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Abstract—In this paper, a theoretical and experimental analysis of linear combiners for multiple classifier systems is presented.

Although linear combiners are the most frequently used combining rules, many important issues related to their operation for pattern

classification tasks lack a theoretical basis. After a critical review of the framework developed in works by Tumer and Ghosh [30], [31]

on which our analysis is based, we focus on the simplest and most widely used implementation of linear combiners, which consists of

assigning a nonnegative weight to each individual classifier. Moreover, we consider the ideal performance of this combining rule, i.e.,

that achievable when the optimal values of the weights are used. We do not consider the problem of weights estimation, which has

been addressed in the literature. Our theoretical analysis shows how the performance of linear combiners, in terms of misclassification

probability, depends on the performance of individual classifiers, and on the correlation between their outputs. In particular, we

evaluate the ideal performance improvement that can be achieved using the weighted average over the simple average combining rule

and investigate in what way it depends on the individual classifiers. Experimental results on real data sets show that the behavior of

linear combiners agrees with the predictions of our analytical model. Finally, we discuss the contribution to the state of the art and the

practical relevance of our theoretical and experimental analysis of linear combiners for multiple classifier systems.

Index Terms—Multiple classifier systems, linear combiners, classifier fusion, pattern classification.
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1 INTRODUCTION

IT is now widely accepted that combining multiple
classifiers can provide advantages over the traditional

monolithic approach to pattern classifier design [27]. Many
experimental works have shown the improvement in
performance that can be achieved by multiple classifiers in
several applications [18], [26], [34], [27], [21]. Of the various
combining rules proposed in the literature, linear combiners
are themost frequently used [22], [12], [2], [30], [16], [31], [32],
[28], [20], [19]. Simple and weighted averaging of classifiers’
outputs are used in popular ensemble learning algorithms
such as Bagging [5], Random Subspace Method [15],
AdaBoost [7], and represent the baseline and first choice
combiners in the majority of applications. In spite of their
wide use and the success of linear combiners, many
important issues related to their operation for pattern
classification tasks lack a theoretical explanation. To date,
just partial results are available, and only for classification
problems. In particular, only the fraction of the misclassifica-
tion probability for a single class boundary [30], [31] and the
closed-form expression of the conditional misclassification
probability for a given point of the feature space [20], [19]
have been derived. Moreover, so far, theoretical analyses of
classification problems have focused on the simple average
(hereafter, SA), rather than on the performance of the

weighted average combining rule (hereafter, WA). To the
best of our knowledge, the only exception is [1], where the
authors extended the results of [31] to the WA, limited to the
simplest case of unbiased, uncorrelated, and identically
distributed estimation errors. Other works on WA have
addressed the problem of weights estimation, albeit in a
regression setting [22], [2], except for [32]. Theoretically
speaking,WA is always able to outperformSA.But, this is not
guaranteed in practice, where weights must be estimated
from training data. In real applications, the theoretical
superiority of WA can be rapidly negated by weight
estimations from small and noisy data sets to the extent that
WA can actually perform worse than SA. In fact, the
experimental results reported in the literature do not show
any clear superiority over SA. This can be observed, in
particular, for the simplest implementation of WA, that is,
when a single nonnegative weight is assigned to each
classifier [30], [33]. This is the most widely used form of
WA, suitable for applicationswhere theweights are intended
to represent probabilities (usually, the probability that the
corresponding classifier gives the correct answer) or if the
resulting linear combination is to be interpreted itself as a
class posterior probability estimate. Nevertheless, in [31], it
was argued that such an implementation of the WA is not
sufficiently more flexible than the SA combining rule. More
flexible implementations, at least in principle, have been
proposed in [2], [32], where a different set of weights is used
for each class, with no sign restrictions. Weights are usually
computed byminimizing an estimate of the misclassification
probability [32], or of the MSE (when neural networks are
used as individual classifiers) [22], [2], although it is known
that the MSE is not a suitable performance measure for
classification problems [3]. It is worth noting that, although

942 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 6, JUNE 2005

. The authors are with the Department of Electrical and Electronic
Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy.
E-mail: {fumera, roli}@diee.unica.it.

Manuscript received 30 July 2004; revised 20 Oct. 2004; accepted 3 Nov.
2004; published online 14 Apr. 2005.
Recommended for acceptance by L. Kuncheva.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0396-0704.

0162-8828/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on November 05,2020 at 16:13:57 UTC from IEEE Xplore.  Restrictions apply. 



using weights which are unrestricted in sign leads, in
principle, to better results, they cannot be reliably estimated
for regression problems, especially when the individual
regressors are highly correlated. One regularization method
suggested for avoiding this problem is to constrain the
weights to be nonnegative [17], [11], [4], [13]. The lack of
guidelines based on sound theoretical foundations implies
that the practical use of linear combiners for classifier fusion
relies on empirically derived heuristic rules. For example, SA
is commonly believed toworkwell for classifierswith similar
error rates, while WA is claimed to outperform SA when
classifiers exhibit different error rates. However, these rules
of thumb are not completely supported by experimental
results [24], [25]. Moreover, the conditions under which WA
is able to significantly outperform SA are not clear, nor is the
role played by classifier correlations, although the impor-
tance of such correlations is quite obvious.

The main goal of this paper is to provide a theoretical
analysis of linear combiners which improves the under-
standing of these classifier fusion rules and provides some
well-grounded guidelines for their practical use. Preliminary
work on this topic was presented by the authors in [24], [8],
[9]. We exploited the analytical framework developed by
Tumer and Ghosh [30], [31], for analyzing the SA combining
rule and order statistics combiners. This framework is
critically reviewed in Section 2. For readers who are not
familiarwith this framework, anexcellent introduction canbe
found in [21]. In this paper,we focus on the simplest andmost
widely used implementation of WA, which consists of
assigning a nonnegative weight to each individual classifier.
Moreover, we consider the ideal performance of this
combining rule, i.e., that achievable when the optimal values
of the weights are used. We do not consider the problem of
weights estimation, which has been addressed in the works
cited above. Our theoretical analysis, presented in Section 3,
shows how, in terms of misclassification probability, the
performance of the SA andWA combining rules depends on
the performance of individual classifiers and on the correla-
tion between their outputs. In particular, our analysis
evaluates the ideal improvement in performance that can be
achieved by WA over SA and provides a better under-
standing of its dependency on the individual classifiers of the
ensemble. In Section 4, we describe the experimental
investigations conducted to assess the extent to which the
behavior of SA and WA, evaluated on real data sets, agrees
with the predictions of the analytical model presented in
Section 3, which is based on assumptions that are likely to be
violated in real applications. Finally, we discuss the con-
tribution to the state of the art and the practical relevance of
our theoretical and experimental analysis of linear combiners
for multiple classifier systems (Sections 5 and 6).

2 A CRITICAL REVIEW OF THE ANALYTICAL

FRAMEWORK BY TUMER AND GHOSH

2.1 Basic Concepts and Main Results

According to the Bayesian decision theory, the minimum of
the misclassification probability (the so-called Bayes error)
is obtained by assigning an input pattern, characterized by
the feature vector x, to the class !i exhibiting the maximum
posterior probability: i ¼ argmaxk P ð!kjxÞ. However, real
classifiers can only provide estimates fkðxÞ of the posterior
probabilities P ð!kjxÞ. Therefore, when the Bayes rule is

applied to these estimates, nonoptimal decisions are taken
for patterns for which argmaxk fkðxÞ 6¼ argmaxk P ð!kjxÞ.
This results in an additional misclassification probability
over Bayes error. Tumer and Ghosh analyzed the case in
which the effect of estimation errors consists of a shift of the
ideal class boundaries and calculated the expected value of
the additional misclassification probability, named “added
error,” around a single ideal class boundary. For readers
who are not familiar with this framework, an excellent
introduction can be found in [21].

The estimated posterior probability for the kth class can
be written as1

fkðxÞ ¼ P ð!kjxÞ þ �kðxÞ; ð1Þ

where �kðxÞdenotes theestimationerror,which is regardedas
a random variable with mean �k (named “bias”) and
variance �2

k. In [30], [31], it was assumed that, for any given
x, the estimation errors on different classes, i.e., �iðxÞ and
�jðxÞ; i 6¼ j, are uncorrelated.2 The ideal boundary between
any two classes !i and !j is the point x

� such that

P ð!ijx�Þ ¼ P ð!jjx�Þ > max
k6¼i;j

P ð!kjx�Þ: ð2Þ

As pointed out above, Tumer andGhosh analyzed the case in
which the effect of estimation errors consists of a shift of the
ideal class boundaries. This situation is illustrated in Fig. 1.
The boundary obtained from the estimated posteriors,
denoted with xb, is characterized by fiðxbÞ ¼ fjðxbÞ and may
differ from the ideal boundary by an amount b ¼ xb � x�.
Without loss of generality, in Fig. 1, it is assumed that b > 0. It
isworthpointingout that, asdiscussed in [21, Section9.2.4], in
the one-dimensional case, the estimation errors can cause two
other effects besides the shift of a class boundary:Aboundary
could be createdwhere there is none or an existing boundary
could benot detected. These two situations are not unlikely to
occur when more than two classes are highly overlapping
[21]. However, following the analysis by Tumer and Ghosh,
in thispaper,weshall consideronly the caseof a shift of a class
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1. In this paper, we will consider the case of a one-dimensional feature
space, as in [30], [31]. This is not a limitation since, in [29], it was shown that
the same results hold for the case of multidimensional feature spaces.

