
Improving the Clustering Performance
of the Scanning n-Tuple Method by
Using Self-Supervised Algorithms

to Introduce Subclasses
George Tambouratzis, Member, IEEE

AbstractÐIn this paper, the scanning n-tuple technique (as introduced by Lucas and Amiri [1]) is studied in pattern recognition tasks,

with emphasis placed on methods that improve its recognition performance. We remove potential edge effect problems and optimize

the parameters of the scanning n-tuple method with respect to memory requirements, processing speed, and recognition accuracy for

a case study task. Next, we report an investigation of self-supervised algorithms designed to improve the performance of the scanning

n-tuple method by focusing on the characteristics of the pattern space. The most promising algorithm is studied in detail to determine

its performance improvement and the consequential increase in the memory requirements. Experimental results using both small-

scale and real-world tasks indicate that this algorithm results in an improvement of the scanning n-tuple classification performance.

Index TermsÐn-tuple pattern recognition method, scanning n-tuple, chain-coding, handwritten character recognition.

æ

1 INTRODUCTION

CURRENTLY, considerable research effort is aimed at
recognizing handwritten characters with a high

accuracy. An important parameter in character recogni-
tion is the response time in order to 1) allow fast
processing of large amounts of data and 2) provide a
real-time response, which is essential in online applica-
tions. Due to the large variability of the data, several of
the methods proposed recently are based on neural
networks [2]. Among neural network models, the n-tuple
method [3] stands out due to its readily implementable
structure using RAM-type (Random Access Memory)
digital circuits and its speed. The n-tuple method (here-
after named standard n-tuple) is a statistical pattern
recognition method, which decomposes a given pattern
into u sets of n points, termed n-tuples, and performs
elementary recognition tasks on each of these sets. The
results of these tasks are then combined to generate the
recognition decision for the entire pattern. Considerable
research activity has recently focused on the n-tuple
method, both regarding theoretical issues (for example,
[4] and [5]) as well as applications to real-world tasks.
Several applications of n-tuple-based networks to hand-
written character recognition tasks have been reported.
Jung et al. [6] propose a method for selecting an optimal
set of n-tuples in order to recognize classes of characters.
Jorgensen [7] employs the standard n-tuple classifier

incorporating negative weights to perform character
recognition tasks. In contrast, Lucas and Amiri [1]
propose an extension to the n-tuple method named the
scanning n-tuple (hereafter termed the sn-tuple), which
relies on a very small number of n-tuples repetitively
scanning the input pattern. The n-tuple has been applied
to image recognition tasks such as fingerprint recognition,
document analysis, and texture classification ([8] provides
a summary of recent research). So far, the scanning n-
tuple has been applied to hand-written character recogni-
tion, though it is also expected to be applicable to general
two-dimensional shape recognition and classification
tasks.

This article focuses on the sn-tuple approach, in an effort
to devise methods that improve its classification accuracy as
compared to the results obtained so far. To this end, the
pattern space defined by the training set is studied in detail,
to investigate how significant overlaps between pattern
classes affect the classification performance and, in parti-
cular, whether one or more classes may be automatically
divided into subclasses to improve the classification
performance. The results of this approach are found to be
of an equivalent quality to those obtained when utilizing
knowledge concerning the specific pattern space to manu-
ally split the classes into subclasses that optimize the
classification performance.

In the following section, the standard and scanning n-tuple
techniques are compared and contrasted. The character
classification task that is used as a case study is presented in
Section 3, while, in Section 4, experimental results for the
standard and sn-tuple methods are described and the pattern
space characteristics are examined in detail. Methods for
improving the sn-tuple technique are presented in Section 5
and, in Section 6, the most promising method is selected and

722 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

. The author is with the Institute for Language and Speech Processing,
Artemidos & Epidavrou Street, Paradissos Amaroussiou, 151 25, Athens,
Greece. E-mail: giorg_t@ilsp.gr.

Manuscript received 8 Aug. 2000; revised 13 Mar. 2001; accepted 24 Oct.
2001.
Recommended for acceptance by C. Brodley.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 112679.

0162-8828/02/$17.00 ß 2002 IEEE

studied in detail. The article is concluded in Section 7 with a

discussion of the results obtained.

2 PATTERN RECOGNITION VIA THE N-TUPLE

TECHNIQUE

2.1 The Standard n-Tuple Method

In order to classify an input pattern p, the standard n-tuple

method [3] relies on decomposing it into u sets of n points

(termed n-tuples). In the given context of character recogni-

tion, p is a binary character image and the sets of n points are

sets of binary pixels. For each pattern class to be recognized,

one discriminator node is provided, which consists of a set of

n-tuples. For each n-tuple, 2n memory locations are allocated,

one for each combination of pixel values, assuming each pixel

can take on a value from the set {0,1}. This set of 2n locations is

collectively termed a function. In the nonweighted n-tuple

method, each memory location stores a binary number,

indicating whether the corresponding combination occurred

within the training data. This article shall focus on the

weighted n-tuple method, in which the number stored is an

integer representing the frequency-of-occurrence of the

combination. The maximum integer value is bounded by

the size in bits of the memory location, which poses limits on

its storage capacity. To index the memory location aj;l of a

particular set of points fe1;j; e2;j; . . . ; en;jg for the jth n-tuple of

node l, we compute:

aj;l �
Xn
i�1

p�ei;j� � �iÿ1; �1�

where p�ei;j� denotes the value of point ei;j for the current

pattern and � is the number of possible values of each

point (in the case of binary pixels, � � 2). Training

consists of updating the correct memory locations for

each n-tuple for the given patterns. During classification,

the contents of the memory locations aj;l are recalled

(forming the results of elementary recognition tasks) and

are then added to generate the final classification result.

