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Abstract: This paper examines the generalisation 
properties of various types of neural network, 
such as radial basis function systems and the 
multilayer perceptron (MLP). It is concluded that 
their behaviour can be explained in terms of 
lowpass interpolation in which discrete training 
examples of a function are implicitly convolved 
with the impulse response of a lowpass filter to 
produce an estimate of the function for previously 
unseen arguments. A different form of neural 
network, in the form of a single-layer lookup per- 
ceptron (SLLUP), is described, and this type of 
perceptron is shown to also generalise by lowpass 
interpolation. However, the SLLUP can learn reli- 
ably and rapidly compared to the multilayer per- 
ceptron and experiments are described which 
show that it compares well with the MLP on 
problems such as speech recognition and text-to- 
speech synthesis. 

1 Introduction 

In this paper the nature of generalisation by neural net- 
works is related to the established signal-processing con- 
cepts of filtering, convolution and interpolation and it is 
argued that neural networks such as the multilayer per- 
ceptron (MLP) [l] and radial basis function (RBF) 
systems [2] are examples of lowpass interpolating 
systems which can only generalise on data which exhibit 
simple clustering. Although limited, this form of gener- 
alisation is often very useful when the data being pro- 
cessed by the net represents physical quantities, and in 
this paper an alternative lowpass interpolating perception 
is described which is able to perform this type of gener- 
alisation but with fast learning and little computation 
compared to the MLP and RBF. 

The perceptron incorporates n-tuple pattern recogni- 
tion techniques [3] in a single-layer architecture to 
produce a single-layer lookup perceptron (SLLUP) 
whose hardware realisation could be almost identical to 
WISARD [4] but whose modus operandi is very different. 
The SLLUP is based on a nonlinear adaptive filter pro- 
posed by Johnston [SI which has been used for echo can- 
cellation and is functionally similar to the cerebullar 
model articulation controller (CMAC) [6]  used in learn- 
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ing control systems. It is shown that this type of system 
can be used in most of the applications which are cur- 
rently seen as the domain of neural networks such as the 
multilayer perceptron (MLP). The SLLUP can learn the 
same types of nonlinear mappings as an MLP but with a 
fraction of the training and computation, and an addi- 
tional very desirable property of the SLLUP is that it 
produces a quadratic error surface and so convergence to 
optimal performance is assured. 

It will be shown that the SLLUP is basically an inter- 
polation system which is able to generate an estimate of a 
continuous mapping function from a sparse set of train- 
ing examples and, as will be demonstrated, is well suited 
to dealing with simple nonlinear mappings such as parity 
detection. 

The ability of the SLLUP to work on the very 
complex mapping problems of speech recognition and 
text-to-speech synthesis is also examined and compared 
with the performance obtainable using the multilayer 
perceptron. It will be seen that the SLLUP can very 
nearly equal the performance of the MLP in these prob- 
lems, suggesting that the MLP also does little more than 
a straightforward sample interpolation. 

2 Generalisation by neural networks 

Any type of neural network can be visualised as a vector 
transformer which accepts an input vector or pattern X 
and produces an output vector Y. The functional 
relationship between Y and X is learned from a relatively 
sparse set of examples of input-output pairs which are 
shown to the network during a supervised learning 
phase. A typical arrangement for performing the learning 
is shown in Fig. 1, in which a training example of the 

x=4 transform vector - 
Fig. 1 Supervised learning system 

required function,f(X), is used as an output target for the 
transformer. The error between the actual output of the 
transformer and the target is used to adapt the internal 
parameters of the transformer until the error is mini- 
mised. In the context of neural networks the internal 
parameters are the ‘synaptic weight’ values and the error 
is used in a gradient descent algorithm such as back pro- 
pagation. 

A desirable property of neural networks is gener- 
alisation, which enables the network to produce a good 
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estimate of an output Y given a previously unseen value 
of input X. In many cases, this is simply achieved by 
some form of interpolation. The process is illustrated in 
Figs. 2a and b for a one-dimensional case in which the 

system contains mechanical inertia which tends to cause 
the spectral content of the function io be dominated by 
low frequencies. Such functions are appropriately gener- 

required continuous function g ( x )  

t 

x -  

a 

sampled function interpolation kernel continuous function 

x +  X d  X 4  

b 

Fig. 2 Interpolation 
(I Training examples as samples ofthe underlying function 
b Recovering a continuous function from its samples by filtering 

function underlying a training set of discrete input- 
output example pairs is y = g(x). Fig. 2a shows that the 
input-output examples are effectively samples of the 
function g(x) and, although the samples are irregularly 
positioned across the pattern space, many of the ideas 
used in digital signal processing, such as Nyquist Sam- 
pling, aliasing, filtering and function bandwidths, are also 
relevant to the problem of finding this function. 

