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REPRESENTATION OF CONTINUOUS FUNCTIONS OF THREE VARIABLES BY
THE SUPERPOSITION OF CONTINUOUS FUNCTIONS OF TWO VARIABLES

v. I. ARN<L'O
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The present work is devoted to the proof of the following theorem, which

was stated in an earlier note [1].

Theorem 1. Every real continuous function f(%1,%2.%3) of three variables,

defined on the unit cube E3, can be represented in the form
a 3

f (Xl' X2' X3) == ~ ~ hij[CPl} (Xh X2), Xs],
;-1}-1

61* Editor’s note: translation into English published in Amer. Math. Soc. Transl. (2) 28 (1963), 61–147

*

Translation of V.I.Arnol’d: On the representation of continuous functions of three variables by 
superpositions of continuous functions of two variables, Mat. Sb. (n.S.) 48 (90):1 (1959), 3–74
Corrections in Mat. Sb. (n.S.) 56 (98):3 (1962), 392
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where hij and ~ij are real continuous functions of two variables.

For the proof of this theorem in note [1]. use was made of two theorems

whose complete proofs were not given in that paper. Here are these theorems.

Tbeore.2. Every continuous function f(%1.%2,%3) defined on E3 can be

represented in the for~

a

f (Xb X2' Xa) = 2j hi ['Pi (Xh ~), Xa],
i=1

where hi and ~i are continuous functions; the functions hi are real and

are defined on the product ax E l of the tree (see [3]. Chapter X) e by the

interval E l
, while the functions ~i(%1'%2) are defined on a square and have

for their values points of S. Here e is a tree, whose points have a branching

index not greater than 3.

Theore.3. Let F be any family of real J equi-continuous functions fee)

defined on the tree a all of whose points have a branching index ~ 3. Then

one can realize the tree in the form of its hOMeomorphic image X. a subset of

the three-dimensional unit cube E3, in such a way that every function f of

the family F can be represented in the form

3

f (X) = ~ fk(Xk),
k==l

whe r e % = (% 1, %2, %3) is t he image in X of the e Ie me nt e€ a, f (x) = f «( ) ,
and the fk(%k) are continuous real functions of one variable. Here fk

depends continuously on f in the sense of uniform convergence.

FOr greater explicitness, let us consider

the case n = 2 of the lemmas of the note [2].

The proofs (as well 8S the formulations) of

these lemmas are somewhat different from those

given by A.N. Kolmogorov. This is due to the

introduction of the items 6) and 7) into the

fundamental lemma, and to our desire to obtain

crB
If

Ft--....N ---. M

A I

II t----t-----#

D'

Theorem 2 (with the exclusion of the last phrase) is contained in a work of

A.N. Kolmogorov [2]. Its proof is also outlined there, but the proofs of the

lemmas used there were not published. In Part I of the present work there are

presented the proofs of these lemmas for the

case when the branching index of the points of

the obtained tree is not greater than 3. After

that, the Theorem 2 given above is derived from

these lemmas.

Pigure 1. Representation
in the fOrJll <I>(x) + t/J (y)
of a function given on a

Y-type tree.
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Theorem 2 in the formulation given above.

Theorem 3 is proved in the second part of this work. The ideas behind this

theorem are quite simple.

Let a continuous function I(e) (e € l\) be given on a Y-type tree

(Figure 1). Then there exist continuous functions 1
1
(x) and 12 (y) such that

11(x)+/2(y)=f(e) if % and y are the coordinates of the point eeti.

The proof can be accomplished, for example, as follows.

Suppose that the function 11(%) on A8 is equal to /(e1) for a point

e1 € LN whose abscissa is %. In order that I = 11 + 12 on XL, one has to

define 12(y) on DE as /2(y) = !(e2) - 11(%), where e2 € KL is the point
with coordinates x,y. Hereby, /2 = 0 at the point E. Let 12 (y) = 0 on
EF also. Finally, in order that f = 11 + 12 on LM, one has to set

f 1 (x')=/(es)' where es€LM is the point of LM with abscissa x'. It is
easily seen that the constructed functions f 1 (%) and f

2
(y) are the desired

ones.

It is easy to devise an analogous construction for the function given on a

more complicated tree (Figure 11). In general, we have the following type of

theorem.

Every linite· tree, whose branch points are of index not greater than 3,

can be mapped homeomorphically onto a flat segment-like complex K such that

every continuous function fee) is representable on K in the form

f(e) = 11 (x) + f 2 (y), where % and yare t he coordinates of the point

ee K. ••

Theorem 3 asserts that an analogous result holds in the three-dimensional

space for any tree whose points have a branching index not greater than three.

The proof is very involved, but can be reduced in essence to the considerations

given above, and to the transition to the infinite tree from finite trees.

Theorem 1 is a direct consequence of Theorems 2 and 3. Taking the risk of

possibly confusing the reader, who could derive the proof himself, we neverthe­

less present a simple argument.

From Tbeorem 2 it follows that one can express the function f(%1,x2,xa)

as the sum of three functions h·(e·,%3) (i = 1,2,3) from the product of the
t t

tree (e· € a), none of whose points have a branching index greater than 3.
1.

by the segment (x € E1
): (e·, %3) € =X E1

• Theorem 3 asserts that the
t

function h(~) on such a tree can be expressed as the sum of three continuous

A tree with a finite number of points.
•• The reader can easily construct the proof of this theorem after he reads ~3-7.

Whether it is possible to give an analogous representation for an infinite tree,
is not known.
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functions hj(xj) (j = 1,2,3) of the coordinates %i of some realization
x}. (e) of the tree a in the three-dimensional space. These functions h. (% .)

} }
depend continuously on the decomposed function h(e) (in the sense of uniform

convergence) if the function h belongs to the same family F of equi­

continuous functions on the tree a for which the realization is constructed.

The functions hi (ei .%3) that are obtained from Theorem 2 can be considered to

be such a family of functions hi (e) on the tree a, which depend continuously

on the parameter X3 E E1
, and they are, therefore, eQui-continuous. Applying

Tbeorem.3, we find a realization of a 1n the form X C ES
•

3
In the decomposition f(X1,%2,X3) = ~ h·(e·,%3), e· = q>,(X1,X2) is a

i=l1. t 1. t

point of the tree a and depends continuously on X1 and %2 (Theorem 2).
Hence, after the realization of a in the form X, every coordinate % € X
becomes a real, continuous function of %1 and %2. If e

i
= (J>i(%1,%2) and

the jth coordinate of the point % that is realized bye· is <p .. (Xi, %2),
I. I.}

then, in view of Theorem 3'3 the decomposition of hi (ei ,%3). as a function of

hi Ceil, into the BUll ~ hi' (x}.(ei » can be written in the form
XO i =1 }%O

3

hi [~i (Xh X2), X3] = ~ hij [<Pij (X h Xz), X3].
j=l

'lberefore.
3 3

f (Xl' x", X3) = ~ ~ hij [<Pij (Xl' x2 ), X3],
i=1 j=l

which is the assertion of Theorem 1.

About two months after the completion of our work [1], A.H. Kolmogorov [2]

strengthened the Tbeorem 1 by showing that every continuous function on the

three-dimensional cube is representable in the form

7

f (Xl' X2' X3) == ~ hi [<Pil (Xl) + <Pi2 (X2) --1- <Pi3 (x3)] ,
i=1

where the functions hi and <p are continuous; the functions <Pik are,
however, selected once for all independently of f. From this result of
A.N. Kolmogorov it follows that the three-dimensional cube can be imbedded in
a seven-dimensional space so that any continuous function on the cube will be
expressible as the sum of continuous functions of (seven-dimensional)
coordinates. According to the work [2], an analogous representation for a

square can be realized in a five-dimensional space. From this it follows
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directly that in a five-dimensional space we can place our tree a, once for

all, so that any function continuous on it is expressible as the sum of con­

tinuous functions of the coordinates (while in our Theorem 3 the representation

in the three-dimensional space depended on the family F). But by modifying the

methods of the note [2], one can obtain a representation of the tree e which

is valid for all continuous functions f in the three-dimensional space also.

In the constructions of the first and second parts of the present work, use

is being made of the tree of the components of the level sets, which was intro­

duced by A.S. Kronrod. The essential information about this tree can be found in

the Appendix. The Appendix and each of the two parts of this work are independent

of each other.

I take this opportunity to thank my teachers A.G. Vituskin and

A.N. Kolmogorov for their constant attention, counsel and help. In particular,

I am indebted to A.N. Kolmogorov for the final formulation of the fundamental
ce inductive lemma" of the second part.

PART I

Proof of 'lheorell 2

Here we shall prove Theorem 2. The fundamental lemma of the work [2] and

Lemma 2 are proved in such a formulation that the tree a, under consideration

in Theorem 3, consists of points whose branching index does not exceed 3.

The following notations will be used:

R2 is the plane of the (x,y) points; E2 is the closed unit square in

this plane, i. e., the set of points (x, y) with 0 ~ x ~ 1, 0 ~ y ~ 1.

The metric in the plane is defined as the distance

Ud(A) denotes a d-neighborhood of the set A, i.e. the set of all

points in the plane whose distance from the set A Is less than d (d > 0).

A is the closure of A.

A polygon is a closed broken line that does not intersect itself. An open

polygon Q is the part of the plane lying inside a polygon, while a closed

Polygon Q is the closure of the open polygon.

An open polygonal band is the part of the plane bounded by two noninter­

secting polygons, one of which lies inside the other (Is separated by the

other from infinity). A closed polygonal band is the closure of an open one.
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The set of the level c of a function u(x,y) is the set of points (x.y)

such that u(x,y) = c.

A list of the topological terms used in this work is given at the end of

the Appendix.

§1. PUndamental lemma

Suppose that we are given a finite number of nonintersecting regions gm

in a plane, and that over each region there is a hill u
lIl

• The set of hills

form a "mountain country" G. Suppose that we are given not only one

mountain country G (Figure 2) but an infinite sequence r of such mountain
countries,

where the "country of rank k" Gk consists of some finite number mk of
r

bills ukm of rank k (m = 1, ••. ,mk) over the regions gkm; no two regions
of a given mountain country intersect each other (Figure 2). Fbr large k.

r
the country Gk has more hills, but their bases, the regions gkm' are

smaller.

Finally, let us suppose (and this is not shown in Figure 2) that we are

given three such sequences of countries r r (r = 1, 2, 3), namely. three systems

r r. Each of them consists of mountain countries Gk (k = 1, 2, ... ). and each

mountain country Gk consists of hills ukm (m = 1•••• ,mk).

In the fundamental lemma there are constructed three such systems of hills

uk. satisfying a number of requirements. FOr example. every hill u~m is

constructed in such a way that over every region gk'm' (k' > k) it possesses

a horizontal plane (requirement 5).

Pun~Dtal lemma. It is possible to define on the plane R2
a system of

real functions ukm(x,y), with indices lying within the limits

and having the following properties:

1) o ~ ukm ~ 1.

2) ukm =I 0 just on the region r whose diameter is less than dk > 0;gkm
dk -t 0 k -tOO; uk. = 1 on the set r only.as gk+1 m·

3) T1Io sets r and r
11 i t h the s arne indices r and k, butgkm gkm'

'" i- ",', do not intersect.

4) For any given k, and for every point of the square E2
, it is true

that
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3 mit

O<C< ~ ~ U~m-<C,
r=1 m==1

r

with the same index

Figure 2. System ot mountain
countries. All the horizontal

planes R2 are actually in the
same plane.

at Most.

7) For every r, g~1 J E2
•

The functions uk. and the sets

gkm with the same index r = ro will

be called functions and sets of the one

system rOt while those with the same

index k (and arbitrary r and m)

will be said to be tunctions and sets

of the same rank. '!be index • will

be called number. Obviously. tor any N
the totality of functions (sets) of

rank not higher than N in each system

will be finite.

It is known that for every € > O. the bounded region E J E2 of the

plane R2 can be enclosed (covered) by means of closed 'squares Pea' whose

sides are parallel to the coordinate axes, in such a way that the set ot
squares can be divided into three sys­

tems p~.. 1 ~ r ~ 3, whereby the

distance between any two squares of one

system will be greater than € / 2

(Lebesgue covering, Figure 3). These

squares are the cells ot the regions
r

gk,. •

All the successive constructions

where c and C are constants independent of k.

5) The function ukm is constant on each set

r when k' > k but m and .' arbi-

trary.

6) The boundary of each level set

of the function ukm is connected and

divides the plane R2 into three parts

Figure 3. Lebesgue covering. The
squares of one system are lined.

those of another system are black.
those of the third one are white.

The functions Q~ are constructed
c.ia

for the black squares ~km.

for each r are done independently.

During each of the constructions of the

functions ukm' r is kept fixed.

The sets gkm em = 1, •••••k) are
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obtained from the squares P~k.' where €k > o. The selection of the number

€k will be described later. The regions gkm will be obtained by means of a

., dilatat ion" of the ~k in such a way that ~ C grk C Q~ , where Q~
m Vkm. m - c;km vkm

is the closure of the square which is an (Ek /6)-neighborhood of

~klll: UEk/ 6 (~klll) = Q~km (see Figure 3).

It is obvious that if 1Jl1 =! 1Jl2, P(Q~k ,Q~ ) > Ek/ 6 • 'Iberefore
_ _ c; m1 vkM2

P(gkm 1' gkll2) ~ €k/6 •

This means that by this construction the requirement 3) of the fundamental

lemma will be satisfied.

In order to fulfil the requirement 2), it is obviously necessary that

€k ~ 0 as k ~oo. It will become obvious that this condition will be ful­

filled by the construction given below.

This construction is divided into several stages. Everything that is con­

structed at the nth stage will carry the superscript n together with that

of the system r.

In general, all notations are constructed so that AE
rn should be read as

km
follows: the object A is constructed for the function u (or the set g) of

the system r of rank k and number m. i.e. for ukm (gkm) at the nth

stage. The letters have the following designations:

P is the square cell.

Q is an approximation to g from within.
A.

Q is an approximation to g from without.

Xo Is an approximation to the set of the level u = x (0 < x < 1) and to

the boundary of the set of the level u = x when % = 0 and x = 1.

xft is an approximation to the boundary of the set of the level

u=x (O<x< 1).

FOr example, xi8~n denotes the approximation to the boundary of the
c;km

set of the level ukm = Xi constructed at the nth stage.

Ie start the construction of the gkm at the kth stage. but at the nth

stage (n ~ k) we construct the (n - k + 1)st approximation to gkm from

Qrn ere QArn b Qrn+1 ""' Qrn d rwithin and from without: €k m - gkm Ekmo Here y Ekm ~ €k m an gkm
CD

is determined as U Q~nkm' i.e. as the sum of the dilated approximations
n= k

from within.

The functions ukm are constructed with the aid of their level sets. The

construction is begun at the kth stage where one constructs the first

approximation °Of:. = ~:II \ Q~:1Il to the set of the zero level. At the
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next stage one constructs the first approximations to the sets of the levels

1/2 and 1, and to certain other levels, and the second approximations to the

zero level. At each stage there appear first approximations to new levels, and

one makes successive approximations to the earlier used levels. Each approxi­

mation is a closed polygonal band imbedded in the preceding approximation, while

the level set itself is the intersection of all its approximations. The values

of the function u on each of such level sets are selected so that ukm is

continuous, positive on gkm' larger than 1/2 on P~kM but does not exceed

1 anywhere. The requirements 1) and 4) of the fundamental lema will thus be

satisfied.

We shall make use of an elementary geometric lemma whose proof will be

omitted. It is sufficient to examine Figure 4 to convince oneself of the truth

of this lemma.

Case 1) Case 2)

Figure 4. The polygons Q. are black.
'!be band B is lined.

Geoaetrlc Ie.... Let A b~ a closed polygonal band whose width (i.e. the

smallest distance between the boundaries of the polygons) is greater than a

positive number d. Let the Qm (m = 1, ... ,M) be closed nonintersecting

po lygons.

1) If the diameter of each of the polygons Q. does not exceed d, then

it is possible to construct a polygon S which is strictly inside the band A,

separates the boundary of the band A, and does not intersect the polygons

Q11& (m = 1, ••• ,M).

2) If another closed polygonal band B lies strictly inside the band A,
and if the polygons Q. do not intersect the boundaries of A and B, then

the polygon S, which separates the boundaries of A and does not intersect

Qm' can be drawn strictly within the band A so that its intersection with B

wi II be an in t e r val (se gnae nt ) •

We now begin the construction at the first stage.

In order to fulfil the requirement 7) of the fundamental lemma, we set
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Figure 5. 1 is the boundary
of ~1' 2 is the boundary of
Qii. 3 is the boundary of

Q"r1 O~1
11- The shaded band u 11

is the first approximation
to the boundary of the

region g~1.

70 V.I. ARNOL'D

£1 = 1. 111 = 1. P~1 = E2
• We construct the squares (Figure 5)

Q;l = Q~~ = Ul- (P~l)andQ~~ = U!. (P~l).
6 12

This is the first approximation to g~1' for we see that

Qr 1 ere Q"r 1 ~r 1 \ nr 1 0 r 1
11 - g11 - 11· Q11 Y11 = 011 is called the first approximation to the

boundary g~1 - This is a closed polygonal band of width 1/12.

If 8 2 < (1/12),3/4), then the squares

Q~2m (m = 1•••• ,m2) can be taken for the Qm
in the geometric lemma. • while the first

approximation to the boundary of g~1 pla.ys
the role of A.

With this selection of £2. we start the

second stage (Figure 6). For this £2 we

construct the squares

~2m' Q~2m = ~~m = Uc2/ e (pLm);

Qr2 U. r TIt 1'2£ m = E (Pg m) (m = 1. 0 •• • 112)· e QE;
2 2/12 2 2 m

are the first approximations to the regions

g~III' while the °<fc~m = Q~:III \ rfe~m are the

first approximations to their boundaries.

It will be convenient to perform the con-

struction so that the boundaries of the

regions gkm and gk'm' do not intersect. It can happen that this requirement

is not fulfilled for the first approximation: the band °O~~ ma.y intersect the

squares Q~ • However. on the basis of the geometric lemma one can draw a
C,2M

polygon within this band which separates Q~~ from infinity and winds among

the squares Q~ without touching them. This polygon, naturally, can be
C,2m

enclosed in the closed polygonal band °o~~ which will be the second approxi-

mation to the boundary of g~1 or to the boundary of the set of the level

u~1 = O. (This explains the use of the left 0 superscript.) The band o~~

determines the second approximation Q~~ to g~1 and can be represented in

h "r2 \ Q1'2t e form Q11 11 •

At the second stage we construct also the first approximations to certain

other level sets of the function u~1. It is easy to see that. since

£2 < (3/4)·(1/12). one can find a square Q~2m. which will lie entirely within

P~1. It is the first approximation to the set of the level 1 for the function

The construction of the squares is described after the formulation of the
fundamental 'lemma (aee Figure 3). For the region E, which occurs there, one
ahould take Q'11.
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r 1~2 A r2 \ 2
u1l' while the band u 11 = QE~* Q€2 m* is the first approximation to the
boundary of this set.

Next, in order to satisfy the requirement 4), we construct the set of the

level 1/2. The boundaries of P~1 and Q~~ are at a distance of 1/12 from

each other, while £2 < (3/4)~1/12). Therefore, applying the geometric lemma

to the band between P~1 and Q~~, we construct a polygon, and then a closed
d 1/20r2 h A r 2ban 11' w ich winds among the squares Q€2 m (m = 1, ..• ,M2) without

touching them, lies within Q~~, and separates P~1 from infinity. The band

1/2Q~~ becomes the first approximation to the set of the level 1/2 for the

function u~1. The successive approximations 1/2 Q~~ (n > 2) are constructed

within this band.

Finally, one constructs at the second stage the first approximations to the

sets of the levels of the function u~1 that contain g~m' and one determines
the values u~1 on these sets.

First of all we discard forever those squares Q~ which were found to
A ~2m

lie outside Q~~ (and, hence, outside Q~~). The remaining squares

Q~2m (m € ~~) (excluding Q~2m*) lie in the ring-shaped regions into which

Qr2 iii b .. d d °Or2 1/20r2 d 1,v-211 S d V ded y the ftntshe ban s 11' 11 an v 11 • Each ring-
shaped region Is an open polygonal band which separates ~€ *, and everything

2-
that lies within it, from infinity.

Let us consider any one square Q~2mo (me € ~~, • ~ m*). We take the
closure of the polygonal band in which the given square lies, for the band A
of the geometric lemma; the remaining squares Q~ m (m ~ me) we take for

A 2
the Q, and the band 0Q~2m = Q~2 \ Q~2 for the band B. In accordancem ~2 (:.1mO (:.2mo

001'2with this lemma, we now draw the polygon S, which intersects € ~ in an__ 2'owv

interval, separates Q~ * from infinity, lies inside the open polygonal band
2m --

between the finished bands, and does not touch the squares Qe
r (m ~ ao).
2-

This polygon S can be enclosed in a closed polygonal band d, which has the

same properties, in such a way that d UQe is also a closed polygonal
% r2 2mo

band (Figure 6). It is °011, the first approximation to the level set, for

the function u~1' that contains g~mo. The value Xo of the function u~1

on this level set Is determined below.

