
A review of RAM based neural networks

J Austin
Department of Computer Science

University of York
York, YO1 5DD, UK.

Abstract

This paper briefly reviews a class of neural networks
often termed as R A M based networks. A s this paper
shows, the networks are identified by their use of ?og-
ical' I-in-n decoders as a pre-process to each neuron.
The paper explains why the networks have also been
termed weightless systems. Two sub-classes of binay
neural networks are described, those which use bina y
weights and use only a single layer of neurons con-
sisting of the MRD, ADAM and WISARD, and those
which use multi-valued weights and multiple layers of
neurons comprising the PLN, PRAM, GSN, TIN. The
paper attempts to show the evolution of the networks,
as well as describing the benefits of this class of neural
network for hardware implementation.

1 The motivation for binary neural
net works

The typical model of a neuron used in a large num-
ber of neural networks is based on the McCulloch and
Pits [Pit431 neuron which can be described by equa-
tions (1) and (2). These specify a linear weighted sum
of the inputs, followed by a non-linear activation func-
tion.

n

u = wjx,
j=1

Where U is the activation of the neuron, w are the
weights, x are the inputs, a controls the shape of the
output sigmoid, and y is the output. When equation
(2) is replaced by a Heavyside function, the neuron is
called a Linear Threshold Unit (LTU).

When given the appropriate activation function and
used in networks with 3 layers (MLN) they have been
shown to be universal function approximators [Zur92].

In addition, they have very good generalization abil-
ities. However, this universality comes at a cost. To
train a MLN an arbitrary complex problem requires
repeated presentation of training examples, which of-
ten result in very long learning times.

The implementation of the feed forward operation
of the networks requires the use of a multiplier unit,
which can be problematic for fully parallel VLSI im-
plementations of the networks, due to the large size of
the multiplier. The most popular approach to train-
ing is the generalized delta rule, and its derivatives
[McC86] which requires both the forward propagation
phase and a backward (back error) propagation phase.
The complexity of the training algorithm has limited
its implementation in fully parallel dedicated hard-
ware.

2 N tuple method

The RAM based systems were not originally de-
signed with a consideration of the limitations of
MLNs, but do provide solutions to these problems.
They originate in the work of Bledsoe and Browning
[Bro59], who invented a method of pattern recogni-
tion commonly termed the N-tuple method. The basic
principle behind the N tuple method is that learning to
recognize an image can be thought of as building a set
of logic functions that can describe the problem. The
logic functions will evaluate true for all images which
belong to the class that the logic function represents
and evaluate false for all other classes.

The is shown in the simple example in Fig. 1. Each
class of image has a set of logic functions that relate
to it. For an unknown image, the set of logic functions
that has the majority of functions which evaluate to
true, indicate the class of image. The image of a T
can be recognized by using the logic function;

(3) R = A.B.C + D.E.F + G.H.I

58
0-8186-6710-9/94 $4.00 0 1994 IEEE

Pixel Names

Input
A
0
1
0
0

data, the same approach is used, only now the storage
locations are accessed and summed.

The definition of a RAM node is one tuple of N
inputs, followed by a logical 1 in n decoder, followed
by a set of storage locations and a summing device.
This is shown in fig. 2.

. n

Input
B Output lines
0 1000
0 0100
0 0010
0 0001

Figure 2: The basic RAM node.

The 1 in n decoder has the truth table shown in
table 1.

Image of an I Image of a T

Figure 1: This is an example of the N tuple process.

The image of an I can be recognized by using the
logic function;

R = A.B.C +- D.E.F -I- G.H.1 (4)

To improve the generalisation ability of the N tu-
ple method, instead of logically ANDing the minterms
of the expressions together, they are arithmeticaly
summed to give a count of the number of terms that
are true.