2. Note that this assumption does not hold if the estimates of the
posterior probabilities are sum-to-one constrained, i.e.,

P
k fkðxÞ ¼ 1. In

actual fact, from (1), this implies
P

k �kðxÞ ¼ 0 and, therefore, the �kðxÞs
cannot be uncorrelated.

Fig. 1. “True” posterior probabilities around the boundary x� between
classes !i and !j (solid lines) and estimated posteriors leading to the
boundary xb (dashed lines). Lightly and darkly shaded areas represent
the contribution of this class boundary to Bayes error and to added error,
respectively.
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boundary, which is perhaps the more likely to occur and is
also easier to analyze.

Since we assumed b > 0, from Fig. 1, it is easy to see that
the added error is caused by the patterns falling in the
interval ðx�; xbÞ, which are assigned to class !i instead of !j.
The added error depends on the offset b and is given byZ x�þb

x�
P ð!jjxÞ � P ð!ijxÞ
� �

pðxÞdx; ð3Þ

where pðxÞ is the probability distribution of the feature x. To
compute the above integral, assuming small values of the
shift b ¼ xb � x�, a first-order approximation is used in [30],
[31] for the posteriors of classes !i and !j around the ideal
boundary x�:

P ð!kjx� þ bÞ ¼ P ð!kjx�Þ þ bP 0ð!kjx�Þ: ð4Þ

Furthermore, pðxÞ is approximated by the constant value

pðx�Þ. Substituting (4) into (3) and pðx�Þ for pðxÞ, the added

error (3) becomes pðx�Þt
2 b2, where t ¼ P 0ð!jjx�Þ � P 0ð!ijx�Þ.

The expected value of the added error with respect to b,

denoted by Eadd, is then given by

Eadd ¼ pðx�Þt
2

�2
b þ �2b

� �
; ð5Þ

where �b and �2
b denote, respectively, the bias and the

variance of b. The value of b and, thus, of Eadd, can be
expressed as a function of the estimation errors. From (1)
and (4), the equation fiðxbÞ ¼ fjðxbÞ can be rewritten as

P ð!ijx�Þ þ bP 0ð!ijx�Þ þ �iðxbÞ
¼ P ð!jjx�Þ þ bP 0ð!jjx�Þ þ �jðxbÞ:

Since P ð!ijx�Þ ¼ P ð!jjx�Þ, from the above equation, one
obtains

b ¼ �iðxbÞ � �jðxbÞ
t

: ð6Þ

As the estimation errors on different classes are uncorre-
lated [30], [31], it follows that the bias and variance of b in
(5) are given by

�b ¼
�i � �j

t
; �2

b ¼
�2
i þ �2j
t2

: ð7Þ

Consider now a linear combination, by simple averaging,
of the estimated posterior probabilities provided by an
ensemble of N classifiers. In the following, we shall denote
quantities related to the mth individual classifier and to SA,
with the superscripts m and “sa,” respectively. From (1), the
averaged estimates for the kth class can be written as

fsak ðxÞ ¼ 1

N

XN
m¼1

fm
k ðxÞ ¼ P ð!kjxÞ þ �sak ðxÞ; ð8Þ

where

�sak ðxÞ ¼
1

N

XN
m¼1

�mk ðxÞ: ð9Þ

With reference to the same class boundary of Fig. 1, the
class boundary xbsa obtained from the posteriors estimated
by simple averaging of classifier outputs (8) has an offset bsa

from x� and is characterized by f sa
i ðx� þ bsaÞ ¼ f sa

j ðx� þ bsaÞ.
Following the same steps as above, one obtains

bsa ¼
�sai ðxbsaÞ � �saj ðxbsaÞ

t
; ð10Þ

Esa
add ¼ pðx�Þt

2
�2
bsa þ �2

bsa

� �
: ð11Þ

Also, the expected added error of the average fusion rule (11)
can be expressed as a function of the estimation errors of
individual classifiers. First, from (10) and (9), the bias of bsa is

�bsa ¼
�sa
i � �sa

j

t
¼ 1

N

XN
m¼1

�m
i � �m

j

t
¼ 1

N

XN
m¼1

�bm ; ð12Þ

where �bm is given in (7). Then, �2
bsa can be computed by first

noting that (9) implies

ð�sa
k Þ

2 ¼ 1

N2

XN
m¼1

ð�m
k Þ

2 þ 1

N2

XN
m¼1

X
n6¼m

�mn
k �m

k �
n
k ; ð13Þ

where �mn
k denotes the correlation coefficient between �mk ðxÞ

and �nkðxÞ and �m
k is the standard deviation of �mk ðxÞ. The

assumption that the estimation errors on different classes

are uncorrelated was extended in [30], [31] to errors of

different classifiers, i.e., �mi ðxÞ and �nj ðxÞ; i 6¼ j, are assumed

to be uncorrelated. Accordingly, from (10) it follows that

�2bsa ¼ 1
t2 ½ð�sa

i Þ
2 þ ð�sa

j Þ
2�. Substituting (13) in the above

expression, one obtains

�2
bsa ¼

1

N2

XN
m¼1

�2
bmþ

1

t2
1

N2

XN
m¼1

X
n 6¼m

�mn
i �m

i �
n
i þ�mn

j �m
j �

n
j

� �
; ð14Þ

where �2bm is given in (7).
The above results show that the expected added error on a

given class boundary is given by the sumof two components:
one depending on the bias of estimation errors, the other on
their variance. In particular, for linearly combined classifiers,
the expected added error also depends on classifiers’ pair-
wise correlations. In [30], [31], these results were exploited to
quantify the reduction of the expected added error that canbe
achieved by simple averaging (11) with respect to the
individual classifiers (5). The results obtained can be
summarized as follows: First, note that the reduction of the
bias and variance components can be evaluated separately.
From (12), it follows that, though the bias component is not
necessarily reducedwith respect to each individual classifier,
it is at least guaranteed to be no greater than the maximum
bias exhibited by the individual classifiers. The variance
component (14) was analyzed only for the case of estimation
errors with identical variances, i.e., ð�m

k Þ
2 ¼ �2 8m; k. In this

case, (7) becomes �2
b ¼ 1

t2 2�
2, while (13) can be rewritten as

ð�sak Þ
2 ¼ 1þ ðN � 1Þ�k

N
�2; ð15Þ

where �k ¼ 1
NðN�1Þ

PN
m¼1

P
n6¼m �mn

k . It follows that (14) can

be rewritten as

�2
bsa ¼

1þ ðN � 1Þ�ij
N

1

t2
2�2 ¼ 1þ ðN � 1Þ�ij

N
�2
b ; ð16Þ
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where �ij ¼ �iþ�j
2 . It is easy to see that

1þðN�1Þ�ij
N � 1. This

means that, if the estimation errors have identical variances,
then the averaging rule reduces the variance component of
the added error of each individual classifier by a factor
depending on the correlation between the estimation errors:
the lower the correlation, the greater the reduction. In
particular, if the estimation errors are uncorrelated (i.e.,
�mn
k ¼ 0 k ¼ i; j; 8m;n), then �ij ¼ 0 and, therefore, the

reduction factor is exactly N , the number of combined
classifiers. It should be noted that, in practice, it is very
difficult to obtain a large number of uncorrelated classifiers.
From a practical standpoint, these results suggest using the
following approach to the problem of bias-variance trade-
off [10]: The design of individual classifiers should focus on
obtaining estimation errors with low bias and correlation,
rather than low variance, since the variance can be reduced
by averaging classifiers.

2.2 Some Generalizations of Tumer and Ghosh
Results

Let us now show how the results reported in [30], [31] and
summarized above can be extended to the more general case
of estimation errors with negative correlation and noniden-
tical variances. First, if the estimation errors are negatively
correlated, besides having identical variances, then the
variance component (16) of the added error can be reduced
by a factor greater thanN . Theoretically, it can be reduced up
tozero for any finiteN : This occurswhen �i ¼ �j ¼ � 1

N�1 (note
that �k � � 1

N�1 8k since the variance in (15) must be
nonnegative). For instance, it is easy to see that this happens
when the correlations are all equal to � 1

N�1 . Moreover, it is
easy to see that a low correlation is advantageous also when
the estimation errors have nonidentical variances: In fact,
from (14), it is evident that the lower the correlations are, the
lower the variance component of the expected added error is.
This result confirms that the design of individual classifiers
can focus on obtaining low biases and low pair-wise
correlations, even if this design produces classifiers with
high and different variances, that is, classifiers which
perform differently on unseen test data.

Finally, it can be shown that, according to the above

framework, theexpectedaddederrorof theaveragingrule,on

a given class boundary, is never greater than the maximum

expected added error of individual classifiers, maxm Em
add.

