
734 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 7, JULY 1996

ures for 0
Dz-Mou Jung, Member, /€E€ Computer Society, M.S. Krishnamoorthy,

George Nagy, and Andrew Shapira

Abstract-N-tuple features for optical character recognition have received only scattered attention since the 1960s. Our main
purpose here is to show that advances in computer technology and computer science compel renewed interest. N-tuple features are
useful for printed character classification because they indicate the presence or absence of a given rigid configuration of n black and
white pixels in a pattern. Desirable n-tuples fit each pattern of a specified (positive) training set of characters in at least p different
shift positions, and fail to fit each pattern of a specified (negative) training set by at least n - q pixels in each shift position. In this
work we prove that the problem of finding a distinguishing n-tuple is NP-complete, by examining a natural subproblem with binary
strings called the missing configuration problem. The NP-completeness result notwithstanding, distinguishing n-tuples are found
automatically in a few seconds on contemporary workstations. We exhibit a practical search algorithm for generating, from a small
training set, a collection of n-tuples with low class-conditional correlation and with specified design parameters n, p , and g. The
generator, which is available on the Internet, is empirically shown to be effective through a comparison with a benchmark generator.
We show experimentally that the design parameters provide a useful tradeoff between distinguishing power and generation time,
and also between the conditional probabilities for the positive and negative classes. We explore the feature probabilities obtainable
for various dichotomies, and show that the design parameters control the feature probabilities.

Index Terms-Backtracking, character features, classification, decision trees, distinguishing string, missing configuration, n-tuples,
OCR, simulated parallelism.

1 INTRODUCTION

We have an interest in decision-making circuits with the fol-
lowing qualities: 1) measurable high reliability in decision
making, 2) either a high or a low reliability input, and 3) possi-
bly low reliability components [Z].

ITH these words in 1959, Bledsoe and Browning in-
troduced n-tuples ("decision-making circuits") for

recognizing typewritten characters, hand-blocked print,
and handwritten script.

For our purposes, an n-tuple is simply a collection of n
pixels with distinct locations. Fig. 1 shows a 7-tuple TI
comprising four black pixels and three white pixels. The
tuple "fits" the c exemplar and the e exemplar, and does not
fit the n exemplar or the Y exemplar. That is, if we copy T,
onto a transparency and superimpose the transparency
onto the c, it is possible to shift the transparency so that
each pixel of the 7-tuple is the same color as the corre-
sponding pixel of the c. Here each character is considered to
be embedded in a sea of white pixels, and the tuple is
moved only by shifting, and not, for example, by rotating
or reflecting. In this way, we find that TI fits the c and e, but
does not fit the n or Y . We say that the 7-tuple T, is designed
for the ce - n~ dichotomy.

In the early sixties, researchers at IBMs T.J. Watson Re-
search Center conducted a massive series of experiments,

D.-M. Jung is with Caere Corporation, 100 Cooper Court, Los Gatos, C A
95030. E-mail: jung@caeve.com.

* M.S. Kuishnamoorthy, G. Nagy, and A. Shapira are with Rensselaer Poly-
technic Institute, Troy, NY 12180.
E-mail: {moorthy, nagy, sizapira}@ecse.rpi.edu.

Manuscript received June 26,1995; revised Apr. 15,1996. Recommended for
acceptance by 1.1. Hull.
For information on obtaining reprints of this article, please send e-mail to:
transpami@computer.org, and reference IEEECS Log Number P96043.

combining n-tuple features with various types of statistical
classifiers for high-performance typewritten and hand-
printed character recognition [l], [6], [7], [9]. Simple hard-
ware can determine whether or not a given n-tuple fits a
given character, so n-tuples were sometimes called decision-
making circuits. N-tuples were mentioned only briefly in
Levine's 1969 survey of feature extraction [8], but Nadler
praised them in his 1972 State of the Art in Optical Charac-
ter Recognition [lo]. The sensitivity of n-tuples to sample
size was investigated at the UK National Physical Laborato-
ries [20], and Stentiford exploited n-tuple independence for
reading printed postal addresses in 1985 [19]. Since then,
the quest for magic universal features has meandered in
other directions. Our main purpose here is to show that
advances in computer science and computer technology
compel serious reexamination of the applicability of n-
tuples to OCR.

In this reprise of an earlier strand of research, we present
a generator that finds a collection of distinct n-tuples for
any specified dichotomy of binary character patterns. The
generator is intended for the automatic construction of
OCR systems where little or no prior information is avail-
able about the nature of the symbol shapes. We prove that
the problem of finding a distinguishing tuple is NP-
complete, by showing that a natural subproblem with bi-
nary strings called the missing configuration problem is NP-
complete. The NP-completeness of tuple generation sug-
gests that in general, generating tuples may be difficult.
Despite this, for practical problems the generator finds dis-
tinguishing n-tuples in a few seconds on contemporary
workstations. The quality of the generator is established by
looking at absolute execution times, and by comparing the
generator to a simple benchmark generator. We give a set

0162-8828/96$05.00 0 1 996 IEEE

mailto:jung@caeve.com
mailto:sizapira}@ecse.rpi.edu
mailto:transpami@computer.org

JUNG ET AL.: N-TUPLE FEATURES FOR OCR REVISITED 735

of design parameters that provide control of the class-
conditional feature probabilities associated with a given
dichotomy and n-tuple. We also present statistical evidence
that for a given dichotomy, tuples can be generated that are
not highly correlated and can therefore be used with simple
classification methods.

The n-tuple generators in this paper are part of a C lan-
guage software library for generating n-tuples. This library
is available on the Internet [16].

system can do better.

lowing assumptions:
Accordingly, throughout this paper we make the fol-

only one font is to be recognized,
only a small number of labeled samples are available,
and
the dichotomy is given.

1.1 Classification Using N-Tuples
0.. ...
0..

......
.a -- ...
0.0

.... Regardless of the particular type of classifier used, the 0..
0.. .. 0.. 0.. 0..

0.. 0.. 0..
0.. 0.. 0..
............ rate is closely linked to the class-conditional feature vector probabilities [3] . These probabilities are

... P(x I C’) = P(x,, I C’) and P(x 1 C-) = P(x,, I 0.
Here Y is the length of the feature vector x, and each ele-

... 00. 0..

Fig. 1. A 7-tuple T, that fits the c and e and does not fit the n or r.

Returning to Fig. 1, if the exemplars (the training sam-
ples) are representative of other instances of c, e, n, and r,
then we can expect the tuple T, to behave similarly on new
exemplars (the test samples). We say that TI is designed to
fit the positive class C’ of c and e, and to misfit the negative
class C- of n and Y. Such a tuple is an elementary two-
category classifier. Several tuples can be used in combina-
tion to build multicategory classifiers, or to improve the
accuracy of two-category classifiers. Minimum-distance,
weighted linear network, quadratic, nearest neighbors, and
decision tree classifiers have all been used successfully in
conjunction with n-tuples.

A tuple is associated with the presence or absence of a
specific configuration of black and white pixels in a given
pattern. At one extreme, a 2-tuple detects a pair of pixels of
given color and relative displacement. At the other extreme, a
tuple with as many elements as the entire pattern array con-
stitutes a matched filter (or mask, or template) for a specific
binary pattern. For OCR, tuples are sought that match most
instances of several designated alphanumeric pattern classes,
and do not match most instances of other designated classes.

