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The measurement and/or storage of high order probability dis- 
tributions implies exponential increases in equipment complexity. 
This paper considers the possibility of storing several of the lower 
order component distributions and using this partial information 
to form an approximation to the  actual high order distribution. 

The approximation method is based on an information measure 
for the "closeness" of two distributions and on the criterion of max- 
imum entropy. Approximations consisting of products of appropri- 
ate lower order distributions are proved to be optimum under suitably 
restricted conditions. Two such product approximations can be com- 
pared and the better one selected without any knowledge of the ac- 
tual high order distribution other than that  implied by the lower 
order distributions. 

I. INTRODUCTION 

L i m i t a t i o n s  on a l lowable  e q u i p m e n t  complex i ty  a re  an  i m p o r t a n t  
fac tor  in a lmos t  all  sys t ems  con ta in ing  compute r s .  I n d e e d  the  per -  
fo rmance  of a g rea t  m a n y  of these  sys t ems  is a lmos t  en t i r e ly  d e t e r m i n e d  
b y  the  size of the  ava i l ab le  mach ine  m e m o r y  and  how t h a t  m e m o r y  is 
used.  I n  add i t ion ,  i t  is no t  difficult  to  envis ion sys tems  for which  the  
a m o u n t  of d a t a  inhe ren t  in the  p rob l em far  exceeds the  c a p a c i t y  of a n y  
foreseeable  compute r .  

One such p r o b l e m  is the  m e a s u r e m e n t  and  s to rage  of h igh  order  dis-  
crete  p r o b a b i l i t y  d i s t r ibu t ions .  F o r  example ,  the  s to rage  of an  n t h  order  
b i n a r y  d i s t r i bu t ion  requires  the  use of a b o u t  2 n regis ters  and  the  e s t ima-  
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214 



APPROXIMATING PROBABILITY DISTRIBUTIONS 215  

tion of the elements of such a distribution from sample functions re- 
quires the observation of an exponentially increasing number of binary 
symbols. Sueh exponential requirements (which occur frequently in in- 
formation processing systems) are outside the bounds of engineering 
practicality. 

In order to circumvent these difficulties, this paper considers the pos- 
sibility of measuring and/or storing several of the lower order distribu- 
tions that compose a high order distribution and using this limited in- 
formation to form an approximation to the high order distribution. 
Stated in strictly mathematical terms, we shall be interested in the prob- 
lem of approximating a high order probability distribution by some func- 
tion of several of its lower order component distributions; however the 
related physical problem suggests that we limit ourselves to those ap- 
proximations that conserve storage space. Thus the approximation 
should use only those component distributions that are particularly im- 
portant in characterizing the high order distribution; it would be es- 
pecially desirable if the approximation method itself performed this 
"important part" selection. 

The method developed in this paper is based on an information meas- 
ure for the "closeness" of two probability distributions and on the 
criterion of maximum entropy. Under certain conditions, the functional 
form of these approximations becomes particularly simple (just products 
of appropriate low order distributions) and the important part selection 
requires only a calculation of the entropies of these lower order distribu- 
tions. 

II. AN INFORMATION MEASURE FOR PROBABILITY DISTRIBUTIONS 

We shall be concerned with nth order binary probability distributions 
of the form 

P ( x l  , x 2  , " ' "  , x ,~ )  

with elements P o ,  P ~ ,  • "" , P ~ , - I  (where Ps is the probability of the 
n-digit sequence that represents the number j in binary notation). We 
first propose a measure for the information content of such distributions. 

The information contained in an nth order binary distribution is de- 
fined to be 

Ip = n l o g 2  - H~ 
2n--1 

= n l o g 2 - ~  ~ P j l o g P j  
0 

where H~ is the entropy of the distribution. 
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This is a slightly different definition than tha t  used when Information 
Theory  is applied to commun ica t i on  channels. There we are concerned 
with the information contained in a sequence whose probabil i ty distribu- 
tion is known; here we seek the information contained in the distribu- 
tion. 

When the distribution is known, the usual en t ropy measure has the 
proper ty  tha t  the flatter the distribution, the more information (on the 
average) is contained in the sequences and the more peaked the distribu- 
tion, the less information is contained in the sequences. Conversely, 
when the distribution is not known, the proposed measure has the prop- 
er ty  tha t  the more the distribution is peaked, the more information it 
contains about  the sequences. Thus,  if the distribution is flat, we have 
very little a priori  information about  which sequence will occur and the 
sequences themselves give us a max imum amount  of information; 
whereas, if the distribution is very peaked, we have a considerable 
amount  of a priori  knowledge about  the sequences, and on the average 
the sequences give us little information. 

