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INTRODUCTION

In this paper we report a new type of single
layer perceptron which incorporates n-tuple
pattern recognition techniques [1] in an SLP
architecture to produce a single layer look
up perceptron {(SLLUP) which can learn the
same types of non-linear mappings as an
multi-layer perceptron, MLP, but with a
fraction of the training and computation. An
additional very desirable property of the
SLLUP is that it produces a quadratic error
surface and so convergence to optimal
performance is assured.

It will be argued that the SLLUP is basically
an interpolation system which is able to
generate an estimate of a continuous mapping
function from a sparse set of training
examples and, as will be demonstrated, is
well suited to dealing with simple non-linear
mappings such as parity detection.

The ability of the SLLUP to work on the very
complex mapping problems of speech
recognition and text to speech synthesis is
also examined and compared with the
performance obtainable using the multi-layer
perceptron. It will be seen that the SLLUP
can very nearly equal the performance of the
MLP in these problems, suggesting that the
MLP also does little more than a
straightforward sample interpolation.

SLLUR ARCHITECTURE AND OPERATION

All neural networks can be thought of as
vector transformers in which the
transformation is learnt. The learning is
normally supervised as depicted in Fig 1. A
training example of an input vector is
applied to the system and a target output
vector is shown to the system by the
supervisor. The difference between the actual
output and the target is used to modify the
internal parameters of the system so that the
actual output becomes more like the target.

In the case of the SLLUP, the vector
transformer has the form shown in figure 2.
The input vector X is encoded as an image of
black and white pixels formed by bits of the
code representing the scalar elements of X.
The image is placed in a retina onto which
random connections are made in groups of n
to form n-tuples which are used to address a
large number of RAMs. The RAMs themselves are
grouped into units and the outputs of all the
RAMs in the ith unit are added to form, yj,
the value of the i th element of the output
vector Y. The bits used to represent the
elements of X in the retina can range from
themometer code to natural binary or Gray
code depending on the desired SLLUP
characteristics.

The system is trained by applying a vector X
to its input. This causes a specific set of
n-tuple addresses to be generated, which

148

access corresponding contents in each of the
RAMs. The summation of the output of each
group of RAMs produces the elements of the
output vector Y. This vector is compared
with the desired output T and the error
vector, E, is used to modify the values of
the currently addressed RAM locations so that
next time the same input vector is applied,
the output, Y, is nearer to the desired
output T.

Repeated application of different training
vectors allows the system to learn the
required input - output mapping Y=

f(X) .Moreover, appropriate choice of n-tuple
order and number of RAMs in each neuron
block, enables the system to estimate the
best function f(X) to fit a rather sparse
training set.

The adaption of the RAM contents to develop
the required mapping function is done using a
gradient descent procedure. The required
error gradient is easily shown to be given by
equation 1 in which Cij (X) is the content of
the location in the jth RAM in the ith neuron
block which is addressed via its n-tuple
connections by the pattern X. yi , tj , and
ei are the actual output ,target output and
output error respectively.
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This gradient expression can be used to
define a simple steepest descent training
algorithm in which the contents of the
currently addressed RAM locations are updated
by subtracting a fraction of the error
between actual and target outputs of the
neuron block.
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As well as this very simple training
procedure, the SLLUP has an other important
advantage compared to other neural networks
such as the MLP: examination of the
expression for the error surface shown in
equation 3 indicates that it is quadratic in
Cij (X) which means that convergence to a
single global minimum is guaranteed.

Supervised learning machines are required to
learning a mapping function Y = f (X) without
exposure to all possible input - output pairs
of Y and X values. This is only possible if
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the system can interpolate between sample
values of the function which are given during
training. A straightforward approach to
generating a continuous interpolated function
from a set of discrete samples of the
function is to convolve the samples with a
suitable low pass filter response or kernel
function. This is approximately the function
performed by the SLLUP (2], (3] which
implicitly generates a low pass filter kernel
function having a form governed by the order
of the n-tuple connections, n, the number of
dimensions, D, of the input pattern space and
the way in which the input pattern is encoded
in the input retina. If a 'thermometer code‘
is used for each of the input pattern
elements, the kernel function is defined by
equation 4 in which s(x) is the value of the
kernel at a distance x from its centre and W
is the width of each input space dimension.
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Three important points are raised by this
view of the generation of a continuous
function from discrete examples.

