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Abstract 

This paper briefly reviews a class of neural networks 
often termed as R A M  based networks. A s  this paper 
shows, the networks are identified by  their use of ?og- 
ical' I-in-n decoders as a pre-process to each neuron. 
The paper explains why the networks have also been 
termed weightless systems. Two sub-classes of binay  
neural networks are described, those which use bina y 
weights and use only a single layer of neurons con- 
sisting of the MRD, ADAM and WISARD, and those 
which use multi-valued weights and multiple layers of 
neurons comprising the PLN, PRAM, GSN, TIN. The 
paper attempts to show the evolution of the networks, 
as well as describing the benefits of this class of neural 
network for hardware implementation. 

1 The motivation for binary neural 
net works 

The typical model of a neuron used in a large num- 
ber of neural networks is based on the McCulloch and 
Pits [Pit431 neuron which can be described by equa- 
tions (1) and (2). These specify a linear weighted sum 
of the inputs, followed by a non-linear activation func- 
tion. 

n 

u = wjx, 
j=1 

Where U is the activation of the neuron, w are the 
weights, x are the inputs, a controls the shape of the 
output sigmoid, and y is the output. When equation 
(2) is replaced by a Heavyside function, the neuron is 
called a Linear Threshold Unit (LTU). 

When given the appropriate activation function and 
used in networks with 3 layers (MLN) they have been 
shown to be universal function approximators [Zur92]. 

In addition, they have very good generalization abil- 
ities. However, this universality comes at a cost. To 
train a MLN an arbitrary complex problem requires 
repeated presentation of training examples, which of- 
ten result in very long learning times. 

The implementation of the feed forward operation 
of the networks requires the use of a multiplier unit, 
which can be problematic for fully parallel VLSI im- 
plementations of the networks, due to  the large size of 
the multiplier. The most popular approach to  train- 
ing is the generalized delta rule, and its derivatives 
[McC86] which requires both the forward propagation 
phase and a backward (back error) propagation phase. 
The complexity of the training algorithm has limited 
its implementation in fully parallel dedicated hard- 
ware. 

2 N tuple method 

The RAM based systems were not originally de- 
signed with a consideration of the limitations of 
MLNs, but do provide solutions to these problems. 
They originate in the work of Bledsoe and Browning 
[Bro59], who invented a method of pattern recogni- 
tion commonly termed the N-tuple method. The basic 
principle behind the N tuple method is that learning to  
recognize an image can be thought of as building a set 
of logic functions that can describe the problem. The 
logic functions will evaluate true for all images which 
belong to  the class that the logic function represents 
and evaluate false for all other classes. 

The is shown in the simple example in Fig. 1. Each 
class of image has a set of logic functions that relate 
to  it. For an unknown image, the set of logic functions 
that has the majority of functions which evaluate to  
true, indicate the class of image. The image of a T 
can be recognized by using the logic function; 

(3) R = A.B.C + D.E.F + G.H.I 
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data, the same approach is used, only now the storage 
locations are accessed and summed. 

The definition of a RAM node is one tuple of N 
inputs, followed by a logical 1 in n decoder, followed 
by a set of storage locations and a summing device. 
This is shown in fig. 2. 

. n 

Input 
B Output lines 
0 1000 
0 0100 
0 0010 
0 0001 

Figure 2: The basic RAM node. 

The 1 in n decoder has the truth table shown in 
table 1. 

Image of an I Image of a T 

Figure 1: This is an example of the N tuple process. 

The image of an I can be recognized by using the 
logic function; 

R = A.B.C +- D.E.F -I- G.H.1 (4) 

To improve the generalisation ability of the N tu- 
ple method, instead of logically ANDing the minterms 
of the expressions together, they are arithmeticaly 
summed to give a count of the number of terms that 
are true. 

