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Abstract

The space-saving implementation of the iterative proportional $tting procedure proposed by Jirousek
and Preucil (Comput. Statist. Data Anal. 19 (1995) 177) on this journal can be improved by applying
the tree-computation techniques designed for Markov networks. The optimisation problem raised by the
use of Markovian propagation trees is solved. Next, an even better implementation is obtained using
certain trees, here introduced and called fast propagation trees, which are obtained by “simplifying”
optimal Markovian propagation trees. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Acyclic hypergraph; Iterative proportional $tting procedure; Markov extension; Probabilistic
database; Propagation tree

1. Introduction

The iterative proportional $tting (IPF) procedure (Deming and Stephan, 1940) is
employed in probability theory to compute the maximum-entropy extension (MEE)
of given discrete probability distributions (Csisz?ar, 1975); moreover, it is also used in
statistics to compute the maximum-likelihood estimate of the parameters of a multi-
nomial sampling distribution under a hierarchical log–linear model (Bishop et al.,
1975). The IPF procedure consists in determining better and better approximations
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of the MEE until the convergence is attained (Bishop et al., 1975). Since the domain
of such probability functions may be very large, some techniques have been devel-
oped to reduce both storage requirements and computation time (Badsberg, 1995,
1996; Denteneer and Verbeek, 1986; Jirousek, 1991; Jirousek and Preucil, 1995;
Larrañaga et al., 1997; Malvestuto, 1988). To save storage, Jirousek (1991) and
Jirousek and Preucil (1995) proposed a method (here referred to as the JP method)
which, instead of storing each approximating distribution of the limit distribution,
stores a suitable set of its marginals; furthermore, when the convergence is attained,
the limit distribution is directly computed from its stored marginals. An eHcient
implementation of the JP method can be obtained by thinking of the approximation
at the tth step as being the result of an “updating” of the approximation resulting
from the (t − 1)th step and by running an updating procedure based on the tech-
nique of propagation in Markov networks (Dawid, 1992; Jensen, 1988; Jensen and
Jensen, 1994; Lauritzen, 1992, 1996; Lauritzen and Spiegelhalter, 1988; Shafer, 1996;
Spiegelhalter, 1986). Such an implementation makes use of certain tree structures, we
call Markovian propagation trees, and the eHciency of the implementation depends
on the Markovian propagation tree in use. This paper $rst proves that an optimal
Markovian propagation tree for implementing the JP method can be found in a very
eHcient way and, then, shows how to improve the implementation of the JP based
on an optimal Markovian propagation tree using certain directed trees, here called
fast propagation trees.

The paper is organised as follows. In Section 2, we recall more or less stan-
dard de$nitions and results from hypergraph theory and from the literature on IPF
procedure. Section 3 contains the implementation of the JP method based on Marko-
vian propagation trees. Section 4 introduces fast propagation trees and the related
implementation of the JP method. Section 5 contains some closing remarks.

2. Background

2.1. Hypergraphs

A hypergraph (Berge, 1989) is an arbitrary $nite family of distinct $nite and
nonempty sets, which are called its edges; furthermore, a hypergraph is reduced (or,
equivalently, is a “Sperner system” or a “clutter” or an “antichain”) if its edges are
pairwise inclusion-incomparable sets. Let H be a hypergraph. The set

⋃
E∈H E is

called the vertex set of H , denoted by V (H), and its elements the vertices of H .
A partial edge (Beeri et al., 1983) of H is any nonempty (proper or improper)
subset of some edge of H . A subhypergraph of H is a hypergraph whose edges
are all partial edges of H . A cover of H is any hypergraph K such that V (K) =
V (H) and H is a subhypergraph of K . The subhypergraph of H induced by a
nonempty subset X of V (H) is the reduced hypergraph whose edges are exactly the
maximal edges of the hypergraph {E∩X : E in H}. The subhypergraph of H induced
by the complement of X will be denoted by H -X . A path in hypergraph H is a
sequence 〈E1; : : : ; Ek〉; k ¿ 1, of edges of H such that, if k ¿ 1, then for each i¡ k,
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one has Ei∩Ei+1 �= ∅; then the edges E1 and Ek are called the ends of the path. Two
vertices of H are connected if they belong to two edges that are the ends of some
path in H . Hypergraph H is connected if every two vertices of H are connected.
The maximal connected induced subhypergraphs of H are called the components
of H .

A nonempty subset X of V (H) is a separator if there are two vertices of H
that lie in two distinct connected components of H -X ; such vertices are said to be
separated by X . A separating partial edge of H is a partial edge of H that is
a separator. A separating partial edge X of H is a divider of H (Malvestuto and
Moscarini, 1998, 2000) if there exist two connected vertices of H that are separated
by X and are not separated by any proper subset of X . The divider hypergraph of
H is the (possibly nonreduced) subhypergraph of H whose edges are exactly the
dividers of H . Let X be a divider of H . If C is a component of H -X , the boundary
of C with respect to X is the set of vertices in X that are adjacent to some vertex
of C ; moreover, the degree of X , denoted by g(X ), is the number of components
of H -X whose boundaries coincide with the whole X .

Example 1. Consider the (reduced) hypergraph H = {abc; abd; ace; bcf ; cg; ch}. The
divider hypergraph of H is the nonreduced hypergraph {ab; ac; bc; c} and the degrees
of the four dividers of H are g(ab) = 2; g(ac) = 2; g(bc) = 2 and g(c) = 3.