Adding the band XOO~~ to the finished ones, we choose from the M;: a
%1r\42 dnew m =I mo. m::l m*, and construct by the same method an -v11' an so on,

until the set M;: is exhausted and every square Q~2m (m € M[12
) is en-

closed in the first approximation to some level set of the function u~1.

These approx~~ations are polygonal closed nonintersecting bands. The sets

xi8~~ = %iO~~\~:mt' are called a-type closed bands. Each of them divides
~2
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GyrI
If

Figure 6. The thin lines are first
stage constructions. The black

squares are the Q€2'I • There
should be many more of them but

then one would not be able to see
anything on the figure. The black

square at the center is Q~ *.
(;,2"

Only a few of the bands containing
the squares are shown; the second

stage is not completed.

the plane into three parts: the Qg:"'i' the part that contains 10~~, and
the part that contains °O~~ (Figure 6). They are the first approximations to

the boundaries of the level sets of u~1

containing g~m. (mi EM:: ; "'i ~ ",*).
t

Finally, let us determine the values

Between the boundary of the set g~ 1

d 1/20r2 ran 11' the function u11 will
increase from 0 to 1/2, while between
1/~2 1 r2 /-v11 and 0 11 , from 1 2 to 1.
The bands %iOr2 are divided by 1/2~2

11 11

into two classes: P1 outer bands lying
outside 1/~~~, and P2 inner ones.
Let us reorder them by means of an index

j = j(i) in the order determined by their
separation from infinity: the outer ones

from 1 to P1' the inner ones from

P1 + 1 to P1 + P2. Let us spread out
the increase of u from 0 to 1/2

uniformly among the outer bands, by

letting the jth band be an approximation

to the set of the level u~1 = j /2(P1 + 1).
For the inner bands of uniform increase

from 1/2 to 1, we let the jth band

be the approximation to the set of the level 1/2 + (j - Pl)/2(P2 + 1).

Thus we have obtained the following objects at the second stage:

1) The first approximations Q~2 and O~2 to the sets g~_ and their
e:;,2- (;, 211 .qa

boundaries.

2) The second approximations Q~~ and o~~ to the g~1 and its

boundary.

3) The first approximations to the set of the level 1 of the functIon

u~l and to its bounda~, to the set of the level 1/2, and to the sets of

the levels of u~l onwhichthe g~lIl. ("i~m*; mEM;:> lie, and also to
A r2 1. 1,.2 1/2-r2 %i,.2 %i er2

the boundaries of these sets, Q€2.*' 011'v1i' 011' 11·

4) The values %i of the function u~l on the g~mi' and on the level
sets that contain them (not yet cODstructed).

The approximations to the open sets are open polygons containing the

preceding approximations, while the approximations to the closed sets are
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closed polygons, polygonal bands, and 8 -type bands contained within the

preceding approx~ations.

We note that the construction at the second stage of the functions and sets

of rank 2, is exactly the same procedure (if one disregards the scale €2) as

that used at the first stage for the construction of the functions and sets of

rank 1.

In general, after the nth stage we will have:

1) the first stage of the construction of the functions and sets of the

nth rank, the second stage of the construction of the functions and sets of the

(n - 1)st rank, and so on up to the (n -l)st stage of the construction of u~.

d r. •an g2m'

2) the nth approximations Q~~ and °O~~ to the set g~1 and its

boundary, respectively;

3) the (n -l)st approximation to the level sets of the function u~1'

which we began to construct at the second stage, and the (n - 2)nd approxi­

mations to those level sets which we began to construct at the third stage, and

so on up to the first approximations xiO~~ and Xi 8~~ to the level sets of

u~1 that contain the g~m" and to the boundaries of these level sets. Here
t

Mrn
nl i E 11' 1.e. -i runs through those values from 1 to Iln for which the

corresponding squares Q~ . do not lie within Q~n I (1 < k < n; .' ~ "'k)'C,nmt c,k ll

but lie inside Q~~;

4) the values Xi of the function u~1 on g~m (- € M~~).

Ie have the following results.

1°. The approximations to the open sets are open polygons whose boundaries

do not intersect each other (nor, in particular, the small squares Q~ = Q~n ).
~n'" c'n'"

These approximations contain the preceding ones.

2°. The approximations to the closed sets are closed polygons, closed

polygonal. or polygonal 8-type bands enclosed in the preceding approximations.

The polygons that are the boundaries of these approximations do not intersect

the other polygons constructed at the nth stage (nor, in particular, the

boundaries of the small squares Q~ ).
c'nln

3° Each one of the bands xiOrn and each of the Xi ern (1ft; € M.
1
n
1

)
• 11' 11 ~

contained in it, separates Q~~III. from infinity, while %i(~~~, besides that,

separates from the rest of Q~n . C %iO rn the first approximation to the set
c'nnlt 11

-.
We call attention to the fact that the notation always reflects the number of
the stage at which aD object is constructed and not the number of the approxima-

. F 1 ()rn· h f' .. rtlon. or examp e, ~c lS t e 1rat approxlmatlon to 2~ •
c,nnl 'tnm
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g~.i which lies on the set of the level u~1 = xi.

4°. The values of u~1 are uniformly distributed on g~m (m € M;:).
The last phrase has the following meaning by definition.

Let the bands A and B be constructed at the nth stage of the approxi­

mation to the set of the levels a and b of the function u~1' where a

and b are determined up to the nth stage. Suppose that at the (n - l)st

stage there was no band (of the approximation to the set of the level u~1)

between A and B, but at the nth stage such bands Ci (i = 1, .•• , p)

were constructed (the numbering of the Ci is from A to B). If the value

Xi of the function u~1 on the level set for which Ci is the first approxi­

mation Is equal to i(b - a)/(p +1) then the values of u~1 on g~m are said

to be distributed uniformly between A and B. The condition 4) requires that

the values of u~l on g~. be so constructed between any two bands A and

B of the indicated type.

The (n + l)st stage begins with the selection of an €n+1. Since any two

of the polygons that bound the nth stage approximations to all level sets of

all the functions u~a (k ~ n) and to their boundaries do not intersect

(provided they are not identical), there exists a positive number d such that

the distance between any two distinct polygons is greater than d. We choose

€n+1 so that €n+1 < 3d/4. This 8n+1 permits us to carry out the first

stage of the construction of the sets g~+1 m and of the functions u~+1 m •

the second stage of the construction of g~m and u~, and 80 on up to the

nth stage of the construction of g~ and u~",.

Since we now assume that we have gone through the stages of rank less than

n + 1 for u~l' and since they are entirely analogous tor the remaining gkm
and uk.. (k ~ n). we consider only, as an example, the first stage ot the

construction of the sets g~+1 m and of the functions u~+1 III •

For € +1 we construct a Lebesgue covering with the squares PE + m ofnAn 1

the nth approximations Q~~ to g~1 from without. We divide this covering

into three systems p~ a' and construct with them the first approximations
C,n+1

to gr from within and from without,
na

Q~n~~:n= Uan+1 (P~n+lm),
12

(m = 1, ... , mn+l)

and the first approximations to the boundaries of

(m = 1, ... ,mn+l).
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(The squares Q~ + m will be called the small squares.)
n 1

Since cn+1 < 3d/4, one can now proceed with the second stage of the

construction of g~m and u~m' and so on to the nth stage of the construction
r d r

g2m an u2m •

Suppose all this has been done. Then one has to carry out the (n + l)st

stage of the construction of g~1 and u~1.

Let us consider any closed band %O~~ which is an approximation to the set

of the level % of the function u~1. If x = 0, or x = 1/2, then xo~~

will not intersect the sets Qk
n (k ~ n). It can intersect the squares

A r n+1 nt

Q~n+1m = QC
n

+1nt' but their diameters are less than d, which is less than or

equal to the width of the band. Therefore, applying the geometric lemma, and

expanding the polygon S up to the closed polygonal band which winds within
the band xO~~ without touching the small squares, we obtain the bands
°0~~+1 and 1/20~1n+1 that satisfy all the requirements 1° to 4°.

If x = 1, then 10~;h will be 1<:fg2';.+.1, a band that already has been

constructed, since we assume that the nth stage of the construction of the

functions u~m. has been completed.

If x ~ 0, 1/2, or I, then the band xiO~~ contains the approximation

Q~~mi to gkmi (k ~ n), which was constructed at the nth stage, and this
° r n+1band contains, therefore, also the band 0Ekmi that has been constructed at

the (n + l)st stage. Since this band, which contains Orn and is con-
Ekmi '

tained in Q~~.i' does not intersect the small squares, one can choose it for

the band B in the geometric lemma, while for the band A of that lemma, we

can take xiO~~. Applying the lemma, we obtain a polygon S which 1) inter­
sects the band °Or n+1 in an interval 2) separates 10 r n+1 from 00r n+1

€klfli ' 11 11 '

3) lies inside xiO~~, and 4) winds among the small squares without touching

them. Dilating S to the closed polygonal band d, which has the properties
x· r n+1 U ::.r n+12), 3), and 4) and which is such that 1°11 = d ~Ek.i is also a closed

polygonal band (that this is possible is obvious), we obtain the following

approximation XiO~1n+1 to the set of the level u~1 = Xi.

xi8~1n+1 = xio~;+1 \ Q~kn.~1 is the next approximation to the boundary of

this level set.

Having completed the indicated operation for all the bands %iO~~, we
will have the set of all closed polygonal nonintersecting bands %~~+1

that separate 10~;+1 from infinity. These bands will be referred to as

finished bands.

Let us begin to construct first approximations to the level sets of the
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function u~1 that contain the sets g~+l m of rank n + 1.

The boundaries of the finished bands XiO~;+l do not intersect the small

squares. Let us consider the numbers m that correspond to those small squares

that lie in Q~:+l, and do not lie in any of the finished bands. The set of
+1 A +1 +1all such m, we denote by M[ln • The small squares Q~:+lm (m E M[l n )

must be included in the first approximations to the level sets. The finished

bands divide the Q~:+l into open polygonal bands which contain the small

squares. In each of these bands we proceed exactly as it was described in the

performance at the second stage. The only difference is that we now have more

finished bands. As a result, we obtain the bands xiO~ln+l and the (H)-type

bands Xi a~1n+1 which are approximations to the level sets and their

boundaries. The values xi in each open band between two finished bands are
distributed uniformly.

In this manner one can accomplish the construction by building at each stage

objects that have the properties 1°, 2°, 3°, 4°:

SUppose that all stages have been completed.

r U QriWe define gkm as k
i = k m·

The level sets of the function ukm which contain the sets gk'm' (k' > k)

are defined as the intersections of the corresponding polygonal bands, the

approximations. The values of the function on these levels are determined at

the k'th stage.

On all regions gkm the functions ukm are extended by continuation.

Below it is proved that this can be done, and that the obtained functions will

satisfy all the requirements of the fundamental lema.

It is obvious that €k .... 0 when k --t 00. Recalling how the squares P

were constructed, we see that U iJ" pr is an everywhere
kim}

Pk.Tn' C g km (k i > k)
t J

dense set on gkm. Because of this. the sum It km of all level sets on which

we determined ukm is everywhere dense in gkm 0 We shall show that the

function ukm is uniformly continuous on the set It km ·
Without restricting the argument, we will set k = Tn = 1, and will give

the proof only for u~1 = u.

Let € > 0 be given. At each (n + l)st stage one can find between any
x r n+1 yor n+1 "rtwo bands 0 11 • 11 at least one square Q~ • if the construction

C,n+1m
of the levels u = x and u = y began before the (n + l)st stage. Indeed,

the width of the open band On between xO~~ and YO~~ is greater than d,

while the squares ~ have diameters less than d and enter into
C,n+1
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Lebesgue covering in such a way that one of them ~ ~ has points in on.
A. r n+1 n+1nl

This square, and with it QE - will, obviously. fall into the open band on+ 1

n+1m

between x0';,1n+1 and YO~1n+1. But at the (n + l)st stage (n > 1) the

values between the newly constructed band were distributed uniformly. Therefore,

the largest interval between the values of u on two level sets, whose approxi­

mations are neighboring bands of the nth stage, will decrease by two at each

stage. Hence, there exists a stage k such that if xif.k and y~k are
11 11

neighboring bands, then Ix - y I < E/2.

Let us select 0 = Ek+
1

• Suppose that p(a,b) < o. Then the points a

and b are separated by one band %O';,~ only, since the distance between the

polygons that bound the bands is greater than Ek+
1

= o. Hence, there exists a

band %o~~ which is not separated from a and b by any other band. But it

is obvious that at such points the function u differs from z by less than

E/2 (the rank k is chosen in this way). Therefore, I u(a) - u(b) I < €, and

the function u is thus uniformly continuous on the everywhere dense set of the

compact g.

This function can be extended (and in a unique manner) over the set g.

Figure 7. The bands are con­
structed at the nth stage.
In the shaded area u dif-
fers from the value on the
level u = % (whose approxi­
mation is the middle band

%O~~) by less than 8/2.

The condition 5) will be fulfilled if

gk'm' C gkm because

Ie set u = 0 outside of g. Such a continuation of the functions

will satisfy the requirements 1) to 7) of the fundamental lemma.

Indeed, the fulfillment of the require-

ments 1), 2), 3), and 7) is obvious.

The condition 4) is satisfied with the

constants c = 1/2 and C = 3, because for

any k each point of E2 is covered by at

least one, and by not more than three squares

p~ for some m and r. But on thesevkm
squares 1/2 ~ ukm ~ 1. The level sets

ukm = 1/2 were constructed especially for

this purpose ..

that is, the set gk'm' is contained en-

tirely in the level set of ukm. If g~'m' C R~\gkm' then uk'In' = 0 on
gk'm'. The boundaries of gkm and gk'm' do not intersect, by their
definition. Each of these sets is a region, and hence there can occur no
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The condition 6) is also satisfied. This is obvious for the sets of the

levels 0 and 1. (It is easy to see that each of the remaining level seta of the

function ukm is obtained as the intersection of a sequence of closed polygonal

bands, and it is, therefore, connected, and divides the plane into two parts,

one containing the set where ukm = 0, the other one where ukm = 1.) The

boundaries of the level sets of ukm that contain gk'm" divide the plane

into not more than three parts because they are obtained as the intersection of

sequences of closed polygonal 8 -type bands. The boundaries of the remaining

level sets of ukll (with the exception of the 0 level set for which 6) is

trivial) coincide with exactly these sets because none of such level sets con­
tains points of the open set

which is everywhere dense in gkm' and consists of all points of gkm that
belong to the sets of higher rank of the same system.

This completes the proof of the fundamental lemma.

§2. Proof of Theore. 2

Let ukm be functions that satisfy the conditions of the fundamental lemma,

gkm be sets on which the functions are positive, and let dk and 0 < c ~ C

be the constants occurring in that lemma. Fbr the purpose of constructing the

representation of a function of three variables in the form indicated in

Theorem 2, we first decompose a function of two variables into an absolutely

and uniformly convergent· series of the functions ukmo
Lemma 1. Suppose that we are given on the square E2 a family F of

continuous functions which form a compact in the uniform metric (i.e. the

family consists of uniformly bounded and equi-continuous functions u, and

is closed with respect to uniform convergence). Then every function f E F

can be represented in the form
go 3 mit

f (X) = ~ ~ ~ a~m (f) U~m (x),
k-l '-1 m=-1

(1)

where the coefficients akm are independent of x, depend continuously (in the

sense of the uniform metric) on the f E F and are such that
CD

I a~m (f) I< ak, ~ Uk < 00,
It-=l
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where the ak depend only on the family F.

For the proof of this theorem we need the following proposition.

Lemma on the approximation by means of a linear ca.b1nation of functions of

rank k. Let f(x) be a continuous real function on E2
, and let

max f f(x) I<M.
xEEJ

Let k be a positive integer, and

max If (x) - f (y) , --< Ok.
p (X, y) -< dk

Then one can determine coefficients b~, independent of x, such that

f(x)=S(x) + R(x),
where

3 mk

S (X) = ~ ~ b~u~m (X),
'-I m=1

(2)

(3)

(4)

Hereby one can select the b: so that they depend continuously (in the sense

of the uniform. metr ic) on f(x), and sat isfy the inequal i ty 'b; t ~ MIe.

Proof. Ie pick a point xkna in each one of the sets gkm' and set

br = f(xkr ) Ie. Obviously, the br depend continuously on f and Ibr I ~ MIe.m _ na M

Next we will show that the inequality (4) is fulfilled at each point x € E2
•

The R(x) is determined by means of (2) and (3) for the given choice of

br • Let us keep the arbitrary point x € E2 fixed. From the properties 2)m
and 3) of the functions uk. (see the fundamental lemma) it follows that at

most three of the functions ukna' for a given k, will be different from

zero at each point oX, and these will correspond to different r. SUppose

that for the given point x these functions are ukr (r = 1,2,3). Then,mr
for the given point x, we have

3 3

S (x) == ~ b'mrU~mf (X) == _1_ ~ f (X;mr ) U~mr (x).
f=1 C r~l

Let us suppose at first that xrk (r = 1,2,3) and x were selected so
"'r

fortunately that they coincided: xkr = x (r = 1,2,3). Then s(x) would be
"'r

(5)
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and R(x) would be, correspondingly,

R' (x) = f (x) - S' (x).

But from the requirement 4) ot the fundamental lemma it follows that

8

o< C -< LJ U~mr (x) -< c.
r=1

Therefore, we have the following estimate for R(x),

(6)

IR' (x) I -= If (x) - S' (x) I= If (x) I(1- ~) -< M (1 - ~). (7)

The same estimate for R'(x), defined ~ the equations (5) and (6) holds,

obviously, also without the hypothesis that xrk = x (r = 1,2,3). In ordermr
to appraise R(x) in the general case, we consider

IR (x) - R' (x) I =: IS (x) - S' (x) I=
3 3

= f- I ~ [f (Xkmr) - f (x)] Ukmr (x) 1-< -7: ~ f (Xkm) - f (x) IUkmr (x).
r~1 r-I

Since (see condition 2) of the fundamental lemma) the diameter of the region

gkm is less than dk , we have that

1R (x) - R' (x) I< _1 Ok ~ Ukmr (x)
C r=1

or, on the basis of property 4) of the fundamental lemma, that

IR(x) - R' (x) I< Ok.

This, in combination with (7), establishes the lemma.

Proof of Lemma 1. Let f E F be a real function continuous on E2
, and

let

sup If (x) I< M =: Mo, sup If (x) - f (y) I= Ok_
xEEJ, feF xEE!, uEE!, fEF

p(x, U)<dk

As k ..... 00, Ok ..... o. Therefore, one can select a k 1 = k 1 (F) so large that

0k
1

< cMo /2C. Applying the lemma on the approximation, with k = k 1 , and

assuming that akr = br , we obtain1m m

3 m k1

f (X) = ~ ~ ak1m (f) U~lm (x) + R1 (x);
r-l m--I
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moreover

sup IR1 (x) J ~ M o (1 - ~) + 0k1 < Mo(1 - ~) ,
~EEtt fEF C 2C

where the ak
1
m depend continuously on f € F, and

setting 1 - c/X= O. and OMo = M1 , we obtain

sup IR1 (x) I< Mlo
xEE!, fEF

81

It is obvious that the R1(x) that correspond to all possible f € F t form a

compact F1' as a continuous image of a compact. In particular, these R1(x)

are uniformly bounded and equi-continuous. Furthermore, each function R € F1

depends continuously on the corresponding function f € Fo . Let us introduce

the notation

We can repeat the preceding argument, and in conclusion obtain a k 2 = k 2 (F)

such that

3 milt

R1 (X) = ~ 2J a~Jm (R1) U~lm (X) +R2 (X),
r==l m=l

where

and the ar depend continuously on R1 € F1 ,k2,m
Furthermore.

and, hence, on f € Fo.

Continuing in the same way, we obtain the sequence

r-l m-l

moreover



68

82 V.I. ARNOL'n

sup IRn+l(X) I< 6Mn = 6n
+1M,

xEE', fEP

where the akr depend continuously on f € F, and
nm

(n = 0.1,2'00.' if we use the notation Ro(x) = f(x».

Let us introduce the notation

(8)

(9)

n-l n-l 3 mkl+1

Sn (x) = ~ (R,(x) - Ri+l (x» = ~ ~ ~ ak mUk m (x). (10)
i+l '+1

i-O

Then it is obvious that

'-0 r-=1 m=l

f (x) = Sn (x) + Rn(x).

From the inequalities (8) and (9) it can be seen that the sequence Sn(X)

(n = 1.2'0 •• ) converges to f(x) absolutely and uniformly, and that

, 4k
r

. '< ak. = MO i
-

1
/ C (i = 1.2, ... ).

t m t

This proves the leDlDa, since one may set akm = 0 when k ~ k i (i = 1,2, ... )

and then obtain (1) from (10).

In the proof of Theorem 2 use is made of the following result.

Lemma 2. The space of the components of the level sets of the function

ex> mk

Fr(x, y) = ~ :2 ~ Ukm(X, y)
k=1 m=l

is a tree with a branch point index not greater than three.

