
Short Papers___________________________________________________________________________________________________

Sum versus Vote Fusion in
Multiple Classifier Systems

J. Kittler and F.M. Alkoot

Abstract—Amidst the conflicting experimental evidence of superiority of one over

the other, we investigate the Sum and majority Vote combining rules in a two class

case, under the assumption of experts being of equal strength and estimation

errors conditionally independent and identically distributed. We show, analytically,

that, for Gaussian estimation error distributions, Sum always outperforms Vote.

For heavy tail distributions, we demonstrate by simulation that Vote may

outperform Sum. Results on synthetic data confirm the theoretical predictions.

Experiments on real data support the general findings, but also show the effect of

the usual assumptions of conditional independence, identical error distributions,

and common target outputs of the experts not being fully satisfied.

Index Terms—Multiple classifiers, fusion rules, estimation error.
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1 INTRODUCTION

AMONG the many multiple classifier combination rules suggested in
the literature [2], [4], [5], [6], [7], [8], [9], [11], [12], [15], Sum and Vote
are used the most frequently. The Sum rule operates directly on the
soft outputs of individual experts for each class hypothesis, normally
delivered in terms of a posteriori class probabilities. The fused
decision is obtained by applying the maximum value selector to the
class dependent averages of these outputs. Vote, on the other hand,
operates on class labels assigned to each pattern by the respective
experts. The labels are obtained by hardening the soft decision
outputs using the maximum value selector. The Vote rule output is a
function of the votes received for each class from each single expert.

Classification systems implementing the Bayes decision rule
incur classification errors over and above the Bayes rate due to
errors in their estimates of the aposteriori class probabilities. The
larger the variance of the error distribution, the larger the additional
classification error. A multiple classifier system which deploys the
Sum rule reduces this variance and, as a result, diminishes the
additional classification error. The properties of the rule have been
widely investigated [6], [7], [8], [13], [14]. As for the majority vote
(Vote), Lam and Suen [9] give a comprehensive analysis of the rule
under the assumption of conditional independence of the experts.

From the extensive studies of Sum and Vote reported in the
literature, one would expect the former to outperform the latter
because of the use of soft expert outputs. However, Vote has the
important advantage that it can be applied directly even when
individual experts do not output a posteriori class probabilities.
Yet the experimental evidence in support of the relative perfor-
mance of the two rules is conflicting. For instance, in [1], [8], it was
found that Sum outperforms Vote, while, in [5], Vote performed
better than Sum. The aim of this paper is to investigate the
relationship between these two rules in more detail, under the
assumption of the experts being of equal strength and estimation
errors conditionally independent and identically distributed. As a

main contribution of this paper, we demonstrate that the relative
merits of Sum and Vote depend on the distribution of estimation
errors. We show, analytically, in Section 2, that, for normally
distributed estimation errors, Sum always outperforms Vote. But,
for heavy tail distributions, that is, for error distributions with a
significant probability mass in their tails, Vote may outperform
Sum. Typically, such distributions are produced by classifiers
based on Hidden Markov Models (HMM) [8]. We demonstrate this
by experiments on synthetic data in Section 3. Interestingly, for
heavy tail distributions, the superiority of Sum may be eroded for
any number of experts if the margin between the two a posteriori
class probabilities is small or for a small number of cooperating
experts, even when the margin is large. In the latter case, once the
number of experts exceeds a certain threshold, Sum tends to be
superior to Vote. Experiments on real data presented in Section 4,
which involve an HMM expert, support the general findings, but
also show the effect of the assumptions of conditional indepen-
dence, identical error distributions, and common target outputs of
the experts not being fully satisfied.

The results presented in this paper, first of all, contribute to the
understanding of these two fusion rules. Their practical relevance
is particularly important when one or more experts fused is known
to exhibit heavy tail estimation errors as this knowledge may favor
the choice of Vote over the Sum rule.