Given a set of character classes, it is easier to find n-tuple
features for some dichotomies than for others. For instance,
the ceo-mm dichotomy is easier than the rnc-eom dichotomy.
The formulation of suitable dichotomies, which is a difficult
problem in itself, is addressed in [21].

We are interested in n-tuples because they are uniquely
suited for the automated design of single-font OCR systems
when only a small number of labeled samples are available.
Limited sample availability is characteristic of in-the-field
adaptation. We consider field adaptation desirable, even to
only a single document. For a given document, an adaptive
system using features that discriminate between the classes
of the document’s actual typeface can perform at least as
well as a static multifont system. Possibly, the adaptive

ment x, is an indicator random variable that is true iff fea-
ture i is present in the character under consideration. If x, is
true we can write the logical statement x, = true, or simply
x,; if x, is false we write q. In our case, i identifies a tuple
we are interested in, and x, indicates whether the tuple fits
the character under consideration.

For accurate classification, we want to maximize the
marginal probabilities P(x, 1 C’), and minimize the marginal
probabilities P(x, 1 C-). That is, we would like

P(x, 1 C’) = 1 and P(x, I C-) = 0, for all x,.
For accurate classification and ease of classifier design, we
want the individual features x, to be class-conditionally
independent; we would like the following to hold for all
feature vectors x:

(1) P (x 1 C’) = P(x, 1 C’)P(x, 1 C‘) ... P(x, I C‘), and

Given a small training sample of representative patterns,
we wish to generate tuples that have the above properties.
Our scheme is based on the following propositions.
P1 Small values of n are most desirable for generating tu-

ples that resist variations in positive test patterns.
P2 Large values of n are most desirable for generating tu-

ples that resist variations in negative test patterns.
P3 The probability of a generated tuple fitting a positive

test pattern increases with p, if we generate tuples that fit
each positive training exemplar in p or more shift posi-
tions.

P4 The probability of a generated tuple fitting a negative
test pattern decreases as q decreases, if we generate tu-
ples that agree with each negative training exemplar at q
or fewer pixels in each shift position.

P5 Tuples with appropriate values of (n, p, 4) can be found
without using excessive computing resources.

The validity of these propositions is demonstrated in sub-
sequent sections.

The first two propositions imply a trade-off between the
two conditional probabilities that depends on n. Our ex-
periments support earlier findings [61 that n = 7 * 2 is usu-
ally acceptable. In view of the third and fourth propositions,

736 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 7, JULY 1996

.... for a specified value of n, for each q we select the largest p for

reliability towards either the positive or negabve class. For :::;-. ..::* ::::.e ..::a

values appropriate for the dichotomy's class probabilities.

1.2 Outline

...
which tuples can be found. Different (p , q) combinations bias

each dichotomy, we can generate tuples according to (n, p, 9)
..............
....!$::. .:;am..

An outline of the remainder of the paper is as follows. In
Section 2, we discuss the p and q parameters and the order
that these parameters impose on the set of all tuples. Sec-
tion 3 shows that the tuple generation problem is NP-
complete. Section 4 describes the tuple generator and ex-
plores the generator's speed and the relation between speed
and the design parameters. In Section 5, we investigate the

ties on the design parameters; the statistical correlation of

omy on the feature probabilities. We conclude with a dis-

........................
optimal tuple size; the dependence of the feature probabih-
the generated tuples; and the effect of the choice of dichot-
cussion of the implications of our improved method of tu-
ple generation for printed character classification Fig. 2. The matching positions of a 7-tuple T, for two characters.

The matches in Fig. 2 all involve one or more pixels at the
edge of a character. This is to be expected, since the charac-

Before discussing the P and L7 Parameters$ let us a ters have a small stroke width. For sufficientlv wide charac-
ters, however, it is desirable for tuples not to depend on edge
pixels having a particular value. Edge pixels are inherently
unstable due to random-phase sampling noise--the noise
from the unpredictable position of the scanner sampling grid

scribed in this paper has been used to reduce the error rate by

pixel hax-ing a particular value [ill, [XI.
We say a tuple dominates a tuple if 1 = 1 1 , Pr pli,

qr 5 qli, and at least one of the inequalities holds strictly. If T
dominates U, then in the absence of other knowledge, T is
to be preferred to as a classification feature, assuming
Propositions P3 and P4 are true. The domination relation is
h-ansitive and imposes order on the tuples of order yI,

Still using E+, E-, and n, let us define a Boolean function
f(p, q) that is true iff there exists a tuple satisfying (p , q) . If a
tuple satisfies (p , q), then it also satisfies (p - 1,q) and (p, q + 1).

space:

few concepts.
Earlier, we stated that an n-tuple is a Set Of n pixels at dis-

tinct locations. Here we define a pixel to be an integer triple
(r, c, U), where the row r and Column C give the Pixel's h a -
tion, and v E (0, 1) gives the pixel's color (0 is white and 1 is with respect to a printed character. The ~~~l generator de-

The Of a tup1e i' the r~~~~~~ Of pixels ' ' '
A ckayacter E with Ymav rows and ma^ is an generating p-q-stable tuples that do not depend on any edge

At1 ... rmaxr 1 ... c,,,1 with elements having value 0 or 1. We
embed E in a sea of white pixels by defining an auxiliary
array B[-m ... +w, -a . . . +-I, so that B[i , j] = A[i, j] if 1 5 i 5
I',,, and 1 I j 5 c,,,, and B[i , j] = 0 otherwise. A tuple Tf i t s E
(exactly) if there exists Some shift (AY, Ac) such that for each
pixel (Y, c, v) E T, B[Y + AY, c + Ac] = U .

For the remainder of this section let us fix a set E' of
positive class exemplars, a set E- of negative class exem-
plars, and a tuple size n.

Given a tuple T, we define pT to be the maximum value p
such that for each character E E E', there are at least p shifts
that give an exact fit between T and E. Similarly, we define qT
as the minimum value q such that for each character E E E ,
for no shift do T and E agree in more than q pixels. A tuple
T is said to be p-q-stabk Or to satisfy the (p, qi constmint, if pT 2

The following, then, are fundamental properties of the p-q

f (p , q) + f (p - 1,q) and fCp, q) + f (p , q + 1). (3)
The staircase shape of f is illustrated by the following

P and qT 9. We direct Our attention to tup1es with both PT hypothetical example, with dots standing for "false" and 1s
for "true." l a n d q , $ n - l .

The idea behind p-q-stability is that the larger pr is, the
more T resists noise in positive test samples; the smaller qT
is, the more T resists noise in negative test samples. Fig. 2
shows the characters c and e and the 7-tuple T, from Fig. 1.
For each of the two characters, TI is shown superimposed in
all positions for which a match exists. This shows that

4

f 1 2 3 4 5 6

1 . 1 1 1 1 1
2 . 1 1 1 1 1
3 . . . 1 1 1

p,, = 7 . Illustrating qr, is more difficult. In this example, p 4 1 1
qT, = 5, i.e., when T, is superimposed in each shift position 5 1

6 1
7 . . . 1
8

on either of the negative characters n or Y, there are always
at least 7 - 5 = 2 pixels of TI that mismatch the character.

