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Abstract-N-tuple features for optical character recognition have received only scattered attention since the 1960s. Our main 
purpose here is to show that advances in computer technology and computer science compel renewed interest. N-tuple features are 
useful for printed character classification because they indicate the presence or absence of a given rigid configuration of n black and 
white pixels in a pattern. Desirable n-tuples fit each pattern of a specified (positive) training set of characters in at least p different 
shift positions, and fail to fit each pattern of a specified (negative) training set by at least n - q pixels in each shift position. In this 
work we prove that the problem of finding a distinguishing n-tuple is NP-complete, by examining a natural subproblem with binary 
strings called the missing configuration problem. The NP-completeness result notwithstanding, distinguishing n-tuples are found 
automatically in a few seconds on contemporary workstations. We exhibit a practical search algorithm for generating, from a small 
training set, a collection of n-tuples with low class-conditional correlation and with specified design parameters n, p ,  and g. The 
generator, which is available on the Internet, is empirically shown to be effective through a comparison with a benchmark generator. 
We show experimentally that the design parameters provide a useful tradeoff between distinguishing power and generation time, 
and also between the conditional probabilities for the positive and negative classes. We explore the feature probabilities obtainable 
for various dichotomies, and show that the design parameters control the feature probabilities. 

Index Terms-Backtracking, character features, classification, decision trees, distinguishing string, missing configuration, n-tuples, 
OCR, simulated parallelism. 

1 INTRODUCTION 

We have an interest in decision-making circuits with the fol- 
lowing qualities: 1) measurable high reliability in decision 
making, 2) either a high or a low reliability input, and 3)  possi- 
bly low reliability components [Z]. 

ITH these words in 1959, Bledsoe and Browning in- 
troduced n-tuples ("decision-making circuits") for 

recognizing typewritten characters, hand-blocked print, 
and handwritten script. 

For our purposes, an n-tuple is simply a collection of n 
pixels with distinct locations. Fig. 1 shows a 7-tuple TI 
comprising four black pixels and three white pixels. The 
tuple "fits" the c exemplar and the e exemplar, and does not 
fit the n exemplar or the Y exemplar. That is, if we copy T, 
onto a transparency and superimpose the transparency 
onto the c, it is possible to shift the transparency so that 
each pixel of the 7-tuple is the same color as the corre- 
sponding pixel of the c. Here each character is considered to 
be embedded in a sea of white pixels, and the tuple is 
moved only by shifting, and not, for example, by rotating 
or reflecting. In this way, we find that TI fits the c and e, but 
does not fit the n or Y .  We say that the 7-tuple T, is designed 
for the ce - n~ dichotomy. 

In the early sixties, researchers at IBMs T.J. Watson Re- 
search Center conducted a massive series of experiments, 
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combining n-tuple features with various types of statistical 
classifiers for high-performance typewritten and hand- 
printed character recognition [l], [6], [7], [9]. Simple hard- 
ware can determine whether or not a given n-tuple fits a 
given character, so n-tuples were sometimes called decision- 
making circuits. N-tuples were mentioned only briefly in 
Levine's 1969 survey of feature extraction [8],  but Nadler 
praised them in his 1972 State of the Art in Optical Charac- 
ter Recognition [lo]. The sensitivity of n-tuples to sample 
size was investigated at the UK National Physical Laborato- 
ries [20], and Stentiford exploited n-tuple independence for 
reading printed postal addresses in 1985 [19]. Since then, 
the quest for magic universal features has meandered in 
other directions. Our main purpose here is to show that 
advances in computer science and computer technology 
compel serious reexamination of the applicability of n- 
tuples to OCR. 

In this reprise of an earlier strand of research, we present 
a generator that finds a collection of distinct n-tuples for 
any specified dichotomy of binary character patterns. The 
generator is intended for the automatic construction of 
OCR systems where little or no prior information is avail- 
able about the nature of the symbol shapes. We prove that 
the problem of finding a distinguishing tuple is NP- 
complete, by showing that a natural subproblem with bi- 
nary strings called the missing configuration problem is NP- 
complete. The NP-completeness of tuple generation sug- 
gests that in general, generating tuples may be difficult. 
Despite this, for practical problems the generator finds dis- 
tinguishing n-tuples in a few seconds on contemporary 
workstations. The quality of the generator is established by 
looking at absolute execution times, and by comparing the 
generator to a simple benchmark generator. We give a set 
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of design parameters that provide control of the class- 
conditional feature probabilities associated with a given 
dichotomy and n-tuple. We also present statistical evidence 
that for a given dichotomy, tuples can be generated that are 
not highly correlated and can therefore be used with simple 
classification methods. 

The n-tuple generators in this paper are part of a C lan- 
guage software library for generating n-tuples. This library 
is available on the Internet [16]. 

system can do better. 

lowing assumptions: 
Accordingly, throughout this paper we make the fol- 

only one font is to be recognized, 
only a small number of labeled samples are available, 
and 
the dichotomy is given. 

1.1 Classification Using N-Tuples .... ........ ...... ...... .. .. .. ... 
0.. ... 
0.. .... .. ....... .......... ......... ..... 

...... ....... ...... ....... ......... ........... .. 
.a -- ... 
0.0 ... . .. ....... .......... ........ 

.... ....... Regardless of the particular type of classifier used, the ..... ....................... .................. ...... .. 0.. 
0.. .. 0.. 0.. 0.. 

0.. 0.. 0.. 
0.. ... ...... ... 0.. 0.. ............ ................. 
............ rate is closely linked to the class-conditional feature vector ... .. probabilities [3] .  These probabilities are 

... ...... P(x  I C’) = P(x,, I C’) and P(x  1 C-) = P(x,, I 0. 
Here Y is the length of the feature vector x, and each ele- 

... 00. 0.. ......... ........ 

Fig. 1. A 7-tuple T, that fits the c and e and does not fit the n or r. 

Returning to Fig. 1, if the exemplars (the training sam- 
ples) are representative of other instances of c, e, n, and r, 
then we can expect the tuple T, to behave similarly on new 
exemplars (the test samples). We say that TI is designed to 
fit the positive class C’ of c and e, and to misfit the negative 
class C- of n and Y. Such a tuple is an elementary two- 
category classifier. Several tuples can be used in combina- 
tion to build multicategory classifiers, or to improve the 
accuracy of two-category classifiers. Minimum-distance, 
weighted linear network, quadratic, nearest neighbors, and 
decision tree classifiers have all been used successfully in 
conjunction with n-tuples. 

