
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-23, NO. 4, APRIL 1974

A Classifier Design Technique for Discrete Variable

Pattern Recognition Problems

JAMES C. STOFFEL, MEMBER, IEEE

Abstract-This paper presents a new computerized technique to
aid the designers of pattern classifiers when the measurement
variables are discrete and the values form a simple nominal scale
(no inherent metric). A theory of "prime events" which applies to
patterns with measurements of this type is presented. A procedure
for applying the theory of "prime events" and an analysis of the
"prime event estimates" is given. To manifest additional charac-
teristics of this technique, an example optical character recognition
(OCR) application is discussed.

Index Terms-Classification, discrete variables, interactive pat-
tern recognition, nonparametric pattern recognition, n-tuple selec-
tion, optical character recognition (OCR), pattern recognition,
prime events.

I. INTRODUCTION

THE DESIGN of automatic classification devices often
relies on one or a number of mathematical procedures

which manifest the statistical structure of samples from
the classes to be discriminated. Such mathematical proce-

dures have been effectively incorporated in interactive
computer environments (see Kanal [1]). There exist few
mathematical techniques, however, to deal with patterns
whose measurement variables have discrete, type-II val-
ues.. The following will describe the unique characteristics
of discrete type-II variables, the difficulties in dealing
with these variables in pattern-recognition problems, and
a new theoretical and practical procedure to handle such
variables.

II. TYPES OF VARIABLES

In a classical manner, a pattern will be represented
hereafter as a vector, v =[v1v2.. vd]. The elements vi in
the vector represent the values of specific measurements,
and the dimension of the vector d corresponds to the
number of measurements used to represent the pattern.
The measurement variables will be divided into three
categories. Following the definitions of Sammon [2], the
categories will be labeled continuous, discrete, type-I, and
discrete, type-IT.
The continuous category is composed of variables which

may take on any value in a prescribed range of the real
line.
The second type of variable is defined as discrete, type-I.

Manuscript received March 6, 1973; revised September 24, 1973.
This work was supported in part by a research grant to Syracuse
University from the Rome Air Development Center, Rome, N. Y.
The author is with the Research Laboratories Department,

Xerox Corpotation, Rochester, N. Y. 14644.

This group will include those variables which take on
only discrete values, but which represent samples from
some underlying continuum. An example of these discrete,
type-I variables is age. Although it is typically given as
integer years, the measurement value is a sample from a
quantized continuum, time since birth.
A variable in the third category, called discrete, type-

II, may take on discrete values, but there is no apparently
significant ranking of these values. An example 'of such a
variable is the blood type of a sample. The possible values
are: A, AB, 0, etc. These values are discrete and repre-
sent a nominal, rather than an ordinal scale.

For cases when the measurement variables are discrete,
type-II, significant practical difficulties may arise in the
design of accurate classifiers. It is characteristic of the
discrete, type-II variables that a change of a single vari-
able value, from one level to another, may represent a
significant change in the measured item. For example,
two specimens which have identical measurement values,
with the exception of blood type, may have significantly
different responses to certain pathogens.

Unlike the continuous category there is no incremental
variation in the discrete, type-II variable values which
will leave the pattern effectively unaltered. Due to this
factor and the lack of an inherent ordering principle for
the variable values, it is difficult to describe the probability
distribution of the measurement vectors by a simple para-
metric model. If a generally applicable model existed with
relatively few parameters, the designer might confidently
estimate the parameters of the distribution and then
approximate an optimal discriminate rule such as Bayes'
(Kanal [3]).
As an example, consider the case wheii the measure-

ment vector has a finite dimension and each variable takes
on a finite number of values. From a statistical point of
view, it would appear useful to estimate the probabilities
of each of the possible measurement vectors. For this
"multinomial model" (Foley [4]), assume that all meas-
urements are binary valued and that the measurement
vector has dimension ten. These conditions imply that
there are 1024 parameters, probabilities for the measure-
ment vectors, to estimate. Since a number of these param-
eters will be less than one one-thousandth, a large number
of samples of each class must be obtained to guarantee
confidence in -these estimates. Foley [4] implies that 3072
to 4096 samples per class should be utilized to yield
confidence in the classifier design. Such large sample sets
are often unobtainable, however.

428

STOFFEL: VARIABLE PATTERN RECOGNITION PROBLEMS

Augmenting the statistical tools which aid the practical
classifier designer are procedures which are based on
"geometric principles." Rather than estimate statistical
parameters, a designer mav begin to treat the set of pos-
sible measurement vectors as members of a vector space,
wherein he seeks a relatively simple discriminate rule to
be specified in terms of a metric for that space. Exemplars
of this approach are "nearest neighbors" classification
rules (Fix, Hodges [5]), and Fisher's Linear Discriminant
(Fisher [6], Sammon [7]).
For measurement vectors with discrete, type-II vari-

ables, however, the Euclidean metric is not generally
applicable as a similarity measure (Hills [8]). Further-
more, the arbitrary nature of the nominal scale makes
alternate metrics difficult to derive (Lance, Williams [9]).
The geometric principles which lead to useful design tools
for classification tasks with continuous variable measure-
ment vectors are not generally applicable to the cases
with discrete, type-II variables.

III. APPROACHES TO HANDLING DISCRETE
VARIABLES

This paper attempts to present a general "tool" to
assist the classifier designer in extracting classificatory
information from data with discrete, type-II variables.
This technique, like all other in pattern recognition, will
not solve every classification problem; however, it will
add to the designer's ability to handle discrete variable
data. The initiative for the work reported here was the
work done in the development of a "discrete variable sub-
system" for OLPARS, by Sammon [10]. It is the author's
belief that the analytical techniques developed in this
paper are best suited to an interactive environment such
as described by Kanal [1].

Various approaches have been taken to deal with the
difficulties of discrete, type-II variables as cited above.
Linhart [11] and Cochran and Hopkins [12] were among
the first to publish the inherent difficulties in handling
classification problems with discrete, type-II variables. A
number of others have utilized a variety of techniques in
an attempt to overcome the difficulties with variables of
this category.

Viewing the problem statistically, a number of restric-
tions have been imposed on the general multinomial
model of the probability distribution of the measurement
vectors. If one assumes that the variables are mutually
independent, then there are only d parameters to estimate
for measurement vectors of dimension d with binary-valued
variables. Regarding this as too restrictive, one might
assume the "latent class" model of Lazarsfeld [13] to
represent a class of measurement vectors. This model
would represent the class as a summation of subclasses,
each of which has variables which are mutually inde-
pendent. If there were s subclasses, then one would have
to estimate s X (d + 1) parameters for measurement
vectors of dimension d whose measurements were binary
valued. Investigations of the parameter estimation of this

model have been carried out, by Anderson [14] and
McHugh [15]; however, this is not a generally applicable
model.
Another restricted model which has been proposed is

the "logit" model. For this model, the logarithm of the
probability distribution of the measurement vectors is
represented as follows:

d

log {P(v,v2, - * *,Vd) I = ao + E (-1) tiai
i-I

(1)

where vi E 10,11 and ai are constants. Schaefer [16]
utilized this model for binary-valued measurement vari-
ables, which are by definition discrete, type-II. (A gen-
eralization of this model and additional details may be
found in Good [17], Gilbert [18], and Cox [19].) This
model, as well as the restricted models given above, repre-
sents assumptions about the classes being dealt with. For
practical applications these various assumptions must be
justified before the models become of value.
An alternate technique which has been employed is to

develop a finite series expansion for the general multi-
nomial probability distribution. By a judicious choice of
the basis set, a concise description of the total probability
distribution may be possible if problem information con-
strains some coefficients to zero. Examples of this approach
are Bahadur [20], Abend et al. [21], and Chow [22],
[23]. This approach has yielded limited results.
A variety of "geometric" techniques have also been

applied to the discrete, type-Il variable classifier design
task. The "near neighbor" concept of Fix and Hodges [5]
was applied unsuccessfully by Hills [8] to discriminate
discrete, type-II data. Gilbert [18] examined the applica-
bility of Fisher's linear discriminant to the classification
of a restricted class of measurement vectors with binary
variables. Furthermore, numerous similarity metrics have
been proposed and applied to classification tasks. Among
these are the "matching metric" of Sokal and Sneath
[24], the "hierarchical" clustering metrics of Lance and
Williams [9], and a "probabilistic" metric defined by
Goodall [25].