. .

JUNG ET AL.: N-TUPLE FEATURES FOR OCR REVISITED 737

We call a (p, 9) value critical if f (p , 9) is true and f (p + 1, 9)
and f (p , 9 - 1) are both false. A tuple is critical if it satisfies a
critical (p , 9) value. The set of critical values completely
specifies f. For the hypothetical example above, the critical
values are (2,2), (3,4),(4,5), and (7,6).

Because of the dominance relation, critical tuples are the
ones we want to find. Prior to a search, we do not know
what the critical (p, 4) values are. Indeed, the next section
tells us that in general, determining the critical values may
be computationally intractable.

3 COMPLEXITY ANALYSIS
In this section we consider the computational complexity of
finding tuples. Here, we show that the problem of finding
tuples is NP-complete. From this result, most complexity
theorists would conclude that no algorithm finds tuples
quickly for all dichotomies. Still, an algorithm may exist
that finds tuples quickly for all dichotomies that arise in
OCR systems.

We show that tuple-finding is NP-complete by proving
that a one-dimensional special case called the missing con-
figuration problem (or the MC problem) is NP-complete. The
MC problem is a simply-stated problem with binary strings
and may be applicable to areas other than OCR; for exam-
ple, to DNA string problems. Let us now examine this
problem.

A configuration C is a set of integers C = {c,, c,, ..., cn},
where 1 = c, < c, ... < c,. We say C has order n and span c,.
For example, (1, 3, 6) is an order 3 configuration with span
6. Another way to write this configuration is lxlxxl.

Informally, the missing configuration problem is to find,
given a binary string S and positive integers n and Y , an
order n configuration C with span at most r, such that C is
missing from S . For example, the order 3 configuration
(1, 3, 6) = lxlxxl is missing from the string 1010100011111,
but is present in the string 111010110111. We treat the xs-in
lxlxxl as don't-care elements when determining whether
lxlxxl matches a given string. We now precisely state the
MC problem and show that it is NP-complete.

PROBLEM INSTANCE. A string S = s1 s2 ... s I s l E (0, l)-, posi-
tive integers n and r, n 5 r 5 I S I .

QUESTION. Does there exist an order n configuration with
span at most Y that appears nowhere in S, i.e., is there
a set of integers C = {c,, c,, . . ., cn), 1 = c, < c, < cg < ... <
c, 5 Y , such that for all i, 0 5 i 5 I S I - c,, there exists
some c E C with s,,, = O?

THEOREM 1. The missing configuration problem is NP-complete.
PROOF. It suffices to show that

1) MC is in NP, and
2) some NP-complete problem reduces to MC in

polynomial time.

The first part follows easily. Given a configuration
that solves a given MC instance, we can test the con-
figuration in each shift position to verify in polyno-
mial time that the configuration appears nowhere in
the given string. We prove the second part by reduc-
ing the known NP-complete "set cover" problem to

MC. Our formulation of the set cover problem is de-
rived from Garey and Johnson 141:

PROBLEM INSTANCE. Universe U = (1, 2, ..., I U I), a set
D = lol, D,, ..., D I D l I, where each D, is a subset of U,
and a positive integer k 5 I D I .

QUESTION. Does D contain a cover for U of size k, i.e.,
is there a subset D' c D with I D' I = k such that every
element of U belongs to at least one member of D'?
Now suppose U, D, and k form an instance of the set
cover problem. From this we construct an instance of
the MC problem in polynomial time, as follows. Set
r = ID1 + 2 and n = k + 2. For each u E U, we con-

and for all i, 1 5 i 5 I D I, yu,, = 0 if u E D, and yu,, = 1 oth-
erwise. Let 0' denote the string of r Os, and lr-' the string
of (r - 1) 1s. We form the string S by concatenation:

struct a string y, = yu,o y,,, . . . yu,il, where yu,o = yu,'-] = 1,

s=Y,o'Y,or-.Y,,Io'lr-'.

An example reduction is shown below.

Instance of Set Cover Problem
U = {1,2,3,4,5), k = 2,
D = {D,, D,, D,, DJ, where D, = {1,2,3),
D, = {3,4), D, = (4,5), D, = {1,2).

Instance of Missing- Configuration Problem
Y = 6, n = 4,
s=101101000000101101000000

100111 000000 110011 000000
11101100000011111.

Here, the set {D,, D3) is a cover for U, and the corre-
sponding solution to the given instance of the MC
problem is the configuration {1,2,4,6].

Returning to the general case, we must show that
there is a solution to the MC instance iff there is a so-
lution to the set cover instance. We consider the for-
ward direction first.

Let C be a solution (with n = k + 2 ones) to the MC in-
stance. Since the problem requires that C have span r
or less, and S contains a substring of (U - 1) consecu-
tive Is, we know that the span of C is exactly r. So we
can write C = (1, i,, i,, ..., i,, r) , where 1 < i, < i, < ... <
ik < r. Set D' = {Di, ,Di2, ... , Dlk I . We now show that

D' is a solution to the set cover instance by exhibiting,
for each u E U, a member of D' that contains U . Fix U .
Since C does not fit S, in particular C does not match S
when C and Y, are aligned. Because Y , , ~ = y,,, = 1,
there must exist some m, 1 5 m 5 I D I , such that yu,, = 0
and m + 1 E C. This implies that U E D, and D,,, E D'.
For the other direction, let D' = { D l l , D12, . . . , Dlk) be a
solution to the set cover instance. We now show that
the following order n configuration is a solution to the
MC instance: C = (1, jl + 1, j 2 + 1, . . ., j k + 1 r) . The only
shifts for which C matches S are when C and Y,L are

738 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 7, JULY 1996

aligned, for some Y,. We will be done if we can show,
for each Y,, that C and Y, do not match. Fix Y,. Since
D’ covers D, there exists some D, E D’ such that U E

D,. This means that yu,, = 0 and m + 1 E C. Thus C
U

The MC problem can be solved by brute force in

o((‘ 1 :)(IS\ - n + 1)) time. The quantity 1 IS ‘ maximized

when n - 1 = L(Y - 1)/2], so for fixed Y the time is O(I S I) .
The problem without the span limit Y is solvable for n 1 3

in O(I S I) time, as follows. Let S = s1 s2 . . . s I s l . When S con-
sists of all Is, S has no missing configuration. Otherwise, if
s1 = 0 or s l S , = 0 then any configuration of span I S I is
missing from S. If s1 = s I s l = 1, then take as a missing con-
figuration any configuration of span I S I that has (1, z , I S I }
as a subset, where z E {2,3, . . ., I S I - 1) is chosen arbitrarily
such that s, = 0.

There are many generalizations of the MC problem, in-
cluding allowing multiple strings, arrays of higher dimen-
sion instead of strings, larger alphabets, and variations like
p # 1 or 9 # n - 1 in the tuple finding problem for OCR. One
version is a 1-d subproblem of the tuple finding problem. In
this problem we are given n, a positive exemplar E, and a
negative exemplar F, and we want to find a tuple T com-
prising n black and/or white pixels, such that T that has
span at most Y = I E I , fits E, and does not fit F. If E consists
solely of black pixels, then we have exactly the MC prob-
lem. Thus the MC problem is a subproblem of the tuple
finding problem, and the tuple finding problem is NP-
complete.