A tuple is associated with the presence or absence of a 
specific configuration of black and white pixels in a given 
pattern. At one extreme, a 2-tuple detects a pair of pixels of 
given color and relative displacement. At the other extreme, a 
tuple with as many elements as the entire pattern array con- 
stitutes a matched filter (or mask, or template) for a specific 
binary pattern. For OCR, tuples are sought that match most 
instances of several designated alphanumeric pattern classes, 
and do not match most instances of other designated classes. 

Given a set of character classes, it is easier to find n-tuple 
features for some dichotomies than for others. For instance, 
the ceo-mm dichotomy is easier than the rnc-eom dichotomy. 
The formulation of suitable dichotomies, which is a difficult 
problem in itself, is addressed in [21]. 

We are interested in n-tuples because they are uniquely 
suited for the automated design of single-font OCR systems 
when only a small number of labeled samples are available. 
Limited sample availability is characteristic of in-the-field 
adaptation. We consider field adaptation desirable, even to 
only a single document. For a given document, an adaptive 
system using features that discriminate between the classes 
of the document’s actual typeface can perform at least as 
well as a static multifont system. Possibly, the adaptive 

ment x, is an indicator random variable that is true iff fea- 
ture i is present in the character under consideration. If x, is 
true we can write the logical statement x, = true, or simply 
x,; if x, is false we write q. In our case, i identifies a tuple 
we are interested in, and x, indicates whether the tuple fits 
the character under consideration. 

For accurate classification, we want to maximize the 
marginal probabilities P(x,  1 C’), and minimize the marginal 
probabilities P(x,  1 C-). That is, we would like 

P(x, 1 C’) = 1 and P(x, I C-) = 0, for all x,. 
For accurate classification and ease of classifier design, we 
want the individual features x, to be class-conditionally 
independent; we would like the following to hold for all 
feature vectors x: 

(1) P ( x  1 C’) = P(x,  1 C’)P(x, 1 C‘) ... P(x, I C‘), and 

Given a small training sample of representative patterns, 
we wish to generate tuples that have the above properties. 
Our scheme is based on the following propositions. 
P1 Small values of n are most desirable for generating tu- 

ples that resist variations in positive test patterns. 
P2 Large values of n are most desirable for generating tu- 

ples that resist variations in negative test patterns. 
P3 The probability of a generated tuple fitting a positive 

test pattern increases with p, if we generate tuples that fit 
each positive training exemplar in p or more shift posi- 
tions. 

P4 The probability of a generated tuple fitting a negative 
test pattern decreases as q decreases, if we generate tu- 
ples that agree with each negative training exemplar at q 
or fewer pixels in each shift position. 

P5 Tuples with appropriate values of (n, p, 4 )  can be found 
without using excessive computing resources. 

The validity of these propositions is demonstrated in sub- 
sequent sections. 

The first two propositions imply a trade-off between the 
two conditional probabilities that depends on n. Our ex- 
periments support earlier findings [61 that n = 7 * 2 is usu- 
ally acceptable. In view of the third and fourth propositions, 
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.... .... .... .... ................................ ........................ ........................ . . . . . . . . . . . . . . . .  for a specified value of n, for each q we select the largest p for 

reliability towards either the positive or negabve class. For .................... :::;-. ..::* ::::.e ..::a 

values appropriate for the dichotomy's class probabilities. 

1.2 Outline ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ........................ .................................... ..... ..... ..... ..... 
which tuples can be found. Different ( p ,  q)  combinations bias 

each dichotomy, we can generate tuples according to (n, p, 9) 
.............. 
.... .... .... .................. ........................ ......... .!$ ::. .:; . . . . . .  ... ... ... ... ... ... ... ... ... .................. ..................... .............................. ........................... ..... ..... .am.. 

An outline of the remainder of the paper is as follows. In 
Section 2, we discuss the p and q parameters and the order 
that these parameters impose on the set of all tuples. Sec- 
tion 3 shows that the tuple generation problem is NP- ........................... ...... ...... ...... ...... 
complete. Section 4 describes the tuple generator and ex- 
plores the generator's speed and the relation between speed 
and the design parameters. In Section 5, we investigate the 

ties on the design parameters; the statistical correlation of 

omy on the feature probabilities. We conclude with a dis- 

........................ ............................ .................................... ............................................ ... ... ... ... . . . . . . .  .................... . . . . . . . . .  ........................... ........................................ ................................ 
optimal tuple size; the dependence of the feature probabih- ...... ...... ...... ...... ............................ ........................ ............................ .................................... ............................................ 
the generated tuples; and the effect of the choice of dichot- ... ... ... ... ... . . . . . . . . . . . . .  .................... ............................ ........................................ ................................ 
cussion of the implications of our improved method of tu- 
ple generation for printed character classification Fig. 2. The matching positions of a 7-tuple T, for two characters. 

The matches in Fig. 2 all involve one or more pixels at the 
edge of a character. This is to be expected, since the charac- 

Before discussing the P and L7 Parameters$ let us a ters have a small stroke width. For sufficientlv wide charac- 
ters, however, it is desirable for tuples not to depend on edge 
pixels having a particular value. Edge pixels are inherently 
unstable due to random-phase sampling noise--the noise 
from the unpredictable position of the scanner sampling grid 

scribed in this paper has been used to reduce the error rate by 

pixel hax-ing a particular value [ill, [XI. 
We say a tuple dominates a tuple if 1 = 1 1 ,  Pr pli, 

qr 5 qli, and at least one of the inequalities holds strictly. If T 
dominates U, then in the absence of other knowledge, T is 
to be preferred to as a classification feature, assuming 
Propositions P3 and P4 are true. The domination relation is 
h-ansitive and imposes order on the tuples of order yI, 

Still using E+, E-, and n, let us define a Boolean function 
f(p, q )  that is true iff there exists a tuple satisfying ( p ,  q) .  If a 
tuple satisfies ( p ,  q), then it also satisfies (p - 1,q) and (p, q + 1). 

space: 

few concepts. 
Earlier, we stated that an n-tuple is a Set Of n pixels at dis- 

tinct locations. Here we define a pixel to be an integer triple 
(r, c, U), where the row r and Column C give the Pixel's h a -  
tion, and v E (0, 1) gives the pixel's color (0 is white and 1 is with respect to a printed character. The ~~~l generator de- 

The Of a tup1e i' the r~~~~~~ Of pixels ' ' ' 
A ckayacter E with Ymav rows and  ma^ is an generating p-q-stable tuples that do not depend on any edge 

At1 ... rmaxr 1 ... c,,,1 with elements having value 0 or 1. We 
embed E in a sea of white pixels by defining an auxiliary 
array B[-m ... +w, -a . . .  +-I, so that B[i ,  j ]  = A[i, j] if 1 5 i 5 
I',,, and 1 I j 5 c,,,, and B[i ,  j] = 0 otherwise. A tuple Tf i t s  E 
(exactly) if there exists Some shift (AY, Ac) such that for each 
pixel (Y, c, v) E T, B[Y + AY, c + Ac] = U .  