The 2-section of hypergraph H , denoted by [H ]2, is an ordinary undirected graph
on V (H) where two vertices are joined by an edge if and only if their pair is a partial
edge of H . A clique of [H ]2 is a maximal set of pairwise adjacent vertices of [H ]2.
The clique hypergraph of [H ]2 is the (reduced) hypergraph whose edges are exactly
the cliques of [H ]2; of course, H is a subhypergraph of the clique hypergraph of
[H ]2. Hypergraph H is conformal if every clique of [H ]2 is a partial edge of H ,
that is, if H is a cover of the clique hypergraph of [H ]2. Note that, if H is reduced,
then H is conformal if and only if H coincides with the clique hypergraph of [H ]2.
Moreover, if H is conformal, then separating partial edges and dividers of H are
the same as “clique-separators” (Leimer, 1993; Tarjan, 1985) and “minimal relative
clique-separators” of [H ]2 (Diestel, 1990), respectively. A conformal hypergraph H
is acyclic (Beeri et al., 1983) (or “decomposable” in (Lauritzen, 1996; Lauritzen
et al., 1984)) if [H ]2 is chordal (or “triangulated”) in the sense that it contains
no chordless cycle of length greater than three (Kloks, 1994). Several equivalent
de$nitions of acyclicity exist (Beeri et al., 1983); we wish to mention one of them
which will be used later on. A hypergraph H is acyclic if and only if there is
an ordering (called a “running intersection ordering”) of its edges, say E1; : : : ; En,
such that if n¿ 1 then, for each i; 1 6 i 6 n − 1, the set (E1 ∪ · · · ∪ Ei) ∩ Ei+1

is a partial edge of the hypergraph {E1; : : : ; Ei}. It is worth noting that, if H is
a connected and acyclic, reduced hypergraph, then the divider hypergraph of H
coincides exactly with the hypergraph {(E1 ∪ · · ·∪Ei)∩Ei+1: 1 6 i 6 n−1}, where
E1; : : : ; En is a running intersection ordering of the edges of H (Malvestuto and
Moscarini, 1998, 2000), so that the number of dividers of H is never greater than
n− 1.
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Fig. 1.

Example 1 (continued). The hypergraph H is acyclic since it is conformal and its
2-section (see Fig. 1) is chordal. An example of the running intersection ordering of
the edges of H is: abc; abd; ace; bcf ; cg; ch.

A characteristic property of acyclic and connected hypergraphs is that they admit
tree representations (Kloks, 1994; Shibata, 1988). More precisely, if H is such a
hypergraph then and only then there exists a tree T , with one node for each edge of
H , such that the following condition, sometimes called separation property (Almond
and Kong, 1993) or junction property in (Lauritzen, 1996), is satis$ed:

for each vertex a of H , the set of nodes of T corresponding to edges of H
containing a induces a subtree of T .

A tree such as T is generally called a representative tree of H and, when H is
reduced, is called a junction tree (Lauritzen, 1996) or a join tree of H (Beeri
et al., 1983; Maier, 1983; Tarjan and Yannakakis, 1984; Yannakakis, 1981). For
an acyclic and connected, reduced hypergraph H we shall make use of a diNerent
tree representation by taking a representative tree of the acyclic and nonreduced
hypergraph H ∪ D, where D is the divider hypergraph of H . We call such a tree
an edge-divider tree of H ; it can be viewed as a spanning tree of the bipartite,
undirected graph with node set H ∪D whose arcs join two nodes, one in H and the
other in D, whenever they are inclusion-comparable. This graph, denoted by G(H),
will be referred to as the edge-divider graph of H ; moreover, we call H -nodes the
nodes of G(H) that are sets in H and D-nodes the nodes of G(H) that are sets
in D.

Example 1 (continued). The edge-divider graph of H = {acdh; bd; cde; cdfg} is
shown in Fig. 2. An edge-divider tree of H is shown in Fig. 3.

Lemma 1. Let H be an acyclic and connected; reduced hypergraph; and X a divider
of H . For every edge-divider tree T of H ; the degree of X equals the number of
neighbours of the node X of T.

Proof. Let G(H) be the edge-divider graph of H , and let G′ be the subgraph of
G(H) obtained by removing X and the D-nodes of G(H) that are proper subsets
of X . Since H is reduced, the components of H -X correspond one to one to the
components of G′; moreover, by the acyclicity of H , the boundary of a component
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Fig. 2.

Fig. 3.

C of H -X with respect to X is exactly X if and only if the component of G′
corresponding to C contains an H -node that in G(H) is adjacent to X . So, the
degree of X equals the number of the components of G′ containing an H -node that
in G(H) is adjacent to X . Consider now the subgraph T ′ of T obtained by removing
X and the D-nodes of T that are proper subsets of X . Of course, each component
of T ′ is a subgraph of one component of G′. Moreover, by the separation property,
if two H -nodes are connected in G′ then they are also connected in T ′; therefore,
the number of the components of T ′ equals the number of the components of G′.
Finally, by the acyclicity of T , if a component of G′ contains an H -node that in
G(H) is adjacent to X then the corresponding component of T ′ contains exactly
one H -node that in T is adjacent to X . So, the degree of X equals the number of
neighbours of X in T .

An edge-divider tree of H can be easily obtained from a running intersection
ordering of its edges. However, from a computational point of view, it is more con-
venient to proceed as follows. Let each arc (E; X ) of G(H), with E in H and X in D,
be weighted by |X | so that every spanning subgraph of G(H) is implicitly weighted
by the sum of the weights of its arcs. Then, it is easily seen that the path opti-
mality conditions of maximum-weight spanning trees (Ahuja et al., 1993; Golumbic,
1980) imply that every edge-divider tree of H is a maximum-weight spanning tree of
G(H). On the other hand, by the acyclicity of H , every maximum-weight spanning
tree of G(H) is an edge-divider tree of H (for a formal proof see Maier, 1983).
Therefore, an edge-divider tree of H can be eHciently found using greedy algorithms
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Fig. 4.

such as Kruskal’s algorithm or Prim’s algorithm or Sollin’s algorithm (Ahuja et al.,
1993; Golumbic, 1980).