Indeed, from (10) and (9), it is easy to see that bsa ¼ 1
N

PN
m¼1 b

m.

This implies that �2
bsa � maxm �2

bm and �2
bsa � maxm �2

bm . It

follows from (5) that Esa
add � maxm Em

add, where the equality

holds only in the limit case in which all the correlations are

equal to one and all the biases �bm are identical. The practical

relevanceof this result becomesapparentwhenone considers

that one of the main reasons for combining classifiers is to

avoid the “worst case” of the traditional “evaluation and

selection” approach to classifier design: Selecting the “appar-

ent” best classifier from a given ensemble, on the basis of

validation data, involves the risk of obtaining the worst

classifier on unseen test data [6], [3]. Accordingly, a desirable

property for a combining rule is that it guarantees a better test

set performance than theworst classifier of the ensemble. The

above result theoretically supports the fact that the averaging

rule exhibits this property.

3 THEORETICAL ANALYSIS AND COMPARISON OF

SIMPLE AND WEIGHTED AVERAGING

In this section, we present a theoretical analysis of the
WA rule. First, we derive the expected added error of the
WA rule. We then quantify the reduction that can be
obtained over individual classifiers and compare it with the
reduction obtained using the SA rule.

3.1 Expected Added Error of the Weighted Average

As explained in Section 1, we consider the simplest form of
WA,whichconsists of assigninganonnegativeweight to each
individual classifierwm, with at least oneweight greater than
zero. This results in the following approximation of the
posterior probabilities for the kth class (hereafter, the super-
script “wa” will denote quantities related to the WA):

fwa
k ðxÞ ¼

XN
m¼1

wmf
m
k ðxÞ ¼ P ð!kjxÞ þ �wak ðxÞ; ð17Þ

where

�wak ðxÞ ¼
XN
m¼1

wm�
m
k ðxÞ: ð18Þ

The constraints on the weights can be written as

wm � 0 m ¼ 1; . . . ; N;
XN
m¼1

wm > 0: ð19Þ

Following the same procedure described in Section 2, the
expected added error of the WA rule, on a given boundary
between classes !i and !j (see Fig. 1), can be written

Ewa
add ¼ pðx�Þt

2
�2
bwa þ �2

bwa

� �
; ð20Þ

where the offset bwa is given by

bwa ¼
�wai ðxbwaÞ � �waj ðxbwaÞ

t
: ð21Þ

Assuming, as in [30], [31], that errors on different classes are
uncorrelated, from (21) and (18) we obtain:

�2
bwa ¼

1

t2

XN
m¼1

w2
m �m

i � �m
j

� �2

þ 1

t2

XN
m¼1

X
n6¼m

wmwn �m
i � �m

j

� �
�n
i � �n

j

� �
; ð22Þ

�2
bwa ¼

1

t2

XN
m¼1

w2
m ð�m

i Þ
2 þ ð�m

j Þ
2

h i

þ 1

t2

XN
m¼1

X
n6¼m

wmwn �mn
i �m

i �
n
i þ �mn

j �m
j �

n
j

� �
: ð23Þ

As pointed out in Section 1, we are interested in the
“optimal” weights, i.e., those that minimize Ewa

add under the
constraints (25) and, therefore, maximize the reduction of the
expected added error with respect to the individual classi-
fiers. Obviously, when the optimal weights are used, then
Ewa

add � Esa
add. In actual fact, the SA rule is a particular case of

WA when wm ¼ 1
N 8m. It is also easy to see that the optimal

weights lead to an overall misclassification probability no
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higher than that of the best classifier of the ensemble: Indeed,
the same performance of the best classifier is achieved when
the corresponding weight equals 1 and all the others 0.
Instead, we have shown in Section 2 that SA only guarantees
an expected added error no greater than that of the worst
classifier, limited to a single class boundary.

Substituting (22) and (23) into (20),Ewa
add can bewritten in a

compact form as wTMw, where w is the vector ðw1; . . . ; wNÞT
andM isasymmetricN byNmatrixwhoseelementsare(from
(22) and (23)):

Mmm ¼ 1

t2
�m
i � �m

j

� �2
þð�m

i Þ
2 þ ð�m

j Þ
2

� �
; m ¼ 1; . . . ; N;

Mmn ¼ 1

t2
�m
i � �m

j

� �
�n
i � �n

j

� �h
þ �mn

i �m
i �

n
i þ �mn

j �m
j �

n
j

� �i
; m 6¼ n:

ð24Þ

Note that, for classification problems, it is possible to
replace (19) with the following equivalent constraints,
which are computationally more convenient:3

wm � 0 m ¼ 1; . . . ; N;
XN
m¼1

wm ¼ 1: ð25Þ

The optimal weights are thus the solution of the following
optimization problem:

minimize Ewa
add ¼ wTMw;

subject to wm � 0 i ¼ 1; . . . ; N;
XN
m¼1

wm ¼ 1:
ð26Þ

This is a quadratic programming problem that can be solved
using standard optimization techniques. However, the
analytical solution can be obtained only when the matrix M
is diagonal. A particular case of theoretical interest in which
M is diagonal is when the estimation errors are unbiased and
uncorrelated, i.e., �m

k ¼ 0; �mn
k ¼ 0; 8m;n; k (see (24)). For

this reason, in the following, wewill focus our analysis on the
case of unbiased and uncorrelated errors. We will then show
how some results can be extended to the case of unbiased and
correlated errors.

3.2 Unbiased and Uncorrelated Estimation Errors

If the estimation errors are unbiased and uncorrelated, the
expected added error of WA (from (22) and (23)) is

Ewa
add ¼ pðx�Þ

2t

XN
m¼1

w2
m ð�m

i Þ
2 þ ð�mj Þ

2
h i

: ð27Þ

It follows that the matrix M is diagonal and the problem
(26) can be analytically solved using the Lagrange multi-
plier technique. Moreover, from (5) and (12), it follows that

Em
add ¼ pðx�Þ

2t
ð�m

i Þ
2 þ ð�m

j Þ
2

h i
ð28Þ

and, therefore, Ewa
add can be simply written as the linear

combination of the added errors of individual classifiers:

Ewa
add ¼

XN
m¼1

w2
mE

m
add: ð29Þ

Hence, we have M ¼ diagðE1
add; . . . ; E

N
addÞ. In this way, we

can analyze the performance of the SA and WA rules as a

function of the expected added errors of individual

classifiers, instead of the variances of their estimation

errors. The optimal weights are the following:

wm ¼
XN
n¼1

1

En
add

 !�1
1

Em
add

: ð30Þ

This shows that, for unbiased and uncorrelated errors, the

optimal weights are inversely proportional to the expected

added error of the corresponding classifiers. This implies

that SA, i.e., wm ¼ 1
N , is the optimal linear combining rule

only if the individual classifiers exhibit identical expected

added errors. This result provides a theoretical support to

the common claim that the SA rule is appropriate for

combining classifiers with similar performances (see, for

instance, [30]), while different weights should be used for

classifiers of different strength.
Substituting (30) into (29), we obtain the value of Ewa

add

corresponding to the optimal weights:

Ewa
add ¼ 1

1
E1

add

þ � � � þ 1
EN

add

: ð31Þ

On the other hand, if the SA rule is used, setting wm ¼ 1
N in

(29), we obtain:

Esa
add ¼ 1

N2

XN
m¼1

Em
add: ð32Þ

This shows that Ewa
add and Esa

add are equal to 1
N times the

harmonic mean and the arithmetic mean, respectively, of

the Em
adds.

In the following section, we evaluate the improvement of

the SA and WA over individual classifiers. Note that our

analysis of SA extends the analysis presented in [30], [31],

which was limited to the case of estimation errors with

identical variances and, thus, in the case of unbiased and

uncorrelated errors, to the case of classifiers with identical

expected added errors (see (5) and (12)), that is, identical

performances. Without losing generality, we will assume in

the following that the classifier errors are arrangedas follows:

E1
add � E2

add � � � � � EN
add: ð33Þ

Accordingly, we will call classifiers 1 and N the “best” and

“worst” classifier, respectively, relative to the class boundary

considered and the interval ½E1
add; E

N
add� as the “error range” of

the classifier ensemble. Wewill also assumeE1
add > 0, that is,

none of the individual classifiers achieves the Bayes error.