In the example in Fig 1 there are 3 ‘tuples’ each 
of size 3. These form the minterms in the equations 
above. They are 

Tuple 1; pixels A B C 
Tuple 2; pixels D E F 
Tuple 3; pixels G H I 
To learn the logic functions that represent the data 

belonging to a given class was originally shown by 
Aleksander and Stonham [Sto79]. The approach was 
based upon the structure shown in Fig 2. The prob- 
lem involves remembering which logic terms would be 
needed for specific classes of image. This was most 
easily achieved by using a logical 1-in-N decoder fol- 
lowed by a set of binary storage locations for each 
term, and using one such unit for each tuple. The log- 
ical decoders compute all possible logical functions of 
the N inputs they connect to. When presented with 
a pice of data, the various decoders will indicate the 
functions required. To recognize an unknown piece of 

2.1 RAM based units compared to LTU 

In comparison with conventional linear threshold 
units (LTU), M M  units contain a greater amount 
of classification power. They can be described using 
LTU, but would require a 3 layer network to achieve 
this. 

RAM based units are most similar to ‘higher or- 
der’ networks [Pao89], which combine the input data 
prior to the inputs application to a system composed 
of LTUs. However, where higher order units combine 
continuous values using non-linear functions (powers 
etc.) RAM units combine the inputs using logical 
functions (AND and OR). In effect, this is the same 
approach, only one is continuous the other is binary. 

Fig. 3 and 4 show the relation between a network 
of RAM units and a higher order network. Fig. 3 
shows what is commonly called an N tuple network. 
One such network can be used to identify the similar- 
ity of an unknown image to one trained. A group of 
such networks, used to recognize one of a number of 
classes is called a Multi-RAM discriminator (MRD). 
Fig. 4 shows a higher order network with an equive 
lent structure as an N tuple network. 
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Figure 3: The N tuple network. 
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Another important difference is that RAM units 
always take sub-samples from the image in the form 
of tuples. Each tuple is made up of N samples of 
input data, fed to its own set of storage cells. In RAM 
based systems, the size of a tuple, N, is an important 
parameter as it effects the classification ability of the 
network. 

The major advantage of the RAM based approach is 
that the decoder/storage cell combination is a random 
access memory (RAM). Thus allowing very simple and 
direct implementation in cheap and readily available 
components. This was shown by Aleksander et. al. 
[Bow841 in the WISARD pattern recognition machine. 

2.2 The limitations of the N tuple method 

Although the basic N tuple approach was powerful, 
in terms of is learning speed and simple implementa- 
tion. The method has a major limitation. This relates 
to  the learning capacity of a given N tuple network. 
By inspection it may be obvious that a given N tuple 
network cannot implement all possible functions of the 
data inputs. 

To show this a simple problem (intra-exor) problem 
is shown in table 2 (from [Aus93]). 

The tuple distribution given in fig. 5 shows a two 
tuple system that cannot solve the problem intra-exor 
problem shown in table 2 with a given N tuple net- 
work. However, by altering the placement of each tu- 

Non-linear Single layer network 
transform 

Figure 4: A single layer net with N tuple pre- 
processing. 

I Inputs I I 

0 1 1 0  0 

Table 2: The intra-exor problem 

ple as shown in fig 6, the problem is solvable. This 
is unlike the EX-OR problem when used on a single 
layer network. The network cannot solve the problem 
given an arbitrary ordering of the inputs. 

To solve this problem, one could used an tuple size 
equal t o  the input data size. However, this looses any 
generalization ability of the network, and results in 
RAM nodes with a very large memory requirement. 

The N tuple method was used in the WISARD pat- 
tern recognition machine [Bow84], capable of recogniz- 
ing images at about 25 frames per-second. To over- 
come the problem given here, the training and test- 
ing method involved moving the image around whilst 
training and testing. This effectively ensured that 
most of the time the EXOR type problem did not arise 
(it also allowed good generalization). 

For many problems, such as image processing, 
the intra-exor problem is not an issue, as training 
methods overcome the limitation. The method has 
been successfully applied to  many problems, such as 
monitoring crowded underground railway platforms, 
face recognition [Ale85a], satellite image recognition 
[Buc94] and character recognition [Row93]. 
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Figure 5: An arrangement of tuples that will not solve 
the intra-exor problem 

D C B A 

Tuple 2 

Figure 6: An arrangement of tuples that will solve the 
intra-exor problem 

Tuple 1 

A number of extensions to the basic N tuple method 
have been developed. To deal with non-binary inputs 
Wilson [Ale85b] and Austin [Aus88] have developed 
methods for taking in grey scale data and still allow 
the use of binary logic functions. 