Our definition implies tha t  there is a fixed amount  of information in- 
herent in a process tha t  generates a finite set of sequences, and tha t  some 
is contained in the probabil i ty distribution and the rest in the reception 
of the sequences. This inherent information is defined to be the maxi- 
m u m  amount  of information tha t  could be contained in the sequences. 1 

H . . . .  = l o g 2  n = n l o g 2  

Thus,  the information eontMned in the probabil i ty distribution is de- 
fined to be the difference between this max imum entropy and the actual 
ent ropy of the distribution 

Ip = H . . . .  - H,  

If  the distribution is perfectly flat, then H,  = H ..... and Ip = 0, tha t  
is, no information is contained in the distribution; whereas if the distribu- 
tion is perfectly peaked H~ = 0, the sequences give no information, and 
the distribution contains an amount  of information equal to n log 2. In  
general Ip lies between 0 and n log 2. 

One of the key  points of the proposed definition is tha t  zero informa- 
tion corresponds to a flat distribution. We assume tha t  if the distribu- 
tion is flat we have no information about  the sequences; and conversely, 

1 Feinstein (1958, p. 15, Theorem 1), for example, demonstrates that n log 2 is 
the maximum information content. 
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if we have no information a t  all about  the sequences, we assume they 
are equally likely. Since the possible events are unique and clearly defined 
to be the 2" possible sequences n digits long, there appears  to be no rea- 
son not to make this assumption in the absence of any  other knowledge. 

If  one accepts this assumption, then he must  agree to act  as if it were 
true, at  least until he hears to the contrary.  If, in fact, he later finds out 
tha t  the sequences a r e  equally likely, we then say tha t  he has received 
no information, because his new knowledge does not change the way 
he acts (al though it may  give him more confidence tha t  his actions are 
correct).  

III .  A MEASURE FOR THE CLOSENESS OF ONE 
PROBABILITY DISTRIBUTION TO ANOTHER 

The problem in which we are interested is tha t  of approximating one 
probabil i ty distribution with another. In  order intelligently to perform 
such an approximation,  we must  define some criterion, a measure of how 
close the approximation is to the actual distribution. Such a criterion, 
based on the information theory model, will be developed in this section. 

By an approximation to an n th  order probabil i ty  distribution 

P ( x l  , . . .  , x ~ )  

with elements P0,  " ' "  , P2~-1 we mean any other set of 2 ~ nonnegative 
numbers  labeled P o ' ,  " "  , P ' 2 ~ - 1 ,  such tha t  ~ P /  = 1. 

Each element of this approximate  or primed distribution contains an 
amount  of information equal to 

iz' -~ l o g 2  ~ P J  

and the average information tha t  would be computed by  a person using 
the primed distribution when the unprimed distribution is the correct 
one is obtained by  averaging the above expression using the unprimed 
probabilities. 

2n--1 

I e '  = n log 2 -t- ~ P~ log P /  
]=0 

Note  tha t  [p '  is not the information contained in the primed distribu- 
tion; ra ther  it is the information tha t  the primed distribution gives 
about  the unprimed distribution. 

The closeness of approximation is then defined to be the difference 
between the information contained in the true distribution and the in- 
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formation contained in the approximating distribution about  the true 
distribution 

2n--1 2n--1 

Ip-v ,  = I p - -  I~' = ~ P ~ l o g P j - -  ~ P ~ , l o g P J  
0 0 

2~-I p j  
= ~ Pj  log - - -  

0 P J  

This measure has the following property2: 
Ip_~, is always greater than  or equM to zero: 

Ip_p, > 0 

the equal sign only holding if the primed and the unprimed distributions 
are identical. Thus, the measure is always positive if the two distribu- 
tions are different, is zero only if they are identical, and in all cases de- 
fines a closeness of approximation in terms of its closeness to zero. 

IV. AN APPROXIMATION CRITERION 

The closeness measure defined above enables one to evaluate the 
"goodness" of any  particular approximation,  but  it appears  of little 
help in finding methods for accomplishing the approximation.  In  general 
several of the lower order component  distributions are known or avail- 
able, and the problem is to form an approximation to the high order dis- 
tr ibution as a function of several of these lower order distributions. The 
difficulty with trying to apply the closeness measure to this problem is 
in the determination of efficient functional forms for the approximation.  
In  order to develop such efficient forms, we shall make  a slight detour, 
and in fact, introduce a new approximation criterion; later we shall show 
how the two criteria are related. 