2 THEORETICAL ANALYSIS

Consider a two class pattern recognition problem. Let us assume

that we have N classifiers, each representing a given pattern by an

identical measurement vector x. Now, according to the Bayesian

decision theory, a pattern x should be assigned to class !j for

which the a posteriori probability P ð!jjxÞ is maximum. In practice,

the jth expert will provide only an estimate Pjð!ijxÞ of the true a

posteriori class probability P ð!ijxÞ. The idea of classifier combina-

tion is to obtain a better estimate of the a posteriori class

probabilities by combining all of the individual expert estimates

and, thus, reducing the classification error. A typical estimator is

the averaging estimator _PP ð!ijxÞ ¼ 1
N

PN
j¼1 Pjð!ijxÞ, where _PP ð!ijxÞ

is the combined estimate based on N observations.
Let us denote the error on the jth estimate of the ith class

aposteriori probability at point x as ejð!ijxÞ and let the probability
distribution of the errors be pij½ejð!ijxÞ�. Then, the probability
distribution of the unscaled error eiðxÞ ¼

PN
j¼1 ejð!ijxÞ on the

combined estimate will be given by the convolution of the
component error densities, i.e.,

pðeiðxÞÞ ¼
Z 1
ÿ1

. . .

Z 1
ÿ1

pi1ð�1Þpi2ð�2 ÿ �1Þ . . . piN ðeiðxÞ

ÿ �Nÿ1Þd�1d�2 . . . d�Nÿ1;

ð1Þ

where �i are dummy variables. The distribution of the scaled error
�iðxÞ ¼ 1

N eiðxÞ is then given by pð�iðxÞÞ ¼ pð 1
N eiðxÞÞ.

In order to investigate the effect of classifier combination,
suppose the a posteriori probability of class !s is maximum, giving
the local Bayes error eBðxÞ ¼ 1ÿmax2

i¼1 P ð!ijxÞ. However, our
classifiers only estimate these a posteriori class probabilities and
the associated estimation errors may result in suboptimal decisions
and, consequently, in an additional classification error. In order to
quantify this additional error, we have to establish what the
probability is for the recognition system to make a suboptimal
decision. This situation will occur when the a posteriori class
probability estimates for the other class become maximum. Let us
derive the probability of the event occurring for a single expert j
for class !i; i 6¼ s, i.e., when Pjð!ijxÞ ÿ Pjð!sjxÞ > 0. Note that the
left hand side of of the inequality can be expressed as
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P ð!ijxÞ ÿ P ð!sjxÞ þ ejð!ijxÞ ÿ ejð!sjxÞ > 0: ð2Þ

Equation (2) defines a constraint for the two estimation errors

ejð!kjxÞ; k ¼ 1; 2 as

ejð!ijxÞ ÿ ejð!sjxÞ > P ð!sjxÞ ÿ P ð!ijxÞ; ð3Þ

which, in a two class case, will be satisfied if

2ejð!ijxÞ > P ð!sjxÞ ÿ P ð!ijxÞ:

