
N-TUPLE NEURAL NETWORKS

N. M. Allinson and A. R. Kolcz
Department of Electrical Engineering and Electronics, UMIST, Manchester, UK.

The N-Tuple Neural Network (NTNN) is a fast, efficient memory-based neural network capable

of performing non-linear function approximation and pattern classification. The random nature

of the N-tuple sampling of the input vectors makes precise analysis difficult. Here, the NTNN

is considered within a unifying framework of the General Memory Neural Network (GMNN) -

a family of networks which include such important types as radial basis function networks. By

discussing the NTNN within such a framework, a clearer understanding of its operation and

efficient application can be gained. The nature of the intrinsic tuple distances, and the resultant

kernel, is also discussed, together with techniques for handling non-binary input patterns. An

example of a tuple-based network, which is a simple extension of the conventional NTNN, is shown

to yield the best estimate of the underlying regression function, E(Ylx), for a finite training set.

Finally, the pattern classification capabilities of the NTNN are considered.

1 Introduction
The origins ofthe N-tuple neural network date from 1959, when Bledsoe and Brown­
ing [1] proposed a pattern classification system that employed random sampling of a
binary retina by taking N-bit long ordered samples (i.e., N-tuples) from the retina.
These samples form the addresses to a number of memory nodes - with each bit
in the sample corresponds to an individual address line. The N-tuple sampling
is sensitive to correlations occurring between different regions for a given class of
input patterns. Certain patterns will yield regions of the retina where the prob­
ability of a particular state of a selected N-tuple will be very high for a pattern
class (e.g., predominately 'white' or 'black' if we are considering binary images of
textual characters). If a set of exemplar patterns is presented to the retina, each of
the N-tuple samples can be thought of as estimating the probability of occurrence
of its individual states for each class. A cellular neural network interpretation of N­
tuple sampling was provided by Aleksander [2]; and as we attempt to demonstrate
in this paper its architecture conforms to what we term as the General Memory
Neural Network (GMNN). Though the N-tuple neural network is more commonly
thought of as a supervised pattern classifier, we will consider first the general prob­
lem of approximating a function, I, which exists in a D-dimensional real space,
IRP. This function is assumed to be smooth and continuous and that we possess a
finite number of sample pairs {(Xi, Yi) : i = 1, 2 ... , T}. We will further assume that
this training data is subject to a noise component, that is Yi = f(xi) + c, where
c is a random error term with zero mean. A variant of the NTNN for function
approximation was first proposed by Tattersall et al [3] and termed the Single­
Layer-Lookup-Perceptron (SLLUP). The essential elements of the SLLUP are the
same as the basic NTNN except that the nodal memories contain numeric weights.
A further extension of the basic NTNN, originally developed by Bledsoe and Bisson
[4], records the relative frequencies at which the various nodal memories are ad­
dressed during training. The network introduced in Section 4 combines aspects of
these two networks and follows directly from the consolidated approach presented
in Section 2.
We discuss, in Section 3, some details of the NTNN with particular reference to its
mapping between sampled patterns on the retina and the N-tuple distance metric,

3
S. W. Ellacott et al. (eds.), Mathematics Of Neural Networks
© Kluwer Academic Publishers 1997

4 CHAPTER 1

and the transformation of non-binary element vectors onto the binary retina. The
form of the first mapping, which is an approximately exponential function, is the
kernel function of the NTNN - though due to the random nature of the sampling,
this must be considered in a statistical sense. Finally, a brief note is given on
a Bayesian approximation that indicate how these networks can be employed as
pattern classifiers.

2 The General Memory Neural Network
Examples of GMNN include Radial Basis Function (RBF) [5] networks and the
General Regression Neural Network (GRNN) [6]. These networks can provide pow­
erful approximation capabilities and have been subject to rigorous analysis. A fur­
ther class of networks, of which the NTNN is one, have not been treated to such
detailed examination. However, these networks (together with others such as the
CMAC [7] and the Multi-Resolution Network [8]) are computationally very efficient
and better suited to hardware implementation. The essential architectural compo­
nents of GMNNs are a layer of memory nodes, arranged into a number of blocks,
and an addressing element that selects the set of locations participating in the
computation of the output response. An extended version of this section is given in
[9].
2.1 Canonical Form of the General Memory Neural Network
The GMNN can be defined in terms of the following elements:

• A set of K memory nodes, each possessing a finite number of IAk I addressable
locations.