Every funct ion

CX) m k

f,(x, y) == ~ ~ akmukrn
k=1 m-l

is constant on each component of a level set of the function Fr if the akm

are such constants that the series (*) converges uniformly and absolutely.

Proof of Lemma 2. Let r be fixed. First, let us prove that all the com­

ponents of the level sets of the function Fr(x,y) are 1) components of the

level sets of the function ukm (k = 1,2, ... : m = 1, ... ,mk)' 2) boundaries of
such components, 3) separate points which are intersections of sequences of

the sets gkm'k (k ~oo).
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Let us pick a point a in the plane. The point a belongs either to an

infinite number of the sets gkm' or there exists a "last rank" Ito ~ 0

after which the point a does not belong to any gkm (k > ko)'

Let us consider the first case. We will prove that such a point is a com­

ponent of the level sets of the function Fr' Suppose that the point a belongs

to an infinite sequence {gk .•. }. From the condition 3) of the fundamental
t,,·t

lemma it follows that the k i are all distinct. We shall assume that k i +1
> k i .

One can easily deduce from the fundamental lemma (requirements 2) and 5»,

that if the sets gkm and gk'm' intersect, and if h' > k, then gk'm' C gkm.
In the proof of the fundamental lemma given above, this result is obtained auto­

matically (see the proof of the fact that the requirement 5) is fulfilled).

Therefore, we have a sequence of inscribed sets gk' ,J gk J .00 9 a.
co tmt i+1mi+1

In this connection, n gkr . ,= a, since the diameters of the sets gkr t'-t'
i = 1 tmt II.

tend to zero as i ~OO (requirement 2) of the fundamental lemma).

On the boundary M
t
, of each set gkr , " the value of the function F is

tMt r
less than that at the point a. Indeed, all the functions ukr (h ~ k,) are

In t

zero on Mi (this is a direct consequence of the requirements 2) and 5) of

the fundamental lemma), while all the functions ukr (It < k,) take on them t

same values as at the point a (requirement 5». At the point a, however,

all the functions uk,lJt. (j ~ i) are positive, and, therefore,
co Ink J J

F (a) = I 1
2

I Uk (a) 1s greater than Fr on M
t
,.

r k = 1 k m= 1 m

But each continuum that contains a, intersects some set of the Mi
co

because U M. separates a from all the points of R2 \a (Figure 8) 0

i = 1 t

This means that on each continuum that contains a one can find a point b

where Fr(b) ~ Fr(a), but this indicates precisely that a is a component of

the level sets of the function Fro

Now, let us consider the second case. Suppose the point a € gkomo does

not belong to any gkm (k > ko)o Then a will belong to a continuum K,

the set of a nonzero level z of the function urk •omo
Let us assume at first that K does not contain the regions gkm (k > ko).

Then 0 < z < 1. We will prove that K is a component of a level set of the

function F.
r

Let us select two sequences z: and z~ (i = 1,2, ... ) which converge
t t

to z from above and from below, and which are such that the sets Mi and
M~ of the levels z, and z~ (i = 1,2, ... ) of the function ukr .~ do not

t t t O•."V

contain the regions gkr and 0 < z~ < z < z: < 1. This can be done because
m t t



70

84 V.I. ARNOL'n

o < % < 1 and the regions gkm constitute a denumerable set. The continua M:
and M-', obviously, separate K from the points where urk is greater than

t 0"'0
(0

U (M: U M-:), separate
i = 1 t t

point of R2 '\K, rukomc
as well as on the

z: and less than %i. and all of them together. i.e.

K entirely from all points of R2 '\K, since at every
+ -is greater than some % i or less than some %i. On K.

+ -sets Mi and Mi' the function Fr does not change since all the terms with

uk. (k > ko) are zero in view of the assumption on the absence on K. M; and

Mi of the sets gkm. But the values of Fr on K. on M; and on Mi are

different, because all terms uk. with k.< ko are the same on these continua

(requirement 5». all the terms uk. with k > ko are equal to zero, while

the function urk is equal to % on K. to %:- on M+1." and to %' on M-:.
01Jl() t 1. t

Figure 8. Representation of all types of components. In the
third case % ~ 1. The gk1m

'
are lined. The case % = 1

is left to the reader.

(0

Each continuWD M =I K, but containing K, intersects U (M: U M-')
i = 1 t t

(Figure 8). Therefore it has points where Fr differs from the values of Fr
at the points of K. This means that K is a component of the set of levels

of the function Fr.

In the remaining case the proof 1s analogous to the one given above. and we

will only indicate it. If the set K ~ a of the level ukomo = z contains

8k'm" then the component of the level set of the function Fr that contains
a will be L. the boundary of K (Fig. 8). Actually. the point a does not
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belong to gk,., (since ko Is the "last rank" ). The boundary of K

divides the plane into no more than three parts (requirement 6». First.

suppose that % ~ 10 Then in two of these parts ukomo will take on values

greater and less than z. while in the third part gk'm" uk'm' is positive.

The point a cannot lie in any of these parts but lies on the boundary of K.
On the continuum L, the function Fr is constant, because all the functions

uklR are constant (requirements 5) and 6». In order to prove that L is a com­

ponent of the level set of the function Fr' it is necessary to separate it by

means of continua, with values of Fr , from all points of R2 '\L. For this it

is necessary to use sets of levels near zero of the function uk'm' and sets

of levels close to % of the function ukr (Figure 8).
01aO

The remaining case, z = I, is even simpler because the boundary of the set

urk = 1 divides the plane into two parts only (this is a direct consequence
0"'0

of the construction of the functions ukm' but it can also be deduced from

requirements 2) and 6) of the fundamental lemma).

The structure of the components of a level set for the function Fr has

thus been explained. Not a single one of them divides the plane into more than

three parts. It follows (Appendix, Theorem 3) that the tree of the function Fr
consists of points whose branching index does not exceed 30

In order to complete the proof of Lemma 2, we note that all the functions

ukm are constant on each component of the level sets of Fr' This implies

the truth of the second assertion of the lemma 0

Theorem 2. Every real function f(%1'%2'%~) that is continuous on EB

can be represented in the form

3

f (Xh X2' Xa) = ~ hi [~l (Xh X2 ), X3 ],

i=1

where hi and ~i are continuous functions, the functions hi are defined

on the product a x E1 oj the tree by the interval E1, while the ~i(%1'%2)

are defined on the square E2
, and have for their values points of E. lIere

e is a tree whose points have branching indices not greater than 3.

Proof. A function f(%1' %2' %3) of three variables can be considered as

a family of functions of two variables that depends on the third variable as a

parameter: f%~(%1'%2)' where the function f%3(%1,%2) is defined for each

%3 on a single square 0 ~ %1'%2 ~ 1, and at a point (a,b) is equal to

f(a,b,%~). Obviously, each of the functions f%~(x1'%2) is continuous and

depends continuously (in the sense of t~ uniform metric) on the parameter

%3 (0 ~ %3 ~ 1)0 Therefore, the family of functions f%3(%1,%2) forms a
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compact. Hence, we can apply the Lemma 1 and obtain

00 3 mk

fx. (Xh x2) = ~ ~ ~ a~m (X3) U~m (Xl' X2).
k=l r=1 m=l

CD

and I ak < (X) •

k=l
it follows that each of the series

00 m k

f~. (Xh X2 ) = ~ ~ a~m (X3 ) U~m (Xl' X2) (r = 1, 2, 3)
k=l m==l

converges absolutely and uniformly. (But by the fundamental lemma only one of

the uk. (m = 1•••• ,mk) is different from zero at any given point.) We shall

show that f~3(%1' %2) depends on x3 continuously (in the same sense).
(X)

Indeed, suppose € > o. We can select N so large that ~ ak < €/4.
k=N

Since the akm(x 3 )ukm(x 1 ,x2 ) depend continuously on x3 ' the same thing must
be true for the finite sum. Hence there exists a 8 > 0 such that if

Iy - % I < 8 then

(r=l, 2,3).

But since

ClO mk co mil GO

SUp I~ ~ akm (y) ukm (xlt Xt) - ~ ~ akm (z) ukm (Xl> X2) 1-< 2 ~ Uk < ;,.
%1,x,EEI k-N m=l k-N mc::l k-N

we find that for 'y - z , < 8, it is true that

Now we apply Lemma 2 and see that for any given %3' each of the functions

%3 € [0,1] is constant on each component of the level set of one of the con­
CD 1 mk

structed functions Fr (x 1 ,x 2 ) = It - ~ uk (X1'%2) which does not depend
k = 1 k2 m= 1 m

on f (x l' x '2' X 3) •

Let us consider (see Appendix) the tree of components of the level sets of

the function Fr (x
1
,x2 ). The mapping t(a) = ~r(x1tX2) associates with each

point % of the square E2 = A a point ~r of the tree T which represents
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the component t of the level set of Fr (%1,%2) that contains (%1,%2). We

can consider this mapping as a function ~r(%1'%2) defined on the square and

with values from the tree. If one wishes, one can realize the tree on a plane.

This mapping can then be written with the aid of two real functions defined on

the square. The mapping tea) is continuous. The functions fr (%1,%2) generate
%3

on rr functions fr (~r) which are equal to the values of fr (%1,%2) at any
%0 %3

point of the component t of the counteTimage of ~r on E2
• Because of Lemma

2, this value is the same at all points of this component. It is obvious that

the obtained functions fr (~r) are continuous on rr and depend continuously
%3

on %3. Therefore, one may consider the family fr (~r) (%3 € [0,1]) as a
%3

continuous real function fr(%3'~r) on the product of the tree by the interval

of variation of %3:

t:. (Xh x2) = tf' (Xs, cpr (Xh x2»).
From the three trees T r (r = 1,2,3) we can compose a single tree S. By

Lemma 2, each of the three trees consists of points whose branching indices are

1, 2 or 3. The tree S, obviously, can be constructed so that it has the same

property. Each of the functions fr(%3'~r) (r = 1,2,3) can be extended con­

tinuously over the product of the entire tree S. by the interval (it does not

matter in what way this is done). Let us denote this extension by hr(~r,%3)

(r = 1,2,3). From the relation (1), Lemma 1, we obtain in this notation

s
f (Xh X2, Xs) = ~ hr [CPr (Xl' X2), Xs].

r-=l

This completes the proof of Theorem 1.

PART II

Proof of The.orem 3

We shall now construct the tree X C E3 mentioned in Theorem 3. This tree

is to be homeomorphic to the universal tree =which does not have points

whose branching index is greater than 3. The latter tree, as is well known

(see Appendix, Theorem 5), can be obtained by attaching branches. More

precisely, S can be represented in the form

00

3; = U ~n' ~n C .1n+lt
fl=l

where ~n is a finite tree (curved complexes). ~ 1 is a simple arc and ~n+1

is obtained from ~n by attaching at the point Pn (which is not a branch

point) simple arcs on (Figure 9). We note that the set of points Pn that
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are now branch points of a, is at most denumerable. Everything that pertains

to the abstract tree a will be denoted by Greek letters, while the correspond­

ing items of its realization X will de designated by Latin letters. The

realization of X will be constructed in the form

Qg

X = U Dn, Dn C Dn+b
n=l

where the Dn are segment complexes in a three-dimensional space; the homeomor­

phism between a and X will be constructed as a continuation of the

homeomorphisms 6. n and Dno

It is known that in order for X to be a realization of = (and, hence, to

be a tree), it is sufficient that the following conditions be fulfilled (see

Appendix, LeDJDl&S 10 and 11):

ex) Each newly constructed branch sn' except for its base, must lie

entirely inside the open, still empty, simplex Tn. Furthermore, for all twigs

8 m attached to sn (Pm € sn) later (m > n) Tm C Tn (Figure 9).

On Figure 9, and in Menger's work ([3], Chapter X), where the tree X

lies in a plane, the simplexes T are triangles. In our case they are

tetrahedra. This makes no essential difference.

(3) The simplexes Tn must be sufficiently small: the diameters of the

Tn tend to zero when n ..... 00 •

y) The points P
n

at which the new branches are attached may not have been

earlier branch points or endpoints for Dno

Figure 9. Finite trees: " abstract", curved tree ~, and
its realization as a complex D 0
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In the sequel (~~ 3-7), in the construction of Dn and X, we will always

be able to choose the points Pn and the direction of the segments sn with

sufficient freedom: each time the forbidden points or directions will have an

everywhere dense complement. '!be length of the sn will always be chosen

sufficiently small. The conditions CX), (3), and y) can.. therefore, be assumed

to have been satisfied at each step. In order not to complicate the future

presentation, we will not mention this 10 the sequel. We assume that by attach­

ing each branch sn we construct the corresponding tetrahedron Tn' and will
not worry about the fulfillment of the conditions a), (3), and y).

In order that the obtained tree X may satisfy the conditions of Theorem

3, i.e. in order that each continuous function of the given family may be

represented as the sum of functions of coordinates, it is necessary to select

the Pn and sn with certain restrictions. For the precise formulation of
these restrictions, we need several new concepts which are presented in the

next section.

~3. Fundamental definitions. Inductive properties 1-4

In a three-dimensional space· let K be a finite set of segments or

straight lines. These segments (straight lines) are not to be parallel to the

coordinate planes.

Definition 1 (Figure 10). A zigzag (certain type of broken line) is a

system of points ao ~ a1 ~ ••• ~ 4 n-1 ~ an of K, such that the segments

ai-14i (i = 1, •••• n - 1) are perpendicular to the coordinate axes %ai and

ai -:# ~ ~ <Xa ~ .0. =I an. The segments ai -1ai are called I inks of the zigzag.

If ao = an' the zigzag is said to be closed.

One should visualize the zigzag in the following way. The beginning ao
is a point of K. We choose the first direction a1 • The plane that passes

through ao and is perpendicular to the axis %a1 (we shall refer to it as

the "plane of the coordinate direction <It'') intersects K at a point a1.

We shall say that it leads froll 40 to a1. In exactly the same "83' the link

a1a~ lies in the plane of the direction <X 2 (~a 1) so that at a1 there
occurs a break. At the point 4 ~. the direct ion again change s to ex 3 (-:I. <X 2 )

and we arrive at the point a3, and so on until we get to an. the end of the

zigzag.

Or somewhat modifying the described process we obtain the generating

• In ~ 3 -7 the number of dimensions could be ~ 2. The graphs correspond to the two­
dimensional ca.e.
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scheme that was defined in note [1]. A more descriptive definition will be

given here.

Definition 2 (Figure 11). The beginning of the generating scheme is the

point 00 € K •

Figure 10. The zigzag
c00102a3a4C5ae.

Figure 11. A generating scheme
from the point 00. If one in­
cludes the point ~. then the
obtained double generating
scheme will be of the class of
the point 8.0.

The beginning is also called the end of rank o. We choose a coordinate direction

~o and draw through the point 00 the plane of this direction. In general, it

will have several points of intersection with K in addition to the point ac.
We shall call this plane a plane of rank 1. and these points, ends of rank 1.

The plane of rank 1 leads from ao into each of the ends of rank 1.

Next. this process is continued. At each end a of rank n we select a

coordinate direction ~ different from the one along which we arrived at this

end.· Through a we pass the plane of this direction. If this plane does not

pass through any other point of K besides a, we do no more to this point a;

it Is called a free end. If. however, ° is Dot a free end. then we obtain
points of intersection of the plane with K. which are called ends of rank

n + 1. In this manner the constructed plane of rank n + 1 leads away from

the nonfree end of rank n and leads to ends of rank n + 1.

If this process terminates, i.e. if all the ends of some rank N are free

ends. and if all ends of all ranks as pairwise distinct ••• then the entire

• That i., different from the direction of the plane of rank n at whose inter­

section with K the point a lies.
•• This mean. that in the construction we do not arriYe at the same point twice.
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structure is called a generating scheme which leads from the point ao in the

direction 0:0. N is called the rank of the scheme.

In this manner, a generating scheme (or system) consists of a beginning 00.

of ., supporting" planes of different ranks, and of ends of different ranks.

We will need a certain generalization ot generating systems, a double

generating system. It differs from the simple one defined above only in that

from some of its points (ends) one draws two planes', and not just one. In this

way, all three directional coordinate planes that pass through such a point,

can be supporting planes in a double scheme it one of these planes leads into,

and the other two away from the point. Double systems can be obtained, for

example, by combining simple ones which have only the beginning in common, or by

connecting to some nontree end a of a simple scheme A a generating system

B, for which a is the beginning, and which has no common points with A
except Q.

Every free end a of a double (or simple) generating system can be con­

nected to the beginning ao by a unique zigzag all of whose points are ends of

a scheme. and all of whose links lie in the supporting planes of the scheme.

If there were several such zigzags, then the ends of the scheme could not be

pairwise distinct. The indicated zigzags are called zigzags of the scheme. They

are finite, not closed, and do not contain closed parts.

Definitions of stability. We shall say that two zigzags (generating schemes)

on K are of the same type if their points can be put into a one-to-one

reciprocal correspondence in such a way that corresponding points lie on the

same segments (straight lines) of K,· while the corresponding links are

perpendicular to the same coordinate axis.

Ie shall say that the zigzag aQ ••• an is not longer than the zigzag

bo••• b. (m ~ n) if it is of the same type as a part bo••• bn of the second

one.

A generating scheme A is not longer than a generating scheme B if one

can set UP a correspondence between their zigzags under which all zigzags of

A are not longer than the corresponding zigzags of B. The types of the

generating schemes which are not longer than a given one form a finite set.

Ie shall say that a generating scheme A that begins at ao is stable

if ao has such a neighborhood that the generating schemes of the points of

K that lie in this neighborhood are not longer than A. For example, the

complex K of Figure 11 admits a generating scheme, beginning at any point

• No branch points can lie within a segment of a segment-like complex K. The com­
plex of Figure 11 consists of 5 segments. This remark does not apply to the set
of straight linea of K.
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with an arbitrary first direction. Here, for any point, except for the branch

points A, B, and the end points C, D of the zigzag that issue from B, the

scheme is stable.

The zigzags of the same type produce a mapping of the set of all their

beginnings (initial points) into the set of their ends. This mapping is linear

and nondegenerate (because the segments of K are not perpendicular to the

coordinate axes). We will make frequent use of these facts in what follows.

The set of all points of K which are vertices of zigzags that issue from

the point ao are called the class of points accessible from ac. or simply

the class of the point ao on K. The class of a set of points is defined in

an analogous way. We call attention to the fact that the class of a point. and

hence the class of a denumerable set is a denumerable set. All generating
schemes of a point ac, and of points belonging to the class of ao lie in

the same class.

Now we can formulate the inductive lemma which will be proved in ~~4-9.

Let us return to the function f on the tree S.
SUppose that con Is the upper boundary of the variation of the functions

f € F on the component difference a\ t1 n • As n -t m, Ct) n -t o.
Indeed, if =' is a realization of e constructed (see Appendix. Theorem

5) on the plane, then F will give rise to a family F' of equi-continuous

functions defined on the planar continuum a I. Since the diameter (see condi­

tion f3, and Figure 9) of the triangles Tn tends to zero when n -t m. and

since every component a '\~'n lies in the triangle Tm (m > n), it follows

that for large enough n the diameter of the component a' \t1~ will be so

small that the oscillation of any function f' € F' will be arbitrarily small

on every component. Therefore one can pick a sequence

nl<~< ... <n,< ... ,
80 that (Un ~ 1/r 2 when n > nr •

We shall next list the inductive properties of the tree Dn, of the

homeomorphism of !1 n on D, and of the functions f'k(xk) (m ~ n; k = 1,2.3).

Here the tree D is a realization of ~n. D lies in a three-dimensional
cube of a segment-like complex whose segments are not perpendicular to the

coordinate axes.

1. Let A be the set of points of Dn which are images of the branch
points· of a that lie on ~n. Let Kn be the set of straight lines whose

segments form Dn , and let en be the class of the set of vertices of the

• More precisely, one should s.y of the" points Pm It becauae Theorem 4 is not
proyed in the Appendix. In the sequel, branch pointa can be taken as the pointe

Pm and Pm'
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closed zigzags on Kn•

Then:

a) Cn is at most denumerable,

b) Cn does not intersect An (and hence not the class An on Kn ).

c) no two points of An belong to the same class on Kn .

2. On Dn there is a finite number of simple generating schemes such

that from any point ao € Dn one can start 1n any direction to generate the

scheme of one of the "canonic" type.

3. Every function f € F is representable on Dn in the form
3

f(x) = ~ f'k(xk)' where the xk are the coordinates of the point x € Dn•
k=1

and the fk(xk) are continuous functions which depend continuously on f(x).

4. If nr < n < nr+1. then

93

Inductive lemma. If the tree Dn , the homeomorphism of ~n

the functions fk(xk) (k = 1.2,3: m ~ n) have the properties

one can construct a tree Dn+1 • a mapping of ~n+1 on Dn+1 •

fk+1 (xn). with the same properties. by attaching to the point

segment Sn that is not perpendicular to the coordinate axes.

