
Continuous n-tuple classifier and its application to
real-time face recognition

S. M. Lucas

Indexing terms: Real-time face recognition, N-tuple classifiers, Pattern recognition

Abstract: The continuous n-tuple classifier was
recently proposed by the author as a new type of
n-tuple classifier that is ideally suited to problems
where the input is continuous or multi-level
rather than binary. Results on a widely used face
database show the continuous n-tuple classifier to
be as accurate as any method reported in the
literature, while having the advantages of speed
and simplicity over other methods. The author
summarises the previous work, provides new
insight into how the system works and discusses
its applicability to real-time face recognition.

1 Introduction

N-tuple classifiers have established a reputation as
being the fastest possible classifiers for a wide variety
of pattern recognition problems. The continuous n-
tuple classifier offers a simple way of applying n-tuple
classifiers to problems where the input is continuous or
multi-level. In such cases, the continuous n-tuple classi-
fier can offer superior recognition accuracy over the
standard n-tuple classifier. The continuous n-tuple clas-
sifier can be used in two ways; compiled and uncom-
piled, as explained below. If the compiled version is
used, then training is slower than the standard n-tuple
classifier, but recognition speed is the same. Con-
versely, in the uncompiled version, training speed is the
same as the standard n-tuple classifier but recognition
is slower.

I . 1 Face recognition and identity
verification systems
Identity verification can be based on three principles:

what you have (e.g. a door key or credit card)
what you know (e.g. a pin number or password)
what you are (e.g. fingerprint, face or some other bio-

metric)
Systems based on the first two principles involve low
(or zero) computational overhead, but can be insecure
and expensive to administrate. Biometric systems
involve some kind of signal transducer to capture some
aspect of the human form or behaviour, which forms
the input to a pattern recognition/verification system.

0 IEE, 1998
IEE Proceedings online no. 19982317
Paper first received 18th February and in revised form 20th May 1998
The author is with the Department of Electronic Systems Engineering,
University of Essex, Colchester CO4 3SQ, UK

IEE Proc.-Vis. Image Signal Process., Vol. 145, No. 5 , October 1998

For the case of face recognition, only recently has the
combination of low-cost videohmage capture hardware
and low-cost high-performance computing hardware
made face recognition a viable alternative.

Compared to other biometrics, face recognition has
several distinctive features:

can be used unobtrusivelyicovertly, in ways that iris
scans or fingerprints cannot

can potentially be used in conjunction with E-fit (elec-
tronic photofit) to search for faces based on a witness
description

a face recognition system could as a byproduct of its
normal function store a video stream for later human
analysis, if a system was suspected of being invaded

Many PCs already have a monitor-top camera for use
in video-conferencing; this can be used in conjunction
with face recognition software to protect access to the
PC .
This potential is already starting to be realised, but
more work is needed to make systems faster and more
accurate in real-world circumstances.

Face recognition can be decomposed into two prob-
lems; finding a face (or faces) in an image, and recog-
nising the identity of that face. A related problem is
that of facial gesture recognition, where the aim is to
detect whether someone is smiling, laughing or frown-
ing, etc.

Finding a face in an image is also known as face reg-
istration or face localisation. The degree of difficulty of
this problem depends on several factors, such as the
control one has over lighting and background condi-
tions, whether the images are colour or monochrome
and whether the images are still or on a video stream.
In the case of a video stream, for example, motion
detection can be used to help identify a face as it moves
into the frame, or if the subjects can be made to per-
form a certain gesture (such as blinking) then this can
be used as a location cue. If the image is colour, then
the range of possible skin tones for a given illumination
condition is a small subset of the set of all possible col-
ours. If the background can be controlled, then it
might be possible to extract the head very simply as
one of the main sources of brightness in the image.
Hence, depending on the control one has over these
factors, face localisation can be a hard or an easy prob-
lem.

There are two versions of the face recognition prob-
lem (this is true for most biometrics); the recognition
and the verification problem. In the case of verifica-
tion, one only has to test the likelihood that the face is
that of who it clalms to be, hence this involves testing
the quality of match of an image against a single

343

model. In the case of face recognition, the problem is
to find the best match of an unknown image against a
database of face models, or to decide that it does not
match any of them well. The practical importance of
this distinction is the speed required; generally, if there
are C subjects (i.e. people) in the database, then the
recognition process will be C times slower than the ver-
ification process. This may place practical limits on the
algorithm used.