Still another alternative for dealing with-discrete, type-
II variables is to transform them into continuous variables.
Examples of such transformations may be found in
Sammon [2].
The above techniques have not been valueless, but

there remains a need for a general approach to extracting
classificatory information from the sample data. An ap-
proach which makes few a priori decisions about the data
is "measurement selection." This technique attempts to
eliminate from the measurement vector variables which
contribute little or nothing to the classification accuracy.
Hills [8], for example, selects the "best" subset of meas-
urement variable by estimating the information diver-
gence, Fortier and Solomon [26] incorporate the product
tnoment correlations of the variables in a figure-of-merit
selection algorithm, and McQuitty [27] applies a cluster-
ing algorithm. These procedures tend to be ineffective or

429

IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

to require exhaustive, impractical computation for dis-
crete, type-II variable data. Some theoretical justifica-
tion for the lack of positive results in this area may be
found in Elashoff et al. [28] and Toussaint [29].

IV. PRIME EVENTS

A new theoretical point of view is presented in this
section which deals with discrete, type-II variable meas-
urement vectors. The theory is generally applicable to
this type of data; i.e., no a priori decisions about the form
of the underlying probability distributions are required.
A pattern is available to a classifier designer in the

form of a d-dimensional vector, v = (v,v2,* * ,Vd), the
measurement vector. The set of possible measurement
vectors is thus comprised of vectors whose elements lie in
the range of the measurement functions associated with
each element in the vector. The set of possible measure-
ment vectors forms a set of events in a sample space.
An event in the sample space described above is com-

pletely specified by a d-dimensional vector. The term,
event, will be utilized hereafter to denote a measurement
vector in which a subset. of the d elements have specified
values. The remaining elements are unspecified and will
be represented by a " " in the vector. Hence, event
el = (1,2,5) represents the state that measurements one,
two, and three take on values 1, 2, and 5, respectively.
Furthermore, event e2 = (1,2,-) is defined to represent
the state that measurements one and two take on values
1 and 2, respectively. Measurement three is not specified.
One of the significant characteristics of an event is its

ability to "cover" other events. An event e1 will be said
to cover an event e2 if and only if every element of el
which has a specified value equals the value of the corre-
sponding item in e2. Furthermore, if an element in el is
not specified, then any value or a "not specified" value
may exist for the corresponding element of e2.
To exemplify the covering principle, examine the follow-

ing events:

el= (2,,)

e= (2,1,0)

e3 = (2,2,-).

Using the above definition, one may see that event el
covers e2 and e3. However, e2 does not cover e1 or e3, and
e3 does not cover e1 or e2.
Due to the covering capacity of an event, one may note

that an event partitions the set of possible measurement
vectors into two subsets. One subset comprises the meas-
urement vectors which are covered by the event, aind the
other subset contains all measurement vectors not covered
by the event. The above principle is easily incorporated
in the design of a classifier. For each class, a collection of
events which will henceforth be termed the definition set
is assigned. The classification rule is, then, to assign a
measurement vector to the class whose definition set
contained an event which covered the measurement vec-

tor. If the measurement vector is not covered by a member
of any definition set, then it is rejected.
To implement the simple classification procedure de-

scribed above, a number of major questions must be
answered. First of all, what events should theoretically
be contained within the definition sets of each class? The
number of possible events is typically quite large. For
example, a ten-dimensional measurement vector with
binary-valued elements will have 310 events which must
be considered in making up a definition set. Further, the
sets of events may overlap one another in varying degrees,
and various percentages of the one or more classes may
be covered by one event. Hence, there are potentially
complex tradeoffs in the error rates for various sets of
events used as a definition set.

Second, for a specific classification problem, how does
one generate the theoretically ideal events as defined by
the answer to question one?

Finally, how does sample information from a practical
design problem become incorporated in the design of defi-
nition sets for each class?
The remainder of this section will be devoted to answer-

ing the first question; the next section will deal with
questions two and three. Therefore, the immediate goal
is to ascertain just what events should be contained within
the definition set of a particular class.
Two types of errors are of concern when using events

to discriminate between classes. Type-I errors will be
defined as the occurrence of a measurement vector from
class Cj which is covered by an event in the definition set
of class Ci, for i $ j. Type-II errors will be defined as
the occurrence of a measurement vector from class C,
which is not covered by an event in the definition set for
class Cj. It is not always possible to reduce the occurrence
of errors to zero, since classes may overlap. The optimality
criterion which is utilized, therefore, is the minimization
of the average probability of error.
Another criterion is placed on the theoretically optimal

solution. This second criterion states that the set of events
which comprise the definition set for each class must be
minimal in number. Among other things, this criterion
introduces the practical consideration of storage for a
classification algorithm.
The first criterion for the optimal definition set may be

met by Bayes' rule, Kanal [3]. For the case under con-
sideration, the rule states that the minimum average
probability of error is obtained when the classifier assigns
a measurement vector to the class which yields the largest
a posteriori probability. Using the notation p(v Cj) for
the conditional probability of measurement vector v, given
class Cj as a source and p (C,) as the probability of occur-
rence of a vector from class Cj, then the optimal rule
assigns to class Cj a sample v whenever p (v Cj) p (C)
p(v Ci)p(Ci) for all i.
From the above, one may deduce that a definition set

comprised of a measutement vectors which the above rule
has assigned to a specific class would satisfy criterion one.
However, criterion two may not be satisfied by the col-

430

STOFFEL: VARIABLE PATERN RECOGNITION PROBLEMS

lection of measurement vectors. Hence, the optimal set
of events is not immediately obtained.
A particular set of events will be shown to be a sufficient

collection from which an optimal definition set may be
selected. The members of this set are labeled "prime
events." A prime event is defined as an event which covers
only those measurement vectors which a Bayes' Rule
would assign to one class; furthermore, a prime event may
not be covered by another prime event.
The fact that the optimal definition sets may be com-

posed of events from the set of prime events may be
easily proved by contradiction. Under the assumption
that the optimal design set includes a nonprime event ej,
it follows that ej must either be covered by a prime event
ep, and thus e, may replace ej in the design set, or ej covers
measurement vectors assigned by Bayes' Rule to more
than one class. The second alternative is not possible,
since the optimal definition set will not contradict Bayes'
Rule; therefore, the prime events form a sufficient set.

In order to clarify the ideas expressed above, an exam-
ple will be given utilizing the set of three-dimensional
binary-valued measurement vectors. The example is that
of a two-class problem plus reject class, and the class
conditional probabilities for the measurement vectors are
given below. The example shows the assignment of the
measurement vectors and the prime events associated
with the problem. The optimal design sets for each class
are then listed.

Example 1

Measurement vectors p(vj CI) p(vi CO) p(vi R)

000 0 0 0.25
001 0 0 0.25
010 0.4 0.2 0
011 0.4 0.2 0
100 0.1 0.3 0
101 0.1 0.2 0
110 0 0.1 0
111 0 0 0.50

Assume that the probability of each class is 0.45; namely,
p(C,) = p(C2) = 0.45 and p(R) = 0.10. The decision
rule described above may be rewritten as follows.

Assign vi to class Cj whenever

P(Vi Cj)p(Cj) > p(Vi Ck)p(Ck)
for Cj,Ck E {C7,C2,R1.

Utilizing this rule, the measurement vectors will be
assigned in the following fashion:

Class Ci = { (0,1,0), (0,1,1) }

Class C2 = {(1,0,0), (1,0,1), (1,1,0)1
Reject= {(0,0,0), (0,0,1), (1,1,1)1;

the prime events for class C,: { (0,1-), for class C2:
(1,0,-), (1,-,0) }; the chosen optimal design sets are:

Example 1 is intentionally simple and does not reflect
some of the more complex characteristics of prime events
and definition sets. There is a potentially large number
of prime events which may be associated with a particular
classification problem. The number of these prime events
may be as large as the number of measurement vectors
which they cover. The magnitude of their number and
their characteristics are, furthermore, problem-dependent
facts.
The potential variability in the number of prime events

and their complex covering properties results in definition
sets of various sizes and (problem-dependent) character-
istics. In addition, the definition sets for a particular
classification problem are not unique, even though they
may be composed of only prime events.
The suggested procedure for designing a classifier re-

quires that one first generate the prime events for the
specific problem at hand. The next step is to select a
minimal size set of prime events to make up the definition
sets. These procedures are discussed in the next section.

V. GENERATION OF EVENTS
The next question to be dealt with is the method of

creating the optimal design set for a specific class. In what
follows, a procedure- will be given which is capable of
creating all of the prime events associated with a specified
set of measurement vectors. A procedure for selecting the
final design set will then be described.