• An address generator which assigns an address vector

A(x) = [Al(X), A2(X), . .. , AK(X)]
to each input point x. The address generated for the kth memory node is
denoted by Ak(x).

• The network's output, g, is obtained by combining the contents of selected
memory locations, that is

[ml (Al (x)), m2(A2(x)), ... , mk(Ak(x))] ~ m, (1)
where mk(Ak(x)) is the content of the memory location selected by the kth
memory node by the address generated by x for that node (this will be iden­
tified as simply mk(x)). No specific format is imposed on the nature of the
memories other than that the format is uniform for all K nodes.

• A learning procedure exists which permits the network to adjust the nodal
memory contents, in response to the training set, so that some error criterion,
7r(f, g), is minimised.

Each node of the network performs a simple vector quantization of the input space
into IAk I cells. For each node, the address generating element can be split into
an index generator and an address decoder. The index generator, h, selects a cell
for every x E n and assigns it a unique index value, Ik(x) E {1, 2, ... , IAkl};
hence the index generator identifies the quantization cell to which the input points
belongs. The address decoder uses this generated index value to specify the physical

Allinson €3 I< olcz: N- Tuple N euml Networks 5

memory address which then selects the relevant node k. Hence, Ak(X) = Ak(Ik(X)).
Therefore, a cell, Rf, can be defined as the set of all input points which result in
the selection of an address corresponding to the ith index of the kth node.

Rf = {x En: Ik(x) = i} (2)

Each of the cells is closed and bounded as the input space is compact in IRD. The
selection of a cell is given by the following operator or activation function

S~(X)=(h(X)=i)={ 1 ifxEI!f: i =l, ... ,IAk l (3)
• 0 otherwIse

The quantization of n performed by the individual nodes is combined, through the
intersection of the K cells being superimposed, to yield a global quantizer. The
number of cells IAI is given by the number of all such distinct intersections.

lAd IA21 IAkl K
IAI = E E··· E II ({x En: hex) = ik} # 0) (4)

;,=1 ;2=1 ik=1 k=1

The upper bound being given by IAlmax = nf=1 IAkl· The address generation
element of the network is distributed across the nodes, so that the general structure
of Figure 1a emerges. Alternatively, the address generation can be considered at
the global level (Figure 1b). These two variants are equivalent.
The quantization of the input space by the network produces values that are con­
stant over each cell (We are ignoring, for the present, external kernel functions).
The value of f assigned to the ith cell is normally expressed as the average value
of f over the cell.

(5)

where d J is given by the squared error function. In most supervised learning schemes,
this representation of feR;) is estimated inherently through the minimisation of an
error function.
For K = 1, the GMNN could be simply replaced to a VQ followed by a look-up
table. There would need to be at least one input point per quantization cell. The
granularity of the quantization needs to be sufficient to meet the degree of approx­
imation performance appropriate for the required task. When there are multiple
nodes (K > 1), the quantization at the node level can be much coarser which, in
turn, increases the probability of input points lying inside a cell. The fine granu­
larity being achieved through the superposition of nodal quantizers. Learning and
generalisation are only possible through the use of multiple nodes. Points that are
close to each other in the n space should share many addresses, and vice versa.

2.2 GMNN Distance Metrics
The address proximity function, which quantifies the proximity of points in nand
so the number of generated identical nodal addresses, is given by

K K

K : n 2 -+ {O, 1, ... , K} K(X, y) = E(Ak(x) = Ak(Y)) = E(Ik(X) = hey)) (6)
k=1 k=1

6

Figure 1 (a) GMNN - address gener­
ation considered at the nodal level. (b)
GMNN - address generation considered
at the global level. These two variants are
identical in terms of overall functionality.

CHAPTER 1

(~I" z,. ------- .o;,J

~ + Co-ordina1c InJUfannanoa ..

11------- I
\\ RdioaI projectioo I

KNodco

Figure 2 General structure of an
NTNN.

