performance comparison is reported in Fig. 13 . This shows

he boxplots of the distribution of the performance indexes for

ach method over 20 MC cross validation cycles. In Fig. 14 we

lot the predicted etch rates against the true values for the pro-

osed DeepVM and the methods based on statistical features. It

s noticeable how the points are all around the y = x line, mean-

ng that the predictions provide useful information about the real

alue of the etch-rate. Of course, the methods based on statistical

eatures have more dispersed scatter plots, reflecting the inferior

erformance of these methods, as observed in the boxplots and

ables. 

In Tables 3–5 we report the performance of DeepVM when only

he features coming from the last two layers of the feature extrac-

ion module are used to perform the prediction. Such a strategy

ay be desirable to reduce the prediction time and model com-

lexity. A performance drop can be observed with all the model-

ng techniques, however, DeepVM with AE and SVR continues to

ave superior performance to the other methods. It is thus possible

o define a trade-off between prediction accuracy and complexity,

ased on the automatic feature selection method. We remark that

n real industrial environments, it may be important to reduce the

ime required to compute the VM prediction, in particular when

hey are used for control purposes [49] . In Table 2 we report the

ercentage of predictions with an error within 5 and 10% of the

eal value. It is noticeable that for the 10% case all the methods

chieve results close to 99% while for the 5% case DeepVM has

ubstantially better performance that, for the application at hand,

re considered acceptable for real use. It is important to remark

hat the performance of our model is achieved without including

subject matter expertise’ in the process, hence the method can be

asily adapted to different processes/machines. Furthermore, the

tch rate predictions obtained can be generated for every wafer

uring production, whereas physical measurements are usually
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Table 1 

Performance comparison of the considered VM approaches: the best performances are reported in bold . Results are averaged over 20 MCCV cycles and reported in the format “mean ± 1 · std”. 

Conv Net LASSO Fused LASSO DeepVM 

AE + SVR 

DeepVM 

AE + LASSO 

DeepVM 

AE + Ridge 

DeepVM 

DAE + SVR 

DeepVM 

DAE + LASSO 

DeepVM 

DAE + Ridge 

DeepVM 

VAE + SVR 

DeepVM 

VAE + LASSO 

DeepVM 

VAE + Ridge 

R 2 0.36 ± 0.07 0.42 ± 0.04 0.39 ± 0.01 0.52 ± 0.08 0.44 ± 0.13 0.51 ± 0.13 0.48 ± 0.15 0.43 ± 0.12 0.49 ± 0.16 0.42 ± 0.11 0.40 ± 0.09 0.46 ± 0.13 

MSE [10 −5 ] 2.78 ± 0.52 2.66 ± 0.36 2.59 ± 0.56 2.34 ± 0.56 2.74 ± 0.76 2.39 ± 0.76 2.44 ± 0.93 2.65 ± 0.73 2.37 ± 0.95 2.64 ± 0.57 2.71 ± 0.53 2.44 ± 0.58 

Table 2 

Percentage of predictions with an error less then 10% and 5% of the real value. 

SVR LASSO Ridge DeepVM 

AE + SVR 

DeepVM 

AE + LASSO 

DeepVM 

AE + Ridge 

DeepVM 

DAE + SVR 

DeepVM 

DAE + LASSO 

DeepVM 

DAE + Ridge 

DeepVM 

VAE + SVR 

DeepVM 

VAE + LASSO 

DeepVM 

VAE + Ridge 

% ± 10% 99.36 92.07 99.35 98.93 99.14 98.72 98.93 99.36 98.93 98.50 98.71 98.71 

% ± 5% 82.65 63.59 83.94 89.29 87.15 90.57 88.86 85.22 88.65 88.44 86.73 91.01 

Table 3 

Performance comparison of DeepVM and AE for various feature selection (all or only the features from the last two layers) and modeling approaches (SVR, LASSO and Ridge). Results are averaged over 20 MCCV cycles and 

reported in the format “mean ± 1 · std”. 

AE (All 

Layers) + SVR 

AE (Last 2 

Layers) + SVR 

AE (All 

Layers) + LASSO 

AE (Last 2 

Layers) + LASSO 

AE (All 

Layers) + Ridge 

AE (Last 2 

Layers) + Ridge 

R 2 0.52 ± 0.08 0.41 ± 0.11 0.44 ± 0.13 0.42 ± 0.09 0.51 ± 0.13 0.44 ± 0.12 

MSE [10 −5 ] 2.34 ± 0.56 2.83 ± 0.56 2.74 ± 0.77 2.83 ± 0.57 2.39 ± 0.76 2.71 ± 0.61 

Table 4 

Performance comparison of DeepVM and DAE for various feature selection (all or only the features from the last two layers) and modeling approaches (SVR, LASSO and Ridge). Results are averaged over 20 MCCV cycles and 

reported in the format “mean ± 1 · std”. 

DAE (All 

Layers) + SVR 

DAE (Last 2 

Layers) + SVR 

DAE (All 

Layers) + LASSO 

DAE (Last 2 

Layers) + LASSO 

DAE (All 

Layers) + Ridge 

DAE (Last 2 

Layers) + Ridge 

R 2 0.48 ± 0.15 0.43 ± 0.10 0.43 ± 0.12 0.42 ± 0.09 0.49 ± 0.16 0.45 ± 0.09 

MSE [10 −5 ] 2.44 ± 0.93 2.68 ± 0.73 2.65 ± 0.73 2.69 ± 0.69 2.37 ± 0.95 2.52 ± 0.49 

Table 5 

Performance comparison of DeepVM and VAE for various feature selection (all or only the features from the last two layers) and modeling approaches (SVR, LASSO and Ridge). Results are averaged over 20 MCCV cycles and 

reported in the format “mean ± 1 · std”. 

