
Experiments on the Generation of DistinguishingN-Tuples for Selected Character DichotomiesTechnical Report No. ECSE-OCR-18DEC95Andrew ShapiraECSE DepartmentRensselaer Polytechnic InstituteTroy, NY 12180December 22, 19951 IntroductionThis report is a companion to [1]. In the present document, we describeexperiments on generating n-tuples for optical character recognition. Thefocus is on the generation process itself, and not the use of the generatedtuples. The experiments were conducted at Rensselaer during late January,1995.An outline of the report is as follows. In Section 2 we describe the exper-iments. The presentation of the experiment data is explained in Section 3.Section 4 contains some discussion. The experiment data is presented inAppendix A.This report assumes familiarity with [1]. Additional information regard-ing the generators, and further discussion of the experiments, may be foundthere. 1



22 Description of ExperimentsWe consider the generation of n-tuples using two generators, called Gen0and Gen1. Gen0 is a simple backtracking algorithm. Gen1 is a more sophis-ticated backtracking algorithm.The main purpose of the experiments was to show the following.1. Distinguishing tuples can be found reasonably quickly, when they exist.2. Gen1 is a reasonably e�cient algorithm for generating tuples. This wasto be shown by comparing Gen1 to the benchmark program Gen0.3. The execution time of Gen1 can be controlled by varying the di�cultyof the problem as de�ned by the p and q parameters.We also consider the quality of solution tuples as a function of the dichotomy.The experiments consisted of executing Gen0 and Gen1 on selected char-acter dichotomies for n = 4; 7; 10. Five dichotomies were used, giving2 � 3 � 5 = 30 experiments. For each experiment, Appendix A contains onetable summarizing the results. Combined, the experiments represent morethan 40,000 generator invocations, and hundreds of hours of CPU time.(Unless otherwise speci�ed, all times in ths document are CPU times.)The experiments were conducted on 4 two-processor SPARC 20's, usingone CPU at a time. Three of the SPARC 20's had 64 megabytes of memory,and one had 256 megabytes. The generation process had modest memoryrequirements, e.g., a megabyte or less, so the amount of memory possessedby the machines was not critical for these experiments.The generators were executed in the mode \�nd a solution for a speci�ed(p; q) pair." The generators executed until either a solution was found, orthe search terminated because a maximum search node limit was reached.The maximum node limits were selected so that the generators executed for



3about 5 minutes on a certain benchmark problem, when no solution wasfound. This \failure time" is di�erent for di�erent problems, because thetime spent at a given search node varies. For these experiments, failure timeswere usually between 2 and 25 minutes. In some cases, when the problemwas extremely constrained as when q is very small, failure times were onlya few seconds.For a given dichotomy, value of n, and generator, the generator wasexecuted according to the following C-like pseudocode.integer p,q,s,f; // for given p,q: s=successes, f=failuresfor (q = n-1, p = 0, s = 50; (q >= 2) and (p != 1); q = q-1) {for (p = 1; s == 50; p = p+1+4*(p>=10)) {for (s = f = 0; (s < 50) and (f < 51); ) {invoke generator for (p,q);if (generator found tuple) s = s+1;else f = f+1;}report average times for this (p,q);}}We can think of the experiment as moving in a table where the rows corre-spond to values of p and the columns correspond to values of q. (This tableunderlies the reporting of the data in Appendix A.) We start at q = n� 1,and move down in the table (�xed q, increasing p). If, for a given p; q pair,we get 50 successes with a 50% failure rate or less, then we move down inthe current column (we increase p). When a greater than 50% failure rateoccurs, the current column is completed; we move left (decrease q) and start



4at the top of the new column (set p to 1). The table is completed when we�nish the q = 2 column, or stop at row 1 in some column.The �ve dichotomies used for the experiments are listed below.1. c-e. 2. e-c. 3. e5-c5. 4. acenou-sxz. 5. c-n.These dichotomies were chosen to represent a spectrum of problem types.Speci�cally, they were chosen for the following reasons. The c-e dichotomyis believed to be a di�cult one to �nd tuples for. The dual of this dichotomy,e-c, was included because it seemed useful to see how the experiment resultschange when the positive and negative classes are switched. The experimen-tal results show that �nding tuples for a given dichotomy may be much easieror harder than for the dichotomy's dual, at least with the generators usedhere. The e5-c5 dichotomy is di�erent from the other four dichotomies be-cause it consists of �fth generation photocopies. The acenou-sxz dichotomyhas several characters in each class. The c-n dichotomy is relatively easy to�nd tuples for.The experiments used 8-point Times Roman characters scanned at 300dots per inch. The characters are shown in Figure 1. The �fth generationphotocopies c5 and e5 are shown in the bottom row of the �gure. All charac-ters were trimmed to the smallest rectangular bounding frame before beingpresented to the generators.For a given dichotomy, the generators drew tuples from a rectangularregion of pixels �. The height (width) of � is the smallest character height(width), taken over the positive exemplars of the dichotomy. For the purposeof determining the p and q values of a given tuple relative to a given characterc, the character is considered to be embedded in an in�nite sea of whitepixels. E�ectively, the tuple is tested in all shift o�sets that place some partof � over some part of c's smallest (inclusive) bounding box. Rotations are