Here, the bits of the negative exemplar are part of the
reduction, whereas the only part of the positive exemplar
that is used is its length. Also, for a given value of n, it is
trivial to determine whether or not a tuple exists that fits
the positive exemplar. If n is larger than the size of the
positive exemplar, then no such tuple exists; otherwise, a
solution can be obtained by taking any n pixels of the posi-
tive exemplar. These two facts suggest that in our formula-
tion the difficult aspect of tuple generation lies in satisfying
the 9 constraint.

and Y, do not match.

0

ATING N-TUPLES
Originally, we tried generating solution tuples at random.
But as problem instances become increasingly constrained
through higher values of p , lower values of 9, more difficult
dichotomies, and more characters per class, random tuple
generation becomes infeasible. Random tuple generation
found no tuples at all for several dichotomies with 9 = n - 3.
The failure of random tuple generation led us to consider
more sophisticated search methods.

We generate tuples using a backtracking algorithm
called Genl. This generator has been used reliably for hun-
dreds of CPU-hours in OCR studies [51, [lll, [151, [211.

We also use a generator called GenO. GenO is a relatively
naive backtracking algorithm whose main purpose is to
serve as a benchmark to help measure the performance of
Genl.

Section 4.1 discusses common aspects of GenO and Genl.
Sections 4.2 and 4.3 cover aspects specific to GenO and
Genl, respectively. (The discussion of GenO includes con-
cepts used for Genl.) Section 4.4 summarizes experiments
with the generators.

Our focus here is on aspects of GenO and Genl that are
fundamental to Genl’s operation or are relevant to OCR.
Some other aspects of the generators are discussed in [17].

An open problem concerning tuple generation is to give
a necessary and sufficient condition for a dichotomy to ad-
mit a distinguishing tuple of given order. Given the NP-
completeness result, the formulation of such a condition
may be impossible. We are still investigating the problem
for the special case of printed characters.

In our OCR experiments, we have not encountered any
dichotomy that is known not to have some distinguishing
tuple. But certainly such cases are easy to find, if we allow
(p , q) to be specified. As the (p , 9) constraint is made more
restrictive, eventually we reach a point where no distin-
guishing tuple can be generated. The most desirable trade-
off between search time and quality of (p , 9) is application
dependent and cannot be settled in a general way. One op-
tion is to gradually relax the (p , q) constraint until a tuple is
found in the allotted time. In the design of our decision tree
classifiers, a different strategy was used: if a tuple satisfying
the required (p , q) could not be found, another generation
attempt was made, using a different subset of the training
sample.

4.1 Common Aspects of GenO and Genl
GenO and Genl input, or a problem instance, contains posi-
tive and negative character class exemplar sets E+ and E-,
and a value of n. For a given problem instance, we restrict
our attention to tuples whose pixels are drawn from a pixel
set II, where

n = (Y , c , z I) : ~ < Y < minrows,, 1 < c < mincolsE,v = 0 or 1 .

Here the dimensions of a given character E are denoted by
rowsE and ColSE. If desired, the caller can instruct GenO or
Genl to draw tuple pixels from a pixel set other than the
smallest bounding box n of the positive characters.

The selection of the underlying pixel set can affect the
quality, search time, and existence of tuples. Two reasons
for choosing n as the allowed pixel set are as follows. First,
if a tuple is to be applied to a character embedded in a
document, and the tuple does not fit in the character’s
bounding box, then the tuple’s performance may be de-
graded by the presence of nearby characters in the docu-
ment. Also, using n instead of a larger pixel set keeps the
search space (and search time) relatively small.

The generators can run in one of two modes. In the first
mode, the generator looks for a tuple satisfying a (p , 9) pair
specified by the caller of the generator. In this mode, the
generator returns a tuple satisfying the specified (p, 4) pair,
or ”not found” if a resource allotment is exceeded before a
solution is found.

The second mode operates by repeatedly invoking the

i E E E + E E E + }

JUNG ET AL.: N-TUPLE FEATURES FOR OCR REVISITED 739

first mode to find a set of approximately critical tuples, as
shown below.
procedure pqselect (integer n)

set of tuples L initialized to empty
integer p initialized to 0, q initialized to 1
while (q 5 n - 1) do

seurck(p + 1, q)

if (The search found a tuple T) then
while (T satisfies (p + 1, q)) do

L t L U (TI

q + q + l

/ / search seeks a tuple
/ / satisfying p + 1, q.

P t - P + l

else

while (Some tuple T E L is dominated by some tuple
U E L)do

Remove T from L.
return L

In the first loop, we invoke the first mode for various (p , q)
pairs, keeping to the perimeter of a staircase-shaped region
as described in Section 2. The tuple dominance relation jus-
tifies using the (more efficient) perimeter search instead of
searching over the area of the staircase.

GenO and Genl both use backtracking to look for tuples
satisfying a given (p, q) pair. Backtracking can be used be-
cause of the following fact: if T and U are tuples such that
U 3 T and T fails the p or q constraint, then U also fails the p
or q constraint. A failed tuple cannot be made successful by
adding pixels to it.

Two operations occur frequently during the search:

1) In GenO and Genl, determine whether a given tuple T

2) In Genl, evaluate a tuple according to a certain

According to execution profiling, during one execution the
above operations accounted for 95% of Genl's time. Some
effort was spent making these operations fast in GenO and
Genl by using bit arrays and bit-parallel operations like
word-AND.

Consistent with their backtracking nature, GenO and
Genl have modest memory requirements.

meets the p and q constraints, and

evaluation function (see Section 4.3).

4.2 GenO
GenO is a relatively naive backtracking search of the tuple
tree for n. For a given E , the tuple tree is defined relative to
a given total order il(y) on the pixels y E IT. The tree nodes
at level i, 0 5 i 5 n, are i-tuples. The children of a tuple T are
the (I TI + 1)-tuples of the form T U y , where y E n is a
pixel with il(y) > max,E, /Ut). For a given order A and value
of n, the tuple tree is well-defined and includes each i-tuple
exactly once, for 0 5 i 5 n.

The seurck tree for GenO is a subtree of the tuple tree. The
subtree depends on the given problem instance, p, q, and A.
GenO selects il randomly with each order equally likely. The
search tree is implicitly formed from the resulting tuple tree
by pruning nodes that fail the p or q constraint. GenO carries
out a backtracking (depth-first) search of the search tree.
For each pixel location, the two pixels sharing the given

location are searched in a random fixed order.
An example search tree is shown in Fig. 3. For simplicity,

the figure omits tuples that have white pixels. (Incidentally,
in this example, no solution has white pixels.)

...

k - .(. : :? t: : .. *

I
I$>

. Uniised
n = 3

Black Iuplc pixel p = 2
sol Solution q = l

t constraint
2 ancl q constt'uintt;

White triple pixel

Fig. 3. Example search tree for GenO (black-only tuples).

The random selection of h enables GenO to find different
solutions on successive executions. Also, this results in a
faster search than, say, making ;3. correspond to a row-major
order of n, at least in part because a random order reduces
the likelihood of searching consecutively through many
tuples clustered in a small area. The speed-up is of secon-
dary importance, since GenO is only a benchmark.

