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Abstract. Some problems arising in multicategory (many pattern types) pattern recogni- 
tion are treated mathematically, and formulas are derived which describe some inherent limi- 
tations associated therewith. The principal results concern the "dimensional" and "correla- 
tional" effects and their degradation of a multimeasurement recognition system. 

1. Introduction 

In simplified character recognition one is usually dealing with a limited number 
of pattern types or categories. Thus, we might have ten or eleven categories for 
numeral recognition, and 36-100 categories for alphanumeric recognition. How- 
ever, there are a large number of applications, such as the recognition of finger- 
prints, militm~j targets, chinese characters, facial photographs, paintings, etc., 
where the number of categories is enormous. In fact, most instances of human 
recognition fall in this case. 

The purpose of this paper is to treat mathematicMly some probleras that  arise 
in many-category pattern classification, and to derive formulas describing the 
inherent limitations associated therewith. The principal results obtained on the 
"dimensional" and "correlational" effects in multimeasurement systems are pre- 
sented in Section 3. In these results i~ is shown how the overall effectiveness of such 
a multimeasurement system can be predicted from elementary statistics. 

2. One-Dimensional Case 

Suppose we have a population of pattern types (categories): 

P = { p l ,  p2 ,  " '"  , PQ}. 

When a particular representation, ~ ,  is given, it is to be identified or recognized 
as a member of the category p~. Further assume that  X is a real function of P.~ 
The collection of all X ( p 0 ' s  can be described by a probability density 2 function 
f where 

f ~ f ( X )  dX  = 1. 
oO 

Now suppose that  we at tempt to determine X by a measurement, x, and that the 
measurement error, x -- X, is governed by the probability density function gx 
for each X. (See Figure 1.) 

Question: If  X is unknown, how much uncertainty is eliminated by such a 
measurement x? The answer to this question can be expressed in terms of informa- 

l For exumple, P might represent the collection of all people in the world, p could be a photo- 
graph of u person, and x (pd  could be the (absolute) width of the head of person p~ • 

X will be treated as a continuous variable in this discourse. This is a realistic assumption 
when the collection, P, of categories is large. 
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tion theory [1, p. 54-64] as follows: 

t~(f, g~) = [r(f) -- H(gx) 

where 

f 
~ 

[ I ( / )  = - / ( x )  log f ( x )  d x  

is the entropy (or information) of the function f, and R is the transmission rateJ ~ 
If g~ is independent of X then gx = g, and it follows immediately that  [1, Th.  

16, p. 66] 
THEOamt 1. R(f,  g) = H(f)  -- t t (g) .  
Also if f and g are norm~d with standard deviations a and cr~ then it is easily 

shown [1, Th.  14, p. 66] that  
T~EORm~ 2. 

H(f )  = log [(2,re)~a] 

H(g) = log [(2~re)~R] 

n(L g) = log (~/.~). 

Thus we could say that  the reduction in uncertainty is log (~/¢.) ,  or that  
log (a/a~) bits of information have been transmitted by such a measurement. This 
result gives a general idea of how the uncertainty is reduced, but  in a particular 
application the actual reduction in uncertainty depends on the method used for 
recognition. 

What is the fractional reduction of uncertainty,  Fx~, associated with a given X 
and its approximation x? Let us define 4 

Fx~ = f f ( z )  dz. 
I ~-:t I ~; W"Xl 

Definition 1. Let  

f F( f ,  g) = f ( X )  gx(x - X)  f (z)  dz dx dX. 

Thus F(f, g) is the average fractionM reduction in uncertainty. 

3 Base 2 logarithms will be assumed unless otherwise indicated. 
Fx, is indicated by the hatched area in Figure 1, and represents the "fractional amount 

that has to be searched (starting from x) ia order to find X." 
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" [ m..) j >(x) fez) u~ ux d,, 
0 .... '~'~ ~'X 
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D, B. OwmL (]radmde C m ~ t e r  of the Southwest, first brought  this result to ray attev, tbt~- 
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_ z f dt ~ = _ _  
f f  

2 ~ a ~  t 2 + 2 ~  "~ 

= - Aretan • . 
71" 

THEOREM 5. 
(1) H ( N ~ )  = log (2~e)~) ,  
(2) H ( U , )  = log(2-a~z), 

dt by Lemma 1.4 

a 2~E Arctan (2~ . ~ ) 
2~rc~E c~ 

Q.E.D. 