5x x x x x xx x x x x xx x x x x x xx x x x x xx x x x x xx x x x xx x x x x x x xx x x x x x x xx x x x x x xx x x x x x xx x x x x x xx x x x x x x x xx x x x x x x x x x x x xx x x x x x x x x x x xx x
x x x x x xx x x x x x xx x x x x xx x x x xx xx x xx x xx x x xx x xx x x xx x x x x x xx x x x x x x xx x x x x x x x xx x x x x x x

x x x x x xx x x x x x x xx x x x x x xx x x x x xx x x x x x xx x x x x x x x x x x xx x xx x xx x xx x x xx x x x xx x x x x xx x x x x x x x x xx x x x x x x x xx x x x x xx x x x x x x xx x x x x x x x x x x x xx x x x x x x x x xx x x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x x xx x x x x x x x x x x
x x x x x x x xx x x x x xx x x x xx x x x x x xx x x x x x xx x x x x xx x x x x x xx x x x x x xx x x x x x xx x x x x x xx x x x x xx x x x x x xx x x x x x xx x x x x x x x xx x x x x x

x x x x x xx x x x x xx x x x xx x x xx x x xx x x x xx x x x xx x x x xx x x x xx x x x xx x xx x x xx x x xx x x x x xx x x x x x xx x x x x x x x xx x x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x x xx x x x x xx x x x x xx x x x x x xx x x x x x x x xx x x x x x x x x x xx x x x x x x x x x x x xx x x x x x
xx x x x x x x x x x x x xx x x x x x x x xx x x x x x xx x x x x x xx x x x xx x x xx x x xx x x xx x x x x xx x x x x x x xx x x x x xx x x x x xx x x x x x xx x x x x x x x x x x

x x x x x x x x x xx x x x x x x x x x xx x x x x xx x x x xx x xx x x xx x x xx x x xx x x xx x x xx x x x xx x x x x x xx x x x x xx x x x x x xx x x x x x x x x x x x xxx x x x x x xx x x x x x x x x xx x x x x xx x x x xxx xx xx x xx x xx x x xx x x x x xx x x x x x x x xx x x x x x x x x x xx x x x x x x x x xx x x x x x x xx x x
x x x x xx x x x x x x x xx x x x x x x x x xx x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x xx xx xx x xx x xx x x x x x x x x x xx x x x x x x x x x xx x x x x x x x x xx x x x x x x xx xFigure 1: Characters used in experiments.



6not considered, i.e., the tuple shifts are aligned with the two coordinate axesof the character.The maximum node limit for Gen0 was 1,500,000; for Gen1, 70,000. Thetimeslice width for Gen1 was 500, and the width for restricted backtrackingwas 20. The parameters 500 and 20 were selected because of an empiricallyobtained belief that they give \reasonable" performance for many problems.We did not know in advance how the generators would perform withthe selected parameters on any particular problem in the experiments. Theparameters were selected without regard for the particular problems includedin the experiments.In addition to the UNIX command-line arguments for the search limitsgiven above, the following arguments were also used to invoke the generators.-postkind pi -negtkind pi -randseed -one -bpnone -bwThe postkind pi and negtkind pi arguments specify that � and the tu-ple shifts are as described earlier. The randseed argument means that eachtime the generator is invoked, it uses a new seed for producing pseudoran-dom numbers. Thus, on successive executions, the generator may followdi�erent execution paths. Executing the generator many times gives a sam-ple of the generator's possible behavior over the possible random numbersequences. The bw argument indicates the use of black and white tuples (asopposed to all-black or all-white tuples). The one and bpnone arguments areinstructions related to backtracking; their precise meaning is unimportanthere.3 Description of Experiment DataThe data is presented in Appendix A. There is one table for each (dichotomy,n, generator) triple. All times are in CPU seconds.