GenO may process tuples that are translates of each
other. This is perhaps undesirable, but only increases exe-
cution time significantly if many branches of the search tree
are exhausted, i.e., the whole tree can be searched reasona-
bly quickly. For practical problems this does not occur, ex-
cept conceivably when n is small. We looked at some di-
chotomies with n = 7 and in no case did GenO process iso-
morphic tuples.

4.3 Genl
Genl uses two search parameters t and w that are supplied
by the caller. Genl differs from GenO primarily in three
interrelated ways.

Tuple equivalence classes are used to reduce the size of
the search space. If two or more tuples are translates of
each other, then Genl visits at most one of them.
Genl uses simulated parallelism, a general technique
that can reduce the search time on a single processor
when solutions are distributed nonuniformly across
search regions 1121. Running on one processor, Genl
uses timeslicing to simulate a parallel search across
selected search regions. During each timeslice, Genl
selects a search region and visits t search nodes from it.
Restricted backtracking [13] is used. The child tuples
of a given tuple in the search tree are ordered ac-
cording to an evaluation function. Roughly speaking,
the best UI children are kept, and the others are dis-
carded. Here w can be interpreted as a search width.

Some details are as follows.
Two tuples are isomorphic if they are translates of each

other. The tuples in a given equivalence class r satisfy the
same (p , q) pairs:

740 IEEE TRANSACTIONS ON PAT

For all (p, q) and for all tuples T, U E r,
T satisfies (p , q) iff U does. (4)

Recall that the generators draw tuples from a rectangular
pixel array n. Given a tuple equivalence class r, we take the
canonical tuple of r to be the unique tuple in r that has been
shifted as far left and as far up as possible while remaining
wholly in n. Like GenO, Genl’s underlying search tree is a
tree of tuples, but Genl’s tree contains only canonical tu-
ples. This reduces the search space, but when taken alone
this gives no speed-up except perhaps when n is small, by
the discussion at the end of Section 4.2. The primary benefit
of using only canonical tuples comes from favorable inter-
action with simulated parallelism and restricted back-
tracking. This interaction is discussed later in this section.

In Genl, the two canonical 1-tuples are ignored, and in
the search tree, the canonical 2-tuples are the children of the
empty tuple. Each search region is a subtree rooted at a
canonical 2-tuple. The search proceeds using simulated
parallelism as follows. (For simplicity the pseudocode in
this section omits some straightforward details, such as
what happens when a solution is reached, a tuple fails a
constraint, or a search region is exhausted.)

/ / Carry out the search, for given p, q.
procedure search (integer p , q)

array A initialized to order-children (empty-tuple)
integer i initialized to 0
while (No solution has been found) do

Let R denote the search region A[il.
/ / (We suspend this timeslice for R
/ / after t nodes are processed.)
if (X has not been visited before)

else

i t (i + 1) mod w

process-node (R)

Resume prior process-node call for R.

The process-node and order-children procedures are now
examined in the context of restricted backtracking. The
code below shows what happens at each search node.

procedure process-node (tuple T)
array A initialized to order-children (T)
integer i
/ / Search at most w children of T.
for (i t 1 to min(w, I A I)) do

process-node (A[i])
procedure order-children (T)

array A initialized to the children
of T in the canonical tuple tree

integer i
Sort A in order of best evaluation to worst.

/ / (After sorting, A[11 is best.)
fo r (i t -1 to IAl -1)do

for (i t I A I downto 2) do

return A

Swap A[z] and A[i + 11 with probability 5.

Swap A[i] and A [i - I] with probability 5.

Here the children of each search node are first sorted ac-
cording to an evaluation function. Given the NP-
completeness of the tuple-finding problem, it is reasonable

TERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 7, JULY 1996

to use a heuristic evaluation that may miss solutions. After
sorting, the order is perturbed slightly, as discussed below.
(Restricted backtracking in general need not include per-
turbation.) Finally, the best w children are retained and the
others are discarded. Backtracking is applied to the subtree
of each retained child, in an order determined by the sort
order and the perturbation. Genl monitors the number of
nodes visited during the current timeslice. When this num-
ber reaches t , the timeslice ends.

The evaluation of a tuple T is based on the following
function:

(5)

Here p(T, E) is the value pr with respect to the positive ex-
emplar E . The function r (T , E) gives the number of shifts for
which exactly min(I T I , q) pixels of T fit the negative exem-
plar E. A tuple TI is considered to be more desirable than a
tuple T2 if k(T,) > k(T,).

The evaluation function h(T) was designed to take both
the p and q constraints into account while facilitating fast
evaluation with word-parallel bit operations. The complete
evaluation uses h(T) along with some computations to
break ties and avoid division by 0.

By considering a brute force computation of h(T), it is
easy to see that for uniformly-sized characters the time to
compute h(T) for a given tuple T is O(I E’ I + I E- I). Thus if
the search width, timeslice, and maximum node limit are
held constant, then the search time is, on an idealized com-
puting device, bounded above by a linear function of the
number of exemplars. This bounds the running time for all
cases by the worst case running time-the time used when
the search fails. A precise theoretical analysis of successful
searches in this NP-complete problem is probably difficult.

The evaluation function imposes a sort order on the chil-
dren of a given node. Genl slightly perturbs this order, using
random numbers. The purpose of the perturbation is to cause
different solutions to be found on successive executions. Pos-
sibly, this perturbation interacts with simulated parallelism,
further contributmg to the generation of different solutions on
successive executions. One way to generate different solutions
on successive executions is to do a full random permutation of
the list elements. Since that would destroy all information
from the evaluation function, we instead perturb the list only
slightly. This slight perturbation preserves much of the infor-
mation from the evaluation function, and we have found em-
pirically that this perturbation is sufficient to generate different
solutions on successive executions. It can be shown analyti-
cally that under this perturbation, a given list element usually
stays within a few slots of its original position.

Two benefits accrue from searching only canonical tu-
ples rather than all tuples. First, the number of search re-
gions (2-tuples) decreases. Also decreasing, therefore, is the
number of 2-tuples that are evaluated during the determi-
nation of the best w 2-tuples. When n is 16 by 16, for exam-
ple, there are 130,560 2-tuples and 1,920 of these are canoni-
cal, so the number of 2-tuple evaluations decreases by a
factor of 68. Second, suppose the search regions corre-
sponded to all 2-tuples rather than only the canonical ones.
Equivalent tuples have identical evaluations. So, after the 2-

JUNG ET AL.: N-TUPLE FEATURES FOR OCR REVISITED 741

tuples were sorted, most of the w best tuples would be
isomorphic, making simulated parallelism a waste.

Related to the tuple generation problem is the question
of how many non-isomorphic tuples of a given order rz can
be formed within a given rectangular pixel array. This
counting problem, some variants including generalization
to arbitrary dimensionality and dimension sizes, and re-
lated combinatorial identities are examined in [MI.

4.4 N-Tuple Generation Experiments
Here we summarize the tuple generation experiments.
More information may be found in [151.