We first introduce the idea of an extension, a I f  we have several (com- 
patible) lower order distributions given, then any higher order distribu- 
tion tha t  reduces to these lower order ones is called an extension of those 
particular distributions. Thus 

Pl (  xl , x~) 

O0 
01 1- 

8 

10 a 8 

11 a 8 

P2(xl , x2) 

O0 0 
01 1 ¥ 

1 10 
11 1 ¥ 

For a proof of this well known result see for example Feinstein (1958, p. 20). 
a The definition is due to Dr. J. Hartmanis of this Laboratory. 
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are both extensions of 

P ( x l )  P(x2)  

1 0 1 0 z 
1 3_ 1 ! 4 2 

In general, there is an infinite number of extensions to any given set of 
lower order distributions. 4 In degenerate cases, however, there may  be 
only one possible extension. For example, the second order distributions 

P(x~, x~) = P(x2,  x3) 
O0 0 

1 O1 
lo ½ 
11 0 

can only be extended in one way to a third order distribution 

P ( x l  , x2 , x3) P ( x l  , x2 , xa) 

000 0 100 0 
001 0 101 ½ 

1 110 0 010 
011 0 111 0 

In most cases of practical interest, this degenerate case will not happen 
and there will be a region of possible extensions in n-dimensional proba- 
bility space. 

We now propose to limit ourselves to approximations that  are exten- 
sions. If we are given a set of lower order probability distributions, we 
shall only consider as possible approximations to the high order distribu- 
tion, those functions that  reduce to the given lower order distributions 
when properly summed or, in other words, those approximations that  are 
extensions of these distributions. This is a considerable restriction on the 
generality of the approximation method, but  it has at least two justifi- 
cations: it is intuitively satisfying and it allows a simple and unique an- 
swer to the approximation problem in certain cases of interest. 

The  approximation problem can now be stated as follows. Given a set 
of lower order distributions, which, of all their possible extensions, should 
be used as an approximation to the higher order distribution from which 
the lower order distributions were derived. In order to decide this ques- 
tion, we now propose an approximation criterion: 

See the accompanying paper by Dr. J. Hartmanis (1959). 



220 LEWIS 

Of all the possible extensions, pick that one with the minimum in- 
formation (maximum entropy). 

Small information corresponds to randomness and large information to 
nonrandomness or bias. We should like our approximation to be as un~ 
biased or random as possible (corresponding to the initial assumption 
that all distributions are equally likely a priori). Now in order for a 
proposed function to be an extension of a given set of probability dis- 
tributions, the function must contain a certain minimum amount of in- 
formation or bias; any additional information (we can argue intuitively) 
corresponds to additional bias on the part of the person doing the ap- 
proximating, and consequently is to be avoided. 

This minimum information criterion always yields a solution to the 
approximation problem, although sometimes the form of the solution is 
unwieldy. However, if we impose certain other constraints of particular 
importance to the storage problem, the form of the minimum informa- 
tion solution becomes particularly simple; in addition a close relation is 
found to exist between the minimum information criterion and the close- 
ness measure defined earlier. In order to investigate this special case, we 
shall define a class of approximations called product approximations, 
and determine the conditions under which this class contains the mini- 
mum information solution. 

V. PRODUCT APPROXIMATIONS 

A product approximation is defined to be an approximation to a higher 
order distribution made up of a product of several of its lower order com- 
ponent distributions, such that the product is an extension of the lower 
order distributions. All of the product approximations to a third order 
distribution P(xl,  x:, xa) are listed below 

1. P(x~) P(x2) P(x~) 

2. P(xl,  x2) P(x~) 

3. P(xl,  x3) P(x~) 

4. P(x2, x3) P(x~) 

5. P(x~, x2) P(x3 ix1) 

6. P(x~ , x2) P(x31 x2) 

7. P(x l ,  x~) P(x~ I xl) 

8. P(x~ , x~) P(x2 [ x~) 

9. P(x~, x~) P(xl I x~) 

10. P(x~, x~) P(xl r x~) 

approximations. Not all products of lower order distributions are product 
For example, 

P(x~, x~) P(x~, x3) P(x~, x3) 
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is not a product approximation since it does not reduce to P(x~,  x2) 
when summed over x3 (nor does it sum to either of the other second order 
distributions, nor in fact, does it sum to uni ty) .  