In the example in Fig 1 there are 3 ‘tuples’ each
of size 3. These form the minterms in the equations
above. They are

Tuple 1; pixels A B C
Tuple 2; pixels D E F
Tuple 3; pixels G H I
To learn the logic functions that represent the data

belonging to a given class was originally shown by
Aleksander and Stonham [Sto79]. The approach was
based upon the structure shown in Fig 2. The prob-
lem involves remembering which logic terms would be
needed for specific classes of image. This was most
easily achieved by using a logical 1-in-N decoder fol-
lowed by a set of binary storage locations for each
term, and using one such unit for each tuple. The log-
ical decoders compute all possible logical functions of
the N inputs they connect to. When presented with
a pice of data, the various decoders will indicate the
functions required. To recognize an unknown piece of

2.1 RAM based units compared to LTU

In comparison with conventional linear threshold
units (LTU), M M units contain a greater amount
of classification power. They can be described using
LTU, but would require a 3 layer network to achieve
this.

RAM based units are most similar to ‘higher or-
der’ networks [Pao89], which combine the input data
prior to the inputs application to a system composed
of LTUs. However, where higher order units combine
continuous values using non-linear functions (powers
etc.) RAM units combine the inputs using logical
functions (AND and OR). In effect, this is the same
approach, only one is continuous the other is binary.

Fig. 3 and 4 show the relation between a network
of RAM units and a higher order network. Fig. 3
shows what is commonly called an N tuple network.
One such network can be used to identify the similar-
ity of an unknown image to one trained. A group of
such networks, used to recognize one of a number of
classes is called a Multi-RAM discriminator (MRD).
Fig. 4 shows a higher order network with an equive
lent structure as an N tuple network.

59

Weight matrix.

/
r4 s

D ? /

- I

1 2 3 4

Figure 3: The N tuple network.

Sum

Another important difference is that RAM units
always take sub-samples from the image in the form
of tuples. Each tuple is made up of N samples of
input data, fed to its own set of storage cells. In RAM
based systems, the size of a tuple, N, is an important
parameter as it effects the classification ability of the
network.

The major advantage of the RAM based approach is
that the decoder/storage cell combination is a random
access memory (RAM). Thus allowing very simple and
direct implementation in cheap and readily available
components. This was shown by Aleksander et. al.
[Bow841 in the WISARD pattern recognition machine.

2.2 The limitations of the N tuple method

Although the basic N tuple approach was powerful,
in terms of is learning speed and simple implementa-
tion. The method has a major limitation. This relates
to the learning capacity of a given N tuple network.
By inspection it may be obvious that a given N tuple
network cannot implement all possible functions of the
data inputs.

To show this a simple problem (intra-exor) problem
is shown in table 2 (from [Aus93]).

The tuple distribution given in fig. 5 shows a two
tuple system that cannot solve the problem intra-exor
problem shown in table 2 with a given N tuple net-
work. However, by altering the placement of each tu-

Non-linear Single layer network
transform

Figure 4: A single layer net with N tuple pre-
processing.

I Inputs I I

0 1 1 0 0

Table 2: The intra-exor problem

ple as shown in fig 6, the problem is solvable. This
is unlike the EX-OR problem when used on a single
layer network. The network cannot solve the problem
given an arbitrary ordering of the inputs.

To solve this problem, one could used an tuple size
equal t o the input data size. However, this looses any
generalization ability of the network, and results in
RAM nodes with a very large memory requirement.

The N tuple method was used in the WISARD pat-
tern recognition machine [Bow84], capable of recogniz-
ing images at about 25 frames per-second. To over-
come the problem given here, the training and test-
ing method involved moving the image around whilst
training and testing. This effectively ensured that
most of the time the EXOR type problem did not arise
(it also allowed good generalization).

For many problems, such as image processing,
the intra-exor problem is not an issue, as training
methods overcome the limitation. The method has
been successfully applied to many problems, such as
monitoring crowded underground railway platforms,
face recognition [Ale85a], satellite image recognition
[Buc94] and character recognition [Row93].

60

Figure 5: An arrangement of tuples that will not solve
the intra-exor problem

D C B A

Tuple 2

Figure 6: An arrangement of tuples that will solve the
intra-exor problem

Tuple 1

A number of extensions to the basic N tuple method
have been developed. To deal with non-binary inputs
Wilson [Ale85b] and Austin [Aus88] have developed
methods for taking in grey scale data and still allow
the use of binary logic functions.