In particular, if the input-output examples are samples 
of the underlying function, then the complete continuous 
function should be recoverable by passing them through 
a suitable lowpass interpolation filter in which they are 
convolved with the filter’s impulse response, as illustrated 
in Fig. 2b. This is the essence of the radial basis function 
system and the single-layer lookup perceptron described 
in this paper. 

Insight into the nature of the generalisation obtained 
using interpolative filtering is gained by viewing the 
process in the frequency domain. As an example consider 
a filter whose impulse response is a multivariate gaussian. 
The filter’s frequency response is lowpass and conse- 
quently the correct continuous function will only be gen- 
erated by filtering the sampled function if the spectrum of 
the unsampled function is also lowpass, as illustrated in 
Fig. 3. To emphasise this limitation, the generalisation 
will henceforth be called lowpass interpolation to indi- 
cate that it is only suitable if the spectrum of the function 
underlying the training samples is also lowpass. 

In contrast to Fig. 3, Fig. 4 shows a situation in which 
the function underlying the samples has a bandpass spec- 
trum. Lowpass filtering the spectrum of the sampled 
function will not yield the correct continuous function 
because a frequency shifted version of the wanted contin- 
uous function is produced. 

It may be argued that real-world data will only arise 
from functions having a lowpass spectrum and this is 
often true for data which has been generated by physical 
processes such as speech articulation, whose generating 
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alised by lowpass interpolation like the radial basis func- 
tion and, as will be shown shortly, sigmoidal multilayer 
perceptrons. 

However, functions which describe logical processes 
which relate a set of input conditions to an output action 
are often characterised by bandpass spectra. A simple 
example is the parity function, which contains no energy 
at zero frequency because the function oscillates in value 
as each input variable changes state. Lowpass inter- 
polation is quite inappropriate for generalising in this 
kind of situation and, predictably, it will usually be found 
that radial basis function systems or sigmoidal MLPs fail 
to work correctly when only trained on a subset of pos- 
sible input-output examples. Correct generalisation is 
still possible with these types of function if a bandpass or 
multiband interpolation scheme is used. The Fourier per- 
ception [7] is an example of such a bandpass inter- 
polating system, but in this paper the discussion will be 
limited to the case of lowpass interpolation. 

Spectral view of incorrect generalisation of a function with 

3 

Three important points are raised by viewing the process 
of function generalisation as interpolative filtering of a 
sparse set of samples of the function. These points are 
equally applicable to lowpass and bandpass interpolation 
and provide insight into the limitations of any gener- 
alising machine. 

3.1 Nyquist sampling criteria 
Sufficient training examples must be given so that there 
are minimum of two samples per cycle of the highest fre- 
quency in the mapping function. This suggests that the 
complexity of a mapping function be specified in terms of 
its bandwidth B and that the maximum interval between 
training examples should be no greater than 1/(2B). 

Nyquist sampling, f i l tering and generalisation 
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3.2 Bandwidth of interpolation filters 
To obtain a perfect, continuous function from the train- 
ing examples, the interpolation filter should have a rec- 
tangular frequency response of B Hz bandwidth. This 
would require an infinite length sinc (x) inpulse response, 
which is impossible. Practical interpolation filters should 
have a bandwidth of as near as possible B Hz, but it must 
be recognised that finite impulse response filters will 
always produce an error in the estimate of the continuous 
function. 

3.3 Uniformity of function sampling interval 
It is very dnlikely that the training examples supplied to 
a supervised learning machine will be uniformly distrib- 
uted across the pattern space. This means that the dis- 
tances between samples of the required mapping function 
are non-uniform. The Nyquist sampling theorem requires 
at least two samples per cycle of the function if it is to be 
recovered without loss of information. However, a 
uniform sample interval is not specified and so the irregu- 
larity of the training points does not necessarily mean 
that the continuous mapping function cannot be recov- 
ered. Unfortunately, a simple interpolation filter is unable 
to recover a continuous function from a set of irregular 
samples because the function will be non-uniformly 
scaled in proportion to the density of the samples. This is 
not a problem if the interpolation is learned by iteratively 
adjusting the scale factor of the impulse response of the 
interpolation filter depending on which region of the 
pattern space it is operating in, and an example of this 
process is shown by the radial basis function system 
described in the next Section. 