The address distance function, defined as the number of different generated nodal
addresses, is given by

K K

P : Q2 -+ {O, 1, ... , K} p(x, y) = ~)Ak(X) f Ak(Y» = ~)Ik(x) f Ik(Y» (7)
k=l k=l

The binary nodal incidence function, which returns' l' if two inputs share a common
address at a given network node and '0' otherwise, is defined as

{ I {::} h(x) = h(Y)
Mk(X, y) = (Ik(X) = h(Y» = 0 {::} h(x) f h(Y)

From these definitions, several properties directly follow.
'v'(x, Y E Q) p(x, x) = 0 p(x, y) = p(y, x)

(8)

K(X, x) = K K(X , y) = K(Y, x) (9)
K(X,y) = K - p(x,y)

K

L Mk(X, y) = K(X, y) (10)
k=l

Allinson (3 Kolcz: N-Tuple Neural Networks 7

2.3 GMNN Error-Based Training
If the address generation elements of the G MNN have been established (based on
some a priori knowledge about the function to be approximated), then the only
element which is modifiable through training is the contents of the nodal memory
locations (e.g., the weights). If these locations contain real-valued numbers and the
output of the network is formed by summing these numbers, then the response
of the GMNN is linear in terms of this weight space. Learning methods based on
the minimisation of the square error function are guaranteed to converge under
these general circumstances. In the following analysis, we will therefore assume an
iterative LMS learning schedule. For a finite training set of T paired samples, the
error produced by the network for the jth presentation of the ith training sample
is given by

(11)
k=1

where Wk(Xi) is the value of the weight selected by xi at the kth node. The par­
ticipating weights are modified by a value, .6.}, proportional to this error so as to
reduce the error.

(12)

Initially, all weight values are set to zero. As Wk(Xi) is shared by all points within
the neighbourhood Nk(Xi), this weight updating can affect the network response
for points from outside the training set. That is within an input space region given
by

(13)

The output of the network after the training is complete, for an arbitrary x E 0,
will depend on all training samples lying within the neighbourhood of x.

K K T (TO)
g(x) = (; Wk(X) = (; ~ Mk(X, Xi)];.6.; (14)

Rearranging this expression and using the identity (10), yields
T To K T To

g(x) = :L::L:.6.; :L: Mk(X, xi) = :L:.6.i . IC(X, xi), where :L:.6.; = .6.;. (15)
;=1;=1 k=1 i=1 ;=1

We can compare this result with the response of a trained RBF network.
T

g(x) = E w; . IC(X, xi) (16)
i=1

For the normalised RBF network, the response is given by
T E wi . IC(X, xi)

g(x) = .;....i=...::1=T ___ _

E IC(X, xi)
i=1

(17)

8 CHAPTER 1

and for the GRNN (where the training set response values replace the weight val­
ues).

T

E yi . IC(X, xi)
g(x) = .:..:i=:;,:1T=-__ _ (18)

EIC(X,Xi)

i=1
Though there are obvious similarities, we can further extend the functionality of the
G MNN by incorporating into each nodal memory an integer counter. This nodal
counter is incremented whenever the node is addressed, that is Ck(Xi) +- Ck(Xi) + 1
(Initially, all counter values are set to zero). Now the response of the GMNN is
given by

T

E Ai . IC(X, xi)

g(x) = .:c:i =:..:.1T=-__ _ (19)

E IC(X, xi)
i=1

The trained GMNN is equivalent to a set ofT units, each centred at one ofthe train­
ing samples, xt, and possessing height At and kernel weighting function IC(" xt). To
complete the equivalence ofthe GMNN and the GRNN, IC must satisfy the general
conditions imposed on kernel functions [10].

2.4 Introduction of External Kernels
The network output is given by the sum of weights corresponding to the selected
locations, but the output remains constant over each quantization cell - regardless
of the relative position of the input point inside a cell. The network mapping thus
becomes discontinuous at the cell boundaries. A solution would be to emphasise
weights that correspond to quantization cells that are closer to the current excita­
tion, x, than others. This distance can be defined in terms of the distance between
x and the centroid of R~ (where i = Ik(x».

d(x, Rn = d(x, cf) (20)
A smooth, continuous and monotonically decreasing kernel function is then intro­
duced to weight the contributions ofthe respective nodes to the values of d(x, R~(x»,
where Rf(x) is the cell selected by x for the kth node. The network output now
becomes

K IAhl
g(x) = E E wf . <pf(d(x, R:(x))) . Mk(C:, x) (21)

k=1i=1
A set of K . IAk I kernel or basis functions can be defined, with centres given by
the centroid set {cn and where each kernel has its support truncated to its corre­
sponding quantization region. The network mapping can be expressed as

K IAkl
g(x) = E E w~ . <p~(x) (22)

k=1i=1

Allinson & Kolcz: N-Tuple Neural Networks 9

or in its normalised form as
K IAkl

E E wf· <pf(x)

g(x) = k=l;=tAkl (23)

EE<pf(x)
k=li=l

<pf(x) is the kernel function associated with the ith quantization cell of the kth
node and truncated to zero at its cell boundaries. Gaussian kernels provide an
approximation to this last condition, though B-spline kernels [11] can lead to the
total absence of cell discontinuities. The introduction of external weighting kernels
is the final step in the GMNN architecture.
3 The N-Tuple Neural Network
The general form of the NTNN was described in the introduction and is shown in
Figure 2. The following two sections consider the mapping functions inherent to
this network. Namely:

• Conversion of the input vector into the binary format needed for the retina

• Sampling the retina by taking N bit values at a time to the address of one of
the K memory nodes.

