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Approximating Discrete Probability Distributions 
with Decomposable Models 

Francesco M. Malvestuto 

Abstract-A heuristic procedure is presented to approximate an 71-  

dimensional discrete probability distribution with a decomposable model 
of a given complexity. It is shown that, without loss of generality, the 
search space can be restricted to a suitable subclass of decomposable 
models, whose members are called elementary models. The selected el- 
ementary model is constructed in an incremental manner according to 
a local-optimality criterion that consists in minimizing a suitable cost 
function. It is further shown with an example that the solution computed 
by the procedure is sometimes optimal. 

I. INTRODUCTION 
It is generally acknowledged that, when designing information 

systems such as communication, pattern recognition, knowledge 
and data base systems, the problem that typically arises is that of 
approximating (or estimating) an n-dimensional discrete probability 
distribution from a finite number of given marginals (or samples), 
and storing the distributions in a certain limited amount of machine 
memory. 

In [ 161 the problem of approximating an ri -dimensional discrete 
probability distribution with a product form was considered. In [SI, 
a method for optimally approximating an 11-dimensional discrete 
probability distribution with a set of ri - 1 first-order dependence 
relationships among the r? variables (i.e., bidimensional marginal 
distributions) was presented. The procedure in [5], which is inspired 
by a hill-climbing search strategy, involves an optimization process 
to construct a dependence tree of maximum weight. As a matter of 
fact, in many applications unidimensional and bidimensional marginal 
distributions are inappropriate to extract features that distinguish 
different patterns. 

Better approximations can be obtained by considering interaction 
models [2], [7] (also called dependency models [23]) made up of 
arbitrary sets of marginal distributions. Decomposable models [2], 
[7], [lo], [ l l ]  are special interaction models that possess a number 
of desirable properties. The two following properties stress the 
desirability of decomposable models both from a semantic and formal 
point of view: 

(semantic property) a decomposable model can be represented by 
a “Markovian belief network” [23], 
(formal property) the approximation generated by a decomposable 
model has a “product form” [2], [lo], [ l l ] ,  [19]. 
In this paper, we address the problem of finding the model that 

generates the best approximation to a given discrete probability 
distribution, selected among the decomposable models of a given 
complexity. 

Apart from special cases, this problem can be solved exactly 
only by exhaustive search [23]. Now, when the number of variables 
involved is high, exhaustive search is impractical since the number 
of models that must be examined is enormous. Therefore, one is 
forced to relax the optimality requirement and settle for finding 
a good solution using only a reasonable amount of search effort. 
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Some procedures proposed in the analysis of contingency tables 
[12], I291 might be applied, but have the disadvantage that, since 
they adopt a backward-selection strategy, when the number of the 
involved variables is high, the solution is found after evaluating a 
large set of intermediate solutions. In order to reduce the search 
effort, in this paper we propose a heuristic procedure that directly 
yields a suboptimal solution, based on the “hill climbing’’ search 
strategy, which, though the simplest and cheapest of search strategies, 
nevertheless proves to be successful in finding optimal solutions when 
the search space is restricted to tree-dependence approximations [SI. 

11. BACKGROUND 
Let X = { A I . .  . . . A , }  be a set of discrete random variables, 

whose value sets will be denoted by r a n g e ( A l ) ,  . . .  , range (&) .  
Given a joint probability distribution p ( z ) ,  an approximation to p ( r )  
can be obtained by hypothesizing a structural model [ 2 ]  over X, that 
is, a specific stochastic relation among the variables in X .  In what 
follows, by domain of a structural model p we mean the set of all 
probability distributions over X that are perfectly fitted by the model 
I‘ ‘ 

The simplest example of structural model over X is given by 
an independence model, which consists in viewing the variables 
in X partitioned into (stochastically) independent sets. Let M = 
{XI. . . . . ATnL } be such a partition of X and fi  the independence 
model generated by -21. The domain of p contains all the probability 
distributions p(s) that can be factorized as 

$4.) = P l ( z l ) ” . P ” L ( T n z )  

where p h  (sh ) is the marginal of p ( x )  relative to Xk ( h  = I, . . . , m) .  
In information-theoretic terms, independence of XI, . . . . X, is ex- 
pressed by the condition that the (mutual) information [26] of 
-Y1. .... X,n ,  defined as 

I ( - X I . ’ “ , X , )  = H ( S 1 ) + . . ’ + H ( X , )  - H ( X )  

is zero. Here, H ( - Y h )  and H ( X )  stand for the entropies [26] of the 
probability distributions P h ( S h  ) and p ( z ) ,  that is, 

and 

A widely used structural model, which is a natural extension of an 
independence model, is a conditional-independence model [8], [ 121 
(or zero-partial-association model [29]), which consists in viewing 
the variables in -Y partitioned into nonempty sets YO, 1’1, . . . , Y, 
such that I;. . . . . EL are conditionally independent given YO. The 
domain of such a model contains all the probability distributions 
p(s) that can be factorized as follows 

p ( z )  = Pl(Y0. V I )  . ’  . P m ( Y O .  Y m ) / p O ( Y O ) “ - ’ .  