4 

The operation of the radial basis function network is 
illustrated in Fig. 5, in which a set of basis functions are 

Radial basis functions as lowpass interpolators 

/ radial basis functions 

X- 

Fig. 5 Synthesis of a function using radial basisfunctions 

added together so that their sum closely fits discrete 
training examples of a continuous function which is to be 
learned by the system. Typically the basis functions are 
multivariate gaussians whose amplitude, mean value, and 
variance can be scaled to make the network output fit the 
given examples of the function. 

The lowpass filter action of the network is easily 
understood by initially assuming that the training 
samples of the function are regularly spaced and that one 
basis function is positioned over every sample in the 
function domain. In this situation the output of the 
network is the convolution of the training samples with 
the radial basis function. Spectrally, this is lowpass filter- 
ing because the Fourier transform of the multivariate 
gaussian is a lowpass frequency response. 

In general the samples are not positioned regularly 
and the bandwidth and amplitude of each of the basis 
functions must be individually adjusted to match the 
sample rate in its locality. Thus, if the samples are very 
sparse in one region of the pattern space, the bandwidth 

of the basis function has to be reduced so that proper 
interpolation can occur. This corresponds to increasing 
the variance of the basis function. 

Very often it is not possible to place a basis function 
over every single training sample because of computa- 
tional load, and in this case, the function is subsampled 
by using a relatively small number of basis functions for 
its synthesis. The positions of the basis functions in the 
pattern space are adapted iteratively to optimise the 
accuracy of the synthesised function and the bandwidth 
of each radial basis function is reduced to reflect the 
lower effective sample rate of the function. 

5 MLPs as lowpass interpolators 

Sigmoidal MLPs also perform as lowpass interpolators 
and are therefore only capable of generalising correctly 
on functions whose spectrum is lowpass. This behaviour 
is easily understood by looking at the three-layer scalar- 
to-scalar mapping network with one layer of hidden units 
shown in Fig. 6. The output of the network is the 

d8- sigmoid sigmoid sigmoid 

I x  
Fig. 6 M L P  as a synthesiser ofa mapping function 

weighted summation of the sigmoid functions produced 
by each of the hidden units and the slope and offset of 
each of the functions is set by the weights connecting 
each of the hidden units to the input units. All the 
weights are adjusted during learning until the desired 
output function is synthesised as illustrated in Fig. 7. 

weighted weighted weighted 

hldden unit 1 hidden unit 2 hldden unit n function 

Fig. 7 
hidden-unit outputs 

output Of + output Of  + output of mapptng 

Synthesis of a mapping function from the weighted sum of 

Assuming the weight values feeding into the hidden 
units are not allowed to become very high, each hidden 
unit produces a smoothly changing basis function which 
contributes to the overall function. Any smooth, nonper- 
iodic function, such as the sigmoid, will have a lowpass 
spectrum and consequently the MLP will perform gener- 
alisation by lowpass interpolation and is incapable of 
correctly generalising functions whose spectrum is 
bandpass. 

6 The single-layer lookup perceptron (SLLUP) 

The SLLUP is another example of a lowpass inter- 
polating system. However, it has clear advantages in 
terms of learning speed and computation when compared 
to the MLP and RBF, and it will be described in detail in 
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this paper. The SLLUP is based upon a nonlinear adapt- 
ive filter proposed by Johnston [SI and is, in part, 
inspired by the WISARD [4, 15, 161 system and the tech- 
nique of n-tuple sampling proposed by Bledsoe and 
Browning [3]. The operation of the SLLUP is best 
understood in terms of the WISARD style architecture 
shown in Fig. 8, although it will become apparent that 

neuron RAMS 

Fig. 8 WISARD architecture used as a SLLUP 

the way in which the SLLUP uses the architecture and, 
indeed, the practical realisation of the SLLUP are differ- 
ent from WISARD. 

The WISARD architecture consists of a retina in 
which an input pattern X is encoded as an image of black 
and white pixels formed by bits of the code representing 
the scalar elements of X. Random connections are made 
onto the pixels in the image and groups of n connections 
are formed into n-tuples which are used to address a 
large number of RAMs. The RAMs themselves are 
grouped into ‘neuron’ blocks called discriminators and 
the outputs of all the RAMs in the ith block are added to 
form y i ,  the value of the ith element of the output vector 
Y. 

WISARD is a pattern classifier whose function is to 
produce a high score at the output of a single-class dis- 
criminator when a pattern belonging to the class is 
applied to the retina. This is achieved by associating a 
single discriminator with each of the pattern classes to be 
recognised and then applying example patterns of each 
class. A value of ‘1’ is stored in each addressed location of 
the RAMs in the discriminator and it can be shown [SI 
that, after training with many examples, the output value 
produced by the discriminator for class Ci is approx- 
imately proportional to class conditional probability 
P(Ci I X) of the input pattern X. The conditional prob- 
abilities are then used to perform Bayesian classification 
of input patterns of unknown class. Various modifi- 
cations can be made to improve the estimate of the class 
conditional probabilities, such as making the value of a 
RAM location equal to the number of times it has been 
addressed during training, rather than ‘1’ [SI. However, 
the fundamental function is to provide a set of probabil- 
ity estimates which can be used for Bayesian classi- 
fication. 