For the remainder of this section let us fix a set E' of 
positive class exemplars, a set E- of negative class exem- 
plars, and a tuple size n. 

Given a tuple T, we define pT to be the maximum value p 
such that for each character E E E', there are at least p shifts 
that give an exact fit between T and E. Similarly, we define qT 
as the minimum value q such that for each character E E E ,  
for no shift do T and E agree in more than q pixels. A tuple 
T is said to be p-q-stabk Or to satisfy the (p, qi constmint, if pT 2 

The following, then, are fundamental properties of the p-q 

f ( p ,  q )  + f ( p  - 1,q) and fCp, q )  + f ( p ,  q + 1). (3) 
The staircase shape of f is illustrated by the following 

P and qT 9. We direct Our attention to tup1es with both PT hypothetical example, with dots standing for "false" and 1s 
for "true." l a n d q , $ n - l .  

The idea behind p-q-stability is that the larger pr  is, the 
more T resists noise in positive test samples; the smaller qT 
is, the more T resists noise in negative test samples. Fig. 2 
shows the characters c and e and the 7-tuple T, from Fig. 1. 
For each of the two characters, TI is shown superimposed in 
all positions for which a match exists. This shows that 

4 

f 1 2 3 4 5 6  

1 . 1 1 1 1 1  
2 . 1 1 1 1 1  
3 . . . 1 1 1  

p,, = 7 .  Illustrating qr, is more difficult. In this example, p 4  . . . .  1 1  
qT, = 5, i.e., when T, is superimposed in each shift position 5 . .  . .  . 1  

6 . .  . .  . 1  
7 . .  . 1  
8 . . . . . .  

on either of the negative characters n or Y, there are always 
at least 7 - 5 = 2 pixels of TI that mismatch the character. 

. .  
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We call a (p, 9) value critical if f ( p ,  9) is true and f ( p  + 1, 9) 
and f ( p ,  9 - 1) are both false. A tuple is critical if it satisfies a 
critical ( p ,  9) value. The set of critical values completely 
specifies f. For the hypothetical example above, the critical 
values are (2,2), (3,4),(4,5), and (7,6). 

Because of the dominance relation, critical tuples are the 
ones we want to find. Prior to a search, we do not know 
what the critical (p, 4 )  values are. Indeed, the next section 
tells us that in general, determining the critical values may 
be computationally intractable. 

3 COMPLEXITY ANALYSIS 
In this section we consider the computational complexity of 
finding tuples. Here, we show that the problem of finding 
tuples is NP-complete. From this result, most complexity 
theorists would conclude that no algorithm finds tuples 
quickly for all dichotomies. Still, an algorithm may exist 
that finds tuples quickly for all dichotomies that arise in 
OCR systems. 

We show that tuple-finding is NP-complete by proving 
that a one-dimensional special case called the missing con- 
figuration problem (or the MC problem) is NP-complete. The 
MC problem is a simply-stated problem with binary strings 
and may be applicable to areas other than OCR; for exam- 
ple, to DNA string problems. Let us now examine this 
problem. 

A configuration C is a set of integers C = {c,, c,, ..., cn}, 
where 1 = c, < c, ... < c,. We say C has order n and span c,. 
For example, (1, 3, 6) is an order 3 configuration with span 
6. Another way to write this configuration is lxlxxl. 

Informally, the missing configuration problem is to find, 
given a binary string S and positive integers n and Y ,  an 
order n configuration C with span at most r, such that C is 
missing from S .  For example, the order 3 configuration 
(1, 3, 6) = lxlxxl is missing from the string 1010100011111, 
but is present in the string 111010110111. We treat the xs-in 
lxlxxl as don't-care elements when determining whether 
lxlxxl matches a given string. We now precisely state the 
MC problem and show that it is NP-complete. 

PROBLEM INSTANCE. A string S = s1 s2 ... s I s l  E (0, l)-, posi- 
tive integers n and r, n 5 r 5 I S I . 

QUESTION. Does there exist an order n configuration with 
span at most Y that appears nowhere in S, i.e., is there 
a set of integers C = {c,, c,, . . ., cn), 1 = c, < c, < cg < ... < 
c, 5 Y ,  such that for all i, 0 5 i 5 I S I - c,, there exists 
some c E C with s,,, = O? 

THEOREM 1. The missing configuration problem is NP-complete. 
PROOF. It suffices to show that 

1) MC is in NP, and 
2)  some NP-complete problem reduces to MC in 

polynomial time. 

The first part follows easily. Given a configuration 
that solves a given MC instance, we can test the con- 
figuration in each shift position to verify in polyno- 
mial time that the configuration appears nowhere in 
the given string. We prove the second part by reduc- 
ing the known NP-complete "set cover" problem to 

MC. Our formulation of the set cover problem is de- 
rived from Garey and Johnson 141: 

PROBLEM INSTANCE. Universe U = (1, 2, ..., I U I ), a set 
D = lol, D,, ..., D I D l  I, where each D, is a subset of U, 
and a positive integer k 5 I D I . 

QUESTION. Does D contain a cover for U of size k, i.e., 
is there a subset D' c D with I D' I = k such that every 
element of U belongs to at least one member of D'? 
Now suppose U, D, and k form an instance of the set 
cover problem. From this we construct an instance of 
the MC problem in polynomial time, as follows. Set 
r = ID1 + 2 and n = k + 2. For each u E U, we con- 

and for all i, 1 5 i 5 I D I, yu,, = 0 if u E D, and yu,, = 1 oth- 
erwise. Let 0' denote the string of r Os, and lr-' the string 
of ( r  - 1) 1s. We form the string S by concatenation: 

struct a string y, = yu,o y,,, . . . yu,il, where yu,o = yu,'-] = 1, 

s=Y,o'Y,or-.Y,,Io'lr-'. 

An example reduction is shown below. 

Instance of Set Cover Problem 
U = {1,2,3,4,5), k = 2, 
D = {D,, D,, D,, DJ, where D, = {1,2,3), 
D, = {3,4), D, = (4,5), D, = {1,2). 

Instance of Missing- Configuration Problem 
Y = 6, n = 4, 
s=101101000000101101000000 

100111 000000 110011 000000 
11101100000011111. 