The probability eAðxÞ of this event occurring will be given by the

integral of the error distribution under the tail defined by the

margin �PsiðxÞ ¼ P ð!sjxÞ ÿ P ð!ijxÞ, i.e.,

eAðxÞ ¼
Z 1

�PsiðxÞ
pij½2ejð!ijxÞ�dejð!ijxÞ: ð4Þ

In contrast, after fusion, the probability of the additional error is

given by

eSðxÞ ¼
Z 1

�PsiðxÞ
p½2�iðxÞ�d�iðxÞ: ð5Þ

Now, how do these labeling errors translate to classification

error probabilities? We know that, for the Bayes minimum error

decision rule, the error probability at point x will be eBðxÞ. If

our pseudo-Bayesian decision rule, i.e., the rule that assigns

patterns according to the maximum estimated a posteriori class

probability, deviates from the Bayesian rule with probability

eAðxÞ, the local error of the decision rule will be given by

�ðxÞ ¼ eBðxÞ½1ÿ eAðxÞ� þ eAðxÞ½1ÿ eBðxÞ�, which simplifies to

�ðxÞ ¼ eBðxÞ þ eAðxÞ½1ÿ 2eBðxÞ� ¼ eBðxÞ þ eAðxÞj�PsiðxÞj ð6Þ

as ½ð1ÿ eBðxÞÞ ÿ eBðxÞ� is the absolute value of the margin between

the two a posteriori class probabilities. For the multiple classifier

system which averages the expert outputs, the classification error

probability is

�ðxÞ ¼ eBðxÞ þ eSðxÞj�PsiðxÞj: ð7Þ

Thus, for a multiple classifier system to achieve a better

performance, the labeling error after fusion, eSðxÞ, should be

smaller than the labeling error, eAðxÞ, of a single expert.

Let us now consider fusion by voting. In this strategy, all

single expert decisions are hardened and, therefore, each expert

will make suboptimal decisions with probability eAðxÞ. When

combined by voting for the most representative class, the

probability distribution of k decisions, among a pool of N ,

being suboptimal is given by the binomial distribution. A

switch of labels will occur whenever the majority of individual

expert decisions is suboptimal. Assuming the error distributions

are identical, this will happen with probability

eV ðxÞ ¼
XN

k¼bN2þ1c

N

k

� �
ekAðxÞ½1ÿ eAðxÞ�

Nÿk: ð8Þ

Provided eAðxÞ < 0:5, this probability will decrease with increasing

N . After fusion by Vote, the error probability of the multiple

classifier will then be


ðxÞ ¼ eBðxÞ þ eV ðxÞj�PsiðxÞj: ð9Þ

The relationship between the label switching errors�ðxÞ and 
ðxÞ
is illustrated in Fig. 1 for Sum and Vote combination strategies for

normally distributed estimation errors with different values of �ðxÞ
and N ¼ 3.

3 Relationship of Sum and Vote

Under the assumption of estimation errors being independent with
equal variance �2ðxÞ, the variance of the error distribution for the
combined estimate will be _��2ðxÞ ¼ �2ðxÞ

N . Let us assume that the error
distributions pij½ejð!ijxÞ� are Gaussian. Then, the distribution of the
difference of the two errors with equal magnitude but opposite sign
will also be Gaussian with four times as large variance. The
probability of constraint (3) being satisfied is given by the area under
the Gaussian tail with a cut off point at P ð!sjxÞ ÿ P ð!ijxÞ. More
specifically, this probability, eAðxÞ, is given by

eAðxÞ ¼ 1ÿ 1

2
ffiffiffiffiffiffi
2�
p

_��

Z �PsiðxÞ

0

expÿ
1
2


2

4 _��2 d
: ð10Þ

In order to compare the performance gains of the Sum and Vote
fusion under the Gaussian assumption, we have designed a
simulation experiment involving N experts, each estimating the
same a posteriori probability P ð!ijxÞ i ¼ 1; 2. Estimation errors
are simulated by perturbing the target probability P ð!ijxÞ with
statistically independent errors drawn from a Gaussian distribu-
tion with a zero mean and standard deviation �ðxÞ. We have
chosen the a posteriori probability of class !1 to always be greater
than 0:5. The decision margin �P12ðxÞ is given by 2P ð!1jxÞ ÿ 1.
The Bayesian decision rule assigns all the test patterns to class !1.
For each test sample, the expert outputs are combined using the
Sum rule and the resulting value compared against the decision
threshold of 0:5.

Similarly, the decision errors of the majority vote are estimated
by converting the expert outputs into class labels using the pseudo
Bayesian decision rule and then counting the support for each class
among the N labels. The label of the winning class is then checked
against the identity of the test pattern and any errors recorded. The
results are averaged over 500 experiments for each combination of
P ð!1jxÞ and �ðxÞ, the parameters of the simulation experiment.