7It is convenient to explain the data by example, so we refer to Table 1.At the top of the table is the mean execution time for the p = 1; q = n� 1case; here, .2132 CPU seconds. The p = 1; q = n � 1 case is typically theeasiest (p; q) pair to �nd tuples for. The times within the table are scaledto this case, to clarify the changing di�culty of �nding tuples as we moveaway from p = 1; q = n� 1.Within the table, the nonblank table entries can be categorized into threetypes (not including shading). The �rst type of entry has two numbersstacked above each other, as with p = 1; q = 2. The p = 1; q = 2 entryindicates that no failures occurred for p = 1; q = 2; the average scaled timeof the 50 successes was 103 (103 times the base time of .2132 seconds), andthe standard deviation of the scaled time was 73. Another type of tableentry has �ve numbers. For example, with p = 10; q = 3, the mean scaledtime for the 50 successes was 544, with a standard deviation of 395. Therewere 42 failures; the average scaled time for these 42 failures was 1313; andthe standard deviation was 37. A third type of table entry occurs whenthere are no successes, as with p = 2; q = 2. For p = 2; q = 2 there were 51failures; the average failure time was 1074, with a standard deviation of 24.When available, the tables show the optimal (largest) p values for a givenvalue of q. Optimal values are indicated by dark shading in the appropriatetable entry. (No trials were conducted for certain optimal (p; q) pairs; thishappens when the generators did not achieve optimality, or when the optimalp value is larger than 10 and is not a multiple of 5.) When it is known that nosolution exists for a given value of q, this is indicated by an asterisk next tothe column header. The optimality of the displayed values was determinedby exhaustive search. In some cases, when it was not possible to determinethe optimal values, the best known solution values are indicated with lightshading. For example, see Table 2.



8Considerable CPU time was used in the attempt to determine optimalvalues. In some cases, weeks of CPU time were spent determining whethera solution exists for a given (p; q) pair.The procedure for determining optimal values was independent of the C-like pseudocode in Section 2. This procedure followed the staircase patterndescribed in [1]. For example, in Table 1, to �nd the optimal values, thegenerator traversed (p; q) pairs in the following order: (1; 2), (2; 2), (2; 3),(3; 3), (4; 3), (5; 3), � � �, (11; 3), (12; 3). The optimal pairs are therefore (1; 2)and (11; 3), since no solutions were found for (2; 2) or (12; 3).The tables were produced by a perl sript that scans the 50 to 101 gener-ator output �les for each relevant (p; q) pair in a given table, and automat-ically produces the LATEX source to make the table.4 DiscussionIn this section we look at the three questions that the experiments weredesigned to answer. In Section 4.4, we consider the quality of solution tuplesas a function of the dichotomy.4.1 Tradeo� Between Di�culty and Execution TimeApparently, solution tuples are relatively abundant when p; q is close top = 1; q = n� 1. As we move away from this point, ostensibly the problembecomes increasingly constrained and the solution tuple density decreases.For a given dichotomy and value of n, there is a tradeo� between executiontime and the di�culty of the problem as de�ned by the (supposed) solutiondensity. Inspection of the tables shows that Gen0 and Gen1 require moreexecution time as we move away from p = 1; q = n�1. Thus, we can controlthe amount of time to �nd tuples by selecting p and q.



94.2 Time to Find TuplesHere we address the issue of whether or not there exists an algorithm that�nds distinguishing tuples reasonably quickly, when such tuples exist for agiven dichotomy and value of n. Inspection of the tables in Appendix Ayields an a�rmative answer, at least for the problems in these experiments.When solutions are relatively abundant or when solutions exist in a con-strained situation such as for small n, either Gen0 or Gen1 is su�cient to�nd tuples. For the other cases, Gen0 does not do as well as Gen1.4.3 Gen1 vs. Gen0The third purpose of the experiments was to show that Gen1 is a \good"algorithm by comparing it to the benchmark algorithm Gen0.For the most part, the measure of an algorithm should be how it does ondi�cult problems. (It is easy to do well on easy problems.) The de�nitionof a di�cult problem depends in general on the algorithm used to solve it.Here, we say that the di�culty increases when n increases and when (p; q)moves away from p = 1; q = n� 1. One reason for this is that (empirically)these cases take more time; in every table in Appendix A, as we move awayfrom p = 1; q = n � 1 we see increased time to �nd a solution. Anotherreason is that the tuples away from p = 1; q = n � 1 are the ones that aremost desirable for OCR [1].Examination of the tables shows that for the di�cult problems as de�nedabove, Gen1 �nds solutions faster and over a wider range than Gen0. Forthe \easy" problems, Gen0 does better.It is instructive to examine why Gen0 does better than Gen1 on easyproblems. One reason is that Gen1 was designed with di�cult problemsin mind. A consequence of this design is that Gen1 cannot �nd any solu-tion without evaluating many tuples at each search node, even when the