Scheme of proof:

on Dn• and

1 to 4, then

and func t ions

Pn a branch-

i indicates the property of the tree Dn• of the homeomorphism ~n
n

onto Dn• or of the function fk(xk)' In the section that appears in any

rectangle. the property i n+
1

is derived from the properties that are con­

nected with this section by means of arrows.
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~4. Indactive preservation of property 1

We will assume that Dn has the property 1, and we will show what condi­

tions have to be imposed on Sn in order that this property may be preserved

on Dn+1• The conditions that one finds are not very restrictive: the

direction may be chosen from an everywhere dense set of the second category; •

the length can be arbitrarily small.

Let us DOW assume that on Kn , that is on Dn , to which there have been

added rays which extend the segments Dn , the following conditions hold:

a) the class en of the points of closed zigzags is at most denumerable;

b) the points of closed zigzags of Kn are not accessible on Kn from

the points of An which are the images on Dn of the branch points of a;
c) no two points of An are such that one is accessible from the other

on Kn•

Let us first restrict the selection of the direction of Sn in such a way

that the condition a) is guaranteed on Dn+1 • The number of the types of

zigzags is at most denumerable for every choice of Sn, because the type is

determined by the initial and successive straight lines of Kn and by the

direction of the path, i.e. by a finite sequence of elements of a finite set.

For each type there either is no closed zigzag, or there is one, or else all

zigzags of the given type are closed. This follows from the linearity of the

corresponding type of mapping of the initial straight line onto a finite one.

In case that all zigzags of a type are closed, we say that a closed zigzag is

stable. Obviously. it is sufficient that there be no closed zigzags on Kn+1

in order that condition a) be satisfied on Dn+1 •

Suppose that Dn+1 has been constructed, and that the segment Sn is not

perpendicular to the axes. The stable closed zigzags can occur only among

zigzags which have a common point with the straight line that supports Sn.

Let M be such a point. It can be taken for the beginning of a closed

zigzag. Suppose that the equations of the straight line in the system of

coordinates in which the origin 0 has been translated to Pn are given as

X 2 = bxl , X 3 = eXl,

where neither b nor c are zero, because the segment Sn is not parallel

to the coordinate planes. For the sake of definiteness, let us assume that a

closed zigzag issues from the point M(xQ,bxQ'cxo) in the direction Xi and
falls on for the first time again exactly at the point M where it arrives

from the direction %2. Let the straight line at which the zigzag arrives at

• That ia, from the complement of the Bum of a denumerable number of nowhere den8e
aeta.
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the ith step, have the equations %2 = bix 1 + f3 i' %3 = CiXi + Yi. Neither

one of the coefficients bi, and Ci can be zero. The second point of the

zigzag has the coordinates Xo, b 1XO + f3 l' C 1%0 + Y1. If the second direct ion

is, for example, %2. then the coordinates of the third point will be

In general the coordinates of each point depend linearly on Xo, and the

coefficients are determined by the intermediate straight lines. We assume that

the zigzag does not intersect I before it is closed. Then the last point will

have the coordinates

because the direction %2 will lead to the point xo,bxQ'cxo, and one obtains

bxo = 12%0 + A2 • For stable closure it is necessary that the equation be satis­

fied for all Xo, i.e. b = 12 and A2 = O. Hence, such a closed zigzag will

be stable only if lies in the plane X2 = 12%1. The corresponding directions

I will be called forbidden directions.

If the zigzag closes after it has been on several times, a necessary

condition for stability is bici = la, where 10 is some constant depending

on Kn and on the type of the zigzag. Here is the difference between the

number of arrivals of the zigzag on I from the direction %2 and the number

of departures from I in this direction; j has a similar meaning for the

direction %3. If the direction of is not a forbidden one (i.e. b1cJ ~ 10),

then there can exist no closed zigzags of the considered type. Suppose that

(Io - 1) 2 + i 2 + j2 ~ o. Then the directions for which bi ci = 10 form

nowhere a nondense set (a curve) in the space of directions. Therefore all

directions which are forbidden by some types of zigzag for which

(La - 1)2 + i 2 + j2 ~ O. lie on a denumerable Bet of smooth curves and con­

stitute an everywhere dense set of the second category of forbidden directions.

If, however, i = 0, j = 0, and Io = 1, then the closed zigzag will be

stable for b and C arbitrary, and, in particular, if we direct I along

the straight line q on whose segment qn € Dn the point Pn lies, where

the branch Sn is attached. It is true here that some, but not all, points of

the zigzag (namely those lying on I and q) will run together. But it Is

easy to see that on Kn there Is defined a stable zigzag and that the points

of q will belong to its class. But on q there are points An. This yields

a contradiction with the condition c) which is satisfied by D.

The final result is as follows: one can choose the direction from an
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everywhere dense set of the second category so that Dn+1 will satisfy the
condition a).

Let us now go over to the condition c). We consider two branching points of

a whose images lie on Dn (in An). The Sn must be chosen so that it will
be impossible to connect the points from An in Dn+1 by means of a zigzag.

For zigzags which do not contain points of Sn' this Is already so. because

the condition c) is satisfied on Dn• The set of pairs of points An is

denumerable. So is the set of all types of zigzags. Let us consider one of

these types and one of the pairs_ The requirement that a zigzag of this type

connects these points leads to forbidden directions for which such a con-

nection can occur, and, Just as in the preceding proof, all forbidden

directions lie on a denumerable set of smooth curves. The condition b) leads to

the same type of requirement for the points An and closed zigzags Kn+1 -

We must now concern ourselves with the fulfillment of condition b) for the

points of An+1 "An (lying on sn) and with condition c) for pairs of such

points An+1 of which at least one lies on Sn. Having selected in the manner

described the direction 1 from the everywhere dense set of the second cate­

gory (from the complement of the forbidden directions). we map an on 'n.

Thus we have constructed Kn+1• Let us put on 1 the points of the class

An. This denumerable set must not intersect the images of the branching points

of a on Sn. The same prohibition applies to the set of points of the closed

zigzags on Kn+1 and the classes (on Kn+1 ) of these points. The set of for­

bidden points or, as we shall say, the "taboo set" is at most denumerable

because of the W83 in which 1 is chosen.

The requirements a) and b) will be fulfilled on Dn+1• while the re­

quirement c) will hold on Dn if we do not map the branching points of =
into the forbidden points 'n. SUch a mapping of Sn on 1 for which the

requirement c) on Dn+1 is also satisfied, will now be described. Here the

segment sn may be arbitrarily small. This fact will be used later.

Let us now assume that we have chosen Sn and its size. On Sn there is

a taboo set (at most denumerable) which cannot contain the images a of

branching points ~ of a that lie on un- The mapping must be homeomorphic,

and we must take care that the points a are inaccessible to each other on

Kn+1•

Let us arrange the branching points of a on an into a sequence

(X1, a 2 ••••• (The point Pn is not included in this seQuence.) The denumerable
set is everywhere dense on un.· Therefore, a similar·· mapping of this set on

• If thi. i. not the c••e then we .dd to the point. a: some points ~.

•• That i., an order preserying.
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an everywhere dense set Sn can be extended to the homeomorphism un on Sn.

We still have to map the points a on sn. Since there are no ends un among

the <X i, the images ai of the (X i are distributed in the interval s~ whose

closure is Sno

Let us consider on S n a denumerable system of intervals 8~, 1 ~ k < 00,
1.

1 ~ i ~ i k , such that

1) for every k
ik k
lJ 8. =

i = 1 l

I
sn ,

2) each of the intervals S~••••• S~k is less than €k; €k .... 0 when

k-.oo.

If each of the intervals contains at least one point a j, then the points

aj (j = 1,2'0.0) form an everywhere dense set Sno Let us arrange all these

intervals into one sequence Sz (l = 1,2, ... ).

Let us assume that the directions on un and Sn have been selected so

that Pn and Pn are the left endpoints.

First step. We pick a nonforbidden point a1 on 01. It will be the

image of a point ~. The points of the class of a1 form on 'n a

denumerable set. We add this set to the taboo set.

second step. The point a1 divides un into a left and a right part.

Let a il be a point (X with smallest subscript in the left part, while a. i r
has the same meaning for the right part. The point al divides the intervals

o into those that lie to the left of a1' those that lie to the right of 41'

and those that contain a1. Among the intervals that do not lie to the right

of a1, with a subscript greater than 1, we select the one with the smallest

subscript. On it we pick a nonforbidden point to the left of a1. This will

be ail' the image of ailo We add to the taboo set all points of the class

of ail. We select from the remaining intervals 8 which are not to the left

of al. the one with the smallest subscript. In this interval we pick a non­

forbidden point a i r to the right of (J1. We add to the taboo set the points of

the class of air.

After the nth step, 0" will be divided into 2n intervals by the 2n - 1

points ~1' ~ iI' <X i r , <X ill' <X il r '· o. '<Xi rro •. r
"'--'"

"-1 times

The (n + l)st step. In each one of the 2" intervals we pick a point with

the smallest subscript and denote this subscript in the left-most interval by

i ll ••. l • then by i ll ... lr , ... , in the right-most one by i rr.•. r •
~ ""-..--"

" times "-1 times n -1 times
The mapping of these 2" points aill ..• l' <Xirr ... r on 8n takes place
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in exactly the same way as described in the second step_ The image of ex. the

point at is always picked in the interval 8 which is not to the left of ex .•
t

the left end of the interval (CX i, ex i) from which ex was picked, and not to

the right of aj. Hereby one picks the interval with the smallest subscript

from all the intervals 8 having the given property. In the interval 8, the

point a Is picked between ai and aj from the nonforbidden points. Then

one adds to the taboo set all the points of the class of the point a. After

this one constructs the image of the next point ex until the (n + l)st step

is completed.

The proofs that the mapping of the points a on a is defined after the

performance of all steps for all a. that this is a similar (order preserving)

mapping, and that by the thus generated homeomorphism un and Sn retain the

properties a), b), and c), can be accomplished without difficulty_

§5. Le.. on 18n8rating schemes

Before we start the proof of the possibility of preserving the inductive

properties 2, 3, and 4, let us investigate more closely generating schemes of

segment-like complexes K. It is immaterial whether these schemes are simple

or double.

If one omits the beginning in a generating scheme. then the remainder can

be considered as the set ot intersecting generating schemes starting with the

ends ot the first rank (of the shortened system).

Le... 1 (Figure 12). If the shortened systems Ai of a given system A

are stable, and the initial point ao is not a branch point of K, then A
is s tab Ie.

Proof. Let e, > 0 be such a number that an €1-shift· of the initial

points ai ot the shortened schemes will not lengthen these systems (see

definition ot stability in ~3). Furthermore, from the stability of Ai it
follows that the ai are not branching points of K. Since the complex K
18 a closed set, there exists an £2 > 0 such that the plane, which is

parallel to the first plane of the scheme A and which is at a distance of at

least €2 from it, intersects only those segments of K which contain ao

and the points ai-

By taking € < min (€1.€2), we obtain an E-neighborhood of the point ao­

The existence of this neighborhood proves the stability of the scheme A.

• We recall that the di.tance between the points (%1'%2'%3) and (%~,%~,%~) is

max ( I%i - %i I ).
l~ i~ 3
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Figure 12. The generating scheme aoa1a2 has rank 1. The layers
of generating schemes of semineighborhooas are shaded.

Lemma 2. If no vertex of a generating scheme is a branching point. then

the generat ing scheme is stab le.

99

Proof. '!be proof is accomplished by induction. If the rank of the scheme

is zero and the point ao is a free end, and not a branching point of K.
then. obviously, there exists in K a neighborhood of the point ac. which is

composed of points with the same property (see Figure 12. where the points a1

and a2 are shown with the mentioned neighborhoods of stability). If the

assertion of the Lemma 2 has been proved for a scheme of rank n, then its

truth for a scheme of the next higher rank follows from Lemma 1.

Lemma 3. Suppose that the generating scheme A with initial point a is

stable. Then for every positive € there exists a positive number 8 such that

every supporting plane that corresponds to the scheme A and leads a.ay fro.

the point b of B is at a distance not greater than g fro. the correspond­

ing plane of the scheme A. provided that the initial point b is nearer than

o to the initial point a.

Proof. The generating scheme A has a finite number of supporting planes

ni (a) of each direction r = 1.2.3.

For the scheme B which leads away from the point b in the interval of

stability of the scheme A, there are defined planes, points. and zigzags of

the scheme B that correspond to planes, points. and zigzags of the scheme A.
(The converse is in general not true, because the zigzags of the scheme B can

terminate earlier.)

Let us consider the planes "~(b). (This Is the notation for the plane
t

Which corresponds to the plane n i (a) in the scheme A.)
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Lemma 4 (Figure 13). Let us assume that

Figure 13. Relative to Lemma
4. The thick arrows represent

the generating systems.

The coordinate Xr is the same for all the points n ~ (b); it depends
t

linearly on any coordinate of the initial point b. It follows from this and

from the finiteness of the number of supporting planes of the scheme A, that

for every point b in a sufficiently small neighborhood of the point a all

planes of the scheme B are nearer than € to the corresponding planes of

the scheme A.

We note that the segments of a complex are always assumed to be non­

perpendicular to the coordinate axes. From the finiteness of the number of the

segments it follows that their inclination to the coordinate planes is bounded

from below. Hence, Lemma 3 implies that a sUfficiently small change of the

beginning of a scheme will produce an arbi­

trarily small shift of the vertices of the

scheme. These vertices will not disappear.

These properties will be referred to as the

continuous dependence of a stable generating

system on its beginning. A finite number of

stable generating schemes Ai depend in a

uniformly continuous manner on the beginning,

in the sense that for every E > 0 there

exists a 0 > 0 which is the same for all

these schemes.

the class of the point b does not contain a

closed zigzag. Let A be a stable generating scheme which starts at a, and

let B be a stable generating scheme with beginning at b, whose first

direction is the same as that along which the scheme A leads into b. Then

the points a and b have neighborhoods Ua and ub such that if the scheme

A' (this is a scheme that corresponds to A but its beginning is at a' E ua )

passes through the point b" E ub' then the scheme B' (which corresponds to

B but leads away from b ' € ub) has no points in common with A'. provided

b I =I b".

Proof. Let US consider the set of points of the schemes A and B.
Suppose that the shortest distance between two points is ~ > O. We will pick

for the points a and b neighborhoods u and ub such that if a' E u •
a a

b' € ub' then the points of the schemes A' and B' will be at a distance

less than ~/3 from the corresponding points of the schemes A and B. Such

neighborhoods can be found in view of the remark relative to the Lemma 3. These

are the neighborhoods sought.

Indeed. let a', b' and bIt be the points mentioned in the hypothesis of
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the 1emmao Suppose that the point y lies on A' and B' (Figure 13). As a

point of A'. it has a mate <X on A. As a point of B'. it has a mate fJ
on B. We will prove that <X and ~ coincide. Indeed, in the opposite case

they would be at some distance not less than ~ from each other. But the point

y is at a distance less than Tf /3 from its mate f3. and at a distance less

than ry /3 from a for the same reason. The obtained contradiction proves that

a = f3 f> But this implies that the zigzag that connects b with f3 in B lies

entirely in A. in the opposite case one could connect b with ~ (= tt) by

means of a zigzag through A in a different way. But the class of the point b,

by the hypothesis of the lemma, contains no closed zigzags. The scheme A' 1s

not longer than A. It contains y. which corresponds to <X. and it contains

b", which corresponds to bo This implies that A' contains a zigzag connect­

tng b and y of the same type as the zigzag (b <X) EA. On the basis of

similar arguments, the zigzags (b{3) = (b<X) and (b'y) are of the same type.

The zigzags b'y and b"y must, therefore, also be of the same type. This,

however, contradicts the nondegeneracy of the corresponding type of linear

transformation because the points b' and btl had been assumed to be distinct.

This contradiction establishes Lemma 4.

In §8 we will make use of still another property of stable systems. We shall

call it the property N. A scheme A which leads away from the point ao E K.
has the property N if the point ao lies on the segment ~C K, where it

possesses neighborhoods· U1 and U2 (in the case when ao is an endpoint of

K, ao has a one-sided neighborhood) such that for all points ~ E U1 there

exists a generating scheme A'(~) of the same type and not longer than A,

and for all points a~ € U2 there exists a generating scheme A"(a~) of the

same type not longer than A.

Examining Figure 12 one can understand that these types do not necessarily

coincide, but may all three (type A, type A', and type An) be different.

The following lemma is true:

Lemma 5. Every stable generating schetrte has the property N.

Thus Lemma 5 can be deduced from Lemma 6 just as Lemma 2 can be deduced

from LeDlDa 1.

Lemma 8. Let A be a generating scheme that starts at ao in K. If

each of the shortened schemes Ai of the scheme A has the property N, and

the point ao is not a branching point of K, then the scheme A has the

property N.

The proof of Lemma 6 is analogous to the proof of Lemma 1.

• That i., inter"al. which lie on ~ and ha.,e aO for a limit point.
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We introduce now the concept of a generating scheme (system) of intervals.

FOr this purpose we consider a generating scheme of points of the interval

u of the complex K. Suppose they are all of the same type (as, for example,

those of the scheme A' of the points of the interval Ua in the definition

of the property N). The set of corresponding points of these schemes form

intervals in which the zigzags of one type map the interval u. The corres­

ponding planes of these systems form layers. If the parallel layers do not

intersect then we have a generating scheme of the interval u. It consists of

the intervals of a scheme analogous to the ends which lie in the intersection

of K with the layers of the scheme that are analogous to the planes. The

interval of a scheme of rank 0 is u; the set of all planes of the first

direction of the schemes of the points u is a layer of rank I. It will lead

from u and will lead to the intervals of rank I. And so on. From the com­

binatorial viewpoint, a generating scheme of intervals is constructed in the

same way as a generating scheme of points. In place of free ends we have here

free intervals.

The following concept was not introduced for the schemes (systems) of points.

An interval of a layer is the intersection of the layer with the coordinate axis

that is perpendicular to the layer. The generating schemes of points u

associate with each point u a point in each interval of the scheme and a

plane in each layer. This defines a linear mapping u on each interval of the

layer.

Applying the Lemmas 2, 3, and 5 to the tree Dn which has the inductive

properties 1 and 2, we can establish that Dn has a generating scheme that

leads from the point Pn, and trom each point of the class Pn. This scheme

(system) is stable, has the property N and depends continuously on its

beginning. The scheme exists because Dn has the inductive property 2, and

the class of the point Pn does not contain branching points in view of

property 2. Thus, the lemmas are applicable to this scheme.

§6. Inductive preservation of generating schemes

In §4 it was shown how one can add to Dn a branch Sn, as small as we

please, in such a way that Dn+1 would have property 1. In order that Dn+1

may have the inductive properties 2, 3. and 4, it is necessary that Sn be

small enough. Having chosen the direction of the straight line 1 in accord­

ance with §4. having selected E > 0 sufficiently small, and then Sn in the

E-neighborhood Pn, as described in ~4, we find that all four inductive

properties hold on the constructed tree Dn+1 •
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In this section it will be proved that if Dn has the properties 1 and 2.

and if the direction l has been chosen correctly, then there exists an E > 0

such that if Sn is placed in the E-neighborhood of Pn' then Dn+1 possesses
the inductive property 2.

In accordance with the property 2, the tree Dn has a finite set of types

of canonical generating schemes. We shall transform these types somewhat. We

shall try to obtain a finite number of generating schemes Ai which pass

through Pn and which are such that for every 0 > 0 there exists an E > 0

such that the planes of the canonic schemes of points lying outside a 8­
neighborhood of the beginning ai of the scheme A1 will not intersect the

E-neighborhood of Pn.

Suppose that the existing canonic types do not possess this property. Since

the number of types is finite, one of them must be nonregular. By this we mean

that this type contains generating canonic schemes which have planes arbitrarily

close to Pn if there is no scheme that passes through Pn. We select from the
sequence of initial points of the indicated schemes, a sequence that converges

to a, and we consider the set of limit points of the set of points of all

these schemes. This set of limit points cannot be a generating scheme. But it

contains Pn' and by adding to some of its points (their number is, obviously,

finite) their generating schemes, we obtain the generating scheme of the point

a. The added points are all distinct from each other and from those that

existed before, because in the class of Pn there are no points of closed

zigzags.

By Lemma 2, the obtained system is stable. Therefore, there must exist a

neighborhood of the point a such that the generating schemes which start in

this neighborhood must be schemes that correspond to this point, because of

stability. Let us replace (in this neighborhood of a) the nonregular type

of generating schemes by the schemes that correspond to a. The obtained types

will be considered to be canonico It is clear that the remainder of the

canonic nonregular type is regular. This can be proved easily by making use of

the linearity of the corresponding mappings.

Having performed this operation with all the old nonregular types, we

obtain new canonic types; we shall call them simply canonic types. A finite

number of the points ai have canonic schemes passing through Pn- All non­

regular types are now in the intervals of stability of these schemes Ai- From

the linearity of the mapping of the neighborhood of a i into the neighborhood

of Pn with the aid of the corresponding zigzags of the canonic schemes, there

follows the following assertion.