We ran experiments with GenO and Genl for n = 4, 7,
10, using the following dichotomies: c - e, e - c, e5 - c5,
acenou - sxz, c - n. We used Times-Roman eight-point char-
acters digitized at 300 dots per inch. The characters were
scanned from laser-printed originals, except for the e, - c5
characters; these were scanned from fifth-generation pho-
tocopies of laser-printed originals. The experiments were
carried out on SPARC 20 computers. The generator pa-
rameters were selected so that the generators executed for
about five minutes on a particular problem, when no solu-
tion was found.

Each of 30 tables produced in the experiments results
from one generator executing for a given value of rz with a
given dichotomy. The experiments represent more than
40,000 invocations of the generators.

The experiments support the following conclusions.

1) Distinguishing tuples can be found reasonably
quickly when they exist. The simplest problem is
when (p, q) = (1, n - 1); both GenO and Genl solve
such problems in less than 1 second on a SPARC 20.

2) Genl is a reasonably efficient algorithm for generat-
ing tuples. This becomes apparent when we compare
the experiment performance of Genl to GenO’s.

3) The execution time of Genl is governed by the diffi-
culty of the problem as defined by p and q. With more
computing resources, solutions can be found for
higher values of p and lower values of q.

The general features of the 30 tables in [15] can be seen
by examining Table 1 and Table 2. Table 1 shows the time
to find distinguishing 10-tuples for the given (p, 4) values,
for the c - n dichotomy. Table 2 is for the e5 - c5 dichotomy.
In both tables, the times are averages of 50 searches, and are
normalized with respect to the time taken for the ground
case of p = 1, q = n - 1. Times are shown for the (p , q) values
for which all 50 searches found a solution.

The tables show the trade-off between execution time
and the difficulty of the (p , q) pair. As we move away from p
= 1, 9 = n - 1, solution time increases, until ultimately no
solutions are found.

Both tables exhibit a small region of the (p , 9) space near
p = 1, q = 9 where both GenO and Genl find solutions, and
GenO finds them faster. In a large area away from p = 1, q = 9,
where more desirable tuples reside, Genl finds solutions
and GenO does not.

A likely reason that GenO finds solutions for the less de-
sirable (p , q) values faster than Genl is that Genl evaluates
many tuples at each search node, even when the search

TABLE 1
NORMALIZED TIME TO SOLUTION FOR THE C- f? DICHOTOMY, f?= 10

1 Genl

Timefur p = 1, q = 9: 8262 s

Time fur p = 1 , ~ = 9: .1706 s

goes directly to a solution with no backtracking. On the
other hand, GenO evaluates only one tuple at each search
node. This leads to an idea for a future hybrid algorithm
that runs GenO and Genl in parallel. If to and tl are the re-
spective execution times for GenO and Genl on a given
problem instance, then the hybrid algorithm takes time that
is at worst roughly 2min(t,, tl). This is in some ways more
desirable than the execution characteristics of either gen-
erator alone.

Another opportunity for speed-up lies in Genl’s evalua-
tion function. We have found that Genl’s performance is
sensitive to changes in the evaluation function.

5 CHARACTER CLASSIFICATION EXPERIMENTS
In this section, we show empirically that n-tuples have sev-
eral characteristics that are desirable for character classifi-
cation. Section 5.1 shows that the class-conditional fit prob-
abilities can be usefully controlled by the design parameter
n. In Section 5.2, we examine the control exerted by (p, 4) .
Section 5.3 shows that it is possible to find tuples with low
mutual correlation. The e - c dichotomy is used as the pre-
dominant dichotomy in Sections 5.1 through 5.3, because e
and c are difficult to distinguish [14]. Section 5.4 explores
class-conditional probabilities for other dichotomies.

The experiments in Sections 5.1-5.4 used second-
generation photocopies of Times-Roman eight-point char-
acters that were digitized at 300 dots per inch. Photocopies
were used because they vary more than original scanned

742 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 7, JULY 1996

TABLE 2
NORMALIZED TIME TO SOLUTION FOR THE e, - C5 DICHOTOMY, R = 10

L Gen 1

Time foy p = 1, q = 9: 8522 s

I GenO

Time foy p = 1,q = 9: ,2212 s

characters. Fig. 4 shows some typical characters that were
used in the experiments. The characters in the figure were
selected from a larger character set using a pseudo-random
number generator.

Fig. 4. Some typical characters that were used in the classification
experiments.

Eight-point characters are at the limit of type size that
can be recognized. Larger type sizes are easier to classify.
At 300 dots per inch, n-tuples can distinguish larger char-
acters with virtually no error [ill.

5.1 Value of n
Here, we show empirically that Propositions P1 and P2
hold. That is, P(x, I C') decreases as n increases, and
P(< I C-) increases with n.

In this experiment, distinguishing tuples for the e - c di-
chotomy were generated for n = 3, 4, ..., 15. A training set
comprised 10 es and 10 cs. A trial for a given value of n
consisted of three steps. First, a dichotomy was formed by
randomly selecting one e exemplar and one c exemplar.
Next, an n-tuple was generated for the dichotomy with
p = 1 and q = n - 1. Then the class-conditional probabilities
were estimated by averaging over a test set of 900 es and

The results for each value of n were averaged over 50

Fig. 5 shows the empirical probabilities of correct classi-

cs.

trials. The same test set was used for all trials.

fication as a function of n. Propositions P1 and P2 hold.

0.2 L

[I
3 1 5 Ei 7 8 9 IO 11 12 13 14 15

n

Fig. 5. Class-conditional probabilities as a function of n.

It follows that there exists some value of n for which the
following holds approximately:

In the absence of prior constraints such as information
about the class distribution, it is reasonable to equalize the
probabilities of correct classification for the positive and
negative classes, as in (6). Fig. 5 suggests that here we want
n = 4or n = 5.

It is fortunate that relatively small values of n such as 4
or 5 are good, because usually as n decreases, tuple genera-
tion becomes easier.

5.2 Relation Between (p, q) and Class-Conditional Fit

In this section, we show that for a given value of IZ, the pa-
rameter p affects primarily the positive class-conditional
probabilities, and q mainly the negative class-conditional

Probability

JUNG ET AL.: N-TUPLE FEATURES FOR OCR REVISITED

q = 6

743

q = 5 q = 4

probabilities. This experiment was conducted as in the pre-
vious section, but with different values of n, p, and q: here
we used n = 3, 7, 10, p = 1, 3, 5, and selected values of q.
Table 3 shows the results.

TABLE 3
CLASS-CONDITIONAL FIT PROBABILITY FOR THE e- C

DICHOTOMY, AS A FUNCTION OF n, p, AND q

P
1
3
5

~ (x , 1 e) p(Fl c) ~ (x , I e) p(TI c) ~ (x , I e) p(XI C)

.349 .821 ,206 ,925 .240 .987

.840 ,554 .841 .917 .814 ,993
,949 ,660 ,941 ,947 ,944 ,994

Increasing p while leaving q unchanged improves P(x, I e)
with little or no effect on P(<l c). Similarly, decreasing q
while leaving p unchanged improves P(T1 c) with little or

no effect on P(x, I e). The results confirm that we should use
high p and low q.

Table 3 also shows that by selecting different values of
(n, p , q), we can move the probabilities closer to the optimal
values for either the positive or the negative class. This is
useful for classification tasks where the a priori probaljili-
ties of the two classes are unequal, as is usually the case in
natural language.