1.2 N-tuple classifiers
Conventional n-tuple systems [I] have the desirable fea-
tures of superfast single-pass training, superfast recog-
nition, conceptual simplicity, straightforward
hardware and software implementations and accuracy
that is often competitive with other more complex,
slower methods. Due to their attractive features, n-
tuple methods have been the subject of much research.
See Rohwer and Morciniec [2] for a thorough review.

In conventional n-tuple-based image recognition sys-
tems, the locations specified by each n-tuple are used to
identify an address in a lookup table. The contents of
this address either use a single bit to indicate whether
or not this address was accessed during training, or
store a count of how many times that address occurred.

While the traditional n-tuple classifier deals with
binary-valued input vectors, methods for using n-tuple
systems with integer-valued inputs have also been
developed. Allinson and Kolcz [3] have developed a
method of mapping scalar attributes into bit strings
based on a combination of CMAC and Gray coding
methods. This method has the property that for small
differences in the arithmetic values of the attributes, the
Hamming distance between the bit strings is equal to
the arithmetic difference. For larger values of the arith-
metic distance, the Hamming distance is guaranteed to
be above a certain threshold. However, where practical,
the continuous n-tuple method described in this paper
should be preferable, since it incorporates the exact
arithmetic distance between attributes.

The continuous n-tuple method also shares some sim-
ilarity at the architectural level with the single-layer
look-up perceptron of Tattersall and Johnston (41,
though they differ in the way the class outputs are cal-
culated and in the training methods used to configure
the contents of the look-up tables (RAMS). The contin-
uous n-tuple method was first proposed by the author
[5], and since tested more thoroughly [6]. This paper
summarises the previous work, provides fresh insight
into how the system works and discusses its applicabil-
ity to real time face recognition on video streams.

2 The continuous n-tuple classifier

The d-dimensional input space is sampled by m n-
tuples. Each n-tuple defines a fixed set of locations in
the input space. Let the set of locations defining thejth
n-tuple be

n3 = {a,1,a,2,...,a,,I1 5 a3% 5 d } (1)
where each aJL is chosen as a random integer in the
specified range.

The continuous n-tuple classifier stores the vector
defined by each n-tuple on each image explicitly.
Hence, each n-tuple simply defines a sparse subset of
the original image vector. This is illustrated in Fig. 1,
which shows a continuous n-tuple sampling of a face
for the case of n = 3 and m = 3; note that in practice m

344

has to be much larger than this
ance.

to get good perform-

Fig. 1 Illustration of the continuous n-tuple sampling process
A set of random n-tuples are chosen, where each n-tuple defines a set of n
locations in image space In the continuous n-tuple method, the grey-level val-
ues at each point are extracted and stored without any further processing For
the compiled version of the continuous n-tuple method, some further quantisa-
tion is necessary, for example, mapping from 256 levels of grey down to 8

By sampling the image in this way, we can deal
directly with patterns defined as vectors of real num-
bers, or as grey scale images, as we have for the face
recognition experiment described below.

Hence, for a given pattern vector x = x(1) ... x(d) we
forin a projection of this

Denote the kth training vector of n-tuple j for the cth
class as Y;~, .

The 'training algorithm' is simply to extract and
store all these vectors from the set of training images.

Recognition of an unknown image x is performed as
follows: For the j-th projected vector, z,(x) = x(Ujl) ...
x(a,,) we find the closest (under distance metric 0)
stored vector for each class. We then sum (over all j)
these distances to find the recognition score Y ,

Y3 (x) = z(a31). . .z(a3n) (2)

nz

(3)
j=1

for each class e, and assign class membership to the
class with the minimum total. This algorithm is sum-
marised in Table 1.