Thus, the recognition task is transformed into u elemen-

tary recognition tasks, each performed on the basis of the

corresponding n points. The response rl of node l

(dedicated to recognizing class l) is:

rl �
Xu
j�1

content�aj;l�: �2�

Then, the pattern is classified as belonging to class c, where

the cth node is the node with the highest response (as

determined by formula (2)) among all the nodes in the

network.
The weighted n-tuple approach has been coupled with

an adaptive learning algorithm to create a self-organizing

network which, when presented with patterns, is able to

cluster them autonomously. This network is able to

determine autonomously the classes existing in the pattern

space with a high degree of accuracy, as reviewed in [9].

2.2 The Scanning n-Tuple Method

2.2.1 The sn-Tuple Method and Chain-Coding

While, in the standard n-tuple method, the sets of n points

(the n-tuples) are fixed, in the scanning n-tuple [1], a mask

m � fm1;m2;m3; . . . ;mng is used as a template to deter-

mine the sampled n points. The points in the mask are

situated at a distance of f points from each other. Though

this distance may vary over the mask, experiments will

concentrate on a constant f (hereafter referred to as offset).

The mask is applied repetitively to all points of the chain-

code, in order to sample the entire pattern. The choice of a

given mask determines the contents of the corresponding

sn-tuple. Hence, to obtain sn-tuples reflecting different

pattern properties, a different mask needs to be selected for

each sn-tuple.
The application of the sn-tuple technique to character

recognition tasks presupposes the chain-coding of the
character patterns. For each pixel transition, the chain-code
can have one of � values corresponding to directions
situated at angles of �360=�� degrees to each other. The
chain-coding transformation consists of starting at a given
point of the character area (in the present implementation,
the upper-left corner) and traversing the character peri-
meter until the whole character is covered. This results in a
one-dimensional vector of k elements

c � fc�1�; c�2�; . . . ; c�x�; . . . ; c�k�g;
where 1 < x < k (and k may differ for each character).

These elements are then encoded in a standard binary

format, generating a vector of binary values. For instance,

for � � 8, each element is converted into a sequence of three

binary values which are subsequently processed as an

ensemble, while allowing the use of the n-tuple principle.
By its very nature, chain-coding results in a variable code

length since the introduction or deletion of a single pixel in

the original pattern results in the alteration of the code

length. In our experiments, the chain-code length of all

characters varies from 66 elements to 414 elements. The

variable length prevents the application of the standard

n-tuple method to chain-coded patterns, due to the need to

prespecify the input vector dimensions (the chain-code

length), so that each function samples a fixed part of that

vector. In contrast, the scanning n-tuple can be applied in a

straightforward manner to variable-size input. Each

sn-tuple instance is defined as:

tj � fc�e1;j�; c�e2;j�; . . . ; c�en;j�g; where for 8i;
1 < i � n : �ei;j� � �eiÿ1;j � f�:

�3�

The first and last applications of the mask m scan the
tuples t1;j and tkÿ�nÿ1��f;j, respectively:

t1;j � fc�1�; c�1� f�; c�1� 2 � f�; . . . ; c�1� �nÿ 1� � f�g
tkÿ�nÿ1��f;j � fc�kÿ �nÿ 1� � f�; c�kÿ �nÿ 2� � f�;

c�kÿ �nÿ 3� � f�; . . . ; c�k�g:
�4�

For a given position of the mask on the chain-code, the
possible combinations of the sn-tuple are �n, where � is the

TAMBOURATZIS: IMPROVING THE CLUSTERING PERFORMANCE OF THE SCANNING N-TUPLE METHOD BY USING SELF-SUPERVISED... 723

number of possible directions used in chain-coding (in our

experiments, � is equal to eight) and n is the number of

points sampled by the sn-tuple. Consequently, for each sn-

tuple, a set of �n memory locations are provided where

information reflecting the frequencies-of-occurrence is

stored during training. Actually, the logarithm of the

frequency is stored, as in [1], in order to make the

summation of tuple outputs correspond to a multiplication

rule (thus assuming that each n-tuple contributes indepen-

dent likelihood information to the final recognition result).
The address determined by each mask application

according to the chain-code values is:

aj;l �
Xn
i�1

c�ei;j� � �iÿ1: �5�

For example, if an sn-tuple (where n � 2) mask samples

8-valued directions 1 and 4, (equivalent to binary-valued

vector ª001 100º), the location addressed shall be 23 � 22,

i.e., location 12 of the sn-tuple. The entire sn-tuple

recognition process is depicted in Fig. 1.
Then, the response of the lth sn-tuple node is calculated

by the following expression:

rl �
Xu
j�1

f
Xfmax

q�1

content�aq;j;l�g; where fmax � kÿ �nÿ 1� � f;

�6�
where fmax is the maximum offset value possible for the
current chain-code c, so as to cover all chain-code elements.
The internal summation of (6) indicates the calculation of
the sum of the outputs of a single sn-tuple for all possible
offset values (i.e., for the entire chain-coded pattern). The
external summation of (6) represents the accumulation of
the outputs of all sn-tuple functions to generate the node
response.