Here, the set {D,, D3) is a cover for U, and the corre- 
sponding solution to the given instance of the MC 
problem is the configuration {1,2,4,6]. 

Returning to the general case, we must show that 
there is a solution to the MC instance iff there is a so- 
lution to the set cover instance. We consider the for- 
ward direction first. 

Let C be a solution (with n = k + 2 ones) to the MC in- 
stance. Since the problem requires that C have span r 
or less, and S contains a substring of (U - 1) consecu- 
tive Is, we know that the span of C is exactly r. So we 
can write C = (1, i,, i,, ..., i,, r ) ,  where 1 < i, < i, < ... < 
ik < r. Set D' = {Di, ,Di2, ... , Dlk I .  We now show that 

D' is a solution to the set cover instance by exhibiting, 
for each u E U, a member of D' that contains U .  Fix U .  
Since C does not fit S, in particular C does not match S 
when C and Y, are aligned. Because Y , , ~  = y,,, = 1, 
there must exist some m, 1 5 m 5 I D I ,  such that yu,, = 0 
and m + 1 E C. This implies that U E D, and D,,, E D'. 
For the other direction, let D' = { D l l ,  D12, . . . , Dlk ) be a 
solution to the set cover instance. We now show that 
the following order n configuration is a solution to the 
MC instance: C = (1, jl + 1, j 2  + 1, . . ., j k  + 1 r ) .  The only 
shifts for which C matches S are when C and Y,L are 
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aligned, for some Y,. We will be done if we can show, 
for each Y,, that C and Y, do not match. Fix Y,. Since 
D’ covers D, there exists some D, E D’ such that U E 

D,. This means that yu,, = 0 and m + 1 E C. Thus C 
U 

The MC problem can be solved by brute force in 

o((‘ 1 :)(IS\ - n + 1)) time. The quantity 1 IS ‘ maximized 

when n - 1 = L(Y - 1)/2], so for fixed Y the time is O( I S I ) .  
The problem without the span limit Y is solvable for n 1 3  

in O( I S I ) time, as follows. Let S = s1 s2 . . . s I s l .  When S con- 
sists of all Is, S has no missing configuration. Otherwise, if 
s1 = 0 or s l S ,  = 0 then any configuration of span I S I is 
missing from S. If s1 = s I s l  = 1, then take as a missing con- 
figuration any configuration of span I S I that has (1, z ,  I S I } 
as a subset, where z E {2,3, . . ., I S I - 1) is chosen arbitrarily 
such that s, = 0. 

There are many generalizations of the MC problem, in- 
cluding allowing multiple strings, arrays of higher dimen- 
sion instead of strings, larger alphabets, and variations like 
p # 1 or 9 # n - 1 in the tuple finding problem for OCR. One 
version is a 1-d subproblem of the tuple finding problem. In 
this problem we are given n, a positive exemplar E, and a 
negative exemplar F, and we want to find a tuple T com- 
prising n black and/or white pixels, such that T that has 
span at most Y = I E I ,  fits E,  and does not fit F. If E consists 
solely of black pixels, then we have exactly the MC prob- 
lem. Thus the MC problem is a subproblem of the tuple 
finding problem, and the tuple finding problem is NP- 
complete. 

Here, the bits of the negative exemplar are part of the 
reduction, whereas the only part of the positive exemplar 
that is used is its length. Also, for a given value of n, it is 
trivial to determine whether or not a tuple exists that fits 
the positive exemplar. If n is larger than the size of the 
positive exemplar, then no such tuple exists; otherwise, a 
solution can be obtained by taking any n pixels of the posi- 
tive exemplar. These two facts suggest that in our formula- 
tion the difficult aspect of tuple generation lies in satisfying 
the 9 constraint. 

and Y, do not match. 

0 

ATING N-TUPLES 
Originally, we tried generating solution tuples at random. 
But as problem instances become increasingly constrained 
through higher values of p ,  lower values of 9, more difficult 
dichotomies, and more characters per class, random tuple 
generation becomes infeasible. Random tuple generation 
found no tuples at all for several dichotomies with 9 = n - 3. 
The failure of random tuple generation led us to consider 
more sophisticated search methods. 

We generate tuples using a backtracking algorithm 
called Genl. This generator has been used reliably for hun- 
dreds of CPU-hours in OCR studies [51, [lll, [151, [211. 

We also use a generator called GenO. GenO is a relatively 
naive backtracking algorithm whose main purpose is to 
serve as a benchmark to help measure the performance of 
Genl. 

Section 4.1 discusses common aspects of GenO and Genl. 
Sections 4.2 and 4.3 cover aspects specific to GenO and 
Genl, respectively. (The discussion of GenO includes con- 
cepts used for Genl.) Section 4.4 summarizes experiments 
with the generators. 

Our focus here is on aspects of GenO and Genl that are 
fundamental to Genl’s operation or are relevant to OCR. 
Some other aspects of the generators are discussed in [17]. 

An open problem concerning tuple generation is to give 
a necessary and sufficient condition for a dichotomy to ad- 
mit a distinguishing tuple of given order. Given the NP- 
completeness result, the formulation of such a condition 
may be impossible. We are still investigating the problem 
for the special case of printed characters. 

In our OCR experiments, we have not encountered any 
dichotomy that is known not to have some distinguishing 
tuple. But certainly such cases are easy to find, if we allow 
( p ,  q )  to be specified. As the ( p ,  9) constraint is made more 
restrictive, eventually we reach a point where no distin- 
guishing tuple can be generated. The most desirable trade- 
off between search time and quality of ( p ,  9) is application 
dependent and cannot be settled in a general way. One op- 
tion is to gradually relax the ( p ,  q )  constraint until a tuple is 
found in the allotted time. In the design of our decision tree 
classifiers, a different strategy was used: if a tuple satisfying 
the required ( p ,  q )  could not be found, another generation 
attempt was made, using a different subset of the training 
sample. 

4.1 Common Aspects of GenO and Genl 
GenO and Genl input, or a problem instance, contains posi- 
tive and negative character class exemplar sets E+ and E-, 
and a value of n. For a given problem instance, we restrict 
our attention to tuples whose pixels are drawn from a pixel 
set II, where 

n = ( Y , c , z I ) : ~  < Y < minrows,, 1 < c < mincolsE,v = 0 or 1 . 

Here the dimensions of a given character E are denoted by 
rowsE and ColSE. If desired, the caller can instruct GenO or 
Genl to draw tuple pixels from a pixel set other than the 
smallest bounding box n of the positive characters. 