Table 1: Algorithm for performing pattern classification
with the continuous n-tuple classifier

Continuous n-tuple recognition algorithm
Classifies pattern x in input array into class C E C

Step 1:

Step 2:

Step 3:

Initialise recognition vector
r is a ICI-dimensional vector of real numbers
For each class c E C

Sum distances over all projected vectors for xeach
class
For j = 1 to m

Set r, = 0.0

Set z,(x) = x(a,,) ... x(a,J
For each class c E C

Set r, = r, + min,D(yC,,, zi)
Classification
Assian x to class c where r.. s r X d # c

In the experiments reported below we choose a Man-
hattan (city-block) distance metric

n.

(4)
2 1 1

IEE Proc.-Vis. Image Signul Process., Vol. 145, No. 5, October 1998

i.e. the sum of the absolute differences along each
dimension of the vector. Experiments were also made
using an unweighted Euclidean distance metric, but
with significantly poorer results.

The advantages of the continuous n-tuple method are
twofold. First, it directly incorporates a useful distance
metric, and therefore offers better generalisation than
the basic n-tuple method. This is because previously
unseen points in the input space of a particular n-tuple
are assigned values according to the closest recorded
point from the training data. Evidence of this can be
found in Table 3 and Fig. 3. Secondly, it allows us to
deal directly with continuous or multi-level input
spaces. There is no sacrifice in training speed (training
speed should theoretically improve slightly, but this
was not measurable in practice). However, recognition
time given a direct implementation of the algorithm is
significantly poorer, and gets worse linearly with
respect to the number of stored exemplars. One solu-
tion to this that may be practical is to perform some
quantisation of the input space (denote the number of
quantisation levels as 0) and pre-compile the minimum
distances to each stored class vector for each n-tuple
from each possible address location. The algorithm for
performing this simple compilation is given in Table 2.
In this way, we get exactly the same recognition speed
as the conventional n-tuple classifier, with something
close to the recognition accuracy of the continuous n-
tuple classifier. The only sacrifice now is training time;
we have to step through all possible addresses (of
which there are a") in the address space of each n-tuple
to set up the distance values for those addresses, and
this must be repeated for each n-tuple and each class.
For the face recognition problem described below, the
results indicate that this is not only practical, but actu-
ally benefits the accuracy as well. Also, see Section 4.3
for discussion of how either a lazy or an approximate
version of this compilation algorithm can be performed
online.

Table 2: Algorithm for mapping a continuous n-tuple
classifier into a standard n-tuple classifier

Algorithm to transform continuous n-tuple
into standard n-tuple system
transforms set of vectors y; into look-up table n.,
q(x) is a quantisation function that
maps each continuous scalar value x,
into an integer in the range O...(o- 1)
t is an n-dimensional vector use as temporary storage

Algorithm:
For j := 1 t o m
For a := 0 to (# - 1)
For i : = 0 to (n - 1)
flil := (aid) mod U

For each class c E C
Set nc]al = mink (o(q(y@, t))

The continuous n-tuple method clearly has a close
relationship with nearest-neighbour classifiers. In fact,
each n-tuple acts as a kind of distance-weighted near-
est-neighbour classifier for that subset of the input
space. However, due to the fact that each n-tuple is a
tiny projection of the original pattern (and indeed, typ-
ically only about 10-20% in total of the original pat-
tern space needs to be sampled for optimum
performance), the continuous n-tuple method is much
more efficient. It also tends to perform more accu-
rately. Note that if we use parameters of n = d (in this

IEE Proc -Vis Image Signal Psocess , Vol 145. No 5, October 1998

case d = 92 x 112 = 10304) and m = I , then the contin-
uous n-tuple method exactly implements a one-nearest-
neighbour classifier.

2. I Visualisation
Fig. 2 illustrates a typical compiled continuous n-tuple
memory. These plots show the contents of particular
duple sampling pixel locations (11, 41) and (33, 54).
Each one has been trained on five samples from sub-
jects (classes) 0 and 1, respectively, the first two people
in the ORL (see below) database. The black circles
indicate the values that occurred for each of the five
training samples for each class. The blackness of each
square is proportional to the Manhattan distance
between that square and the closest circle. While the
contents of each continuous n-tuple memory are differ-
ent for each class, there often exists a good deal of
overlap between classes. Despite this, when the aggre-
gate is taken over hundreds of different n-tuples, the
classes do generally become clearly separable.