2.3 Hardware implementation of the N
tuple method

The N tuple method was implemented in dedicated
hardware in the form of WISARD in the early 1980’s
[Bow84]. The machine was taken up commercially by
Computer Recognition Systems of Woking (UK) and
marketed for a number of years. The commercial sys-
tem used conventional digital processor methods and
achieved a recognition rate of 12.5 frames a second for
images of 5122 images, using sparse sampling (i.e. not
all pixels used).

More recently the method has been used in a paral-
lel image processing system (C-NNAP, [Pac94]), where
the method has been extended to form an associa-
tive memory [Sto87]. This system uses Field Pro-
grammable gate arrays to implement the memory
scanning and training processes.

3 Overcoming the limitations of N tu-
ple; RAM pyramids

As the intra-exor problem has shown, the use of
the N tuple method can be rather hit-or-miss. Some
training examples will not be separable, while others
will be.

To increase the robustness of the method the func-
tional capacity needed to be raised whilst maintain-
ing the generalization ability, along with the training
speed, and simple hardware implementation.

To achieve this, it is important to understand how
the method is capable of generalizing on unseen data.
The method operates by a set membership classifica-
tion process. Each image is broken up into a number
of tuples. In the N tuple method, for a given set of
patterns the binary patterns appearing in each tuple
are recorded during training. During testing, each tu-
ple is checked by each RAM node to see if it contains
a known bit pattern, and the number of RAM units
that recognize the input tuple pattern is counted and
output as a recognition figure. In effect each RAM
unit, which process the tupie data is looking for pat-
terns that belong to a set of known patterns that were
presented during training. The generalization comes
from the way tuple patterns are allowed to be mixed
between training examples. The larger the tuple size
the smaller will be the generalization set size.

Unfortunately, the size of the generalization set is
not set by training, (apart from the number of exam-
ples given), but by the tuple size, N. Thus, to get a
good balance between classification success and gen-
eralization, requires experimentation.

The problems are caused by the linear combination
of the results of the RAM units. In the N tuple method
these are summed. This results in the intra-exclusive
OR problem given in section 2.2.

The obvious solution is to combine the outputs of
the RAM units non-linearly. This can be done in two
ways; use a multi-layer network of linear threshold
units or use more RAM units. The former method
has been called a Hybrid network [Aus93]. This is
very similar to the higher order networks, except that
it uses logical functions to combine data. The ap-
proach results in a solution to the problem, but at
the cost of longer training time (iterative). The latter
methods are more popular, and uses the RAM based
approach exclusively.

The typical form of the multi-layer RAM net
(MLRN) is to combine the results of one layer of RAM
units using subsequent layers. Because each RAM unit
has a limited number of inputs, it is necessary to have

61

many layers of RAMS for large images.
The typical form of a MLRN is shown in Fig. 7

Input

Figure 7: Typical form of a multi-layer RAM network.

These networks can implement any subset of log-
ical combinations of the input data [Sto92b]. Thus,
overcoming the intra-exclusive OR problem given ear-
lier. However, the solution requires a new training
method, for the same reason that the multi-layer net-
works of LTU required the introduction of the gener-
alized delta rule (GDR). As was shown by the GDR,
to perform back propagation requires soft-limited out-
put functions on each neuron. The function imple-
mented by RAM units is not continuously differen-
tiable, thus the MLRNs cannot be trained using the
GDR when implemented using the basic RAM node.
This problem has forced a number of researchers to
investigate how MLRN can be trained. Notably, the
Probabilistic Logic Node (PLN) [Ale89], the proba-
bilistic RAM (PRAM) [Tay93], the Goal Seeking Neu-
ron (GSN) [BisSl] and Time Integrating Neuron (TIN)
networks [Gur92], and their derivatives.

All these networks provide solutions to training
MLRNs .

3.1 Reinforcment Learning in Multi-layer
RAM nets - the PLN

Because multi-layer RAM networks cannot be
trained using a back-propagation like algorithm, rein-
forcement learning method has been used, which does
not require a direct measure of error, but just an in-
dication that the output was incorrect. The reinforce-
ment signal is sent to all nodes and used to determine

if the pattern present on the input to the RAM unit
should be saved (i.e. the logic function noted).