It is worth mentioning that, for an arbitrary connected hypergraph H , if K is
an acyclic cover of H and T is a representative tree of K , then the pair (K ; T )
de$nes a tree-decomposition of H (Kloks, 1994). Thus, if H is an acyclic and
connected, reduced hypergraph and T is an edge-divider tree of H , then the pair
(H ∪ D; T ) is a tree-decomposition of H . If H is a cyclic and connected, reduced
hypergraph then, in order to get a tree-decomposition of H , we need an acyclic
cover K of H and $nding a hypergraph such as K is the same as “triangulating”
the graph [H ]2, that is, $nding a chordal graph that is a cover of [H ]2. Though very
eHcient algorithms exist to triangulate a graph in such a way that no edge is added
if it is chordal (Rose et al., 1976; Tarjan and Yannakakis, 1984), the problem of
the best triangulation of [H ]2 proves to be computationally hard (in the sense that
no polynomial-time algorithm is likely to exist in the worst case) when reasonable
objective functions are used (Arnborg et al., 1993; Bodlaender, 1996; Kloks, 1994;
Sanders, 1995; Wen, 1990; Yannakakis, 1981), and it seems to be unavoidable to
resort to some heuristics (Becker and Geiger, 1997; KjSrluN, 1992; Wen, 1989).
We now introduce for an arbitrary reduced hypergraph H a special acyclic cover
of H , called the “compaction” of H (Malvestuto and Moscarini, 1998), which has
some useful properties and will be used later on. Some preliminary notions are
needed.

A connected set of vertices X of H is compact if every two vertices in X are
not separated by any partial edge of H . The compact components of H are the
subhypergraphs of H induced by its maximal compact sets or, equivalently, they
are the maximal induced subhypergraphs of H where no partial edge is a divider.
The vertex sets of compact components of H can be viewed as being the edges
of a reduced hypergraph, called the compaction of H , which is an acyclic cover
of H which coincides with H if and only if H is acyclic and reduced; moreover,
the divider hypergraph of the compaction of H always coincides with the divider
hypergraph of H (Malvestuto and Moscarini, 1998, 2000).

Example 2. Consider the cyclic (reduced) hypergraph H={ad; ae; bcf ; bd; ce; cg; ch},
whose 2-section is shown in Fig. 4.
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Fig. 5.

The compact components of H are H1={ad; ae; bc; bd; ce}; H2={bcf }; H3={cg}
and H4 = {ch}, whose 2-sections are shown in Fig. 5. Therefore, the compaction of
H is the acyclic hypergraph {abcde; bcf ; cg; ch}.

2.2. Probabilistic databases

Let V be a $nite set of random variables that have associated with them $nite
sets of values. By a state of a nonempty subset X of V we mean an assignment of
values, one for each variable in X . If x is a state of X and Y is a subset of X , then
by xY we denote the state of Y obtained by projecting x onto Y . The state space of
V is denoted by V.

A probability distribution on a nonempty subset X of V is a nonnegative function
p de$ned on the state space of X that adds to 1; the set of states of X to which p
assigns a nonzero probability is referred to as the support of p. If Y is a subset of
X , then by p↓Y we denote the marginal of p on Y .

Let H be a hypergraph with vertex set V . A system P = {pE: E in H} of prob-
ability distributions on edges of H will be referred to as a probabilistic database
with scheme H ; moreover, if H ′ is the reduced version of hypergraph H , the re-
duced version of P is the probabilistic database {pE: E in H ′}. An extension of P
is a probability distribution P on V such that pE = P↓E for each edge E of H .
A probabilistic database P is consistent if there exists an extension of P, and is
pairwise consistent if, for every two edges E and E′ of H , the probabilistic database
{pE; pE′} with scheme {E; E′} is consistent. Of course, if P is a consistent proba-
bilistic database, then the reduced version of P is consistent, too. Finally, it is well
known that hypergraph H is acyclic if and only if, for every probabilistic database
with scheme H , the condition of pairwise consistency is (not only necessary but
also) suHcient for consistency (Kellerer, 1964; Malvestuto, 1988; Vorob’ev, 1962).

In the rest of this subsection we limit our considerations to probabilistic databases
whose schemes are reduced hypergraphs. Given a consistent probabilistic database
P with scheme H , the maximum-entropy extension (MEE) of P is the extension P
of P that maximises the functional

−�P(v) logP(v);

the summation being extended over all the states v of V belonging to the support
of P. The MEE P of P is characterized as being the extension of P for which, for
each edge E of H , there is a real function fE de$ned on the state space of E such
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Table 1

ab pab ac pac bc pbc

00 1=6 00 1=6 00 1=6
01 1=3 01 1=3 01 1=3
10 1=3 10 1=3 10 1=3
11 1=6 11 1=6 11 1=6

Table 2

abc P

000 0
001 1=6
010 1=6
011 1=6
100 1=6
101 1=6
110 1=6
111 0

that the following factorisation

P(v) =
∏
E∈H

fE(vE)

holds almost everywhere in the state space of V , that is, for every state of V belong-
ing to the support of P (Csisz?ar, 1975). Moreover since P(v)¿ 0 implies pE(vE)¿ 0
for each edge E of H , the support of P is always a (proper or improper) subset of
the set of states of V

V∗ = {v ∈ V : pE(vE)¿ 0 for each edge E of H}:
It is worth mentioning that, if the support of P coincides with V∗, then P is said to
belong to the extended log–linear model generated by H (Lauritzen, 1996; Malves-
tuto, 2001).