Fig. 2
These plots show the contents of particular tuple sampling pixel locations (11,
41) and (33, 54) with U = 16, therefore each memory is a 16 x 16 matrix. Each
memory has been trained on five samples from subjects 0 and 1, the first two
subjects in the ORL database

Illustration of a typical compiled continuous n-tuple memory

3 Results

The continuous n-tuple classifier was tested on the
Olivetti Research Laboratory (ORL) database, availa-
ble from http://www.orl,co.uk/facedatabase.html. The
database consists of four hundred images; ten each
from 40 people, each image is 92 x 112 pixels, and
there is considerable intra-subject variation. The data-
base has been widely used by other researchers, which
makes it a useful benchmark. All the systems quoted in
Table 3 use five images for training and five for test-
ing, but many of these are only based on one or two
partitions of the dataset. To make the results presented
in this paper (i.e. the n-tuple results) statistically signifi-
cant, each result is based on 100 random partitions of
the dataset (again, into five images for training and five
for testing). N-tuple points were drawn from a uniform
distribution over the entire image, using the default
pseudorandom number generator built into the java.-
math library.

The probabilistic decision-based neural net
(PDBNN) results are taken from Lin et al. [7]. Self-
organising map results combined with convolutional
neural net (SOM + CN) results, together with the
results of eigenfaces [SI, top-down HMM and pseudo-
2D HMM are taken from Lawrence et al. [9] and
Samaria and Harter [101. The humble nearest-neigh-
bour classifier actually performs surprisingly well. This

345

http://www.orl,co.uk/facedatabase.html

Table 3: Error rates on the test data together with training and classification times
for the ORL database

Method

PDBNN

SOM + CN

Top-down HMM
Pseudo-2d HMM
Eigenfaces

n-tuple (4:500:2)

cont n-tuple (4:500:256)

cont n-tuple* (2:500:16)

1-NN (10304:1:256

Error rate (%I
4.0 20 min

3.8 4h

13.0 nla
5.0 n/a

10.0 n/a
11.6 (2.8 : 5.5 : 21.5)

3.79 (1.7 : 0.5 : 7.5)

3.59 (1.4 : 1.0 : 7.0)

4.1 (1.6 : 1.0 : 9.5)

Train i ng t i me

0.9s

0.9s

2 min

0

Classification time

< 0.1s

< 0.5s

nla

240s

n/a
0.025s

0.33s

0.013s

I s

Cont n-tuple” indicates the compiled version of the continuous n-tuple with 16 levels of quan-
tisation. The n-tuple methods are suffixed with the parameters (n : m : s) in parentheses. The
results show the mean for each experiment together with the standard deviation, and the min-
imum and the maximum error in parentheses. All results quoted in the Table use five images
per class for training and the remaining five per class for testing. The various n-tuple results
and one-nearest-neighbour (1-NN) classifier are each based on 100 experiments, each one
using a different random partition of the data

is based on a city-block distance metric; a Euclidean
distance version performs significantly worse. The fig-
ures in parentheses indicate that the nearest-neighbour
classifier was implemented as a continuous n-tuple sys-
tem with n = 10304 and m = 1. Of particular note is the
fact that the compiled version (cont-n-tuple”) with the
quantised input space (o = 16), and cut down n-tuple
size (n = 2) actually gives the best performance, and is
also the fastest method for recognition, capable of rec-
ognising 76 images per second. The two-minute train-
ing time seems a reasonable price to pay for this, and is
significantly faster than training the PDBNN or the
SOM + CN architecture. All n-tuple timing results are
based on a Java implementation running on a 200
MHz Pentium PC.

0 2 4 6 a 10

Fig.3 Variation of test set error rate with respect to number of Sam lex
used for training for the continuous n-tuple classifier (cont-n-tuple) antthe
standard n-tuple classij?er (n-tuple)
For both systems, values of n = 3 and m = 200 were used. This gives poorer
results than with n = 4 and m = 500 for example, but allows the experiments
to be run more quickly and exhibits the same trend. Each point on the graph
represents the mean of five experiments, with error bars + I standard deviation
from the mean. Each experiment used a different random partition of the
dataset, and a different set of randomly chosen n-tuples
-0- cont-n-tuple
~ ~ _ _ n-tuple

ous n-tuple classifier performs more accurately than the
1-NN method on this task. The test showed an accept-
ance of this hypothesis with a probability of 0.992 (i.e.
confidence of 99.2%).