The product approximation of an N th  order distribution contains at  
most a product of N terms, since it must be possible to write the terms 
down in a sequence such that  each new term contains at least one varia- 
ble (x j) not contained in the previous terms. If the variables are then 
summed in reverse order back through the sequence, the unity sum prop- 
er ty  can be demonstrated. For example, one particular product expan- 
sion to a seventh order distribution can be written in sequence 

P(x~ , x2) P(x5 Ix1) P(x6 I xs) P(x~x4 Ix6) P(xT) 

The unity sum property can be demonstrated by summing in sequence 
O21 X7 ~ X4 ~ X3 , X6 , X5 , X2 and Xl. 

With a little practice, appropriate product  approximations can be 
written down by inspection. 

As a class, product expansions suffer from the disadvantage of using 
only part  of the available information. Thus even if one knows all three 
of the second order distributions that  compose a third order distribution, 
he can only use two of them in forming a product approximation. In a 
more general ease, there are n(n  - 1) /2  second order distributions in an 
N th  order distribution of which only N - 1 can be used in the product  
approximation. 

However, this apparent  disadvantage of the product extension as a 
general approximation method becomes considerably less important  
when the storage problem is considered. One of the principal aspects of 
this problem is the throwing away of unimportant  data and the selection 
of tha t  information which is most important  for the proposed applica- 
tion. Thus we are only interested in using part  of the information (the 
important  part)  and the product approximation shows us how to use 
this partial information to obtain an approximation to the total informa- 
tion. 

We shall now demo~strate tha t  under certain conditions, the product  
approximation is the best way to use the partial information that  we do 
have: namely, we shall prove the following result: 

Given a set of lower order probabilities Po ,  P b ,  " '"  , P~ such that  
the product 

pl  = P~Pb "'" P~ 

is a product approximation, then this product  approximation contains 
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the smallest information of the entire class of extensions of P~, P b, 
" ' " ,  Pn .  

The proof is straightforward; consider any other extension of Po,  
Pb,  • • • , P~ ; call this other extension distribution P". According to the 
well known result in information theory referred to earlier 

P / '  log P~-" ~ ~ P / '  log P /  

The expression on the right can be written 

~'~ P / '  log P /  = ~ P / '  log PoPb "'" P~ 

= ~ P~" log P~ 

~- ~ P / '  log Pb -t- "'" ~- ~ P / '  log P,~ 

Since the P"  distribution is also an extension of P~Pb "'" Pn the terms 
on the right can be partially summed to obtain 

~ _ , P / ' l o g P /  = ~ P ~ l o g P o  ~- ~ P b l o g P b - t -  " "  + ~ P ~ l o g P ~  

But this is exactly (the negative of) the entropy of the P '  distribution 

P / '  log P /  = ~ P / l o g  Pj '  

Thus the original expression becomes 

Pj" log P / '  ~ ~ P / l o g  P /  

which proves the result. 
Thus we have shown that under the above restrictions, the product 

expansion is the best (minimum information) approximation. 
For example, if we are given only two of the second order components 

of a third order distribution, the best approximation is their appropriate 
product. However, if we are given all three second order components, 
they do not form a product extension and the conditions of the result no 
longer apply. One could solve the minimum information optimization 
problem for this case, and a complicated function Of all three probabilities 
would result. However, if one desires to retain the simplicity of the prod- 
uct approximations, he could consider all three of the possible product 
expansions obtained by neglecting one of the given second order distribu- 
tions and, using the closeness measure, select the best. This would not 
yield quite as good an approximation as using all three distributions, 
but it offers the advantage of simplicity, and in addition represents the 
desired "important data" selection. 
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VI. CLOSENESS MEASURE APPLIED TO PRODUCT EXPANSIONS 

The closeness measure takes a particularly simple form when applied 
to product expansions. Since the only term in the information measure 

[p-p' -~ E Pi  log Pi  -- E P i  log Pi'  

that depends on the approximating distribution is the last one, our first 
efforts will be directed toward evaluating the function 

-- ~ P~ log P ~  

The approximating distribution P¢' consists of a product of lower order 
probabilities of Pi which we can symbolize as 

PP = PaP b " "  P,~ 

The expression we are trying to evaluate becomes 

-- ~ Pi log P , P ~  • • .  P ~  

and, on expanding the log, 

- ( 2 P i l o g P ~  ~- ~ P ~ l o g P ~  ~- . . .  -t- ~-~ P i log  P.)  