10search goes directly to a solution with no backtracking. On the other hand,Gen0 only evaluates one tuple at each search node. These facts and theexperimental data suggest that we might want to form a hybrid algorithmthat executes Gen0 and Gen1 in parallel. If t0 and t1 are the respectiveexecution times for Gen0 and Gen1 on a given problem, then the hybridalgorithm takes time that is at worst roughly 2min(t0; t1). This is in someways more desirable than the execution characteristics of either generator.For easy instances, the hybrid uses at most twice the time of Gen0; fordi�cult instances, the hybrid uses at most twice the time of Gen1.There are easy instances in these experiments where Gen0 �nds tuplesover a wider range than Gen1 does, e.g., the c-e dichotomy for n = 4.For these instances, the failure times for Gen0 are on the order of 15 or 20minutes, whereas the failure times for Gen1 are on the order of a few seconds.This suggests that for these instances the search width parameter of 20 usedfor Gen1 is too restrictive; this value causes Gen1's search tree to be smalland to contain no solutions. We suspect that Gen1 would �nd tuples forthese instances if the search width were increased. The experiments appear,in these instances, to be unfair to Gen1, since Gen0 is allowed to spend moretime searching.4.4 Quality of Tuples as a Function of the DichotomyHere we brie
y consider how, if at all, the quality of solution tuples dependson the dichotomy.The best known values of p for a given value of q are summarized inFigure 2 (n = 4), Figure 3 (n = 7), and Figure 4 (n = 10), for each of the�ve dichotomies. The �gures represent the shaded boxes that appear in thetables in Appendix A. Figure 2 (n = 4) represents optimal values; Figures 3and 4 contain some entries that may not be optimal.



11

0510
152025
303540
45

2 3
p

q

c-e 3

3 3
e-c +

+ +
e5-c5 2

2
2acenou-sxz �

� �
c-n 4

4 4
Figure 2: Optimal p for given q (n = 4).A criterion for comparing the quality of tuples available to two di-chotomies A and B is as follows: we can consider A to have higher qualitytuples available than B if, in a plot of optimal values such as Figure 2, thecurve for A is everywhere at or above the curve for B.According to this criterion, the e5-c5 dichotomy has better tuples avail-able than the other four dichotomies. Using Figures 2, 3, and 4, the �vedichotomies can be roughly ordered in increasing order of quality of availabletuples as follows:c-e < acenou-sxz < e-c � c-n < e5-c5.This ordering is consistent with our earlier belief that the c-e dichotomyis a di�cult one to �nd tuples for. The plots suggest that higher qualitytuples are available for the e-c dichotomy than for its converse (except whenq = n� 1).



12

0510
152025
303540
45

2 3 4 5 6
p

q

c-e 3

3 3 3 3
3e-c +

+ + + + +
e5-c5 2

2 2
2 2 2acenou-sxz �

� � � � �c-n 4
4 4 4 4

4

Figure 3: Largest known p for given q (n = 7).The change in behavior at q = n � 1 is unexplained. It may be anartifact of the fact that the plots use only the best known values of p, andnot necessarily the optimal values. This is another reminder that the datareported in this section is not exact and should be treated cautiously.Despite their non-exact nature, the plots make it fairly clear that thequality of available tuples varies widely across dichotomies.



13

0510
152025
303540
45

2 3 4 5 6 7 8 9
p

q

c-e 3

3 3 3 3 3 3 3
3e-c +

+ + + + + + + +
e5-c5 2

2 2 2 2 2 2 2 2acenou-sxz �
� � � � � � � �c-n 4
4 4 4 4 4 4 4

4

Figure 4: Largest known p for given q (n = 10).5 AcknowledgementI would like to thank D. Jung, M. Krishnamoorthy, and G. Nagy for com-menting on a preliminary version of this report. G. Nagy participated in thedesign of the experiments, and suggested the plots in Section 4.4. Scannedcharacters were supplied by D. Jung.References[1] D. Jung and M. Krishnamoorthy and G. Nagy and A. Shapira, \N-Tuple Features for OCR Revisited," Submitted to IEEE Transactionson Pattern Analysis and Machine Intelligence, 1995.



14Appendix A: Experiment DataThis appendix contains 30 tables, one for each (dichotomy, n, generator)triple.Note: to reduce the table width, Table 21 does not have a column forq = 3. The data that would go in this column is that for p = 1; q = 3 therewere 51 failures with an average scaled time of 140 and a standard deviationof 2.5. Exhaustive search determined that there are no solutions for q = 3.



15Mean time for p=1,q=3: .2132 sq2 31 103 173 0.082 107451 1.024 0.173 1.61.24 2.63.25 4.13.86 7.67.87 23228 1492309 182p 25510 544 131342395 371115 129651402025303540Table 1: Success and failure times, n = 4, c-e, Gen0.