It is intended that the generation procedure be per-
formed for each class to yield the optimal set of events
for that class. Thus, for a six-class problem six sets of
events will be generated. The reject class then becomes
the remainder of the set of measurement vectors which
are not covered by any of the six sets of events.
As throughout the discussion of prime events, the pro-

cedure described below will make use of the knowledge
of the class conditional probabilities of the measurement
vectors, along with the probabilities of occurrence of the
classes. These quantities must be estimated in most prac-
tical cases.
The first step in the generation procedure is to form

two lists of measurement vectors, L and NL. List L is
comprised of all the measurement vectors which the
Bayes' decision rule would assign to the chosen class. List
NL is comprised of all the measurement vectors which
are not assigned to the chosen class.
The procedure of generating prime events uses the list

L to create new events and forms a new list, LP, of
potential prime events. The creation of new lists continues
until no new events are generated.
New events are created from list L by combining a pair

of events in the list. The combining process for two events
in L is performed using the lattice binary operation "join"
for each variable. To make clear this procedure, the op-
eration of combining variables will first be dealt with.
The result of combining variables may be expressed as

a binary operation with a simple rule. If the two variable
values differ, then the result is a "don't care" value. If

El = 1(0117-)-l
E2 = 1 (1701-)l (11-10) 1.

431

IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

the variables are the same, the resultant variable has that
same value. When combining a "don't care" value with
anything, the result is a "don't care" value. For ternary-
valued variables, the table below will demonstrate the
combination rules described above:

-~~~V VI/J (vt + VI/)
O~~~~~~~v -- v")

O. 1 -
o 2 -0 - -

1 0
1 1 1
1 2
1 - -

2 0
2 1
2 2 2
2 -

-0-
1
-2-

where "-" signifies a "don't care."
'Now, to combine two events in L which have ternary-

valued variables, the above operation will be applied
"pointwise" to each variable. The combination of the
following two events will help clarify this concept:

(2,-,1) + (2,1,0) = (2,-,-).

In this way, any two events derived from the same meas-

urement space may be combined to form a new event.
The process of combining events will henceforth be termed
"merging."
The procedure for generating the -set of prime events

begins by merging all pairs of events in the list L. Each
new event, the result of merging two events in L, is
checked to see if it covers any members of NL. If it does
cover a member of NL, then the event will not be a prime
event nor will any event which covers this new event.
This follows from the restriction that a prime event may
not cover measurement vectors which a Bayes' decision
strategy would assign to two different classes. The new

event is then disregarded.
On the other hand, if the result of merging two events

in L does not cover any member of NL, then this event
will be a potential prime event, and it is stored in list LP.
All new events generated from L are checked and only
those new events which are truly potential prime events
are stored in LP. Also added to LP is any event in L
which did not yield a potential prime event when it was

merged with any of the other events in L.
The procedure forms all pairwise mergers in list L and

adds to list LP those new events which only cover meas-

urement vectors assigned to a specific class. The list LP
will also include those events from L which did not yield
a potential prime event upon merging with any of the
events in L.
The list LP is next treated as list L and the merging

process is repeated as before. Each pair of events in LP is
merged and a check is performed to see if the new event
is a potential prime event.

This formation of new lists continues until list L equals
list LP. This occurs when no merger of a pair of events in
L yields an event which is a potential prime event and is
different from each member of L.
An example of the generation procedure will be given

below to help clarify the specific details of the algorithm.
The example problem is a two-class problem with three-
dimensional ternary-valued variables. The procedure will
be applied to derive the set of prime events associated
with one of the classes, C1.

Let the set of measurement vectors which a Bayes'
decision rule would assign to class C1 be as follows:
{(2,0,0), (2,1,0), (2,2,0), (2,0,1) 1. The remaining meas-
urement vectors will be either in class C2 or a reject class.
The algorithm begins by forming list L.

List L

1: (2,0,0)
2: (2,1,0)
3: (2,2,0)
4: (2,0,1)

Indices have been assigned to each measurement vector
so that they may be referenced more easily, i.e., el A
(220,0).
Next, one merges events el and e2:

(2,0,0) + (2,1,0) = (2,-,0) A e12.

This event is checked against the list NL with the result
that no member of that list is covered by event e12. Thus,
e12 is placed in list LP.
The events e1 and e3 are then merged:

(2,0,0) + (2,2,0) = (2,-,0) = em3.

Since the event el3 is already in LP, no further processing
is required.
The remaining combinations yield:

e14 A (2,0,-)

e23 A (2,-,0)

e24
_ (2,-,-)

e34 A (2,--).

The events e14, e24, e34 are iiot retained, since they cover
members of NL. Event e23 is already stored on LP and
hence is disregarded.
Event e4 is next added to list LP since it merged with

no member of L to yield a potential prime event.

LP = 1(2,-,0), (2,0,1) 1.

Checking LP and L, one will find them different. There-
fore, LP becomes list L and a new empty list is introduced
as LP:

432

STOFFEL: VARIABLE PATTERN RECOGNITION PROBLEMS

List L
el2 (2,-,0)
e4(2,0,1)

List LP
(Null).

Repeating the merging process:

(2,-,0) + (2,0,1) = (2,-,-) _ e124.

Event e124 covers elements of list NL and therefore is dis-
regarded.
No further mergers are possible in list L, and thus e12

and e4 are added to LP:

LP = {2,-,0), (2,0,1)}.

Checking LP and L, it will be seen that they are iden-
tical, and thus the procedure stops. The set of prime events
for class Cl is in both lists, L and LP.

It can be shown that the above procedure will generate
all, and only, the prime events for a specific classification
problem. To manifest that the procedure will generate all

of the prime events, this fact will be negated and a contra-
diction will be shown to follow. Pursuing this method,
let there exist some prime event ep which is not generated
by the procedure described above. Event ep covers a set
of measurement vectors which by Bayes' rule will be
classified as belonging to one class. Thus a pair or any

subset of these vectors, when merged, will yield an event
which is covered by ep and hence covers no member of
another class. The generative procedure described above
discards only those mergers which cover measurement
vectors of two or more classes. Hence, the mergers of
measurement vectors which are covered by ep will be re-

tained. Successive, exhaustive, pairwise merging of the
retained events which are covered by e, will eventually
generate event ep, as it represents the merger of all meas-
urement vectors which it covers. But this contradicts the
assumption that there exists a prime event which is not
generated by the above procedure.
To show that only prime events are generated via the

above procedure, a proof by contradiction will also suffice.
Assume that an event en is generated but that e. is not a

prime event. There are two restrictions of prime events
which en may have violated. First of all, en may cover

measurement vectors from two or more classes. This may
be ruled out since the above generative procedure does
not retain events as potential prime events for a specific
class if that event also covers measurement vectors of
another class, members of NL. The second prime event
restriction is that a prime event may not be covered by
another prime event. Event en may not be covered by
some prime event ep, however, since the generative proce-

dure would attempt to merge en and ep and yield event ep,
which would be retained. Event en would not remain with
the final list of prime events which was shown above to
be complete. Therefore, the assumption that event en
exists is false, and the generative procedure has been
shown to yield only prime events.
The final theoretical step in the creation of the optimal

definition sets for the classes of a specific problem is the

selection of the minimum size set of the generated prime
events. The measurement vectors which a definition set
must cover are the same vectors which were placed in
list L to generate the prime events. The goal is, therefore,
to select a minimal-size cover for these measurement
vectors.
One method of selecting the minimal-size covering is to

exhaustively examine the power set of the set of prime
events. One could then select fromn this set the smallest
set of prime events which covered the required measure-
ment vectors. Alternate procedures for selecting this
minimal-size cover may be found in the procedures de-
veloped to "minimize Boolean functions," Prather [30].
For a theoretical analysis, the existence of some procedure
is sufficient. Thus, the problem of selecting a minimal
cover will be considered answered until the practical appli-
cation of this theory is discussed in the next section.
The Prime-Event-Generation (PEG) algorithm will

operate to minimize a function of the discrete variables.
Algorithms which minimize the "cost" of a Boolean func-
tion, e.g., Prather [30], yield similar results. Both proce-
dures generate covers for a set of discrete points. However,
the PEG algorithm will operate on other than binary-
valued variables, with various mixes of multivalued vari-
ables, and with more than the three classes of points,
"trues," "falses," and "don't cares," which define Boolean
functions.

This section has provided theoretical answers to the
questions of what events should be utilized in a classifier
and how these events may be generated and selected. The
next section will deal with the practical classifier design
task and the application of the theory of prime events
to it.

