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Abstract 

A probabilistic combination of K classifiers’ decisions obtained from samples needs a (K + &t-order probability 
distribution. Chow and Liu (1968) as well as Lewis (1959) proposed an approximation scheme of such a high-order 
distribution with a product of only first-order tree dependencies. However, if a classifier follows mom than two classifiers, 
such first-order dependency does not estimate adequately a high-order distribution. Therefore, a new method is proposed to 
approximate optimally the (K + l)st-order distribution with a product set of M-order dependencies where 1 Q k Q K, which 
are identified by a systematic dependency-directed approach. And also, a new method is presented to combine probabilisti- 
tally multiple decisions with the product set of the M-order dependencies, using a Bayesian formalism. 

Keywords: Combining multiple decisions; M-order dependency; High-order probability distribution; Optimal approximation; Dependency- 

directed approximation; Probabilistic combination 

1. Introduction 

Combining multiple decisions in pattern recognition is a matter of combining classifiers’ decisions or 
classification results in parallel [5,10]. When an input x is given to K classifiers (e.g., C,, C,, . . . , C,) in 
parallel, a K-dimensional decision vector D = (C,(x) = M, , C,(x) = M,, . . . , C,(x) = MK ) is observed, where 
a set of L decisions is denoted by M = {M,, M,, . . . , ML}. The main task of combining multiple decisions is to 
determine a decision m which maximizes a posterior probability P * which is max,(m E M 1 C,(x) = M,, 

C,(x)=M,,..., C,(x) = MK). However, it is well known that it is exponentially complex in storing and 
estimating, so for a small K, the probability distribution made by a set of the K-dimensional decision vectors 
becomes unmanageable. Thus, a new method has to compute such a high-order probability for combining 
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multiple decisions. That is, a (K + 1)st order probability distribution should be estimated from samples. This 
idea can be expressed by the formulation, P(m, C,(x) = M,, C,(X) = I’M,, . . . , C,(x) = M,) where m is the 
decision variable. 

Previous studies for estimating a high-order distribution in combining multiple decisions have assumed that 
classifiers’ performances are conditionally independent of each other for a given input [ 12,8]. This is expressed 
by the formulation, 

However, Huang and Suen [3,4] assumed no independence in their proposed method, which was called 
Behavior-Knowledge Space (BKS). The former approach has the advantages of simple computation and small 
storage needs (i.e., K. L2>, but a conditional independence assumption often does not hold for a real situation. 
On the contrary, the BKS method has the disadvantages of exponential computation and large storage needs 
(i.e., LK+ ‘) in th eoretical analysis, and it also has the disadvantage of producing potentially high rejection rates 
due to unseen multiple decisions. But, the BKS method no longer assumes independence of classifiers. 

As mentioned before, previous studies have been conducted for better combining multiple decisions, but 
most of them did not focus on dependencies among classifiers [61. A dependency means the predictive capability 
of a classifier’s decision to the other one’s. Thus, M-order dependency can be defined by the predictive 
capability of k classifiers’ decisions to the others. The assumption that classifiers perform independently is not 
invulnerable, because classifiers tend to be statistically dependent on others. Therefore, in this paper, a new 
method is proposed to approximate optimally a high-order distribution with a product of kth-order distributions 
where k > 1, by using a systematic dependency-directed approach without an independence assumption. This 
method has smaller storage needs (i.e., (K + 1 - k) . Lkk’ ‘1 than the BKS method. And then, a new method is 
also presented to combine probabilistically multiple decisions with an optimal product set of M-order 
dependencies, using a Bayesian formalism. The usefulness of the proposed methods is shown in experimental 
results obtained from the recognition of totally unconstrained on-line handwritten numerals and English 
characters. 

2. Systematic dependency-directed approximation 

When a high-order probability distribution is approximated, a criterion is needed to measure how close the 
approximation is to the actual distribution. Such a criterion, depending on the information theory model, was 
developed by Lewis in [9]. This is called as the measure of closeness in [l] or the measure of divergence in [7]. 
The closeness of approximation is defined as the difference between the information contained in the actual 
distribution and the information contained in the approximate distribution. For notation convenience, the authors 
will denote Cj< X) = Mj in D by Cj. Without approximation, the (K + 1)s~order probability distribution is 
converted into a product of low-order distributions, using the definition of chain rule: 

P(C,,C, ,..., CK’CK+])=P(C,)P(C21C,)...P(CK+,IC,’C2....’CK). 