2.2.2 Decision Margin and Classification Confidence of

n-Tuple Systems

For a network consisting of two or more sn-tuple-based
nodes, the decision margin rdiff is

rdiff � rmax 1 ÿ rmax 2; �7�
where rmax 1 denotes the maximum node response and
rmax 2 denotes the second-highest response in the network.
The decision margin provides a measure of the certainty
with which the network classifies the input pattern to a
given class and is used frequently in standard n-tuple

724 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 1. Schematic representation of the classification operation for a node consisting of two sn-tuples, with offsets of one (consecutive points being
sampled) and two (points with a distance of 2 being sampled). Initially, the input character is chain-coded using � directions. The chain-coded pattern
is binarized and then sampled by a sliding n-tuple mask (since here n � 2 and � � 8, two triplets of binary pixels are sampled). The mask is moved to
the right by one point at a time, to cover the entire chain-code. For each mask position, the corresponding sn-tuple is accessed giving a partial
recognition response. The partial responses for all sn-tuples of the node over all mask positions are summed to generate the node response to the
input character.

networks. If the correct classification result is known, then
the classification confidence cnf is defined as:

rcorr ÿ rmax 2; if a correct classification is made;
cnf �

rcorr ÿ rmax 1; if an incorrect classification is made;

�8�
where rcorr is the response of the node corresponding to the
actual class. According to (8), if a pattern is correctly
classified, then the classification confidence is positive. On
the contrary, if it is misclassified, the confidence becomes
negative. Pattern recognition schemes based on the relative
magnitudes of responses for n-tuple networks have been
presented in [10]. Additionally, in [11], the decision margin
is used as an indication of the network classification
performance.

2.2.3 The sn-Tuple versus the Standard n-Tuple Method

When applying the sn-tuple network to classification
operations, for all combinations occurring in the chain-
coded pattern, the stored frequencies are added to generate
the node response. Thus, though in the standard n-tuple
method one node uses a large number of n-tuples to cover
all pixels of an input pattern with fixed dimensions, in the
scanning n-tuple method, for each pattern class, a node
with very few sn-tuples suffices to cover a variable-length
pattern.

The substitution of the standard n-tuple by the
scanning n-tuple results in an increase in preprocessing
time. However, the reduced computational load during
recognition in comparison to standard n-tuple networks
coupled with the prospect of superior results due to the
use of the chain-coding justifies experimentation with the
sn-tuple method. It is worth pointing out that the reliance
of the sn-tuple classifiers on a small number of sn-tuples
in comparison to standard n-tuples may require different
techniques to optimize the classification performance.
Similarly, the memory requirements of the two models
differ. For an n-tuple node, the number of memory
locations required is:

2n � u; �9�
where n is the number of sampled pixels for each tuple and
u is the number of n-tuples used per node. Achieving
complete coverage of all M pixels in the input matrix
requires:

u � M

n

� �
: �10�

For an sn-tuple using �-direction chain-coding, the required
number of memory locations is:

2n� log2���d e � u: �11�
Usually, for a given task, the number of sn-tuples is smaller
than the number of n-tuples. However, as shall be shown in
the next section, the use of �-valued rather than binary data
in the case of sn-tuples means that the two approaches have
similar memory requirements.

3 THE CHARACTER CLASSIFICATION TASK

The performance of an sn-tuple network in handwritten
character recognition tasks using one node per class has
been studied for the ESSEX and CEDAR data sets of
handwritten digits, giving recognition rates of 91.4 percent
and 97.3 percent, respectively, when ªtraining on a
predefined set of training data, then reporting the classifica-
tion accuracy on a disjoint predefined set of test dataº [1].
This approach shall be adopted in the experiments reported
here, for comparative purposes. In the ESSEX data set, the
sn-tuple model using four sn-tuples is reported to have a
performance superior to the standard n-tuple model, which
generates a recognition rate of 90.6 percent for nodes of
262 standard n-tuples each sampling eight points.

We focus on the ESSEX data set, in an effort to improve
the classification performance since this data set has been
shown to be more difficult to classify accurately than the
CEDAR data set. The ESSEX data set consists of 3,917 train-
ing and 1,835 test patterns. Each character is represented as
a 42 x 50 matrix of binary points. The first 20 training
patterns from each digit class are shown in Fig. 2. To reduce
the character variation, the data set is preprocessed by
centering and scaling each character so that it fully occupies
the input matrix and applying a median-filter operator to
suppress the existing noise. The normalized pattern is then
chain-coded as reported in [1]. The character area is
scanned from the upmost-left corner and the transitions
along the character edges are recorded for each point as one
of eight possible directions, at intervals of 45 degrees. The
resulting chain-code consists of a string of elements, each

TAMBOURATZIS: IMPROVING THE CLUSTERING PERFORMANCE OF THE SCANNING N-TUPLE METHOD BY USING SELF-SUPERVISED... 725

Fig. 2. The first 20 training patterns from each digit class of the

ESSEX handwritten character data set.

with one of eight possible values. If the character consists of
two or more chain-codes (for example, a noise-free ª0º
consists of one chain-code along the outer perimeter and
one chain-code along the inner perimeter) these are simply
concatenated. Though this approach may be improved
upon, it has been selected here for comparative purposes
since it was used in [1].

In the experiments of Lucas and Amiri [1], the sn-tuple
method had a substantially higher classification perfor-
mance than the standard n-tuple method. Each standard
n-tuple samples eight binary-valued elements. On the other
hand, each sn-tuple samples five elements, each of which
may have one of eight possible values and, thus, needs
three binary digits to be encoded. By using (9) and (11), it
can be seen that each sn-tuple node requires a total of
131,072 memory locations, while each standard n-tuple
node requires only 67,072 memory locations. To counter the
increased sn-tuple memory requirements, either sparse-
coding techniques may be used to remove zero-content
memory locations or networks with fewer functions may be
investigated. The latter solution is the focus of the next
section.

4 EXPERIMENTAL RESULTS

4.1 Optimizing the System Parameters

Because the classification rate of the training set for all
network configurations is approximately 100 percent, we
focus on the classification rate over the testing set.
Additionally, the variance of the recognition rate over
the digit classes is reported together with the memory
requirements and the simulation time. It should be
stressed that though a high-performing workstation is
used in the experiments reported here, the processing
times obtained are normalized by replicating the experi-
ments of [1] on the same hardware, thus allowing for a
more direct comparison.