For every 8 > 0 there exists an E > 0 such that the E-neighborhoods
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of the point

schemes whose

corr~spond to

Pn can be intersected by the planes of only those new canonic

beginnings lie in a 8 - ne ighborhood of the po ints ai' and which

the A. in the sense of stability.
t

Let Ai be a canonic generating scheme

that leads away from ai and passes through

Pn. We shall consider the following generating

schemes (Figure 14):

Bi , the scheme that leads away from Pn

in the same direction along which Ai arrived

at Pn.Figure 14. The thick arrows
represent generating

schemes. Ci , the generating scheme, leading away

from Pn' whose first direction is different

from the ones along which Ai leaves Pn and arrives at Pn' and from the

first direction of Bi . (In case Pn = ai' the scheme Bi is not defined,

and we do not consider it.)

All these schemes pass through Pn' and they are, therefore, stableo

According to the inductive condition I, the constructed generating schemes

have no points in common besides Pn' and the Bi and Ai satisfy condition

4.

Let us consider the set of all the points of all three schemes. Let the

positive number ~ be the least distance between any two points of this set.

Applying Lemma 4 to Ai and B., we find a 0 - neighborhood of the point ai'
t I

and an E-neighborhood of the point Pn such that Ai and B i will not

intersect if their beginnings lie in the indicated neighborhoods (for the

definitions of A' and B' see Lemma 4). Applying Lemma 3 to the schemes

Ai' Bi , Ci , we find a 02 > 0 and an 8 2 > 0 such that all the points of

A~, B~, C~ will be at a distance greater than T/ /3 from their correspond-

ing points of At" B" C. provided that the beginning of A~ lies in a 02-
t t t

neighborhood of ai' and the beginnings of the remaining schemes in an E2 -

neighborhood of Pn0 Here C~ is a scheme of the same type as Ci but

shorter.

Let us choose a positive number 0 less than 01 and 02. For this we

find an 83 > 0 such that the 8 3 -neighborhood of Pn is intersected by the

planes of only those canonic generating schemes whose beginnings lie in 0­
neighborhoods of the points a i and whose first directions are the same as

those of Ai. We choose a positive number 8 less than 8 1 • 82, and 8 3 •

From the finiteness of the number of types Ai it follows that all the num­

bers 8 and 0 can be chosen uniformly for all i. Consequently. we can
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obtain a system of 0 - neighborhoods of the points ai' and E - neighborhoods

of the Pn such that the following statements are true.

A) The E-neighborhood of Pn is intersected by the planes of only those

canonic schemes whose beginnings 1ie in 0 - neighborhoods of the points a i •

and which correspond to Ai.

B) The schemes A~ and B~ do not intersect if their beginnings lie in
t t

the indicated 0- and E-neighborhoods.

C) In the transition from Ai' Bi , Ci to A;. B~, c; the points of

these schemes will be shifted over distances less than ~ /3 provided the

beginnings remain within the indicated neighborhoods.

Recalling the meaning of the positive number TJ. we see that if the

beginnings lie in the indicated neighborhoods, then the schemes B~, C~ cannot

have any points in common besides the beginning. The same thing is true for

C ~ and A ~ • B ~ and A ~ •
t t t. t

Let us inscribe a parallelepiped P in the obtained neighborhood of Pn.

The edges of the parallelepiped are to be parallel to the coordinate axes, its

center is to be at Pn. and one of its diagonals is to lie on qn0 Inside P

we attach to qn at Pn a segment 2s n in the direction (see §3)

(Figure 15) °

/!=A"----.nr--,,_---""

Figure 15. The attaching of sn. Figure 16. Generating scheme lead­
ing away from the point a on Dn+1 •

The length of the segment Sn will be restricted from above. In order to

preserve property 2 on Dn+t • it is sufficient that 2sn C P. We shall prove

this.

If the planes of the canonic generating scheme Dn• which leads away from

some point of Dn • do not intersect 2sn• then the scheme will remain to be

a generating scheme also on Dn+1 • In particular. this is known to be the case

for all points that lie outside the 8 - neighborhoods of the points ai. From
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the property A) it follows that it is sufficient to construct a generating

scheme leading away from each point of the 8 - neighborhood of a· in the first
't

direction of Ai- Let A be such a point. The canonic scheme A~ which leads

away from a on Dn in the first direction of the scheme Ai' corresponds to

A. because the 0 - neighborhood is smaller than the interval of stability.
t ,

Suppose that A intersects 2s n at the point x. Then A i intersects qn

in some point x'; x ~ x' if a = a .• - In the sequel we will assume that
t

a ~ ai- Let us pass a plane through x'. The first direction of this plane is

the same as that of C i - Suppose that x" is the point of intersection of this

plane with qn. From the choice of the direction of 2s n it follows that
x" ~ x' and %_

Let us construct (Figure 16) generating schemes C~ and B~ leading away
t t

from the points x". From the properties B) and C) of the E- and o-neighbor-

hoods it follows that the schemes A~ and B~, as well as the schemes A~
t t t

and C~ have no points in common, while B~ and C~ have only the beginning
1. t 1., , ,

in common_ It is easy to see that the planes Ai' Bi , Ci , that do not pass

through x, x', x", cannot intersect P_

All the thus far considered generating schemes led away from Dn• With

their aid one can construct, however. schemes which will lead away from an a
Ion Dn+1 • The scheme Ai does not lead to Dn+1 only because the point x

is not free on it. Let us select a direction at this point for the first plane

of the scheme Ci • The obtained plane intersects Un+1 (in addition to the

point x) also at the point x" and at points of the first rank of the scheme,
Ci - From the points of the first rank we leave along directions. along which

I , II
we pass to Ci - Bi leads away from the point x on D. Since these schemes

do not intersect, except at the point xu. because they cannot have any points

In common with Ai' and since the planes of the schemes A~. B~. C~ do not
intersect P (except for the four planes which are here being considered and

pass through x. x', xu), we obtain a generating scheme that leads away

from a to Dn+1• In case 4i = Pn' and a € 2s n• one does not have to

construct x": the scheme C~ is con­
t

structed at the point x' (Figure 17). The

proof is analogous to the preceding one.

The proof of the inductive fulfillment

of the property 2 on Dn+1 under the con­

ditions of the fulfillment of the properties

1 and 2 on Dn• will be finished as soon as

Figure 17_ Generating scheme we give the finite number of types of gen-
that leads from x on Dn+1 • eratlng schemes. But we have actually done
• In ca.e (I = CJi. the acheaae Ai remaina a generating acheme on Dn+!.
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this in the construction of the generating schemes leading away from a. Indeed,

it is easy to see that the set of types of schemes, which are here used (schemes

A~, B~, and C~) is finite, because they are not longer than the schemes Ai'
Bi , Ci which are the schemes of the canonic type on Dn•

§7o Inductive preservation of the decomposition of functions

This section contains the construction of the representation of a function

(defined on a finite tree Dn) in the form of the sum of functions of the

coordinates.

Lemma 7. Let A be a scheme that leads away from a point ao of a complex

K. and let f(x) be a function, defined on K, which differs from zero at

the point ao only. Then there exists functions of the coordinates xk of the

point x such that for every point x E K

3

f (X) == ~ fk (Xk),
k=--=l

where the functions [k(x) differ from zero only at those points of the kth

axis which are the intersections of this axis with the planes of the scheme A.

Proof. Let us assume that f~(xk) =O. If we substitute ~ into the
right-hand side of equation (*) then this equation will fail to hold only at

the point of rank 0 of the scheme A. We will call the function f~(xn) the

zeroth approximation to fk(xk). The function of the nth approximation,

fk(xk)' will be constructed in such a way that the following conditions hold.

1) If the function fk(xk) is substituted for fk(xk) in the equation (.),

then this equation will fail to hold only at the points of rank n of the

scheme A.

2) fk(xk) = f k-1 (xk) (n = 1.2•... ), if the point xk of the kth axis

does not lie on planes of rank n of the scheme A.

The functions of the zeroth approximation possess the property 1). and if
.N+1

the rank of the scheme A is N, then the f
k

(xk) will satisfy, obviously,

all the requirements of Lemma 7. If the tk- 1 (xk) are constructed so that the

conditions 1) and 2) hold, then we set

I

tn
-

1 (x) = ~ f~-l (X1t~.-1
The expression f(x) - /n-1(x) = ~n(x)t the nth disjoint. is different from

zero at the points of rank n - 1 of the scheme A. Let a be such a point.
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and suppose that the plane 11, which leads away from this point, intersects

the kth axis at the point xk(a). From the definition of the generating system

it follows that all the xk(a), that correspond to different a and n, are

distinct. Introducing corrections ~k(xk) = ~n(a) for fk-1 (xk) at the points

xk(a), we set f'k(xk) = f'k-
1

(xk) + ~k(xk). It is obvious that f'k(xk) has the

properties 1), 2). Hence, one can construct all the f k+1 (xk). This completes

the proof of Lemma 7.

Lemma 8. Let A be a scheme which leads away from the interval

complex K, and let f(x) be a continuous function, defined on K,

differing from zero on s only. Then there exist continuous functions

of the coordinates of the point x such that for every point x € K

s of the

and

a

f (X) = ~ fh (Xk),
k=l

where the functions fk(xk) are different from zero only on the intervals of

the layers of the scheme A.

The proof of this assertion is analogous to the proof of Lemma 7. All

points and planes are replaced by intervals and layers, while the functions

which differ from zero at separate points are replaced by continuous functions

differing from zero only on separate nonintersecting intervals at whose ends

they are zero. In particular, the disjoints and corrections will be such

functions.

Lemma 9. The assertions of Lemmas 7 and 8 are true for double schemes.

Proof. The proof of this lemma is again accomplished with the aid of the

distribution of corrections. At the points (intervals) from which two planes

(layers) issue, one may ignore one of them, obtain a simple system and make use

of the Lemma 7 (8)0 But then the corrections and disjoints of all ranks will

be equal. One can decrease the size of the corrections if one makes use of both

issuing planes (layers) for the "distribution of the corrections along two

direct ions" .

Suppose, for example, that the planes "1 and "2 of the directions X1

and X2, respectively, lead away from the point a. In order that the equa­

tion (.) may hold at the point ao, one may set

~~ (Xl) == -rILiI (x), f~ (Xl) == f~ (Xl) + L\~ (Xl),

~~ ~X2) =--= 12 L\ 1 (x), f~ (Xl) == f~ (X2) + ~~ (X2),

3

where, as before f~ (Xk) == 0, ~l (x) == f (x) - ~ fk (Xk) and where 11' 12> 0,
k==l
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Y1 + Y2 = 10 Then the equation (.) will fail to be satisfied at all ends of

rank 1, and one has to introduce the correction at a greater number of points

than one would have had to if one had ignored 772 by assuming that Y2 = o.
In the final construction of the functions Jk(xk) in §9. use will be made

of the distribution along two directions.

Lemma 10. Suppose that we are given on a segment-like complex K two

cont inuous Junct ions: an "0 ld" one,

3

f (X) = ~ Tk (Xk),
k==l

where the fk(xk) are continuous functions of the coordinates xk of the

point x € K, and a "new II one f(x), which differs from the old one only

on the interval s that possesses on K a generating scheme A (simple or

double). Then one can find "corrections for fk" which are continuous

functions gk(xk)' differing from zero only on the intervals of the layers of

the scheme A, and which are such that if one writes fk(xk) = fk(xk) + gk(xk)'

then on the entire complex K

3

f (X) = ~ fk (Xk).
k-l

Lemma 10 is a direct consequence of the Lemmas 8 and 9 if one introduces

the function g(x) = f(x) - [(x). The process of the distribution of the

corrections along two directions, which leads to the construction of the
3

gk(xk) ( I gk(xk) = g(x», determines the disjoints ~n(x). the corrections
k=1

~k(xk) = }k(x) t\n(x), and the approximations gk(xk) = gk- 1(x k ) + ~I:(xk). It

is clear that one may consider the functions fk(xk) = fk(xk) + gk(xk) as
3

approximations to the f k (xk); the disjoints f(x) - ~ f'k(xk) and
k=l

corrections f~(x.) - f~-1(x.) will hereby be the same. The construction of
t t t t

the fk(xk) (k = 1,2,3; n = 0,1.2, .• 0,N + 1), which was described above,

will be called the distribution of corrections.

Lemma 110 For the preservation on Dn+1 of the inductive property 3, it

is sufficient that the interva l 2s n have a generat ing scheme on Dn U 2s n ·

The expansion of f(x) as a sum of functions fk+ 1 of the coordinates can

be accomplished through the introduction of corrections for fl: with the aid

of the distribution of corrections along two directions determined, in

general, by the double generat ing scheme of 2s n .

Proof. Suppose that on Dn U2s n , the interval 2s n has a generating
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scheme. On Dn, every continuous function can be expressed as the sum of

functions of coordinates (inductive requirement 3n). We select for the old
3

function fn{x) = ~ fJ:(xk)' and for the new function, lex) on Dn+1 • On
k= 1

Dn U2s n we define this function so that the difference between it and the old

function on 2s n is an even function relative to the midpoint of 2s n. Then

we will have the conditions of Lemma 10. from which follows the possibility of

the representation of f{x) on Dn+1 as the sum of functions of the coordinates

by the method of the distribution of the corrections along two directions. If

each correction depends continuously on the expanded function (and this can,

obviously, be obtained from the conditions of Lemmas 7-11), then the expansion
3

I(x) = I fk+ 1(xk) depends continuously on f. In §7 every correction depends
k= 1

continuously on the expanded function.

If the branch Sn is constructed as indicated in §§3-5, then the require­

ments 1n+1 and 2n+1 will be satisfied on Dn+1 • The last requirement means

that there exists on Dn+1 a finite number of canonic generating schemes of

intervals. For this it is only necessary t.hat (§5) the direction of Sn be

chosen correctly and that the branch Sn lie in a sufficiently small neighbor­

hood P of the point Pn.

Lemma 12. Suppose that the conditions In and 2n are fulfilled on Dn .

If Sn lies in a small enough neighborhood p' C P of the point Pn. then

2s n has a generating scheme on Dn U 2sn•

Proof. Let us consider the above constructed canonic generating schemes

of the points 2s~ on Dn+1 with a given first direction (Figure 17). When

x changes on 2s~. then x' runs through a one-sided neighborhood u of

the point Pn on qn. Because of the stability of the schemes A and C.

there exists a semineighborhood u on the same side of Pn for whose points

all schemes A' and all schemes C' will be of the same type (Lemma 5).

The points and parallel planes A and C do not intersect in pairs

(excepting at the point Pn). From the continuous dependence of A' and C'

on the initial point x' it follows that if x' changes in a sufficiently

small neighborhood of the point Pn. then the points and planes of the schemes

A' and C' will be as close as we please to the corresponding elements of the

schemes A and c. Let TJ > 0 be the least of the distances between any

plane TT of one of the schemes A, C and a point (not on 17) of one of these

schemes. Let E > 0 be the radius of a neighborhood of the point Pn such

that the planes and points of the schemes A and C are shifted by not more

than TJ/3 when the point x' varies over the E-neighborhood of Pn. Then
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N

the intersection u with the €-neighborhood of Pn will yield a semineighborhood

of the point Pn which is an interval u having on Dn+1 nonintersecting
generating schemes (see §5) A· and C·.

This follows from the fact that all schemes A' and C' are of the same

type; any two parallel layers of these schemes will, obviously, not be

separated by a distance greater than ~/3. If we now place the segment 2s n
in a small enough neighborhood Pi of the point Pn (namely such that x'

falls into ~) then the interval 2s~ will have a generating scheme on Dn+i

whose first direction will coincide with the first direction of A.

From the Lemmas 11 and 12 it follows that for the preservation of the in­

ductive property 3 on Dn+i it is sufficient that the segment Sn be small

and have a properly chosen direction (§~-5).

In §7 use is made of a generalization of the Lemma 12.

By the N-characteristic XN of a generating scheme Au of the interval

u on K we shall mean the set of directions of the generating layers of the

intervals of rank less than N referred to these intervals. The N­
characteristic XN and K determine uniquely the elements of the scheme Au

whose rank does not exceed N.·

LelllD& 13. Suppose that the condit ions In and 2n are fulfi lled on Dn •

For every N > 0, there exist a ne ighborhood P(N) of the point Pn and

generating schemes of intervals u C P(N) such that

1) Among them there exist schemes A~N with an.y N-characteristic.
1 )<2

2) The intervals of the schemes AXN and AN, different from u, dou u
not intersect if the first directions of these schemes are distinct.

3) If the intervals Ui € P(An, U2 ~ P(N) do not intersect, then none

of the intervals of the schemes A'>W and AXN will intersect.
U1 U2

The proof of Lemma 13 is analogous to the proof of Lemma 12. and is left

to the reader.

Up to now our constructions have not depended on whether the function f
belongs to the class F which is mentioned in the inductive lemma. In §9 the

expansion constructed here will depend on F. This will not destroy the

possibility of expanding any function on Dn into the sum of functions of the

coordinates. We can. obviously, without loss of generality, assume that F is

a compact. It is easy to see that within the limits of F, the continuous

dependence of fk on f is uniform.

• In the N-characteristic one can indicate the dlrections of the layers that lead
away from the intervals which are not in the 8cheme Au t because this scheme
may terminate earlier with a free end.
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~8. Arithmetic lemma

In this section there are proved two lemmas with whose aid there will be

obtained, in the next section, corrections along two different directions.

Leoma 14. Let

where

Let

where

a -~ b+c == d, (1)

I aI, I b I, I c I< 3 --t- e, (2)

I d 1--< 1. (3)

a' == a + !:la, (4)

I tla I < I + s, (5 )

0<£<9<1. (6)

Then one can determine numbers ~b(a, b, c, ~a) and ~c(a, b, c, ~a) such

t hat if

b' ~ b+~b, c' == c+ ~C

then

I b' I tIC' I < 3 + B+ £,

a' +b' +c' =d

I tib I. I tic I -< max (\1 tia I - ;~ I. €)

(7)

(8)

(9)

(10)

and, such that

the dependence of ~b and ~c on a, b, c, ~a, which vary I
within the restrictions (1) to (6), be continuous and that

as ~a -+ 0, ~b and ~c wi II tend to zero.

Proof. We shall prove first that under the conditions of the lemma

I b + c I < 4 + O.

(11)

(12)

Indeed, from (1) it follows that b + c = d - a. Therefore,

I b + cl ~ \dl + Iat. But since according to (2) and (3), \ a\ < 3 + e, \d\ < I,

it follows that Ib + c\ < 4 + e. From (12) and (2) we obtain

2 (3 -}- B) ± (b -t- c) > 2 -f- e. (13)

In order to satisfy the requirements of the lemma, we define ~b and ~c

as

~b == -lbLla,

Llc == - 1ella,
(14)
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If Yb + Yc = 1, then (9) will be fulfilled.

If here Yb and yc depend continuously on a, b, c, tta =I 0, then (11) is

satisfiedo In order to select Yb and Yc so that the inequalities (8) will

not be violated, we introduce

Ab = 3 -t-- B- b -t- ; ,

At = 3 +B+b + i '
J,-; == 3 + 0 - c + ; ,

+ 3 €Ac = +B+c+"2.
(15)

These numbers, which are positive because of (2), give the leeway which one has

for the introduction of the corrections ~b and L\c; thus, for example, Ab
shows how much one may add to b in order that the sum b I may not exceed

3 + 8 + E/2 (see (8».

The inequality (13) shows the correction L\a, which does not exceed 2 in

absolute value, can be made to satisfy (8) by selecting Yb and Y
c

in (14)

between 0 and 1. Namely, if ~a > 0, we set

).+ ).+
b c

1'b = A++).+' A = At:" +)..:
,

c
b c

and if L\a < 0, we let

A- )..-
b c

Ab ==
At; +A;

Ie =
Ab +A;

(16a)

(16b)

We shall prove that (1)-(7), (14), (15), (16a), and (16b) imply (8), (9),

(10), (11). Indeed, (9) is satisfied because of the obvious equation Yb + Yc = 1.

From (12), (13), and (15) we obtain

(17)

and therefore, Yb and Yc will depend continuously on a,b,c, L\a when

L\a fOe Since 0 < Yb' Yc < I, the condition (11) is satisfied. From (5),
(6), and (7) it follows that

I f!a I < 1 +2 e < 1.
Al + At-

± ±
Therefore, lL\bl < Ab , lL\cl <Ac • But from (15) it follows that

I b =f At I < 3 + a+8, I c =t= A~ I< 3 + e+c,

and because of (7), (14), (16a), and (16b), 'b" < 3 + e + €, 'c" < 3 + e + E,

i.e. (8) is fulfilled. It remains to prove that (10) holdsQ In case '~a' ~ 8,

(10) 18, obviously, a consequence of the relations 0 < Yb < I, 0 < Y < 1.
t c

From (15) and (2) it follows that Ab > €/2. Hence, in view of (17),, c
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Yb > €/30. From this we have in accordance with (14) that,e
I~bl, 1~c \ > 't\a \ €/30. Therefore, in case It\a I ? € it follows that

lL\bl>e2/30, l~el>€2/30. But since (see (14) and (16»

l~bl + l~c' = I~a', it now follows that I~bl < I~a\ - e2
/30,

l~cl < l~at - e2 /30, namely the condition (10) and Lemma 14 have been proved.