(3) n(N , N . . )  = R(U , % -log 
PROOF. Let  a = 3~a. H ( U ~ )  = - f - ~  (1/2a)  log (1/2a)  dx = log (2.3ta). 

(1) is given in Theorem 2; (3) is a consequence of (1),  (2) and Theorem 1. 
THEOa:~I 6. / f  qE ~4 ¢, and i f  F = F ( N ~  , N ~ )  or F = F ( U ~  , U ~ ) ,  and R = 

F(N~ , N ,E)  or R = R ( U ~  , U ~ ) ,  then F _~_ ~-zE/a, R = - l o g  (z~/a),  and F ~--- 

½ • 2 -~. 
PaOOF. Since aE << z, it follows from Theorem 4 that  

F ( N o , N ~ )  v 

- v  3 + " "  

2 ~ oE o'~ 1 a s  
~___ -- ~ ~ 0.451 . . . .  

O" O" - - - 2  0 ' ~ 

and from Theorem 3 tha t  

F ( U , ,  U,~)  = 2 ~ 6 - J "  

@ply Theorem 5 and the definition of log. 
By Theorem 6 it  can be seen tha t  the quantities F and R hold relatively constant 

for two widely differing types of density functions (uniform and normal).  Also, 
F ~ ! .  2 -R shows an intuitively satisfying connection between R, the information 

- -  2 

transferred, and F the fractional reduction in uncertainty. 

3. Mul t id imensional  Case 

Suppose instead of one function X, we have several functions 6 X1, X~, . .  • ,  XK on 
P. These are approximated by  measurements x~, z~, . . .  , x~ respectiveIy, and 
X and x are governed by the K-dimensional probabili ty density functions f and g. 
Definition 1, for the average functional reduction of uncertainty, is generalized in 

a natural way as follows. 

6 If we again refer to the photograph recognition example mentioned earlier, the numbers 
Xl(p0, X~(p~), . . .  might represent the width of the head, the length of the left ear, etc., for 
the person p~. 
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Definition 3. 

J_ 

/ . . .  / ... 
I z -x l  -< l~-Z l  

Question: If we obtain an average fractional reduction in uncertainty of F~ 
:for each of the K measurements, do we get a reduction proportional to F for the 
combined set of measurements? Or more precisely, if f~ and g~ are the marginal 
densities of f and g on dimension i, and if 

1 z~ (i = 1, -.- ,K), F(f~ , g,) = F ~-  ~ - 7  

do we get FK(f, g) ~ ½(ZE/Z)K? 
This simple relation is obtained only in the extreme case where f and g are uni. 

formly distributed. In the "natural"  case, when f and g are normal, we shall present 
results which show that FK = D . C . S  where S = (~1/z l )  (zE2/z~) . . .  (ZE~/ZK) is a 

term which tends to reduce FK, and D and C are "dimensional"  and "correlational" 
effects which tend to increase FK. 

Let us denote by NK~ the K-dimensional normal probability density function. 
Definition 4. 

- -  (21r)K/2 exp - -  

i ~ 1  j ~ l  

We wilt use the standard notation, ~3,  to represent the element of the symmetric 
positive definite covariance matrix, 7 and ~" for elements of its inverse. I A! 
represents the determinant of the matrix A. Also we use the notation ~ = (z,)t 
and pu = ~ o ' / ~ " ,  the correlation coefficients. 

Definition 5. 

VK(r) = f . . .  f dx, , dxK 
xt2+.  • • +xK~ < r 2 

Thus V~(r)  is the volume of the K-dimensional sphere of radius r, and we have 
[2, p. 305], 

L E M M A  2. 

K/2 
V K ( r )  = z-  _ .  TK" 

F[(K + 2)/2] 

Definition 6. 

U ~ ( X 1  . . .  XK) = [ I / V K ( a ) ,  xl 2 + . . .  + x 2  ~_ c~ 
' [0,  otherwise 

where a = (K + 2)tz. 
Thus UK~ is the K-dimensional uniform probability density function with variance 

g a  2 . 

7 See standard texts on probability and statistics for definition of terms. 
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Asazmpgion. Throughou t  the remainder of this paper it will be assumed tha t :  
1. The measurement  errors, x - X,  which are governed by  g, are independent  

of X. 
2. f is either uniform, or normal with eovaa'ia.nce matrix (~o). 

2 8. g is either mfiform, or normal with covariance matrLx (~r~.) = ~s I .  Thus  
we assume that  the measurement  errors are uncorrelated gnd hg~ve 
equal variance. 