Finally, we point out that (33) implies that the condition that

the individual classifiers exhibit identical expected added

errors can be simply written as E1
add ¼ EN

add.
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3. We recall that a pattern x is assigned to the class corresponding to
argmaxk f

wa
k ðxÞ. Therefore, for any set of nonnegative weights with positive

sum (19), a set of nonnegative weights that sum to one (25) can be found
such that the class assigned to each pattern does not change. The latter
weights can be obtained simply by rescaling the former ones by a positive
constant.
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3.2.1 Comparison with Individual Classifiers

When the individual classifiers exhibit identical expected
added errors (i.e., E1

add ¼ EN
add), we showed that the optimal

weights are wm ¼ 1
N . It follows that Ewa

add ¼ Esa
add and,

therefore, (29) implies that a reduction of the expected
added error by a factor N is achieved over each individual
classifier. On the other hand, if the individual classifiers
exhibit nonidentical added errors (i.e., if E1

add < EN
add), then

Ewa
add < Esa

add. In this case, from (32), the error reduction
achieved by SA over the generic mth classifier is

Esa
add

Em
add

¼ 1

N2
1þ

X
n 6¼m

En
add

Em
add

 !
: ð34Þ

In particular, taking into account that 0 < Em
add < 1 8m, it

follows that the reduction factors over the best and worst
classifiers take values in the following ranges:

Esa
add

E1
add

2 1

N
;þ1

	 

;

Esa
add

EN
add

2 1

N2
;
1

N

	 

: ð35Þ

(The lower bound for the reduction factor over E1
add is

obtained when all the N classifiers exhibit the same added
error, while the upper bound is obtained for E1

add ! 0 for
any fixed value of the added error of the other classifiers.
Similar considerations lead to the lower and upper bounds
for

Esa
add

EN
add

.) From (31), the reduction factor of WA is

Ewa
add

Em
add

¼ 1þ
X
n6¼m

Em
add

En
add

 !�1

ð36Þ

and, therefore,

Ewa
add

E1
add

2 1

N
; 1

	 

;

Ewa
add

EN
add

2 0;
1

N

	 

: ð37Þ

From (34)-(37), it follows that, if E1
add < EN

add, then both SA
and WA achieve a reduction lower than N over the best
classifier and greater than N over the worst one. However,
(35) and (37) show that Ewa

add is always smaller than E1
add, i.e.,

WA always performs better than the best individual
classifier. Instead, Esa

add can become arbitrarily larger than
E1

add, depending on the particular values of E1
add; . . . ; E

N
add.

Moreover, the reduction achieved by WA over the worst
classifier EN

add can be arbitrarily large, while the maximum
reduction achievable by SA is 1

N2 .
We will now analyze further the dependence of the

performance of the two combining rules on the expected
added errors of individual classifiers. Consider ensembles of
fixed size N and fixed error range ½E1

add; E
N
add�. Which values

ofE2
add; . . . ; E

N�1
add yield theminimumandmaximumvaluesof

Esa
add and Ewa

add (equivalently, the maximum and minimum
reduction factors over E1

add and EN
add)? The answer can be

easily obtained from (35) and (37): The minimum ofEsa
add and

Ewa
add is achieved when Em

add ¼ E1
add; m ¼ 2; . . . ; N � 1; the

maximum is achieved when Em
add ¼ EN

add; m ¼ 2; . . . ; N � 1.
The above analytical results basically confirm the following
intuitive result for linear combiners: Of all the ensembles of
N classifiers exhibiting a given error range, SA and WA are
equally effective as the performance of N � 2 classifiers
2; . . . ; N � 1 approaches that of the best classifier.

Finally, letus considerwhathappenswhenanewclassifier
is added to a given ensemble. From (37), it follows that this
always leads to an improvement in theperformanceof theWA
rule, whatever the expected added error of the new classifier.
On the other hand, this does not always hold for the SA rule:
(32) implies that Esa

add improves only if the expected added
error of the new classifier is smaller than 2Nþ1

N2

PN
m¼1 E

m
add.

Summing up, the analytical results obtained for the case
of unbiased and uncorrelated errors provide a theoretical
support to the common claim that the WA rule can
counterbalance the effects of uneven performances of
individual classifiers and can always outperform the best
classifier, even when classifiers with arbitrarily high error
probability are added to a given ensemble.

3.2.2 Comparison between Simple and Weighted

Averaging

Let us now consider the following question: Given an
ensemble of classifiers, how much theoretical reduction of
error probability can be obtained using theWA instead of the
SA rule and how does this reduction depend on the
individual classifiers? The practical relevance of this problem
becomes apparent when one considers that small reductions
in error can be negated byweight estimations from small and
noisy data sets (Section 1), resulting in poorer WA perfor-
mances compared to SA. The improvement, �E, achievable
for a given class boundary by WA is given by the difference
Esa

add �Ewa
add since the Bayes error is obviously the same for

both rules. If the estimation errors are unbiased and
uncorrelated and the optimal weights are used, from (31)
and (32), we obtain

�E ¼ 1

N2

XN
m¼1

Em
add �

1PN
m¼1

1
Em

add

:

We already know that, when the added error of individual
classifiers is different, thenWAoutperforms SA, i.e.,�E > 0,
otherwise �E ¼ 0. To analyze the behavior of �E as a
function of the Em

adds, we first consider classifier ensembles
with fixed size N and fixed error range E1

add; E
N
add

� �
. In this

case, it is interesting to analyze the conditions under which
�E is minimum and maximum with respect to the values of
E2

add; . . . ; E
N�1
add . We found (for brevity, the proof is reported

in [9]) that the minimum of �E is obtained when the
expected added errors of classifiers 2; . . . ; N � 1 are all equal
to the harmonic mean of E1

add and EN
add:

Em
add ¼ 2E1

addE
N
add

E1
add þ EN

add

m ¼ 2; . . . ; N � 1: ð38Þ

The corresponding value of �E is

min
E2

add
;...EN�1

add

�E ¼ 1

N2

E1
add � EN

add

� �2
E1

add þ EN
add

: ð39Þ

On the other hand, �E is maximum when the expected
added error of k classifiers is equal to EN

add, while that of the
other N � k classifiers is equal to E1

add:

Em
add ¼ E1

add; m ¼ 2; . . . ; N � k;

Em
add ¼ EN

add; m ¼ N � kþ 1; . . . ; N � 1:
ð40Þ
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We found that the value of k is given either by bk�c or by
dk�e, where

k� ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

addE
N
add

q
�E1

add

EN
add � E1

add

: ð41Þ

The maximum of �E with regard to E2
add; . . .E

N�1
add is then

given by

1

N2
ðN � kÞE1

add þ kEN
add

� �
� 1

ðN � kÞ 1
E1

add

þ k 1
EN

add

; ð42Þ

which can be approximated, using (41), as

max
E2

add
;...EN�1

add

�E � 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

addE
N
add

q
ð
ffiffiffiffiffiffiffiffiffiffi
E1

add

q
�

ffiffiffiffiffiffiffiffiffiffi
EN

add

q
Þ2

E1
add þEN

add �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

addE
N
add

q : ð43Þ

Note that, for N ¼ 3, we found that k ¼ 2, whatever the
values of E1

add and EN
add.

The two conditions (38) and (40) can be described by
introducing the concept of performance “imbalance,” related
to the improvement that can be achieved byWAwith respect
toSA. If theexpectedaddederrors (and, thus, theoverall error
probabilities) are identical, then the performances of the
individual classifiers are said to be balanced; otherwise, they
are said to be imbalanced. Accordingly, the WA rule outper-
forms the SA rule for classifier ensembles with imbalanced
performances. Now, let us consider two ensembles,A and B,
with the same size and error range, but having different
values ofE2

add; . . . ; E
N�1
add . If�EA > �EB, thenwe can say that

the performances ofA aremore imbalanced than those ofB in
the sense that the improvement achieved by WA for
ensemble A with respect to SA is greater than that achieved
forB.Accordingly,when condition (38) is verified,we can say
that a classifier ensemble exhibits the smallest performance
imbalance with respect to all the other ensembles with
identical size and error range since the corresponding �E is
minimum, among all such ensembles. For this reason, we can
denote (38) as the conditionofminimumperformance imbalance.
Similarly, we can say that the largest performance imbalance
is achieved under condition (40), which can be denoted as the
condition ofmaximum performance imbalance. It is not surpris-
ing that the condition of minimum performance imbalance
corresponds to identical values of Em

add; m ¼ 2; . . . ; N � 1, in
light of the fact that�E ¼ 0when all theN classifiers exhibit
balanced performances, i.e., identical expected added errors.
On the other hand, the condition of maximum performance
imbalance (40),which is the less favorable to theSArule, is not

so obvious and can be described as follows: The expected
added errors of individual classifiers are divided into two
compact “clusters” of values, characterized by maximum
intraclass distance (equal to the width of the error range).

Let us now complete the analysis of the behavior of �E,
varying the values of N , E1

add, and EN
add. For simplicity, we

will conduct an experimental analysis of the behavior of�E
for some values of N and different error ranges. Fig. 2
shows the maximum and minimum values of �E for
different error ranges ½E1

add; E
N
add� and for N ¼ 3; 5; 7. Each

curve corresponds to a fixed value of E1
add and represents

the value of �E under the condition of minimum or
maximum performance imbalance (i.e., the minimum or
maximum �E with respect to E2

add; . . . ; E
N�1
add ) for values of

EN
add ranging from E1

add to E1
add þ 0:10. Three different

values of E1
add have been considered: 0:01, 0:05, and 0:10.