Lemma 15. Let

Let

a+b+c=d

I a I, I b I, I c I < 3 + a,
I d 1< 1 +s.
d'=d+Lld,

(1)

(2)

(3 )

(4)

where

I 6.d I < 1+E, (5)

0<6<1, 0<6<1. (6)

Then one can determine the numbers ~a(a, b, c, ~d) and ~b (a, b, c, ~d) so that

if

then

and that

a' = a + ~a, b' = b+~b

a' +b' + c == d',

I a' I < 3 + e+s, I b' 1 < 3 -t- 0+ E,

I a -- ~b I < 3 -1- 0 -t- ~

the dependence of 6.a and ~b on a, b, c, and ~d, which )

vary within the given (see (1)-(6» limits, will be con­

tinuous, and if ~d -t 0 then /}a and /).b will go to zero.

(7)

(8)

(9 )

(10)

(11)

Proof. For the fulfillment of the inequalities (9) it is sufficient that

o~ 6.a < )"d or - A;; < ~a ~ 0, (12)

O~~b<}..:l or -AM<~b~O,

where

}.~ = 3+e+ 6 - a,
Atl == 3 -1- 0 -1- E - b,

A; == 3 + 0+s +a,

Abl == 3 +0 + s +b,
(13)

since a and b satisfy relation (2).

In order that (10) be satisfied, it is sufficient that

0<: ~b < Atz or - A;; < 6.b<:: 0, (14)
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where

A~ === 3 + a+ ~ + a, Ai; =:: 3 + 6 + ~ - a,

again because of (2).

setting now

we find that

115

(15)

(16)

(17)

Indeed, by (1) we have, a + d = d - c. Therefore, I a + b t ~ t d' + I c I
and, by (2) and (3),

(18)

But because of (13), A: + A;1 = 6 + 2(} + 2€ - (a + b). Hence, it follows
+ +from (18) that Aa + Ab1 > 2. At the same time we have, in view of (13) and

+ \ + ()(15), that Aa + I\b2 = 6 + 2 + 2 € > 2. In accordance with (16), the first

inequality of (17) has been established; the second one can be proved to be

valid in a similar way.

Now we set

where if ~d > 0,

(19)

and if tld < 0,

lb= (20a)

1'a===---
A~+Ab

(20b)

(21)

We shall prove that (1)-(7), (13), (15), (16), (19), (20a) , and (20b)

imply (8), (9) , (10) , and ( 11 ) .

Indeed, from (20) we obviously obtain Ya + Yh = 1, which implies (8) in

view of (19), (I), (4), and (7). From (2), (13), (15), and (16) it follows that

every A is positive, and, hence, that 0 < Ya < 1, 0 < Yb < 1. Since, if

t!id =f. 0, the Ya and Yb depend continuously on a, b, c, and ~d (see (20a)

and (20b», it now follows that (11) must be fulfilled because of (19).

Finally, from (17), (3), and (16) we obtain

~d <~< 1 - d d < 1 +2 £ < 1.
A% + At 2 '>.; + Ab
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Taking into account the fact that A is positive, we obtain with the aid of

(20a) , (20b), (19) and (21) the inequalities

o~ b.a<"Ad or -'A; < ~a~ 0,

o~ ~b <}.t or - )\b < ~b <: 0,

These inequalities and (16) imply the relations (12) and (14). From (12) follows

(9), and (14) implies the inequality (10). This completes the proof of Lemma 15.

§9. Inductive preservation of property 4

In this section it will be shown how one must distribute the corrections in

the method of §7 in order to fulfil the inductive requirement 4n+1 •

In §3 we introduced the numbers nr o The oscillation of any function f of

the considered class F on any component of the complement of ~n in S does

not exceed 1/r2 provided n ~ nr • In particular, this will be the case on

each branch an if n ~ nr •

We will denote by fn«() the function defined on ~n which coincides on

~n with f E F, and also its continuous extension (over any ~m (m > n) and

on the entire ::) which is constant on each component of the complement of ~n

in S. That such an extension exists, and is unique, follows directly from the

fact that the intersection of ~n with the closure of each component E\~n

consists of one point. The function which corresponds to fn(e) on Dm we

will denote by tn(x) on X. Let us introduce the function

gm (x) === fm (x) - tn, (X) (1)

(nr < m~ nr+1). On Dnr this function is zero, depends continuously on

f E F, and does not exceed 1/r 2 anywhere in view of the definition of r

and tm(x).

Let nr ~ n < nr+1. Suppose that Dn and fk(xk) are determined so that

the requirements In' 2n , 3n , and 4n are satisfied. Then (for n = nr this is

trivial)

(2)

n+1OUr problem consists of selecting Sn and fk (xk) so that the requirements

3n+1 and 4n+1 will be fulfilled.

From here on, till the end of this section, r will be kept fixed. In

order to shorten the formulas in all estimates, the factor 1/r2 will be
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omitted. Thus, the inequality (2) will be written now in the form

117

(2')

This can be considered as a temporary change of the scale of the f - axis, or

one can suppose that we are confining ourselves to the case r = 1, 1/r 2 = 1,

because the remaining cases can be treated in an analogous manner.

Thus, let us assume that on Dn the requirements In , 2n , 3n , and 4n are

satisfied. Then on Dn

3

gn (x) == ~ g~ (Xk),
k=l

(3)

where gJ:(xk) = f'k(xk)- fJ:r(xk) when n > nr, and when n = nr' gk(xk) = 0,
gn(x) = o. As usual, the xk are the coordinates of the point x. In (3)

x E Dn • The fulfillment of the requirement 4n on Dn means that

where we have introduced the notation

(4)

en ==
fl -- nr

nr +1 - nr (5)

We will construct Dn+1 in accordance with §7, and will select functions

gk+ 1 (xk)' which depend continuously on f E F, in such a way that if

x E Dn+1

. gn+l (x), (6)

Here, nr < n + 1 ~ nr +1' and one has to assume that

(7)

(8)

in order to prove 3n+1 and 4n+1 •

When n increases from nr to nr+1. then 8n increases from 0 to 1,

and when n increases by 1. On increases each time by l/(nr+1 - nr). We

choose E, 0 < E < 1/(nr +1 - nr ). Then en + E < 8n+1 . 11lis will be kept

fixed in the remainder of this section.

Construction of 2s n • On Dn there exists a point Pn where Sn is to

be attached.

Let us consider the rays l ' and I" (Figure 18), into which the point
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Pn divides the line containing qn. When the direction Sn has been chosen,

then the three coordinates which pass through 2s n will intersect these rays.

Let us now select the direction 2sn so that one of these rays l' (it will

be called the principal ray) will intersect the planes of one direction; this

direction will be called the principal direction. The planes of the remaining

two directions will intersect the ray Zn (it will be called the minor

direction). One of these planes is chosen arbitrarily and is called the minor

plane. Finally, this entire operation can be performed by not picking Sn from

the forbidden directions of §4, which is now assumed. The direction Sn has

been chosen.

The following assertions are true.

A. From every sufficiently small semineighborhood upr of the point Pn

on the principal ray, one can start on Dn a double scheme A of the interval

upr so that two layers will lead away from the intervals of ranks 1.2•...• N.

where N is taken equal to [30/e'2] + 1 (in order to have NE 2 /30 > 1). and

such that among the directions of the layers of rank 1 there is no principal

direction.

From every sufficiently small semineighborhood um of the point Pn on a

minor ray one can start on Dn a double scheme B of the interval um so

that two layers will lead away from the intervals of ranks 1.2•...• N. and

that the first direction is the principal one. The symbol N has the same

meaning here as in the preceding paragraph. The scheme C with the same N­
characteristic can be started from the semineighborhood upr if this neigh­

borhood is small enough. Finally, if the interval Um is sufficiently small,

then, on Dn, one can start from this neighborhood a double generating scheme

D whose first direction is a minor direction and for which the splitting takes

place in the intervals of ranks 1, 2, 0 • 0 ,N 0

B. If the mentioned semineighborhoods upr and Urn are small enough.

then the intervals in the construction of A will not intersect except for

those which coincide by construction (on I ' and In).

These assertions are consequences of Lemma 13 of §7.

The segment 2s n of the direction selected above. is attached to Pn in

the neighborhood P of Pn which is now chosen in such a way that the

following three requirements are satisfied:

1) The oscillation of each function gk(xk)' which corresponds to f E F,

in P must be less than E/4.

2) The neighborhood P Must be so small that under the condition that

Sn C P it is possible to map on on Sn (see §4), and to satisfy the
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requirements In+1. 2n+1 (§~4. 6).

3) The projection of 2s n on Z' and Z" along the principal and minor

directions must fall within the above constructed (see assertions A and B)

semineighborhoods upr and um of the point Pn on qn if 2s n C Po

Figure 18. A double generating scheme of the interval 2s~ on
Dn+1 U 2sn• On the left, the first layers are shaded; on the

right the representation 1s more schematic.

A sufficiently small neighborhood P of the point Pn will satisfy the

requirement 1) because of the equicontinuity of the functions f E F, the

continuous dependence of gk(xk) on f E F, and the possibility of applying

the Arzela-Ascoli lemma to the functions gk(xk) and f E F. Earlier (§~4, 6)

it was established that for a sufficiently small P the requirement 2) is

satisfied. Finally, the possibility of fulfilling the requirement 3) for small

enough neighborhoods P is a consequence of the assertions A and B.

Now we select a neighborhood P that satisfies the requirements 1). 2),

and 3). In P we pick 2sn with the above chosen direction. We construct the

mapping an on Sn as in ~4. On Dn+1 = Dn USn the conditions I n+1 and

2n+1 are fulfilled because of 2).

Let us now construct on Dn lJ 2sn (Figure 18) a double generating scheme

of the interval 2s n of the following structure:

1. The initial interval 2s n has two generating layers whose directions

are the principal and the minor ones.

2. From the interval of the first rank, which lies on the principal

direction, there starts a scheme A (see assertion A). From the remaining
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intervals of the first rank to which the layer of the first direction leads,

there issues the scheme C (see assertion A).

3. From the intervals of the first rank to which the layer of the minor

direction leads, there start in the same way the schemes B (from urn), and

D (from the rest).

This construction is actually a generating scheme (double one). Indeed, the

schemes A, B, C, D, and Dn do not intersect (except in the general intervals

on upr and urn). Since (except for the initial intervals) these schemes do

not have intervals on upr and urn, their layers of rank greater than 1 do

not intersect upr and Um, and hence not 2s n . The layers of the first

rank do not intersect 2sn because of the definitions of the principal and

minor directions.

We will call the obtained scheme the large scheme.

Each zigzag of the large scheme which leads away from 2s n either passes

through at least N intervals distinct from 2s n, where the large scheme

splits, or else terminates with a free end of lower rank. In any case, from all

the intervals of rank 1,2, ..• ,N in the large scheme, which enter into the

schemes A and C, and from the intervals of ranks 2,3, ... ,N + 1 in the large

scheme, which enter into the schemes Band D, there issue two layers. This

follows from the assertions A and B.
n+1Construction of the functions gk (xk)c We have seen (see (3)), that on

D

This formula can be considered to be the definition of g(x) in the coordinate

parallelepiped, stretched out over Dn in the product of the regions of

definition of the functions gk(xk) (k = 1,2,3). On Dn+1 , there is defined

the function gn+1(x) = t n+
1

(x) - tnr(x). The function gk+1(xk) is to be

found so that on Dn+1 we would have

3

gn+l (x) = 2J g~+l (Xk)'
k--l

In this manner, when xED. and, in particular, at the point Pn,

3

~ g~+l (Xh) = gn (x).
k=l

We determine gn+1(x) on 2sn so that the function

(9)
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on 2sn be even relative to the middle of this interval. It Is obvious that

the function ~o(x) is defined and continuous on Dn U ~n and is different

from zero only on 2s n•

We shall determine the functions gk+1 (xk) so that the equation (*) is

fulfilled everywhere on Dn U2S n . We can do this by distributing the correc­

tions along two directions that correspond to the larger scheme.
n~l 0 n+1 nFor the zeroth approximation to 8k (xk) we take gk (xk) = gk(xk). If

one substitutes the zeroth approximation in equation (*) for gk+ 1 (xk)' the

equation will be destroyed only on 2s n• We obtain the first approximation

from the zeroth one by making corrections on the intervals of the layers of

rank 1 of the large scheme. If x € 2s n• and if, for example. Xl and X2

are points (of these intervals of layers) that correspond to x. we obtain

But then if Yl + Y2 = 1. and if

19~+l (Xl) == og~+l (Xl) + ~~ (Xl)'

the equation (*) will be vitiated on the intervals of the first rank only. In

general, for the (i -1)st approximation the equation (*) will be destroyed on

Dn U 2sn only on the intervals of the large scheme of rank i - 10 The ith

approximation is then obtained from the (i - l)st one by making corrections

on the intervals of layers of rank i of the larger scheme. If x belongs to

the layer u of rank i - 1 of the large scheme. and if, for example, U2

and U3 are intervals of layers that issue from u, while X2(X) € U2. and

X3(X) € U3 correspond to x. and if the (i - l)st disjoint at the point x

is

then we set

3

~i_l(X)==gn+l(X)- ~ 1-lg~+1(Xk)'
k-l

Ll~ (X2 (X» == 12Ll, -1 (x),

~~ (X3 (x» = '3~i-l (x),

(10)

(11)
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(We do not assume that Y2 and Ys are constants. They

and will be determined later.) Now we sUPPose that

(12)

and that the ith approximation is constructed so that the equation (*) is

vitiated only on the intervals of rank i of the large scheme. The process

described in §7 is called the distribution of corrections. Thanks to the con­

struction of the large scheme, it proceeds in two directions when 1.~ i .~ N

or 2.~ i .~ N + 1. and later terminates as in the case of a simple generating

scheme when all intervals of some rank remain free.

We still have to take care of Y1 and Y2' for every distribution of the

corrections, so that (see (7»

1ig~+l I < 3 + Bn+1

and all corrections 6.l (xk) will be continuous, will vanish at the ends of the

intervals of the layers of the large scheme, and will depend continuously on

x and f € F. Under these conditions the equation (*), i.e. (6), will be

satisfied because of the results of the lemmas of §7; and, in view of (5), (6),

(7), and (8), the fulfillment of the conditions 3n+1 and 4n+1 will have

been established.

Lemma 16. Suppose that the layer of the direction Xi leads to the

interval u of rank i ~ 1 of the large scheme, and that the layers of the

directions X2 and X3 lead away from it. Let x € u. Then

3I~l-lg~+l(Xk)l-< 1.
k=l

(13)

(14)

Proof. Since u is an interval of rank i, it has not been touched
i-1 n() n(previously in the distribution of the corrections: gk xk = gk xk)' Hence

(13) follows from (4), while (14) follows from the estimate of gn(x) (see

definition gn(x».

Lema 17. In the hypotheses of Lemma 16, let 6. i- 1 (x) be cont inuous on

u, vanishing at the ends of the disjoint u (see (10», and depend contin­

uously on f € F. Furthermore, suppose that

I ~1-l(X) 1·< 1+8.

Under these condit ions one can find correct ions 6.i '). (x). 6.is (x) so that
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I) I tl~ (x) I, I tl; (x) I < max (II tli-dx) I - ;~ I, E ) ,

2) I tg~+1(X2) I, I ig;+1(X3)J<3+0n +1t

3) ~~ (x) + L\~ (x) = - L\,-1 (X),

i-1 n+1( )c = gs X3,

€ satisfy the condi­

lemma coincide in

if one sets

i .
4) ~~(x) and ~~(x) will depend continuously on f E F, and, when

~ i-1 (x) ..... 0, ~~(x) ..... 0 and L\~ (x) ..... o. (He re it is assumed in accordance
. h (2) h i n+1( i-1 n+1 + A k

Wtt 1 , tat gk xk) = gk (xk) 0i(xk(x».)

Proof. The numbers a = i-1g~+1(x1)' b = i-1g~+1(x~),

d = gn(x) (by Lemma 16), and s = ~. 1(x), () = (), and
t- n

tions of the arithmetic Lemma 14. The conclusions of that

these notations with the conditions of the present lemma

~~ (x) = ~b, ~~ (x) === ~c.

Remark. It is obvious that Lemmas 16 and 17 remain valid if one makes a

permutation of Xi' %2, X3 in their hypotheses and conclusions.

LeDlDa 18. If the first disjoints ~o(x), ~1 (x), ~2(x) do not exceed

1 + e:

I ~1 (X) I ~ 1 + c, I ~2 (x) I < 1+s,

and if the functions of the first and second approximations

2gk+1(xk) are less than 3 + 0n+1 :

then one can find

andA A 1 n+1so that the equation (.) will be satisfied. If 0o(x) and °1(X), gk
2gk+1 depend continuously on x and f E F, then gk+ 1 (xk) can be

selected to be continuously dependent on x and f E F.

Proof. The Lemma 17 is in this case applicable to all intervals of the

large scheme whose rank is greater than zero and from which issue (lead away)

two layers. This is true, because in the use of Lemma 17 for the distribution

of corrections the ~. decreases only when increases. Making use of the
t

conclusion 1) of Lemma 17, we see that if from the beginning of the large

scheme up to a given one of its intervals there have been N intervals from

which issued two layers, then in this distribution of corrections the Quantity

t1. is less than max (t 1 + € - N E 2 / 30 t ' E). But in the large scheme each
t

zigzag with a free end either has at least N first intervals from which two
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layers issue, not counting the beginning, or all intervals of the zigzag up

to the free one, included, have two issuing layers. Bearing in mind that

NE~30 > 1, we see that in both cases all corrections ~ n+1 are in absolute

value less than €. In the further distribution of the corrections with the

aid of simple generating schemes of intervals of rank N + 1, as in Lemma 8

within ~7, the functions gk(xk) will receive corrections whose absolute value

is less than e, on the new intervals. But on these intervals

and since on the intervals of lower rank the inequality follows from Lemma 17

(rank > 1) and from the hypothes is of Lemma 18 (rank 0 and 1), the latter

lemma is proved.

If one now determines ~o, ~1' ~2' 19 J:+1 2 gk +1 so that they satisfy

the conditions of Lemma 18, then, obviously, the construction of the function

gk+1 under the requirements 3n+1 and 4n+1 will have been accomplished. Let

us first consider the distribution and corrections from the interval of the
A n+1 n 0 n+1 n Azeroth rank 2s n- Here ilO(X) = g (x) - g (x), gk (xk) = gk(xk)' 0o(x)

depends continuously on % and f, and vanishes at the ends 2s n of the dis­

joint. For the sake of definiteness, let us assume that the coordinates of the

principal and minor directions of the point x € 2s n are Xi and X2. Let

U1 and U2 be the corresponding intervals of the first rank of the large

scheme, and let x' € U1, x" € U2 be points which correspond to x (Figure

18). We will write also %1(X), X2(X). X(X1), X(X2), x(x'), X2(X~), etc. to

indicate this correspondence.

Lemma 190 If the point % lies in the above-defined neighborhood P of

the point Pn, then

3

I~ g'k (Xk) I< 1+ e;
k-l

I .10 (x) I = I gn+l (x) - gn (x) I < 1 + e.

3

~ g~ (Pnk) = gn (Pn)
k '1

(see definition gn(x»,

Because of the conditions on the neighborhood P, we find that in it
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Using this and the preceding inequality. we obtain the first conclusion of the

lemma.

The function Ign+1(x) - gn(x) I is even (see the definition of gn(x» on

2s n• and it vanishes at the endpoints of this segment. Therefore. it will be

sufficient to establish the second conclusion of the lemma on ·sn.

By the definition of gn we have

and

The first requirement on P guarantees the fulfillment of the inequality

which together with the preceding inequality proves Lemma 19.

Lema 20. For every x E 2s n one can find ~i(x) and ~~(x) [we wi II

write also ~i(X1) and ~~(X2) for ~i(X(X1» and ~~(X(X2» respectively]

such that

1) ~ ~ (X) -t- ~~ (X) = ~ 0 (X),
2) \ 19~+l(xk)l = IOg~+l(Xk)+ ~l(Xk)1 < 3 -t- Bn+1,

3) IOg~+1 (Xl) - d~ (X (Xl)) 1<3 + an +; .
4) ~i(x) and ~~(x) depend continuously on x and ~o(x), and when

~o(x) -+ 0 so does ~~ (x) -+ o.
Proof. The numbers

a = 0g~+l (Xl)' b = 0g~+l (X2), C == 0gf~+l (X3 ),

S === gn + 1 (X), e:: -: 0n and 8

satisfy (because of the fulfillment of condition 4n and by the definition of

On and € in Lemma 19) all the requirements of the arithmetic Lemma 15.

Applying it, we obtain the conclusion of Lemma 20 if we set

~ ~ (x) === ~a, ~~ (x) == /lb.

In particular, for this definition of ~~ and 19J:+1, we have

I ~l (X) I < 1+s and 11g~+1(Xfl) I < 3+ 0n+l"

In order that the condition of Lemma 18 be satisfied, it is still necessary

to determine ~~ and 2gk+1 so that '~3(X)' ~ 1 + € and
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I 2gk+1(xk) 1< 3 + 0n+1. For those intervals of the large scheme where it

splits, i.e. for all, except U2~ Um' this can be done with the aid of Lemma

17.