In contrast to the WISARD pattern classifier, most 
supervised neural nets are designed to learn arbitrary 
mapping functions between input and output vectors. 
The SLLUP uses n-tuple sampling techniques to imple- 
ment arbitrary mapping functions in the same way as a 
conventional neural net but with the computational sim- 
plicity and learning reliability of the WISARD system. 

The SLLUP can be implemented using the same hard- 
ware as the WISARD with the exceptions that each 
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RAM location must be several bits wide so that a wide 
range of values can be represented, no class is associated 
with each of the discriminators, and, most importantly, a 
different training algorithm is used. In reality, it is not 
practical to implement the SLLUP using a WISARD 
style architecture because of its inefficient partitioning of 
memory, and it is usually better to use a single, large 
multiplexed memory in conjunction with hash addressing 
rather than small individual RAMs with n-tuple connec- 
tions. 

In the SLLUP mode of operation, the output of each 
‘discriminator’ forms an element of the output vector of 
the SLLUP and the system is trained by applying a 
vector X to its input which causes a specific set of n-tuple 
addresses to be generated that access corresponding con- 
tents in each of the RAMs. The summation of the 
outputs of each group of RAMs produces the elements of 
the output vector Y. This vector is compared with the 
desired output T and the resultant error vector R is used 
to modify the values of the currently addressed RAM 
locations so that the next time the same input vector is 
applied the output Y is nearer to the desired output T .  

Repeated application of different training vectors 
allows the system to learn the required input-output 
mapping Y = (f(X). It is important to notice that with 
appropriate choice of n-tuple order and number of RAMs 
in each neuron block, the system can estimate the best 
functionf(X) to fit a rather sparse training set. That is, it 
is not necessary to expose the machine to all possible 
input-output vector pairs because it is able to interpolate 
the required function between training points. This pro- 
perty will be analysed in more detail later in the paper. 

6.1 Analysis of the SLLUP learning procedure 
The adaptation of the RAM contents to develop the 
required mapping function is performed using the 
steepest descent algorithm [lo, 171 to minimise the mean 
square error between the actual outputs and target 
outputs of the system. It is therefore necessary to obtain 
a value for the derivative of the average error power with 
respect to the values stored in each location of each 
RAM so that the required change in each RAM location 
value can be determined. 

Each RAM in the system is addressed by an n-tuple 
whose value depends on the vector X contained in the 
input image. Thus, the output of each RAM in the system 
depends in some complex way on X, such that the output 
of the jth RAM in the ith ‘neuron’ block can be expressed 
as CiJ(X). The output of the ith neuron is then given by 
eqn. 1 where Q is the number of RAMs per neuron: 

If the target output vector when X is input is T = [tl, 
..., tN], then eqn. 1 can be used to express the mean 
square output error of the system as 

Eqn. 2 shows that the highest power term involving 
CiJ(X) in the expression for mean square error is two. 
This indicates a single minimum, quadratic surface, and 
so convergence to a global optimum is guaranteed using 
a gradient descent algorithm. The gradient term required 
is simply calculated from eqn. 2 as 

- 
a c2 “L -- - 2(yi - ti) = 2e, a c w  (3) 
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where ei is the difference between the output of the ith 
neuron and its target value. So, the algorithm for modify- 
ing the RAM contants becomes 

(4) Cf; ‘(X) = C t { X )  + k(yi - ti) 

The idea of a pattern space dissected by threshold lines 
can be used to predict the form of the basis function pro- 
duced by a SLLUP. Assume that the RAMS have initially 
zero contents: a single training pattern X ,  is applied to 
the system and the contents of the locations in the RAMS 

6 2  The SLLUP interpolation kernel 
It can be shown that the SLLUP performs generalisation 
by lowpass filtering the training samples in the same way 
as a radial basis function network. The basis functions or 
interpolation kernels are generated implicitly by the 
architecture of the SLLUP and their form depends 
strongly on the way in which the input vector X is 
encoded, but it will be seen that typically they have a 
double-sided decaying exponential shape. The frequency 
response of a lowpass filter having this kind of impulse 
response is far from an ideal ‘brick wall’ interpolation 
filter, but the poor cutoff response is not a problem if the 
mapping function is sampled at a sufficiently high rate 
such that insignificant amounts of aliasing occur. This 
means using a sufficient number of examples in training 
the network. 