Initially, the configuration proposed in [1] is simulated
(one network node per class, each with four sn-tuples with
offsets of two, three, four, and five points), giving a
recognition rate of 89.3 percent. The deviation from the

91.4 percent rate quoted in [1] is probably attributable to
different preprocessing steps. To investigate this, the
performance of networks whose nodes consist of only a
single sn-tuple is presented in Fig. 3 for different values of
the offset. The recognition performance for a network with a
single-sn-tuple node is found to rise for offsets higher than
these used in [1] and for offsets between 6 and 11 gives
better results than the aforementioned four sn-tuple system,
while both the memory requirements and processing time
are considerably reduced. As summarized in Table 1a, the
optimal recognition rate is equal to 91.4 percent for single
sn-tuple nodes and 91.6 percent for nodes consisting of four
sn-tuples. Notably, the single sn-tuple system gives a
recognition rate equivalent to the optimal value of [1]
where four sn-tuples were used per class, while having a
memory requirement equal to approximately one fourth of
the four-tuple system. At the same time, due to the smaller
number of sn-tuples per node, the time required to perform
the character classification task is reduced to only 38 percent
of that quoted by Lucas and Amiri [1], when simulated on
the same hardware.

Another potential improvement involves the application
of the sn-tuple technique. As described in [1], the sn-tuple is
activated up to the point where the final element of the
mask (element mn) coincides with the end of the chain-code
(see also (4)). For a given sn-tuple offset f , this introduces
an edge effect, where the last q chain-code points are not
fully scanned (for example, none of these points is used as
the first mask element), with q being:

q � f � �nÿ 1�
� kÿ fmax; according to the definition of fmax:

�12�

In the ESSEX data set, the average chain-code length is

equal to 200 points and, thus, for an sn-tuple size of 5 and

an offset equal to 5, 20 points are not fully scanned

(10.0 percent of the pattern). If the offset is 10, then 45 points

are not scanned (22.3 percent of the pattern). These points

are located at the end of the chain-code, resulting in a

potential loss of information, which becomes more marked

for digits with shorter chain-codes. However, chain-coding

is a continuous transformation whose result depends on the

selection of the starting pixel as far as the initial point is

concerned, though the sequence of chain-code points

remains the same. For example, if the origin of a chain-

code fc1; c2; c3; c4g is shifted by two pixels, the resulting

chain-code is fc3; c4; c1; c2g. Therefore, it is proposed to

resample the initial chain-code points when scanning near

the end of the chain-code to allow an equivalent application

of the sn-tuple mask to each chain-code point, the first and

last sn-tuple applications becoming t1;j and tk;j as compared

to (4). Resampling removes the edge effect due to the

arbitrary choice of initial point.

4.2 Investigating the ESSEX Data Set Properties

The detailed classification of test patterns for the highest-
performing four-sn-tuple network reveals a large variance
of the recognition rate over the digit classes (see Table 2). In
particular, digit class ª1º has the lowest recognition

726 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 3. Average test set accuracy over the 10 digit classes and

95 percent confidence interval using a single sn-tuple system sampling

five points, for offsets ranging from 1 to 20 points. Calculations are

based on one test run per offset, measured over each of the 10 classes.

accuracy (only 79.8 percent), which is much lower than the
recognition rate for the entire data set (91.6 percent). An
analysis of the ESSEX data set indicates that this is due to
the existence of two fundamentally different subclasses for
digit ª1,º without and with a horizontal line at the bottom

of the character (denoted as subclasses ª1Aº and ª1B,º
respectively). Within the training set for class ª1,º only
6 percent of the patterns belong to subclass ª1B.º Conse-
quently, the node corresponding to class ª1º is unable to
extract the characteristics of ª1B,º as subclass ª1Aº

TAMBOURATZIS: IMPROVING THE CLUSTERING PERFORMANCE OF THE SCANNING N-TUPLE METHOD BY USING SELF-SUPERVISED... 727

TABLE 1
Classification Results

(a) Classification results for different network configurations and values f of the offset as compared to the results of [1], which are quoted in the first
row of the table. (b) Classification results when introducing subclasses (in both cases, the memory requirement and simulation time entries are
normalized over the values employed in [1]). All the results are obtained using the ESSEX test set, recognition rates being averaged over the 10 digit
classes.

TABLE 2
Scatter Matrix for 10-Node Network, Indicating the Much Lower Recognition

Accuracy Achieved for Class ª1,º in Comparison to Other Classes

dominates class ª1.º Instead, most test patterns belonging to
subclass ª1Bº are classified as members of digit class ª2,º
due to the horizontal line at the bottom of digits from both
class ª1Bº and class ª2.º

To improve the performance of a deformable model-
based handwritten character recognizer, Cheung et al. [12]
propose the introduction of multiple subclasses for certain
digit classes. Furthermore, Morns and Dlay [13] propose an
automated algorithm to introduce new classes as required
in perceptron-based networks. A similar approach is
adopted here, establishing two subclasses for class ª1,º for
which the scope for improvement is maximized. The
partition of class ª1º into two subclasses is achieved by a
geometry-inspired rule examining whether the maximum
width of the character at any row in the lower half of the
pattern is equal to or exceeds 50 percent of the input matrix
width. During classification of the test set, digits are
classified to any of the 11 classes/subclasses and afterwards
subclasses ª1Aº and ª1Bº are merged.