Chow and Liu [l] struggled to solve the optimization problem proposed by Lewis in [9] and to approximate 
optimally an &h-order binary variable distribution by a product of (n - 1) second-order component distribu- 



H.-J. Kang et al./ Injbrmation Processing Letters 6.2 (1997) 67-75 69 

tions. In their work, a method was presented to approximate optimally an &h-order discrete probability 
distribution by a product of the distributions of first-order tree dependencies, using the Maximum Weight 
Spanning Tree (MWST) algorithm of Kruskal. Because they focused on only first-order dependency, however, 
their method was not appropriate to consider high-order dependency. For example, it is such a case that a 
classifier mainly follows more than two classifiers. 

In this paper, the authors propose a dependency-directed approach for approximating the (K + l)st-order 

probability distribution with an optimal product set of kth-order dependencies where 1 G k < K, and a 
probabilistic combination method of multiple decisions using a Bayesian formalism. This new approach can be 

regarded as a natural extension of the first-order dependence tree proposed by Chow and Liu in [l]. The authors 
assume that the dependency can be stochastically determined by only observing classifiers’ decisions obtained 

from samples. The order of dependency can be increased up to the higher for better approximation. 

When first-order (i.e., k = 1) dependency is considered, the approximate distribution is defined in terms of 
second-order distributions like the following expression: 

Kfl 

p,(C,, cz,...,CK, C,+,) = n P(C,,IC,,,I,,), whereO<i(j) <j, 
j= 1 

such that C,, is conditioned on C”;(,), and where n,, n2,. . . , nK, nK+, is a permutation of integers 

1, 2,..., K, K + 1. And P(C,, I C,> means P(C,,), by definition. By applying the dependence tree method by 
Chow and Liu [l] to the first-order directed approximation of the (K + l)st-order probability distribution P 
composed of a true decision CK+ , and multiple decisions C,, . . . , C,, the authors can determine both the 

permutation of n,, n2,. . . , nK, nK+, and their conditioned permutation of n,(,), nic2), . . . , njcKj, nicK+ ,) from 

the chosen optimal dependence tree. The details on the algorithm of finding the optimal dependence tree are 
referred in [ 1,111. 

On the other hand, if C,,; ,) 
conditionally independent o f 

in the expression (1) is identical to all the C,,, that is, the Cj are assumed to be 
each other for a given CK+ ,, i.e., decision m, then the approximate distribution is 

defined in terms of second-order distributions like the following expression: 

Such an approximation is regarded as a well known conditional independence assumption which can be defined 
as a particular case of first-order dependency approximations. 

When second-order (i.e., k = 2) dependency is considered, the approximate distribution is defined in terms of 
third-order distributions like the following expression: 

K+I 

P,(C,, C,,...,C,, C,,,) = n P(C,,,ICn,2r,j. C,,i,j,), where O<i2(j),il(j) <j, 
j= I 

such that C,, is conditioned on both Cn,*(,, and C,,,( ), and where n,, n2,. . . , nK, nK+, is a permutation 

of integers 1, 2,. . . , K, K + 1. And P( C,, 1 C,, Cn,,(,J means P(C,,, C”,,(,)), by definition. For notation 
convenience, the authors will drop the subscript n and denote, for example, C”, by Cj in subsequent 
discussions. The authors can also use the measure of closeness for approximating optimally distribution with a 
product of second-order dependencies like the following expressions: 

P(C) 
I(P(C), P,(C)) = cqq log - 

c P,(C) 
K+l 

= I$p(c) lolit p(c> - C CpCc> log p(cjIci*(j)~ 'i,(j)) 

j=l C 
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K+l 

= -H(C) - c CP(C) log P(Cj) 
j=l C 

K+I 
‘(‘jlci2(j)* ‘ii(j)) - 

c 
j= I 

yw 1% 
‘(‘j) 

i2(j)+O,il(j)#O 

K+l K+I 

=- 
c M(Cj; ‘Z(j)9 ‘i,(j)) ,=, + C H(cj)-H(C)7 

j= I 
i2(j)#O,il(j)#O 

(3) 

H(C) = - CP(C) log P(C), 
c 

M(Cj; ci2(j)’ ‘iI( = C p(cjl ci2(j)y ci*(j)) log 
p(cj 1 'iZ(j)v ‘i,(j)) 

c,*c,2( j),ctl(j) '('j> . 