In information-theoretic terms, the conditional independence of 
I*, . . . . .E, given 1; is expressed by the condition that the average 
conditional information [26] of 1-1, . . . , Y,,, given YO, defined as 

I(E; :... E , / l b )  = H ( E ; / 1 b ) + . . . + H ( I ’ , / Y o )  
-H(Yi U . . . U Y m / Y o )  

is zero. Here, H ( Z / Y )  denotes the average conditional entropy 
[26] of the variable set Z given the variable set Y , defined as 
H ( Y  U Z )  - H(I-).  
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The most general form of independence is taken into account 
by an interaction model over S, which groups the variables in S 
into (possibly overlapping) sets (to be called the generators of the 
model) having “interaction zero” [13], [18]. If . 7 i l . .  . . . S,,, denote 
the generators of such an interaction model p ,  as usual we assume 
that 1) .ri = Uh=l.. .“,-Yh and that 2) no generator of [i is a subset 
of any other. According to the terminology used in graph theory 
[ l ] ,  [lS], the set 31 = { -Yl. . . . . S,,, } will be called the generating 
hypergraph (also called “generating class” [2], (71, (81, (91, [lo]) 
of p .  The domain P, of the interaction model ) I  generated by the 
hypergraph -11 contains all the probability distributions p (  .r ) that can 
be expressed in the following multiplicative form 

P ( J )  = !I ( J  I ) ’ ’ . f n ,  ( . V m  ) (1) 

where f 1  ( X I  ) . . . f,,, (.rm ) are implicit functions uniquely determined 
by the condition that the multiplicative form (1) represent an extension 
of the marginals 111 (.rl j. . . . P , , ~  (.r,?, ) of p ( . r ) ,  that is, for all 11 = 
1. . ’ . n1 

An interaction model p over -Y can be represented by an ordinary 
graph, to be called a dependence graph denoted by G,, which has 
-1- as its node set and an edge between every pair of variables that 
are contained in a single generator of p .  An expressive property of 
G,, is that if l b  is a cutset and 1-1. I>. . . . .I;,, are the connected 
components of the graph obtained from G,, by deleting l i l ,  then 
l’1.I;. . . . . I;,? are conditionally independent given Ib [8]. 

Consider now the problem of approximating a given probability 
distribution p (  .r ) using interaction models. Let 11 be the interaction 
model generated by the hypergraph -11 = . . . . S,,, }, the 
approximation pL, ( . r )  to p ( r )  based on p is defined as the extension 
of the marginals p l ( . r 1 ) .  ... .pn,(.r,,,) of p ( . r ) ,  which is uniquely 
determined by the membership in P,,, that is, by the multiplicative 
form (1) (141. It is well-known [4], [I61 that p,,  ( x )  is the maximum- 
entropy extension of the marginals p l  (XI). . . . . p , , , ( ~ , ~ ~  ) of p ( . r ) .  
Moreover, p,, ( .r)  can be computed using an iterative proportional 
fitting procedure [4], [21]. 

Now, let us consider the problem of selecting the “best” approxi- 
mation to an n-dimensional probability distribution p(.c,) among the 
approximations based on interaction models of a given complexity. 
The aspects of this problem with regards to complexity will be 
discussed in the next section, while the remainder of this section 
will be devoted to the criterion for evaluating the accuracy of the 
approximation p, ,  ( .r)  to p ( . r )  based on an arbitrary interaction model 
f i  . As usual [4], [ 5 ] ,  [14], [16], this will be measured by the 
information divergence (61 (or discrimination information (131, ( 141 
or cross-entropy (281 or Kullback-Leibler distance [ 3 ] )  

which can be interpreted as the difference of the information con- 
tained in p ( . r )  and that contained in pL, ( . r )  about p(.r.) [16]. The 
information divergence D ( p .  p, ,  ) is a non-negative quantity that 
vanishes if and only if p b , ( . r )  coincides with p ( , r ) ,  that is, if and 
only if p ( . r )  belongs to the domain of the interaction model p.  

According to the choice of measuring the accuracy of approxi- 
mation with the information divergence, given any two models 1’ 
and p‘ over S, p ’  provides a better solution than 1-1 to the problem 
of approximating p ( x )  if D(p.p,,g) 5 D(p .p , , ) .  Of course, the 

information divergence is not the only way of measuring the closeness 
of p b , ( . r )  to p ( . r ) ;  an alternative might be the so-called t 2  distance 
[3] defined as 

but, the \’ distance has not some desirable properties (e.g., additive 
property) that are possessed by the information divergence. On the 
other hand, it is well-known [3] that D(p.p&, j zz (1/2)\*(p,pb,), so 
that minimizing 1 2 ( p . p , , )  would lead to the same results that are 
obtained by minimizing D(p.  p, ,  ). 

Furthermore, recently it has been proved that under certain 
assumptions the minimization of the information divergence can 
be derived by minimizing an upper bound of the Bayes error 
rate (301. Other properties of the minimum information divergence 
principle are studied from an axiomatic point of view in 
[281. 

111. THE SEARCH SPACE 
In this section, we will specify the complexity of the interaction 

models among which the solution to the approximation problem will 
be searched for. We shall do this by introducing the notion of a 
decomposable model of rank I ; ,  which can be regarded as a natural 
extension of a first-order dependence tree used by Chow and Liu in 

We begin by considering the set of all possible interaction models 
over a given set S of I I  random variables. This set can be partially 
ordered according to the relationship of “refinement”: ji is finer 
than 11’ (or, equivalently, [ I ‘  is coarser than if each generator 
of p is a subset of some generator of I ! ’ .  It is obvious that if k i  is 
finer than p ’ ,  then the domain of 11‘ is a subset of the domain of 
/‘ . 

of the partial ordering induced 
by refinement are generated respectively by the point hypergraph 
.Y and the frtvial hypergraph {S}. The model Y assumes inde- 
pendence among the if variables in .Y and the model E makes no 
assumptions. 