Example 3. Consider the probabilistic database with scheme H={ab; ac; bc} reported
in Table 1. Using standard methods of linear algebra, we $nd that it admits only one
extension, which is reported in Table 2, which hence is also its MEE. Moreover, the
support of P is a proper subset of V∗ =V so that P does not belong to the extended
log–linear model generated by H .

Consider now the case that H is acyclic. Then the MEE P of P is called the
Markov extension of P (Vorob’ev, 1963) and has a closed-form expression (Haber-
man, 1974). More precisely, if D is the divider hypergraph of H and, for each X
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in D; g(X ) is the degree of X , then the following is a factorisation of P that holds
for every state v in the support of P:

P(v) =
∏
E∈H

pE(vE)

/ ∏
X∈D

[p↓X
EX

(vX )]g(X )−1; (1)

where EX is any edge of H that includes divider X (Bishop et al., 1975; Darroch
et al., 1980). On the other hand, the sum of the right-hand side of formula (1) over
all the states in V∗ is exactly equal to 1 and, hence, the support of P coincides with
V∗; therefore, factorisation (1) holds everywhere in V with the convention (0=0)=0.
Finally, every edge-divider tree T of H provides a convenient picture of formula
(1) owing to the graphical meaning of the quantities g(X ) in T (see Lemma 1).

Example 1 (continued). Let P = {pabc; pabd; pace; pbcf ; pcg; pch} be any consistent
probabilistic database with scheme H . By formula (1), the following is a closed-form
expression for the Markov extension of P:

pabcpabdpacepbcfpcgpch=p
↓ab
abcp

↓ac
abcp

↓bc
abc(p

↓c
cg)2;

of which the tree of Fig. 3 is the graphical picture.

Consider now the case of a consistent probabilistic database P whose scheme H is
a cyclic (reduced) hypergraph. Then, the computation of the MEE P of P based on
the IPF procedure consists in computing better and better approximations P0; P1; : : :
of P until the convergence is attained. The zero-order approximation P0 is usually
taken to be the uniform distribution on V ; however, since the support of P is a subset
of V∗, it is convenient to take P0 to be uniform over V∗ and to vanish elsewhere;
that is, for each state v of V , P0(v) takes on the value |V∗|−1 if v belongs to V∗,
and 0 otherwise. After computing Pt; t ¿ 0; Pt+1 is obtained by “$tting” Pt to some
probability distribution from P. More precisely, given an ordering E1; E2; : : : ; En of
edges of H , the IPF procedure cycles through:

For i = 1; : : : ; n; set Pkn+i:=(pEi =P
↓Ei
kn+i−1)Pkn+i−1 (k = 0; 1; : : :):

Explicitly, the ith assignment statement above consists of the following computation:

(Iterative step)
For each state v of V ,
if v is in V∗ then set Pkn+i(v):=[pEi(vEi)=P

↓Ei
kn+i−1(vEi)]Pkn+i−1(v); otherwise, set

Pkn+i(v):=0.

Note that one can easily prove by induction on t that the support of each Pt; t ¿
0, does coincide with V∗ so that the divisions above can be carried out without
inconvenience whenever data is in absolute precision (i.e., no rounding criterion is
used); otherwise, it is suHcient to set Pkn+i(v):=0 if v is not in V∗ or the rounded
value of Pkn+i−1(v) is 0.
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Table 3

abc P0 P1 P2 P3 P4 P5 P6 : : :

000 1=8 1=12 1=18 1=30 1=36 1=46 31=1658 : : :
001 1=8 1=12 1=9 1=6 5=36 5=31 23=131 : : :
010 1=8 1=6 1=9 1=6 5=27 10=69 62=393 . . .
011 1=8 1=6 2=9 2=15 4=27 16=93 368=2487 . . .
100 1=8 1=6 2=9 2=15 4=27 16=93 368=2487 . . .
101 1=8 1=6 1=9 1=6 5=27 10=69 62=393 . . .
110 1=8 1=12 1=9 1=6 5=36 5=31 23=131 . . .
111 1=8 1=12 1=18 1=30 1=36 1=46 31=1658 . . .

Example 3 (continued). With the edges of H ordered as ab; ac; bc the IPF procedure
yields the approximations of P reported in Table 3.

We now evaluate the computational cost of the IPF procedure under the worst-case
assumption that P is such that V∗ =V. To achieve this, with each set X of variables
we associate its size, denoted by ||X || and measured by the number of all possible
states of X ; accordingly, by the size of a hypergraph we mean the sum of sizes of
its edges. Then, the (kn + i)th iterative step needs

||V || additions to marginalize Pkn+i−1 to Ei;

||Ei|| divisions to compute the ratios pEi(vEi)=P
↓Ei
kn+i−1(vEi); and

||V || multiplications to compute Pkn+i:

Therefore, if �; � and � measure the time units required by a single addition, mul-
tiplication and division, respectively, then the computational cost of the (kn + i)th
iterative step amounts to

||V ||(� + �) + ||Ei||�
time units, and the computational cost of each iteration cycle (i.e., n consecutive
iterative steps) amounts to

n||V ||(� + �) + ||H ||�
time units, where ||H || denotes the size of H .

Example 2 (continued). Let P be a consistent probabilistic database with scheme
H . We have to resort to the IPF procedure in order to compute the MEE of P, and
each iteration cycle requires

7||abcdefgh||(� + �) + (||ad|| + ||ae|| + ||bcf || + ||bd|| + ||ce|| + ||cg|| + ||ch||)�
time units.
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In order to reduce the computational eNort, a good strategy inspired by the divide-
and-conquer principle consists in decomposing the problem of computing the MEE P
of P into sub problems whose solutions can be easily combined to recover the global
solution P (Badsberg, 1995; Malvestuto, 1989). As proven by Malvestuto (1997) in
the case that the scheme H of P is a conformal hypergraph, and in (Malvestuto
and Moscarini, 2000) for the general case, the best way of decomposing H consists
in taking the compact components of H , which requires a time polynomial in the
dimension of H (Malvestuto and Moscarini, 2000).