VI. APPLICATION OF PRIME EVENT THEORY

The following is the proposed method for dealing with
design problems wherein the probabilities of the measure-
ment vectors are not known. When one is not aware of
the class conditional probabilities of the measure nent
vectors, optimal design procedures may only be estimated.
The set of prime events will serve as a goal for the design
methods described below. However, only sample informa-
tion will be utilized in the procedure.
The proposed method of dealing with sample informa-

tion is to form estimates of the true prime events for the
particular classes. The mechanism for creating these esti-
mates is to incorporate samples of the classes as the
assigned measurement vectors were incorporated in the
prime-event-generation algorithm described in the previ-
ous section. To obtain the prime events associated with
a class C, one places the samples from class C in list L
and the samples from all other classes in list NL. The
prime-event-generation algorithm then proceeds, as de-
scribed above, to merge the samples in list L and to add
potential prime events (truly estimates) to list LP. Pro-
ceeding as previously described, the generation algorithm
will halt when list L equals list LP.

433

4IEE TRANSACTIONS ON COMPUTERS, APRIL 1974

The task of extracting the minimal size cover as a defi-
nition set is also encumbered by the practicality of dealing
only with estimates of prime events. For practical classi-
fiers, it is economically advantageous to store as few
prime event estimates as possible. However, the selection
of the smallest set which simultaneously covers the set of
samples of that specific class is not guaranteed to yield
the best classifier accuracy; it may, in fact, degrade the
performance over that of a larger set. Thus, the selection
of the definition set may incorporate a tradeoff in the
number of prime event estimates and their ability to
cover all, and oply, the measurement vectors which
Bayes' rule would assign to that class. When the number
of prime event estimates is large, a cover-selection al-
gorithm such as given by Prather [30] may be incorpo-
rated. If but a few estimates are generated, it may be
practical to include all of them in the definition set. This
decision is often dependent on problem constraints which
are specific to the design tasks; hence, no rule is given
here. An example-selection procedure is described in the
design application presented in Section VII.
Two new facilities are added to the fundamental prime-

event-generation procedure to increase its flexibility when
dealing with sample information. The first facility is a
threshold, GA, which is utilized when checking if an event
covers a member of list NL. An event will be treated as
though it did not cover a member of NL if the event
truly covered less than or equal to GA percent of list NL.
The normal setting of OA iS 0. It may be raised to other

percentage values, however. This flexibility may prove
helpful when a measurement vector occurs as a sample
in two different classes. If sufficient numbers of samples
are available to confidently estimate the Bayes' rule for
classifying such measurement vectors, they may simply
be removed from classes other than the properly assigned
class. The generation procedure may then proceed as
before. However, if insufficient confidence is established
with the available samples, then threshold GA may be
raised above 0.
The second facility which is added to the fundamental

generation algorithm is a threshold, OB. An event will be
considered to cover a measurement vector in list NL if
the number of specified variables in the event which differ
from those of the measurement vector is less than GB
To exemplify the use of GB, assume that vector (2,1,0,1,0)

is in list NL. If GB is set at the normal value 1, then the
event (2,-,1,-,0) will be considered, as described in the
previous section, not to cover the measurement vector.
However, if GB is raised to 2, then the event will be treated
as though it covers the measurement vector, since only
one specified variable in the event differs in value from
that of the measurement vector.
Both GA and GB are utilized to compensate for the finite

sample sizes in practical problems. By raising GA above 0,
one is not forced to make decisions based on a small
number of samples in a very large measurement space.
The variable OB is utilized to provide greater confidence

that a generated event will not cover samples of a class
represented in list NL. An increase in GB from 1 to 2 will
compensate for the absence of a sample in NL which is
different in only one variable value from a sample pres-
ently in NL. In this way one may compensate for some
deficiencies in the samples on list NL.
The method of incorporating samples in the basic prime-

event-generation algorithm provides a mechanism for
extracting the classificatory information from the discrete,
type-II variable data. This algorithm with the added
flexibilities provided by GA and GB is defined as the Prime-
Event-Generation algorithm (PEG) and it represents the
fundamental analytic mechanism which is presented as a
classifier design tool.
The important qualities of the prime-event-estimation

procedures are noted below. An example application of
these procedures is discussed in the section which follows.
The first notable characteristic of the prime-event-

estimation procedure is its generality. The technique
makes no a priori decisions about the form of the under-
lying probability distributions for the measurement vec-
tors. The PEG algorithm is a tool for extracting from the
samples of the classes that "structural" information which
will make possible the discrimination of these classes,
regardless of the underlying probability distributions asso-
ciated with each class.
A second characteristic of the PEG procedure which

should be noted concerns the statistical confidence of
estimated parameters. As noted earlier, for discrete, type-
II variable classifier design tasks, the number of possible
measurement vectors is often too large in number to
obtain confident estimates of their probabilities of occur-
rence using practical sample sizes. The merging process
of the PEG algorithm yields events which may have a
number of variables not specified in value. These events
may truly be considered as members of the subspace de-
fined by the variables which are specified. Hence, there
will be less possible variation in that subspace and greater
confidence may be placed in an estimate of the probability
of the event occurring than in the estimate of measurement
vectors.
To exemplify the above concept, assume there exists

a two-class recognition problem with ten-dimensional,
binary-valued measurement vectors. If one treats the vec-
tors as a positional binary number, then the measurement
vectors may be denoted by a decimal number in the range
from 0 to 1024. Using this notation, let the samples of
class C1 be the set {0,1,2,- - ,255}, and let the samples of
class C2 be the set {256,257,. - *,767} (see Fig. 1).

For the example described above, one may estimate the
probabilities for each of the possible measurement vectors.
However, there is at most one sample of any of the possible
measurement vectors. Also, the greatest difference in the
number of samples of a specific measurement vector for
the two classes is one. Furthermore, there are only 768
samples with which to estimate the 2048 class-conditional
probabilities of the measurement vectors. Little statistical
confidence may be placed in these estimates.

434

STOFFEL: VARUIBLE PATTERN RECOGNITION PROBLEMS

On the other hand, one may note that all samples in
class C have the first two measurements equal to 0.
Furthermore, class C2 samples have measurements one
and two equal to the two-tuple (0,1) or (1,0). A dis-
criminatory event for class C, could thus be (0,0,-,-, -

,-) and a pair for class C2 could be (0,1,
)and (1,0,-, , , , , , ,

All of these events cover 256 samples each, and greater
confidence may be placed in estimating an accurate classi-
fication rule for these events than for the measurement
vectors considered above.
A third point to note about the PEG procedure is that

it extracts from the samples the within-class similarities
which simultaneously discriminate the specific classes
from one another. The prime-event estimates simultane-
ously fit a specific class and discriminate this class from
the other classes. Classifier design tools which simul-
taneously perform these two functions are rare. Often a
procedure relies strictly on its facility to discriminate the
samples, e.g., Ho-Kashyap [31]. The application of such a
procedure requires care (see Foley [4] and Cover [32]).
Furthermore, the possibility of a reject class is annulled.
On the other hand, there are procedures which concen-

trate on fitting each class with some description; then,
classification becomes a matter of determining the best
description for a sample from the set of class descriptions.
However, a useful description for classification will empha-
size the features which are different in separate classes,
and not merely describe a class in some least mean-square
error sense (see Fukanga [33]). The prime-event-genera-
tion procedure provides fitting information, but by defini-
tion the events have the ability to discriminate the classes.
Another major point which should be emphasized is the

ability of the PEG algorithm to detect high-order sta-
tistical structure without requiring exhaustive searches.
For many practical classification problems, the dimension
of the measurement vector is such that only first- and
second-order statistics are examined. Higher order statis-
tical analysis would be too time consuming. The example
below will help manifest the ability of the PEG procedure
to enable higher order statistical analysis.
Assume that a two-class discrimination problem had

fifty-dimensional, binary-valued measurement vectors. Let
the probabilities for measurements ten, twenty, and thirty,
when treated as a three-tuple, be:

V' = (V10 V20 V30) P(v' Cl) P(V' C2)

O 01 0 1
0 10 0
0 11 0
1 00 0
1 0 1 0O
1 1 0 i A

1 1 0 l

Class C1 Samples

Vo : (0,0,0,0,0,0,0,0,0,0)
Vi : (0,0,0,0,0,0,0,0,0,1)
V2: (O,O,O,O,O,O,O,O,1,0)

v255: (0,0,1,1,1,1,1,1,1,1)

Class C2 Samples

v256: (0,1,0,0,0,0,0,0,0,0)
v257: (0,10,0,0,0,0,0,,Ojl)
v258: (0,1,0,0,0,0,0,0,1,0)

v767: (1,0,1,1,1,1,1,1,1,1)

Fig. 1. Sample measurement vectors for class C(and class C2.