As the RAM node stands, reinforcement could not
be used. This is because the node can only record
(1) the presence of a particular binary pattern during
training, or (2) the absence of the pattern. This binary
representation would not work with reinforcement
learning as three states are needed for the method to
work, namely (1) the pattern input caused a correct
output, (2) the pattern input caused an incorrect out-
put, (3) the pattern did not occur on the input. By
allowing tri-state storage in the RAM node reinforce-
ment learning could be used. This was implemented
by Aleksander in the PLN [May92]. In practice the
PLN represents the information as;

1 = tuple pattern occurred and is correct,
0 = tuple pattern occurred and is incorrect,
U = pattern has not occurred.
The use of the U, ‘don‘t know’ state required an

extension of the learning algorithm. When a ‘U’ state
is accessed in the RAM, the output of the ram is set
to 1 or 0 with a probability of 0.5. Thus any input
pattern will allow the propagation of a result to the
output of the network.

The algorithm used to train this version of the PLN,
is as follows;

1) Initialize all locations to a random binary [1,0]
values.

2) Select an input pattern.
3) Access the RAM and generate an output.
4) If the value at the output of the net is correct,

set the reinforcement signal, r, to +l. If the output is
incorrect, set the reinforcement signal to -1.

5) for all nodes, If r=+l and the node is addressing
a ’U’, then set the node to the value set on the output
of the node.

6) If r=+l then set the next input pattern to be
learned.

7) If r=-1, then clear all the nodes and re-enter
input pattern.

8) got0 3.
The algorithm requires repeated application of this

process, until all nodes have learned the patterns.
The approach taken in the PLN required (1) itera-

tive learning, (2) 3 state storage locations. As a result,
direct implementation in standard RAM components
is not possible and training is slower. However, train-
ing is still more rapid than other approaches using
LTUs .

62

3.2 Weighting the storage locations, N
tuple RAM extensions and the w PLN

The approach used by the PLN nets and by the
N tuple approach only permitted each node to record
the presence and absence of a particular input pat-
tern. This approach can be softened by allowing the
system to record the frequency of occurrence of the
input patterns to a RAM node. This would allow the
important features of a piece of data to be weighted
in preference to other features.

The original N tuple method described by Bledsoe
and Browning suggested this. However, because of im-
plementation difficulties it was not used in the hard-
ware implementations of the N tuple method. It has
been shown that the approach can improve recognition
accuracy [Bro59]. To overcome the implementation
problem Austin and Smith used a weighted scheme
during training and converted this to a binary rep-
resentation for later implementation in RAM based
nodes [Aus92]. This approach retained the improved
recognition accuracy while partially maintaining the
implementation efficiency.

In the case of MLRN, Mayers [May921 with the w-
PLN and Gorse and Taylor [Tay931 with the PRAM,
both realised the benefit of using a weighted scheme
in MLRNs. The PRAM is described in the next sec-
tion. Mayers developed the w-PLN which general-
ized 3 state storage used in the PLN to w states, and
showed the improved recognition accuracy which re-
sulted. The reinforcement algorithm was extended to
take this into account. This approach has not been
implemented, but has been used to model delay learn-
ing in invertebrates [May92].

Nevi11 and Stonham [Sto92a] provide a description
of the PLN which has the addition of a sigmoid ac-
tivation function in a w state PLN. In this one, the
storage locations hold values with w states. However,
after the value is addressed and read out, the value
is passed through a sigmoid normalization function
which gives a continuous value between 0 and 1. This
value is interpreted as the probability that the unit
will fire with a 1. The same reinforcement algorithm
is used.

3.3 Storing probabilities in the RAM lo-
cations, the PRAM

Gorse and Taylor [Cla94] fully extended the design
of a RAM unit to a probabilistic framework. The
probabilistic RAMs hold the probability of a given in-
put pattern occurring, instead of just holding a nor-
malized value as done in the PLN approach. By using

63

probabilities, the likelihood of the input pattern be-
longing to a particular class can be calculated, rather
than a boolean yes/no class membership decision.

In addition they pass the probability accessed by
any input pattern to other nodes. Thus, the approach
is purely probabilistic in its operation.