From the above expression (3), minimizing I( P(C), P,(C)) is to maximize CjK_+,‘M(Cj; Cq jj, C,,( j,) which 
is the total sum of average mutual information (see [2]) satisfied with a given constraint, since the remaining 
terms (i.e., l#I~~,‘Zf(C,) and H(C)) are constant. Then, the next step is in how to identify an optimal set of 
second-order dependencies from all the permissible product sets. The process of identifying the optimal set of 
second-order dependencies can be algorithmically described as follows. This algorithm begins with one of the 
first-order dependencies as a constraint of the probability property, and ends with a set of optimal (K - 1) 
second-order dependencies which has maximum CiK_‘,‘M(Cj; Ci2( jj, Ci,( jj), using an exhaustive search. 

Algorithm for second-order dependency 

Input: 
The set of s samples S’, S*, . . . , S”. 

output: 
The optimal set of second-order dependencies identified as per the measure of closeness. 

Method: 
1. Estimate the second- and third-order marginals from the various samples. 
2. Compute the weights M(Cj; C, j,) and M(Cj; CiZ( jJ, Cilc jj) for all pairs and triplets of classifiers from the 

samples. 
3. Compute the maximum weight of first- and second-order dependencies and its optimally associated set. 

for n = 1 to number of first-order dependencies do 
choose one of first-order dependencies as a constraint; 
compute the weight of permissible second-order dependencies according to the chosen first-order one; 
find the maximum weight and identify the set of its associated dependencies; 

end 

4. Determine a finally identified set as the optimal, according to the final maximum weight. 

End of Algorithm 

Example. The following are the values of the average mutual information computed for the second- and 
third-order dependencies from a fourth-order probability distribution composed of three decisions C, , C,, C, of 
three classifiers E, , E2, E, in experiments and a hypothesized decision variable C,. 
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M( C,; C,) = 2.217871; h4( C,; C,) = 2.227739; M( C,; C,) = 2.272387; 

M( C,; C,) = 2.185223; M( C, ; C,) = 2.207577; M( C,; C,) = 2.238237; 

M( C,; C,, C,) = 2.263796; M(C,; C,, C,) = 2.221280; M(C,; C,, C,) = 2.231146; 

M( C,; C,, C,) = 2.284759; M(C,; C,, C,) = 2.219949; M( C,; C,, C,) = 2.274464; 

M(C,; C,, C,) = 2.276317; M(C,; C,, C,) = 2.242167; M( C,; C,, C,) = 2.286815; 

M( C,; C,, C,) = 2.211508; M(C,; C,, C,) = 2.242168; M( C,; C,, C,) = 2.264522; 

The authors applied the conditional independence assumption to the fourth-order distribution and obtained 
the following first line result, and by applying the dependence tree method to the same distribution, the authors 

also obtained the following second line result. In the following results, * means optimal result. 

P,(c,, c,, c,, c,) =P(c,, c,)P(c&)P(c, tc,): C~=6.717997, 

P,(c,, c,, C3, c,) =P(c,, c,)P(c, Ic,)P(c,Ic,): C~=6.728495*. 

For the purpose of considering more available information, the authors applied the proposed algorithm for the 
second-order dependency to the same actual distribution and obtained the following results. 

P,(C,, C,, C,, Cd) =P(C,, C,)P(C, I C,, C,)f’(C, 1 C,, C,): CM= 6.735832, 

P,(C,,C,,C3,C4)=P(Cq,C,)P(C31C4,C,)P(C*IC,,C3): &k’=6.734503, 

C,, C,): c M = 6.735834*, 

c,, c,): CM = 6.735834*, 

C, , C,): c M = 6.734504, 

C,, C,): c M = 6.735834” , 

c,, c,): C~=6.735834*, 

P,(C,, C,, C,, C,) =P(C,, C,)P(C, IC,, C~)P(C,IC,> C,): CM=6.734504, 
P,(C,, c,, c,, Cd) =P(C,, C#(C,IC,~ C,)P(C,IC,, c,): c M = 6.734504, 

P,(C,, C,, C,, C,) =P(C,, C,)P(C,IC,, C$‘(C,IC,, C,): CM=6.734504, 

P,(C,, C,, C,, C,) =P(C,, C,)P(C,IC,,C,)P(C, IC,, C2): CM=6.735834*, 

ZJ,(C,, c,, c,, c,) =P(c,, c,)P(c, Ic,, c,)~(c,Ic,, c,): C~=6.734504. 