From (39) and (43) and referring to Fig. 2, three character-
istics of the behavior of �E emerge. First, and most notable,
is the fact that the maximum (and also the minimum)
improvement achievable using WA in the place of SA
decreases as the size N of the classifier ensemble increases
over the same error range. Second, for the same N and E1

add,
the minimum and maximum values of �E increase for
increasing values of EN

add. This is reasonable since the WA
rule is affected to a lesser extent than the SA rule by
the performance of the worst classifier, as shown in
Section 3.2.1. Third, for the same N and EN

add � E1
add, the

minimum and maximum values of�E decrease as E1
add and

EN
add increase. This indicates that, as the performances of the

best and worst individual classifiers worsen by an identical
amount, so the advantage of using the WA rule diminishes.

Summing up, the results obtained in this section allow us
to describe the relative behavior of the two combining rules
as a function of the size N of the classifier ensemble of its
error range ½E1

add; E
N
add� and of the degree of performance

imbalance. As two of the above three parameters are equal,
the improvement of WA over SA increases as the size of the
ensemble decreases, the expected added error of the worst
classifier (and, thus, the error range width) increases, or the
performance of individual classifiers approaches the con-
dition of maximum performance imbalance. The conditions
of maximum and minimum performance imbalance, and
the behavior of �E, are summarized, respectively, in Fig. 1
and Table 1 of the Appendix to this paper which can be
found at www.computer.org/publications/dlib.

Let us now consider the above results from a quantitative
viewpoint, again referring to Fig. 2. As can be observed, the
improvement ofWAover SA is always fairly small. Note that
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Fig. 2. Maximum and minimum values of �E ¼ Esa
add �Ewa

add versus error range width EN
add �E1

add, for N ¼ 3; 5; 7, E1
add ¼ 0:01; 0:05; 0:10, and EN

add

ranging from E1
add to E1

add þ 0:10.
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the values of the error range considered in Fig. 2 are
representative of most cases of practical interest. We
considered an expected added error of the best classifier of
between 0:01 and 0:10, and a difference between the error
probability of the worst and best classifiers (i.e., error range
width) of between 0 and 0:10. For these values, Fig. 2 shows
that�E never attains 0:02. Also,when five ormore classifiers
are combined,�E never exceeds 0:01. Moreover, even when
N < 5, it can be seen that�E is greater than 0:01 only under
the following conditions: E1

add does not exceed 0:05, the error
range width is greater than 0:06, and the condition of
minimum performance imbalance is not verified.

To gain a better understanding of the behavior of the
WA rule and to evaluate the improvement that can be
achieved with respect to SA, under, as far as is possible,
more realistic assumptions than those considered in this
section, in the next section, we extend our analysis by
relaxing the assumption of uncorrelated estimation errors.

3.3 Unbiased and Correlated Estimation Errors

In the general case of biased and correlated estimation
errors, we have seen that the optimal weights (26) and, thus,
the corresponding Ewa

add, can only be computed by numerical
analysis. In other words, no analytical investigation is
possible. Nevertheless, in light of the analytical results
obtained in Section 3.2, concerning the behavior of SA and
WA versus the expected added errors of individual
classifiers, it is interesting to verify, by means of numerical
analysis, whether the same behavior also holds when the
errors are biased or correlated. To this end, we can rewrite
the general expression of Ewa

add, given by (20), (22), and (23),
by expliciting the Em

adds, given by (5) and (7):

Ewa
add¼

XN
m¼1

w2
mE

m
add þ

pðx�Þ
2t

XN
m¼1

X
n 6¼m

wmwn �m
i ��m

j

� �
�n
i ��n

j

� �h

þ�mn
i �m

i �
n
i þ �mn

j �mj �
n
j

i
:

ð44Þ

However, numerical analysis of the above expression is still
impractical as it involves too many parameters besides the
Em

adds (that is, the biases, variances, and correlations of the
estimation errors). To simplify this analysis, we consider the
case of unbiased errors, with class independent variances
and correlations:

�m
k ¼ 0 8k;m; ð�m

k Þ
2 ¼ ð�mÞ2 8k;m; �mn

k ¼ �mn 8k;m; n:

ð45Þ

In this case, it is easy to see that (44) can be rewritten as:

Ewa
add ¼

XN
m¼1

w2
mE

m
add þ

XN
m¼1

X
n6¼m

wmwn�
mn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em

addE
n
add

p
: ð46Þ

In this way, it is possible to verify, at least for small values of
N , whether the conditions of maximum and minimum
performance imbalance found in Section 3.2 also hold in the
case of correlated errors. Let us consider classifier ensembles
having the same size N , error range, and values of the
correlation coefficients �mn. Numerical analysis of (46) for
N ¼ 3 andN ¼ 5 reveals that themaximumof�E is obtained
when the expected added error of k (1 � k < N) individual
classifiers is equal to EN

add, that of the other N � k classifiers

being equal to E1
add (in this case, the value of k cannot be

analytically determined). This means that the condition of
maximum performance imbalance also holds in the case of
correlated estimation errors, whatever the values of the
correlation coefficients. On the contrary, we found that the
condition ofminimumperformance imbalance does not hold
for correlated classifiers. Moreover, the minimum of�E, for
correlated errors, does not seem to exhibit a clear pattern of
values of the Em

adds.

Let us now consider the behavior of SA and WA with

respect to the correlation between estimation errors for fixed

values of all the Em
adds. We already know that, in the most

general case of biased and correlated errors, the smaller the

correlation coefficients�mns are, the smaller theEsa
add andEwa

add.

Obviously, this also holds true in the particular case

represented by (46). On the other hand, a very interesting

result emerges fromtheanalysisof thebehaviorof�E. First, if

all the correlation coefficients are identical and, likewise, the

expected added errors of individual classifiers, then the

optimalweights arewm ¼ 1
N 8m, i.e.,�E ¼ 0 (note that this is

the only casewhere the optimal weights related to (46) can be

obtained analytically, using the Lagrange multiplier techni-

que). Consider now fixed values of the Em
adds (even non-

identical), of N and of the correlation range ½�min; �max� (i.e.,
�min � �mn � �max 8m;n). Numerical analysis for N ¼ 3

and N ¼ 5 shows that �E is maximum when p of the
NðN�1Þ

2 correlation coefficients �mn are equal to �max (with

1 � p < NðN�1Þ
2 ), while the other NðN�1Þ

2 � p are equal to �min

(the value of p cannot be analytically determined). Surpris-

ingly, this condition on the correlation coefficients values is

analogous to the condition of maximum performance imbal-

ance. By analogy, we can define it as the condition of

maximum correlation imbalance.
One notable consequence of the above results is that �E

is greater than zero even when the individual classifiers
exhibit identical expected added errors, but different
correlation coefficients between the estimation errors. In
this way, we can extend the results obtained for unbiased
and uncorrelated estimation errors as follows: SA is the
optimal linear combining rule only if the individual
classifiers exhibit both identical expected added errors
and identical correlations between the estimation errors.

The behavior of �E with respect to the Em
adds and to the

�mns can be better understood from Fig. 3, which refers to
N ¼ 3 (Fig. 3a), and N ¼ 5 (Fig. 3b). Analogously to Fig. 2,
the minimum (only for N ¼ 3) and maximum of �E are
shown, with respect to E2

add; . . . ; E
N�1
add , and to the �mns, for

different error and correlation ranges. Fig. 3 shows that,
with respect to the Em

adds, �E exhibits a similar behavior to
the case of uncorrelated estimation errors: �E increases for
increasing error range width and decreases for increasing
N . Note that, for correlated errors, a similar trend has been
observed only for N ¼ 3; 5. However, the fact that it has
been analytically proven to hold for eachN for uncorrelated
errors (see Section 3.2.2), provides reasonable evidence that
it also holds for each N for correlated errors.

With respect to the correlations, it can be seen that, for the
same Em

adds and correlation range width �max � �min, �E is
greater for larger correlation values. Comparison of Figs. 3
and 2 also shows that, for nonidentical correlations between
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the estimation errors of individual classifiers, WA outper-
forms SA to a greater extent than for uncorrelated errors. This
indicates that, though a higher correlation diminishes the
improvement achievable by both rules over individual
classifiers, WA is affected to a lesser extent than SA. Note in
particular that, as pointed out above,�E can be greater than
zero even when E1

add ¼ EN
add, i.e., when all the individual

classifiers exhibit identical expected added errors. For the
correlation ranges considered in Fig. 3, the maximum
improvement achievable by WA combining three classifiers
with identical performances but different correlations, is
about0:015 (seeFig. 3a, correlation range ½0:50; 1:00�),which is
very close to the maximum improvement achievable for
different performances, for uncorrelated estimation errors
(see Fig. 2).

Finally, Fig. 3a clearly shows that, for the same error
correlation ranges, �E can take very different values,
depending on the particular values of E2

add; . . . ; E
N�1
add , and

on the correlation coefficients. In other words, the value of
�E depends strongly on the conditions of performance and
correlation imbalance.

The conditions of maximum performance and correla-
tion imbalance, and the behavior of �E, are summar-
ized, respectively, in Fig. 2 and Table 2 of the Appendix
to this paper which can be found at www.computer.
org/publications/dlib.