16Mean time for p=1,q=6: .169 sq2� 3� 4 5 61 139051 327 132833 2.7 189 345 80 3.4 0.192 1338 133051 57 1.10 132 119 0.263 185 14955 1.3246 206 0.774 375 136626 8.5 16341382 154 30 05 467 140351 49 14694482 174 135 1426 43 1083475 877 100 115311223 1438 172 12309276 2479 186 121130p 281 25110 298 131448281 22915 273 124651152 198202225303540 Table 2: Success and failure times, n = 7, c-e, Gen0.



17Mean time for p=1,q=9: .2066 sq4 5 6 7 8 91 442 128351 113 13543 2.2 1352 186 261 106 4.4 0.0972 307 134748 16 10491 1.0336 293 51 0 0.093 448 134551 130 150926 3.7 16524364 281 214 334 15 1074 260 129651 43 12835343 306 263 3255 68 18389229 1496 125 139616321 3317 125 138828312 3248 163 120232318 3029 107 137551p 190 3501015202528303540 Table 3: Success and failure times, n = 10, c-e, Gen0.



18Mean time for p=1,q=3: .1712 sq2 31 6.9 16.9 0.132 8.1 0.996.3 0.133 8.3 1.05.8 0.164 6.7 0.985.5 0.175 7.6 1.05.2 0.166 37 1.139 0.167 119051 1.138 0.228 1.51.09 1.9p 1.410 4.74.21315 136251522025303540Table 4: Success and failure times, n = 4, e-c, Gen0.



19Mean time for p=1,q=6: .2062 sq2� 3 4 5 61 127751 174 127810 2.6 1.0 119 238 22 2.2 0.13 0.0332 186 122842 18 1.9 4.3201 30 28 2.8 233 413 117651 60 12151 3.4 1.1306 73 108 0 11 0.244 192 13024 12 16901 6.3294 18 25 0 235 333 124223 23 14581 6.4 11241385 123 48 0 34 06 418 124951 175 10576 27411 132 266 119 1237 378 127341 38 13573362 184 106 1428 723 131351 42 10706396 190 93 2189 145 117314p 279 24310 212 118020329 28515 120551277162025303540 Table 5: Success and failure times, n = 7, e-c, Gen0.



20Mean time for p=1,q=9: .2076 sq4 5 6 7 8 91 290 130351 184 12426 11 13 1.0 1364 74 225 122 24 83 0.16 0.042 397 118251 109 12505 23 10782 20 1.0349 95 225 205 123 180 98 0.0663 248 123220 79 11457 22 15489 3.9223 177 175 203 82 246 154 415 124451 217 137821 35 132814 11 10701374 215 309 260 94 268 33 05 306 125451 102 120740 14 14357274 259 207 300 44 3456 191 127651 82 123122230 276 209 3807 144 123236263 3798 198 115651267 3109p 1014152025303540 Table 6: Success and failure times, n = 10, e-c, Gen0.



21Mean time for p=1,q=3: .2198 sq2 31 1.1 10.13 0.0442 1.2 0.980.23 0.0833 1.3 1.00.29 0.0544 1.5 1.00.48 0.065 1.8 1.00.65 0.0576 2.1 1.01.3 0.0737 2.1 0.991.1 0.0838 2.2 1.01.3 0.129 3.1 0.99p 1.8 0.07110 3.2 1.01.9 0.0815 9.8 1.315 0.81620 114051 1.28.9 0.625 1.81.330 4.23.135 371 126318391 303740 12235148Table 7: Success and failure times, n = 4, e5-c5, Gen0.



22Mean time for p=1,q=6: .1924 sq2� 3 4 5 61 129951 99 2.0 0.99 147 106 1.6 0.19 0.192 307 11567 4.9 1.0 0.99300 76 11 0.2 0.183 511 111951 16 1.1 1.0335 58 32 0.34 0.324 9.6 1.5 1.016 2.7 0.245 14 25 1.025 164 0.366 15 1.2 2.625 0.58 117 22 2.3 3.0 1268138 4.1 9.3 08 34 35 5.364 124 249 59 22 1.6 1320183 74 2.9 010 59 10712 3.7 9101 5.3 11182p 109 93 5.4 0 18 17915 278 107510 55 9131 65 10084285 150 171 0 154 9320 496 104750 100 10219 53 103810328 141 166 220 136 1782225 107051 354 108651 83 107213154 254 189 202 19430 161 106751213 22035404345 Table 8: Success and failure times, n = 7, e5-c5, Gen0.



