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[Abstract] N-tuple adaptive pattern recognition systerm- WISARD, invented by 
I.Aleksander, can be considered as a logic neural network using ordinary RAMS and has 
found extensive applications. It does, however, have weaknesses in large dimensional or 
non-deterministic pattern recognition problems since n-tuple size is confined under the 
lower value (n<8) due to the consideration of the cost. 

Sparse distributed memory- SDM, proposed by Kanerva, is an associative memory 
model in a vast data space and a generalisation of Hopfield neural networks, its distributed 
access principle is very efficient to store correlated patterns in the same classifier. 

On the basis of WISARD and SDM models, we suggest a novel two-layered adaptive 
system in which n-tuple recognition principle in WISARD is still followed and RAMS are 

replaced with SDM networks. In addition to all properties of WISARD, it can select 
n-tuple size in larger range without the limitation of the cost. Experiments on the Chinese 
character recognition have shown the feasibility of the model. 
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1. Introduction 
(1) WISARD System 

WISARD system is the single-layered adaptive logic networks (Fig. 1) which envolve 
essentially from neural modelling and use a combinational logic function as a simple 
neuron-like cell [l][2]. The system contains a hundred of functions implemented with ordi- 
nary RAM array. Each function needs one RAM unit which has 1 bit datum length and n 
bit address inputs, called a n-tuple, as the ones to each function. These logic functions are 
set up by input training patterns. One net, called a discriminator, is required for each class. 
Each function samples n points in random manner from a binary input pattern which can 
be the television resolution picture in the frame store. All n-tuple subpatterns to one RAM 
are the terms of corresponding logic function. During the cassifying phase, an unknown pat- 
tern stimulates the networks. RAMS, in read mode, are addressed by the n-tuple samples, 
that is, the logic functions are driven and respond with 0 or 1 according to whether the input 
subpatterns of input pattern have been trained. The overall network response is the arithe 
metical summation of all RAM outputs. The decision on the unknown pattern is made by 
the decision logic, usually depending upon maximum-response principles. 

The salient properties of the system are non-algorithm, self-adaption, real-time and 
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massive parallel distributed processing. It does, however, have some weaknesses which are 
(a) the cost of RAM nets is expotentially raised as the n-tuple size increases so that the per- 
formance can not be optimized in some problems since the n-tuple size is limited under cer- 
tain value, n<8 usually. (b) Given n, the more the training patterns, the more the locations 
set up, the 'saturation' of RAMs will finally be incured. (c) Without considering the correla- 
tion between training patterns or n-tuple groups. Because of these, the system is not very ef- 
ficient to cope with large dimensional or nondeterministic pattern data recognition prob- 
lems. 
(2) Sparse Distributed Memory Model 

Consider a conventional random acccss memory with very large address. For n = 1000, 
n address length, 2" possible addresses are larger than the number of atoms in the known 
universe. Obviously, there is no way of associating all, or even a relatively small fraction, of 
these addresses with physical storage locations. How can one construct an associative mem- 
ory using these large address? Kanerva's answer is as follows: pick at random m addresses 
to be associated with physical storage locations (m might be a million to a billion). Because 
m is small compared with 2', these randomly chosen addresses represent a set of storage lo- 
cations that is sparsely distributed in the address space [3]. 

A schematic picture of the functioning of the SDM as autoassociative memory is shown 
in Fig.2.[4]. M addresses associated with storage locations are contained in the matrix A. 
The input address comes in at the top as vector a. All addresses in A close to the input ad- 
dress are selected. If we view these n-bit addresses as points in an n-dimensional address 
space, the selected addresses will lie within a (hyper) sphere of hamming radius d,centered 
at the input address which is quite unlikely to point to any one of the m randomly chosen 
points. These addresses have their select bit set to 1 in the vector S to select locations in C; 
all others in S are 0, . The data are written into the selected locations.The procedure is a lit- 
tle more complicated than for a conventional computer. Instead of just replacing the old 
contents of a storage location with new data,the new data is added to the previous contents. 
Thus each of the storage locations in the SDM is actually a set of n counters (N.B. suppose 
that data word is the same size as the address length here). The reason is that there possibly 
are two or more data vectors written into any given storage location if the spheres chosen by 
two input addresses overlap. In read operation, the contents of the selected locations are 
added together to give n-sums in the field h. Finally, these sums are thresholded to yield 
output data. Note that this is a statistical reconstruction of the original data word. 
The output data should be the same as the original data as long as not too many other 
words have been written into memory. 