The two classes above have identical first- and second-
order statistics. Hence, discrimination techniques which
rely on such statistics will be useless. Furthermore, there
are 1225 second-order statistics for this problem. Exam-
ination of this many parameters and incorporation of
these in a classifier may be expensive in terms of time
and storage.
On the other hand, the PEG procedure will be able to

extract from samples of the classes, the significant third-
order events. (The order of an event is defined as the
number of specified variables.) Specifically, as the number
of samples grows in size, the PEG procedure will generate
the following events with a probability approaching one.

Events for Class Ci
Measurement
Number 1,2,**.,9,10,11,. -*,19,20,21,** *,29,30,31,* * *,50

ei: (-- - 0 - - 0 - - 0 - -)
e2: - 0 - - 1 - - 0 - -)
e3: (-@-1 - 0 1 - -
e,,: (- -1 - -1 - 0* -

Events for Class C2
Measurement
Number 1,22,3,* ** ,9,10,11, * - * ,19,20,21, * * * ,29,30,31,-* **50

e7 - 1 - - 0 - - 0 -)
eg (--j- 1 - 1 - - 1 - -)

Not only will the events shown above provide accurate
classification information for classes C, and C2, the events
represent components of a classifier which are economical
with respect to the storage which they require.

Another point should be made about statistics which
are greater than second order. High-order events may
exist which accurately characterize different classes. It
may be scientifically helpful not only to discriminate such
classes, but also to specify what the different class char-
acteristics are. Such information with regard to disease
classes, for example, may point toward better knowledge
of causes or cures. Prime events may manifest such charac-
teristics.
The theory of prime events and the PEG procedure for

generating estimates of prime events are offered as the
basis for a classifier design tool. The effectiveness of this
approach depends upon the problem being dealt with and
the particular samples which are obtained. Operational
characteristics, such as computation time, storage, and

Finally, assume that all other measurements have a fifty
percent probability of being a 1 for both classes.

435

IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

accuracy, need to be stated in terms of the characteristics
of a particular problem. Hence, an example of the applica-
tion of the prime event theory will be described briefly in
the next section to show additional practical details.

VII. EXAMPLE APPLICATION
The example application of the theory of prime events

discussed here is the design of a classifier for optical
character recognition (OCR). The characters are the
numerals, 0 through 9, which are printed by a computer-
output line printer. The numerals are represented by a
12 X 8 binary array; Fig. 2 shows samples of these nu-
merals. There are relatively large variations in the charac-
ters, as may be seen in Fig. 2, and these characters are not
members of a font specifically designed for OCR.
The example OCR task was to discriminate the ten

classes of numerals discussed above. Furthermore, prac-
tical constraints of time and storage were imposed on
this design task. Using a specific processor architecture,
the classifier was restricted to be a stored-program al-
gorithm which would require no more than 8K bytes of
memory. The speed of classification was constrained to
classify 500 characters per second.
The above classifier design task, one of a large variety

of practical recognition problems which have discrete,
type-II variables, was selected as an example because a
large group of readers could understand and interpret the
results, statistically and visually, without a great deal of
interpretation by the author. This design task was a non-
trivial multiclass recognition problem which had extremely
large dimensional-measurement vectors. The unique fea-
tures of the prime-event approach, as discussed in the
last section, might therefore be manifest.
The sample characters were represented as 96-dimen-

sional binary-valued vectors. An event, therefore, may be
viewed as a 96-dimensional ternary-valued vector, and a
set of events, the, definition set was selected for each
class. The method of classification was to assign a sample
character to the class whose definition set contained the
event which covered the sample character.
The practical time and storage constraint-s described

above inhibited straightforward application of prime-event
theory. Time is required to compute whether an event
covers a sample character and, ilaturally, the eveil- in
the definition sets must be stored in the classifier. To meet
the practical constraints in this problem, it was judged
that, at most, three events could be stored for each defini-
tion set.

Another practical complication of the example problem
was that only a finite set of sample numerals was avail-
able, thus inhibiting exhaustive statistical analysis. One
hundred samples of each numeral were made available for
design purposes.
An initial application of the PEG algorithm for the

class of 8's, with parameters OA and GB set to 0 and 1,
respectively, yielded one prime-event estimate. Testing
this event on samples outside of the design set revealed
that over 1 percent of the new 8's were not covered by the

1g1911

Illl
I1111
11191

19111

411912
91199'l
1119

11|11

9199

11111

5

19111|1
19111 1111

1111111

911
9II

1991
1191181

111l911

3

fT9ii
S0

1191911 1111 iii

119|11 111l119119ll I II 111
I I III III111I |IJ 1 Il

II9 l

I il11 1!' It'
Ill It Ill
Ill Ill

7ll 11
7 8

'III

11911III
199III11119I

I 1 I

1@

Lit11111

f ll

3

lti
111111
I I I I1119191

I III
19

6

I I' '1 III1
l llll|t II19111 1919

I I III11 1
I I litI ll I1lI

1 2

II
1111

11111111

III

III

1 11999111111 1
tllllllIJIIIIIIII I11
1111111
91911

6

nlll
11191I
'III'

1191111
III11

LII
I11119119III

II

4'
I,
7fl l

119111111 1 1191|1 1191191011111 99tt1 III1| 1 11111111
1ll 19 IlIll

llI 11 19111
19

I 91|I 1t

99191tI111 99I 1919981 1 111918
II1 1191 1 11911
1_ LJ LLJ

8 9 9

Fig. 2. Sample OCR characters represented as 12 X 8 binary
arrays.

generated prime event. The uncovered samples of 8's,
however, had a small number of variables (less than five)
which differed from the specified variables in the prime-
event estimate.
Based on the above results, the concept of covering

was expanded to include a measure termed the covering
distance. The covering distance from an event to a sample
is defined as the number of variable values in the measure-
ment vector which differ from the corresponding specified
variables in the event. The rule for classifying a sample
was altered to incorporate this principle, The covering
distance to each prime-event estimate was computed, and
the sample was assigned to the class whose definition set
contained the event with the smallest covering distance.
If the smallest covering distance was greater than five,
the sample was rejected.

For the classification procedure stated above, it was
determined that 22 events could be stored and incor-
porated in the software classification algorithm. The goal
thus became one of selecting the best 22 events which
had covering-distance properties enabling classification
accuracy on the order of one substitution error or one
rejection of a completed, humanly recognizable character
in 10 000 samples. The method for meeting this goal was
to increase GB when generating prime-event estimates.

436

STOFFEL: VARIABLE PATTERN RECOGNITION PROBLEMS

(Parameter OA was maintained at zero throughout the
design.) This resulted in prime events which had covering
distances of larger magnitudes to the samples of other
classes. This also resulted in larger numbers of prime
events being generated.
The large numbers of prime events generated by the

PEG algorithm had to be further examined to select a
definition set. To overcome this design difficulty, a single-
list mode of the PEG algorithm, PEG1, which is described
in Appendix A, was employed. This procedure generates
a subset of the prime-event estimates generated by the
PEG algorithm and this subset is guaranteed to cover all
samples initially placed in list L. In this way, the definition
sets for the ten classes were selected. In Fig. 3, the defini-
tion sets which were automatically generated are shown.
Table I shows the values of GB which were utilized when the
definition sets were generated. The results of testing this
classifier on, roughly, 9000 samples, which were inde-
pendent of the design samples, are as follows.
The number of "valid" samples which were correctly

classified was 8855. The number of misclassified samples
was 0. A number of samples which represented electronic
malfunctions, noise, etc. appeared in the test data; these
were defined by the designer as reject characters. All
eleven of these were correctly rejected by the classifier.
No valid characters were rejected.