23Mean time for p=1,q=9: .2212 sq4 5 6 7 8 91 500 133351 214 131312 28 24 1.0 1254 75 326 123 131 139 0.063 0.0652 314 129123 46 14471 22 2.9 1.0362 118 146 0 116 10 0.0863 410 119738 63 11972 8.4 15272 23 1.1342 133 159 157 36 191 120 0.64 559 117051 155 13283 15 17192 13 11984 1.1448 101 280 95 65 63 55 389 0.475 68 11519 26 14911 16 14854 1.3 10274147 199 98 0 91 245 1.2 1906 132 11368 28 12255 40 11943 1.7 12673208 236 68 318 151 201 4.0 5237 198 111919 33 12567 48 128710 5.6 13433254 156 65 314 150 253 32 2858 222 110212 36 112311 45 10807 2.3 9996240 174 76 203 147 242 5.2 2359 168 105042 105 111512 53 11688 8.4 12646190 159 271 261 116 226 30 44910 279 109131 67 10827 50 118517 42 13769269 174 128 256 138 290 140 34813p 15 181 99051 112 97151 70 124421 18 106118195 150 158 164 166 343 74 30120 131 115451 78 109547245 302 193 2772225 59 101451121 232263035404345 Table 9: Success and failure times, n = 10, e5-c5, Gen0.



24Mean time for p=1,q=3: .7872 sq2 31 6.2 15.7 0.282 11 1.312 0.673 23 1.423 0.724 56451 1.87.4 1.15 3.43.76 7.5157 12318 21449 58p 11010 137 8355185 261115 82251222025303540Table 10: Success and failure times, n = 4, acenou-sxz, Gen0.



25
Mean time for p=1,q=6: 1.9652 sq2� 3� 4 5 61 32451 136 34514 9.7 2722 142 121 27 23 14 3.02 131 34821 33 2498 2.3121 27 51 31 6.33 138 33851 64 27922 6.3 2364114 34 80 70 15 574 89 28238 18 236998 68 46 535 114 31351 25 27613115 69 48 536 35 2522753 477 51 2635172 508p 910152025303540Table 11: Success and failure times, n = 7, acenou-sxz, Gen0.



26
Mean time for p=1,q=9: 2.1424 sq4 5 6 7 8 91 43 21651 13 19314 1 169158 40 34 36 2.6 02 39 21741 6.6 219352 42 18 683 57 20351 14 1861867 45 33 504 18 1803837 465 30 1775140 43678p 910152025303540Table 12: Success and failure times, n = 10, acenou-sxz, Gen0.



27Mean time for p=1,q=3: .1804 sq2 31 12 18.6 0.172 31 0.9835 0.173 63 1.062 0.24 129751 0.9436 0.165 1.00.26 1.10.57 1.10.588 1.41.29 1.5p 1.410 2.42.215 1542211620 1292519025303540Table 13: Success and failure times, n = 4, c-n, Gen0.



28Mean time for p=1,q=6: .2064 sq2� 3� 4 5 61 119951 21 1.2 165 28 0.35 0.0772 93 1.6 1.0131 1.5 0.123 140 114122 3.4 1.0219 110 5.8 0.0914 183 120020 45 1.0229 111 122 0.0825 233 116831 58 16041 2.1281 109 132 0 6.16 402 119751 94 11016 1.3370 127 169 148 1.07 114 10738 7.5194 192 348 227 112717 8.2303 234 309 430 124151 22 11142338 196 54 12110 79 13685p 270 2841115 183 137214234 31520 332 120851325 287253035404245 Table 14: Success and failure times, n = 7, c-n, Gen0.



29Mean time for p=1,q=9: .1706 sq4 5 6 7 8 91 510 124251 125 10666 7.2 9531 1.0 1422 136 239 131 17 0 0.28 0.162 170 115426 16 9311 1.3 0.95242 158 61 0 1.2 0.133 268 114746 106 112311 24 8591 1.0295 143 232 281 102 0 0.424 309 118651 161 123124 52 10373 1.1315 178 255 253 113 81 0.45 155 109951 36 104911 1.7 11091251 179 85 154 3.7 06 149 117713 4.1 9544249 282 17 1017 184 113432 26 11192302 254 117 2338 128 121551 34 15714187 341 118 4879 24 10397p 72 18210 36 11992382 29315 142 127229247 34720 96 129751168 363253035404145 Table 15: Success and failure times, n = 10, c-n, Gen0.



30Mean time for p=1,q=3: .6368 sq2 31 2.451 10.044 0.0492 0.950.0553 0.980.114 1.30.435 4.8510.186789p 1011152025303540Table 16: Success and failure times, n = 4, c-e, Gen1.



31Mean time for p=1,q=6: .5668 sq2� 3� 4 5 61 1551 86 1.1 11.8 64 0.2 0.0962 16651 7.8 0.997.9 3.8 0.123 224 35251 2.56.3 16 1.84 2.31.45 1.50.736 2.30.627 3.11.38 3.51.99 3.8p 2.510 5.44.115 94 467766 2720 45751172225303540 Table 17: Success and failure times, n = 7, c-e, Gen1.