From the above results, the authors can choose one of P(C,, C,)P(C, I C,, C,)P(C, I C,, C,>, 

P(C,, C,)P(C, I C,, C,)P(C, I I C,, C,)p(C, I C,, C,>, and P(C,, C,) . 
P(C, I C,, C,)P(C, I C,, C,>, as an optimal product set for the second-order dependency, because they have the 
maximum weight of second-order average mutual information. 

On the other hand, if C,,,(,, in the expression (2) is the same for all the C,,, that is, C, is assumed 
to be conditionally dependent on Cni2 ,) for the given CK+ , , 
terms of third-order distributions like the following expression: 

then the approximate distribution ‘Is defined in 

P,(C,* C,,...,CK, CKCI) = i;~(qcn,2~,~l cts,+,)~ where 0 6 i2( j) < j, 
j= I 

such that C,, is conditioned on both C, and Cn,+,> and that n,, n2,. . . , nK is a permutation of integers 
1,2,..., K. And, P(C,, I C,, CK+ ,> rne2: P(C,,, CK+ ,>, by definition. Such an approximation is called a 
conditional first-order dependency approximation which can be defined as a particular case of second-order 
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dependency approximations. From the previous example, the identified optimal product set by conditional 
first-order dependency is P(C,, C,)P(C, 1 C,, C,)P(C, 1 C,, C,) or P(C,, C,)P(C, 1 C,, Cs)P(C, 1 C,, C,). 

By using the new systematic dependency-directed approximation, the order of dependency to be considered 
can be easily extended to the M-order for approximating probability distributions under permissible resource 
requirements. The optimal k&order dependency product set consists of a first-order dependency, a second-order 
dependency, . . . , a (k - l)st-order dependency, and some (i.e., K - k) M-order dependencies which have 

maximum CjK_‘,lMC,j I Cn,kc,I,. . . , Cnlzt,), Cnilcj,). 

Po(C,, c*f---,G, C,+,) = I-I P(CnjICn,ii(,)~...,Cn;q,), cn,,,,,)7 j= 1 

whereO<ik(j) ,..., i2(j),il(j)<j. 

3. Probabilistic combination of multiple decisions 

Using the approximate distribution obtained from an optimal set of M-order dependencies, the authors can 
apply them to a Bayesian formalism for probabilistically combining multiple decisions. For each hypothesized 
decision Mi, by using the Bayesian theorem and an optimal product set of first-order dependencies, and by 
letting a decision term Mi E M be denoted by CK+ ,(x) = MK+ ,, the authors have the following formula: 

&l(Mi) =P(MiEMIC,(x) =M,,...,C,(x)=M,) 

P(M,EM, C,(x) =M,,...,C,(x) =MK) 
= 

P(C,(x)=M I,..., C,(x)=M,) 

I-I Yl p( q xl = 4, 1 Cn,J xl = M,,(,,) = 
P(C,(x)=M ,,..., CK(x)=MK) 

K+I 

=77 l-I p(q x> = Mn, 1 C”;J xl = M,;J 9 
j= I 

n,=K+l or n,t,,=K+l I 

with q as a constant that ensures that Cf= ,Bel(Mi) = 1. And, n,, n,, . . . , nK, nK+ , is a permutation of integers 
1,2,..., K, K + 1. Depending on these Bel( Mi) values computed by combining multiple decisions, the authors 
choose a maximized posterior probability, and a combined decision is determined as a decision M,, according to 
the decision rule E(D) given below: 

E(D) = 

i 

Mi if Bel( Mi) = pyaxBef(Mj), 
I 

L + 1 otherwise. 

If an optimal set of second-order dependencies is used for the higher-order dependency, then the combining 
formula is expressed as follows: 

Bel(Mi)=P(MiEMIC,(x)=M,,...,C,(x)=M,) 

P(M+M,C,(x)=M ,,..., C,(x)=M,) 
= 

P&(x) =M ,,..., C,(x) =M,) 
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K+l 

z 
77 I-I p(q x> = Mnj 1 Cn,*J x> = Mn,*(,). Cn;J x> = Mn;,J 7 

n =.+I’,;,’ I ,,,=K+ I 

with r) as a constant that ensures that Cf= ,Bel( Mi) = 1. And, n,, n2,. . . , nK, nK+ , is a permutation of integers 

1,2,..., K, K + 1. The authors can also apply the above decision rule E(D) to combining multiple decisions 

on the basis of second-order dependencies. 