The simplest coding, from an analytical point of view, 
is bar chart coding in which the value of each element of 
X is represented by the number of ‘on’ bits in a bar, and 
the operation of the SLLUP using this code will be 
analysed before going on to consider other input-vector 
encoding techniques using binary and Gray codes as well 
as other codes with controlled redundancy. 

6.3 Bar chart coding 
A bar chart encoding of a two-dimensional pattern 
[x1x2] is shown in Fig. 9. In this example each vector 

x 1  x 2  &-tuple 
of Connections 

threshold 
lines 

I 
position of vector 

(I b 

Fig. 9 
(1 Bar chart coding or 2D vector [4,2] 
b Pattem space 

Bar chart coding ofinput uector 

element has been quantised to one of eight values and the 
vector value shown is [3,4]. 

Consider a single 1-tuple connection made onto the 
qth pixel of the x, bar. If x, > q the 1-tuple value will be 
one, whereas if x, < q then its value is zero. In pattern 
space the value of ‘1’ or ‘0’ on this connection changes as 
an imaginary threshold line at x, = q is crossed. This 
idea can be extended to the n connections forming an 
n-tuple. The value on each connection tells on which side 
of the associated threshold line the current input pattern 
lies. The intersections of the lines delineate particular 
regions of pattern space which are associated with partic- 
ular n-tuple values as shown in Fig. 9 for the case of a 
4-tuple. If many n-tuples are connected onto the input 
retina, the combination of n-tuple values delineate 
smaller and smaller regions of pattern space, with each 
region becoming a regular square as the number of n- 
tuples becomes very high. 
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addressed by each n-tuple’s value are iteratively modified 
until they produce the specified target output vector T,. If 
another pattern is now applied to the system, starting at 
X ,  and gradually moving away from X , ,  an increasing 
number of the threshold lines will be crossed. 

Each time a threshold line is crossed, the address 
formed by an n-tuple of connections on the retina 
changes value, and one of the RAMS which was contrib- 
uting to the output value T, switches to another location 
and produces zero output. Thus the output from the 
SLLUP slowly drops towards zero as the input pattern is 
progressively displaced from the training pattern and the 
shape of the fall in output value defined the form of the 
implicit basis function. 

The shape of the basis function can be derived analyti- 
cally if it is assumed that large numbers of n-tuples are 
connected to the input pattern retina. Let there be Q 
RAMS in each ‘neuron’ and D dimensions of length W in 
the pattern space. The output from each ‘neuron’ which is 
caused by an input pattern displaced by distance x from 
the position of the training pattern is given by s(x): 

(5) 

where t is the output from the neuron when the input is 
the training pattern, r(x) is the number of RAMS whose 
addresses change when the input pattern is moved x 
units away in pattern space, and C,, is the average con- 
tribution of each RAM to the output value at the train- 
ing point. However, 

4x1 = t - r(X)C,” 

r(4 = rA.1 dx  (6) 

where Ax) is the probability density of crossing a thresh- 
old line at position x in the pattern space. Assuming large 
numbers of randomly connected n-tuples, this density is 
just the number of active threshold lines q(x) cutting any 
axis of the pattern space divided by the pattern space 
width over which the lines are distributed, that is 

(7) 
q(x) 

AX) = - 
W 

To solve for Ax), r(x) and s(x) we investigate the variation 
of q(x) as x increases by 6x: 

n dx) 
D W  (8) q(x + 6x) = q(x) - - - 6x 

The n/D term in the equation arises because crossing a 
single threshold line renders the other n - 1 lines within 
the n-tuple ineffective, i.e. subsequent crossing of any one 
of these other lines cannot affect the output from the 
RAM any more because it is already switched to produce 
zero output. The n lines which are effectively removed 
from play are spread over D dimensions and so the 
average number of lines along a particular axis which are 
deactivated by crossing just one threshold line is n/D.  
Rearranging eqn. 8 gives 

(9) 
6q(x) n - -- wD q(x) -- 

6X 
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This first-order differential equation has a solution of 

and can be used in conjunction with eqns. 5 and 7 to 
provide the required expression for the interpolation 
kernel. 