VIII. ANALYSIS
The procedure of incorporating "masks" or "n-tuples"

in an OCR classifier is not a novel technique (see Nagy
[34], Bowman [35]). However, the method of determin-
ing the specific n-tuples to be incorporated is new. Histor-
ically, the n-tuples which were generated were random
selections of variables from a select set of variables.
Membership in this select set was based upon the fact
that maximum-likelihood first-order statistical estimates
for a variable value of 0 or 1 exceeded some threshold. The
frequency of occurrence of the selected n-tuple within the
set of design samples was not known. The estimates of
the number n of variables to be specified in the mask was
typically based on first-order statistics (Bowman [35]).
Furthermore, if two or more n-tuples could be utilized in
a classifier, the random selection procedure, alluded to
above, provides little assistance in selecting two or more
complementary representations of a class.
The method of generating prime-event estimates yields

n-tuple masks which have guaranteed characteristics, dif-
ferent from those generated by the random-selection
procedure. The prime-event estimates reflect the inter-
dependence of the variables and do not rely solely on
first-order statistics. Furthermore, the prime-event esti-
mates represent distinct "modes" of the samples of a class.
The frequency of occurrence of the events may be esti-
mated by the percentage of the class samples which the
event covers; this value is available in the PEG1 algorithm
and was printed out with each generated event. Further-
more, through the use of a selection procedure such as the
PEG1 method, multiple masks may be selected which

..1....c,0

.11. .11t.
11....1l.
1 1.00.11
1. .O0.11
1. .0. 1
1.C00.11

1 1.00.1.
.11...1.
. i1. ..1.
0. 1
00....00

0

1.11.. 000

1 11 . 00

1iia .00

.00.11.0
.0.11.0

0.1111.0
0..C.11.
0000.11.t

.1 .0
11...1.0
.110.. 0
....0000

3

0.11.000
0.1.1.000
.1111. 000
11111 .00
1111111.
1 11. .11.
1 1.00.1 1
1 1.0001 1
.1....
.11...
00....00
00000000

6

.1111 .00
111111.0
1 11.1 1.0
1 11.1 1.0O
1 11 111.0
t111111.0
111 ..110
1 1.0.110

0.00
00. . . 000

8

t 11.... C
.11...
1 1....1.
11.00.1.
1.000.1.
1 .000.11
11.00.11
11.00.1.v
1 11. .11.
.11. .1 1.

00. .. . C)
0

1 10....0

.00.11.0
0..111.0
0.1111.0
11.. .11.
0000.11.

000.... o

.000000

3
0 1 . o00
0.11.000

1 111. ..0O
1111111.
1 11.. 11.
11.00.11
11.00.11
.11..

..1-1

00.... 00
00000000

6
..111 ..0
.11111 .0
11.. .t1 .
11 .00.1 .
111 ..111
1 1 11.11 1
..11111 .
00. .111.
00. .11.0
00..1 ..0
00... *00
00....000

9

111.0C00 ..111.00
111.0000 ..1111.0

.11-.000 . 1..1..1 1 . . 0 000.11.

0.1.0000 O...I1.0
0.11.C000 ..11..00
0.1 1 .00 .111.000
.111.00C0 111.0000
.111..00 111...00
.1111 . 1111...0

.0
1 2

0..1..00 0..l.OOC
0.11-.00 0.11.000
.tl..0Oc .111.00CO
.11 . .(t-l . .11 . 1^Z000
1 ...10 .11.0000

11111 11. 0111.

.111111. 1111111.

000-.11. 0....11.
0000 . 1 .. 0000. 1.0C
oocoo. 00 OOOO..00
OC0O000 00000000

1111111. 1111111.
.... .11. .11.
0000.11. 0000.11.
000.11.0 OO.11 .0
000.11.0 000.11.0O
000.1100 00.1100
00.11.00 00.11.00
00.11.00 00.11.00
00.11.00 00.11.00
00.1.000O 00.1 .000
00... 000 00... 000

7 7
.11.11.0 .1111..O
111.11 111111.0
ill.. 11 11.0.11.
11.00.11 .. 000.1 .

00...11. 0...11.0
000.11.0 00.1i1..O
00..1..o 00.11.00
00...00 0.... 000
00 ... 000 00. .0000

9 9

?_.1 1 1..0
0.1111.0
0....1 1.
0000.11.
00. .1 11.
00. .1 1.0C
. .11...00

111...00
111....0

2

1 1 11. . .0C
lilt1...0
11.. :'-CC
111-.. .0
111111.0
1111111.

0000.11.0000.11.°... 11.0

.00
.... 0000D

..11..00

.11111.0
11.0.1.0
11. . .1.0
111111.0
111111.0
1...110

11 .00110
11 .0.1 .0
11 .0
C..00
00.. .000

8

11111.00
11111 .00
.... 11 .0

0.-.111.0
0.1111.0
0....11.
0000.11.

1....00

. . 1 . .000
ill1..00311 .
1 111...O
l111.0G000
111. . .00
111111.0
1111111 0
00. ('. 1 .

0000.11.
00. .11.0
0. . .11.0
.......00....0000

5
.111..00
.11111.0
11. ..110
111.1110
111111.0
111111.0
11...110
1100.110

.1....110
0..1 ..00
00.. .000

8

Fig. 3. Automatically generated prime-event estimates arranged
as 12 X 8 arrays and depicting the ten definition sets. A "."
indicates an unspecified value.

VALUES OF OB
TABLE I

USED FOR GENERATING EACH DEFINITION SET

Character OB

zero 10
one 11
two 9
three 10
four 10
five 8
six 9
seven 10
eight 9
nine 9

have complementary covering capabilities. These repre-
sent superior "fitting properties" of the prime events over
the random n-tuple masks. It should also be noted that
the prime-event estimates have specific discriminatory
properties as defined by parameter OB in the generation
algorithm. Such properties are neither known nor exam-
ined by the random n-tuple selection methods.
Another property of prime events which may be demon-

strated visually is their ability to denote the subclasses or
the modes of the statistical structure. Evidence of this
property was obtained during the classifier design task;
but to provide clearer proof of this property, the classes
were combined so that only two classes remained. Class C1

437

IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

was defined to contain numerals 0 through 4 and class C2,
numerals 5 through 9. Samples of classes C2 and Cl were

placed in list L and NL, respectively, of the PEG1 algo-
rithm. The algorithm then generated the prime-event esti-
mates, which are shown in Fig. 4, while parameters OA and
OB were set to 0 and 14, respectively. The structure of the
numerals 5 through 9 may be seen in the different prime
events. Furthermore, some of the prime events in Fig. 4
represent subclasses which are composed of pairs of
numerals which have similar graphical representations in
areas of the 12 X 8 array. These pairs of numerals have
thus created new subelasses with specific graphical
structure.
The above example is intended to manifest the method

of applying the theory of prime events and the unique
properties of the prime-event estimates. The details of
the example, the 12 X 8 array representation of a charac-
ter, the accuracy of classification, the number of samples
utilized, and the potential of this method of OCR, are

not at issue here. The OCR classifier design task gives
evidence of how the-theory of prime events may be applied
and of what the results might be.
No special section on caveats for potential users of

prime-event theory was included above. It should be
understood that all computerized procedures which op-

erate on samples to provide classificatory information
require processor time and storage, and that these are

functions of the types of samples which are utilized. It is
appropriate to note here, however, that the PEG algo-
rithm demanded magnitudes of storage and time which
were exponentially related to the number of OCR samples
incorporated in the above example. This was in contrast
to the PEG1 algorithm, which had an approximately
linear demand for time and storage as the number of
incorporated samples was varied. The PEG1 algorithm
was selected for the OCR classifier design task, and it
required less than 60 seconds and 110 000 bytes of storage
for any generation of a class definition set. (The algorithm
was written in Fortran and run on an IBM 370/155.)

IX. CONCLUSION

The problems of designing a classifier for discrete,
type-II, variable-measurement vectors have been exam-

ined above. The theory of prime events was introduced,
and a procedure of generating prime-event estimates was

proposed as a tool to aid the classifier designer. An exam-

ple classifier design task, using a prime-event-generation
procedure, was reviewed and the results were examined
visually and statistically. This paper introduces a new

method of dealing with sample data and provides a new

theoretical viewpoint from which to view the classificatory
information which has been defined in ternms of prime
events.

APPENDIX

The following is a description of an additional mode of
operation which has been provided for the basic prime

event generation algorithm. For some design tasks, a gen-
eration procedure which is less exhaustive and faster than
the basic prime event generation algorithm may be useful.
The PEG algorithm will yield all events which will satisfy
the properties of a prime event with respect to the initial
lists, L and NL, of samples. The resultant set of estimates
of prime events may be "overly complete," "too large,"
or "too time consuming" to create for some problems. The
next design task is to select a practical size set of the
resultant events which one estimates will cover all of the
chosen class. This also may prove too time consuming for
some classification problems.
To cope with these difficulties, it is possible to run the

PEG algorithm in a single list mode. In this mode, the
successive generation of lists is eliminated. Only lists L
and NL will be incorporated. Furthermore, this mode of
operation will perform the selection of a sufficient set of
events to cover the initial list L. This will eliminate the
task of comparing covers made up of events generated
by PEG.
The following discussion will include a description of

the PEGI algorithm, an example of its operation, and a
flow chart of the specific operations in the algorithm. It
will be instructive to include the example with the de-
scription of the procedure.
The algorithm begins by placing samples of one class in

list L and the remaining samples in list NL. As an exam-
ple, let class C, be made up of the following set of four-
dimensional, binary-valued vectors. Class C2, and hence
list NL, will be all remaining vectors from the set of
four-dimensional binary-valued vectors.