In conclusion, we believe that the results of this section
contribute to a better understanding of linear combiners for
multiple classifier systems. Simple averaging is commonly
believed to work well for classifiers with similar error rates,
while weighted averaging is claimed to outperform simple
averaging when classifiers exhibit different error rates.
However, no previous work has analyzed in detail the key

role played by error correlations. The results of this section
show that SA can be considered the optimal combiner only
if the individual classifiers exhibit both identical error rates
and identical correlations between the estimation errors. In
particular, we have shown that WA is required to be used
when pair-wise correlation coefficients are different, that is,
the use of weights is necessary to counterbalance both the
differences in classifiers’ error rates and the correlation
differences among classifier pairs.

3.4 Discussion

This section provides a critical discussion of the limitations of
the assumptions under which some of the above theoretical
results have been obtained. First, our analytical framework
assumes that the estimation errors on the posterior prob-
abilities of different classes are uncorrelated. As pointed out
in Section 2.1, this assumption is violated if the estimated
posteriors are sum-to-one constrained. This happens, for
instance,when theposterior probabilities are estimatedusing
parametric methods, or the k-nearest neighbors classifier, but
not when neural network classifiers are used. Second, the
analytical framework does not allow us to evaluate the
overall added error of a classifier, but only that obtained on a
single class boundary, which could result in underestimating
the overall expected added error of the WA rule. The third
limitation derives from the fact that the analytical results of
Section 3.2 have been obtained under the assumption of
unbiased anduncorrelated estimation errors,which is clearly
unrealistic. However, it should be noted that these results are
valid under slightly more general conditions. Indeed, as
explained in Section 3.2, these results are valid when the
matrixM is diagonal, that is, from (22) and (23), when
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Fig. 3. Maximum values of �E ¼ Esa
add �Ewa

add versus error range width EN
add �E1

add for (a) N ¼ 3 and (b) N ¼ 5, for E1
add ¼ 0:01; 0:05; 0:10, and EN

add
ranging from E1

add to E1
add þ 0:10. The maximum is computed with respect to E2

add; . . . ; E
N�1
add and to correlations �mn

k for three different ranges. The
minimum of �E is also shown, only for N ¼ 3 (a).
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�m
i � �m

j

� �
�n
i � �n

j

� �
þ �mn

i �m
i �

n
i þ �mn

j �m
j �

n
j

� �
¼ 0 8m;n:

ð47Þ

The case of unbiased and uncorrelated errors is only a
particular, though the most meaningful, case in which (47)
holds. In addition, it should also be noted that some of these
results were found to hold also for correlated estimation
errors, though only for the case when variance and
correlation are class independent (see Section 3.3).

Considering the above limitations, it was interesting to
evaluate the behavior of the SA and WA rules experimen-
tally, using real data, where such assumptions are likely to
be violated, so as to investigate the extent to which their
behavior agrees with the predictions of our theoretical
model and to experimentally compare SA and WA.

4 EXPERIMENTAL RESULTS

The experiments presented in this section have been con-
ducted on three real data sets: Feltwell, Letter, and Pendigits.
The Feltwell data set consists of a set of multisensor remote-
sensing images for an agricultural area near the village of
Feltwell (UK) [23]. Froma section (250� 350 pixels) of a scene
acquiredbyanoptical sensor anda radar sensor, 10;944pixels
belonging to five agricultural classes (i.e., sugar beet, stubble,
bare soil, potatoes, and carrots) were selected, and divided
into a training set and a test set of 5;124 and 5;820 pixels,
respectively. Each pixel is characterized by a 15-element
feature vector containing the gray-level brightness values in
six optical bandsandovernine radar channels. TheLetter and
Pendigitsdata setswere taken from theUCImachine learning
repository.4 Letter consists of 20;000 images of the 26 printed
capital letters of the English alphabet, each characterized by
16 numeric features.Weused the first 15;000 characters as the
training set and the remaining 5;000 as the test set. Pendigits
consists of 10;992 images of the 10 handwritten digits,
characterized by 16 numeric features, and divided into a
training set of 7;494 images and a test set of 3;498.

The aim of the experiments was to investigate to what
extent the behavior of the SA and WA rules on real data
agreed with the predictions of the theoretical model. In the
experiments, we focused on the behavior of the two
combining rules as a function of the performances of
individual classifiers, and of the correlations between their
outputs,5 the quantities considered in our theoretical analysis
(Section 3). Since, in an experimental setting, the performance
of individual classifiers can be controlled much more easily
than correlations, we chose to construct several classifier
ensembles having different error ranges and different
conditions of performance imbalance for the same error
range. For this purpose, we trained several MLPs with a
varying number of hidden neurons and of training epochs
and random values of the initial weights, using the standard
backpropagation algorithm,until a rangeof test set error rates
of width 0:15 was obtained for each data set. Next, we
constructed 16 ensembles of threeMLPs each by selecting the
MLPswith error rates nearest to predefined values. Denoting

the error rates of the three classifiers of each ensemble with
E1, E2, and E3 (with E1 < E2 < E3), the predefined values
were chosen as follows: First, we constructed four ensembles
of classifiers with identical error rates E1 ¼ E2 ¼ E3, that we
shall denote as “balanced ensembles”; the predefined error
rates are shown in rows 1-4 of Table 1. Next, we constructed
threepairs of ensembleshaving threedifferent error ranges of
the same width 0:05 (Table 1, rows 5-10). The two ensembles
of each pair have the same error range, but two different
conditions of performance imbalance: One ensemble is
characterized by the maximum performance imbalance,6

i.e.,E2 ¼ E3 (rows 5, 7, and 9), the other byE2 ¼ E1 (rows 6, 8,
and 10). Finally, we constructed two groups of ensembles
having two different error ranges of the same width 0:10
(rows 11-16). Each group consists of three ensembleswith the
same error range and three different conditions of perfor-
mance imbalance: One ensemble is characterized by the
maximumperformance imbalance, i.e.,E2 ¼ E3 (rows 11 and
14), another by E2 ¼ E1 (rows 13 and 16), and the third by a
value of E2 equidistant to E1 and E3 (rows 12 and 15), which
should be close to the condition of minimum performance
imbalance (38).7

We should point out that, in these experiments, we were
interested in assessing the ideal performance of WA, i.e., the
performance obtained using the optimal weights for the test
set and comparing it with that predicted by the theoretical
model described in Section 3. As it was not our intention to
explore the effects of weight estimation, we did not estimate
the weights from a validation set using one of the methods
proposed in the literature. Instead, for each classifier
ensemble, we computed the optimal weights by performing
an exhaustive search on the test set. A discretization step of
0:01wasused to reducecomputational complexity.While this
method was suitable for the purposes of our experiments, in
real applications, an exhaustive search (on a validation set) is
clearly unfeasible.

The experiments were repeated 10 times by training the
same three MLPs of each ensemble on 10 different training
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TABLE 1
Predefined Values of Error Rates for the

Three Classifiers (E1, E2, E3) of Each of the
16 Ensembles Constructed for the Experiments

4. http://www.ics.uci.edu/~mlearn/MLRepository.html.
5. Note that the correlation coefficient �mn

k ðxÞ between the estimation
errors �mk ðxÞ and �nk ðxÞ of classifiers m and n on the posterior probability of
the kth class P ð!kjxÞ, for a pattern x, is equal to the correlation between the
outputs fmk ðxÞ and fnk ðxÞ of the classifiers since both outputs approximate
the same quantity P ð!kjxÞ.

6. We recall that, for ensembles of three classifiers, the theoretical
condition of maximum performance imbalance found in Section 3.2.2 was
E2

add ¼ E3
add.

7. It is not possible to find the exact value of the error rate E2

corresponding to (38) since the Bayes error of the real data sets considered
in the experiments is unknown.
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sets, composed by randomly extracting 60 percent of the
patterns of the original training sets. Tables 2, 3, and 4
show the test set error rates of the SA and WA rules,
averaged over the 10 runs of the experiments. The average
correlation �mn between the outputs of each pair of MLPs
(m;n ¼ 1; 2; 3; m 6¼ n) is also given. More precisely, we
computed the correlation coefficient �mn

k ðxÞ between the
outputs fm

k ðxÞ and fn
k ðxÞ over the 10 test runs, for each test

pattern x and for each class k. The value of �mn was
obtained as the average of the �mn

k ðxÞ over all classes and
test patterns. In the following, we will denote the error
rates of SA and WA, respectively, with Esa and Ewa and
their difference with �E.