The experimental results obtained with both resampling
and class splitting are shown in Table 1b. When each node
consists of four sn-tuples of five points, with offsets of six,
seven, eight, and 10, the recognition rate is equal to
92.6 percent, improving the results of [1] by 1.2 percent
with only small increases in the memory requirements and
processing time. The corresponding reduction in the error
rate is considerable, being approximately 14 percent,
compared to the best results previously reported. Even
the single sn-tuple system gives an optimal recognition rate
of 92.2 percent for an offset of seven, improving the
performance of [1] by 0.8 percent, while the memory space
and time required for classification are reduced by
73 percent and 62 percent, respectively. Thus, the recogni-
tion performance is substantially improved by introducing
subclasses, the recognition of class ª1º reaching 91 percent.
On the other hand, resampling gives an improvement of
only 0.1 percent to 0.2 percent.

These experiments indicate that the sn-tuple recognition
accuracy may be further improved by introducing addi-
tional subclasses. It would be desirable to introduce such
subclasses in an automated manner rather than by inspec-
tion, using an algorithm based exclusively on the training
set (that is, without resorting to the testing set). To this end,
four approaches, originally introduced in [14], are investi-
gated. The first two involve studying the characteristics of
each pattern class in an effort to determine cases where
frequent misclassifications might be expected. The remain-
ing two utilize the decision margin of the network for each
pattern as an indication of its state. Thus, the decision
margin is monitored following the completion of the
training phase to determine the relative position of classes
in the pattern space and, thus, better discriminate between
closely-positioned pattern classes.

5 IMPROVING THE SN-TUPLE CLASSIFICATION

ACCURACY

5.1 Method 1ÐUsing ART-Type Top-Down
Information Techniques

The first method employs a self-organizing scheme to
separate each class into subclasses. This scheme is based on
the provision of several discriminator nodes for every

pattern class, for which each node represents one subclass.
As a new pattern is presented to the network, it is compared
to the knowledge already accumulated in each discrimi-
nator node (which forms a top-down expectation of the
pattern). This approach shares principles of ART-type
networks [15] in that it generates a stable partition of
patterns into clusters based on the match between previous
patterns and new patterns. A conceptually similar mechan-
ism termed the distribution constraint [9] has been shown to
allow a self-organizing network consisting of standard
n-tuple nodes to cluster pattern classes in an autonomous
manner. In contrast, when using a network with only a few
sn-tuples per node, such a mechanism does not provide an
improvement.

5.2 Method 2ÐStudying the Frequencies-of-
Occurrence of Chain-Code Orientations

As in the previous method, each class is examined in
isolation, in an effort to determine pattern clusters that
differ considerably from the majority. Following the chain-
coding operation, the pattern space consisting of the
frequencies-of-occurrence of each direction in the chain-
code is examined. Initially, the class average is determined
for all directions. As a measure of the pattern difference, the
distance from the class average in terms of the sn-tuple's
contents is used. The direction of maximal variability is
determined and then the pattern class is split along this
direction. This results in an improved clustering perfor-
mance, the best classification rate being equal to 91.98 per-
cent when focusing in class ª1º and trying to split
subclasses ª1Aº and ª1B.º However, the method proves
to be sensitive to the exact displacement from the class
centroid where the boundary between the current class and
the new subclass is set.

5.3 Method 3ÐReinforcement Learning Techniques

This method applies a type of reinforcement learning to
improve the network response. Reinforcement learning is
required for training patterns which a) are misclassified
(i.e., classified to class j though they belong to class i) or
b) are correctly classified, but possess a very low decision
margin. Though cases a) and b) differ, training for both
types of effect can be expected to improve the network
response. Evidently, the training for patterns of type a
needs to be more intensive than for patterns of type b.
Experiments have indicated that this method improves the
network performance, giving a classification rate of up to
91.89 percent. However, the results depend strongly on
determining the optimal amount by which the network is
trained for each pattern of type a and type b. Also, this
method is susceptible to overtraining since, by adapting the
network excessively to ªproblematicº patterns, its response
to other patterns is adversely affected and the collective
recognition rate suffers accordingly.

5.4 Method 4ÐClass-Splitting Based on the
Classification Confidence

The fourth method is also based on the confidence with
which the network classifies the training patterns and is the
method that has been selected for further experimentation.
Initially, all the training patterns are classified by the
system, which consists of P nodes, recording the confidence

728 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

of each classification. Out of these, the N patterns with the
lowest confidence are examined (in our initial experiments,
N � 100). These patterns correspond to the negative- and
low-confidence classifications (where patterns are correctly
classified, but with a low confidence). From this set, the
method selects the pattern class Ck to be divided into two
subclasses as the one with the highest fraction of negative-
confidence and low-confidence decisions. The pattern
class Cl, which causes these low-confidence classifications
for elements of Ck, is also determined. Then, a new network
node is introduced, by splitting class Ck into subclasses Ck1

and Ck2. The nucleus of subclass Ck2 consists of the patterns
belonging to Ck, which have a low or negative classification
confidence due to Cl (in the example of Section 4.2, Cl
would be class ª2º while Ck2 would be the subclass of ª1º
with a lower horizontal line). Following the introduction of
the new node, the training set is classified by the expanded
network, which consists of P � 1 nodes. This process is
repeated until the transfer of patterns between Ck1 and Ck2

either ceases or is stabilized (so that the same group of
patterns is exchanged between the two subclasses in
subsequent iterations). This procedure is graphically de-
scribed in Fig. 4.

The class-splitting algorithm can be described formally
by the following steps:

0. While the maximum number of classes has not been
created:

1. LOOP 1: Train the network according to the
existing classes.

2. Classify all training patterns according to the trained
network and determine their respective classification
confidence.

3. Order all training patterns according to the
classification confidence and create a list L
containing only the N patterns with the smallest
classification confidence.

4. Select the class X whose patterns have the highest
frequency-of-occurrence within the list L due to a
specific class Y .

