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Abstract 

Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular 
disorders. The utility of artificial neural networks trained with the backpropagation, the Kohonen's 
self-organizing feature maps algorithm, and the genetics based machine learning (GBML) in  
classifying EMG data has recently been demonstrated. A hybrid diagnostic system was also 
introduced that combines the above neural network and GBML models. In this paper the 
WISARD net is applied on the same set of EMG data. The WISARD (WiUcie, Stonham, 
Aleksander Recognition Device) is an implementation in hardware or software of an n-tuple 
sampling technique. Results suggest that although the diagnostic performance of the WISARD 
models is of the order of 80%, that being comparable to the above mentioned three systems, 
training time has been significantly reduced. In addition, the hardware or software implementation 
of the WISARD net is simpler than the other three systems. 

1. Introduction 

Electromyography (EMG) is the study of the electrical activity of muscle and is very important in 
the diagnosis of patients suffering with neuromuscular disorders. Advances in computer technology 
and digital signal processing over the last two decades made the development of an automated 
EMG diagnostic system feasible. Different approaches have been followed to address this problem, 
including knowledge engineering [ 11, causal probabilistic networks [2], artificial neural networks 
(ANN) [3-51, and genetics based machine learning (GBML) [6], [q. A hybrid EMG diagnostic 
system was also built [6], [7] incorporating selected models trained with the backpropagation 
algorithm [8], the self-organizing feature maps algorithm [9], and the GBML classifier system [lo]. 
The motivation for developing the hybrid system is to 'mimic' the examination procedure where 
more than one physician can independently provide their diagnosis, given the same information. 
The aim of this paper is to examine the performance of the WISARD net [ll], [12], and compare 
its behaviour with the neural network models trained with back propagation, and Kohonen's self 
organizing feature maps and GBML paradigms. 

The WISARD (Wilkie, Stonham, Aleksander Recognition Device) is an implementation in 
hardware or software of the n-tuple sampling technique first described in [ll]. What prompted the 
consideration of the WISARD net as a possible solution to the EMG problem is: i) the 
comparatively short training time required (WISARD involves 'one-shot' training as opposed to 
the perceptron progressive training that is a time consuming process), ii) the simplicity of the 
logical structure of the net allowing fast implementation and tailoring to the particular 
requirements of the problem, and iii) the data reduction inherently introduced by WISARD since 
it's mode of input involves the systematic reduction of input data accuracy through quantization. 
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2. EMG Method and Material 

EMG data was recorded from the biceps brachii muscle r 
needle electrode. Motor unit action potentials (MUMS) 

A total of 680 MUAPs were recorded and analysed from 12 normal (NOR) subjects, 11 patients 
suffering with motor neuron disease (MND), and 11 patients suffering with various forms of 
myopathy (MYO). Mean duration of NOR subjects varies from 8 to 12 ms, mean amplitude varies 
from 0.280 to 0.520 mV and mean number of phases varies from 2 to 4. Myopathy patients usually 
have MUAPs with short duration, low amplitude, and small number of phases, whereas MND 
patients have MUMS with long duration, high amplitude, and large number of phases. 

3. The WISARD net 

The WISARD net is composed of the following logical components (Fig. 2): 

.Retina: This constitutes the input to the WISARD model. It is an n-dimensional array onto 
which input data are mapped. 

.Interconnection network This is a random connection mapping from the retina to the random 
access memories (RAMs). The mapping is 1-1 between the retina and the discriminator of each 
class. The set of connections made to each discriminator are further subdivided into tuples. Each 
tuple is used to address a distinct RAM location within a given discriminator. The number of 
connections per tuple determines the corresponding RAM capacity. 

M m o z y  This represents the WISARD model's storage space. In the implementation proposed 
by Aleksander and Stoneman [12] it takes the form of a set of RAMs which are content adressable. 
The memory is connected to the retina via the interconnection network. The size of the retina and 
the configuration of the interconnection network determine the number and size of the RAMs. The 
interconnection network organizes the memory into a set of subcomponents referred to as 
discriminators. Each discriminator stores the input data patterns of one class. 
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Fig. 2 WISARD net logical structure. 

.A training/recognition scheme: i) Training: Each discriminator is trained on a set of patterns 
belonging to a given class i.e. discriminator. Patterns belonging to the class are successively 
mapped onto the retina. The data values are propagated from the retina to each of the RAMs of 
the discriminator corresponding to the class to be learned. The data values feeding into each of 
the RAMs through the interconnection network are used to index the RAM arrays. The indexed 
location is assigned the binary value '1' indicating that the given RAM has stored the specific part 
of the pattern (tuple) presented to it. ii) Recognition: The data pattern to be recognised is 
mapped onto the retina. A similar process as described in 'training' takes place. However, if the 
RAM location indexed by the tuple has been assigned the binary value '1' during the training phase 
then the RAM 'recognises' this part of the input pattern as one on which it has been trained. The 
responses of all the RAMs in the given discriminator are aggregated and compared to responses 
obtained by the other discriminators on the same data input. The discriminator with the highest 
response wins. 
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4. Results and Discussion 

Training of the WISARD models was carried out using eight subjects from each group (8 NOR, 
8 MND, and 8 W O ) .  The diagnostic performance of the trained models was investigated using 
the remaining subjects (4 NOR, 3 MND, and 3 W O ) .  A subject is represented by the 14 element 
feature vector that is mapped on to the WISARD retina, with the column dimension of the retina 
being always 14 (Fig. 2.a and 2.b). Each MUAP parameter was scaled to a 0 to 100 range with the 
number of retina rows being equal to the number of scale subdivisions (quantization levels). 