The search space, in which we set out in pursuit of the solution to 
the problem of approximating p ( . r ) ,  is the class of all decomposable 
models of rank k ,  which are defined as interaction models over -1- 
satisfying the two following constraints. 

151. 

The infimum v and the supremum 

A. Decomposable Models 

An interaction model p is decomposable [7] (also called multiplica- 
tive in [2Y]) if an ordering (SI.. . . . S,,,) of its generators exists 
such that for each h > 1 either 

1) (SI U.. .U4, , - l )nS, ,  = 0, or 
2) (-Yl U , .  .U.Y/,+l ) n I , ,  # 0 and there is an integer j ( h )  < 11 

such that (SI U...US,,-I)n.‘i,, = S J , h ) n A - h .  
Such an ordering, to be called a running intersection ordering (RIO), 
can be pictured by a collection T of arborescences (directed trees) 
[ l]  having as its vertex set the generating hypergraph of p ;  the roots 
of the arborescences in T are SI and all the generators of type I), 
and every arc in T is of the form (I,(*). S,, ). S,, being a generator 
of type 2). The undirected graph underlying T is called a join forest 
[17], [23], and each traversal of such a join forest starting at any node 
determines an appropriate RIO of the generators of p .  

In what follows, given a decomposable model and an RIO 
(.YI.. . . . S,,, 1. SI as well as the generators of type 1) will be 
called root generafors, and the generators of type 2) will be called 
descending generators. 
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(a) (b) 

Fig. 1. 
forest associated to the hypergraph .U = {dBC. CDE.  F G } .  

(a) Graph representation of the RIO (-44C. CDE. F G ) .  (b) Join 
Fig. 2. 
graph { .4DC. CDE. F G } .  

Dependence graph associated to the model generated by the hyper- 

Example: Let us consider the model generated by the hy- 
pergraph ,If = {dBC.  CDE.  FG}.  .\I is decomposable for 
(.4BC,CDE. FG)  is an RIO , with respect to which .JBC and 
FG are root generators, and C D E  is a descending generator (see 
Fig. 1). 

Notice that the model E generated by the trivial hypergraph is 
decomposable. 

The constraint of decomposability is here introduced because 
decomposable models possess a number of desirable properties [2], 
[9], [lo], [11], [17], [19]. In particular, one has that does the following 

1) Decomposable models are characterized by chordal, conformal 
dependence graphs [8], [17], [23]. 
We require some preliminary notions of graph theory. A clique 
in a dependence graph G,  is a set of nodes (variables) such that 
every pair forms an edge of G,. A dependence graph G, is 
conformal if every clique is contained in some generator of I ! ( .  

A dependence graph G,,, is chordal (or triangulated) if every 
cycle with at least four distinct nodes has a chord, that is, an 
edge connecting two non-consecutive nodes of the cycle. 
Notice that by the dependence graph associated to a decom- 
posable model of rank 2 is a forest of trees, called first-order 
dependence trees in [5] .  

2) A decomposable model can be interpreted in terms of condi- 
tional independence [SI. 
Since the relations of conditional independence can be treated 
in an axiomatic way [22], [23] and the associated formal system 
can be used as the inference engine of a common sense logic for 
reasoning about relevance relations [24], [25], decomposability 
is a desirable quality of belief networks [23]. 

3)  The approximation based on a decomposable model has a 
closed product-form expression [2], [lY], [21]. 
Let p be a decomposable model and (SI . . . . S,,, ) an RIO 
of its generators. Let us partition the index vertex J = 
{ 1 , 2 . .  . . , m }  into the two subsets J' = { h  E J : I,, is a root 
generator} and J" = { k E J : .7ih is a descending generator}. 
Moreover, if J i h  is a descending generator and -YJ(jt) is its 
parent, let us denote by Ei the nonempty intersection of SA 
and - x J ( h ) ,  that is, = Ik-h n -l-Jo,l. ( h  E J " ) .  Then, the 
approximation y ,  ( .r)  to a given distribution p ( . r )  can be written 
as follows 

or, equivalently, 

If we denote the entropy of p h  ( Z h  ) by H ( - x h )  and the entropy 
of I)), ( y h  ) by H (  Ei ), the following formula holds 

Example (continued): The dependence graph of the decomposable 
model p generated by AI = {dBC, CDE.  FG} is shown in Fig. 
2. By inspecting this dependence graph, it is easy to recognize that 
11 is equivalent to the assumption of the two following relations of 
independence: 

1)  -4BCDE and FG are independent; 
2)  .JB and DE are conditionally independent given C.  

The approximation p,, ( a b c d e f g  ) to a given probability distribution 
p ( n b c d e f g )  based on p ,  by (4) is 

Notice that both the numerator's and the denominator's factors are 
in a one-to-one correspondence with the nodes and edges of the join 
forest, shown in Fig. l(b), respectively. Moreover, by (5 )  the entropy 
of p , , ( c r b c d r f g )  is 

H,(A4BCDEFG) = H(-JBC')  + H ( C D E )  + H ( F G )  - H ( C ) .  

Bounded-Rank Models 

A model p is of rank k (  1 < k < n ) if k is the maximum cardinality 
of the generators of p. 