Let us first compare the qualitative behavior of the two
combining rules for the three data sets with that predicted by
the theoretical model of Section 3. As expected, since the
optimal weights were used, WA always outperformed SA,
i.e.,�E > 0 for all the ensembles considered. Nevertheless, it
is worth noting that the SA rule always gave a lower
misclassification probability than the worst classifier of the
ensemble. Looking at Tables 2, 3, and 4, we can see that the

experimental results agreewith the theoretical predictions on
four main points. The first one concerns the behavior of Esa

and Ewa, while the other three points concern the improve-
ment achievable by WA with respect to SA, �E. First, let us
examine the five groups of ensembles having the same error
range ½E1; E3� (i.e., ensembles (5, 6), (7, 8), (9, 10), (11, 12, 13),
and (14, 15, 16)). As predicted in Section 3.2.1, Esa and Ewa

increase for increasingE2, with the only exceptions ofEwa for
ensembles (5, 6) of Table 2 andbothEsa andEwa for ensembles
(14, 15) of Table 4. Second, for the balanced ensembles 1-4, the
values of �E are smaller than those obtained for the
imbalanced ensembles 5-16, with the only exceptions of
ensemble 10 of Table 2 and ensembles (9, 10, 16) of Table 4. In
otherwords, the improvement obtainedwithWAwas almost
always lower for ensembles of classifiers with similar
performances. Third, looking again at the five groups of
ensembles with the same error range ½E1; E3�, it is easy to see
that,with the exceptionof ensembles (14, 15, 16) for Pendigits,
the maximum of �E is obtained when E2 ¼ E3, which
corresponds to the condition of maximum performance
imbalance described in Section 3.2.2 for ensembles of three
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TABLE 2
Results for the Feltwell Data Set

Test set error rates of the three individual classifiers (E1, E2, and E3) and of SA and WA (Esa and Ewa) for each of the 16 ensembles considered,
listed in the same order as in Table 1. Column �E shows the values of Esa �Ewa. All reported values are averaged over 10 repetitions. Standard
deviation is shown in brackets. Average correlation between outputs of each pair of classifiers is also shown (�mn; m; n ¼ 1; 2; 3; m 6¼ n).

TABLE 3
Results for Letter Data Set

See the footnote of Table 2 for details.
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classifiers. Finally, consider the ensembles having the same
value of E1 and E2 and increasing values of E3 (for instance,
ensembles (2, 8, 16) and (3, 10)). Except for ensembles (8, 16)
and (7, 15) for Pendigits, we can see that �E increases for
increasing E3 (that is, increasing width of the error range), in
agreementwith the theoretical results of Sections 3.2.2 and3.3
(see Figs. 2 and 3).

Let us now consider the behavior of the two combining
rules from a quantitative viewpoint. As pointed out above,
the lower values of�E were almost always obtained for the
ensembles 1-4, containing classifiers exhibiting similar
performances. Tables 2, 3, and 4 show that, for these
ensembles, the values of �E are fairly small, ranging from
0:004 to 0:007 for Feltwell, from 0:001 to 0:002 for Letter, and
from 0:002 to 0:006 for Pendigits. Higher values were
obtained for the imbalanced ensembles 5-16. In particular,
themaximumvaluesof�Ewereobtained for ensembleswith
the greatest error range width (0:10): �E attained 0:069 for
Feltwell, 0:015 for Letter, and 0:031 for Pendigits. However,
for all imbalanced ensembles with identical error range
½E1; E3�, the value of�E depends strongly on the value ofE2,
i.e., on what we called the condition of “performance
imbalance” in Section 3.2.2. For instance, consider the three
imbalanced ensembles 11-13 with the same error range
½0:10; 0:20�, for Feltwell (Table 2) and Pendigits (Table 4): As
the value of E2 decreases from 0:20 to 0:10, so too does the
value of �E from 0:031 to 0:011 (Feltwell) and from 0:052 to
0:013 (Pendigits). This means that the improvement achiev-
able usingWAmay beminor even for ensembleswith a large
error range width.

Last, we will consider the correlation between classifier
outputs. In Section 2, we showed that, according to the
theoretical model, the lower the correlation is, the better the
performance of the SA rule. The results of Tables 2, 3, and 4
agree with this prediction. Table 3 shows that very low
correlation values were found for the Letter data set, ranging
from 0:01 to 0:15. For this data set, the SAruleoutperforms the
best individual classifier (i.e., Esa < E1) on 14 out of
16 ensembles, even for ensembles with a large error range
width. Slightly higher correlation values (up to 0:31) were
observed for Pendigits. In this case, Esa < E1 on six out of
16 ensembles. The largest correlation values were observed
for the Feltwell data set (up to 0:93), where it can be seen that
Esa < E1 only on five ensembles.Moreover, in Section 3.3, we

showed that, theoretically, the improvement achievable by
WAover SA increases for increasing values of the correlation
between estimation errors. This behavior also emerges from
the above results: The values of �E, across the 16 classifier
ensembles, do not exceed 0:015 for Letter, but attain 0:031 for
Pendigits and 0:069 for Feltwell.

Summing up, the qualitative behavior of the two combin-
ing rules versus the performance of individual classifiers and
the correlationbetween their outputswas found to agreewith
the predictions of the theoretical model for the real data sets
tested, in spite of the fact that the model is based on strict
assumptions. Moreover, the ideal improvement achievable
by WA over SA was often found to be quite small.

5 CONTRIBUTION TO THE STATE-OF-THE-ART

In this section, we discuss the contribution to the state-of-
the-art of our theoretical and experimental analysis of linear
combiners. We review the contribution provided by our
analysis of SA and WA (Sections 5.1 and 5.2), and by the
analytical and numerical comparison of these two combi-
ners (Section 5.3). In particular, we discuss how the results
presented in the previous sections improve our under-
standing of the operation of linear combiners and their
practical relevance in the design of linearly combined
multiple classifiers.

5.1 Simple Averaging

As pointed out in Section 2, the seminal work by Tumer and
Ghosh analyzed the expected added error of simple
averaging assuming estimation errors with identical var-
iances [30], [31]. This implies that their results do not provide
information on the expected added error of SA for classifiers
with different variances, that is, classifiers which perform
differently onunseen test data. In Section 2.2,we showed that
the results obtained by Tumer and Ghosh also hold for the
more general case of estimation errors with nonidentical
variances.The contribution to the state-of-the-art of this result
emergesquite clearly.Aspointedout in Section 2.1, SAallows
us to handle the bias-variance trade-off by designing
classifiers with estimation errors having low bias and low
correlations as the variance can be reduced by averaging
classifiers’ outputs. However, this kind of design often
produces classifiers with different variances. The result of

FUMERA AND ROLI: A THEORETICAL AND EXPERIMENTAL ANALYSIS OF LINEAR COMBINERS FOR MULTIPLE CLASSIFIER SYSTEMS 953

TABLE 4
Results for Pendigits Data Set

See the footnote of Table 2 for details.
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Section2.2guarantees that thevariance can still be reducedby
averaging classifiers’ outputs. In Section 2.2, we also showed
that the expected added error of the SA is never larger than
the maximum expected added error of individual classifiers.
The contribution to the state of the art and the practical
relevance of this result become apparent when one considers
that one of the main reasons for combining classifiers is to
avoid the “worst” case of the traditional evaluation and
selection approach to classifier design. In fact, selecting the
apparent best classifier from a given ensemble, on the basis of
validation data, involves the risk of obtaining the worst
classifier on unseen test data [6], [3]. Our result provides a
theoretical support to the experimental evidence that simple
averaging can guard the designer against this worst case as
the test set errorof SA is theoretically guaranteed tobe smaller
than that of theworst classifier in the ensemble. For the case of
unbiased and uncorrelated estimation errors, Tumer and
Ghosh quantified the error reduction achievable by SAunder
the assumption of classifiers with identical expected added
errors [30], [31]. As this assumption is likely to be violated in
real cases, in Section 3.2.1, we provided formulas for
quantifying the error reduction in the general case of
classifiers with different errors. In particular, we found the
conditions on the error rates of the individual classifiers
which determine the maximum and the minimum error
reduction. Finally, so far, SA has been believed to work well
for classifiers with similar error rates in spite of correlations
among the classifiers. No previous work has analyzed the
effect of different classifiers’ correlations on the performance
of SA, though, in real cases, classifiers often exhibit different
pair-wise correlations. As an example, in multisensor
applications, classifiers using data from different sensors
are usually uncorrelated to a far greater degree than
classifiers which use data from the same sensor. Moreover,
it should be noted that experimental results reported in
previous works have demonstrated that SA may perform
differently for ensembles containing classifiers with similar
error rates but different pair-wise correlations [24], [25]. In
Section 3.3, we analyzed the effect of classifiers’ correlations
on the performance of SA. In particular,we showed that SA is
the optimal combiner only if the individual classifiers exhibit
both identical error rates and identical correlations between
the estimation errors. Therefore, the design of classifiers to be
combined by SA should also take into account the differences
among the pair-wise correlations exhibited by classifiers and,
not simply, as believed until now, the differences in error
rates. It is easy to see the relevance that this result could have
for popular methods, such as Bagging which use the SA
combiner [5]. For example, the result of Section 3.3 suggests
that classifiers generated by Bagging should exhibit similar
error rates and similar correlations between the estimation
errors, in order to guarantee good performance of this
ensemble learning method. Moreover, this result could also
be exploited to stop the generation of new classifiers by
Bagging, when classifiers with different error rates and
correlations are being produced or, after their creation, to
select the classifierswith themost similar error rates andpair-
wise correlations.