Example 2 (continued). Instead of applying the IPF procedure to P, we $rst de-
compose H into its four compact components H1; H2; H3 and H4 (see Fig. 5),
and then determine the MEEs of the following four subdatabases of P with schemes
H1; H2; H3 and H4:

P1 = {pad; pae; p
↓bc
bcf ; pbd; pce} P2 = {pbcf } P3 = {pcg} P4 = {pch}:

Let P(j) be the MEE of Pj; 1 6 1 6 j 6 4. Since P(2) = pbcf ; P(3) = pcg and
P(4) = pch we only need to apply the IPF procedure to P1. Each iteration cycle for
computing P(1) requires

5||abcde||(� + �) + (||ad|| + ||ae|| + ||bc|| + ||bd|| + ||ce||)�

time units. After computing P(1) the MEE of P is then obtained using the formula

P(1)pbcfpcgpch=p
↓bc
bcf (p↓c

cg)2:

By the above-mentioned property of the compact components of a hypergraph,
in the next sections without loss of generality we shall restrict our considerations
to consistent probabilistic databases whose schemes are cyclic hypergraphs having
compact vertex sets. The following will be used as a running example.

Example 4. Let a; b; : : : ; h; i; j be nine random variables, of which i and j are ternary
and the remaining ones are all binary. Consider a consistent probabilistic database P
which scheme H = {ac; ad; ae; af ; ag; aj; be; bf ; bg; bh; bij; cg; ch; ci; dh; di}. Since the
2-section of H (see Fig. 6) is not chordal, H is a cyclic hypergraph. Furthermore,
the vertex set of H is compact since H contains no dividers.

3. Markovian propagation trees

Let H be a cyclic and reduced hypergraph whose vertex set is compact, and P a
consistent probabilistic database with scheme H . In order to compute the MEE P of
P we make use the following three-phase procedure which combines the JP method
with an ad-hoc tree-computation technique.
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Fig. 6.

Fig. 7.

Initial phase. An acyclic cover K of H is constructed. For example, using the
“$ll-in” technique (Tarjan and Yannakakis, 1984), K is taken to be the clique hyper-
graph of [H ]2 if [H ]2 is chordal; otherwise, K is taken to be the clique hypergraph
of the chordal graph obtained by adding “$ll-in edges” to [H ]2. Next, given K , an
edge-divider tree T of K is constructed.

Example 4 (continued). Adding the $ll-in edges (a; b); (a; i); (a; h); (b; c); (b; d)
and (c; d), one obtains a chordal graph (see Fig. 7) whose clique hypergraph is
K={abe; abf ; abcg; abcdh; abcdi; abij}. The divider hypergraph of K is D={ab; abc;
abcd; abi}. Fig. 8 shows an edge-divider tree of K .

Iterative phase. Let D be the divider hypergraph of K . Each approximation Pt of
P; t ¿ 0, is not explicitly computed but is implicitly determined by a probabilistic
database Pt with scheme K ∪D of which Pt is the Markov extension. Precisely, the
probabilistic database P0 contains the marginals of the zero-order approximation P0

on edges of K ∪D; next, given the probabilistic database Pt ; t ¿ 0, the probabilistic
database Pt+1 is constructed in such a way that, if the corresponding iterative step
requires $tting Pt to the probability distribution pE from P;Pt+1 will contain the
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Fig. 8.

marginals of the distribution Pt+1 = (pE=P
↓E
t )Pt on edges of K ∪ D. Thus, Pt+1 is

the Markov extension of Pt+1.

In our implementation of the iterative phase, we make use of the probabilistic
database P and of two additional databases: a probabilistic database Q with scheme
K ∪ D and a set of tables {rY :Y ∈ H ∪ D}, where table rY reports a real number
for each state of Y . Initially, each probability distribution qX in Q is taken to be the
uniform probability distribution on X and, for each table rY , the entries in rY are set
to nil. Then, given an ordering E1; E2; : : : ; En of edges of H , at each iteration cycle
the probabilistic database Q is updated n times by $tting the probability distributions
pE1 ; : : : ; pEn in P. In order to $t pEi , the following algorithm is applied.

Markovian propagation (MP) algorithm

Step 1. Select an edge Xi of K ∪D containing Ei.
For each state e of Ei, update the corresponding entry in the table rEi as
follows

if q↓Ei
Xi

(e)¿ 0 then rEi(e):=pEi(e)=q
↓Ei
Xi

(e)
else rEi(e):=nil.

Step 2. Select an edge Ai of K containing Ei.
For each state a of Ai, update the corresponding entry in the probability
distribution qAi (in Q) by setting

qAi(a):=rEi(aEi)qAi(a)

with the convention nil× 0 = 0.
Start a traversal of T at Ai with a backtrack-style search, e.g., the depth-
$rst search (Golumbic, 1980). During the traversal of T , when an arc (A; B)
is traversed, with A in K and B in D, carry out the following operations
depending on whether the arc is traversed from A to B or from B to A:

Case 1: If (A; B) is traversed from A to B then, for each state b of B,
update the corresponding entries in the table rB and in the probability
distribution qB (in Q) as follows:

if qB(b)¿ 0 then rB(b):=q↓BA (b)=qB(b) else rB(b):=nil;

qB(b):=q↓BA (b).
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Case 2: If (A; B) is traversed from B to A then, for each state a of A,
update the corresponding entry in the probability distribution qA (in Q)
by setting:

qA(a):=rB(aB)qA(a)

with the convention nil× 0 = 0.