It should be noted that such a constraint must be introduced to 
avoid the trivial solution represented by the model c generated by 
the trivial hypergraph. 

At this point, our approximation problem can be stated as follows. 
I) A Minimization Problem: Given a probability distribution p ( . r )  

over a set of n discrete random variables, find the approximation 
p , ( . r )  to p ( ~ )  such that 

As a consequence of (4), the entropy H,, ( -X)  of p,, (1.) amounts D ( y , p , , )  = niin 
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over all decomposable models of rank k over .I-. 
The requirement of decomposability for the interaction models 

in the search space entails some important simplifications to the 
approximation problem. 

From property (3) the following lemma follows. 
Lemma: For every approximation p , , ( s )  to p ( x )  based on a 

decomposable model p ,  the information divergence D(p. p o  ) equals 
the difference between the entropy H , ( I )  of pu (s) and the entropy 

Proof: The term -E, p ( z )  log p , , ( s )  in (2) can be expanded 
H ( X )  of A X ) .  

as follows 

which, by (5),  is nothing more than the entropy H , ( S )  of pu(.c‘). 
Q.E.D. 

As a consequence of this lemma, one has that, since the entropy 
H(X) of p ( z )  is independent of the decomposable model p ,  minimiz- 
ing the information divergence D(p.  p,, ) over decomposable models 
of rank IC is equivalent to minimizing the entropy Hi, (S). By virtue 
of this result, the following property can be stated. 

Theorem I: Let p and p’ be two decomposable models over .Y. If 
p‘ is coarser than p, then p‘ provides a better solution than p to the 
problem of approximating any probability distribution over X 

Proof: Let p and p‘ be two decomposable models over 4. If 
p’ is coarser than p, then Pp 2 Pp,  and, consequently, H , , ( S )  2 
H,, ( X )  . Then, regardless of the probability distribution p ( . r ) ,  from 
Lemma it follows that D(p.p , , )  2 D(p .p , t ) .  Q.E.D. 

Furthermore, since, for every decomposable model p of 
rank k, H , ( X )  depends on p(s) only through its marginals 
p l ( z l ) , p 2 ( . ~ 2 ) ,  . . . , p m ( . c m ) ,  the solution of our minimization 
problem does not require knowledge of the entire distribution I)(.(.); 
the b-dimensional marginals are sufficient for this purpose. This 
property proves to be useful in the analysis of contingency tables 
[2] and for the management of statistical databases [20]. 

Generally speaking, our minimization problem can be solved in 
an exact way only by exhaustive search [23]. However, it was 
proved by Chow and Liu [5] that, if the model search is carried 
out among dependence trees (i.e., decomposable models of rank 2 
generated by connected hypegraphs), the exact solution can be found 
by using a Kruskal-like step-by-step search procedure. Similarly, 
optimal decomposable models of rank k = 71 - 1 can be found 
directly, by ranking the n ( n  - 1 ) / 2  average conditional informations 
of the form 

for each pair A and B of variables in X. Greedy algorithms, which 
for a given value of k compute a good solution to our minimization 
problem, are described in Section V. 

IV. UNIFORM AND ELEMENTARY MODELS 
In this section, we will introduce a special class of decomposable 

models of rank k ,  to be called elementary models of rank k ,  and 
will show that, without loss of generality, the search space of our 
minimization problem can be restricted to such models. This will 
be done in two steps. First, we shall prove that, without loss of 
generality, the search space can be restricted to the class of uniform 
decomposable models of rank k ,  i.e., decomposable models whose 
generators are k-sets in the sense that each generator contains exactly 
k variables. Subsequently, we shall prove that the search space can 
be further restricted to the class of elementary decomposable models 
of rank k (whose definition will be introduced later on). 

Theorem 2: For every decomposable model p of rank k ,  a uniform 
model of rank k that is coarser than p always exists. 

We prove the theorem by indicating a constructive 
method for obtaining a uniform model of rank k from an arbitrary 
decomposable model p of rank k .  Let (SI. -Yz.. . . . -Y,rL) be an RIO 
associated to such that 11, I = li. Since at least one generator of / I  

contains k variables, such an RIO always exists and can be obtained 
by visiting the nodes of a join tree associated to p starting at SI. 
For h = 2 . 3 . .  . . . I I I ,  apply the following procedure to all generators 
I/, of p containing less than k variables. 

Procedure: Let -I-/, be a generator containing k ’ ( k ’  < k )  
variables. Two cases are to be distinguished depending on whether 
-Yh  is a descending generator of a root generator. In the former case, 
let - Y l ( h )  be the parent of -I-/$ and - - I - J ( h ) l  = T .  Then, replace 
SI, by S’1, = Z,, U 1- where 1- is such that: 

Proof: 

1)  - Y j ( h )  I) I-  3 .I-,, n -I-,,/,,; 
2) 11-1 = k - I’. 

(A set such as 1- always exists because j ( h )  < 11 and, therefore, 
s,,,,) = A,). In the latter case, replace -Tih by -Y’l1 = -Yh U lr where 
I- is any subset of SI?-! with exactly k - 1.’ variables. 

The result of the replacement of -Yh by S ‘ h  in the original RIO 
is again an RIO because: 

1) if 4 1 ,  is a descending generator with parent -I-l(,t), then 

(s, U . . . U .Y/> n -I-\, = s , ~ , ~ )  n SA 
(Notice that - Y ‘ h  has the same parent that .Ti,, had in the original 
RIO) 

2) if S,, is a root generator, then 

( .Y U . . . U -, ) n = -I-/, -, n 

(Notice that in the new RIO .Y’/, is a descending generator 
and -Y/,-, is its parent). 