The table suggests that given two tuples x, and x, of the
same order, if x, dominates xl as in Section 2, then x, is a
better classifier than xi, i.e.,

where one of the inequalities holds strictly. For instance, the
tuples generated with (n, p, q) = (7,5,4) are, on the average,
better classifiers than those generated with (7,1,6).

5.3 Statistical Correlation
Suppose we have a collection of classification features and
their class conditional probabilities for a given dichotomy.
If the features are independent, then their discriminating
abilities can be usefully combined. On the other hand, if the
features are strongly correlated with each other, then using
several features yields little more information than using
one feature alone. Generally, it is desirable for classification
features to be independent rather than correlated 131. In this
section we show that it is possible to find tuples with low
mutual correlation as classification features.

The experiment was conducted using one e and one c to
form an instance of e - c dichotomy. We used n = 7 and re-
peated the experiment with different (p , q) constraints: (0, 7),
(1, 6), (5, 51, and (7, 4). Tuples were generated using Genl,
except in the unconstrained case (p = 0, q = 71, where tuples
were generated by selecting seven distinct random pixel lo-
cations from the positive character's frame. A fixed test pool
of 900 es and cs was used. For each (p , q) value used, the ex-
periment consisted of 100 trials. Each trial went as follows.

Two new tuples were generated that satisfy the specified
(p , q) constraint. Each tuple was tested on the 900 es. From
this we constructed a contingency table tallying the occur-
rences of the possible outcomes (success-success, success-
failure, failure-success, failure-failure). An estimate of the
correlation coefficient was computed from the contingency
table, unless either tuple matched all 900 es. When this oc-
curred it was impossible to meaningfully estimate the cor-
relation coefficient; such occurrences were recorded. Fi-
nally, a trial was completed by repeating the estimation
procedure for the same two tuples on the 900 cs.

Table 4 shows a (reverse) cumulative histogram of the
squares of the correlation coefficients. The first row shows
how many of the 100 tuple pairs had correlation coefficients
defined. The pairs with undefined correlation coefficients
had one or both tuples behaving perfectly on all 900 entries
in the test set.

TABLE 4
DISTRIBUTION OF SQUARES OF CORRELATION COEFFICIENTS OF
100 TUPLE PAIRS GENERATED FOR THE e- C DICHOTOMY, n = 7

p = o
a = 7 I Random I

p = 1 p = 5 p = 7
a = 6 a = 5 a = 4
Geni 1 Geni

e c e c e c
99 90 58 87 43 97
99 90 58 87 43 97

Two observations emerge from the table. First, it is pos-
sible to generate tuples that have low correlation. For ex-
ample, over 90% of the tuples for p = 1, q = 6 have a squared
correlation coefficient of .10 or less. Second, as we move
away from p = 1, q = n - 1 in the p - q space, correlation in-
creases. There is a trade-off. Feature effectiveness increases
(Section 5.2), but so does correlation.

744 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 7, JULY 1996

TABLE 5
CLASS-CONDITIONAL PROBABILITIES FOR SELECTED DICHOTOMIES

5.4 Choice of Dichotomy
So far we have only examined the e - c dichotomy. Table 5
shows empirical class-conditional probabilities for each
class for selected other dichotomies. This experiment’s de-
sign is the same as that in Section 5.1, except here (n, p , 9) is
taken to be (6, 4, 4). The table shows the average fit fre-
quency among 50 tuples for the positive and the negative
classes, and the standard deviation.

One observation emerging from this table is that the di-
rection of the dichotomy matters; there is an asymmetry
between the positive and negative classes. For example,
tuples for ceo-sxz were found to have better performance
than the tuples for sxz-ceo.

6 Dl§CU§SlON AND CONCLUSIONS

Features for character recognition that have been repeatedly
explored in the last forty years include masks and templates;
moments and moment-invariants; principal components;
orthogonal decompositions (Fourier, Hadamard, Haar, and
Walsh transforms); contours; lakes, bays, and lids; stroke
crossings, curvatures, and end-points; projections; and dy-
namic contour warping. All of these features suffer from
one of two defects: either they must be constructed by hand
according to the designer’s experience with the character
shapes under consideration, or they are based on the shape
of the patterns in each class, rather than on the diffevence in
shape between classes.

Although implicitly any classifier is based on the differ-
ence between classes, few OCR classifiers work directly on
the raw bitmaps. This is because of two problems with bit-
maps: they are large, and shift-variant. Invariably, classifi-
ers solve these problems by extracting features from the
bitmap, as in neural networks and statistical classifiers. The
input to such classifiers generally consists of a fixed set of
features, often pixels averaged over a small region. Unlike
n-tuples, such features do not adapt to the sometimes sub-
tle pixel arrangements that differentiate the classes.

In principle, classifiers based on pairwise bitmap dis-
criminants can be implemented, but in practice this has not
been done, except for decision trees. Decision trees based
on bitmaps cannot cope with shift invariance. Decision
trees not based on bitmaps must use some kind of features.
Our n-tuple features are intended to be such a feature.

Although tuple features can, and have been, used with
any of the standard classifiers based on binary feature vec-
tors, they are particularly appropriate for binary decision
trees. In such a tree each node is responsible for a specific

dichotomy. The relationship that we have demonstrated
between the tuple design parameters and the class-
conditional feature probabilities can be exploited to construct
statistical decision trees based on a small training sample,
and to predict the error rate of such tree classifiers 151.

The tuple generation method that we have described
makes no explicit use of features such as those listed earlier.
Tuple features are free from the two defects discussed
above.Tuple features are generated automatically and are
independent of the particular nature of the symbols, and
they are based on the difference between designated
classes.

The generation method can be applied to any set of iso-
lated printed symbols, such as those in non-Roman alpha-
bets and ideographs. In fact the approach is intended to be
sufficiently general that it can be applied to textures, fin-
gerprints, manufacturing defects, and notation from bridge,
chess, and music. The generation of tuple features is com-
pletely automatic, and can be carried out in a few seconds
on contemporary workstations.

Furthermore, the method fosters the statistical inde-
pendence between multiple features for the same dichot-
omy, which greatly facilitates classifier design and error
estimation. Therefore the technology renders possible, in
principle at least, the completely automated design of fea-
tures and classifiers on the basis of a small labeled design
sample. Such a completely automated design procedure is
essential for any adaptive or learning scheme that requires
modification of both features and classifiers.

ACKNOWLEDGMENTS
We would like to thank Robin Flatland, Edward Green, and
Prateek Sarkar for their comments about a draft of this pa-
per. Mr. Sarkar also assisted with the statistical correlation
experiments. We also thank the anonymous referees for
their thorough reviews. We gratefully acknowledge the
support of the Central Research Laboratory, Hitachi, Ltd.,
of the Educational and Research Networking of Northern
Telecom-BNR, Inc., and of the New York State Center for
Advanced Technology (CAT) in Automation, Robotics and
Manufacturing at Rensselaer Polytechnic Institute. The
CAT is partially funded by a block grant from the New
York State Science and Technology Foundation. We are
grateful to Dr. Hiromichi Fujisawa for suggesting, in 1990,
that we take a fresh look at n-tuples.