(1 1) 
The approximate validity of this expression has been con- 
firmed by a computer simulation in which a SLLUP has 
been trained on a single input pattern and the output 
caused by other patterns covering a 2-D input space 
recorded. The results are shown in Fig. loa for a system 
using 24 quantisation levels for each dimension with 32 
RAMs addressed by 4-tuples of connections onto the 
input retina. 

s(x) = t(1 - e-"I=I/wq 

6.4 Simple binary coding 
A pattern may also be presented to a SLLUP as image 
pixels whose values correspond to simple binary encod- 
ing of the pattern elements. Random n-tuples of connec- 
tions are made onto the retina in the normal way. 
However, the effective basis function created when the 
input vector is binary coded is poorly defined and irregu- 
lar for the following reasons. 

The output from the SLLUP is determined by the 
number of RAMs in each neuron which are addressed 

I.. A 

X l  

a 

with the n-tuple value on which they were trained. The 
probability of an n-tuple changing value is proportional 
to the Hamming distance D, between the current input 
pattern and the training input pattern. Consequently the 
output of the SLLUP is related to the Hamming distance 
between the training pattern and current input pattern. 
The relationship between Hamming distance and signal 
space distance for bar chart code is linear whereas it is 
nonlinear for binary code, as shown in Fig. 11. 

Fig. 11 
a For bar chart 
b For simple binary code 

Hamming distance against signal space distance 

In the latter case, the nonlinearity causes the SLLUP 
output to follow an irregular function as the input 
pattern is moved away from the training point in pattern 
space as shown by the computer simulation example of 
Fig. lob. In this experiment, simple 5-bit binary coding 
with 32 RAMs addressed by Ctuples of retina connec- 

X1 
d 

K e y .  Y ='high' Y = - l o w '  

Fig. 10 
(I Bar chart coding 
b Binary coding 
c Graycoding 
d Redundant Gray coding 
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Interpolation kernels of a function Y in a two-dimensional pattern space (x,, x2) using a uariety of input codings 
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tions was used. The irregularity of the basis function is 
evident, but it should also be noted that it is much nar- 
rower than in the bar chart system. This is a possible 
advantage since it means that complex mapping func- 
tions can be synthesised if sufficient training data are 
available. 

6.5 Gray coding 
Some improvement in the regularity of the basis function 
can be obtained by using a Gray code instead of simple 
binary code. Although the Gray code Hamming distance 
against signal space distance function is not monotonic, it 
is better than the binary code because the Hamming dis- 
tance only changes by one for every 1 unit change in 
signal. Again, this type of encoding has been tested by 
simulation and the kernel function obtained using a Gray 
code is shown in Fig. 1Oc. 

6.6 Other codes 
Further improvements in kernel regularity can be 
obtained by introducing redundancy into the code. There 
are a large number of ways of doing this, but a particu- 
larly effective technique is redundant Gray coding [ 111 in 
which each signal value is represented by a concatenation 
of several shifted versions of an R-bit Gray code for the 
value. Connecting n-tuples onto all the bits in the new 
code causes the bumps in the relationship between Dk 
and D, to be averaged, resulting in a more regular kernel 
as shown by the simulation results in Fig. 10d. 

7 Speech recognit ion and synthesis problems 
using t h e  SLLUP 

Earlier work has shown [I21 that the SLLUP is able to 
perform simple nonlinear mappings such as the fuzzy 
EXOR problem. This is achieved using only small 
amounts of training and with little computation com- 
pared to the MLP. In this paper we examine the SLLUP 
performance on two speech mapping problems of very 
great complexity on which MLPs and some other neural 
nets have already been tested. 

The first mapping problem is speaker independent 
recognition of utterances of the letters of the alphabet. A 
defined cepstral coefficient representation of many utter- 
ances of the letters of the alphabet from one large set of 
talkers must be classified by the SLLUP after it has been 
trained on examples from a separate set of talkers. The 
database used in this experiment was compiled by British 
Telecom Research Labs and is known as the Connex S1 
data [13]. The SLLUP is trained on approximately 4OOO 
utterances from a balanced mix of 52 talkers and then 
tested on approximately 4000 utterances from another 52 
talkers. The utterance length is normalised by linear time 
warping and is presented to the SLLUP as a set of 15 
frames of 8 me1 cepstral coefficients. 

The second complex problem to which the SLLUP 
has been applied is text-to-speech synthesis. In this case 
orthographic text has to be mapped to a sequence of 
phoneme codes which are then used to drive a hardware 
synthesiser. The experiment uses the same database as 
Netspeak [14] and is identical in all respects except that 
the MLP is replaced by a SLLUP. The SLLUP is pre- 
sented with a character taken from English orthographic 
text and has to produce an appropriate phoneme code as 
output. Clearly the pronunciation of a particular charac- 
ter often depends on the word in which it is embedded 
and so three characters on either side of the target char- 
acter are simultaneously presented to the SLLUP. Thus, 

52 

the complete input pattern consists of a context window 
of seven characters, each encoded using 1 1  bits. The 
output phoneme is represented using a 19-bit code to 
represent each of 55 phonemes. 