32Mean time for p=1,q=9: .8808 sq4 5 6 7 8 91 83 19151 0.98 1.0 13.0 7.1 0.04 0.041 0.0542 33 2219 5.4 0.9223 16 2.6 0.0783 17151 5.3 2.213 0.59 1.44 6.9 2.23.0 1.45 8.1 1588 1.19.0 9.6 0.476 15051 1.98.9 0.427 2.40.978 3.01.39 2.2p 1.110 2.91.415 3.93.320 5.5 12524.0 3.525 109511028303540 Table 18: Success and failure times, n = 10, c-e, Gen1.



33Mean time for p=1,q=3: .472 sq2 31 1.2 10.14 0.122 1.2 1.10.15 0.123 1.2 1.00.14 0.144 1.2 1.00.12 0.115 3.051 1.00.29 0.16 1.10.137 1.20.128 1.20.139 1.2p 0.1810 1.20.171315 4.6510.442025303540Table 19: Success and failure times, n = 4, e-c, Gen1.



34Mean time for p=1,q=6: .6548 sq2� 3 4 5 61 4.851 1.4 1.6 1.7 10.15 0.11 0.21 0.25 0.22 1.5 1.3 1.5 1.20.18 0.18 0.25 0.193 44 1.5 1.6 1.07.2 0.29 0.27 0.184 4451 1.3 1.4 1.01.3 0.22 0.27 0.165 3.0 1.4 0.973.3 0.26 0.136 266 2.6 1.244 1.7 0.157 40051 6.0 1.22.8 3.3 0.0218 9.5 1.27.3 0.039 57 33651 1.1p 5.7 7.7 0.07910 1.00.02915 203517.2162025303540 Table 20: Success and failure times, n = 7, e-c, Gen1.



35Mean time for p=1,q=9: .7346 sq4 5 6 7 8 91 4.3 1.7 1.8 1.9 1.9 12.9 0.23 0.21 0.18 0.21 0.292 87 15147 1.4 1.4 1.6 1.5 1.243 7.1 0.22 0.18 0.24 0.21 0.273 26751 1.9 1.7 1.7 1.6 0.969.8 0.72 0.23 0.24 0.26 0.234 42 3344 1.4 1.4 1.4 1.167 9.2 0.21 0.2 0.18 0.215 37851 2.9 3.1 1.3 0.9819 3.3 3.6 0.18 0.176 41551 50 41651 2.0 1.420 18 19 1.7 0.0367 4.9 1.33.6 0.0178 8.1 1.23.3 0.0799 31851 1.1p 12 0.1310 1.00.0521415 198518.72025303540Table 21: Success and failure times, n = 10, e-c, Gen1 (see note at beginningof Appendix A).



36Mean time for p=1,q=3: .6522 sq2 31 1.2 10.087 0.12 1.1 1.00.093 0.123 1.1 1.00.081 0.0954 1.0 1.10.053 0.15 1.1 0.910.045 0.0376 1.0 1.20.056 0.027 1.1 1.20.11 0.0248 1.1 1.20.073 0.0289 1.2 1.2p 0.14 0.02110 1.3 1.20.18 0.02115 1.4 1.10.1 0.0211620 3.151 1.00.038 0.02325 1.20.1830 1.30.235 3.3510.0973740Table 22: Success and failure times, n = 4, e5-c5, Gen1.



37Mean time for p=1,q=6: .6554 sq2� 3 4 5 61 2.851 8.9 2.8 1.0 10.51 6.1 0.95 0.25 0.252 8.5 2.0 2.3 0.983.6 1.1 1.1 0.273 54 1.5 2.0 0.9920 0.7 0.89 0.254 15651 2.2 1.3 1.211 0.88 0.26 0.345 3.6 1.6 0.782.5 0.33 0.146 1.4 1.3 1.30.76 0.23 0.237 3.3 1.2 1.21.2 0.21 0.218 2.5 1.2 1.22.0 0.21 0.229 2.4 1.1 1.21.9 0.21 0.2110 3.6 1.1 1.2p 2.5 0.15 0.2115 5.3 1.9 1.14.4 1.2 0.1920 5.4 2.3 0.991.2 1.5 0.172225 5651 6.3 1.78.5 8.9 0.9730 14551 3.4 12318.4 5.0 035 150518.4404345Table 23: Success and failure times, n = 7, e5-c5, Gen1.