Definition 7. Let  

The following lernma is well known. 8 
L~*~,IA 3. Cx< = K!2(~:I~)-~/I'[(K + 2)/21. 

3.1 The Dimensional Effect. We shall use the notat ion 

z = (x , ,  . . .  x~), {x[= = x, 2 +  .... + xK ~, dx = d x l . . ,  dx~, etc. 

We will first t rea t  the case in which the X~ are uncorrelated and identically 
distributed. 

THEOREM 7. I f  (or,i) = a~I, ( ~ )  = ,r,~I, ¢~ << ~, and f = N~. or f = Ux. 
and g = N~.~ or g = U~:~ then 

:L"  L'L" 
F~:(f, g) ~ . . .  I=(X) dX . . . .  V(I u l)g(u) du. 

P~toOF. Since ~r~ << ~, we can make the approximation 9 f ( X )  ~ - f ( z )  in step 3 
below because the function f tends to remain relatively constant  in the range:  
t z -  X l -5_ 3 K ~ .  

"'" L ~ f ( X )  L [ " "  L [  g ( x -  X)  f f f ( z ) d z d x d X  
I*-*1 ~ l~-"X I 

F~(L g) = F 

oo ~o 

" f l a x )  
oo oo 

. ° °  

- L; 

- L" 

f ... f g<x- x ) f  .... f f<~)d~ d~ aX 
I*-Xl ~a(K) J~B 1*-*1 ~ t~r-Xl 

f...  f g(,- x, f . . .  f :(x)a, a, ax 
I~--Jr I ~a(K) ] ~  I z--*l g Iz--Xl 

[ f[ f f • . .  ~ g ( x  - -  X )  . . .  f ( X )  dz dx dX 
1, Z-x l  .~ l * - x l  

,o f_,, 
L . . .  g(x - X ) V ~ ( I  x - X l)f(X) dx dX 

f: : dX . . . .  VK(I x - X l)g(x - X ) d x  
oo ~o  

L ' :  :f: . . . .  :(x) dX .... Vd ~, ]g(~) & Q.E.D. 

The proof is given in the Appendix of [4]. See [3, p. 234]. 
9 This particular approximation is used here for ease in presentation. A better approxima- 

tion is used in [4, App., Th. All]. 
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THEOREM 8. 

F f/ ( 1 )  . . .  

f/ f/ (2) . . .  

f" f; (3) . . .  
oo ao 

f_* (4) f . . .  

W. W. BLEDSOE 

= -= ~ E  I ,  then 

N L ( X )  dX  = 1/#"~2% '~, 

U~.(X)  dX  = 1/VK(a), where a = (K + 2)~, 

VK(I U I)NK.E(u) du = K! z Kn 2(Km--~O.EK, 
In[(K + 2)/2] 

1 V~(a~), v K ( t  u I) UK,E(U) du = 

where aE = (K + 2)i~. 

The proofs, which are straightforward, are given in [4, Appendix]. 
Using Theorems 7 and 8, one can approximate FK(f, g) for various combinations 

of normal and uniform distributions, under the hypotheses of Theorem 7. These 
are shown in Table I. 

Table II gives approximate values for the ratio FK(f, g)/FK_~(f, g )  for the same 
combinations when K is large. 

From Tables I and II it can be seen that, under the hypothesis of  Theorem 7 
and in the normal case, 

F~ ----- r~[( K + 2)/212(~r2)+ 1 

~-~ FK-x" 2 ~ #--E~ 
O" 

--~ FK-I"~rFI, 

where F1 is the one-dimensional result, F1 = F(N~,  N,E).  
The results of Tables I and II can be easily extended to cover t h e  case in which 

f and g are normal, the matrix (¢~j) is diagonal (no correlation), b u t  where the 
a~'s are nonequal. The following result is then obtained, which is proved in [4, 
App., Th. A12]: 

T A B L E  I .  APPROXIMATE VALUES OF FK(f ,  g) FOR DIFFERENT 
FUNCTIONS f AND g) WHERE fie << O" 

g = NK~ E 

g ~ UK#E 

J = N K ¢  

- ,  

I~[(K + 2)/212(Kn)+1 

(K + 2)KI~ ( ~ ) K  
I'[(K + 2)/212 K+I 

f = UR'~ 

ri(K + 2)/2](K+ 2) ~/2 



TABLE II. 