5. Split class X into classes X1 and X2, where
X2 consists of all elements of X which are in L due to
class Y and the following properties hold:

X1 \ X2 � fg and X1 [X2 � X.
6. LOOP 2: Train the network according to the existing

classes.
7. Classify all training patterns according to the trained

network and determine their respective classification
confidence.

8. Order all training patterns according to the
classification confidence and create a revised list L0

containing only the first N patterns.
9. Create a list L0X1

containing all patterns of class
X1 which are included within list L0 due to class
X2 and a list L0X2

containing all patterns of class
X2 within list L0 due to class X1.

10. If the system has not settled (i.e., at least one of the
sets L0X1 and L0X2 contains new elements), return to
step 6, replacing classes/sets X1 and X2 with
(respectively):
XNew

1 � �X1 ÿ L0X1� [L0X2 and
XNew

2 � �X2 ÿ L0X2� [L0X1,
where the sign ª-º denotes the set difference.

11. If the number of existing classes (subclasses) is not
equal to the predefined number of classes, return to
step 0, to generate a new subclass (END OF
LOOP 2).

12. Terminate the procedure (END OF LOOP 1 and of
the procedure).

According to this algorithm, each repetition of LOOP1

creates a new node (and a new subclass) until the desired

maximum number of classes is formed. On the other hand,

each repetition of LOOP2 redistributes the elements in the

existing classes to reduce the discrepancies of the classifica-

tion, following the introduction of a new node. Whenever a

new node is created, several iterations of LOOP2 are

required in order to reach a stable partition of class X into

classes X1 and X2. Initially, class X2 contains the elements

that are misclassified or are very close to being misclassi-

fied, while class X1 contains the remaining elements of X.

Thereafter, all elements of the N � 1 classes are reclassified

to determine whether splitting X can be fine-tuned toward

the natural border between the two subclasses. The split of

class X into the two classes is finalized when either 1) no

TAMBOURATZIS: IMPROVING THE CLUSTERING PERFORMANCE OF THE SCANNING N-TUPLE METHOD BY USING SELF-SUPERVISED... 729

Fig. 4. Pattern space with two overlapping classes (a), together with the

clustering result before (b) and after (c) applying method 4.

patterns are exchanged between the two constituent classes
of X (indicating well-separated classes) or 2) a closed set of
patterns are continuously exchanged between the classes
(indicating less well-separated but distinct classes).

Here, the class-splitting operation is studied briefly using
an sn-tuple network using four sn-tuple functions per node
without resampling with offsets of 6, 7, 8, and 10. For the
ESSEX data set, the class with most misclassifications is
class ª1,º due to class ª2.º Therefore, class ª1º is split into
two new subclasses. In the first application of the afore-
mentioned procedure, seven patterns form the nucleus of
the new subclass, resulting in an improved recognition rate
of 92.04 percent. The network converges after nine refine-
ment iterations, when the new subclass consists of
29 patterns and the network recognition rate reaches
92.52 percent. This is very close to the recognition rate
obtained using the rule to manually split class ª1º
(92.55 percent), as described in Section 4.2. Furthermore,
the classification result is stable, even when the system is
allowed to perform additional refinement steps. Since the
class-splitting method has the highest performance among
the four techniques, it is further studied in the following
section.

6 OPTIMIZING THE SCANNING N-TUPLE

PERFORMANCE

6.1 Solving a Small-Scale Problem via
Class-Splitting

To illustrate the effectiveness of the class-splitting algo-
rithm, we first examine its performance on the task of
recognizing two classes, namely, crosses and inverted
T-shaped objects. Both classes are generated using proto-
types to which 5 percent random noise is injected. For each
class, both the training set and the testing set consist of
20 patterns each. The cross class comprises two subclasses,
one where the cross has a bottom edge (archetype
ªcross_Bº) and one where the bottom edge is missing
(archetype ªcross_Aº). More specifically, the training set of
the cross class consists of 18 patterns generated by
ªcross_Aº and two patterns by ªcross_B,º while in the test
set 12 patterns are generated by ªcross_Aº and eight
patterns by ªcross_B.º On the contrary, the ªinverted_Tº
class consists of a single archetype to which noise is added.
As can be seen by Fig. 5, ªcross_Bº has a relatively high
degree of similarity with the ªinverted_Tº class. Further-
more, in the training set, the ªcross_Aº patterns dominate
the ªcrossº class. Consequently, the ªcross_Bº patterns are
not recognized correctly using an sn-tuple network consist-
ing of two nodes, as shown in Table 3a. Since the frequency
of ªcross_Bº patterns is higher in the testing set, a low

recognition rate is obtained (only 60 percent for the entire
cross class). A study of the decision margins for all training
patterns does indeed indicate that the two training patterns
belonging to the ªcross_Bº subclass are misclassified by the
trained network, these being the only misclassified patterns
in the training set. By applying the proposed class-splitting
algorithm and introducing one additional node, the net-
work succeeds in separating the classes, even in the
presence of noise. This is achieved via self-organization,
without any explicit information about the specific classes.

6.2 Application of the Class-Splitting Algorithm to
the ESSEX Data Set

The class-splitting algorithm has been applied to the ESSEX
data set using an sn-tuple network with four sn-tuples per
node employing offsets of 6, 7, 8, and 10 without
resampling. In our experiments, five class-splitting itera-
tions were run (allowing a 50 percent increase in the
network size), resulting in a total of 15 classes. The aim of
this experiment is to study whether the recognition
performance would be improved using a limited number
of classes, rather than to achieve a very high performance
by creating a large number of smaller classes. Therefore,
five class-division steps have been allowed. These are
determined by the algorithm of Section 5.4 as:

1. the splitting of class ª1º into classes ª1Aº and ª1Bº
in order to improve the separation of classes ª1º and
ª2º;

2. the splitting of class ª1Aº into ª1AAº and ª1ACº to
improve the separation of classes ª1Aº and ª7º;

3. the splitting of class ª2º into ª2Aº and ª2Bº to better
separate ª2º from ª3º;

4. the splitting of class ª6º into ª6Aº and ª6Bº to better
separate ª6º from ª0º;

5. the splitting of class ª3º into ª3Aº and ª3Bº to better
separate ª3º from ª5º.