Remark 1. At Step 2 we adopted the convention nil×0=0 and now we prove that
it is just what we need to update the probability distributions qA in Q for each A in
K . For example, consider the updating of qAi and let q′Ai

be its updated version. At
the beginning of Step 2, for each state a of Ai we set

q′Ai
(a) = rEi(aEi)qAi(a):

Now, if rEi(aEi) = nil then q↓Ei
Xi

(aEi) = 0 (see Step 1). By the consistency of Q,
we also have that q↓Ei

Ai
(aEi) = 0 which implies that qAi(a) = 0. On the other hand,

by the proportionality relationship linking the Markov extensions of the updated and
current version of Q, if qAi(a) = 0 then q′Ai

(a) must be zero, which is exactly what
we obtain using the convention nil× 0 = 0. The same arguments can be applied to
each probability distribution qA in Q with A in K .

Final phase. When the convergence is attained, then P is computed from Q using
formula (1).

Theorem 1. The Markovian propagation algorithm is correct.

Proof. Let Q and Q′ be the contents of the probabilistic database before and after
executing the ith iteration. We now show that

(i) Q′ is consistent, and
(ii) if Q and Q′ are respectively the Markov extensions of Q and Q′, then Q′ =

(pEi =Q
↓Ei)Q.

To prove (i), owing to the acyclicity of K , it is suHcient to prove that Q′ is pairwise
consistent or, more simply, that for every two nondisjoint edges A and A′ of K one
has (q′A)↓A∩A′

=(q′A′)↓A∩A
′
. To achieve this, note that, for each a in A∩A′, each node

along the undirected path (A=A1; B1; : : : ; Ah; Bh; Ah+1; : : : ; Ak =A′) in T joining A and
A′ contains a so that, for each Bh; q′Bh

always coincides with the marginals of q′Ah

and q′Ah+1
on Bh. It follows that the marginals of q′A and q′A′ on A ∩ A′ do coincide.

To prove (ii), we begin by writing Q and Q′ using formula (1):

Q = qAi$ and Q′ = q′Ai
%;

where

$ =
∏

A∈K\{Ai}
qA

/ ∏
B∈D

qg(B)−1
B (2)
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and

% =
∏

A∈K\{Ai}
q′A

/ ∏
B∈D

q′g(B)−1
B : (3)

On the other hand, as at the beginning of Step 2 we set

q′Ai
= rEiqAi ;

it is suHcient to prove that $=%. To achieve this, consider any edge A of K distinct
from Ai and suppose that node A is reached from node B. Then

q′A = rBqA: (4)

By substituting (4) into (3) and on account of (2) one has

% =

[ ∏
B∈D

rg(B)−1
B

] 
 ∏

A∈K\{Ai}
qA



/[ ∏

B∈D
q′g(B)−1
B

]

=


 ∏

A∈K\{Ai}
qA



/[ ∏

B∈D
qg(B)−1
B

]
= $:

From the computational point of view, $rst of all observe that the complexity of
the MP algorithm is sensitive to the acyclic cover K of H that was constructed at
the initial phase by triangulating the graph [H ]2. In what follows, we focus on the
Iterative Phase of the JP method and assume we are given the acyclic hypergraph
K constructed at the Initial Phase hopefully in a reasonable way. We now analyse
the running time of the MP algorithm (that is, the computational cost of an iterative
step of our implementation of the IPF procedure) and discuss its dependence on the
input tree T in order to get an edge-divider tree of K that minimises the running
time of the MP algorithm.

Step 1 requires ||Xi|| additions and ||E|| divisions to update qEi , that is,

||Xi||� + ||Ei||�

time units. Step 2 requires ||Ai|| multiplications to update qAi , that is,

||Ai||�

time units. Next, during the traversal of T , when D-node B is reached from K -node
A, one needs ||A|| additions and ||B|| divisions to update rB and qB and when K -node
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A is reached, one needs ||A|| multiplications to update qA. To sum up, the time units
required by Step 2 amount to

g(Ai)||Ai|| +
∑

A∈K\{Ai}
[g(A) − 1]||A||


 � + ||K ||� + ||D||�

=

{
||Ai|| +

∑
A∈K

[g(A) − 1]||A||
}
� + ||K ||� + ||D||�;

where, by Lemma 1, g(A) is the number of neighbours of K -node A in T . Conse-
quently, the execution of the MP algorithm requires{

||Xi|| + ||Ai|| +
∑
A∈K

[g(A) − 1]||A||
}
� + ||K ||� + (||D|| + ||Ei||)�

time units and, for a $xed T , is minimum if Xi is chosen among minimum-size
edges of K ∪ D containing Ei, and Ai is chosen among minimum-size edges of K
containing Ei.

We now discuss the dependence of the running time of the MP algorithm on the
input edge-divider tree T of K . It is clear that the running time is minimum if T
minimises the quantity∑

A∈K
g(A)||A||:

This quantity can be re-written as∑
c(A; B);

where the summation is extended over all arcs of T , and c(A; B), we call the cost
of arc (A; B), is taken to be ||A||. Therefore, the input tree of the MP algorithm
should be a minimum-cost edge-divider tree of K . One can easily construct such
a tree bearing in mind that edge-divider trees of K coincide with maximum-weight
spanning trees of the edge-divider graph of K ; thus, one has an eHcient algorithm
for computing a minimum-cost edge-divider tree of K by modifying any of the
above-mentioned maximum-weight spanning-tree algorithms in such a way that arc
cost is used as a second search priority (Jensen and Jensen, 1994).