M U L T I C A T E G O R Y  P A T T E R N  R E C O G N I T I O N  

THe. R~Tm FK(f, 9)/FK-Kf, g) FO~ DIFF~a~NT FU~CTmNS f ~tND g, 
W H E R E  o'/i~ << or, AND K is LAROE 
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g = N K q ~  

g ~- UK%~ 

J = NKa f = UKa 

2~ ~ ~ ~-F~ 
ff 

2 /  ,~ ff 

F~ ~-~ I,~[(K + 2)/212(~/~)+ ~ a2 ~ : /  

~- FK-12 ½ cry--5 (1) 
(7 

FK I"~F (K), 

where F (~) is the one-dimensional result 

F (K) = F(N,K,  N~K).  

We draw the conclusion that  if we have a ( K -  1 ) -dimensional measurement system, 
(X1, X~, • • • X~_I), and we wish to add an additional noncorrelated measurement, 
XK, then this new measurement will contribute only about 2~aEK/aK to the reduc- 
ing power of FK • Or, put another way, there is not much point in adding measure- 
ments, X, whose sigma-ratio a/a~ is considerably less than 2 t. This conclusion 
holds for the important  and "natura l"  case of normal distributions. 

The factor 2 i which creeps in with the factors a~/aB~ is called the "dimensional- 
effect" because it is the penalty we pay for trying to combine the measurements 
to get a K-dimensional reduction. 

In case of uniform distributions this dimensional effect is reduced from 2 ~ to 1 
(see Table I I ) .  However, it should be pointed out that  a uniform distribution is 
quite unlikely in a real pat tern recognition system, either for f or g. I t  is true tha t  
the measurements X~ can be transformed to Y~ = T~(X~) to obtain new distribu- 
tions. In this manner, for example, the function f might be converted from normal 
to uniform, bu t  this transformation would have a marked influence on the measure- 
ment errors x~ - X~ (i.e., would change the function g), and the resulting effect 
on F(f, g) would probably be deleterious. 

3.2 Correlational Effect. 
The following theorem expresses the intuitive satisfying result that FK remains 

essentially unchanged when we add additional measurements x's for which a/a~ is 
very sm~ll. 

THI~:OREM 9. I f  (¢~j) = a':I is L-dimensional, (a~'~) = ~'2I is (K - L)-dimen- 
sional, 

((~ii) = ( ( ~ i )  (O~)) is K-dimensional, '~E~i = (~ 21 

i~ L-dimensional, o-~i = ~ I  is K-dimensional, J '  << zB << J ,  f = N ~  , g = N~:~E, 
f = NL~,, g' = NL~'E, then F~(f, g) ~ FK(f', g'). 
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The proofs of Theorems 9 and 10 are given in [4, App.]. 
THEOREM 10. / f  F = NK~, g = N~¢~, ( ~ )  = e 

p~ << 1 where p~ -- a ~ / ( a , z ~ i )  , for each i # j ,  and i f  f '  = N~¢, , where 

then 

- l<< 

, (;~j i f i  = j  
~" = if i ~ j, 

FK(I, g) ~ FK(f ' ,  g) / (]  P,y ])~. 

This theorem states, in effect, that if measurements X~ are correlated, with cot. 
relation matrix (po), we obtain an increase in FK by the factor 1/([ p~j ])~. Thus 

FK ~ D . C ' S  

where D and S are given in Section 3.1, and C = 1/(I po" D ~- 
This expression for C is not very accurate when the correlation p~ between any 

two values of X is large, because in this case the determinant I P~" ] is very small. 
If the correlation is high it is better to use the conventional factor-analysis tech- 

nique to determine new coordinates in which there is no correlation, and then proceed 
by the methods of Section 3.1, to estimate the dimensional effect in the new coordi- 
nate system. 

Suppose f =  N ~ ,  g = NK,~, 
is diagonal positive definite, 

(a¢~.) is symmetric positive definite, and (~Eq) 

(TE2 

2 
0"EK 

Let ~[i = ~q/ /~ i~s ,  for i , j  = 1, K and let 

X127> X~ 2 7> . . -  > XL 2 > 1 >  X~+l ~ . , ,  7> XK ~ 

be the eigenvalues (characteristic roots) of the matrix ( ~ ) .  
Thus the normalized numbers X~ r Xi/~rE~ and x~ = xi/~rEi can be linearly trans- 

formed to a new space Y~ = A X [ ,  y~ = Ax i '  in which the Y~ and Y~ are governed 
by the probability density functions f '  = NKA and g' = NKz ,  where 

fl o k~ 2 

A =  

We now consider the X's in two groups: 

X2 ~ . X 2 I >__ " '"  >---XL 2 > -  1 a n d  1 >  X~+I>_  • • _> K .  