2.3 Hardware implementation of the N 
tuple method 

The N tuple method was implemented in dedicated 
hardware in the form of WISARD in the early 1980’s 
[Bow84]. The machine was taken up commercially by 
Computer Recognition Systems of Woking (UK) and 
marketed for a number of years. The commercial sys- 
tem used conventional digital processor methods and 
achieved a recognition rate of 12.5 frames a second for 
images of 5122 images, using sparse sampling (i.e. not 
all pixels used). 

More recently the method has been used in a paral- 
lel image processing system (C-NNAP, [Pac94]), where 
the method has been extended to  form an associa- 
tive memory [Sto87]. This system uses Field Pro- 
grammable gate arrays to implement the memory 
scanning and training processes. 

3 Overcoming the limitations of N tu- 
ple; RAM pyramids 

As the intra-exor problem has shown, the use of 
the N tuple method can be rather hit-or-miss. Some 
training examples will not be separable, while others 
will be. 

To increase the robustness of the method the func- 
tional capacity needed to be raised whilst maintain- 
ing the generalization ability, along with the training 
speed, and simple hardware implementation. 

To achieve this, it is important to  understand how 
the method is capable of generalizing on unseen data. 
The method operates by a set membership classifica- 
tion process. Each image is broken up into a number 
of tuples. In the N tuple method, for a given set of 
patterns the binary patterns appearing in each tuple 
are recorded during training. During testing, each tu- 
ple is checked by each RAM node to see if it contains 
a known bit pattern, and the number of RAM units 
that recognize the input tuple pattern is counted and 
output as a recognition figure. In effect each RAM 
unit, which process the tupie data is looking for pat- 
terns that belong to a set of known patterns that were 
presented during training. The generalization comes 
from the way tuple patterns are allowed to be mixed 
between training examples. The larger the tuple size 
the smaller will be the generalization set size. 

Unfortunately, the size of the generalization set is 
not set by training, (apart from the number of exam- 
ples given), but by the tuple size, N. Thus, to get a 
good balance between classification success and gen- 
eralization, requires experimentation. 

The problems are caused by the linear combination 
of the results of the RAM units. In the N tuple method 
these are summed. This results in the intra-exclusive 
OR problem given in section 2.2. 

The obvious solution is to  combine the outputs of 
the RAM units non-linearly. This can be done in two 
ways; use a multi-layer network of linear threshold 
units or use more RAM units. The former method 
has been called a Hybrid network [Aus93]. This is 
very similar to  the higher order networks, except that 
it uses logical functions to  combine data. The ap- 
proach results in a solution to  the problem, but at 
the cost of longer training time (iterative). The latter 
methods are more popular, and uses the RAM based 
approach exclusively. 

The typical form of the multi-layer RAM net 
(MLRN) is to combine the results of one layer of RAM 
units using subsequent layers. Because each RAM unit 
has a limited number of inputs, it is necessary to have 
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many layers of RAMS for large images. 
The typical form of a MLRN is shown in Fig. 7 

Input 

Figure 7: Typical form of a multi-layer RAM network. 

These networks can implement any subset of log- 
ical combinations of the input data [Sto92b]. Thus, 
overcoming the intra-exclusive OR problem given ear- 
lier. However, the solution requires a new training 
method, for the same reason that the multi-layer net- 
works of LTU required the introduction of the gener- 
alized delta rule (GDR). As was shown by the GDR, 
to perform back propagation requires soft-limited out- 
put functions on each neuron. The function imple- 
mented by RAM units is not continuously differen- 
tiable, thus the MLRNs cannot be trained using the 
GDR when implemented using the basic RAM node. 
This problem has forced a number of researchers to 
investigate how MLRN can be trained. Notably, the 
Probabilistic Logic Node (PLN) [Ale89], the proba- 
bilistic RAM (PRAM) [Tay93], the Goal Seeking Neu- 
ron (GSN) [BisSl] and Time Integrating Neuron (TIN) 
networks [Gur92], and their derivatives. 

All these networks provide solutions to training 
MLRNs . 

3.1 Reinforcment Learning in Multi-layer 
RAM nets - the PLN 

Because multi-layer RAM networks cannot be 
trained using a back-propagation like algorithm, rein- 
forcement learning method has been used, which does 
not require a direct measure of error, but just an in- 
dication that the output was incorrect. The reinforce- 
ment signal is sent to  all nodes and used to  determine 

if the pattern present on the input to  the RAM unit 
should be saved (i.e. the logic function noted). 