1. Sufficient training examples must be given
such that there is an average of two samples
per cycle of the highest frequency in the
mapping function.i.e The function must be
sampled at the Nyquist Rate. This suggests
that the complexity of a mapping function be
specified in terms of its bandwidth, B.

2. To obtain a perfect, continuous function
from the training examples, the interpolation
filter should have a rectangular frequency
response, cutting off at a frequency of B.
However, practical filters will never have
this response and will give an error in the
estimate of the continuous function.

3. It is very unlikely that the training
examples supplied to the SLLUP will be
uniformly distributed across the pattern
space. This means that the distances between
samples of the required mapping function are
non uniform. The Nyquist Sampling Theorem
requires at least two samples per cycle of
the function if it is to be recovered without
loss of information. However, a uniform

sample interval is not specified and the
irregularity of the training points does not
necessarily mean that the continuous mapping
function cannot be recovered. Unfortunately,
a simple interpolation filter is unable to
recover a continuous function from a set of
irregular samples because the function will
be non-uniformly scaled in proportion to the
density of the samples. However this is not a
problem, if the learning is done

iteratively, because incorrect scaling of the
function will be corrected by the negative
feedback action of the adaption algorithm.

The SLLUP Interpolation Kernpel.

The form of interpolation kernel produced by
the SLLUP depends strongly on the way in
which the input vector X is encoded.
Thermometer coding is the simplest way of
encoding X in 'image' form which can be
sampled by the random n-tuple connections.
This type of input coding produces the smooth
kernel defined in equation 4 whose 1/e width
and hence bandwidth is simply controlled by
choosing the appropriate n-tuple order.
Unfortunately, this technique makes
inefficient use of memory because one pixel
must be provided for every increment along
every dimension of X.

An alternative coding is natural binary which
leads to a minimal retina size, and hence
memory. However, it produces a kernel
consisting of a central impulse surrounded by
lower level impulses. and the effective
bandwidth of this kernel function is much
higher than the thermometer code function.
Consequently, many more training examples are
required for it to synthesise a smooth
mapping function. Many other coding schemes
can be devised which yield kernels which lie
between the extremes of form generated by the
thermometer and natural binary codes and
these are discussed in [3].

LEARNING A FUNCTION - THE FUZZY EXQR PROBLEM.

A series of experiments have been done on a
SLLUP to test it ability to synthesize simple
mapping functions and to see how much
training is required and illustrate the
operation of the SLLUP.

Just one classical example is presented here:
a fuzzy exclusive OR as shown in figure 3.
The SLLUP is required to map any patterns
lying within the two rectangles, marked C1 in
the input space, to the single point marked
C1 is in the output space. Similarly any
pattern in the Cp region of the input space
should map through to the point C; in the
output space.

To test the accuracv of the mappina learnt bv
the SLLUP, an error function has been defined
where e(x], xp) is the Euclidean distance
between the target output and actual output
when an input pattern [x; x2] is applied to
the machine.

As an example, Fig 4 shows the error function
for Cl after the SLLUP has been trained on
one point in the centre of each region. The
resultant mapping closely approximates the
specified function even though the system has
only been trained on a very small subset of
possible input patterns.

Fig. 5 shows the time variation of the RMS
error between the output of a SLLUP and the
target values given during training on the
fuzzy EXOR problem described earlier in the
paper. In this experiment only four distinct
input patterns have been used for training in
each of the class regions shown in Fig 3. The
SLLUP converges to low error value at the
training points after only 50 iterations
although the value of error with inputs other
than those used during training is of course
much higher.

For comparison, the learning curves of a
2-layer 4 hidden unit MLP are also shown in
Fig 5, although direct comparison of the MLP
and SLLUP learning times is rather difficult
because it depends on the number of hidden
units used in the MLP. The minimum number of
hidden units depends in turn on the
complexity of the mapping function to be
generated whereas the SLLUP complexity does
not depend directly on the function
complexity. Four hidden units was chosen in
this case because it is more than sufficient
to deal with the fuzzy EXOR problem.

SPEECH RECOGNITION AND SYNTHESIS PROBLEMS
USING THE SLLUP.

It has been shown in previous sections that



the SLLUP is able to perform simple non
linear mappings such as the fuzzy EXOR
problem. This is achieved using only small
amounts of training and with little
computation compared to the MLP. We now
examine the SLLUP performance on two speech
mapping problems of very great complexity on
which MLPs and some other neural nets have
already been tested.