Therefore, after applying this procedure to all generators of p 
containing less than k variables, one obtains a uniform model of 
rank A., that is coarser than the decomposable model / I .  Q.E.D. 

Example (continued): The decomposable model generated by 
.\I = {-ADC. C D E .  F G }  is of rank 3 but is not uniform. .Y = 
{AOC. C‘DE. E F G }  is an example of a uniform decomposable 
model of rank 3 that can be obtained by applying the previous 
procedure. 

A further restriction of the search space without loss of generality 
can be achieved after introducing the notion of an elementary model, 
which can be viewed as a generalization of a dependence tree. 

Let 11 be a uniform decomposable model of rank k and 
(I,. . . . . -Y,,, ) is an RIO. Generator -I-/l ( 1 1  > 1) is said to be 
elementary if the set .I-/, - ( l i  U. . . U S / , - l  ) is a singleton; otherwise, 
i t  is said to be multiple. 

A uniform decomposable model of rank k is an elementary 
model of rank k if an RIO exists in which each ( h  > 1) 
is elementary. Thus, an elementary model of rank k has exactly 
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ni = n - k + 1 generators and every join forest associated to its 
generating hypergraph is a tree. On account of this, formula ( 5 )  
becomes 

It should be noted that for k = R - 1, an elementary model 
consists of a pair of conditionally independent variables given the 
( I L  - 2 )  remaining variables. For this reason, such models are called 
"elementary conditional-independence models" [ 121 (or "elementary 
zero partial-association models" [29]). 

Elementary models of rank k are important because of the follow- 
ing property. 

Theorem 3: For every uniform decomposable model p of rank k ,  
an elementary model of rank k that is coarser than p always exists. 

Proo) We prove the theorem by indicating a constructive 
method for obtaining such a model starting from an arbitrary RIO 
(X1.X2. . .  . . X,) of the generators of p . For h = 2,3, . .  . ,7n, 
apply the following procedure to all multiple generators Lt7h of /I. 

Procedure: Insert between X h - 1  and X I ,  in the RIO a sequence 
of k-sets obtained as follows. Two cases are to be distinguished 
depending on whether -Yh  is a descending generator or a root 
generator. 

In the former case, if -yJ(JL) is the parent of -Yh and .7ih - 

= {A,.-4,:*..Ar}(r > l ) ,  then set 2, = I"" U 
{Al.&.  . . . . A z } ( ?  = 1. . .  . . T  - 1 )  where Y('), I-('). . .  . ,YirP1) 
is a sequence of subsets of - y J ( h )  such that: 

1) X J ( h )  2 1.") 3 1.'') 3 " '  3 Ir(r-l) 2 S h  n - Y J ( h ) ;  

2))Yi')) = k - / ( /  = 1.. . ' . r - 1). 

Finally, insert between Xih-l and .k-h in the RIO the sequence 

In the latter case, if Jih = {Al. 112.. . . . Ak}, then set 2, = Y(')U 
{A1.&; .~ ,At}( i  = l : . . . k  - 1 )  where Y ( ' ) , ~ ~ ( 2 ) , . . . . Y ( k - 1 )  
is a sequence of nonempty subsets of J i h - 1  such that: 

(21.2,. ' . .  5 z, -1 ). 

1) /y,x-l 2 y(1) 3 I+) 3 . . . 2 y ( k - 1 ) .  

2))Y( ' ) )  = k. - 2 ( l  = l . ' . ' , k  - 1). 

Finally, insert between .Yh-] and x h  in the RIO the sequence 

One can immediately see that in both cases the result of the 
insertion of the k-sets Z, between <Yh- l  and lklh is again an RIO 
Therefore, after applying this procedure to all multiple generators of 
ni, one obtains an elementary model of rank k that is coarser than 
the decomposable model p .  Q.E.D. 

= { A B C ,  C D E .  EFG}  
generates a uniform decomposable model of rank 3, which is not 
elementary. Q = {ABC. BCD.  CDE.  DEF. E F G )  is an example 
of an elementary model of rank 3 that can be obtained by applying 
the previous procedure. 

As a consequence of Theorems 1-3, one has that, without loss 
of generality, the search space of our minimization problem can be 
restricted to elementary models of rank k.  

(ZI,z'2, ' ' ' , zk-1). 

Example (continued): The hypergraph 

V. GREEDY ALGORITHMS 

In this section we describe a hill-climbing procedure for computing 
solutions that are, in some sense, locally optimal. When, in Section 
VI, we shall apply this procedure to a sample distribution, we shall 
find that the computed solutions are close to optimal, and, in one 
case, that the solution is actually optimal. 

The heuristic technique that will be employed consists in viewing 

sequence of n - k + 1 decisions, which extend partial solutions (i.e., 
{XI,  . . . , X h } )  by including a single generator, selected in such a 
way as to preserve decomposability. Each decision is made according 
to a local-optimality criterion consisting in minimizing a suitable cost 
function. 