2.Two-Layered Adaptive Pattern Recognition System-TAPRS 
On the basis of models both WISARD and SDM, we propose a new two-layered 

adaptive pattern recognition system whose architecture is shown in Fig.3. The first layer, 
called sparse state matrix A, consists of k sparse RAMs, denoted by A,i = 1 ,-• ,k. Each 
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RAM has n bit data length, m locations. N inputs connect at random or regularly n points 
from input pattern.Locations are set up before training with m states in each Ai which are 
sparsely distributed in 2" address state space, m < < 2", so that n can be chosen in larger 
range. The size of A is k * m * n bits. The outputs of A construct a k * m * g dimension 
binary vector S. The second layer contains matrix C, SUM and d vectors. The matrix C, ad- 
dressed by S, consists of g columns, each of which represents one discriminator, classifier, 
similar to the one in WISARD. The size of C is k * m * b * g. During the training, each 
classifier is trained individually. Each location,b bit length, of specified classifier operates in 
counter mode and records the occurence frequencies of each state of all n-tuple 
subpatterns in the training pattern set. In classification phase, all classifier work 
simultaneously in read mode. When an unknown pattern inputs, the contents of all selected 
locations in each classifier are accumulated to form the summation vector SUM. The deci- 
sion logic thresholds the SUM and decides the classifier to which the unknown pattern be- 
longs. 

If m = 2", d, = 0, the TAPRS will degrade into the WISARD system. 

3.Experiment Results 
The key parameters of the TAPRS are n-tuple size, the number, m, of physical loca- 

tions in Ai and hamming radius d,. The experiments with the parameter optimization are 
carried out in virtue of the multi-font Chinese character recognition. Thirty printed Chinese 
characters are normalized into 24x 24 dot matrics. Each character has four samples with 
different font types. Fig.4 shows the samples of the Chinese character VJ'. 
(A)Performance versus n 

N is the size of n-tuple to be mapped to input addresses of Ai from input pattern. In 
Fig.5, dot and solid curves represent the performance versus n in WISARD and TAPRS 
respectively. N = 6 is the optimum value in the WISARD, whereas n = 14 and n = 6 are the 
optimum values in the TAPRS. We can see that the performance at n = 14 is better than that 
at n = 6. Because of the merits of sparse RAMS, the system cost increases linearly as n in- 
creases so that n can be chosen in larger range, while the system cost in WISARD increases 
expotentially as n increases so that n can only be chosen under 8 usually. 
@)Performance versus m 

On a given n-tuple, the optimum m is defined as the minimum number of the locations 
in A when the best performance is obtained. The selection of m is related to n-tuple size, 
hamming distance and pattern data properties. For the experiment undrer taken in this pa- 
per, given n =  14, the curve of performance versus m is shown in Fig.6. When m<64, the 
correct recognition rate is raised linearly as m increases, while for m>64, the rate remains 
almost costant. Hence, m = 64 is the best choice in the experiment. 

Taken d,= 5, a group of performance curves vesus n and m are shown in Fig.7. The 
other curves are not listed here. 
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4.Conclusions 
In addition to the properties of the WISARD, including self-adaption, versatility, 

non-algorithm, massive parallel distributed processing, the TAPRS is better than the 
WISARD in the aspects of large-dimensional or nondeterministic pattern data recogni- 
tion problems. The main reasons are: 
(1)The sparse RAMS are used for both address and data array so that n-tuple size can be se- 
lected in larger range without the limitation of the cost since the number, m, of physical lo- 
cations is increased linearly as n-tuple size. 
(2)Distributed access approach to sparse RAM is used so that pattern correlation is consid- 
ered. Given training set, as long as the hamming radius is appropriately chosen, the system 
can obtain enough large generalisation set which has the best overlaps with pattern data set 
related to the training set and the minimum overlaps with others. 
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Fig.1 Single-layered adaptive 
pattern recognition system. 

Fig.2 Sparse distributed memory 
model for autoassociation. 1 0.. .[! 

Fig.3 New two-layered adaptive Fig.4 Samples of machine-printed 
Chinese character ’”‘. pattern recognition system. 
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Fig.7 Recognition performance 
versus n,m for TAPRS, d, = 5. 