L PF TF NL

1: (1 0 1 0) 0 0 (remaining measure-
ment vectors)

2: (1 0 1 1) 0 0
3: (1 1 0 0) 0 0
4: (0 1 1 0) 0 0
5: (1 0 0 1) 0 0
6: (1 0 0 0) 0 0

PF and TF are vectors of dimension the size of list L and
they are initialized to zero.
The basic operations of merging events and checking

their ability to cover list NL are retained. The algorithm
begins by merging the first pair of samples in list L. Let
this be labeled event e12:

e12 _ (1,0,1,0) + (1,0,1,1) = (1,0,1,-).

This event is then checked to see if it covers any mem-
ber of NL. As shown above, there are two flag vectors,
the "temporary flag," TF, and the "permanent flag," PF,
which are initialized to zero. These are utilized to keep
track of those members of list L which are, or have been,
covered by an event previously generated. Event e12 covers
no member of NL and thus "temporary flags" TF(1)
and TF(2) are set to 1. If the event e12 did cover some
members of NL, then the flags would remain 0.
The next step in the algorithm would be to merge el2

438

STOFFEL: VARIABLE PATTERN RECOGNITION PROBLEMS

1111...0 00110000
1111...0 01110000
111.0000 1111.000
111.0000 11111..0
111111.0 1111111.
11111110 111..111
0000.11. 11100.11
0000011. 11100111
000.1110 .111111.
0 -11110 ..ll l ...111.

..111.00 00...000

..1.0000 OO0OOOO

111111.0 00111000
111111.0 0.111000
111.0000 11110000
111-00 11111.00
111111.0 11111110
11111110 11111111
0000.11. 11100.11
0000.11. 11.00011
000.1110 11..011.
00.111.0 .11.111.
0.1 ...00 00..11..
0... 0000 00000000

1111..00 ..111000
1111..00 ..111.00
11.00000 .1....00
111.0000 111.1.00
11111100 111111.0
11111110 111111.0
0000.11. 11.00.1.
0000.11. 11.00.1.
000111.0 1110...0
011111.0 .111..00
11111000 00...000
111 .0000 00000000

.11111.0
11111110
...01110
. .00.1 1.
...0111.
....11..
0..111.0
00.11 1.0
00.11. .0
00.11.00
00.11 000
00.1.000

a.11 11. .
.'111111.

0.11.
. ..0.11 .
....1i1.
O..1 11..
00.111..
000.11.0
00011. .0
00011.00
000.0000

111 1 11. .
1111111.
......11.
.000.11.
....1 11. O
... .11I.0
00.11 1.0
00.11.00
00.11.00
00.11000
00... 000
00.-0000

..111.00

.11111.0
11...1 .0
111011.0
111111.0
111111.0
1...i10

11.0.110
11.0.110
11. 0
0. 00
00... 000

0.11. .00
.11...01 1 0

111 1. .0

1111110
1.O. .1.

11.00.1.
1..11.

.111111.
00.11.00
00000000

.111..00

.11111.0
11.0.110
11....10
111.11.0
11111110
.11 .1110
. *0. .110
..1 .11.0
. .1 11..0O
0011.000
00000000

.1 111 .00
111111.0
11.0.110
..00011.
111.1 1 1.
11 11 111.
.0.111110
00.111 .0
00.11. ..0
00.1 1.00
0.... 000
00. . 0000

.11111.0
111111.0
11 .00...
11.00...
1 11 1 11. .
1111111.
00...11.
000. .11 0
00. .1 1.0
00.11. .O
00.1.000
00. .0000

Fig. 4. Automatically generated definition set for the class made
up of numerals 5 through 9. A "." indicates an unspecified value.

and measurement vector 3:

e123 _ (1,0,1,-) + (1,1,0,0) =

Checking list NL shows that vector (1,1,0,1) is in NL,
and thus e123 will not be a retained event since it covers a
vector in NL.

Next, form the event e124 as above. This too covers
some event in NL and is thus not retained. Event e,25 is
then formed: e125 - (1,0,-,-). This event covers nothing
in NL and hence flag TF(5) is set to 1.

Continuing down list L, the algorithm notes that meas-
urement vector 6 is covered by e125. Thus flag TF(6) is
set to 1.
The algorithm now proceeds to the top of list L in an

attempt to merge additional vectors. Vector 1 was the
"start vector" and therefore this "pass" terminates. The
permanent flag vector is then updated by forming the
pointwide logical "or" of the entries in TF and PF. The
event e125 is stored, as one of the selected events, in list E,
and TF is reset to all O's. Henceforth, PEG1 will make
two "passes" through the samples.
The above procedure is now restarted with one of the

measurement vectors not covered thus far. The flag PF (3)
is 0 and thus vector 3 becomes the "restart vector." The
first step is to merge vector 3 with another vector which
is not covered thus far. The flag vectors at this point are
as follows:

1 2 3 4 5 6
PF: (1 1 0 0 1 1)
TF: (O 0 0 0 0 0).

From PF one can see that vector 4 is uncovered. Forming,
during the first "pass," e34 A (1,1,0,0) + (0,1,1,0) =
(-,1,-,0), and checking NL, one notes that (1,1,1,0)

is in NL and thus covered by e34. The event e34 is dis-
regarded and the algorithm then searches PF for another
uncovered vector. If it found one, the result of its merger
with vector 3 would be checked to determine if it covered
some vector in NL. If no vectors in NL were covered, the
search for another 0 in PF would begin again. If the new
event covered something in NL, then the event would be
disregarded. However, no other 0 was found in PF. The
algorithm now attempts to merge vector 3 with any vector
in L, not just the uncovered ones. This is referred to as
the second "pass."
The event e35 is formed and checked against NL. Suc-

cessfully covering an element in NL, this event is ignored.
Event e36 is formed and covers no event in NL. However,
merging any additional events with e36 will yield an event
which covers something in NL. Thus, event e36 is added
to the list E, PF(3) is set to 1, and the next uncovered
vector is selected as a restart vector. Two passes are
always performed on the list L when generating a potential
prime event.
The restart vector is vector 4. Finding no other un-

covered measurement vectors, the algorithm proceeds to
attempt merging vector 4 with all other elements of list L.
Each merger covers something in NL. The result is that
vector 4 must be retained in E as the only "potential
prime event" covering vector 4. PF(4) is then set to 1.
The algorithm now searches for another uncovered sam-

ple in L. All entries in PF are 1, however. When this
occurs, the algorithm halts. The set E then contains a
subset of the estimated prime events which may be gen-
erated by PEG. The resultant set is a sufficient set to
cover all the design samples in list L.
The details of the PEGi algorithm may be obtained

from the flow graph of Fig. 5. List L initially contains

439

IEEE TRANSACTIONS ON COMPUTERS) APRIL 1974

n E EVENT e beoomes the
be permanent A next sequential
tor entries In PP uncovered vector in
"orZ TP are "1' no list L, L(k)

ISTART-k TF(k)I
to all0"0s0"s PA.S=1 I-k

CgSTOP a

Fig. 5. Flow graph of the PEG1 algorithm.

the samples from the chosen class, and list NL will con-

tain the samples from the other classes. The variable
PASS serves to indicate whether the algorithm is attempt-

ing a merger with the as yet uncovered samples, PASS = 1,
or the covered samples, PASS = 2. Variable ISTART iS the
index of the member of list L where PEG1 begins its
search for mergers. Also, in the PEG1 procedure, as with
the PEG algorithm, the' definition of "cover" is poten-
tially expandable through the incorporation of parameters
GA and GB, as described previously in Section VI. The
purpose of the checking which is performed in Box A is
to reduce the amount of redundant merging and checking
in the two-pass algorithm.

It should be noted that PEG1 will generate a subset of
those events generated by PEG. A sufficient set to cover

List L is generated, and this subset may be the same as

that generated by PEG.