Example 4 (continued). Fig. 9 shows the edge-divider graph G(K) of the clique
hypergraph K of the graph of Fig. 7. The costs of the edges of G(K) are listed
below:

c(abij; abi) = c(abij; ab) = 36

c(abcdi; abi) = c(abcdi; abcd) = c(abcdi; abc) = c(abcdi; ab) = 48

c(abcdh; abcd) = c(abcdh; abc) = c(abcdh; ab) = 32
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Fig. 9.

c(abcg; abc) = c(abcg; ab) = 16

c(abf ; ab) = 8

c(abe; ab) = 8:

Then, a minimum-cost edge-divider tree of K is the tree shown in Fig. 8.

If T is the input tree of the MP algorithm and Ai is the edge of K selected
at the beginning of Step 2, then the updating process can be summarised by the
directed tree M i which is obtained from the traversal tree of T (started at Ai) with
the addition of the directed arc Ei → Ai. A tree such as Mi is referred to as a
Markovian propagation tree from Ei to K and by the complexity of Mi we mean
the amount of the time units needed to execute Step 2, that is,{

||Ai|| +
∑
A∈K

[g(A) − 1]||A||
}
� + ||K ||� + (||D||)�:

Note that, if for each D-node B of Mi we denote by par(B;Mi) the parent of B in
Mi, then the complexity of Mi can be also written as[∑

B∈D
||par(B;Mi)||

]
� + ||K ||� + ||D||�:

Finally, if Ai is a minimum-size edge of K containing Ei, and if T is a minimum-cost
edge-divider tree of K then the complexity of Mi is reduced to a minimum and Mi

is here called an optimal Markovian propagation tree from Ei to K .

Example 4 (continued). Fig. 10 shows optimal Markovian propagation trees from
the edges of H to K all of which are supported by the edge-divider tree of Fig. 7.

Finally, by repeatedly applying the MP algorithm, one for each edge of H , we
obtain an eHcient implementation of the iterative phase. Note that the running time
of such an implementation does not depend on the ordering the edges of H according
to which the probability distributions in P are processed.
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Fig. 10.
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Fig. 11.

4. Fast propagation trees

In this section we present a propagation algorithm which is not less eHcient than
the MP algorithm. First of all, observe that the execution of the MP algorithm,
even if it corresponds to an optimal Markovian propagation tree, may suNer from
the following two limitations: for some D-node B of Mi, the distribution qB might
be updated in a nonoptimal way (Almond and Kong, 1993; Jensen and Jensen,
1994) and, worst of all, might be avoided. These limitations are apparent in the
$rst Markovian propagation tree of Fig. 10 for Ei =ad. For example, the probability
distribution qab can be updated more eHciently by marginalizing qabc and, moreover,
given the table rad, one can soon update not only qabcdh but also qabcdi so that it is
useless to update qabcd and rabcd. The following lemma generalises the considerations
above to an arbitrary Markovian propagation tree from Ei to K .

Lemma 2. Let Mi be a Markovian propagation tree from Ei to K , and X a node of
Mi from {Ei}∪D. If Y is a node of Mi that contains X and is a proper descendant
of X , then the probability distribution qZ can be updated by setting qY :=rX qY .

Proof. We prove the statement by induction on the length k of the directed path
from X to Y . Let Q and Q′ be the contents of the probabilistic database before and
after executing the ith iteration.

(Basis) For k = 1; Y is a K -node and q′Y = rX qY which proves the statement.
(Induction) Assume that the statement holds for k ¿ 1; we shall prove that it also

holds for k + 1. Assume that the directed path from X to Y in Mi, say (X; : : : ; Z; Y ),
has length k+1. Since X is a subset of Y , by the separation property X is a subset of
Z . The directed path from X to Z has length k so that, by the inductive hypothesis,
one has

q′Z = rX qZ : (5)

Let us now distinguish two cases depending on whether Y is a D-node or a K -node.
Fig. 11 illustrates the two cases.

Case 1. Y is a D-node and Z is a K -node so that Y ⊆ Z and, hence, qY equals the
marginal of qZ on Y . On the other hand, since X ⊆ Y ⊆ Z , summing up both sides
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of formula (5) over all variables in Z \ Y , one obtains

q′Y = rX qY ;

which proves the statement.
Case 2. Y is a K -node and Z is a D-node so that Z is a subset of Y and, hence,

q′Y = rZqY :

Moreover, by (5) one has rZ = rX which proves the statement.

The next algorithm takes as input an optimal Markovian propagation tree Mi from
Ei to K and produces a directed tree Fi rooted at Ei which contains all K -nodes of
Mi and a subset of dividers of K . Tree Fi will be referred to as a fast propagation
tree from Ei to K .

Fast propagation tree (FPT) algorithm

Input: An optimal Markovian propagation tree Mi from Ei to K .
Output: A directed tree Fi.
Step 1. Create a list named Top containing the topological sort of the D-nodes of

Mi, that is, if B precedes B′ in Top then B is not a descendant of B′.
Step 2. Fi := Mi; mark “unvisited” all K -nodes of Fi; X :=Ei.
Step 3. For each unvisited K -node A of Fi that contains X and is a descendant of

X , do:
mark A “visited”;
delete the incoming arc of A from Fi;
add arc X → A to Fi.

Step 4. If Top is empty then go to (6).
Step 5. Set X to the $rst D-node in Top. Delete X from Top. If X is a leaf of Fi

then delete X from Fi and go to (4). Otherwise, go to (3).
Step 6. Let B1; : : : ; Bk be the D-nodes of Fi arranged in non decreasing order of

their cardinalities.
For h = 1; : : : ; k do:

Among all the nodes of Fi that are not descendants of Bh, $nd a
minimum-size superset X of Bh;

delete the incoming arc of Bh from Fi;
add arc X → Bh to Fi.