Typical results showing the additional error incurred are
plotted as a function of the number of experts N in Fig. 2. The
theoretical values predicted by (5) and (8) are also plotted for
comparison. The experimental results mirror closely the theoreti-
cally predicted behavior, i.e., Sum being superior to Vote.

While, under the Gaussian assumption, the Sum rule always
outperforms Vote, it is pertinent to ask whether this relationship
holds for other distributions. Intuitively, if the error distribution
has heavy tails, it is easy to see that fusion by Sum will not result in
improvement until the probability mass in the tail of pij½ejð!ijxÞ�
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Fig. 1. Sum and Vote switching error for normally distributed estimation errors with
different values of �ðxÞ using three experts.

Authorized licensed use limited to: CUNY- Graduate Center. Downloaded on November 05,2020 at 17:33:32 UTC from IEEE Xplore.  Restrictions apply. 



moves within the margin �P12ðxÞ. In order to gain better

understanding of the situation, let us consider a specific example

with the error distribution pij½ejð!ijxÞ� being defined as a mixture

of three Dirac delta functions with the weights and positions

shown in Fig. 3. Using the convolution integral in (1) and

substituting into (5), we can derive the probability, eSðxÞ of the

decision rule being suboptimal for a given margin �P12ðxÞ. Fig. 4

shows this probability as a function of the number of expert

outputs fused. The function has been computed for a range of

margins from �P12ðxÞ ¼ 0:04 to �P12ðxÞ ¼ 0:2. The figure shows

clearly an oscillating behavior of eSðxÞ. It is interesting to note that,

for small margins, initially (i.e., for a small number of experts), the

error probability of the sum combiner has a tendency to grow

above the probability of the decision rule being suboptimal for a

single expert. First, the performance improves when N ¼ 2, but as

further experts are added, the error builds up as the probability

mass shifts from the origin to the periphery by the process of

convolution. It is also interesting to note that, for N ¼ 2, Vote

degrades in performance. However, this is only an artifact of a vote

tie not being randomized in the theoretical formula. Once the first

line of the probability distribution of the sum of estimation errors

falls below the threshold defined by the margin between the two

class a posteriori probabilities, the performance dramatically

improves. However, by adding further experts, the error build
up will start all over again, though it will culminate at a lower
value than at the previous peak. We can see that, for instance, for
�P12ðxÞ ¼ 0:04, the benefits from fusion by the sum rule will be
very poor and there may be a wide range of N for which fusion
would result in performance deterioration.

Once the margin reaches 0:16, Sum will generally outperform
Vote, but there may be specific numbers of experts for which Vote
is better than Sum. The same kind of behavior is demonstrated in
Fig. 5, where the position of the Dirac delta components of the
error distribution offset from the origin is at �½1ÿ P ð!1jxÞ�, which
shows the additional effect of sampling the a posteriori class
probability distribution inherent in the simulation approach.

In contrast, the corresponding probability eV ðxÞ, given for the
majority vote by (8), diminishes monotonically (also in an
oscillating fashion) with the increasing number of experts. Thus,
there are situations where Vote outperforms Sum. Most impor-
tantly, this is likely to happen close to the decision boundary where
the margins are small.

4 REAL DATA EXPERIMENTS

In this section, we shall compare Sum and Vote on real data. Real
pattern classification problems differ from idealized situations in
many different ways. First of all, the point-wise analysis performed
in Sections 2 and 3 is impossible as we do not have enough data at
each and every single point of the expert output space. Second, in
realistic scenarios, the ground truth, at best, is known only
coarsely, in terms of class labels rather than true a posteriori
probabilities. Third, expert outputs are likely to be correlated.
Moreover, it is unlikely that each expert would be estimating the
same aposteriori probability functions. Nevertheless, Sum and
Vote are useful practical fusion rules and it is interesting to know
how they compare when we depart significantly from the
underlying assumptions.