JUNG ET AL.: N-TUPLE FEATURES FOR OCR REVISITED 745

REFERENCES
[11 R. Bakis, N.M. Herbst, and G. Nagy, “An Experimental Study of

Machine Recognition of Hand-Printed Numerals,” IEEE Trans.
Systems, Science, and Cybernetics, vol. 4, no. 2, pp. 119-132, July
1968.
W.W. Bledsoe and I. Browning, ”Pattern Recognition and Reading
by Machine,” Proc. Eastern Joint Computer Conf., no. 16, pp. 225-233,
Dec. 1959.
R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis,
pp. 32-33. John Wiley & Sons, 1973.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.
D.M. Jung, ”Joint Feature and Classifier Design for OCR Based on
a Small Training Set,” PhD thesis, Rensselaer Polytechnic Inst.,
May 1995.
L.A. Kamentsky and C.N. Liu, ”Computer-Automated Design of

[2]

[3]

[4]

[5]

[61
Multifont Print Recognition Logic,” fBM J. Research and Develop-
ment, vol. 7, no. 1, pp. 2-13,1963,
L.A. Kamentsky and C.N. Liu, “A Theoretical and Experimental
Study of a Model for Pattern Recognition,” Computer and Informa-
tion Sciences, pp. 194-218. Washington, D.C.: Spartan, 1964.
M.D. Levine, “Feature Extraction: A Survey,” Puoc. IEEE, vol. 57,
no. 8, pp. 1,391-1,407, Aug. 1969.
C.N. Liu and G.L. Shelton, ”An Experimental Investigation of a
Mixed Font Print Recognition System,” IEEE Trans. Electronic
Computers, vol. 15, no. 6, pp. 916-925, Dec. 1966.
M. Nadler, ”The State of the Art in Optical Character Recogni-
tion,” Machine Perception of Patterns and Pictures, pp. 3-18, Ted-
dington, Middlesex: Inst. of Physics, 1972.
G. Nagy and X. Wang, ”Automatically-Generated High-
Reliability Features for Dichotomies of Printed Characters.” Proc.
Symp. Document Analysis and Information Retrieval, Las Vegas, Apr.

- ^

1996.
1121 V.N. Rao and V. Kumar, ”On the Efficiency of Parallel Back-

tracking,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 4,
pp. 427-436, Apr. 1993.

1131 N.J. Nilsson, Principles of Artificial Intelligence, p. 72. Tioga Pub-
lishing, 1980.

[141 S.V. Rice, J. Kanai, and T. Nartker, “The Third Annual Test of
OCR Accuracy,” Ann. Report, UNLV Information Science Re-
search Inst., p. 15,1994.

[151 A. Shapira, “Experiments on the Generation of Distinguishing N-
tuples for Selected Character Dichotomies,” Rensselaer Polytech-
nic Inst., ECSE Dept., Technical Report no. ECSE-OCR-20DEC95,
Dec. 1995.

[161 A. Shapira, Home Page, URL http://www.cs.rpi.edu/-shapiraa/,
Internet World Wide Web, 1996.

1171 A. Shapira, PhD thesis. Rensselaer Polytechnic Inst., 1996 (in
preparation).

1181 A. Shapira and M. Krishnamoorthy, ”Enumeration of the Patterns
in a Lattice,” Rensselaer Polytechnic Inst. Computer Science
Technical Report no. 95-9, May 1995, submitted for publication.

[191 F.W.M. Stentiford, ”Automatic Feature Design for Optical Char-
acter Recognition Using an Evolutionary Search Procedure,” IEEE
Trans. Pattern Analysis and Muchine Intelligence, vol. 7, no. 3, pp. 349-
355, May 1985.

[201 J. Ullman, ”Experiments with the n-Tuple Method of Pattern Rec-
ognition,” I E E E Trans. Computers, vol. 18, no. 12, pp. 1,135-1,137,
Dec. 1969.

121 1 X. Wang, “Improving N-Tuples and Dichotomizers in N-Tuples
Based Decision Tree Classifier,” master’s thesis, Rensselaer Poly-
technic Inst., Dec. 1995.

Dz-Mou Jung received the BS degree in electri-
cal engineering from National Taiwan University
in 1985, and the MS and PhD degrees in com-
puter and systems engineering from Rensselaer
Polytechnic Institute in 1989 and 1995, respec-
tively.

He spent 1991 at the IBM T.J. Watson Re-
search Center, Yorktown Heights, New York,
conducting multimedia research. From March
1995 to December 1995, he was a consultant
with GE R&D Center Dr Jung is currently a

software engineer with Caere Corporation, developing document
analysis and optical character recognition systems His research inter-
ests include document image understanding, multimedia, image proc-
essing, and computational geometry He is a member of the IEEE
Computer Society

M.S. Krishnamoorthy received the BE degree
(with honors) from Madras University in 1969,
the MTech degree in electrical engineering from
the Indian Institute of Technology, Kanpur, in
1971, and the PhD degree in computer science,
also from the Indian Institute of Technology, in
1976

From 1976 to 1979, Dr. Krishnamoorthy was
an assistant professor of computer science at
the Indian Institute of Technology, Kanpur He
joined Rensselaer Polytechnic Institute in 1979

as an assistant professor of computer science, and was promoted to
associate professor in 1985. His research interests include the design
and analysis of combinatorial and algebraic algorithms and program-
ming environments

George Nagy received the BEng and MEng
degrees from McGill University, and the PhD
degree in electrical engineering from Cornell
University in 1962 (on neural networks) For the
next 10 years he conducted research on various
aspects of pattern recognition and OCR at the
IBM T.J. Watson Research Center, Yorktown
Heights, New York From 1972 to 1985, he was
a professor of computer science at the Univer-
sity of Nebraska, Lincoln, and worked on remote
sensing applications, geographic information

systems, computational geometry, and human-computer interfaces
Since 1985, he has been a professor of computer engineering at
Rensselaer Polytechnic Institute He has held visiting appointments at
the Stanford Research Institute, Cornell University, the University of
Montreal, the National Scientific Research Institute of Quebec, the
University of Genoa and the Italian National Research Council in
Naples and Genoa, AT&T Bell Laboratories, IBM Almaden Research
Center, McGill University, and the Institute for Information Science
Research at the University of Nevada. In addition to document image
analysis and character recognition, Dr. Nagy’s research interests in-
clude solid modeling, finite-precision spatial computation, and com-
puter vision

Andrew Shapira received the BS degree in
computer science (engineering) from the Uni-
versity of Illinois at Urbana-Champaign in 1985.
From 1985 to 1987, he was a software devel-
opment engineer at Convex Computer Corpora-
tion in Dallas, Texas, where he worked on Con-
vex’s verson of Unix for their supercomputers In
1990, Mr Shapira received the MS degree in
computer and systems engineering at Rensse-
laer Polytechnic institute (PhD expected in
1996) HIS research interests include combina-

torics, graph theory, search problems, backtracking, and the construc-
tion of practical software tools

Mr. Shapira is the originator of Randpack, an ANSI C package for
the convenient, portable, and robust generation and testing of pseu-
dorandom numbers and other sequences. In the late 1970s, while in
their mid-teens, Bruce Maggs, C. David Sides, and Mr Shapira created
“Avatar,” a computer game that has seen roughly 1,000,000 hours of
use and remains popular today.

http://www.cs.rpi.edu/-shapiraa