The selection of the underlying pixel set can affect the 
quality, search time, and existence of tuples. Two reasons 
for choosing n as the allowed pixel set are as follows. First, 
if a tuple is to be applied to a character embedded in a 
document, and the tuple does not fit in the character’s 
bounding box, then the tuple’s performance may be de- 
graded by the presence of nearby characters in the docu- 
ment. Also, using n instead of a larger pixel set keeps the 
search space (and search time) relatively small. 

The generators can run in one of two modes. In the first 
mode, the generator looks for a tuple satisfying a (p ,  9) pair 
specified by the caller of the generator. In this mode, the 
generator returns a tuple satisfying the specified (p, 4)  pair, 
or ”not found” if a resource allotment is exceeded before a 
solution is found. 

The second mode operates by repeatedly invoking the 

i E E E +  E E E +  } 
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first mode to find a set of approximately critical tuples, as 
shown below. 
procedure pqselect (integer n)  

set of tuples L initialized to empty 
integer p initialized to 0, q initialized to 1 
while (q  5 n - 1) do 

seurck(p + 1, q )  

if (The search found a tuple T )  then 
while (T satisfies ( p  + 1, q)) do 

L t L U (TI 

q + q + l  

/ /  search seeks a tuple 
/ / satisfying p + 1, q. 

P t - P + l  

else 

while (Some tuple T E L is dominated by some tuple 
U E  L)do 

Remove T from L. 
return L 

In the first loop, we invoke the first mode for various (p ,  q )  
pairs, keeping to the perimeter of a staircase-shaped region 
as described in Section 2. The tuple dominance relation jus- 
tifies using the (more efficient) perimeter search instead of 
searching over the area of the staircase. 

GenO and Genl both use backtracking to look for tuples 
satisfying a given (p,  q )  pair. Backtracking can be used be- 
cause of the following fact: if T and U are tuples such that 
U 3 T and T fails the p or q constraint, then U also fails the p 
or q constraint. A failed tuple cannot be made successful by 
adding pixels to it. 

Two operations occur frequently during the search: 

1) In GenO and Genl, determine whether a given tuple T 

2) In Genl, evaluate a tuple according to a certain 

According to execution profiling, during one execution the 
above operations accounted for 95% of Genl's time. Some 
effort was spent making these operations fast in GenO and 
Genl by using bit arrays and bit-parallel operations like 
word-AND. 

Consistent with their backtracking nature, GenO and 
Genl have modest memory requirements. 

meets the p and q constraints, and 

evaluation function (see Section 4.3). 

4.2 GenO 
GenO is a relatively naive backtracking search of the tuple 
tree for n. For a given E ,  the tuple tree is defined relative to 
a given total order il(y) on the pixels y E IT. The tree nodes 
at level i, 0 5 i 5 n, are i-tuples. The children of a tuple T are 
the ( I TI + 1)-tuples of the form T U y ,  where y E n is a 
pixel with il(y) > max,E, /Ut). For a given order A and value 
of n, the tuple tree is well-defined and includes each i-tuple 
exactly once, for 0 5 i 5 n. 

The seurck tree for GenO is a subtree of the tuple tree. The 
subtree depends on the given problem instance, p, q, and A. 
GenO selects il randomly with each order equally likely. The 
search tree is implicitly formed from the resulting tuple tree 
by pruning nodes that fail the p or q constraint. GenO carries 
out a backtracking (depth-first) search of the search tree. 
For each pixel location, the two pixels sharing the given 

location are searched in a random fixed order. 
An example search tree is shown in Fig. 3. For simplicity, 

the figure omits tuples that have white pixels. (Incidentally, 
in this example, no solution has white pixels.) 

... 

k - .(. . . . . . . . . .  : :? t: : .. * . . . . . . . . .  

I . .  ... . .  ..................... 
I$> 

. Uniised 
n = 3 

Black Iuplc pixel p = 2 
sol Solution q = l  

t constraint 
2 ancl q constt'uintt; 

White triple pixel 

Fig. 3. Example search tree for GenO (black-only tuples). 

The random selection of h enables GenO to find different 
solutions on successive executions. Also, this results in a 
faster search than, say, making ;3. correspond to a row-major 
order of n, at least in part because a random order reduces 
the likelihood of searching consecutively through many 
tuples clustered in a small area. The speed-up is of secon- 
dary importance, since GenO is only a benchmark. 

GenO may process tuples that are translates of each 
other. This is perhaps undesirable, but only increases exe- 
cution time significantly if many branches of the search tree 
are exhausted, i.e., the whole tree can be searched reasona- 
bly quickly. For practical problems this does not occur, ex- 
cept conceivably when n is small. We looked at some di- 
chotomies with n = 7 and in no case did GenO process iso- 
morphic tuples. 

4.3 Genl 
Genl uses two search parameters t and w that are supplied 
by the caller. Genl differs from GenO primarily in three 
interrelated ways. 

Tuple equivalence classes are used to reduce the size of 
the search space. If two or more tuples are translates of 
each other, then Genl visits at most one of them. 
Genl uses simulated parallelism, a general technique 
that can reduce the search time on a single processor 
when solutions are distributed nonuniformly across 
search regions 1121. Running on one processor, Genl 
uses timeslicing to simulate a parallel search across 
selected search regions. During each timeslice, Genl 
selects a search region and visits t search nodes from it. 
Restricted backtracking [13] is used. The child tuples 
of a given tuple in the search tree are ordered ac- 
cording to an evaluation function. Roughly speaking, 
the best UI children are kept, and the others are dis- 
carded. Here w can be interpreted as a search width. 

Some details are as follows. 
Two tuples are isomorphic if they are translates of each 

other. The tuples in a given equivalence class r satisfy the 
same (p ,  q )  pairs: 
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For all (p, q) and for all tuples T, U E r, 
T satisfies ( p ,  q) iff U does. (4) 

Recall that the generators draw tuples from a rectangular 
pixel array n. Given a tuple equivalence class r, we take the 
canonical tuple of r to be the unique tuple in r that has been 
shifted as far left and as far up as possible while remaining 
wholly in n. Like GenO, Genl’s underlying search tree is a 
tree of tuples, but Genl’s tree contains only canonical tu- 
ples. This reduces the search space, but when taken alone 
this gives no speed-up except perhaps when n is small, by 
the discussion at the end of Section 4.2. The primary benefit 
of using only canonical tuples comes from favorable inter- 
action with simulated parallelism and restricted back- 
tracking. This interaction is discussed later in this section. 