To the first group we apply the resttlts of Section 3.1 (formula (1)) and to the 
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second group we apply Theorem 9 to obtain 

1 L! 1 1 1 

Of course, the formula (2) will be more valid when the X~ are bounded away from 1, 
but even without this restriction formula (2) should give a good estimate for FK iu 
many practical applications. 

4. Summary and Comments 

In Sections 3.1 and 3.2 formulas were derived for the effectiveness of a pattern 
recognition system in which K measurements (x~, x2, - . . ,  xK) are made. The ex- 
pression FK gives the average fractional reduction in uncertainty that  results from 
these measurements. We have endeavored to express F~ in terms of elementary 
statistics, so that  the behavior of a large, multicategory system can be predicted 
from experiments on small subsystems, where the variances a~ 2 and a ~  and the cor- 
relation matrix (p~.) are determined. 

These results were derived for recognition systems in which there are a large 
number of categories, but  it is believed that  something like the "dimensional-effect" 
is experienced in any recognition system where a series of measurements are used. 

The present recognition scheme uses a K-dimensional distance, but other schemes 
could be used. If the measurements (xl, x2, . . . ,  x~) are used in a decision-tree 
recognition scheme, then one is led naturally to integration over K-dimensional 
cubes instead of the K-dimensional spheres that  are encountered in Section 3. In 
another paper [6] it is shown that  for Symmetric normal densities f and g, the 
spherical schemes of the type used here, are more efficient than a whole el~s 
of other schemes, including tim cubical ones. Thus the dimensional effect will be 
at least as large for a decision-tree scheme. 

5. Exact Formulas and Monte Carlo Evaluations 

In Section 3 we derived the approximation 

F Z  = r2[( u + 2)/2]2K/~+1 (3) 

for the case when f and g are normal. A somewhat better approximation 

= -. . . . . . . . . .  FtK 
1 a~ 2 (4) r2[(K + 2)/2] a2 + ~B2] 1 + 2  -~" 

is given in [4, App., Th. All]. 
In Section 2 we derived the exact expression for F~ ,  

r l  = ! A~,otan ( v ' 2 . ~ / ~ )  (5) 
I r  

in the case when f and g are normal and K = 1. We know of no such expression for 
K > 1. However, we have evaluated F~ by Monte Carlo simulations for cel~ain 
values of K and several a-ratios. 

Figure 2a gives a comparison between the exact formula, (5), and the approxi- 
mations (3) and (4), for K = 1. Figures 2b-d compares formulas (3) and (4) with 
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~c A 

F~ 

o F6M c = F 6 (MONTE-CARLO, I 0 0 0  THROWS) 

O-RE 6 

.001L 
.I 

FiG. 2c. 
F¢' and F6" 

2 3 4 5 6 7 8 91.0  2 3 4 5 6 7 8 910 2 3 4 5 6 7 8 9100  
~-E/a- 

Comparison of the Monte Carlo evaluation F6Mc of F~ with its approximations 

the Monte Carlo evaluations of FK for K = 2, 6, 10. In  these calculations f and g 
are normal with no correlation. At least 1000 throws were used in every Monte 
C~rlo calculation, and 13,000 were used for certain crucial points, as indicated on 

the figures. 
I t  appears, from a cursory look, that  the "dimensional-effect" is a phenomenon 

peculiar to recognition systems utilizing a K-dimensional distance. However, it 
appears that  a similar effect is also present in systems which utilize the measure- 

ments (xl ,  - . .  , x~) in a decision tree. 
It would be desirable, in the case where f and g are normal, to obtaiu an exact 

formula for FF:(f, g) analogous to 

F1 = 1 Arctan (2½¢~/¢) 
qr 

given whell K = 1, bu t  to date no such expression is known for F ~ .  



316 

1 . 0 ~  
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g G e )10 

, r;~ : 4o~2 ( \T jT~y-  
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2 3 4 5 ~ 7 8910  2 3 -1 5 ~ 7 f~9100 
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Fro. 2d. Comparison of the Monte Curio evMuation/;'~0Mc of t;'~9 with its approx ma~io~ ' :  
F~' ~(:1 I?~9 " 

Figure 2 gives a eomp~Mson of this exact, formul~ and its approximations eor 
K .... 1. 
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