5.2 Weighted Averaging

As pointed out in Section 1, previous works have only
addressed the SA rule and, to date, no theoretical analysis of
theWArule has been performed, the sole exception being [1],
where the authors extended some results of [31] to the
WA rule, limited to the simplest case of unbiased, uncorre-
lated and identically distributed estimation errors. In

Sections 3.1 and 3.2, we derived the general expression of
the expected added error of WA and then, for the case of
unbiasedanduncorrelatederrors,weanalyticallydetermined
the optimal weights, which were found to be inversely
proportional to the added errors of the individual classifiers.
It should be noted that this result suggests a simple method,
albeit obtained under very strict assumptions, for computing
the optimalweights. In Section 3.2.1, we found the conditions
on theerror ratesof the individual classifierswhichdetermine
the maximum and minimum error reduction achievable by
WA. Moreover, we showed that, when a new classifier is
added to a given ensemble, the theoretical performance of the
WA rule is always enhanced, whatever the expected added
error of the newclassifier. The latter result has clear relevance
for the design of multiple classifier systems.

5.3 Simple versus Weighted Averaging

As discussed in Section 1, because of the lack of guidelines
with clear theoretical foundations, the choice between the use
of SA and WA is currently based on experimentally derived
heuristic rules. Simple averaging is commonly believed to
work well for classifiers with similar error rates, while
weighted averaging is claimed to outperform simple aver-
aging when classifiers exhibit different error rates. However,
experimental results do not completely support these rules of
thumb [24], [25] and the conditions under which WA can
significantlyoutperformSAarenot clear. InSections3.2.2 and
3.3, our analytical and numerical comparison of the SA and
WAhas improved the understanding of these two combiners
andprovidednewguidelines for thepractical choice between
SA and WA. First, we showed that SA is the optimal linear
combining rule only if the individual classifiers exhibit
identical error rates and identical correlations between
estimation errors. Second, we showed that, when the optimal
weights are used, the improvement achievable by the WA
over the SA increases, all other factors being equal, as any of
the following conditions hold: The size of the classifier
ensemble decreases, the width of the error range increases,
the correlation between estimation errors increase, and the
performance of individual classifiers, or the correlations
between the estimation errors, approach the condition of
maximum “imbalance” defined in Sections 3.2.2 and 3.3. All
the above guidelines are supported by the experimental
evidence reported in Section 4 for real data sets. Before
discussing the practical relevance of our guidelines to the
design of multiple classifier systems, we recall that previous
works on linear combiners for classifier fusion and for
regression have focused on weight estimation methods.
Instead, the theoretical analysis presented in this paper
addresses a different issue, namely, what ideal improvement
(i.e., when the optimal weights are used) can be achieved
whenWA is used in the place of SA in classification problems
and how such improvement depends on the performance of
individual classifiers and on the correlation between their
outputs. Obviously, in the ideal case, the performance ofWA
canneverbeworse thanSA,but, in real cases, it can,becauseof
the fact that theweights are estimated fromvalidation data. It
is therefore interesting to evaluate what improvement can
ideally be achieved using WA, as SA is to be preferred when
only a minor improvement can be achieved. In fact, small
improvements canbe negatedby theweight estimation issue,
in which case, WAmay performworse than SA.

Besides providing a better understanding of these two
combining rules, the theoretical and experimental results
described in Sections 3 and 4 also suggest some practical
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guidelineswhichwill assist thedesigner in choosing between
the two. In the following, we sum up the results pertinent to
this specific aim. First,we found that, for classifiers exhibiting
similar performances, the ideal improvement in misclassifi-
cation probability achievable using WA over SA is fairly
small. In our experiments, it was always below 0:01. The
improvement increases as the difference between the
performance of individual classifiers (i.e., the width of the
error range) increases. However, for identical width of error
range, the experiments showed that the improvement
depends strongly on how the error rates of individual
classifiers are distributedwithin the error range (i.e., onwhat
we called the conditionofperformance imbalance):We found
that the ideal improvement could be small even when the
widthof the error range is as large as 0:10.Moreover, it should
be noted that the condition of maximum performance
imbalance is known only for ensembles of three classifiers,
as explained in Section 3.2.2. Thismeans that, even if the error
rates of individual classifiers can be reliably estimated, it is
not possible to know whether they are close to the condition
corresponding to the maximum ideal improvement achiev-
able by the WA, for the given error range, unless only three
classifiers are combined. The theoretical results also showed
that, all other factors being equal, the ideal improvement
decreases as the size of the classifier ensemble increases
(although no tests have been conductedwithmore than three
classifiers, because of the computational complexity involved
in the exhaustive search for the optimal weights). Finally, we
found that, while the performance of linear combiners
improves as the correlation between classifier outputs
decreases, at the same time, the improvement achievable by
WA decreases.

Bearing in mind that weight estimation can worsen the
performance of WA with respect to the ideal case, our
results suggest that, when WA is implemented by assigning
one positive weight to each classifier, its use is recommend-
able only in particular cases. In particular, WA can be
expected to perform significantly better than SA (provided
that suitable validation data are available for weight
estimation) only for small classifier ensembles, if the
individual classifiers exhibit a range of error rates with
nonnegligible width (say, at least 0:05) and if the outputs of
the individual classifiers are highly correlated. Otherwise,
the SA combining rule seems to be a valid alternative from
the viewpoint of both computational complexity since no
training data are required, and of the achievable perfor-
mance. Concerning this point, it is worth recalling that, as
pointed out in Section 4, in our experiments, SA always
outperformed the worst classifier of the ensemble.

The above results appear to confirm that the implemen-
tation of WA considered in this work (one positive weight
for each classifier) is not sufficiently more flexible than SA,
as argued in [31]. In principle, performance can be
enhanced using weights which are unrestricted in sign
(for instance, using a neural network as a trained combiner),
or using more flexible implementations, like those proposed
in [2], [32], where different weights are assigned to each
classifier and to each class. However, it should be taken into
account that a greater quantity of validation data is required
for a reliable estimate of a larger number of weights.

5.4 Directions for Future Work

As pointed out in Section 4, reported results agree with the
main qualitative predictions of the theoretical model, even
if some of our assumptions, such as the unbiasedness of

estimation errors, are likely to be violated in real cases. We
believe that the observed agreement between experimental
results and the theoretical predictions is due to the fact that
the extent to which our assumptions are violated in the
considered real data sets does not affect the predictive
capability of the model up to invalidate it. In addition, one
should note that our predictions are only qualitative, which
make them more robust to violations of model assumptions.
A possible way to verify whether this explanation is correct
would be to extend the analysis of our model by relaxing
some of the assumptions (for instance, considering biased
estimation errors or the different sources of added error
described in [21]). This could allow us to see how the
theoretical predictions change and investigate some of the
conditions which invalidate our predictions. However, as
explained in Section 3.3, this step is quite difficult since it
requires us to resort to a complex numerical analysis.
Another way to further assess the predictive capability of
our theoretical model is obviously to extend the experi-
ments to a larger number of data sets and then to carefully
analyze the characteristics of the data sets for which the
qualitative predictions of our model strongly fail. Both these
tasks should be considered as a natural and necessary
follow up of this work, which obviously is not intended to
have the last word on the analysis of linear combiners.

6 CONCLUSIONS

In this paper, we have presented a theoretical and experi-
mental analysis of linear combiners for classifier fusion. To
this end, we extended the scope of the analytical framework
developedbyTumerandGhosh [30], [31] inorder to treatWA
and draw comparisons with SA. In our analysis, we
considered the simplest and most widely used implementa-
tionofWA,where onenonnegativeweight is assigned to each
individualclassifier.Analytical resultshavebeenobtainedfor
unbiased and uncorrelated, but not identically distributed,
estimationerrors. Someresultshavebeenextended to thecase
of correlated errors through a numerical analysis. These
results showhow the expected added error, over Bayes error,
of the SA combining rule and that which can be achieved
adopting the WA combining rule when optimal weights are
used depends on the expected added errors of individual
classifiers and on the correlation between their estimation
errors. Inparticular,weshowedthat SAis theoptimal linearly
combining rule only if the individual classifiers exhibit both
identical performances and identical correlations between
estimation errors. Otherwise, WA can provide better results.
However,our theoreticalandexperimentalanalysis indicated
that theimprovementwhichcanbeachievedbyWAoverSAis
smaller than onewould expect. The improvementwas found
to increasewith increasingwidth of the error range exhibited
by theclassifier ensembleandalso todependonthemanner in
which their misclassification probabilities are distributed
within the error range, but, in our experiments, the improve-
mentwas always lower than 0:01.Moreover,we showed that,
while a lowcorrelationbetweenestimationerrors isbeneficial
for a linear combiner, the improvement achievable by WA
overSA, for individual classifierswith identical performance,
actually diminishes. Therefore, our theoretical and experi-
mental results suggest that the practical use of WA (im-
plementedwithonepositiveweight for each classifier) is tobe
recommended only in the special cases discussed in
Section 5.3. Finally, it should be noted that, although our
theoretical results are based on strict assumptions, they are
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confirmed by the experiments carried out on three real data

sets where such assumptions are likely to be violated. These

results suggest some interestingdirections for futurework on

this subject, as explained in Sections 5.1 and 5.4. As discussed

in Section 5, we believe that this theoretical and experimental

analysis of linear combiners provides an important contribu-

tion to the state of the art of multiple classifier systems as it

provides adeeper insight into these classifier fusion rules and

some well-grounded guidelines for their practical use.
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