3. I
Zraining samples
An investigation was made into how the error rate var-
ied for the continuous and the standard n-tuple classi-
fier with respect to the number of samples used for
training. To speed things up, values of n = 3 and m =
200 were used. Fig. 3 shows the average test-set error
rate for one training image per class through to nine
training images per class. Each point on the graph is
the mean of five experiments, each experiment based
on a different random partition of the data.

Variation of error rate with number of

4 Discussion

4.7 Memory requirements
For the ORL dataset, extensive tests have shown that
recognition accuracy is not highly dependent on the
value of n, providing that n > 1. As shown above, good
results are obtained with n = 2, m = 500 and 0 = 16.
Consequently, the amount of RAM needed pes class
(i.e. per person) is (162 * 500 = 125 kbytes).

4.2 Recognition speed
Table 3 gives the recognition speed per image for the
compiled continuous n-tuple classifier as being 0.01 3 s
per face image, given a 40-class problem. This is
already fast enough to classify 76 images per second,
but for verification purposes where a face is matched
against the model of a claimant this can be multiplied
by a factor of 40, i.e. it could verify approx 3000
images per second. There are two cases where this
unprecedented speed might still be inadequate:
* if it was required to match against thousands of sub-
jects in real-time

The significance of the difference between the cont-n-
tuple (4:500:256) and the 1-NN method was tested as
follows. For 100 random partitions of the data set, the
error rate of each method was measured to give 100
paired samples. A single-tailed t-test was then made to
test the significance of the hypothesis that the continu-

0 if the face is at an unknown location, scale and rota-
tion in the image; a complete recognition system might
comprise a simple face locator (perhaps based on a
continuous n-tuple classifier trained on thousands of
faces) which returns multiple-face registration hypothe-
ses.

346 IEE Proc -Vu Image Signal Process, Vol 145, No 5, October 1998

There are many algorithms for face localisation. These
may be based on general facial properties [l l , 121, or
on finding the optimal affine transformation between a
particular face image and the image to be recognised. It
is interesting to note that an efficient implementation
of the latter method is given by Matas et al. [13] which
shares a random sampling methodology with the con-
tinuous n-tuple system. The system of Matas et al. uses
a Sobel distribution of sample points, as opposed to
the uniform distribution employed here.

Hence, there may arise situations where it is neces-
sary either to further increase the speed of the continu-
ous n-tuple system, or to make the system more robust
in the face of small registration errors (and hence able
to cope with imprecise face registration). There are sev-
eral ways of of achieving this. The first is to make the
software faster or use a faster PC; the current imple-
mentation is written in Java and the timing measure-
ments were made on a 200MHz PC. A C++ version
might gain a factor of two in speed. PCs are continuing
to follow Moore’s law in their exponential speed
increase against time.

Secondly, when the continuous n-tuple system has
been compiled, it is just as straightforward to build in
parallel hardware as a conventional n-tuple classifier.
The implementation consists of some RAM, one sum-
mation unit per class (or one to cycle over all classes)
and some simple logic to pick the winning class or
decide if there is a conflict.

The third possibility would be to build a tangent-dis-
tance metric [14] into the system. This would make the
system less sensitive to small shifts in image registra-
tion, and this possibility is currently being investigated.

Finally, in the case that a video stream of images is
available, there are many ways in which the dynamic
information implicit in the video sequence can be
exploited; see McKenna et al. [I51 for an example.