To implement this approach, the Kings’ team have
used a fully probabilistic approach, where information
is passed between the nodes probabilistically. To do
this they introduced a pulse coded method of com-
munication between RAM nodes [Tay891 which sim-
plifies the operation and hardware implementation of
the node [Gua93]. For each cycle of operation of the
PRAM, the node (1) determines if pulses are present
at its inputs, (2) forms a binary pattern of the bits
that are on and off, (3) accesses the memory location
that is addressed by that bit pattern (4) reads out the
probability, U , that the node fires from the memory
location. (5) sets a one or a zero at the output of
the node depending on U. Thus, over time the node
will access a number of memory locations and, over
time, fire with a mean rate depending on those nodes
values. This is an entirely probabilistic system, in-
cluding the hardware implementation, which makes it
unique amongst neural network systems. The PRAM
uses the reinforcement learning method to update the
probabilities .

3.4 Non-reinforcement learning and
probabilistic RAMs - the GSN

Another way of implementing a probabilistically
based RAM node is not to use continues firing rates,
but to pass the probability of the node firing using a
boolean value. This method, used in the GSN [BisSl]
allows the system to work statically, i.e. at any mo-
ment the exact probability of a nodes output can be
obtained. In the PRAM, to obtain the probability of
the output requires an averaging of the output pulses
from the neuron. In addition, the GSN does not use re-
inforcement learning, but a method that allows learn-
ing of an unknown pattern in one presentation. The
method uses a form of back propagation and basically
operates as follows, using a pyramid of RAMs. In
the forward pass phase (validation), the aim is to see
if the network can potentially output the correct re-
sult. Each node (RAM) receives an input from the
image which causes access to a memory location in
each RAM. Initially all RAMs contain the undefined
state, U. Thus all units n the first layer output this
state. This value is passed to the next layer of units.
These units must then interpret the U state. In the
GSN, a U on an input address line is taken to be 1 or

0 input. If a node receives the input data 1,1,u,u this
implies that the unit (with, for example, 4 inputs)
must access locations 1,1,1,1 and l , l , l , O and l , l , O , l
and l , l ,O ,O . The node must then resolve these con-
flicting inputs. It holds these as a list and selects one
to use to access the memory location. It then passes
contents of the addressed location to the next layer.
The value passed to the next layer (the final layer)
may also be a ‘U’, which means that a list of possi-
ble inputs will be formed at the final node. The same
process of selecting one of these is performed. If this
unit outputs the correct value (1 or 0) , then the chosen
patterns at each node which has U’S on its input is cor-
rect. These patterns are selected by training the node
(changing the accessed U value to the chosen output
value). If the final layer node outputs ’U’, the same
process operates, but now the final unit is set to the
correct output. If the final unit outputs the incorrect
value, then the nodes which have a selection of possi-
ble inputs are revisited and a different input pattern
chosen. By a careful search process the network is
trained.

Although the GSN operates in ‘one pass’, it em-
bodies a search process that is similar to a depth-first
search with backtracking in AI. This search process
has a large worst case search time. So, although the
training set is only presented once, each pattern can
take some time to learn. Furthermore, the network
may not train on one pass, as the ordering of the pat-
terns may result in the system not finding a solution.

3.5 The crossing the divide, the sigma-pi
unit

The sigma-pi unit[McC86] has been shown to be
equivalent to a RAM based node by Gurney [Gur92].
He shows how a RAM based node can be made equiv-
alent to the sigma-pi units and shows how, with the
addition of systems that perform a sigmoid activation
on the output of a node, so that the network can use
back propagation learning. He shows that, if a node
is described by the following,

n

Y = 4 a) (6)

Where S, is the range covered by the values stored
at each addressed location, n is the number of input
values (tuple size), S, is the value held in the ad-
dressed location, U is one of the RAM addresses, and tc

is the input tuple pattern. The term n,”=l(l+u,x,) ef-
fectively activates a given address if the tuple matches
the indexed address, and the term E, indexes all ad-
dresses in the RAM. The final equation is a sigmoid
activation function Q, and the output of the neuron is
given by y.