The system recognition rate through each step is plotted
in Fig. 6 (recall that the class-splitting algorithm relies only
on the training set, but we report the accuracy of the
classifier on the test set). When a new class is selected for
splitting, the collective recognition performance may
deteriorate temporarily. However, following that reduction,
the recognition rate is steadily improved in subsequent
iterations. As can be seen, even though the decisions of the
class-splitting algorithm are based on the training set, all
class-splitting operations result in an improvement of the
clustering performance over the testing set. The algorithm
can be seen to settle successfully to new classes, the network
performance reaching a plateau for a given population of
classes after a number of iterations. A typical example is
shown in Fig. 7, which displays the system performance

730 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 5. Samples from the ªinverted_Tº (first row), ªcross_Aº (second row), and ªcross_Bº (third row) classes.

when 14 nodes are being used. Certain classes (such as
class ª1º) are split up more than once, as required by the
characteristics of the training set. Another interesting point
involves the evolution of the class-splitting algorithm, as
typified by Fig. 8. In this case, the system evolves so that
when the algorithm settles with 13 classes, the new class Ck2

contains the majority of the patterns from the original class
Ck while the old class Ck1 contains fewer patterns. Notably,
the algorithm converges to a solution even though the initial
partition following the class-splitting step is not the most
favorable.

6.3 Application of the Class-Splitting Algorithm to
the NIST Data Set

Our last experiment was performed using data from the
NIST database #19 of handwritten characters. More speci-
fically, the first data set (hsf_0) was selected for processing.

Similar to earlier experiments, the 10 digit classes were
chosen and, initially, the characters in each class were
shuffled randomly using the NIST-specified ªshuflmisº
utility. Then, the first 600 characters from each class formed
the training set, the following 200 characters from each class
forming the test set. The patterns of the two sets were chain-
coded and presented to a system consisting of 10 sn-tuple
nodes, one being assigned to each digit class. The system
classification accuracy for the test set was equal to 90.05
percent. Though this is relatively low, it should be stressed
that emphasis here is placed on evaluating if this
performance can be improved by the class-splitting algo-
rithm rather than fine-tuning the recognition performance
of the original system. Thus, parameters such as the number
of sn-tuples used per node and the offset were not modified
as compared to the values used with the ESSEX data set.

The class-splitting algorithm was then activated, adding
initially one node to split class ª0º so as to reduce the
confusion to class ª8.º This choice was once again based on
the maximum confusion between any two classes within the
100 patterns with the lowest classification confidence
margin. The 11-node network settled after a total of
25 iterations, resulting in a classification rate of 90.45 per-
cent. Subsequently, additional splitting steps were per-
formed, of class ª2º (to reduce the confusion with ª3º)
resulting in a classification rate of 90.55 percent and of
class ª7º (to reduce the confusion with ª9º) resulting in a
classification rate of 90.65 percent. Thus, the class-splitting
algorithm succeeded in improving the NIST classification
accuracy. It should be noted that alternative test sets were
also formed using the patterns of the NIST data set. All of
them showed similar gains when using the class-splitting
operation with the aforementioned training set.

In concluding the experimental results section, it is worth
briefly studying the storage capacity implications of

TAMBOURATZIS: IMPROVING THE CLUSTERING PERFORMANCE OF THE SCANNING N-TUPLE METHOD BY USING SELF-SUPERVISED... 731

Fig. 6. The recognition rate of the system as it evolves from a 10-node
system into a 15-node system. New nodes are introduced at iterations 1
(to separate class ª1º from ª2º), 15 (ª1Aº from ª7º), 28 (ª2º from ª3º), 50
(ª6º from ª0º), and 64 (ª3º from ª5º).

TABLE 3
Classification Results for the Cross and Inverted-T Classes

(a) Before and (b) after performing the class-splitting operation.

732 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 7. (a) Classification accuracy of the test set of a 14-class system, (b) number of patterns in classes 6A and 6B, and (c) number of patterns

exchanged between the two classes at each step.

Fig. 8. (a) Classification accuracy of the test set of a 13-class system, (b) number of patterns in classes 2A and 2B, and (c) number of patterns

exchanged between the two classes at each step.

employing the class-splitting algorithm. By introducing
additional nodes, the sn-tuple performance is improved,
though the storage requirement is unavoidably increased.
In our experiments, an upper limit of 50 percent was placed
on the additional storage capacity. However, it is possible
that the introduction of additional nodes via the class-
splitting algorithm may allow the use of a network with
fewer sn-tuples per node, to generate results of the same
accuracy or an even higher one while allowing a reduction
in the total memory requirements. This issue is the subject
of ongoing research.