In Genl, the two canonical 1-tuples are ignored, and in 
the search tree, the canonical 2-tuples are the children of the 
empty tuple. Each search region is a subtree rooted at a 
canonical 2-tuple. The search proceeds using simulated 
parallelism as follows. (For simplicity the pseudocode in 
this section omits some straightforward details, such as 
what happens when a solution is reached, a tuple fails a 
constraint, or a search region is exhausted.) 

/ /  Carry out the search, for given p, q. 
procedure search (integer p ,  q) 

array A initialized to order-children (empty-tuple) 
integer i initialized to 0 
while (No solution has been found) do 

Let R denote the search region A[il. 
/ /  (We suspend this timeslice for R 
/ / after t nodes are processed.) 
if (X has not been visited before) 

else 

i t  ( i  + 1) mod w 

process-node (R)  

Resume prior process-node call for R. 

The process-node and order-children procedures are now 
examined in the context of restricted backtracking. The 
code below shows what happens at each search node. 

procedure process-node (tuple T) 
array A initialized to order-children (T) 
integer i 
/ / Search at most w children of T. 
for (i t 1 to min(w, I A I )) do 

process-node (A[i]) 
procedure order-children (T) 

array A initialized to the children 
of T in the canonical tuple tree 

integer i 
Sort A in order of best evaluation to worst. 

/ /  (After sorting, A[11 is best.) 
fo r ( i t -1 to  IAl -1)do  

for (i t I A I downto 2) do 

return A 

Swap A[z] and A[i + 11 with probability 5. 

Swap A[i] and A [ i  - I]  with probability 5. 

Here the children of each search node are first sorted ac- 
cording to an evaluation function. Given the NP- 
completeness of the tuple-finding problem, it is reasonable 
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to use a heuristic evaluation that may miss solutions. After 
sorting, the order is perturbed slightly, as discussed below. 
(Restricted backtracking in general need not include per- 
turbation.) Finally, the best w children are retained and the 
others are discarded. Backtracking is applied to the subtree 
of each retained child, in an order determined by the sort 
order and the perturbation. Genl monitors the number of 
nodes visited during the current timeslice. When this num- 
ber reaches t ,  the timeslice ends. 

The evaluation of a tuple T is based on the following 
function: 

(5 )  

Here p(T, E) is the value pr  with respect to the positive ex- 
emplar E .  The function r (T ,  E )  gives the number of shifts for 
which exactly min( I T I ,  q) pixels of T fit the negative exem- 
plar E. A tuple TI is considered to be more desirable than a 
tuple T2 if k(T,)  > k(T,). 

The evaluation function h(T) was designed to take both 
the p and q constraints into account while facilitating fast 
evaluation with word-parallel bit operations. The complete 
evaluation uses h(T)  along with some computations to 
break ties and avoid division by 0. 

By considering a brute force computation of h(T), it is 
easy to see that for uniformly-sized characters the time to 
compute h(T)  for a given tuple T is O( I E’ I + I E- I ). Thus if 
the search width, timeslice, and maximum node limit are 
held constant, then the search time is, on an idealized com- 
puting device, bounded above by a linear function of the 
number of exemplars. This bounds the running time for all 
cases by the worst case running time-the time used when 
the search fails. A precise theoretical analysis of successful 
searches in this NP-complete problem is probably difficult. 

The evaluation function imposes a sort order on the chil- 
dren of a given node. Genl slightly perturbs this order, using 
random numbers. The purpose of the perturbation is to cause 
different solutions to be found on successive executions. Pos- 
sibly, this perturbation interacts with simulated parallelism, 
further contributmg to the generation of different solutions on 
successive executions. One way to generate different solutions 
on successive executions is to do a full random permutation of 
the list elements. Since that would destroy all information 
from the evaluation function, we instead perturb the list only 
slightly. This slight perturbation preserves much of the infor- 
mation from the evaluation function, and we have found em- 
pirically that this perturbation is sufficient to generate different 
solutions on successive executions. It can be shown analyti- 
cally that under this perturbation, a given list element usually 
stays within a few slots of its original position. 

Two benefits accrue from searching only canonical tu- 
ples rather than all tuples. First, the number of search re- 
gions (2-tuples) decreases. Also decreasing, therefore, is the 
number of 2-tuples that are evaluated during the determi- 
nation of the best w 2-tuples. When n is 16 by 16, for exam- 
ple, there are 130,560 2-tuples and 1,920 of these are canoni- 
cal, so the number of 2-tuple evaluations decreases by a 
factor of 68. Second, suppose the search regions corre- 
sponded to all 2-tuples rather than only the canonical ones. 
Equivalent tuples have identical evaluations. So, after the 2- 
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tuples were sorted, most of the w best tuples would be 
isomorphic, making simulated parallelism a waste. 

Related to the tuple generation problem is the question 
of how many non-isomorphic tuples of a given order rz can 
be formed within a given rectangular pixel array. This 
counting problem, some variants including generalization 
to arbitrary dimensionality and dimension sizes, and re- 
lated combinatorial identities are examined in [MI. 

4.4 N-Tuple Generation Experiments 
Here we summarize the tuple generation experiments. 
More information may be found in [151. 

We ran experiments with GenO and Genl for n = 4, 7, 
10, using the following dichotomies: c - e, e - c, e5 - c5, 
acenou - sxz, c - n. We used Times-Roman eight-point char- 
acters digitized at 300 dots per inch. The characters were 
scanned from laser-printed originals, except for the e, - c5 
characters; these were scanned from fifth-generation pho- 
tocopies of laser-printed originals. The experiments were 
carried out on SPARC 20 computers. The generator pa- 
rameters were selected so that the generators executed for 
about five minutes on a particular problem, when no solu- 
tion was found. 

Each of 30 tables produced in the experiments results 
from one generator executing for a given value of rz with a 
given dichotomy. The experiments represent more than 
40,000 invocations of the generators. 

The experiments support the following conclusions. 

1) Distinguishing tuples can be found reasonably 
quickly when they exist. The simplest problem is 
when (p, q )  = (1, n - 1); both GenO and Genl solve 
such problems in less than 1 second on a SPARC 20. 

2) Genl is a reasonably efficient algorithm for generat- 
ing tuples. This becomes apparent when we compare 
the experiment performance of Genl to GenO’s. 

3) The execution time of Genl is governed by the diffi- 
culty of the problem as defined by p and q. With more 
computing resources, solutions can be found for 
higher values of p and lower values of q. 