The first mapping problem is speaker
independent recognition of utterances of the
letters of the alphabet. A defined cepstral
coefficient representation of many utterances
of the letters of the alphabet from one large
set of talkers must be classified by the

SLLUP after it has been trained on examples
from a separate set of talkers. The database
used in this experiment was compliled by
British Telecom Research Labs and is Known as
the CONNEX S1 data [5). The SLLUP is trained
on approximately 4000 utterances from a
balanced mix of 52 talkers and then tested on
approximately 4000 utterances from another 52
talkers. The utterance length is normalised
by linear time warping and is presented to
the SLLUP as a set of 15 frames of 8 Mel
Cepstral coefficients.

The second complex problem to which the SLLUP
has been applied is text to speech synthesis.
In this case orthographic text has to be
mapped to a sequence of phoneme codes which
are then used to drive a hardware
synthesiser, The experiment uses the same
database as NETSPEAK (4] and is identical in
all respects except that the MLP is replaced
by a SLLUP. The SLLUP is presented with a
character taken from English orthographic
text and has to produce an appropriate
phoneme code as output. Clearly the
pronounciation of a particular character
often depends on the word in which it is
embedded and so 3 characters on either side
of the target character are simultaneously
presented to the SLLUP. Thus, the complete
input pattern consists of a context window of
7 characters, each encoded using 11 bits. The
output phoneme is represented using a 19 bit
code to represent each of 55 phonemes.

It is interesting to consider the types of
mapping which the SLLUP has to develop to
deal with each of these two problems. In the
speech recognition case, input patterns
belonging to the same utterance class are
likely to cluster together in their N-space
and the SLLUP has to map the region of
N-space enclosing the cluster to a single
specified point in the output space. There
may be several clusters belonging to one
class but overall the mapping between input
and output is smooth without abrupt
transitions. This proposition is supported by
the fact that moderately good speech
recognition systems can be made using nearest
neighbour classification of the input
pattern. The task of the SLLUP in this case
is to interpolate so that previously unseen
input patterns which lie between training
examples of the same class are mapped to the
same output code.

The text to speech mapping is very different.
The distances between the codes representing
different characters does not have a simple
relationship to the distances between the
codes for the corresponding output phoneme
codes. In other words, the patterns are
really symbolic and just happen to be
represented in a Euclidean space for
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processing by the neural net. Thus, the task
of the SLLUP is to detect any logical
structure in the data and failing this, to
act as a look up table.

Tables 1 to 3 summarise the performance of
the SLLUP as a speech recogniser. All the
results were obtained after only 8000
training iterations. i.e Exposing the SLLUP
to the training set twice. Table 1 shows that
a SLLUP using natural binary coding in the
retina is able to learn the training set very
well, but performs poorly on the test set.
Moreover, the performance tends to improve as
the order of n-tuple decreases. Taken
together, these two factors suggest that the
SLLUP is unable to interpolate sufficiently
betwen the training examples because the
effective width of the interpolation kernel
is too small. Reduction of the n-tuple order
causes the kernel to become wider, with a
consequent improvement in performance on the
test set. Increasing the order makes the
system behave more like a look up taple,
giving better recognition of the training set

but an inability to generalise.
8 Bit Natural Binary Coding
N-tuple Order |Training set | Test set
2 95% 65%
3 98% 62%
4 95% 52%
Iable 1.

speech R . PITrRY 1B c

The kernel width produced using natural
binary code is very narrow and so a possible
solution to the poor test set performance is
to use a different code in the retina as
demonstrated by the results of Table 2. These
results were obtained by quantising each of
the cepstral coefficients to 8 levels and
representing them by thermometer code. As
expected the performance improves on the test
set and gets worse on the training set. This
confirms our hypothesis that the natural
binary code leads to an over specific system.
The results in Table 2 show an improvement in
performance as the n-tuple order increases,
indicating that in this system,the kernel is
actually too wide so that with low values of
n, over generalisation is taking place. This
is supported by the fact that the system has
been unable to accurately recognise the
training set.

8-Level Barchart Coding

N-tuple Order Training Set | Test Set
2 69% 66%
74% 69%
4 76% 70%

ble 2. Speect - ing 8 )
Thermometer Code.