There is some choice in what form the first of these mappings may take depending
on the application, but the retinal N-tuple sampling is common to all NTNNs.
Figure 3a indicates how the threshold decision planes of the individual elements
of a tuple delineate the input space into discrete regions and why the Hamming
distance between tuple values is the obvious choice for a distance metric. Further
details of the N-tuple distance metric and input encoding are given in [12, 13].

3.1 Retinal Sampling
The relationship between the number of different addresses generated for two ar­
bitrary inputs, x and y, and the Hamming distance H(x, y) (i.e., the number of
bits for which x and y differ) is important as it reveals the nature of the distance
metric necessary when a NTNN is used for pattern classification and the form of
the kernel for the approximation-NTNN. This relationship can only be expressed
in terms of an expectation due the random nature of the sampling. For sampling
without repetitions, the expected value of PNTNN(x, y) = PNTNN(H) is given by

E(PNTNN(H)) = K (1 _ (1 _ ~) H) (24)

For small values of H, this can be simplified to

E(PNTNN(H)) ~ K (1- exp (- Z)) (25)

For sampling with repetitions, the expected value is

E(PNTNN(H)) = K (1- exp (N. (h _ h; + ~3 - •• -))) (26)

where h is the normalised Hamming distance (= HI R). Again, this can be simplified
for small values of h, to yield

E(PNTNN(H)) ~ K(l - exp(-N . h)) (27)

10

~I

CHAPTER 1

111

~ 100 101 ~ 5 01&00
O<A O<A

MIl 011 ...
~OOO ~

(c)

00
I>C
C>A

Figure 3 (a) The delineation of input space by the hard decision planes of each
tuple element's threshold. Each region is marked by its specific binary state of
the 3-tuple, tl' (b) The thermometer coding inherent in N-tuple sampling. The
variable, Xl, is uniformly quantized into six discrete regions (L == 6). The indicated
2-tuple partitions this interval into three unequal quantization regions, with the
binary state of the 2-tuple indicated. (c) The delineation of the 3-dimensional input
space into tetrahedral regions through the use of a ranking code. The binary space
representation of the input space is also shown.

There is little difference in the general form of these two sampling methods, though
there may be crucial differences in performance for specific tasks. The distance
function depends exponentially on the ratio of the Hamming distance, H, between
patterns to the retinal size, R. The rate of decrease is proportional to the tuple
size.

3.2 Input Encoding
There is a direct and monotonic dependence of PNTNN pn the Hamming distance in
the binary space of the network's retina. For binary patterns, the N-tuple sampling

Allinson & Kolcz: N-Tuple Neural Networks 11

provides the desired mapping between the input and output addresses. For non­
binary input patterns, the situation is not so clear. One obvious solution is to use
a thermometer or bar-chart code, where one bit is associated to every level of an
input integer. This creates a linear array of 2n bits for an n-bit long integer. This
can produce very large retinas if the input dimensionality and quantization level are
large. The use of the natural binary code or Gray code is not feasible. Though these
are compact codes, there is no monotonic relationship between input and pattern
distances. The concatenation of several Gray codes [3] offers an improvement over
a limited region and enhances the dynamic range over the binary and straight Gray
code. The exponential dependence of the PNTNN on the Hamming distance means
that strict proportionality is not required but monotonicity is required within an
active region of Hamming distances.
The potential of CMAC encoding, and further aspects of input coding methods, are
discussed in Kolcz and Allinson [14]. Improvements in the input mapping, which in
turn produce a more isotropic kernel, are given in Kolcz and Allinson [15], where
rotation and hyper-sphere codings are described. Two further techniques will be
briefly introduced here in order to indicate the wide range of possible sampling and
coding schemes. Figure 3b shows one input variable, Xl, which is uniformly quan­
tized to six levels and this is sampled by the indicated 2-tuple. The corresponding
states of the resultant tuple for the three resulting sub-intervals indicate that ther­
mometer encoding can be inherent in tuple sampling. This concept can be extended
to the multivariate case. If the input space, 0, is a D-dimensional hypercube and
each memory node distributes its N address lines among these dimensions, then
the space is effectively quantized into I1~=1 (Nd + 1) hyper-rectangular cells. This
assumes random sampling, such that there are Nd address lines per input dimen­
sions (where Nd = Nj D). The placement of tuples can be very flexible (i.e., uniform
quantization is not essential) and the sampling process can take into account the
density of training points within the input space.
In rank-order coding, the non-binary N-tuple is transformed to a tuple of ranked
values (e.g., (20, 63, 40, 84, 122,38) becomes, in ascending order, the ranked tuple
(O, 3, 2, 4, 5, 1)). Each possible ordering is assigned a unique consecutive ranking
number, which is converted to binary format and then used as the retinal input.
Rank-order coding produces an equal significance code. The use of these relation­
ships is equivalent to delineating the input space into hyper-tetrahedrons rather
than the usual hyper-rectangles (Figure 3c).