7 CONCLUSIONS

In this paper, the application of the sn-tuple to character
recognition tasks has been studied. More particularly, the
focus has been to evaluate a number of methods to
improve the scanning n-tuple performance. Therefore,
initially, issues such as the optimal sn-tuple offset and the
optimal number of sn-tuples have been studied with
respect to the classification accuracy, the processing time,
and the memory requirements. Following this study,
possible shortcomings of the sn-tuple have been exam-
ined, using a handwritten character recognition task as a
case study. A number of automated algorithms have been
evaluated as possible vehicles for solving these short-
comings. It has been found that, though the sn-tuple and
standard n-tuple techniques are closely related, different
mechanisms are needed to improve the sn-tuple perfor-
mance. The most promising algorithm has been presented
in detail and applied to three distinct recognition tasks.
This algorithm has been shown to markedly improve the
sn-tuple classification performance. Since this is a general-
purpose self-supervised algorithm, it considerably in-
creases the sn-tuple's effectiveness in real-world pro-
blems. The experimental results illustrate that this
algorithm gives a recognition performance equivalent to
that obtained using structural knowledge regarding the
different classes, thus indicating its usefulness when
applied to large-scale recognition tasks with the scanning
n-tuple technique.

In this article, the class-splitting algorithm is used in
conjunction with the sn-tuple technique. However, class-
splitting should also be applicable to the standard n-tuple
technique, improving the classification performance of
n-tuple networks via the introduction of additional
subclasses. Due to space restrictions, this application has
not been studied in detail here.

ACKNOWLEDGMENTS

The author wishes to thank Dr. A. Amiri for his assistance
in replicating the chain-coding technique used in the
original ESSEX data set experiments as well as for
stimulating discussions. Furthermore, the author wishes to
acknowledge the role of the anonymous referees, who have
contributedÐvia their constructive commentsÐto the im-
provement of this manuscript.

REFERENCES

[1] S. Lucas and A. Amiri, ªStatistical Syntactic Methods for High-
Performance OCR,º IEE Proc. Vision, Image, and Signal Processing,
vol. 143, no. 1, pp. 23-31, 1996.

[2] R. Plamondon and S.N. Srihari, ªOn-Line and Off-Line Hand-
writing Recognition: A Comprehensive Study,º IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 68-85,
Jan. 2000.

[3] I. Aleksander, ªEmergent Intelligent Properties of Progressively
Structured Pattern Recognition Nets,º Pattern Recognition Letters,
vol. 1, pp. 375-384, 1983.

[4] R. Rohwer and M. Morciniec, ªThe Theoretical and Experimental
Status of the n-Tuple Classifier,º Neural Networks, vol. 11, no. 1,
pp. 1-14, 1998.

[5] T.M. Jorgensen and C. Linneberg, ªTheoretical Analysis and
Improved Decision Criteria for the n-Tuple Classifier,º IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 4,
pp. 336-347, Apr. 1999.

[6] D.-M. Jung, M.S. Krishnamoorthy, G. Nagy, and A. Shapira,
ªN-Tuple Features for OCR Revisited,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 7, pp. 734-745, July
1996.

[7] T.M. Jorgensen, ªClassification of Hand-Written Digits Using a
RAM Neural Net Architecture,º Int'l J. Neural Systems, vol. 8, no. 1,
pp. 17-25, 1997.

[8] RAM-Based Neural Networks, J. Austin, ed. Singapore: World
Scientific Publishers, 1998.

[9] G. Tambouratzis and D. Tambouratzis, ªSelf-Organisation in
Complex Pattern Spaces Using a Logic Neural Network,º Network:
Computation in Neural Systems, vol. 5, pp. 599-617, 1994.

[10] I. Aleksander and T.J. Stonham, ªGuide to Pattern Recognition
Using Random-Access Memories,º Computers and Digital Techni-
ques, vol. 2, no. 1, pp. 29-40, 1979.

[11] M. Morciniec and R. Rohwer, ªBenchmarking n-Tuple Classifier
with Statlog Datasets,º RAM-Based Neural Networks, J. Austin, ed.,
World Scientific Publishers, pp. 53-60, 1998.

[12] K.-W. Cheung, D.-Y. Yeung, and R.T. Chin, ªA Bayesian Frame-
work for Deformable Pattern Recognition with Application to
Hand-Written Character Recognition,º IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 20, no. 12, pp. 1382-1388, Dec. 1998.

[13] I.P. Morns and S.S. Dlay, ªThe DSFPN, a New Neural Network for
Optical Character Recognition,º IEEE Trans. Neural Networks,
vol. 10, no. 6, pp. 1465-1473, 1999.

[14] G. Tambouratzis, ªImproving the Classification Accuracy of the
Scanning n-Tuple Method,º Proc. 15th Int'l Conf. Pattern Recogni-
tion (ICPR-2000), vol. 2, pp. 1050-1053, 2000.

[15] G.A. Carpenter and S. Grossberg, ªART 2: Self-Organisation of
Stable Category Recognition Codes for Analog Input Patterns,º
Applied Optics, vol. 26, pp. 4919-4930, 1987.

George Tambouratzis obtained the Diploma in
electrical engineering (specialization in electro-
nics) from the Electrical Engineering Department
of the National Technical University of Athens
(N.T.U.A.), Greece, in July 1989. From October
1989 to September 1993, he pursued his
postgraduate studies at the Department of
Electrical Engineering of Brunel University,
United Kingdom, which led to the award of an
MSc degree in digital systems (September

1990) and a PhD degree in neural networks and pattern recognition
(September 1993). After completing his military service (1993-1995), he
lectured at the Hellenic Naval Academy (1995-1996). Since 1996, he
has been associated with the Institute for Language and Speech
Processing, Athens, Greece, where he currently holds a research post.
He is a member of the Technical Chamber of Greece, the IEEE, and
IEEE Systems, Man, and Cybernetics Society. His research interests
cover the area of neural networks, with emphasis in self-organizing logic
neural networks and their application to real-world tasks. Other areas of
research activity include pattern recognition, image processing, speech
synthesis, and computational linguistics.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

TAMBOURATZIS: IMPROVING THE CLUSTERING PERFORMANCE OF THE SCANNING N-TUPLE METHOD BY USING SELF-SUPERVISED... 733

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