Then the operation of a RAM can be made contin-
uous over its inputs and its outputs. As he points out,
the practicality of this model is bound by the the size
of n (the number of bits in the input). He then pro-
poses a stochastic version of this model (TIN) which
reduces the computational complexity. The approach
is similar to that taken in the PRAM, using bit streams
as inputs and outputs of the unit. However, his model
incorporates a sigmoid output function which makes
the node continuous. The result of this is a node that
can be interpreted as a continuous system and, as Gur-
ney shows, can be trained using a version of back error
propagation. However, it is not clear if any advantage
is gained from this in terms of hardware implementa-
tion or speed.

The hardware implementation of this node type has
been described by Hui, Morgan, Gurney and Bolori
[Bo192]. There most recent chip implements 10,240
neurons in ES2 1.5um double metal CMOS.

4 Concluding remarks

The development of the RAM based approach has
come a long way since the original concept was pro-
posed by Bledsoe and Browning in 1959. The origi-
nal RAM implementation is still the simplest.to im-
plement in dedicated hardware, with theoretical pro-
cessing speeds in the order of 10’s of nano seconds
for both training and testing. The power of the ap-
proach has been demonstrated in the ADAM system
and the grey scale extensions to the method. The
speed of the method was traded off against robust-
ness, in that all training patterns may not be learned
by the system. The MLRN’s overcame these prob-
lems allowing complex problems to be learned without
the possibility of the network failing on any examples.
The original PLN showed how reinforcement learn-
ing could be used in RAM networks, requiring only
the addition of a one extra state in the nodes mem-
ory locations. Increased performance has been gained
by the use of multi-state w-RAMS, but at the cost
of higher implementational complexity. The PRAM
allowed simpler hardware implementation as well as
adding better classification ability and a clear biolog-
ical interpretation. Both the PRAM and the PLN re-
quired the addition of iterative training, which breaks

64

with the one shot training ability of the original N tu-
ple method. To overcome this the GSN introduced a
scheme where patterns where only presented once for
training, but introduced a search process in each train-
ing cycle. This allowed on-line training and up-date to
a network. Finally the TIN neuron and its derivatives
clearly showed that the RAM unit could be trained
using conventional methods if certain variations were
added.

Four major implementations of the RAM based
systems exist. The original WISARD (discrete
components), the ADAM multi-processor (C-NNAP,
FPGA), the PRAM (VLSI) and the Hui et al. (VLSI)
implementation. All have shown that hardware imple-
mentation of the learning algorithms is feasible, and
that many potential applications can benefit from the
hardware implementation of these methods.

The RAM based neuron undoubtedly provides a
novel approach to the design of neural network sys-
tems, which provide a range of techniques for many
applications. The most useful addition to future re-
search in RAM based systems would be a comparison
of the methods against the performance of other net-
works on a set of standard benchmark problems.

5 Summary

This paper has briefly described the work in the
area of RAM based neural networks. It has shown
that these neurons all have a non-liner function prior
to the weights, which provides the rapid training char-
acteristics. In addition, when the binary version of the
nodes are used, the implementation of the decoder and
storage is simply a logical decoder and set of bit stor-
age locations.

To some extent, the simple implementation charac-
teristics have been lost in later improvements to the
RAM nodes. However, this is the cost to be paid to
obtain better and more reliable classification ability.
The use of a reinforcement learning scheme has pro-
vided methods that can be implemented more simply
than systems that require heavy iteration between the
neurons.

References

[Ale85a] I. Aleksander. Wisard: A component for im-
age understanding. IEEE Proc., 135 Pt.E(5),
1985.

[Ale85b]

[Ale871

[Ale881

[Ale891

[Aus88]

[Am921

[Aus93]

[BisSl]

[Bo1921

[Bow841

[Bro59]

[Buc94]

M J D Wilson I Aleksander. Adap-
tive windows for image-processing. IEE
Proceedings-E Computers and Digital Tech-
niques, 132(5):233-245, 1985.

W K Kan I Aleksander. A probabilistic
logical neural network for associative learn-
ing. In Proc. of IEEE l 'st anual Confer-
ence on Neural Networks, pages 541-548,
San Dieago, 1987.

I Aleksander. Logical connectionist systems.
In R Eckmiller C von der Malsberg, editor,
Neural Computers, pages 189-197. Springer
Verlag, 1988.