4.3 Real-time training
A real-time training algorithm can be outlined as fol-
lows. The case of n = 2 is particularly easy to visualise,
as shown in Fig. 2. The contents of each continuous n-
tuple memory for each class may be plotted on a two-
dimensional grid consisting of B x B squares. Prior to
training, all squares on the grid are set to infinity.
When a particular pair of input values occur (i.e. the
grey level values for the points indexed by this n-tuple
are extracted from a training image), these index a par-
ticular square on the grid which is set to zero. All other
squares are given values equal to their distance (e.g.
Manhattan distance) on the grid from the indexed
point. The cost of this operation is proportional to B x
B (or in general d) for the first training pattern. There-
after, the cost decreases every time that a square not
previously referenced is indexed, since it is only neces-
sary to update the values at each square in each direc-
tion from the indexed point until a square is reached
that already has a lower distance value than the dis-
tance to the indexed point. This means that when train-
ing the system on a video sequence of a new face, the
first few frames would take a relatively long time to
train (but still very fast compared to other architec-
tures, and depending on the setup parameters and host
system, perhaps still in real time), with the speed
increasing until a face is so well known that new frames
only cause minor, inexpensive updates to continuous n-
tuple memory.

IEE Proc -VIS Image Signal Process, Vol 145, No 5, October 1998

A simplified version of this algorithm has already
been implemented, whereby each n-tuple training vec-
tor updates only the set of points within a given radius
r of the training vector. Using r = 10, 0 = 32, n = 2
and m = 100 it was possible to train on 200 images in
1.1 s of CPU time. Hence, even for m = 500 it should
be possible to train at a rate of 36 frames per second,
which is more frames per second than most PC video
capture systems can supply.

4.4 Possible extensions
Conventional n-tuple classifiers have already been
given probabilistic interpretations [16-1 91, but these
have been based on the frequency of occurrence of par-
ticular combinations of n-tuple values. There are some
interesting possibilities for combining probabilistic
approaches with the explicit distance metric method
used in the continuous n-tuple classifier.

The current implementation uses a distance metric
that operates directly on intensity information, which is
sensitive to variations in contrast and brightness. The
system might therefore perform even better if the
images were first subjected to some simple global or
local normalisation operators. However, such pre-
processing would slow the system down, and any
improvements have to be traded off against the loss of
speed. The lighting conditions in the ORL database are
quite consistent, and this may explain why the system
performs so well without any pre-processing on this
database.

It can be argued that different regions of the image
provide more recognition information than others. One
suggestion (by the anonymous referees and others) has
been to modify the sampling process to reflect this.
This would be an attractive way to improve perform-
ance, since it would not imply any extra computational
cost; indeed, if we sampled the space more efficiently,
we might even be able to get better accuracy with fewer
n-tuples, hence further improving the speed. An initial
experiment was made to explore this idea, where a
radial elliptical sampling process was used. Each point
was defined by a randomly generated angle (from a
uniform distribution in the range 0 - 2 4 and a ran-
domly generated length in the range 0-1. These points
in polar co-ordinates were then mapped onto an ellipse
centred on the image. The motivation behind this was
that faces are roughly elliptical, and that more informa-
tion might be in the centre of the image, which is natu-
rally favoured in the radial sampling process. Ten
experiments were then run to compare the radial ellipti-
cal (RE) sampling with the uniform random (UR) sam-
pling, using n = 2 and m = 100. The RE method had
an average error rate of 17.6% while the UR method
had an average error of 5.2%. From this we can con-
clude that the RE method is significantly worse than
the UR method. Perhaps some other sampling method
might prove to be even better than UR, but this
remains to be seen.

5 Conclusions

A new n-tuple classification method has been described,
called the continuous n-tuple classifier. The system is
conceptually simple and straightforward to implement
either in hardware or software. A comprehensive set of
results on the ORL face database demonstrate that this
method is extremely competitive with other
approaches, in terms of accuracy, training time and

341

recognition time. In particular, with n = 2 and yyz = 500
we can train the system at a rate of 36 frames per sec-
ond, perform classification (for a 40-class problem) at
76 frames per second, and achieve an average error rate
of just 3.59% on the ORL database.

In its current form, the system is capable of perform-
ing multi-class face recognition in real-time on video
streams, providing that the face can be located in the
image. This is a significant proviso, however, and one
future avenue of research would be to test continuous
n-tuple systems for locating faces.