W " "e introduced the point x (x) with the coordinates xk' whereby the

point x" and its coordinates are functions (linear) of the point x, or of

any of its coordinates, and conversely. We thus have

The remaining functions of the first approximation coincide with the

functions of the zeroth approximation. Let us suppose that in accord with the

distribution of the corrections along the directions of the large scheme,

Because of the choice of i\~(x) (see Lemma 20),

Lemma 21. In terms of the above notation

I 2an+l (X") I < 3 -L e
Dl 1 I n+r

Proof. According to conclusion 3) of Lemma 20,

where

x(x").

P) ,

x1 is the coordinate of an arbitrary point x E 2s n , in particular

In view of the first requirement on P (and u", obviously, lies in

I Og~+l (xd - Og~+l (x~) I < ~ .

Whence,

I Og~+l(X~)-t1~(X(Xl» I <3+6n +}S<3+0n +1•

which was to be proved, because ~ ~(x~) = -~ ~ (X(X1».

Since each successive correction does not exceed, in the above described

process, the preceding disjoints, we obtain from the mentioned fact that

I [\~(%~)I ~ 1 + €, the result that 1[\3(x)1 ~ 1 + E. Bearing in mind Lemma 21,

we can convince ourselves that our chosen ~~(xk) does, indeed, satisfy the

conditions of Lemma 18. This lemma has been proved, and we obtain functions

gk+1 (xk) that fulfil all the requirements that were stated in the beginning

of this section, and the inequalities (6) and (7). If we suppose (see (8» that
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then we obtain a decomposition which has the properties 3n+1• 4n+1 •

This completes the proof of the inductive lemma. because for n = 1. it 1s

trivial.
(X)

'!bus. the tree X = U Dn, the homeomorphism of X on a. and the
n=1

decomposition of a function from F into the sum of functions of the

coordinates on Dn have been constructed under the requirements of the

inductive lemma.

§10. Proof of Theorem 3

As a result of the application of the processes described in the preceding

section, one obtains trees Dn that are realizations of ~ n' where
(X)

X = U Dn realizes S in the form of a subset of the three-dimensional
n:.:: 1

space.

On each tree. every function f € F can be represented as

3

f (x) = 2J t'k (Xk ),

k=l

where the continuous functions II: of the coordinates %k of the point % € D

depend continuously on F. The sequence fk(xk) converges uniformly as

n --.00. This follows from the fact that I fk(xk) - fkr(xk) I is not greater

than 4/r
2 when nr < n ~ nr+1 and. hence.

co

I f~ (Xk ) - f~r (Xk ) I < ~ i} (n > nr )·
l-=r

Let us denote by fk(xk) the limits of these sequences. The sum of these three

functions is a continuous function [(X1.X2.X3). For the point (%1.%2. X3) € Dn•

3

~ f't (x,,) = f (x) for all m > n.
k-l

Therefore we have also for the limit the result
3

~ fIt (x~) == f (x) at each point xEDn for any n.
k=l

00

But U Dn is an everywhere dense subset of its closure in X. The
n=1
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3
and ~ fk(xk) coincide, therefore, on the

k = 1
entire tree X.

The proof will be complete if we can establish the continuous dependence of

fk(xk) on f·
Let E > 0 be given. Let us consider an N so large that

I fk(xk) - fk(xk) 1< € /3 for all n ~ N and for all f k, f k which correspond
to any function f € F.

In view of the requirement 3n, the functions fk(xk)' with a fixed n = N,

depend continuously on f € F. Therefore, f has a neighborhood of radius 8
such that for f' € F and I f' - f I < 8 it is true that

I fkN(xk) -!t.(%k) 1< € /3 for all %k. From this it follows that for every
€ > 0 there exists a 8 > 0 such that if If' - f I < 0, then

Ifk(xk) - fk(%k) 1< €, which was to be proved.

In this manner, for every family F of real equi-continuous functions f(~)

defined on a tree a. each of whose points has a branching index less than or

equal to 3, one can realize the tree in the form of a subset X of the three­

dimensional cube E
3

in such a way that every function of the family F can

be represented in the form

3

f (~) = ~ fk (Xk ),

k=-l

where x = (%1,X2,X3) is the image of ~ € S in the tree X, the fk(xk)

are continuous real functions of a single variable, and f k depends

continuously on f in the sense of uniform convergence.

This is Theorem 3.

It implies Theorem 1, as was indicated in the Introduction.

APPENDIX

The space of the ca.ponents of the level sets of a continuous function

That the set of the components of the level sets of a continuous function,

defined on a square, is a tree is clear from Figure 19. Here we will assign an

exact meaning to these words by following A.C. Kronrod [4] who introduced

the concept of the space of the components of level sets, and K. Menger [3]

who has made a study of trees. The theorems proved below are the main tools in

both parts of the work. At the end of the Appendix there is placed (for the

nonspecialists) a list of the basic concepts of point-set topology.
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A. Construction of the metric space T/

A

If!) (
r,-...

Figure 19. The set of levels, the
space of components, and the graph
of the function. Some cOQ>onents
are denoted by numbers. The branch­
ing index of the points 1. 5 cr,
6 E Tf Is 1, of the points 2, 4a ,
40", Sa Is 2, of the point 3 is 3.
The corresponding components thus
do not divide A, divide A into
2 parts, or into three parts, res­
pectively.

Let us consider the entire set Tf
of all components of all level sets of

the continuous function !(a). Tf
will be called the space of components

of the level sets of !(a). We define

a metric on this space so that Tf
becomes a metric space. The components

of the level sets of f (a) are subsets

of A and are points in Tf . Any

given component will be denoted, the

first time, by a capital letter, and

after that by the same small letter.

As is known, the oscillation of 8

function on a set is the difference

between its upper boundary and its

lower boundary on the given set. The

oscillation of a continuous function on

a compact is finite and non-negative.

Let K1 and K2 be components of

a level set of a continuous function

!(a) on a continuum A. aY P(K1 ,K2 ), we denote the lower boundary of the

oscillation f(a) on all continua F ~ A that contain Ki and K2 :

consists of components, continua that

do not intersect each other.

Let a continuous real function f(a) be given on a continuum A (Figure

19). The set of a level, or a level set, is the set of all points a for which

f(a) has the same value. The set of a level is thus a closed set; the level

sets do not intersect, and constitute

all of A. Each set of a given level

Pi (K1 , K2) =-= inf [max f (a) - min f (a)].
/(aUK.CFc:;A aEF aEF

If one now defines the distance between points k 1 and k 2 of the space

of components as p(k 1 ,k2 ) = P(K 1 ,K2 ), then Tf becomes a metric space. It

is, indeed, obvious that

In order to prove that p(k 1 , k 2 ) = 0 implies k 1 = k 2 , we have to make
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A

Figure 20. For Lemma 1.
If for every p(k,kn ) the
components Kn have points
bn exterior to E, then
K will have a point b
exterior to E. The heavy
curve is itFn•

Lemma 1. For every open set E (E k A) which contains a component K of

a level set of a function !(a) that is continuous on the continuum A, there

exists a 8> 0 such that if p(k,k 1 ) < 8, then the component K1 is con­

tained in E.

Proof. If the lemma were not true (Figure 20), there would exist a sequence

of components Kn such that p(k, kn} < 1 / n even though, for every n, Kn
would contain a point bn exterior to E. But

by the definition of p(k,kn ) there exist for

n = 1, 2, ••• continua Fn ~ A, each of which

contains K and Kn with the same n, and such

that the oscillation of I(a) on Fn is less
than 2 / n. There fore, the values of I on Fn

must differ from the values of I(a) at the

points of K by less than 2 / n. The sequence

of the points bn (n = 1.2, ... ) that are exterior

to E have, because of the compactness of A\E •

a limit point b € A\E. The lower topological

limit il Fn of the connected subsets Fn of the
compact A is not empty, since it contains K.

Thus the upper topological limit It Fn is con­

nected. At the points of the upper limit. f(a)

takes on the same value as on K, because in

every neighborhood of such a point there are points of Fn for every n (no mat­

ter how large), but these f<a) will differ from f(a) (a € K) by less than 2/n.

The upper limit, obviously, contains also K C E and b E A\E. This

contradicts the fact that K is a component contained in E. because the

upper limit. a connected set where f(a) is constant. must lie entirely in

one component. This establishes the lemma.

On the basis of Lemma 1, it follows from p(k 1 .k2 ) = 0 that K1 and K2

both lie in any given open set if this set contains either K1 or K2 • But

this can happen only if K1 = K2 because otherwise the distance between K1

and K2 in A would be positive.

The metric in Tf has thus been defined. The topology induced by this

metric in Tf coincides with that of the work [4] if A is locally connected.

A.S. Kronrod introduces a topology in T
f

with the aid of neighborhoods which

are defined as sets K that intersect with some open sets E ~ A. It can be

easily seen that the topology on Tf depends only on the decomposition of A

into components.



117

CONTINUOUS FUNCTIONS OF' THREE VARIABLES 131

B. Two representations connected with a continuous function

Let us consider two representations. or mappings (Figure 19):

1. tea) maps A on Tf and mates any point a of the continuum A with

the point t E T
f

, where t is the component T~ A which contains a.

t E T
f

with

T~A that

real axis f and mates any point

at the points of the component

2. f(t) maps Tf into the

a number f, the value of f(a)

corresponds to t E Tf .

The use of the same letter I for I(a) and I(t) should not lead to any

misunderstanding because these functions have entirely different definitions.

We will say that the function f(a) defined on A generates the function f(t)

on Tf .

If A is locally connected, then each of these mappings is continuous.

1. Since f(a) is continuous, it is true that for every € > 0 there

exists a a> 0 such that the oscillation of f(a) on any set of diameter

less than 0 is less than €. Because of the local connectedness of A, any

o-neighborhood of a point a E A has a connected subneighborhood u8(a).

Obviously, if b 1s contained in uS(a), the components Ka and Kb of the

level sets that contain a and b are such that p(ka.kb) < €.

2. If k1 , k2 are two points of Tf that correspond to K1 , K2 • and if

p(k 1,k2 ) < €, a1 E K1, a2 E K2• then If(a1) - f(a2) I < e, because the

oscillation of a function is not less than its increment. Thus,

'f(k 1 ) - f(k 2 ) I < €.

The continuity of tea) and f(t) has thus been proved.

If on A there 1s given a continuous function g(a) which is constant

on each component of every level set of the function f(a), then g(a) also

gen~rates a continuous function get) on Tf (namely one which is equal to

g(a) at each point of the corresponding component), and we have g(t(a» = g(a).

Indeed, for every € > 0 there exists a 0 > 0 such that the oscillation of

g (a) on any set of diameter less than 0 is less than e. Let ES (11 be a

o - neighborhood of the component T s: A, i.e. the set of points of A all of

whose points are nearer than a distance 0 from T. By Lemma 1, t (D has

in T
f

a neighborhood all of whose components lie in the interior of ES(T).

Hence, we have found, for the given € > 0, a neighborhood of the point

t E Tf in which Iget) - g(t1) I < €. This establishes the continuity of

g(t).

Let us now consider the counterimages of points for the mappings tea)

and f(t). The counterimage t E Tf is a component T ~ A, i.e., a connected

set.
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A

Definition [7]. A continuous mapping is said to be monotone if the

counter image of every point is connected.

By means of a monotone mapping one can transform a square with its boundary

into a sphere, but not into a torus as we will see later. A monotone trans­

formation is, so to speak, a contraction without "gluing together". Under

monotone mappings there are preserved certain topological properties of sets.

It is for this reason that the monotoneness of

tea) yields some information on the space T
f

.

In the mapping f(t), the counterimage of a

point is the set of all points T
f

where f(t)

takes on one value, i.e. the set of all components

of a set of one level of f(a).

From here on, A will be assumed to be

locally connected, so that the functions tea)

and f(t) are continuous.

Figure 21. To Lemma 2. The Lemma 2. Every point t E T
f

has a neigh-
construction of the neigh-

borhood u(t) as small as we please (i.e. forborhood EET of the com-
ponent T. every open subset E C T

f
that contains t,

there exists an open set u(t), t E u(t) C E)

such that its boundary consists of some points of two level sets of f(t).

Proof. Let T be the component that corresponds to t, and let a be

the value of f(a) at the points of T. Let us consider (see Figure 21) the

open set Ee of all points a E A, where 'f(a) - aI < €. E€ contains T,
and let EET denote the component of E€ that contains T (EET is a region

because A is locally connected. If a point lies in EET' then the entire

component containing this point of the level set f(a) will, obviously, lie

in EET' It is clear that on the boundary of EET' f(a) = ex ± E. We shall

show that the image uE(t) of the region EET under the mapping tea)

satisfies the requirements of Lemma 2 for a small enough positive €.

1. ut(t) is an open set in Tf that contains t E T
f

.

This assertion is established by the application of Lemma 1 to EET and

to the components contained in this regiono

2. Suppose that K is a component which under the mapping t(a) is

transformed into one of the boundary points of uE(t); then K is contained

in the boundary of EEr'

The truth of this assertion can be proved by the application of Lemma 1

to the regions containing K.

3. For a sufficiently small positive €, the oscillation of the function
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!(a) on EE' and on the continuum EeT is as small as we please. This implies

that for a positive E, small enough, uE(t) is an arbitrarily small neighbor­

hood of t.

This proves Lemma 2.

It follows from Lemma 2 that a level set of the function f(t) is a zero­

dimensional subset of Tf , since each of its points has an arbitrarily small

neighborhood whose boundary is not intersected by the level set.

We have thus proved the next theorem.

Theorem 1. The real continuous function f(a), defined on a locally

connected continuum A is the product of two continuous mappings: a monotone

mapping t(a) of the continuum A on the space T
f

of the components of the

level sets of the functions f(a), and a mapping f(t) of the space Tf on

the real axis, under which the counter image of every point f is of zero

dimension. The function g(a), which is continuous on A and constant on each

component of the set of the level f(a), generates a function g(t) continuous

on T
f

such that g(a) = g(t(a».

c. Singly connected sets

Definition. A locally connected continuum M is said to be singly

connected [7] if it cannot be represented as the sum of two continua whose

intersection is not connected.

For example, the circle and the torus are not singly connected.

Remark. This definition is equivalent to the following ones.

A locally connected continuum is singly connected if every compact subset

of it that divides it has a component that divides it.

A locally connected continuum is singly connected if every continuous

mapping of it on a circle is homotopic to a mapping on a point.

It does not follow from singly connectedness that every simple closed curve

on M can be contracted, without breaking it, into a single point.

Lemma 3 [7]. The monotone image F2 of a locally connected continuUM F1
is a sing ly connected, loca lly connected cont inuum.

Lemma 4 [7]. Under a monotone mapping of a compact, the complete counter­

image of a continuum is a continuum.

Proof of Lemma 4. In the opposite case, this complete counterimage could

be divided into two nonintersecting closed sets A and B, whose images A'
and B' would intersect. If C' were a point of intersection of the images,

then its counter image would intersect A and B, while at the same time it
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would lie in A UB, and hence would not be connected. Therefore, the mapping

would not be monotone.

consists of two nonintersecting compacts,

i.eo A nB = F1 UF2 • Let the distance

between F1 and F2 be greater than

h > O. We will consider spherical neigh­

borhoods with radius h 13 of all points

B are continua whose intersection

Proof. Let us assume the opposite,

and suppose, for the sake of definiteness,

that the square E = A UB, where A andFigure 22. To Lemma 5. If it
were true that A U B = E,
A nB = F1 U F2 , then the
region G, which separates the
point a € F 1 from the point
b € F2 , would intersect the
sets A, B that connect a and
b. This would contradict that
G is connected because
A nB = F1 U F2 I ies in the
exterior of G. of F1 and F2 • These neighborhoods

cover F1 U F2. It is possible to select

from them a finite number of neighborhoods, and it is clear that they can be

so chosen that F1 and F2 are covered, but their coverings do not intersect

(Figure 22). It is obvious that the square is broken up by a finite number of

curves each of which consists of a finite number of circular arcs, into parts

Proof of Lemma 3. F2 , the continuous image of a locally connected con­

tinuum, is a locally connected continuum. Let A2 and B2 be continua in F2 ,

A2 U B2 = F2' In view of Lemma 4, the counterimages of A2 and B2 , the sets

Ai and B1 , are continua. Obviously,

Ai U B1 = F1 · Therefore, A1 n B1 is

connected in view of the singly connected­

ness of Fl' But A2 n B2 is the image

of Ai n B1 and hence is a connected set.

This completes the proof of Lemma 30

Lemma 5 [7]. The Euclidean cubes of

any dimension, and the spheres of dimen­

sions 2 and higher, are singly connected.

of three types: those which are part of the covering of F 1 , those which

belong to the covering of F2 and remaining ones. The coverings of F1 and

F2 are at a distance greater than h/3 from each other. Therefore the

remaining regions separate them. Let a € F1 and b E F2 • Every broken line*

that intersects a and b must intersect one of the regions of the remaining

points. We consider it an obvious fact for E (a cube or sphere) that among

the considered regions there is one G which separates a and b. We note

only that this assertion is not true for a torus and other nonsingly connected

sets. The cont inua A and B both contain a and b. Hence G contains

• And, hence, every continuum.
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some points of A (which are not 10 B) and points of B (which are not in

A, because A n B = F1 U F2 ). Both sets A nG, B nG are closed and do not

intersect, and their sum is G, because AU B = E. This contradicts the

connectedness of G. This contradiction shows that the hypothesis on the in­

correctness of Lemma 5 was false. Hence Lemma 5 is true.

BY combining Theorem 1 and Lemmas 3 and 5, we obtain the following im­

portant property of Tf ·

Figure 23. To Lemma 6. The locally connected one-dimensional
continuum T that contains the cycle ambna can be broken

into two connected parts (8 is the heavy curve, A = T \B)
by means of a nonconnected intersection.

Theorem 2. The space of the components of the level sets of a continuous

function defined on a singly connected locally connected continuum is a singly

connected locally connected continuum. In particular, the space of the com­

ponents of the level sets of a function that is continuous on a cube of any

dimension and on a sphere of dimension greater than 1 is such a continuum.

D. Trees

Definition. A tree is a locally connected continuum that does not contain

homeomorphic images of a circle [3].

Since a tree is a locally connected continuum, any two points of it can be

connected by a closed are, and since the tree does not contain a homeomorphism

of a circle, the arc is unique.

Lemma 6 [7]. A one-dimensional singly connected continuum is a tree.

Proof. Let us assume that such a continuum has two points a and b

[Figure 23], which can be connected by nonintersecting arcs amb and anb.

In view of the one-dimensionality of T, the point a has a neighborhood U,

whose closure does not contain b, and whose boundary is of zero dimension.
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Let KaU be the component of the point a in this neighborhood. Because of

the local connectedness of T, KaU is an open set in T. Let us consider

T"KaU. This closed set consists of the components, continua Tal so that

T = (KaU) U (U To.) • In part icular, among these cant inua there is a component
a

Tab :J b. Let us suppose that B = Tab and A = T\B. Obviously, A U B = T.

B is a continuum, and A is a compact. We will show that A is connected.

Indeed, from the fact that T= (KaU) U (UTa), it follows that
a

T"B = (KaU) U (U Ta) = U ((KaU) UTa). It is easy to see that each set
a =I ab a =f. ab

(KaU) U Ta is connected. This implies that T\B, and hence A, is connected.

Let us show also that A nB contains the boundary of V. Indeed

A n B = Ii nT\B. 1.e. A n B is the bOWldary of B = Tab and, hence, is

contained in the boundary KaV, which is contained in the boundary of U.

Each of the arcs amb and anb intersects the boundary of V, since a is

in the interior of V, and b is in its exterior. Suppose that ~ and v

are the first points of intersection of these arcs with the boundary of U
starting from a. An B contains ~ and v, since it is obvious that these

points are not contained in KaU, but do lie in B, namely in the boundary

of B. From the zero-dimensionality of the boundary of V it follows that

A nB is not connected, because a zero-dimensional connected set cannot have

two distinct points. Thus, we have obtained a decomposition of T into the

sum of two continua A and B whose intersection is not connected. This

means that T is not a singly connected, locally connected continuum. This

contradiction to the hypothesis of the lemma proves that T cannot contain

homeomorphisms of a circle. Hence, T is a tree, which was to be proved.

Lemma 7. The space of the components of the level sets of a real contin­

uous function defined on a compact is at most one-dimensional.

Proof. Fran Lermna 2 it follows that each point t E Tf has an arbitrarily

small neighborhood whose boundary is contained in the sum of two level sets of

f(t) and is, therefore, either empty or zero-dimensional. Therefore, the

space T
f

is at most one-dimensional.

It is obvious that the space Tf can be zero-dlmensional only in the case

that the function f is a constant. Eliminating this case, when Tf is a

single point, we can draw the following conclusion from Theorem 2, and from

the Lemmas 6 and 7.