As a vehicle for our experimental study, we consider the problem

of personal identity verification using face and voice biometrics

extracted from the multimedia data in the XM2VTS database [3]. The

XM2VTS database is a multimodal database consisting of face

images, video sequences, and speech recordings taken of 295 subjects

at one month intervals. The database contains four sessions. The

Lausanne protocol splits randomly all 295 subjects into 200 clients, 25

evaluation impostors, and 70 test impostors. Our experiments are
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Fig. 2. Comparison of experimental Sum and Vote switching errors with theoretical predictions, for �ðxÞ ¼ 0:15.

Fig. 3. Dirac delta error distribution.
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based on evaluation protocol in configuration I for which the

evaluation set contains 600 client shots (200 clients� three shots) and

40,000 imposter cases (25 impostors� 8 shots� 200 clients). The test

set contains 400 client shots (200 clients � two shots) and 112,000

imposter cases (70 impostors � eight shots � 200 clients).
Scores from eight different experts are used as our single expert

outputs that we need to combine. FACE2 and FACE4 are two of

the experts designed at the University of Surrey which confirm or

reject the claimed identity using face biometrics. SPEECH2 and

SPEECH3 experts designed at IDIAP, Switzerland, base the

identity on the speaker’s voice characteristics. Experts numbered
five to seven are from the Aristotle University of Thessaloniki and
are based on elastic graph matching. The methods differ in the
internal threshold settings which, respectively, favor low rejection
rates, low false acceptance rates, and equal error rates. SydneyCI is
the eighth expert, from the University of Sydney, based on fractal
image coding. The expert scores on the XM2VTS database are
available from [3]. The database and the eight experts used in our
experiments are described in [10].

Using the combiner performance on the evaluation set, we
select three different threshold values:
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Fig. 4. Theoretical switching error of Sum and Vote in the presence of delta noise at 0.2.

Fig. 5. Sum and Vote switching error: a comparison of single class experimental results and theoretical predictions for delta noise located at (1-p) for up to 20 experts.
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TFAE¼0 ¼ arg min
T
ðFREjFAE ¼ 0Þ

TERR ¼ TFAE¼FRE ¼ ðT jFAE ¼ FREÞ
TFRE¼0 ¼ arg min

T
ðFAEjFRE ¼ 0Þ;

where FAE and FRE are the false acceptance and false rejection
error rates using the evaluation set. Using each of these threshold
values, we measure the average correct verification rate. All of the
rates are measured on both the evaluation set and the test set.

The strength of the individual experts can be gleaned from the
single expert results in Table 1. We note that the SPEECH3 expert
is the best expert for TEER and TFRE¼0, while FACE4 is the best for
TFAE¼0. The test set results confirm the performance on the
evaluation set. It is also interesting to note that the performance of
the individually best expert can be as much as an order of
magnitude better than that of the second best.

When fusing the available experts, we have the choice of
combining any subset of them. The number of experts combined,
N, could range from two up to eight experts. For each value of N
and each threshold type, we find the set of experts that performs
best on the evaluation set. We notice that, although FACE2 has a
lower performance than FACE4, it is preferred by both combiners,
Sum and Vote. It is consistently selected along with the two speech
experts. Actually, Sum selected FACE2 and SPEECH4 for TFRE¼0

and TEER for all values of N. This leads us to conclude that we
should not be looking for the best single expert to combine, but the
most complementary ones.

The fusion results obtained with the best combinations of experts
for the Sum and Vote are shown in Table 3. Overall, we can see that,
as predicted theoretically, initially, for a small number of experts
(N ¼ 2), Sum is the best. As the number of experts increases, Vote is
better than Sum, but, forN > 5, Sum outperforms Vote. However, in
contrast to the results of the simulation experiments, in this
parameter range, we fail to observe a monotonic improvement of
both fusion strategies. This is due to the fact that our experts have
unequal strengths and, therefore, one of the assumptions made is
not satisfied. Although we reduce the variance of the probability
distribution of the fused decision being suboptimal by including
more experts, the Bayes error rate decreases and so does the overall
performance of the multiple classifier system.