An additional factor which possibly reduces
the system accuracy is the very coarse
quantisation and this is born out by the
improved results in Table 3 for a system
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using thermometer code with 16 levels per
coefficient. The recognition accuracy
obtained using this system with n=6 is
comparable with results obtained using a 2

layer, 25 hidden unit MLP on the same data
which produced a test set accuracy of 81%.
16 Level Thermometer Code
Tuple Order | Training set | Test set
2 76% 71%
3 81% 75%
4 83% 7%
6 85% 78%
Thermometer Code.

Synthesis Problem.

In these experiments each of the seven
characters in the input window are
represented by 11 bit codes containing
approximately equal numbers of 'l's and 'O's.
This is important when using a SLLUP because
an imbalance in the number of'l's and 'O's
will cause most n-tuple values to always
consist of n 'l's or n '0's respectively and
this renders the n-tuple values insensitive
to changes in the input vector X.

The results obtained using a SLLUP in the
text to speech application are presented in
Tables 4 and 5. Table 4 shows the performance
of the SLLUP when the 11 bit codes are
placed at approximately equidistant positions
in 1ll-space. This coding is therefore
completely unstructured. As expected, the
pertormance is very poor because The input
patterns are really symbolic and the
interpolation between arbitrary codes
effected by the SLLUP is inappropriate. Using
a high n-tuple order of 8 gives improved
performance on the training set because the
SLLUP starts to operate as a look up table.
However, the test set performance remains
poor.

oding
Codes for each character are approximately
equidistant are each 11 bits long
consisting of 5 'I's and 6 '0's.

Tuple Order| Training Set Test set
4 34.5% 33.4%
8 60.8% 55.2%

Training: 4 blocks of 10,000 characters
Testing: 1 block of 10,000 characters

Table 4._Text to Speech Sythesis Results -
Unstructured Codes.

Table 5 shows the performance of the SLLUP
working on a modified set of input codes
which -are chosen so that their mutual
distances approximately reflect the
perceptual distances between the phonemes

which map most frequently to each letter.
Using these structured codes, distances in
the ll-space have some meaning and so
interpolation becomes a more appropriate
means of generating an output on unseen input
data. Predictably the results in Table 5 are
much better, with high accuracies obtained
both on training and test data if
sufficiently large n-tuples are used. A
furthur improvement can be obtained if the
frequency of commonly occuring words is
relected in the content of the training and
test sets. This is because the very common
words in English often have irregular
pronunciation rules which are hard for the
SLLUP to learn unless seen very frequently.
McCulloch reports [4] that a 2-layer, 77
hidden unit MLP can give an 86% letter to
phoneme mapping accuracy which is slightly
better than the SLLUP result. However, the
SLLUP converges relatively quickly and shows
a trend of improving performance as n-tuple
order increases.

Coding
Each code is 11 bits consisting of 5
'l's and 6 '0's. Distance between each
code reflects the letter group.

Tuple Order Training Set | Test set
4 52,2% 52.2%
8 72.7% 71.3%
10 78.4% 75.0%
10 ** 83.9% 79.9%
Training: 8 blocks of 10,000 characters

Testing: 5 blocks of 10,000 characters

** frequency weighted training and test data

Table 5._Text to Speech Synthesis Results -
Structured Codes.

CONCLUSIONS

It has been argued that the purpose of any
supervised learning network is to synthesise
a continuous non-linear mapping function from
a sparse set of training examples of the
function. The continuous function can be
generated by interpolation between the
discrete examples of the function. An
important implication of this argument is
that the number of training examples must be
sufficient such that the function is sampled
at least at the Nyquist rate.

SLLUPs synthesise the required mapping
function by effectively convolving the
discrete training function samples with a
kernel function which is analogous to the
impulse response of a low pass interpolation
filter.

The SLLUP uses comparable amounts of memory
to the MLP for all but the most trivial
functions and in general will learn the
required mapping function much faster than an
MLP because it is a single layer machine in
which error gradients used for its adaption
can be calculated directly from the output
error. Moreover, because it is a single layer
machine, the error surface for the SLLUP is
and therefore always converges to a minimum
error.

It has been shown that the SLLUP is able to
operate as a speaker independent recoaniser



with almost as high accuracy as an MLP which
suggests both that speech recognition can be
effectively

gerformed by interpolation and, perhaps more
important, that the MLP also appears to be
doing little more than interpolation. This is
supported by the use of a SLLUP for text to
speech synthesis which again gave a
performance only slightly inferior to an MLP.
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