It is interesting to consider the types of mapping which 
the SLLUP has to develop to deal with each of these two 
problems. In the speech recognition case, input patterns 
belonging to the same utterance class are likely to cluster 
together in their N-space and the SLLUP has to map the 
region of N-space enclosing the cluster to a single speci- 
fied point in the output space. There may be several clus- 
ters belonging to one class but overall the mapping 
between input and output is smooth, without abrupt 
transitions. This proposition is supported by the fact that 
the moderately good speech recognition systems can be 
made using nearest neighbour classification of the input 
pattern. The task of the SLLUP in this case is to inter- 
polate so that previously unseen input patterns which lie 
between training examples of the same class are mapped 
to the same output code. 

The text-to-speech mapping is very different. The dis- 
tances between the codes representing different characters 
does not have a simple relationship to the distances 
between the codes for the corresponding output phoneme 
codes. In other words, the patterns are really symbolic 
and just happen to be represented in a Euclidean space 
for processing by the neural net. Thus, the task of the 
SLLUP is to detect any logical structure in the data and, 
failing this, to act as a lookup table. 

7.1 Experimental results on the speech recognition 
problem 

Tables 1 to 3 summarise the results obtained using the 
SLLUP as a speech recogniser. Table 1 shows that a 

Table 1 : Speech recognition results using SLLUP with 
binary coded input 

n-tuple order Training set Test sst RAMS per O/P 

2 95% 65% 480 
3 98% 62% 320 
4 95 % 52% 240 

8-bit natural binary coding; retina size 960 bits 

Table 2: Speech recognition results using SLLUP with bar 
chart coded i n w t  

Tuole order Trainina set Test set RAMS Der OIP 
~ ~ ~ ~ 

2 76% 71% 960 
3 81 % 75% 640 
4 83% 77% 480 
6 85% 78% 320 

16-level thermometer code; retina size = 1920 bits 

Table 3: Comparison between best results of SLLUP and 
M LP 

Device Training set Test set 

MLP, 75 hidden units 97.4% 88.3% 

SLLUP, tuple order 8; 97.3% 82.8% 
(see Reference 18) 

32-level bar chart code; 
48 RAMS per O/P 

SLLUP using natural binary coding in the retina is able 
to learn the training set very well, but performs poorly on 
the test set. Moreover, the performance tends to improve 
as the order of n-tuple decreases. Taken together, these 
two factors suggest that the SLLUP is unable to inter- 
polate sufficiently between the training examples because 
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the effective width of the interpolation kernel is too small. 
Reduction of the n-tuple order causes the kernel to 
become wider, with a consequent improvement in per- 
formance on the test set. Increasing the n-tuple order 
makes the system behave more like a lookup table, giving 
better recognition of the training set but an inability to 
generalise. 

The kernel width produced using natural binary code 
is very narrow and a possible solution to the poor test set 
performance is to use a different code in the retina, as 
demonstrated by the results of Table 2. These results 
were obtained by quantising each of the cepstral coeff- 
cients to 16 levels and representing them by a bar chart 
code. As expected, the performance improves on the test 
set and gets worse on the training set. This confirms our 
hypothesis that the natural binary code leads to an over- 
specific system. The results in Table 2 show an improve- 
ment in performance as the n-tuple order increases, 
indicating that in this system the kernel is actually too 
wide so that with low values of n overgeneralisation is 
taking place. This is supported by the fact that the system 
has been unable to accurately recognise the training set. 

The recognition accuracy obtained using this system 
with n = 6 is comparable with results obtained using a 
2-layer, 25 hidden-unit MLP on the same data which 
produced a test set accuracy of 81%. The best results 
obtained using the SLLUP on this data are compared to 
those produced by an MLP in Table 3. 

7.2 Experimental results on the text-to-speech 
synthesis problem 

In these experiments each of the seven characters in the 
input window are represented by 1 1-bit codes containing 
approximately equal numbers of ‘1’s and ‘0’s. This is 
important when using a SLLUP because an imbalance in 
the number of ‘1’s and ‘0’s will cause most n-tuple values 
to always consist of n ‘1’s or n ‘O’s, respectively, and this 
renders the n-tuple values insensitive to changes in the 
input vector X. 