Finally, there is nothing explicitly related to faces
built into the continuous n-tuple classifier, although the
fact that the system works so well when only sampling
10% of the input space seems to corroborate the notion
that neighbouring pixels are highly correlated. It would
therefore be interesting to test the system on other
image recognition problems.

6 References

1 ALEKSANDER, I., and STONHAM, T.: ‘Guide to pattern rec-
ognition using random-access memories’, IEE Proc. -E, Comput.
Digit. Tech., 1979, 2, pp. 2940
ROHWER, R., and MORCINIEC, M.: ‘A theoretical and exper-
imental account of n-tuple classifier performance’, Neural Com-

3 ALLINSON, N., and KOLCZ, A.: ‘Application of the cmac

2

put., 1996, 8, pp. 629-642

input encoding scheme in the n-tuple approximation network’,
IEE Proc. Comput. Digit. Tech., 1994, 141, pp. 177-183

4 TATTERSALL. G., and JOHNSTON, R.: ‘Single-laver look-ur,
perceptroiis’, IEE Proc. F, Radar Signal Process., 1991, 138, pd.

LUCAS, S.: ‘Face recognition with the continuous n-tuple classi-
fier’. Proceedings of the British Machine Vision Conference, 1997,
pp. 222-231

46-54
5

6

7

LUCAS, S.: ‘The continuous n-tuple classifier and its application
to face recognition’, Electron. Lett., 1997, 33, (20), pp. 1676-1678
LIN, S., KUNG, S., and LIN, L.: ‘Face recognition/detection by
a probabilistic decision-based neural network’, IEEE Trans. Neu-
ral Netw., 1997, 8, pp. 114-132

8 TURK, M., and PENTLAND, A.: ‘Eigenfaces for recognition’,
J. Cognitive Neurosc., 1991, 3, pp. 71-86

9 LAWRENCE, S., GILES, C., TSOI, A., and BACK, A.: ‘Face
recognition: a convolutional neural network approach’, IEEE
Trans. Neural Netw., 1997, 8, pp. 98-113

10 SAMARIA, F., and HARTER, A.: ‘Parameterisation of a sto-
chastic model for human face identification’, Proceedings of 2nd
IEEE workshop on applications of computer vision, Sarasoto,
FL, 1994

11 CHEN, C., and CHIANG, S.: ‘Detection of human faces in col-
our images’, IEE Proc. Vis., Image Signal Process., 1997, 144, pp.

12 YANG, G., and HUANG, T.: ‘Human face detection in complex
backgrounds’, Pattern Recognit., 1994, 27, pp. 53-63

13 MATAS, J., JONSSON, K., and KITTLER, J.: ‘Fast face locali-
sation and verification’. Proceedings of the British Machine
Vision Conference, 1997, pp. 152-161

14 SIMARD. P.. LE CUNN. Y.. and DENKER. J.: ‘Efficient oat-

384-388

tern recobition using a n’ew transformation distance’, in HAN-
SON, S., COWAN, J., and GILES, C. (Eds.): ‘Advances in
neural information Drocessing svstems 5’ (MORGAN
KAUFMAN, San Mate;, CA, 1%3)

15 MCKENNA, S., GONG, S., and RAJA, Y.: ‘Face recognition in
dynamic scenes’. Proceedings of the British Machine Vision Con-
ference, 1997, pp. 140-151

16 SIXSMITH, M., TATTERSALL, G., and ROLLETT, J.:
Speech recognition using n-tuple techniques’, Br. Telecom Tech-

nol. J., 1990, 8, pp. 50-60
17 ROHWER, R.: ‘Two bayesian treatments of the n-tuple recogni-

tion method’. Proceedings of IEE 4th International Conference
on Artificial Neural Networks, IEE, London, 1995, pp. 171-176

18 LUCAS, S., and AMIRI, A.: ‘Statistical syntactic methods for
high performance ocr’, IEE Proc. Vis., Image Signal Process.,
1996, 143, pp. 23-30

19 LUCAS, S., and AMIRI, A.: ‘Recognition o f chain-coded hand-
written characters with the scanning n-tuple method’, Electron.
Lett., 1995, 31, (24), pp. 2088-2089

‘

348 IEE Proc.-Vis Image Signal Process., Vol. 145, No. 5, October 1998