As the RAM node stands, reinforcement could not 
be used. This is because the node can only record 
(1) the presence of a particular binary pattern during 
training, or (2) the absence of the pattern. This binary 
representation would not work with reinforcement 
learning as three states are needed for the method to 
work, namely (1) the pattern input caused a correct 
output, (2) the pattern input caused an incorrect out- 
put, (3) the pattern did not occur on the input. By 
allowing tri-state storage in the RAM node reinforce- 
ment learning could be used. This was implemented 
by Aleksander in the PLN [May92]. In practice the 
PLN represents the information as; 

1 = tuple pattern occurred and is correct, 
0 = tuple pattern occurred and is incorrect, 
U = pattern has not occurred. 
The use of the U, ‘don‘t know’ state required an 

extension of the learning algorithm. When a ‘U’ state 
is accessed in the RAM, the output of the ram is set 
to 1 or 0 with a probability of 0.5. Thus any input 
pattern will allow the propagation of a result to  the 
output of the network. 

The algorithm used to train this version of the PLN, 
is as follows; 

1) Initialize all locations to  a random binary [1,0] 
values. 

2) Select an input pattern. 
3) Access the RAM and generate an output. 
4) If the value at the output of the net is correct, 

set the reinforcement signal, r, to  +l. If the output is 
incorrect, set the reinforcement signal to -1. 

5) for all nodes, If r=+l  and the node is addressing 
a ’U’, then set the node to  the value set on the output 
of the node. 

6) If r=+l  then set the next input pattern to  be 
learned. 

7) If r=-1, then clear all the nodes and re-enter 
input pattern. 

8) got0 3. 
The algorithm requires repeated application of this 

process, until all nodes have learned the patterns. 
The approach taken in the PLN required (1) itera- 

tive learning, (2) 3 state storage locations. As a result, 
direct implementation in standard RAM components 
is not possible and training is slower. However, train- 
ing is still more rapid than other approaches using 
LTUs . 
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3.2 Weighting the storage locations, N 
tuple RAM extensions and the w PLN 

The approach used by the PLN nets and by the 
N tuple approach only permitted each node to  record 
the presence and absence of a particular input pat- 
tern. This approach can be softened by allowing the 
system to record the frequency of occurrence of the 
input patterns to  a RAM node. This would allow the 
important features of a piece of data to be weighted 
in preference to  other features. 

The original N tuple method described by Bledsoe 
and Browning suggested this. However, because of im- 
plementation difficulties it was not used in the hard- 
ware implementations of the N tuple method. It has 
been shown that the approach can improve recognition 
accuracy [Bro59]. To overcome the implementation 
problem Austin and Smith used a weighted scheme 
during training and converted this to  a binary rep- 
resentation for later implementation in RAM based 
nodes [Aus92]. This approach retained the improved 
recognition accuracy while partially maintaining the 
implementation efficiency. 

In the case of MLRN, Mayers [May921 with the w- 
PLN and Gorse and Taylor [Tay931 with the PRAM, 
both realised the benefit of using a weighted scheme 
in MLRNs. The PRAM is described in the next sec- 
tion. Mayers developed the w-PLN which general- 
ized 3 state storage used in the PLN to w states, and 
showed the improved recognition accuracy which re- 
sulted. The reinforcement algorithm was extended to  
take this into account. This approach has not been 
implemented, but has been used to model delay learn- 
ing in invertebrates [May92]. 

Nevi11 and Stonham [Sto92a] provide a description 
of the PLN which has the addition of a sigmoid ac- 
tivation function in a w state PLN. In this one, the 
storage locations hold values with w states. However, 
after the value is addressed and read out, the value 
is passed through a sigmoid normalization function 
which gives a continuous value between 0 and 1. This 
value is interpreted as the probability that the unit 
will fire with a 1. The same reinforcement algorithm 
is used. 