I Aleksander. Cannonical neural networks
based on logic nodes. IEEE International
Conference on Artificial Neural Networks,
pages 110-114, 1989.

J Austin. Grey scale n tuple processing. In
Josef Kittler, editor, Lecture Notes in Com-
puter Science:SOl, pages 110-120. Springer-
Verlag, 1988.

G Smith J Austin. Analysing aerial pho-
tographs with adam. In International Joint
Conference on Neural Networks, Baltimore,
USA, June 1992.

J Austin. Rapid learning with a hybrid neu-
ral network. Neural Network World, 5:531-
549, 1993.

E C D B C Filho M C Fairhist D L Bisset.
Adaptive pattern recognition using the goal
seaking neuron. Pattern Recognition Letters,

T Hui P Morgan K Gurney H Bolori. A
cascadable 2048-neuron vlsi neural network
with on board learning. In ICCAN'SS, pages

I. Aleksander W. V. Thomas P. A. Bow-
den. Wisard:a radical step forward in image
recognition. Sensor Review, pages 120-124,
July 1984.

W W Bledsoe I. Browning. Pattern recogni-
tion and reading by machine. In Proc. Joint
Comp. Conference, pages 255-232, 1959.

J Austin S Buckle. The practical applica-
tion of binary neural networks. In Proc. of
the UNICOM seminar on Adaptive comput-
ing and information processing, 1994.

121131-138, 1991.

647-651, 1992.

65

[Cla94] D Gorse J G Talor T G Clarckson. Extended
functionality for prams. In ICCAN 94, pages
705-708,1994.

[Gua93] T G Clarkson C K Ng Y Guan. The pram:
An adaptive vlsi chip. IEEE Transactions on
Neural Networks, 4(3):408-412, May 1993.

[Gur92] K N Gurney. Training networks of hardware
realisable sigma-pi uints. Neural Networks,
5:289-303, 1992.

[May921 C E Mayers. Delay Learning in Artificial
Neural Networks. Chapman and Hall, 1992.

[McC86] D E Rummelhart J L McClelland. Parallel
Distributed Processing. MIT Press, 1986.

J Austin A Turner S Buckle M Brown A
Moulds Rick Pack. The cellular neural net-
work associative processor, c-nnap. IEEE
Computer, To be Published. 1994.

[Pa0891 Yoh-Han Pao. Adaptive Pattern Recognition
and Neural Networks. Addison-Wesley, 1989.

[Pit431 W S McCulloc W Pitts. A logical calculus of
the ideas imminent in nevous activity. Bul-
letin of Mathematical Biophysics, 5:115-133,
1943.

[Pac94]

[Row931 R Tarling R Fbwher. Efficient use of training
data in the n-tuple recognition method. Elec-
tronics Letters, 29(24):10932094, September
1993.

I. Aleksander T. J. Stonham. Guide to pat-
tern recognition using random-access mem-
ories. Computers And Digital Techniques,

[St0791

2(1):29-40, 1979.

[St0871 J Austin T J Stonham. An associative mem-
ory for use in image recognition and occlu-
sion analysis. Image and Vision Computing,
5(4):251-261, NOV 1987.

[Sto92a] Neville T J Stonham. Adaptable reward pe-
nilty for pln. In ICCAN'94, page 631, 1992.

[Sto92b] R Al-Alawi T J Stonham. A training
stratagy and functionality analysis of digi-
tal multi-layer neural networks. Journal of
Intelligent Systems, 2(1-4):53, 1992.

[Tay891 D Gorse J G Taylor. An analysis of noisy
ram and neural nets. Physica D, 34:90-114,
1989.

[Tay931 D Gorse J G Taylor. Review of the theory
of prams. In N M Allinson, editor, Weight-
less neural network conference, pages 13-17.
University of York, 1993.

[Tay941 S Ramanan R S Peterson T G Clarkson J G
Taylor. Adaptive learning rate for training
prymidal prams. In ICCAN'94, pages 1360-
1363, 1994.

Jacek M. Zurada. Introduction to Artaficial
Neural Systems. West publishing CO., 1992.

[Zur92]

66