38Mean time for p=1,q=9: .8522 sq4 5 6 7 8 91 30 13251 2.6 2.6 2.7 1.1 118 2.4 0.99 0.93 0.85 0.27 0.242 2.0 2.4 2.3 2.2 1.01.2 1.2 1.2 1.2 0.273 3.7 1.7 2.0 2.0 0.942.8 0.75 0.94 0.99 0.194 6.8 2.2 2.3 1.5 1.43.0 0.87 0.71 0.092 0.35 11 3.5 3.2 1.9 0.775.3 2.2 1.7 0.2 0.0226 10 1.7 1.7 1.5 1.54.1 0.83 0.85 0.021 0.0497 13 3.8 3.7 1.4 1.47.5 1.3 1.2 0.062 0.0648 28 3.5 2.7 1.4 1.431 2.4 1.7 0.064 0.059 63 2399 3.2 2.8 1.3 1.449 13 2.5 1.9 0.03 0.04110 42 26244 4.6 4.1 1.3 1.419 20 3.0 2.7 0.047 0.05513p 15 26551 13 3.5 1.5 1.111 5.6 2.6 0.84 0.05520 74 21651 11 2.8 0.9665 12 8.2 1.4 0.0332225 13051 2.6 13233 1.715 1.1 16 0.812630 11851 3.0 12675.5 3.5 6.035 144516.8404345 Table 24: Success and failure times, n = 10, e5-c5, Gen1.



39Mean time for p=1,q=3: 1.6832 sq2 31 1.0 10.18 0.152 1.1 0.930.2 0.0933 1.1 0.890.24 0.0994 2.551 0.890.4 0.125 0.950.146 0.910.157 0.960.158 0.90.159 0.9p 0.1610 0.960.181115 5.4510.752025303540Table 25: Success and failure times, n = 4, acenou-sxz, Gen1.



40
Mean time for p=1,q=6: 2.235 sq2� 3� 4 5 61 6451 1.2 1.0 13.5 0.32 0.012 0.0322 2.5 1.4 0.951.5 0.8 0.0193 6.5 0.99 0.915.2 0.26 0.0114 13 1.4 0.885.4 0.59 0.00895 12 2.0 1.83.0 1.3 1.26 11051 5.1 0.871.5 6.5 0.0287 13551 0.872.9 0.00548 0.83p 0.019 0.810.00810 0.970.315 422516.12025303540Table 26: Success and failure times, n = 7, acenou-sxz, Gen1.



41
Mean time for p=1,q=9: 2.216 sq4 5 6 7 8 91 19651 70 3.0 1.0 19.5 32 2.1 0.16 0.172 47 1825 3.0 1.3 0.8839 2.9 3.6 0.77 0.133 87 17312 14 1.1 0.8945 11 9.0 1.0 0.144 18651 9.3 1.7 0.8419 7.3 0.56 0.145 13 1.8 1.53.6 1.1 1.26 13951 6.0 1352 0.826.1 7.9 4.0 0.147 11351 0.8412 0.138 0.79p 0.139 0.750.1310 0.880.315 26451172025303540Table 27: Success and failure times, n = 10, acenou-sxz, Gen1.



42Mean time for p=1,q=3: .5378 sq2 31 1.9 10.38 0.0782 2.851 0.980.44 0.0843 0.980.0924 0.980.0865 0.950.0936 0.950.0897 0.950.138 1.10.169 1.0p 0.1810 1.00.1815 0.990.211620 6.4511.125303540Table 28: Success and failure times, n = 4, c-n, Gen1.



43Mean time for p=1,q=6: .8056 sq2� 3� 4 5 61 7551 1.8 1.0 13.0 1.4 0.024 0.0422 3.9 1.0 0.993.2 0.019 0.043 14 0.95 0.954.1 0.016 0.0354 23 4.4 0.9512 4.3 0.0445 47 13 0.9755 6.4 0.0246 35151 15 0.932.7 6.7 0.0347 11 0.935.4 0.0348 16 0.914.7 0.029 16 33014 0.926.3 4.4 0.01810 31251 0.89p 6.5 0.0211115 2.71.820 136.325 1009230 429 5351399 1135 232 41451161 13404245 Table 29: Success and failure times, n = 7, c-n, Gen1.



44Mean time for p=1,q=9: .8262 sq4 5 6 7 8 91 17351 70 14428 1.9 1.1 0.97 126 49 11 1.4 0.63 0.17 0.0652 18251 10 1.1 1.0 0.9424 3.7 0.54 0.18 0.0463 16 5.5 0.99 1.03.7 4.3 0.17 0.144 62 26613 8.1 1.2 1.167 14 5.0 0.48 0.125 104 3284 16 13 1.0110 13 6.6 8.4 0.196 33551 19 17 0.913 4.3 7.0 0.167 35751 14 0.9210 6.2 0.178 17 0.886.4 0.169 18 36522 0.94p 7.2 13 0.1710 34251 0.9116 0.1615 2.21.620 231425 91 4942660 2030 346 4355191 2735404145 Table 30: Success and failure times, n = 10, c-n, Gen1.