The results obtained using a SLLUP in the text-to- 
speech application are presented in Tables 4 and 5. Table 

Table 4: Accuracy of SLLUP as text-to-speech mapper using 
unstructured input coding 

Tuple order Training set Test set RAMS per O/P 

4 34.5% 33.4% 20 
8 60.8% 55.2% 10 

Training: 4 blocks of 10000 characters; testing: 1 block of 10000 
characters 
Codes for each character are approximately equidistant, 11 -bits long 
and consist of five ‘1‘s and six ’Os: retina size = 77 bits 

Table 5: Accuracy of SLLUP as text-to-speech mapper using 
structured input coding 

Tuple order Trainina set Test set RAMS Der OIP 
~ 

4 52.2% 52.2% 20 
8 72.7% 71.3% 10 

10 78.4% 75.0% 8 
10.8 83.9% 79.9% 8 

Training: 8 blocks of 10000 characters; testing: 5 blocks of 10000 
characters 
** Frequency weighted training and test data 
Each code is 11 bits long and consists of five ‘1’s and six *Os. The 
distance between each code reflects the letter group; Retina 
size = 77 bits 

4 shows the performance of the SLLUP when the 11-bit 
codes are placed at approximately equidistant positions 
in 1 1-space. This coding is therefore completely unstruc- 

tured. As expected, the performance is very poor because 
the input patterns are really symbolic and the inter- 
polation between arbitrary codes effected by the SLLUP 
is inappropriate. Using a high tuple order of eight gives 
improved performance on the training set because the 
SLLUP starts to operate as a lookup table. However, the 
test set performance remains poor. 

Table 5 shows the performance of the SLLUP 
working on a modified set of input codes which are 
chosen so that their mutual distances approximately 
reflect the perceptual distances between the phonemes 
which map most frequently to each letter. Using these 
structured codes, distances in the 11-space have some 
meaning and so interpolation becomes a more appropri- 
ate means of generating an output on unseen input data. 
Predictably the results in Table 5 are much better, with 
high accuracies obtained both on training and test data if 
sufficiently large n-tuples are used. A further improve- 
ment can be obtained if the frequency of commonly 
occurring words is reflected in the content of the training 
and test sets. This is because the very common words in 
English often have irregular pronunciation rules which 
are hard for the SLLUP to learn unless seen very fre- 
quently. McCulloch reports [14] that a 2-layer, 77 
hidden-unit MLP can give an 86% letter-to-phoneme 
mapping accuracy which is slightly better than the 
SLLUP result. However, the SLLUP converges relatively 
quickly and shows a trend of improving performance as 
n-tuple order increases. 

8 Conclusions 

It has been argued that the purpose of any supervised 
learning network is to perform generalisation by synthe- 
sising a continuous nonlinear mapping function from a 
sparse set of training examples of the function. The con- 
tinuous function can be generated by interpolation 
between the discrete examples of the function using a 
lowpass filter, and radial basis function networks and 
MLPs are examples of systems which utilise this prin- 
ciple. 

Important implications of this argument are that the 
number of training examples must be sufficient high that 
the function is sampled at least at the Nyquist rate and 
that the generalisation which is produced by the filtering 
is only correct if the spectrum of the function underlying 
the training data is dominated by low frequencies. 

The single-layer lookup perceptron is another example 
of a lowpass interpolating network which synthesises the 
required mapping function by effectively convolving the 
discrete training function samples with a kernel function 
which is analogous to the impulse response of a lowpass 
interpolation filter. 

The SLLUP uses comparable amounts of memory to 
the MLP for all but the most trivial functions and in 
general will learn the required mapping function much 
faster than an MLP because it is a single-layer machine 
in which error gradients used for its adaption can be cal- 
culated directly from the output error. Moreover, because 
it is a single-layer machine, the error surface for the 
SLLUP is quadratic and it therefore always converges to 
a minimum error. 

It has been shown that the SLLUP is able to operate 
as a speaker-independent recogniser with almost as high 
accuracy as an MLP, which suggests both that speech 
recognition can be effectively performed by interpolation 
and, perhaps more important, that the MLP also appears 
to be doing little more than interpolation. This is sup- 

IEE PROCEEDINGS-F, Vol. 138, No. I ,  FEBRUARY 1991 53 



ported by the use of a SLLUP for text-to-speech synthe- 
sis, which again gave a performance only slightly inferior 
to an MLP. 

Although multidimensional interpolation is a non- 
trivial task, our arguments suggest that many problems 
to which neural nets such as the MLP are currently 
applied with enthusiasm might be more efficiently solved 
by using explicit, classical interpolation techniques. More 
importantly, there are many logical problems which 
embody functions which have a bandpass spatial spec- 
trum and which cannot be correctly generalised by 
lowpass interpolation, MLPs, RBFs or SLLUPs. New 
types of neural network are needed to deal with these 
classes of problem. 
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