Not surprisingly, the SPEECH3 expert, the best single expert, is
always selected as one of the experts to be fused. For the Sum rule,
the performance on the evaluation set indicates that the combina-
tion of 2ÿ 4 experts for TFRE¼0 and TEER yield the results which
are flat as indicated in Table 2. For TFAE¼0, the best results with
Sum in this range of N slightly oscillate. Thus, the Sum rule
appears to exhibit the same oscillatory behavior that we noted in
the simulation experiment with a nonGaussian probability dis-
tribution pij½ejð!ijxÞ�. This would suggest that error distribution
has relatively heavy tails, probably due to one of the speech
experts being based on HMM.

From the test set results shown in Table 3, we find that the best
performance for TFAE¼0 using Sum is delivered when N = 2, as was
suggested by the evaluation set. Similarly, for TFRE¼0 and TEER,
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TABLE 1
Average Correct Verification Rates of the Individual Experts

TABLE 2
The Classification Rates of the Best Mixtures of Experts Obtained on the Evaluation Set

The expert identity in each mixture is indicated by their ID number below each rate. The best number of experts for each threshhold type and combiner is indicated in
bold. To obtain expert names from their ID, refer to Table 1.
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the best performance is when N = 4, which is in agreement with
the best performance on the evaluation set.

For the vote rule, the evaluation set yields the highest
performance rate when N = 2 or N = 3. Recall from the synthetic
data experiments that we should normally avoid using an even
number of experts for the vote. Thus, we should select as the best
combination experts, FACE2, SPEECH2, and SPEECH3, indicated
in bold in Table 2. Based on the test set, we find that Vote fails to
yield the best performance at N = 2 or 3. Its performance peaks
when N = 4 and 5, which would not be considered, given the
information provided by the evaluation set.

Note, in Table 2, that the performance of the sum rule does not
improve as the number of experts increases. This would suggest
that Vote might be preferable to Sum. However, as Vote also fails
to improve as the number of experts increases, we know from the
theoretical expectations that we are most likely combining experts
of unequal strength. In these circumstances, a more conservative
option is to adopt the Sum rule, as the relationship of its results on
the evaluation and test sets appears to be less volatile. This
strategy, based on the results of this paper, gives quite good
performance on the test set, almost matching the absolute best
performance achievable a posteriori.

5 DISCUSSION AND CONCLUSION

We studied the relationship of the Sum and Vote fusion strategies
and showed, analytically, that, for Gaussian distributions of
estimation errors, the Sum fusion strategy will always outperform
the majority vote. However, for heavy tail distributions, the
majority vote may give better results than Sum. This may happen
when the margin between the two a posteriori class probabilities is
small. However, even if the margin is reasonable, Vote may be
superior to Sum when the number of experts is small. This
behavior may explain the conflicting observations made by a
number of researchers about the two rules.

The above ideal behavior of the two rules applies only under
the assumption that the expert errors are independent and
identically distributed. Moreover, the target a posteriori class
probability estimated by each expert must be the same. In practice,
none of the assumptions are likely to hold exactly. The effect of the
first two not being satisfied is likely to be reflected in slower rates
of performance improvement than those predicted by the theory as
the number of experts increases.

The implications of the third assumption being invalid are
much more serious. Here, as we are adding more experts to reduce
variance, we may be including experts which inject additional
uncertainty in the input of the multiple classifier system. Thus, any
gains in reduced variance will have to be weighed against potential
losses due to increased uncertainty. This raises a serious
methodological question of how to decide when the fusion of
more experts starts being counterproductive, which is currently
being investigated.

We then confirmed our theoretical predictions by experiments
on synthetic data. Experiments on real data supported the general

findings, but also showed the effect of the usual assumptions of
conditional independence, identical error distributions, and
common target outputs of the experts not being fully satisfied.
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