VAE (All 

Layers) + SVR 

VAE (Last 2 

Layers) + SVR 

VAE (All 

Layers) + LASSO 

VAE (Last 2 

Layers) + LASSO 

VAE (All 

Layers) + Ridge 

VAE (Last 2 

Layers) + Ridge 

R 2 0.42 ± 0.11 0.39 ± 0.09 0.40 ± 0.08 0.40 ± 0.08 0.46 ± 0.13 0.41 ± 0.08 

MSE [10 −5 ] 2.64 ± 0.57 2.77 ± 0.54 2.71 ± 0.53 2.74 ± 0.49 2.44 ± 0.58 2.71 ± 0.54 
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Fig. 13. Prediction performance on the OES etching dataset over 20 MC cross validation cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Exection time of the different feature extraction methods. 

Stat features DeepVM CPU DeepVM GPU 

Execution time [ms] 6.67 ± 0.02 36.97 ± 0.33 3.52 ± 0.18 

t  

b  

t  

t  

I  

n  

s  
taken only on a per-lot basis. It has been shown that controller

performance can be greatly improved by exploiting these estimates

[50,51] . The low values obtained for the R 2 metric are justified by

the complexity of the process at hand. This is a multi-step pro-

duction process [52] and what we are addressing here is an early

stage prediction i.e. we are trying to predict the etch rate for the

first step of the process while the actual metrology measurement

is performed at the end of the multi-step process. Hence the mea-

sured value incorporates variations introduced by the other steps

that cannot be predicted by the OES data recorded for the first

step. 

In Table 6 we report the execution time for the statistical fea-

ture extraction method and the DeepVM approach. The evaluation
ime on a single CPU is 6 times greater with the Deep Learning

ased approach. However, the advantage of the DL methods is that

hey can be easily parallelized on GPUs. In this case, the execution

ime of DeepVM improves by a factor of 10 (3.5 ms versus 37 ms).

n practical terms, both execution times are sufficiently fast to have

o impact on performance in an etch chamber run-to-run control

cenario, hence the proposed method is suitable for deployment
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Fig. 14. Scatter plot of the predicted values of the etch rate on the test set. 
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n production. Training of the DeepVM model is a computationally

emanding exercise, but this can be completed off-line. The the

ull cross validated training of the DeepVM model takes approxi-

ately 23 h on a machine with a single Titan Xp GPU and an Intel

ore i7-6800K CPU. 

A common problem in industrial environments is keeping VM

odels up-to-date in the presence of process drifts that may com-

romise their prediction capabilities. Deep Learning models are

ble to learn increasingly complex features of the data thanks to

heir multilayer structure. This means that, at least the first layers

f the architecture, tend to extract general features (e.g. edges in

mages) that may still remain valid in the presence of changes in

he distribution of the input. Thanks to this property, re-training

he model periodically is a feasible approach to coping with dis-

ribution drifts, because it typically takes much less time to train

 deep neural network when its weights have been initialized on

 similar dataset. Furthermore, as process drift phenomena usu-

lly develop slowly, a model updating frequency of once per day is

ikely to be adequate. 

As a final remark, we note that Ridge Regression consistently

utperforms LASSO for this case study; this is usually associated

ith a high level of collinearity among the features, an issue that

an be mitigated by preprocessing with a feature selection method

uch as [53] . 

. Conclusion 

DeepVM is an approach to Virtual Metrology that exploits an

utomated feature extraction method based on convolutional aut-

ncoders. Combined with traditional Machine Learning algorithms,

eepVM is able to effectively deal with the data complexity typical

f the semiconductor industry, as shown by its application to the

esign of a VM module for etch rate estimation from OES data. In

ontrast to traditional ML algorithms that require the input to be

rganized in a design matrix where each row represents a single

ata observation, DeepVM can be applied in scenarios where each

bservation is a matrix itself with a 2-dimensional evolution. 
DeepVM (standard AE and DAE implementations) outperforms

lassical shallow regression technologies, providing an accurate

rediction of the required target (etch rate). The level of perfor-

ance justifies the use of a complex DL model that, by exploiting

he representational power of CNNs, is able to deal with the inher-

nt 2-dimensional interdependence of OES data that exhibit both

ime and wavelength evolution. The proposed method presents

onsiderable advantages over methods using hand crafted features,

ince it does not require any domain specific knowledge and is

ble to treat the input complexity in a natural and scalable way.

urthermore, the proposed solution is well suited to the Big Data

ontext where historical data is in continuous growth, since a char-

cteristic of DL algorithms is that their performance improves with

ncreasing data availability [36] . 

We remark that the proposed DeepVM approach is intended for

nput data that exhibit complex 2-dimensional structure (such as

mages) and is likely not to offer any advantages over ‘shallow’ Ma-

hine Learning approaches on more conventional tabular process

ata. When both types of data are available, our method can easily

e extended by concatenating the features coming from the au-

oencoder with the tabular data before feeding them to the regres-

ion algorithm at the end of the pipeline. It is worth highlighting

hat, whether SME can be included in the feature selection pro-

ess, the performace of our model and all the others can be im-

roved. However, SME was not available in this work and the pro-

osed model has more general applicability since it can be trained

lso on data from a different process provided that they exhibit

 similar structure. As a byproduct of the proposed approach, the

utoencoders can also be exploited for compression purposes to

ptimize storage resources for tasks other than Virtual Metrology

e.g. quality monitoring, anomaly detection and smart monitoring).

e remark that this capability does not exist with conventional

eature extraction methods. Future work will seek to quantify this

dditional benefit. In addition, other feature selection approaches

uch as FSCA [53] will be investigated. These have the potential

o improve prediction performance and may be useful for optimiz-

ng the trade-off between prediction performance and execution

ime. 
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