ACKNOWLEDGMENT

The author would like to thank Dr. J. Sammon for
supplying the OCR data which were utilized for the exam-

ple described in Section VII. Furthermore, credit is due
Dr. Sammon for stimulating the author's interest in the
discrete variable problem discussed in this paper.

REFERENCES
[1] L. N. Kanal, "Interactive pattern analysis and classification

systems: A survey and commentary," Proc. IEEE, vol. 60,
pp. 1200-1215, Oct. 1972.

[2] J. Sammon, "Techniques for discrete, type-II data processing
on-line (AMOLPARS)," Rome Air Development Center,
Rome, N. Y., Tech. Rep. RADC-TR-71-232, 1971.

[3] L. Kanal, "Adaptive modeling of likelihood classification,"
Rome Air Development Center, Rome, N. Y., Tech. Rep.
TR-66-190, 1966.

[4] D. Foley, "The probability of error on the design set," Ph.D.
dissertation, Dep. of Electrical Engineering, Syracuse Univ.,
Syracuse, N. Y., 1971.

[5] E. Fix and J. Hodges, "Discriminatory analysis," USAF
School of Aviation Med., Randolph Field, San Antonio, Tex.,
Project Rep. 2149-004, no. 11, 1961.

[6] R. Fisher, "The use of multiple measurements in taxonomic
problems," Ann. Eugen., vol. 7, pp. 179-188, Sept. 1936.

[7] J. W. Sammon, Jr., "An optimal discriminant plane," IEEE
Trans. Comput. (Short Notes), vol. C-19, pp. 826-829, Sept.
1970.

[8] M. Hills, "Discrimination and allocation with discrete data,"
Appl. Statist., vol. 16, 1967.

[9] G. Lance and W. Williams "Computer programs for hierarchi-
cal polythetic classification (similarity analysis)," Nature, vol.
207, p. 159, 1965.

[10] J. W. Sammon, Jr., "Interactive pattern analysis and classifica-
tion," IEEE Trans. Comput., vol. C-19, pp. 594-616, July 1970.

[11] H. Linhart, "Techniques for discriminant analysis with discrete
variables," Metrika, vol. 2, pp. 138-140, 1959.

[12] W. G. Cochran and C. Hopkins, "Some classification problems
with multivariate qualitative data," Biometrics, vol. 17, pp.
11-31, 1961.

[13] P. F. Lazarsfeld, "The algebra of dichotomous systems," in
Studies in Item Analysis and Prediction, H. Solomon, Ed.
Stanford, Calif.: Stanford Univ. Press, 1961.

440

IEEE TRANSACTIONS ON COMPUTERS, APRIL 1974

[14] T. W. Anderson "On estimation of parameters in latent struc-
ture analysis," hychometrika, vol. 12, no. 1, pp. 1-10, 1964.

[151 R. McHugh, "Efficient estimation and local identification in
latent class analysis," Psychometrika, vol. 21, no. 4, pp. 331-
347 1966

[16] E. t. Schaefer "On discrimination using qualitative variables,"
unpublished Ph.D. dissertation, Univ. of Michigan, Ann

[17] I. J- Good, "Maximum entropy for hypothesis formulation,
especially for multidimensional contingency tables," Ann.
Math. Statist., vol. 34, pp. 911-934, 1963.

[181 E. S. Gilbert, "On discrimination using qualitative variables,"
Amer. Statist. AS8oc. J., vol. 40, pp. 1399-1413, 1968.

[19] D. R. Cox, Analysis of Binary Data. London: Methuen, 1970.
[20] R. R. Bahadur "A representation of the joint distribution of

responses to n dichotomous items," in Studies in Item Analytsis,
H. Solomon Ed. Stanford, Calif.: Stanford Univ. Press, 1961.

[21] K. Abend, TF. J. Hartley, and L. N. Kanal, "Classification of
binary random patterns, IEEE Trans. Inform. Theory, vol.
IT-ll, pp. 538-544, Oct. 1965.

122] C. K. Chow, "A recognition method using neighbor depend-
ence," IRE Trans. Electron. Comput., vol. EC-1l, pp. 683-690,
Oct. 1962.

[23] C. K. Chow, "A class of nonlinear recognition procedures,"
IEEE Trans. Syst. Sci. and Cybern., vol. SSC-2, pp. 101-109,
Dec. 1966.

124] R. Sokal and P. Sneath, Principles of Numerical Taxonomy.
San Francisco: W. H. Freeman, 1963.

[25] D. W. Goodall, "On a new similarity index based on prob-
ability," Biometrics, vol. 22, pp. 668-670, Dec. 1966.

[26] J. J. Fortier and H. Solomon, "Clustering procedures," in Item
Analysis, Test Design, Classiftoation, H. Solomon, Ed. Co-op.
Res. Project 1327. Stanford, Calif.: Stanford Univ. Press,
1965.

127] L. McQuitty and J. Clark, "Clusters from iterative inter-
columnar correlational analysis," Educ. Psychol. Meas., vol.
28, pp. 2-20, 1968.

[28] J. lashoff, R. Elashoff, and G. Goldman, "On the choice of
variables in classification problems with dichotomous variables,"
Biometrics, vol. 23, pp. 668-670, 1967.

[29] G. T. Toussaint, "Note on optimal selection of independent
binary-valued features for pattern recognition," IEEE Trans.
Inform. Theory (Corresp.), vol. IT-17, p. 618, Sept. 1971.

[30] R. Prather, Introduction to Switching Theory. Boston: Allyn
and Bacon, 1967.

[31] Y. C. Ho and R. L. Kashyap, "An algorithm for linear in-
equalities and its application," IEEE Trans. Electron. Comput.,
vol. EC-14, pp. 683-688, 1965.

[32] T. M. Cover, "Geometrical and statistical properties of systems
of linear inequalities with applications in pattern recognition,"
IEEE Trans. Electron. Comput., vol. EC-14, pp. 326-334, June
1965.

[33] K. Fukanaga and W. L. G. Koontz, "Application of the Kar-
hunen-Lo6ve expansion to feature selection and, ordering,"
IEEE Trans. Comput. vol. C-19, pp. 311-318, Apr. 1970.

[34] R. Casey and G. Nagy, "Recognition of printed Chinese
characters," IEEE Trans. Electron. Comput., vol. EC-15, pp.
91-101, Feb. 1966.

[35] R. M. Bowman, "On n-tuple optimization and a priori error
specification for minimum distance pattern classifiers," Ph.D.
dissertation, Dep. Elec. Eng., Univ. of Virginia, Charlottes-
ville, 1970.

James C. Stoffel (S'64-M'72) was born in
Rochester, N. Y., in 1946. He received the
B.S.E.E. degree from the University of
Notre Dame, Notre Dame, Ind., in 1968
and the M.S. and Ph.D. degrees from Syra-
cuse University, Syracuse, N. Y. in 1970 and
1972 respectively.
From 1968-1972, he worked in analog and

digital signal processing and pattern recog-
nition as a consultant to Microwave Systems,
Inc. Since 1972 he has been with the Research

Laboratories Department, Xerox Corporation, Rochester, N. Y
His research interests include picture and waveform processing,
pattern recognition, and digital communications. He is an associate
editor of the Journal of the Pattern Recognition Society.

Dr. Stoffel is a member of Tau Beta Pi, Eta Kappa Nu, and the
Association for Computing Machinery.

Correspondence.

Parallel Balancing of Binary Search Trees

SHI-KUO CHANG
Abstract-A method for the balancing of binary search trees on

a highly parallel computer is described. This method can be adapted
for execution on a multiprocessor computer system.

Index Terms-Binary search trees, highly parallel computer,
information retrieval, parallel computation, sorting.

Maucipeevetd February 28. 1973; revised November 5. 1973.
The author is with the IsM T. Watson Research Center. Yorktown

Heights, N. Y. 10598.

I. INTRODUCTION

This correspondence describes a method for the parallel balancing
of binary search trees. The method is first developed with respect to
a highly parallel computer having a very large number of processors
and parallel-addressable memory locations. It is then adapted for
execution on a multiprocessor computer system. Simulation results
using a multiprocessor model are discussed.

Binary search trees have long been recognized as useful structures
for storing and retrieving data, particularly when sequential proc-
essing of data is also required. In many applications, records (data
items) to be stored in a search tree are not available simultaneously,
but are received one by one in some arbitrary order. The tree is con-
structed dynamically as the records come in. We shall assume that
each record has a numerical key and the tree is to be constructed

441