The general features of the 30 tables in [15] can be seen 
by examining Table 1 and Table 2. Table 1 shows the time 
to find distinguishing 10-tuples for the given (p, 4 )  values, 
for the c - n dichotomy. Table 2 is for the e5 - c5 dichotomy. 
In both tables, the times are averages of 50 searches, and are 
normalized with respect to the time taken for the ground 
case of p = 1, q = n - 1. Times are shown for the (p ,  q )  values 
for which all 50 searches found a solution. 

The tables show the trade-off between execution time 
and the difficulty of the ( p ,  q )  pair. As we move away from p 
= 1, 9 = n - 1, solution time increases, until ultimately no 
solutions are found. 

Both tables exhibit a small region of the ( p ,  9) space near 
p = 1, q = 9 where both GenO and Genl find solutions, and 
GenO finds them faster. In a large area away from p = 1, q = 9, 
where more desirable tuples reside, Genl finds solutions 
and GenO does not. 

A likely reason that GenO finds solutions for the less de- 
sirable ( p ,  q )  values faster than Genl is that Genl evaluates 
many tuples at each search node, even when the search 

TABLE 1 
NORMALIZED TIME TO SOLUTION FOR THE C- f? DICHOTOMY, f?= 10 

1 Genl 

Timefur p = 1, q = 9: 8262 s 

Time fur p = 1 , ~  = 9: .1706 s 

goes directly to a solution with no backtracking. On the 
other hand, GenO evaluates only one tuple at each search 
node. This leads to an idea for a future hybrid algorithm 
that runs GenO and Genl in parallel. If to and tl are the re- 
spective execution times for GenO and Genl on a given 
problem instance, then the hybrid algorithm takes time that 
is at worst roughly 2min(t,, tl). This is in some ways more 
desirable than the execution characteristics of either gen- 
erator alone. 

Another opportunity for speed-up lies in Genl’s evalua- 
tion function. We have found that Genl’s performance is 
sensitive to changes in the evaluation function. 

5 CHARACTER CLASSIFICATION EXPERIMENTS 
In this section, we show empirically that n-tuples have sev- 
eral characteristics that are desirable for character classifi- 
cation. Section 5.1 shows that the class-conditional fit prob- 
abilities can be usefully controlled by the design parameter 
n. In Section 5.2, we examine the control exerted by (p, 4) .  
Section 5.3 shows that it is possible to find tuples with low 
mutual correlation. The e - c dichotomy is used as the pre- 
dominant dichotomy in Sections 5.1 through 5.3, because e 
and c are difficult to distinguish [14]. Section 5.4 explores 
class-conditional probabilities for other dichotomies. 

The experiments in Sections 5.1-5.4 used second- 
generation photocopies of Times-Roman eight-point char- 
acters that were digitized at 300 dots per inch. Photocopies 
were used because they vary more than original scanned 
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TABLE 2 
NORMALIZED TIME TO SOLUTION FOR THE e, - C5 DICHOTOMY, R = 10 

L Gen 1 

Time foy p = 1, q = 9: 8522 s 

I GenO 

Time foy p = 1,q = 9: ,2212 s 

characters. Fig. 4 shows some typical characters that were 
used in the experiments. The characters in the figure were 
selected from a larger character set using a pseudo-random 
number generator. 

Fig. 4. Some typical characters that were used in the classification 
experiments. 

Eight-point characters are at the limit of type size that 
can be recognized. Larger type sizes are easier to classify. 
At 300 dots per inch, n-tuples can distinguish larger char- 
acters with virtually no error [ill. 

5.1 Value of n 
Here, we show empirically that Propositions P1 and P2 
hold. That is, P(x, I C') decreases as n increases, and 
P(< I C-) increases with n. 

In this experiment, distinguishing tuples for the e - c di- 
chotomy were generated for n = 3, 4, ..., 15. A training set 
comprised 10 es and 10 cs. A trial for a given value of n 
consisted of three steps. First, a dichotomy was formed by 
randomly selecting one e exemplar and one c exemplar. 
Next, an n-tuple was generated for the dichotomy with 
p = 1 and q = n - 1. Then the class-conditional probabilities 
were estimated by averaging over a test set of 900 es and 

The results for each value of n were averaged over 50 

Fig. 5 shows the empirical probabilities of correct classi- 

cs. 

trials. The same test set was used for all trials. 

fication as a function of n. Propositions P1 and P2 hold. 

0.2 L 

[I 
3 1 5 Ei 7 8 9 IO 11 12 13 14 15 

n 

Fig. 5. Class-conditional probabilities as a function of n. 

It follows that there exists some value of n for which the 
following holds approximately: 

In the absence of prior constraints such as information 
about the class distribution, it is reasonable to equalize the 
probabilities of correct classification for the positive and 
negative classes, as in (6). Fig. 5 suggests that here we want 
n = 4or n = 5. 

It is fortunate that relatively small values of n such as 4 
or 5 are good, because usually as n decreases, tuple genera- 
tion becomes easier. 

5.2 Relation Between (p, q) and Class-Conditional Fit 

In this section, we show that for a given value of IZ, the pa- 
rameter p affects primarily the positive class-conditional 
probabilities, and q mainly the negative class-conditional 

Probability 
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q = 6  

743 

q = 5  q = 4  

probabilities. This experiment was conducted as in the pre- 
vious section, but with different values of n, p, and q: here 
we used n = 3, 7, 10, p = 1, 3, 5, and selected values of q. 
Table 3 shows the results. 

TABLE 3 
CLASS-CONDITIONAL FIT PROBABILITY FOR THE e- C 

DICHOTOMY, AS A FUNCTION OF n, p, AND q 

P 
1 
3 
5 

~ ( x ,  1 e) p(Fl c )  ~ ( x ,  I e) p(TI c )  ~ ( x ,  I e) p(XI C )  

.349 .821 ,206 ,925 .240 .987 

.840 ,554 .841 .917 .814 ,993 
,949 ,660 ,941 ,947 ,944 ,994 

Increasing p while leaving q unchanged improves P(x, I e) 
with little or no effect on P(<l c). Similarly, decreasing q 
while leaving p unchanged improves P(T1 c) with little or 

no effect on P(x, I e). The results confirm that we should use 
high p and low q. 

Table 3 also shows that by selecting different values of 
(n, p ,  q), we can move the probabilities closer to the optimal 
values for either the positive or the negative class. This is 
useful for classification tasks where the a priori probaljili- 
ties of the two classes are unequal, as is usually the case in 
natural language. 

The table suggests that given two tuples x, and x, of the 
same order, if x, dominates xl as in Section 2, then x, is a 
better classifier than xi, i.e., 

where one of the inequalities holds strictly. For instance, the 
tuples generated with (n, p, q )  = (7,5,4) are, on the average, 
better classifiers than those generated with (7,1,6). 