4 N-tuple Regression Network
The framework for GMNN proposed earlier together with the derivation the tuple
distance metric are employed here in the development of a modified NTNN which
operates as a non-parametric regression estimator. The formal derivation of this
network and that the N-tuple kernel is a valid one for estimating the underlying
probability function is given in Kolcz and Allinson [16]. The purpose ofthis section
is to show the relative simplicity of this network compared with other implementa­
tions.
During the training phase, the network is presented with T data pairs, (xi, yi),
where xi is the D-dimensional input vector and yi is the corresponding scalar
output of the system under consideration. The input vector is represented by a

12 CHAPTER 1

unique selection of the K tuple addresses with their associated weight and counter
values.

{
{tl(X), t2(X)"", tK(X)}

x --+ {Wl(X), W2(X)", ., WK(X)}
{al (x), a2(x), ... , aK(x)}

During training, each addressed tuple location is updated according to

Wk(Xi) +- Wk(Xi) + yi and ak(xi) +- ak(xi) + 1
for i = 1,2, ... , T and k = 1,2, ... , K

(28)

(29)

Initially all weight and counter values are set to zero. After training, the network
output, y(x), is obtained from

K

LWk(X)
'() ,,-k=.:::-l __ y X = K (30)

Lak(X)
k=l

An additional condition is where all addressed locations are zero. In this case, the
output is set to zero.

K

L ak(x) = 0 --+ y(x) = 0 (31)
k=l

Figure 4 shows the modifications needed to a conventional NTNN to form the N-

"",,---
/ '

1 ' , \

Node detail j-' _-I

\ ,
.... _ /" //1
/,_"

-rlR---f'-f - -,

I

Network
output

J(x)

Figure 4 Modifications to the nodes and output elements of the NTNN to yield
the N-tuple regression network.

tuple regression network. By considering the tuple distances between inputs, as

Allinson f3 Kolcz: N-Tuple Neural Networks 13

defined in terms of the number of different tuple addresses generated, then (30) can
be extended to

T .
Lyi. (1- p(x,x'))
;=1 K

(32)

k=l
This suggests that the network output is an approximate solution of the gener­
alised regression function, E(Ylx), provided that the bracketed term in (32) is a
valid kernel function. This function is continuous, symmetrical, non-negative and
possesses finite support. These are all necessary conditions. A close approximation
(based on the exponential approximation of tuple distances) is also representable
as a product of univariate kernel functions. Taken together these provide sufficient
conditions for a valid kernel function [17]. A wide ranging set of experiments on
chaotic time-series prediction and non-linear system modelling has been conducted
[16), which confirm the successful operation of this network. A major advantage of
the NTNN implementation over other approaches is its fast, and fixed, speed of
operation. Each recall operation involves addressing a fixed number of locations.
There is no need for preprocessing large data sets, through data clustering, as is
often the case for RBF networks [18].
5 Pattern Classification
So far we have restricted our considerations to the approximation properties of the
NTNN, but the other major application - namely, pattern classification - can
be discussed within this common framework. The training phase of a supervised
network provides estimates of the conditional probabilities of individual pattern
classes. The class membership probabilities can be formulated through the Bayes
relationship, i.e.,

P() P(xlc)P(c)
x E c = P(x) (33)

where c is the class label for a particular class {c = 1,2, ... , C}. The modified
NTNN discussed in Section 4 can be reformulated in terms of this classification.
The network through training approximates C indicator functions, which denote
membership to an individual class.