Since the lower order distributions are components of the actual dis- 
tribution, a partial summation of each particular term yields (for ex- 
ample) 

P i l o g P o  = ~ P o l o g P o  = - H ~  

where Ho is the entropy of the Po distribution. Then, the above expres- 
sion becomes 

- ~  P~Iog P~P = (H~ -t- Hb + . . .  -t- H~) 

which, when substituted into the equation for the closeness measure, 
gives 

I~_~, = (Ha + Hb + . . .  + H~) - Hp 

= - ~ p - -  (Ia'-[- ~-b ~- ° '"  "@ L) 

Thus the closeness measure can be expressed as the information in the 
actual distribution minus the sum of the informations in the (product) 
approximating distributions. In particular the second term in the close- 
ness measure, which can be interpreted as the information given by the 
approximating distribution about the actual distribution, ean be eal- 
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culated as the sum (and difference) of the entropies of the approximat-  
ing distributions and can thus be determined without knowing the actual 
higher order distribution. This is a very  basic mutual  proper ty  of the prod- 
uct approximation and the information measure and is one of the main 
justifications for the definitions made in their development.  

The use of this proper ty  greatly simplifies the comparison of two or 
more proposed product  approximations, in order to select tha t  approxi- 
mat ion for which the closeness measure is smallest. Since I~ (the informa- 
tion in the actual distribution) is the same for all approximations, the 
best approximation is the one for which the sum of the informations in 
the approximating distributions is greatest. Thus,  two or more proposed 
approximations can be compared and the best one selected without  any  
knowledge of the actual  distribution beyond tha t  given by  the approxi- 
mations. 

This last s ta tement ,  surprising at  first, is easily explainable. The 
process of comparison consists of selecting tha t  approximation contain- 
ing the greatest  amount  of correlation. Thus,  if xl and xl00 are less cor- 
related than xl and x2, then even without  knowing the true distribution, 
it is clear tha t  one would rather  use the  te rm P(x l ,  x2) than the t e rm 
P(x l ,  x~oo) in the approximation.  

Furthermore,  there are other types of approximation tha t  have this 
property.  If  one has the choice of approximating a given function by  
using a finite number  of terms from either of two different orthogonal 

TABLE I 

True Approximations 

Sequence Probability P(xa)P(x2) P(xa I Xl) P(xa Ix2) 
3 2 1 P(xsx2xl) P(xI) P(x3)P(x2xl) P (x2x l )  P(x2xi) 

0 0 0 0.222 0.088 0.148 0.176 0.250 
0 0 1 0.111 0.110 0.049 0.044 0.083 
0 1 0 0 0.110 0.049 0.055 0.022 
0 1 1 0.111 0.137 0.198 0.176 0.089 
1 0 0 0.111 0.110 0.185 0.176 0.083 
1 0 1 0 0.137 0.062 0.066 0.028 
1 1 0 0.111 0.137 0.062 0.056 0.089 
1 1 i 0.333 0.171 0.247 0.264 0.355 

Ip_~, (bits) 0 0.575 0.323 0.309 0.080 
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expansions, he can tell which is the bet ter  approximation,  in the mini- 
m u m  mean square error sense, without knowing the true function, by  
just  picking tha t  expansion having the greatest  mean square value. 

This selection proper ty  relates the mathemat ical  concepts of approxi- 
mat ing probabil i ty distributions to the engineering problem of reducing 
equipment  complexity, as was originally discussed in the introduction. 

Example 1. Elementary  results (Feinstein, 1958, Chapt.  2) in infor- 
mation theory can be used, in certain eases, to show tha t  of two terms 
tha t  are interchangeable in a product approximation,  one always gives 
a bet ter  approximation.  For example: 

P(xl , x2) bet ter  than P(xl) P(x2) 

P(zl ! x~) better  than P(xO 

P(xl Ix2, xa) bet ter  than P(xl I x~) 

These are properties tha t  any  meaningful measure would be expected to 
p o s s e s s .  

Example 2. Approximation Characteristics. In  Table I are listed a 
third order probabil i ty distribution together with four product approxi- 
mations, in order of increased goodness. At the bot tom of each column 
is the approximation measure Ip_~,. 
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