'ftleorem 3 [4]. The space of the components of the leve l sets of a real

continuous function defined on a locally connected, singly connected continuuM.

is a tree.
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The space of the components of the level sets of a real continuous function

defined on an n-dimensional cube or on a sphere of di.ension n ~ 2 is a tree.

The branching index of a point of a tree is the number· of parts (compon­

ents) into which the tree falls after the given point is removed from the tree.

If the tree T is the space of the components of the level sets of a

continuous function, then the branching index of a point of the tree is related

to the structure of the component to which this point belongs.

Theorem 38 [4J. me number of parts into which a component of a level set

of a continuous function divides the region of definition of this function is

equal to the branching index of the corresponding point of the space of the

compone nt s.

Proof. Indeed, the mapping f(a) sets up a single-valued correspondence

between the region of definition of the function f and the space of the

components (Figure 19).

E. structure of trees

We have seen that any two points of a tree can be connected by means of a

simple arc, and by just one exactly. With the aid of this property one can

obtain, following Menger [3]. a convenient representation of trees. and can

study their structure by reducing the investigation to finite trees, i.e. to

trees with a finite number of branching points. We will confine ourselves to

the consideration of trees which do not have any points with a branching index

greater than three. since we use only this type of tree in Parts I and II of

the present work.

Let E be a tree whose points have branching indices not greater than 3.

From the compact E we pick a denumerable everywhere dense set A: a1. a2• •••

The pair of points a1. a2 determines in aa uniQue simple arc a1,a'l. which

we denote by 00' From the remaining points a:h a4. • •• we pick the first

point that is not contained in 00' and we denote it by as. There is a

unique simple arc ala3 in S. We denote by P1 the point nearest to ~3

on the arc 00' (This point may happen to be a1 or a2.) Next. we denote

the arc a3P1 by 0'1' and. setting 00 = ~ 1, ~1U 01 = 1!2. we see that

when i = 1. the simple arc a i. the point p 1 and the finite trees tl i'
6. i+ 1 have the following properties:

1 t') 6..+ = 6.. U 0· ,
1 1 t t

2
1
,) a·n6.·=p·.

1 1 l.

• Or the power, or cardinal number of the set of parts, if this set is infinite.
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3 i ) ~ i contains all points ak (k ~ i + 1).

If the finite trees ~ i (i = 1, ... , n) are constructed, and all ~ i+1 '

~t" u
t
·, p. (i = 1, ... ,n-l) satisfy the conditions 1.),2.),3.), then it

t ttl-

is easy to construct ~n+1. For this purpose we select, from the points of A
that have not been included in ~ , the point with the smallest subscript. Letn
it be ~n+2. In view of 3n+1) the subscript of this point is greater than n.

Hence, if we include it in ~n+1 we guarantee the fulfillment of condition 3
n
).

The simple arc a1~n+2 C =that connects these points is uniquely determined.

Suppose that Pn is the first point from ~n+2 on a1~n+2. We denote the

simple arc an+2 Pn by an. Then the conditions In) and 2n ) are satisfied.

In this manner we can determine ~ , (J , p for all n ~ 1, and the condi-n n n
tions In)' 2n), 3n ) are all satisfied.

Each finite tree ~ n bas no point whose branching index is greater than

3. Indeed, in the opposite case there would be four simple arcs adr
(r = 1, ... , 4) that would intersect at a. Let us denote by Br the set of

those points of the tree that can be connected with a by means of simple

arcs that intersect the arc adr (excluding, obviously, the poipt a). Such

sets, for different r, will intersect each other, because the simple arc

that connects two points of ~n is uniQue. The components of the set a\a
(which is open in the locally connected continuum S) are open. Hence, any

two points of such a component can be connected by a simple arc. This shows

that every set B constitutes an entire component of S\a. Therefore, there
r

should be at least four such components. But this is impossible, because the

branching index of every point of the tree is less than 4.

Because of condition 3 i ), and of the fact that A is everywhere dense

Figure 24. The heavy curve is ~ 2;
6. 1 and 6. 2 do not satisfy the
requirement 4) of Lemma 8.

ex>

U ~n = 2.
n:.::l

(X)

The subsets E\ U ~ do not divide
(X) n= 1 n

S, because U 6. is connected, and
n=1 n

through the addition of some limit points

to a connected set, its connectedness is

not destroyed. In particular, the points
(X)

of the set E\ U ~ do not divide the
n= 1 n

tree E into separate parts. The points

of a tree which do not divide the tree are

called ends of the tree.
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Before we give the conclusions of the study of the structure of a tree, we

will change the construction of t:1 n so that the points Pn will not be ends of

~n. Suppose, for example, that 00 has for one of its ends a
2

the point p .
n1

We join 0n1 to 00, and obtain a simple arc which we denote by oa. If one

of the ends of a6 is p , then we join 0 to 06, and obtain the simple
n2 n2 N

arc a~ = a6 U a , and so on, until either the end 00 is not a p point
n2 N m

for any m, or ad infinitum. In the first case we set 00 = agew . In the
Nsecond case, let be a limit point of the ends 00. It will not divide S,

because it it did, then l would separate a1 from some point an € A,· and

would then belong to one of the sets ~n. By the construction of on'

could not be a limit point of ends of t!n. It follows that l.:j pm for any m,
and we have obtained for this second case that agew = ail. After such a treat­

ment of both ends of 00, we pick from the arcs an the first one which is

not contained entirely in ugew, and repeat the same treatment of its ends.

Hereby we will not touch the completed arcs; and, continuing this process, we

will obtain a new system ~~ew, p~ew, o~ew, whose elements we will denote

simply by ~n, Pn, an. This system will have, in addition to the properties

1), 2), 3), also the property

4) Pm =I Pn if m =I n• ••

We have thus proved the following lemma.

Lemma 8. Every tree S whose points have no branching index greater than

3 can be represented in the form

00

.::: = U ~n'
n-=l

where the !in are finite trees composed of arcs an attached at the points

Pn so that:

1) ~i=aO'

2) L\n+1 = ~n U an'

3) on n~ n = Pn,

4) Pm =I Pn if m =I n, and the points Pn are not ends of !in·

One can show that only the points Pn have a branching index greater than

two, and that Lemma 8 without the condition 4) is true for every tree. This

implies the next theorem.

Theorem 4 [3]. Every tree E consists of a set that is everywhere dense

• Because the components of a\ l are regions .
•• The old p's could coincide (Figure 24) if one connected successively two branchea

to p, the end of ~. The new construction prevents this, and since ~ haa no
points with branching index greater than 3, property 4) is satisfied.
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Figure 25. To Theorems 4,
6, 7.

in S and is composed of the points of an at most denumerable set of simple

arcs which do not intersect pair-wise in more than one point, and of a set con-

sisting of the ends of = (which can be everywhere

dense in =and have the power of the continuum).

The branching index of the points of = is at

most denumerable, and greater than two only in a

denumerable set of points (namely, at the points

of intersection of simple arcs indicated above).

It is obvious that the representation of the

tree in the form of Lemma 8 is not unique. The

proof of Theorem 4 will not be given here, because

this theorem is not being used in the present
work.

Let us also consider the structure of the

components of the remainder E\~N. This set is

open in S; its components are regions, and in

each of them any two points can be connected by

means of a simple arc, without passing outside the

component.

LeDlll& 9. Le t S, an' Pn ' ~n (n = 1, 2, ... )

be the objects defined in Lemma 8. Then the following statements are true.

1. The boundary of every component K of the set S \ /!iN cons ists of one

po in t, name ly of the poi n t Pm (m = m(N, K) ~ N ) .
00

2. Any two points of E\ U 6. n lie in different components of S\~N
n= 1

for N sufficiently large.

Proof. 10 Let us suppose that this boundary has two distinct points a.

b E t1 nK (Figure 26, 1). The points a and b have nonintersectingn
connected neighborhoods because E is locally connected. Suppose that

a' E u nK is a point of the first of these neighborhoods ua ' anda
b' E ub n K one of the second neighborhood. The points a' and b' can be

connected by means of a simple arc which lies entirely in K, while the points

a and b belong to /!iN as points of the boundary of K and can, therefore,

be connected by a simple arc ab in /!iN. The arcs ab and a' b ' do not

intersect. From the fact that it is possible to connect a and a' by a

simple arc in Ua ' and band b' by a simple arc in ub' we conclude that

in E there is a curve aa'b'ba that contains a homeomorph of the circle.

Thus, the boundary of K must be a single point.
00

Since U a is everywhere dense in E (by Lemma 8), there exists an
n= 0 n
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arc an that intersects the region K. Among such arcs. let am be the one

with least subscript. Obviously, m > N. Since 6. + contains this arcm 1

(condition 2), Lemma 8), and since 6. does not intersect K, a intersectsm m
the boundary of K. But this boundary is a single point that belongs to ~N

and, hence. to 6. m ' Therefore (condition 3), Lemma 8) the truth of the first

statement has been established.

Figure 26. To Lemma 9. The heavy line is
the tree ~N.

1. If the boundary of a component of the
complement of ~N had two distinct

points a and b. then E would con­
tain a homeomorph of a circle.

2. For sufficiently large N, ~N will
00

separate any two points a. b € E\ n~ 1 ~n·

a b

00

2. Suppose that a and b are two points of =\ u ~ . aed and bed
n= 1 n

are simple arcs connecting a and b with the point d E ~ 1. e is the last

point away from d that lies on both these arcs (Figure 26,2). This point can

coincide with only one of the points a. b, d. and we can, therefore,

assume that a ~ c. In this case c separates a from d, for if a and d

should belong to the same component of the open set S \c, one would be able to

connect them by a simple arc not passing through c, and =would contain a

homeomorph of the circle, because this arc would not coincide with the simple

arc aeb. Therefore, c E ~N for some N because it can be seen from Lemma
00

8 that the points S \ u ~ do not divide E. This ~N separates a
n= 1 n

from b, for the points a and b can be connected by a simple arc aeb,

and hence by no other one. This establishes Lemma 9.

F. Realization of trees

All trees can be imbedded homeomorphically in a plane. We construct a

planar set that 1s homeomorphic to a given tree E whose points have branching

indices not greater than three. In this we follow Menger [3].
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Let =
00

U ~n be the representation given in Lemma 8. We will select
n= 1

in the plane a straight line segment and an open triangle To containing so.

Let us map ao on So homeomorphically with the aid of the homeomorphism fl'
Then there will be on So a point P1 which is the image of Pi. We can

construct an open triangle T1 , of diameter less than d1 (this positive

number will be defined later) with vertex at Pi, which does not intersect

D1 = So' except at the point Pi' and whose closure lies in To-

We select within T1 a point and connect it with P1' Then we obtain a

segment S1. We map a1 homeomorphically on S1' We have constructed a

homeomorphism f2 of ~2 on D2 = soU S1.

Suppose that we have constructed on R2 complexes of segments (segment­

like complexes) Di from the segments si with the aid of the triangles Ti
and the points Pi' and also let f i +1 be the homeomorphism ~i +1' on Di +1'

where i, j = 1,2, ... , n - 1 (see Figure 9) and

Ii) D1 = So,

2 i ) Di+1 = Di U si'

3 i ) DinTi=Pi'

4i ) (R'2 \ T i) n S i = Pi'

5.;) if i>j, T·nT.=O or else T.CT.,
~ t ] t ]

6i) the diameter T i is less than d i > 0,

7 t' ) I . maps ~. 1 the same way as I· 1 (i > 1).
t t - t-

Let the arbitrary positive number dn be given. On An there exists, in

general, a point P
n

E a k (k < n) (if there is no such point, then An is

the resulting tree). The homeomorphism In determines, on Dn, a point

P
n

E sk' the image of P
n

• It is easy to select in the triangle Tk a small,

open triangle T so that the following conditions hold:
n

1) one of this triangle's vertices is Pn ,

2) Tn C Tk ,

3) Tn does not intersect sk'

4) Tn does not intersect T i (i < n) if Tk does not lie in Ti ,

5) the diameter Tn is smaller than dn·

Having picked in Tn a point, and connected it to Pn, we obtain a seg­

ment which we denote by s _ Obviously, by mapping a homeomorphically on
n n

s n' we determine the required homeomorphism I n+1 on ~ n+ 1 so that the

conditions Ii) to 7
i

) will be satisfied. We have thus proved the truth of the

following lema.
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(X)

Lemma 10. Let E= U ~n be the representation given in Lemma 8. Let d
n=1 n

be a positive number. In the plane n2
one can construct (with the aid of the

segments sn' the points Pn' and the triangles Tn) complexes Dn and

homeomorphisms f n: ~n .-. Dn such that the coruii t ions 1n ) -7n) are sat is fied

for any n = 2, 3'.0 .•

Now, let E, ~n' Dn , un' sn' Pn , Pn' Tn' f n (n = 1,2, ... ) be such a
system of objects, and suppose that d

n
> 0, d

n
'-' 0 as n '-'00.

(X)

Lemma 11. In the notation given above, X = U Dn is a tree that is
n= 1

homeomorphic to E, and the homeomorphism can be constructed so that it

coinc ides with f n on ~n if n = 1,2, .. 0 •

Proof. We define a sequence of mappings f' (n = 1.2, ... ) of E in X,
n

namely on D
n

, so that on ~ , f' coincides with f . We obtain f' on E
n n n n

as f (<P (e)): the product of a cant inuous mapping cp of all of S on ~ n'n n n

and f n which transfers ~n on Dn homeomorphically. Such a mapping will

coincide with f on ~ if cp keeps every point of ~ unchanged. We have,n n n n
therefore, defined a mapping <p on ~ so that cp (e) = e (c; E ~ ). Everyn n n n
component K C E\ ~ has a unique boundary point p (m = m(K, n) ) n) in

n m
accordance with assertion 1 of Lemma 9. Let us set cp (e) = P (K ) <c; E K).n m,n
Now, <P (e) is everywhere defined; we will show that this mapping is continuous.

n

The point eE E\ ~ n has a neighborhood K which is transformed into the same

point as e. We still have to prove the continuity at the points of ~ . We
n

will point out a neighborhood for such a point e. which will be transformed

into an arbitrarily previously given neighborhooa ue. A connected neighbor­

hood v C ue of the point e will doo (This neighborhood exists because of

the local connectedness of E.) The points TJ of this neighborhood of e
will go into its interior by the transformation <pn. Indeed, this is obvious

for the points TJ E ~n. Let TJ E S\L\n. Then TJ will be contained in

some component K of the set E\ ~ n0 Let P = P(K, n), be the boundary of

K. Firstly, P E v, because the points TJ and e of the region v can be

connected by a simple arc lying in v. On this arc one can find a point of

the boundary K because the initial point TJ of this arc belongs to K

while the end e does not belong to K; this is the point p (Lemma 9).

Secondly, the image of p under the mapping <Pn is P by the definition of

CPn. The continuity of <Pn has thus been proved, and it implies the con­

tinuity of f~(C;) = fn(Q)n(c;))·

The sequence of mappings f~ (n = 1,2, ... ) converges uniformly on S.
Let a positive E be given. From the fact that dn '-' 0, it follows that
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for n ~ N(E) dn < €. We will show that at every point eE S, a.nd for any

n > N(E), P(f~ (e), f~(E) (~» < E. This follows from the fact that the image

of e under the mapping f~ lies in the triangle 1r
m

(m > N(E», when

Pn € DN(E)' or on Dn in accordance with the conditions 1) to 7) of Lemma 10.

Figure 27. To Lemma 11. The heavy line tree
De is homeomorphic to ~6 that separatese and TJ. Some of the triangles T

m
(m > 6) have been drawn, for which p € De.
Among them T(~, M) and T (77, Itt) (M > ft)
have been shaded. They contain the images of
~ and Tf under all mappings f ~ (m > M) 0

Thus, f = lim f~ is a continuous mapping. Obviously, it coincides with
n .... oo

f n on ~n· We shall prove that to distinct points of =there correspond
ro

distinct images in X. This is obvious for the points ~ E U ~ n. The
00 n= 1

points ~ and TJ of S\ u ~ lie, for sufficiently large N, in
n= 1 n

different components, Ki , K'2 of the complement of ~N (Lemma 9). From this,

and from the definition of I' with the aid of properties 3) and 4) of
n

Lemma 8, it follows that from some M on U~f > N) the images ~, TJ under

f~ (m ~ M) lie in different triangles T(e,M) , T(7J,M) , whose closures inter­
sect DN (Figure 27). From the condition 5) of Lemma 10 we now see that

T(e,M)O T(TJ,M) = O. which shows that
ro

[(~) f [(rO. In
ro

exactly the same way,

one can consider the case when eE U ~ , 7J E E\ U ~ . The image of
n= 1 n n= 1 n

the entire tree E under the mapping f contains all of Dn, and hence it

is X. Therefore, f is a reciprocal one-to-one continuous mapping of the

compact =on X, i.e. it is a homeomorphism. This implies that X is a

tree. Lemma 11 has thus been established.

The process used in the proofs of Lemmas 10 and 11 for the construction of

the tree X, and of the mapping f in accord with the conditions 1) to 4)

of Lemma 8, for S, 6., a t p (n = 1,2, ... ) and d ..... 0, can be called
n n n n

the method of attaching branches. Our result can then be formulated as follows.
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Theorem 5 [3]. Let there be given a tree S whose points have no branching

indices greater than three; then one can construct in the plane, by the method of

attaching branches, a tree X, homeomorphic to :S, and a homeomorphism f
betwe en E a nd X.

The next more general theorem can be proved in an analogous way.

Theorem 6 (3]. Every tree S has a homeomorphic image in the plane.

A set M is said to be universal for a class Aa if each set Aa has a

homeomorphic image in M.

Theorem 7 [3]. If in the representation of Theorea 4 the set of points of

intersection of the simple arcs is everywhere dense, and if the branching

index of E at everyone of its points is n (respectively, denumerably

infinite), then the tree is universal for the class of all trees whose branching

index does not exceed n (respectively, for all trees). The trees which are

described above do actually exist.

Theorems 6 and 7 are not used in this work. The reader can provide the

proofs himself, or he can find them in the work [3]. We note without proof that

the space of the components of the level sets of a continuous function defined

on a square can be a universal tree. An example (for the case n = 3) is the

function F(x,y) constructed in Part I (§ 2) of this work.

Concepts and theorems of point-set topology used without further comment

1. Concepts ([6], Chapters VII and VIII; [7J; [8]; [9J).

Metric space. Topological space. Open and closed sets, boundary. Continuous

mapping and homeomorphism. Everywhere dense set. Connectedness.

A compact is a metric space in which one can select from every infinite

sequence a convergent subsequence. A continuum is a connected compact. The

component of a point of a set (or simply a component of a set) is the largest

connected subset that contains the given point.

A set is locally connected if every neighborhood· of any point contains a

subneighborhood of this point.

A set is zero-dimensional if in any neighborhood of each of its points

there is a neighborhood of the same point whose boundary is empty.

A set is one-dimensional if in any neighborhood of each of its points

there lies a subneighborhood of the same point whose boundary is zero­

dimensional.

• Here and in the sequel, a neighborhood of a point is any open set containing
this point.
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A region is an open connected set. A simple arc is a set that is homeomorphic

to a segment of a straight line. The set A separates B from C if every

continuum that contains B and C contains A. If A separates b € B C M
from c € C C M, then one says that A divides M.

The point x belongs to the upper topological limit liM. of the sets
t

Mi (i = 1.2•... ) if in everyone of its neighborhoods there lie points of an

infinite number of the sets Mi. The point belongs to the lower topological

limit !!M i if in everyone of its neighborhoods there are points of all but

a finite number of the sets Mi.

2. Theorems.

A metric space which is a continuous image of a compact is a compact, of a

continuum is a continuum. of a locally connected continuum is a locally con­

nected continuum [6].

A reciprocal one-to-one continuous mapping of a compact is a homeomorphism

[6]. A continuous mapping of a compact is uniformly continuous.

The components of a compact are continua; the components of an open set in

a connected space are regions [6].

In a region of a locally connected continuum any two points can be connected

by means of a closed arc ([3]; [7]; [9J).

The intersection of a decreasing sequence of continua F1 d F'2 :) F3 d

is a cont inuum [6J .

If the sets B C M and C C M lie in different components of M,\A,
then A separates B from C. If the closed set A of a locally connected

continuum M separates B from C, then Band C lie in different

components of M\A.
A set that consists of two noncoinciding simple arcs with common ends

contains a simple closed arc (homeomorph of a circle). The sum of four simple

arcs aa', a'b', b'b, ba have the same property if a'b' n ba = 0 and

aa' n bb' = O.

In a compact, the upper topological limit of a sequence of connected sets

is connected. provided the lower topological limit is not empty [6J.

A connected zero-dimensional set consists of one point [8].

A uniformly continuous function defined on a set that is everywhere dense

in a compact, can be extended to a function over the entire compact. This

extension is unique.

A reciprocal one-to-one, and similar (order preserving) correspondence

between two sets 51 and 82. where 81 is a denumerable everywhere dense

subset of a segment I. and 82 is a denumerable everywhere dense subset of a
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segment [2, can be extended to a homeomorphism between the segments. Such an

extension is unique.
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