Bearing in mind the expression (6) of the objective function 
H,, (x), we define the cost for a partial solution {XI, . . . , X h } (  k = 
l:".n - k + 1) as follows: 

for h = 1 cost {-Yl} = H i X I )  
for h = 2:..,771 cost { X l , . . . . X h }  = H ( X 1 )  + 
Now, for a cost function to work correctly, for all partial solutions 

{ X I .  . . . . -Yh } and all extensions {XI. . . . . x h  , x h +  1 } we must 
have [27]: 

xz=2 h [ H ( X i )  - ff(I<)]. 

Cost X I . '  " . AYh 5 cost { X I .  ' , x h .  X h + l } .  

In fact, only if the cost function has this property, can a partial 
solution {XI. . . . . X h }  be discarded when its cost is greater than or 
equal to the cost of a previously computed solution. 

However, in our case, when a partial solution {XI,  . . . . X h }  is 
extended to {.XI, . . , x h ,  X h +  1 }, it might happen that the parents 
of X L . .  . . , -Yh  change, and this would cause an undesirable, non- 
monotonic behavior in the cost function. The following example 
illustrates this anomaly. 

If, after choosing XI = ABC and .Y2 = C D E ,  one attempted 
to enter the set X s  = B C D  as the third generator of the model, 
one would find that cost {XI. .  . . . X ,  } 2 Cost {XI, X z .  X , } .  In 
fact one has 

c o d  {r lBC.CDE} = H ( A B C )  + [ H ( C D E )  - H ( C ) ]  

cost { A B C , C D E .  B C D }  = H ( A B C )  + [ H ( C D E )  - H ( C ) ]  

+ [ H ( B C D )  - H ( B C ) ]  

and the quantity 

cost {ABC,  C D E )  - cost { A B C ,  C D E .  ACD}  

= H ( B C )  + H ( C D )  - H ( C )  - H ( B C D )  

is non-negative for it is nothing more than I ( B .  D / C ) ,  i.e., the 
average conditional information of B and D given C .  

To overcome this difficulty, the generators of the goal model will 
be selected according to the search scheme that binds each partial 
solution to be itself an elementary model of rank k .  In other terms, 
the generator X h + l  to add to the partial solution (XI, . . .  , A7h) 
( h  = 1,. . . . n - k + 1) will be selected from among the k-sets that 
are elementary with respect to ( X I , .  . . , x h ,  X h + l ) .  At this point, 
we can state our first greedy algorithm, referred to as Algorithm G 
in what follows. 
Algorithm G 

Step 1:Among all the k-sets, select -Y1 so that the entropy H ( X ,  ) 
be as little as possible. 

Step 2:After choosing X I ,  . . . . X h  select X h + l  among all the 
possible elementary k-sets so that, if XJ(h+l) is the parent 
of .7ih+l and Yh+l = X h + l  n X J ( h + 1 ) ,  then the quantity 
H ( l 7 i h + l )  - H(kjL+l) be as little as possible. 

Step 3:Exit when n - k + 1 k-sets have been selected. 
The search effort e of Algorithm G can be measured by the number 

of k-sets that have to be evaluated. 
In what follows, SI,(Y) denotes the family of the subsets of Y 

having cardinality k. If ( Y )  = s , then )Sk(Y)) ='Ck, where 
'Ck= s ! / k ! ( s  - k)! is the number of combinations of s variables 
taken k at a time. 

Since L-1 is taken from sk(x) and 1x1 = n, the degrees of 
the construction of the generating hypergraph of the goal model as a freedom in the choice of X I  are el ZnCk. 
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As to Xh + 1 ( h  = 1,. . . , n - k ) ,  it is obtained by adding one 
variable (entering variable) to a ( k  - 1)-set taken from the following 
family 

Sk-l(X1) U S k - l ( X Z ) U ’ ” U S k - l ( X h ) .  

In order to evaluate the degrees of freedom in the choice of Xh +1 , 
let US begin by noting that, if X J ( % )  is the parent of X , ( i  = 2 , .  . . , h ) ,  
then 

S k - l ( X t )  n (Sk-l(X1) U ’ . ‘ U  Sk-l(Xt-1)) 
= S k - 1  (XL) n Sk-1 ( X J ( Z ) ) .  

Therefore, one has 

Furthermore, Sk-- l  ( X , )  n S k - 1  (X , , , ) )  contains exactly one set, 
i.e., X,,,, n X,, so that one has 

ISk-i(X1) U . . .  U S k - - 1 ( X h - 1 )  U Sk- l (Xh) l  

= k + ( h  - 1)(k - 1) = h ( k  - 1) + 1. 

NOW, since the possible entering variables are(n - k - h + I), the 
degrees of freedom in the choice of Xh+l are 

eh+l = [h (k  - 1) + l](n - k - h + 1). 

In conclusion, on account of the formulas: 

h = m(m + 1)/2 
E h = , ,  ,m 

h2 = m(m + 1) (2m + 1)/6 
E h = l , , , . , m  

we can conclude that the search effort e = Ch=l,  , n - - k + l e h  of 
Algorithm G amounts to 

e = “Ck + (n  - k ) ( n  - k + l ) [ ( k  - l ) (n  - k + 2) + 3]/6. 

In order to appreciate the convenience of our heuristic approach, 
one must compare e with the effort of an exhaustive search, which 
can be measured by the number of all possible elementary models of 
rank k .  Since an evaluation of this number is difficult, we shall use 
the following lower bound E: 

- [l + h ( k  - l ) ] n ! / [ k ! ( n  - k + l)] 
,n-k 

obtained by dividing the number of all possible RIO’S by the number 
of permutations of n - k + 1 objects (generators). Notice that for 
k = n - 1, one has E =”C2, which is exactly the number of 
elementary conditional-independence models. 