le(x) = { ~ if xC c
(34)

otherwise

Modifying (32), the indicator functions can be approximated, after training, by
T K K

L(xi Cc)(I-p(x,xi)/K) LWk LP(tklc)
le(x) = .:..:i==.:l:"-T~ _______ = k~l == P(c) _k=-::~:--__ (35)

L(1- p(x, xi)/ K) L ak L P(tk)
i=l k=l k=l

This relationship gives the ratio of the cumulative summation of all training points
belonging to a class c, which have an N-tuple distance at 0,1, ... , (K - 1) from
x to a similar cumulative summation for all training points. The decision surfaces

14 CHAPTER 1

present in the K-dimensional weight space are described by 2:f=1 Wk = const, and
h .. I . . b ",K e t e wmmng c ass IS gIven y cwinner = maXe=I,2, ... ,C L.."k=1 Wk'

6 Conclusions
The unifying approach proposed for a wide class of memory-based neural networks
means that practical, but poorly understood, networks (such as the NTNN) can
be considered in direct comparison with networks (such as RBF networks) that
possess a much firmer theoretical foundation. The random sampling inherent in
the N-tuple approach makes detailed analysis difficult so this link is all the more
important. The pragmatic advantages of NTNNs has been demonstrated in the
regression network described above, where large data-sets can be accommodated
with fixed computational overheads. The possible range of input sampling and
encoding strategies has been illustrated, but by no means exhaustively. There is
still a need to seek other strategies that will provide optimum kernel functions for
specified recognition or approximation tasks. The power and flexibility of Bledsoe
and Browning's original concept has not, as yet, been fully exploited.

REFERENCES
[1]

[2]

Bledsoe W W and Browning I, Pattern recognition and reading by machine, IRE Joint Com­
puter Conference, 1959, 225-232.

Aleksander I, Fused adative circuit which learns by example, Electronics Letters, 1965, 1,
173-174.

[3] Tattersall G D, Foster S and Johnston R D, Single-layer lookup perceptrons, lEE Proceedings
- F: Radar and Signal Processing, 1991, 138, 46-54.

[4] Bledsoe W W and Bisson C L, Improved memory matrices for the N -tuple pattern recognition
method, IRE Transactions on Electronic Computers, 1962, 11, 414-415.

[5] Broomhead D S and Lowe D, Multivariable functional interpolation and adaptive networks,
Complex Systems, 1988, 2, 321-355.

[6] Specht D F, A general regression neural network, IEEE Transactions on Neural Networks,
1991,2, 568-576.

[7] Albus J S, A new approach to manipulator control: the cerebellar model articulation controller
(CMAC), Journal of Dynamic Systems, Measurement and Control, 1975, 97,220-227.

[8] Moody J, Fast learning in multi-resolution hierarchies, in Advances in Neural Information
Processing 1 (Touretzky D S, ed.), 1989, Morgan Kaufmann: San Mateo, CA, 29-39.

[9] Kolcz A and Allinson N M, General Memory Neural Network - extending the properties
of basis networks to RAM-based architectures, 1995 IEEE International Conference on Neural
Networks, Perth, Western Australia.

[10] Park J and Sandberg, I W, Universal approximation using radial basis function networks,
Neural Computation, 1991, 3, 246-257.

[11] Kavli T, ASMOD - an algorithm for adaptive modelling of observational data, International
Journal of Control, 1993, 58, 947-967.

[12] Kolcz A and Allinson N M, Application of the CMAC-input encoding scheme in the N -tuple
approximation network, lEE Proceedings - E Computers and Digital Techniques, 1994, 141,
177-183.

[13] Kolcz A and Allinson N M, Enhanced N -tuple approximators, Proceedings of Weightless
Neural Network Workshop 93, 1993, 38-45.

[14] Allinson N M and Kolcz A, The theory and practice of N -tuple neural networks, in Neural
Networks (Taylor J G, ed.), 1995, Alfred Waller, 53-70.

[15] Kolcz A and Allinson N M, Euclidean mapping in an N -tuple approximation network, Sixth
IEEE Digital Signal Processing Workshop, 1994, 285-289.

[16] Kolcz A and Allinson N M, N -tuple regression network, Neural Networks vol 9 No.5 pp855-
870.

[17] Parzen E, On estimation of a probability density function and mode, Annals of Mathematical
Statistics, 1962, 33, 1065-1076.

[18] Moody J and Darken C J, Fast learning in networks of locally-tuned processing units, Neural
Computation, 1989, 1, 281-294.