Example 4 (continued). Let us apply the FPT algorithm to the (optimal) Markovian
propagation tree from E = ad to K shown in Fig. 10. At step 1, the list Top =
(abcd; abc; ab; abi) is created. After executing Steps 2 and 3, the current content of
F is shown in Fig. 12. The D-node abcd is removed from Top and F (Step 5).
The current content of F is shown in Fig. 13.

The removal of the remaining D-nodes from Top does not change the content of
F. Finally, Step 6 produces the tree shown in Fig. 14. Fig. 15 shows the outputs
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Fig. 12.

Fig. 13.

Fig. 14.

of the FPT algorithm when it is applied to the (optimal) Markovian propagation
trees of Fig. 10. They are arranged in non increasing order of the number of their
D-nodes.

The following algorithm is alternative to the MP algorithm of Section 3.

Fast propagation (FP) algorithm

Step 1. Find a node Xi of Fi containing Ei, and set rEi :=pEi =(qXi)
↓Ei .

Step 2. Perform a traversal of Fi with start point Ei. During the traversal of Fi,
when arc Y → Z is traversed, carry out the following operations depending
on whether Y is a subset or a superset of X .
Case 1: If Z is a subset of Y , then set rZ :=(qY )↓Z=qZ and qZ :=(qY )↓Z .
Case 2: If Z is a superset of Y , then set qZ :=rY qZ .

We can de$ne the complexity of a fast propagation tree Fi in the same way as for
Mi; that is, the complexity of Fi measures the time units needed to execute Step 2
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Fig. 15.
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of the FP algorithm. Let Di be the set of D-nodes of Fi. If for each B in Di, we
denote by par(B;Fi) the parent of B in Fi, then the complexity of Fi is given by
the quantity[ ∑

B∈Di

||par(B;Fi)||
]
� + ||K ||� + ||Di||�:

Theorem 2. The fast propagation algorithm is correct and its running time is not
greater than the running time of the MP algorithm.

Proof. The correctness of the FP algorithm easily follows from Theorem 1 and
Lemma 2. We now show that the FP algorithm is not less eHcient than the MP
algorithm. Let m and f be the complexities of Mi and Fi, respectively; that is,

m =

[∑
B∈D

||par(B;Mi)||
]
� + ||K ||� + ||D||�

and

f =

[ ∑
B∈Di

||par(B;Fi)||
]
� + ||K ||� + ||Di||�:

Consider the quantity

m− f =




∑
B∈D\Di

||par(B;Mi)|| +
∑
B∈Di

[||par(B;Mi)|| − ||par(B;Fi)||]

 �

+ (||D|| − ||Di||)�:
Since the terms

∑
B∈D\Di

||par(B;Mi)|| and (||D|| − ||Di||) are never negative, it is
suHcient to prove that∑

B∈Di

[||par(B;Mi)|| − ||par(B;Fi)||]

is never negative. But this follows from the fact that, for each B in Di, if A is the
parent of B in Mi then A is also a node of Fi and A is not a descendant of B
in Fi so that the size of A is not greater than the size of par(B;Fi), which is a
minimum-size superset of B among the nodes of Fi.

Example 4 (continued). Let m and f be the complexities of the optimal Markovian
propagation tree from ad to K and of the corresponding fast propagation tree. Then,
one has m− f = 40� + 16�.

Remark 2. Using the FP algorithm, the probability distributions qB in Q for each
B in D \ Di are not updated. Thus, before starting the next iteration, a preliminary
computation is needed to update the probability distributions qB for each B from D′

i
where D′

i =Di+1 \Di if i¡n and D′
i =D1 \Di if i=n. To achieve this, it is suHcient

to add the following statement to the FTP algorithm:
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Fig. 16.

Step 7. Let B1; : : : ; Bk be the sets in D′
i arranged in non decreasing order of their

cardinalities. For h = 1; : : : ; k do:
Among all the nodes of Fi,
$nd a minimum-size superset X of Bh and add arc X → Bh to Fi.

Example 4 (continued). Let En = bf and E1 = bh. Then, Dn = {ab} and D1 =
{ab; abc; abcd; abi} (see Fig. 15). After executing Step 7, the fast propagation tree
from En to K changes to the tree shown in Fig. 16.

In order to reduce the additional computation due to Step 7 in each iteration cycle,
it is reasonable to order the edges of H in the same order as the fast propagation
trees appear in Fig. 15. Thus, Step 7 is actually executed only for the last edge (bf)
of H since the set of D-nodes in the corresponding fast propagation tree does not
contain the D-nodes abc, abcd, abi of the $rst propagation tree which corresponds
to the edge bh of H .

5. Closing remarks

We proposed an implementation of the IPF procedure based on Markovian prop-
agation trees, which has the following two nice properties:
(1) given a distribution from the input probabilistic database, an optimal Markovian

propagation tree can be constructed in an eHcient way, and
(2) the implementation of the IPF procedure is independent of the order in which

the distributions in the input probabilistic database are processed.
We also showed that an optimal Markovian propagation tree M may still suNer from
some undesirable computational aspects, which can be removed by “simplifying” M
with an eHcient algorithm that still produces a tree F, we called the fast propagation
tree associated to M . We then provided a propagation algorithm with input F which
has a computational cost not greater than the propagation algorithm with input M .
To sum up, the implementation of the IPF procedure by fast propagation trees is
never less eHcient than the implementation by Markovian propagation trees. Before
closing, we wish to point out that the implementation of the IPF procedure by
fast propagation trees turns out to depend on the order in which the probability
distributions in the input database are processed (see Remark 2 at the end of Section
4), and we conjecture that the problem of $nding an optimal ordering of the input
distributions is hard from a complexity-theoretic point of view.
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