5.3 Statistical Correlation 
Suppose we have a collection of classification features and 
their class conditional probabilities for a given dichotomy. 
If the features are independent, then their discriminating 
abilities can be usefully combined. On the other hand, if the 
features are strongly correlated with each other, then using 
several features yields little more information than using 
one feature alone. Generally, it is desirable for classification 
features to be independent rather than correlated 131. In this 
section we show that it is possible to find tuples with low 
mutual correlation as classification features. 

The experiment was conducted using one e and one c to 
form an instance of e - c dichotomy. We used n = 7 and re- 
peated the experiment with different (p ,  q) constraints: (0, 7), 
(1, 6), (5, 51, and (7, 4). Tuples were generated using Genl, 
except in the unconstrained case ( p  = 0, q = 71, where tuples 
were generated by selecting seven distinct random pixel lo- 
cations from the positive character's frame. A fixed test pool 
of 900 es and cs was used. For each ( p ,  q )  value used, the ex- 
periment consisted of 100 trials. Each trial went as follows. 

Two new tuples were generated that satisfy the specified 
(p ,  q )  constraint. Each tuple was tested on the 900 es. From 
this we constructed a contingency table tallying the occur- 
rences of the possible outcomes (success-success, success- 
failure, failure-success, failure-failure). An estimate of the 
correlation coefficient was computed from the contingency 
table, unless either tuple matched all 900 es. When this oc- 
curred it was impossible to meaningfully estimate the cor- 
relation coefficient; such occurrences were recorded. Fi- 
nally, a trial was completed by repeating the estimation 
procedure for the same two tuples on the 900 cs. 

Table 4 shows a (reverse) cumulative histogram of the 
squares of the correlation coefficients. The first row shows 
how many of the 100 tuple pairs had correlation coefficients 
defined. The pairs with undefined correlation coefficients 
had one or both tuples behaving perfectly on all 900 entries 
in the test set. 

TABLE 4 
DISTRIBUTION OF SQUARES OF CORRELATION COEFFICIENTS OF 
100 TUPLE PAIRS GENERATED FOR THE e- C DICHOTOMY, n = 7 

p = o  
a = 7  I Random I 

p =  1 p = 5  p = 7  
a = 6  a = 5  a = 4  
Geni 1 Geni 

e c e c e c  
99 90 58 87 43 97 
99 90 58 87 43 97 

Two observations emerge from the table. First, it is pos- 
sible to generate tuples that have low correlation. For ex- 
ample, over 90% of the tuples for p = 1, q = 6 have a squared 
correlation coefficient of .10 or less. Second, as we move 
away from p = 1, q = n - 1 in the p - q space, correlation in- 
creases. There is a trade-off. Feature effectiveness increases 
(Section 5.2), but so does correlation. 
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TABLE 5 
CLASS-CONDITIONAL PROBABILITIES FOR SELECTED DICHOTOMIES 

5.4 Choice of Dichotomy 
So far we have only examined the e - c dichotomy. Table 5 
shows empirical class-conditional probabilities for each 
class for selected other dichotomies. This experiment’s de- 
sign is the same as that in Section 5.1, except here (n, p ,  9) is 
taken to be (6, 4, 4). The table shows the average fit fre- 
quency among 50 tuples for the positive and the negative 
classes, and the standard deviation. 

One observation emerging from this table is that the di- 
rection of the dichotomy matters; there is an asymmetry 
between the positive and negative classes. For example, 
tuples for ceo-sxz were found to have better performance 
than the tuples for sxz-ceo. 

6 Dl§CU§SlON AND CONCLUSIONS 

Features for character recognition that have been repeatedly 
explored in the last forty years include masks and templates; 
moments and moment-invariants; principal components; 
orthogonal decompositions (Fourier, Hadamard, Haar, and 
Walsh transforms); contours; lakes, bays, and lids; stroke 
crossings, curvatures, and end-points; projections; and dy- 
namic contour warping. All of these features suffer from 
one of two defects: either they must be constructed by hand 
according to the designer’s experience with the character 
shapes under consideration, or they are based on the shape 
of the patterns in each class, rather than on the diffevence in 
shape between classes. 

Although implicitly any classifier is based on the differ- 
ence between classes, few OCR classifiers work directly on 
the raw bitmaps. This is because of two problems with bit- 
maps: they are large, and shift-variant. Invariably, classifi- 
ers solve these problems by extracting features from the 
bitmap, as in neural networks and statistical classifiers. The 
input to such classifiers generally consists of a fixed set of 
features, often pixels averaged over a small region. Unlike 
n-tuples, such features do not adapt to the sometimes sub- 
tle pixel arrangements that differentiate the classes. 

In principle, classifiers based on pairwise bitmap dis- 
criminants can be implemented, but in practice this has not 
been done, except for decision trees. Decision trees based 
on bitmaps cannot cope with shift invariance. Decision 
trees not based on bitmaps must use some kind of features. 
Our n-tuple features are intended to be such a feature. 

Although tuple features can, and have been, used with 
any of the standard classifiers based on binary feature vec- 
tors, they are particularly appropriate for binary decision 
trees. In such a tree each node is responsible for a specific 

dichotomy. The relationship that we have demonstrated 
between the tuple design parameters and the class- 
conditional feature probabilities can be exploited to construct 
statistical decision trees based on a small training sample, 
and to predict the error rate of such tree classifiers 151. 

The tuple generation method that we have described 
makes no explicit use of features such as those listed earlier. 
Tuple features are free from the two defects discussed 
above.Tuple features are generated automatically and are 
independent of the particular nature of the symbols, and 
they are based on the difference between designated 
classes. 

The generation method can be applied to any set of iso- 
lated printed symbols, such as those in non-Roman alpha- 
bets and ideographs. In fact the approach is intended to be 
sufficiently general that it can be applied to textures, fin- 
gerprints, manufacturing defects, and notation from bridge, 
chess, and music. The generation of tuple features is com- 
pletely automatic, and can be carried out in a few seconds 
on contemporary workstations. 

Furthermore, the method fosters the statistical inde- 
pendence between multiple features for the same dichot- 
omy, which greatly facilitates classifier design and error 
estimation. Therefore the technology renders possible, in 
principle at least, the completely automated design of fea- 
tures and classifiers on the basis of a small labeled design 
sample. Such a completely automated design procedure is 
essential for any adaptive or learning scheme that requires 
modification of both features and classifiers. 
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