3.3 Storing probabilities in the RAM lo- 
cations, the PRAM 

Gorse and Taylor [Cla94] fully extended the design 
of a RAM unit to a probabilistic framework. The 
probabilistic RAMs hold the probability of a given in- 
put pattern occurring, instead of just holding a nor- 
malized value as done in the PLN approach. By using 
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probabilities, the likelihood of the input pattern be- 
longing to a particular class can be calculated, rather 
than a boolean yes/no class membership decision. 

In addition they pass the probability accessed by 
any input pattern to  other nodes. Thus, the approach 
is purely probabilistic in its operation. 

To implement this approach, the Kings’ team have 
used a fully probabilistic approach, where information 
is passed between the nodes probabilistically. To do 
this they introduced a pulse coded method of com- 
munication between RAM nodes [Tay891 which sim- 
plifies the operation and hardware implementation of 
the node [Gua93]. For each cycle of operation of the 
PRAM, the node (1) determines if pulses are present 
at its inputs, (2) forms a binary pattern of the bits 
that are on and off, (3) accesses the memory location 
that is addressed by that bit pattern (4) reads out the 
probability, U ,  that the node fires from the memory 
location. (5) sets a one or a zero at the output of 
the node depending on U. Thus, over time the node 
will access a number of memory locations and, over 
time, fire with a mean rate depending on those nodes 
values. This is an entirely probabilistic system, in- 
cluding the hardware implementation, which makes it 
unique amongst neural network systems. The PRAM 
uses the reinforcement learning method to update the 
probabilities . 

3.4 Non-reinforcement learning and 
probabilistic RAMs - the GSN 

Another way of implementing a probabilistically 
based RAM node is not to  use continues firing rates, 
but to  pass the probability of the node firing using a 
boolean value. This method, used in the GSN [BisSl] 
allows the system to work statically, i.e. at any mo- 
ment the exact probability of a nodes output can be 
obtained. In the PRAM, to  obtain the probability of 
the output requires an averaging of the output pulses 
from the neuron. In addition, the GSN does not use re- 
inforcement learning, but a method that allows learn- 
ing of an unknown pattern in one presentation. The 
method uses a form of back propagation and basically 
operates as follows, using a pyramid of RAMs. In 
the forward pass phase (validation), the aim is to  see 
if the network can potentially output the correct re- 
sult. Each node (RAM) receives an input from the 
image which causes access to a memory location in 
each RAM. Initially all RAMs contain the undefined 
state, U. Thus all units n the first layer output this 
state. This value is passed to  the next layer of units. 
These units must then interpret the U state. In the 
GSN, a U on an input address line is taken to be 1 or 



0 input. If a node receives the input data 1,1,u,u this 
implies that the unit (with, for example, 4 inputs) 
must access locations 1,1,1,1 and l , l , l , O  and l , l , O , l  
and l , l ,O ,O .  The node must then resolve these con- 
flicting inputs. It holds these as a list and selects one 
to  use to  access the memory location. It then passes 
contents of the addressed location to  the next layer. 
The value passed to the next layer (the final layer) 
may also be a ‘U’, which means that a list of possi- 
ble inputs will be formed at the final node. The same 
process of selecting one of these is performed. If this 
unit outputs the correct value (1 or 0 ) ,  then the chosen 
patterns at each node which has U’S on its input is cor- 
rect. These patterns are selected by training the node 
(changing the accessed U value to the chosen output 
value). If the final layer node outputs ’U’, the same 
process operates, but now the final unit is set to the 
correct output. If the final unit outputs the incorrect 
value, then the nodes which have a selection of possi- 
ble inputs are revisited and a different input pattern 
chosen. By a careful search process the network is 
trained. 

Although the GSN operates in ‘one pass’, it em- 
bodies a search process that is similar to  a depth-first 
search with backtracking in AI. This search process 
has a large worst case search time. So, although the 
training set is only presented once, each pattern can 
take some time to  learn. Furthermore, the network 
may not train on one pass, as the ordering of the pat- 
terns may result in the system not finding a solution. 