For each parameter value the row in which range the value was contained was assigned the binary 
value '1' while the rest of the rows of the particular column were set to the binary value '0'. 
Training of the net was carried out as analysed in the previous section. Table 1 summarises the 
WISARD net performance for retina dimensions (rows x columns) 8x14, 16xl4,32xl4, and 64x14. 
As it is shown in  Table 1 the best diagnostic performance on the evaluation set (EV) was 90%, 
when the retina dimensions were 16x14. By increasing the retina dimensions further, performance 
decreased to 60%. 

Table 1 WSARD EMG diagnostic models. 

Retina Size Evaluation Set (EV) Training time (Tr) 
Rows x Columns Diagnostic Yield Seconds 

1 8x14 80% 0.49 

2 16x14 90% 0.60 

3 32x14 60% 0.77 

4 64x14 60% 1.30 

The diagnostic performance of the WISARD models is comparable to the backpropagation neural 
network, and the Kohonen's self-organizing feature maps and GBML models for classifying the 
same EMG data set that was used in this study. All four paradigms of learning achieved similar 
diagnostic performance of the order of 80% for the evaluation set. However, computational effort 
during training was considerably reduced for the WISARD system as compared with the other 
three systems. Training time for the WISARD net varied from 0.49 to 1.30 seconds, as shown in 
Table 1. Several backpropagation models with different architectures, gain and momentum factors 
were investigated [4], [5]: 

i) '14-10-15-3/A= O.l/p=O.l/Epochs= 1033/Tr=207 seconds/EV=80%, 
ii) 14-40-10-3/A=O.1/p=0.1/Epochs=392/Tr =216 seconds/EV=90%, and 
iii) 14-100-20-3/h= 0.5/p= O.S/Epochs= 67/Tr = 135 seconds/EV =90%. 

Models with small architectures, required more epochs during training, thus were more demanding 
in computational power. However, for models with bigger architectures the number of epochs and 
training time were also reduced. For neural network models trained with the Kohonen's self- 
organizing feature maps algorithm, training time was smaller compared to the backpropagation [4], 
PI: 

'No. of inputs - no. of nodes in fnst hidden layer - no. of nodes in second hidden layer - no. of output classes/gain or 
learning rate/momentum 
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i) 
ii) 
iii) 

%x8/0.09/Epochs = 1550/Tr = 34 1 seconds/EV = 80%, 
lOx10/0.9/Epochs= 630/Tr = 101 seconds/EV= 80%, and 
12x12/0.9/Epochs = 630/Tr = 63 seconds/EV= 80%. 

Computational time for GBML models was better than the above two systems, but worst than the 
WISARD models [6], [A: 

3Size = 49/d = 200/ltaX= 0.002/TGA= 5o/pc= l.O/pm O.Ool/Epochs = lOO/Tr = 33 
seconds/EV= SO%, 

and, 
size = 74/cl= 500/lta~ = O.O02/TGA = lOO/pc = 0.5/pm = O.O2/Epochs = 1OO/Tr = 72 
seconds/EV = 80%. 

i) 

ii) siZe=74/d=300/ltax=0/TGA=500/pc= l.O/pm=O/Epochs= 100/Tr=40 seconds/EV=80%, 

iii) 

A hybrid EMG diagnostic system was built incorporating the selected models trained with the 
backpropagation algorithm, the self-organizing feature maps algorithm, and the GBML 
methodology [6], [7l. The output of the hybrid system is expressed as a string, indicating the 
number of models that classified a certain subject under investigation as NOR, and/or MND, 
and/or MYO. The advantage of such a system is that idiosyncrasies of any one system may be 
compensated for by the group. Given the promising results of this study, WISARD models 1 and 
2 of Table 1 can also be added to the hybrid system. 

5. Concluding Remarks 

The application of the WISARD net to the EMG classification problem has rendered promising 
results. The correct classification score of 90% obtained is near optimum for the given evaluation 
set. Furthermore, training time is small compared to models trained with the GBML methodology 
as well as with neural network models trained with backpropagation, and Kohonen self organizing 
feature maps algorithms. Moreover, the WISARD net is also very simple to implement both in 
software and in hardware. Thus, the WISARD model presents itself as an adequate solution to the 
EMG classification problem. 
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