One can easily see that, if n is high, then E is far greater than e. 
A cheaper algorithm than Algorithm G can be worked out if the 

ranges of the variables in X do not have the same cardinality. To 
this end, we need the notion of a minimal-range k-set. 

The range of a set Y of random discrete variables is defined by the 
Cartesian product of the ranges of the variables in Y. Minimal-range 
k-sets are k-sets whose ranges have the least cardinality. Now, if Y 
is a k-set whose range has cardinality t ,  then H ( Y )  5 H o ( Y )  = log 
t and, therefore, the minimum-entropy k-set is likely to be a k-set 

A 6 

E C D .  

Fig. 3. 
graph { A E ,  BE,  CD.  C E } .  

Dependence graph associated to the model generated by the hyper- 

minimizing H o ( Y ) ,  that is, a minimal-range k-sets. In this way, the 
search effort made to select the hth generator X h  is reduced by a 
quantity equal to eh - e: , if e: is the number of the minimal-range 
k-sets, among which Xh is selected. This leads us to state a second 
greedy algorithm, called Algorithm G*, which is more efficient than 
Algorithm G and usually gives the same results, as shown in the 
example discussed in Section VI. 
Algorithm G* 
Step ];Among all the minimal-range k-sets, select X1 so that the 

entropy H ( X 1 )  be as little as possible. 
step 2:After choosing XI , .  . . , X h  select Xh+l among all the 

minimal-range elementary k-sets so that, if X J ( h + l )  i s  the 
parent of X h f l  and Yh+l = X h + l  n XJ(hfl), then the 
quantity H ( X h + l )  - H ( Y h + l )  be as little as possible. 

Step 3:Exit when R - k + 1 k-sets have been selected. 

VI. EXPERIMENTAL RESULTS 

We present experimental results on the application of the proposed 
procedure to the probability distribution obtained from sample data 
reported in Table I containing information on the structural habitat 
of grahami and opalinus lizards from Whitehouse, Jamaica, taken 
from Bishop et al. [2]. The data consists of observed counts for perch 
height, perch diameter, insolation, and time-of-day categories for both 
grahami and opalinus lizards. The four habitat variables are referred 
to as variables A, B ,  C and D,  respectively, and species is variable 
E .  The table is of dimension 2 x 2 x 2 x 3 x 2. 

The following are the values of the entropy for the marginal 
probability distributions. Moreover H ( A B C D E )  = 3.21732. 

1-sets 
A 
B 
C 
D 
E 

3-sets 
ABC 
ABD 
ABE 
ACD 
ACE 
ADE 
BCD 
BCE 
BDE 
CDE 

H 
0.64919 
0.66798 
0.47800 
1.01126 
0.54621 

H 
1.77670 
2.30811 
1.81318 
2.09263 
1.64171 
2.17371 
2.10755 
1.66783 
2.19907 
1.97849 

2-sets 
AB 
AC 
AD 
AE 
BC 
BD 
BE 
CD 
CE 
DE 

4-sets 
ABCD 
ABCE 
ABDE 
ACDE 
BCDE 

H 
1.30243 
1.12634 
1.65839 
1.17158 
1.14281 
1.67593 
1.19777 
1.44673 
1.01847 
1.55183 

H 
2.73327 
2.27963 
2.80514 
2.59497 
2.62262 
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TABLE I 
COUNTS IN STRUCTURAL HABITAT CATEGORIES 

FOR GRAHAMI AND OPALINUS LIZARDS~ 
Cell (ABCDE) Observed Cell (ABCDE) Observed 

11111 20 11112 2 
21111 13 21112 0 
121 11 8 12112 3 
22111 6 22112 0 
11211 34 11212 11 
21211 31 21212 5 
12211 17 12212 15 
2221 1 12 22212 1 
11121 8 11122 1 
21121 8 21122 0 
12121 4 12122 1 
22121 0 22122 0 
11221 69 11222 20 
21221 55 21222 4 
12221 60 12222 32 
22221 21 22222 5 
11131 4 11132 4 
21131 12 21132 0 
12131 5 12132 3 
22131 1 22132 1 
11231 18 11232 10 
21231 13 21232 3 
12231 8 12232 8 
22231 4 22232 4 

aFrom Whitehouse, Jamaica. The sample size is 561. 

We applied both Algorithms G and G' for k = 2.3,4,  and 
obtained the following results. 

Case ( k  = 2). Both Algorithm G and Algorithm G' select 
the same model p, which is generated by the hypergraph 
{ A E .  B E .  CD. C E } .  Algorithm G does so after selecting 

1) XI = C E  among the ten possible 2-sets; 
2) = A E  among the six following 2-sets: AC, AE, BC, BE, 

CO, DE; 
3) X B  = B E  among the six following 2-sets: AB, AD, BC, BE, 

CO, DE; 
4) Xq = C D  among the four following 2-sets: AD, BO, CO, DE. 

1 )  XI = C E  among the six following 2-sets: AB, AC, AE, BC, 
BE, CE; 

2) X Y  = A E  among the four following 2-sets: AC, AE, BC, BE; 
3)  Xj = B E  among the three following 2-sets: A B ,  BC, B E ;  
4) Xq = C D  among the four following 2-sets: AD, BO, CO, DE. 
The corresponding value of the cost function amounts to 

H,,(ABCDE) = 3.26413. The dependence graph of p is shown 
in Fig. 3. 