3.5 The crossing the divide, the sigma-pi 
unit 

The sigma-pi unit[McC86] has been shown to be 
equivalent to  a RAM based node by Gurney [Gur92]. 
He shows how a RAM based node can be made equiv- 
alent to the sigma-pi units and shows how, with the 
addition of systems that perform a sigmoid activation 
on the output of a node, so that the network can use 
back propagation learning. He shows that, if a node 
is described by the following, 

n 

Y = 4 a )  (6) 

Where S, is the range covered by the values stored 
at each addressed location, n is the number of input 
values (tuple size), S, is the value held in the ad- 
dressed location, U is one of the RAM addresses, and tc 

is the input tuple pattern. The term n,”=l(l+u,x,) ef- 
fectively activates a given address if the tuple matches 
the indexed address, and the term E, indexes all ad- 
dresses in the RAM. The final equation is a sigmoid 
activation function Q, and the output of the neuron is 
given by y. 

Then the operation of a RAM can be made contin- 
uous over its inputs and its outputs. As he points out, 
the practicality of this model is bound by the the size 
of n (the number of bits in the input). He then pro- 
poses a stochastic version of this model (TIN) which 
reduces the computational complexity. The approach 
is similar to  that taken in the PRAM, using bit streams 
as inputs and outputs of the unit. However, his model 
incorporates a sigmoid output function which makes 
the node continuous. The result of this is a node that 
can be interpreted as a continuous system and, as Gur- 
ney shows, can be trained using a version of back error 
propagation. However, it is not clear if any advantage 
is gained from this in terms of hardware implementa- 
tion or speed. 

The hardware implementation of this node type has 
been described by Hui, Morgan, Gurney and Bolori 
[Bo192]. There most recent chip implements 10,240 
neurons in ES2 1.5um double metal CMOS. 

4 Concluding remarks 

The development of the RAM based approach has 
come a long way since the original concept was pro- 
posed by Bledsoe and Browning in 1959. The origi- 
nal RAM implementation is still the simplest.to im- 
plement in dedicated hardware, with theoretical pro- 
cessing speeds in the order of 10’s of nano seconds 
for both training and testing. The power of the ap- 
proach has been demonstrated in the ADAM system 
and the grey scale extensions to  the method. The 
speed of the method was traded off against robust- 
ness, in that all training patterns may not be learned 
by the system. The MLRN’s overcame these prob- 
lems allowing complex problems to be learned without 
the possibility of the network failing on any examples. 
The original PLN showed how reinforcement learn- 
ing could be used in RAM networks, requiring only 
the addition of a one extra state in the nodes mem- 
ory locations. Increased performance has been gained 
by the use of multi-state w-RAMS, but at the cost 
of higher implementational complexity. The PRAM 
allowed simpler hardware implementation as well as 
adding better classification ability and a clear biolog- 
ical interpretation. Both the PRAM and the PLN re- 
quired the addition of iterative training, which breaks 
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with the one shot training ability of the original N tu- 
ple method. To overcome this the GSN introduced a 
scheme where patterns where only presented once for 
training, but introduced a search process in each train- 
ing cycle. This allowed on-line training and up-date to 
a network. Finally the TIN neuron and its derivatives 
clearly showed that the RAM unit could be trained 
using conventional methods if certain variations were 
added. 

Four major implementations of the RAM based 
systems exist. The original WISARD (discrete 
components), the ADAM multi-processor (C-NNAP, 
FPGA), the PRAM (VLSI) and the Hui et al. (VLSI) 
implementation. All have shown that hardware imple- 
mentation of the learning algorithms is feasible, and 
that many potential applications can benefit from the 
hardware implementation of these methods. 

The RAM based neuron undoubtedly provides a 
novel approach to  the design of neural network sys- 
tems, which provide a range of techniques for many 
applications. The most useful addition to  future re- 
search in RAM based systems would be a comparison 
of the methods against the performance of other net- 
works on a set of standard benchmark problems. 

5 Summary 

This paper has briefly described the work in the 
area of RAM based neural networks. It has shown 
that these neurons all have a non-liner function prior 
to the weights, which provides the rapid training char- 
acteristics. In addition, when the binary version of the 
nodes are used, the implementation of the decoder and 
storage is simply a logical decoder and set of bit stor- 
age locations. 

To some extent, the simple implementation charac- 
teristics have been lost in later improvements to  the 
RAM nodes. However, this is the cost to  be paid to 
obtain better and more reliable classification ability. 
The use of a reinforcement learning scheme has pro- 
vided methods that can be implemented more simply 
than systems that require heavy iteration between the 
neurons. 
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