By inspecting this dependence graph, it is easy to recognize that p 
is equivalent to the assumption of the two relations of independence: 

1) A B E  and D are conditionally independent given C; 
2) A. B and C are conditionally independent given E.  
The exhaustive examination of the one hundred and one possible 

elementary models of rank 2 shows that p is the optimal one (!). 
Case ( I C  = 3) .  Both Algorithm G and Algorithm G* select 

the same model p, which is generated by the hypergraph 
{ A B E ,  ACE.  C D E } .  Algorithm G does so after selecting 

Algorithm G' does so after selecting 

X I  = rlCE among the ten possible 3-sets; 
Xa = A B E  among the six following 3-sets: ABC, ABE, ACD, 
ADE, BCE, CDE; 

D 

Fig. 4. 
graph {ABE,  ACE, CDE). 

Dependence graph associated to the model generated by the hyper- 

X3 = C D E  among the five following 3-sets: ABD, ACD, ADE, 
BDE, CDE. 
Algorithm G* does so after selecting 
X I  = ACE among the four following 3-sets: ABC, ABE, ACE, 
BCE; 
X Z  = A B E  among the three following 3-sets: ABC, ABE, BCE; 
X 3  = C D E  among the five following 3-sets: ABD, ACD, ADE, 
BDE, CDE. 
The corresponding value of the cost function amounts to 

H,(ABCDE) = 3.24333. The dependence graph of p is shown 
in Fig. 4. 

By inspecting this dependence graph, it is easy to recognize that p 
is equivalent to the assumption of the two relations of independence: 

1) A B E  and D are conditionally independent given C; 
2) A, B and C are conditionally independent given E.  
The exhaustive examination of the 70 possible elementary models 

of rank 3 shows that there are three models better than p,  namely, 

pI = { A B E ,  B D E ,  C D E }  with H,,(ABCDE) = 3.24115 

(the optimal model) 

pz = { A B E ,  ADE,  C D E }  with 

p3 = { A B E ,  BCE.  C D E }  with 

Case ( I C  = 4). Both Algorithm G and Algorithm G* select 
the same model p, which is generated by the hypergraph 
{ A B C E , A C D E } .  Algorithm G does so after selecting 

1) X I  = A B C E  among the five possible 4-sets; 
2) X z  = ACDE among the four remaining 4-sets. 
Algorithm G* does so after selecting 

1) XI = A B C E  as the minimal-range 4-set; 
2) X I  = ACDE among the four remaining 4-sets. 
The corresponding value of the cost function amounts to 

H,(ABCDE) = 3.23282. The dependence graph p is shown in 
Fig. 5. 

By inspecting this dependence graph, it is easy to recognize that 
p is equivalent to the assumption of the hypothesis of conditional 
independence of B and D given ACE. 

The exhaustive examination of the ten possible elementary models 
of rank 4 shows that there are three models better than p,  namely, 

p~ = {ABCD,  A C D E }  with H,, ( A B C D E )  = 3.22640 

(the optimal model) 

p~g = {ABDE.  B C D E }  with H,,(ABCDE) = 3.22869 

p3 = {ABCD,  A B D E }  with H,, ( A B C D E )  = 3.23030. 

H,, ( A B C D E )  = 3.24197 

H,,(ABCDE) = 3.24327 
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D 

Fig. 5.  
graph (ABCE, ACDE) .  

Dependence graph associated to the model generated by the hyper- 

The same five-way table was used by Havranek [12], who applied 
a backward-selection procedure. After evaluating all of the elemen- 
tary conditional-independence models, of which only six (“baseline 
models”) were accepted, his procedure backwards steps by examining 
all the decomposable models that are finer than the baseline models. 
At the end, the two following decomposable models of rank 3 were 
selected 

{‘ABE, C E ,  D }  and { A B E ,  B D E ,  C D } .  

Both of them are finer than the model selected by our greedy 
algorithms, which therefore turns out to be better than both. 

VII. CONCLUSION 

We have treated the problem of approximating a given multi- 
dimensional probability distribution with interaction models as a 
minimization problem, which uses information divergence as its cost 
function and the class of decomposable models of a certain rank as 
its search space. 

The optimal solution to this problem is known to require an 
exhaustive examination of all models in the search space, except 
for the case rank=2, which can be solved by using a greedy selection 
procedure. 

We have presented two greedy algorithms, which show that, if one 
relaxes the optimality requirement and is content with a suboptimal 
solution, even in the general case (rank>2) the search effort is 
bearable. Both of the proposed algorithms restrict the search space to 
elementary models, which are a subclass of decomposable models. 
Such a restriction is made on account of the two following facts: 

1) the optimal solution to the minimization problem is an elemen- 
tary model; 

2) in the search space of elementary models, the cost function has 
an additive, closed form. 

The additivity of the cost function has been exploited to select a 
suboptimal solution, which is built up in an incremental manner by 
using a greedy selection procedure, based on the minimization of the 
single additive components of the cost function. 

Such a selection procedure, when compared with other procedures 
existing in literature, has two unquestionable advantages: 

1) the selected solution is found directly (that is, without passing 
through intermediate solutions) and, hence, faster; 

2) the solution does not require knowledge of the entire dis- 
tribution to be approximated, but only of its k-dimensional 
marginals. 
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