4. Experiments 

The authors have three classifiers El, E2, E3 for recognizing totally unconstrained on-line handwritten 

numerals and English characters. These classifiers are the components of a Base system. For demonstrating the 
effectiveness of the dependency-directed approach, some multiple classifier systems were built by adding the 
highly dependent classifier created by faking one of the component classifiers to the Base system. For example, 
an El faked system consists of the component classifiers and a ditto of an El classifier. In order to identify an 
optimal product set of M-order dependency, 4088 numerals written by 13 subjects, and 3749 lowercases and 
2464 uppercases by 19 subjects were used as a training data set. And, as a test data set, 988 numerals written by 
10 subjects, and 1684 lowercases and 1169 uppercases by 9 subjects were used. The subjects of the training data 
were different from those of the test data in each application area. A reject recognition result sample of a 
classifier was excluded in identifying the optimal product set and in combining multiple decisions. In other 
words, only valid recognition results were considered. The recognition rates of the component classifiers on the 
test data are shown in Table 1. 

From the experimental results (see Table 2) on numerals data, the M-order dependency based combination 
methods (i.e., lst-order Dep., Cond. lst-order Dep., and 2nd-order Dep.) showed better performance than a 
conditional independence assumption based combination method (i.e., Cond. Indep.) and the BKS method. The 
best recognition rates on lowercases data (see Table 3) were obtained by a conditional first-order dependency 
based combination method (i.e., Cond. lst-order Dep.) over all multiple classifier systems. The best recognition 
rates on uppercases data (see Table 4) were obtained by the conditional first-order dependency based 
combination method over all multiple classifier systems except an E3 faked system. In case of the E3 faked 

system, the best recognition rate was obtained by a second-order dependency based combination method (i.e., 
2nd-order Dep.). 

When higher-order dependency was considered, the recognition rates were increased, as shown in the tables 
(see Tables 2-4). However, the computational complexity in identifying the optimal product set would increase, 
too. In the conditional independence assumption based Bayesian method, identifying the optimal product set has 
computational complexity O(l) regardless of the number of classifiers, since that is unnecessary. In case of 

Table 1 
Recognition rates (%) of classifiers on the test data 

Classifier Numerals 

1st rcj. 

Lowercases 

1st rej. 

Uppercases 

1st rej. 

El 93.09 0.61 78.92 1.25 88.37 1.80 
E2 92.28 0.10 82.30 0.53 91.02 0.43 

E3 94.39 1.32 86.05 2.73 87.5 I 4.23 
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Table 2 

Recognition rates (%) of multiple classifier systems on numerals data 

Comb. Method Base El faked E2 faked E3 faked 

BKS 

1 St 

94.09 

rej. 

2.61 

1st tej. 

94.09 2.61 

1 st 

94.09 

rej. 

2.61 

1st rej. 

94.09 2.61 

Cond. Indep. 94.99 0.10 94.59 0.10 95.29 0.10 94.69 0.10 

lst-order Dep. 95.49 0.10 95.49 0.10 95.49 0.10 95.49 0.10 

Cond. 1 St-order Dep. 95.59 0.10 95.59 0.10 95.59 0.10 95.59 0.10 

2nd-order Dep. 95.59 0.10 95.59 0.10 95.59 0.10 95.59 0.10 

Table 3 

Recognition rates (%) of multiple classifier systems on lowercases data 

Comb. Method Base El faked E2 faked E3 faked 

BKS 

1st rej. 1st 

86.05 1.36 86.05 

rej. 1st 

7.36 86.05 

rej. 1st 

7.36 86.05 

rej. 

7.36 

Cond. Indep. 87.00 0.42 86.22 0.42 87.29 0.42 87.23 0.42 

1 St-order Dept. 86.46 0.42 86.46 0.42 86.46 0.42 86.46 0.42 

Cond. 1 St-order Dep. 87.35 0.42 87.71 0.42 87.65 0.42 87.35 0.42 

2nd-order Dep. 86.64 0.42 86.64 0.42 86.64 0.42 86.64 0.42 

first-order dependency, the computational complexity needed for identifying the optimal product set is 
O(N . log N) where N is the total number (i.e., f< K + 1)K) of edges in the graph G. In addition, the 
computational complexity for identifying the optimal product set of second-order dependencies is O( N. N) 
where the former N is the same as that of first-order dependency and the latter N is the total number (i.e., 
Cf= *(K + 1 - d)C(d, 2)) of permissible second-order dependencies according to the chosen first-order depen- 
dency, where C(d, 2) is a combination function in statistics. Although it is somewhat complex to consider the 
higher-order dependency, it is better to consider the higher-order dependency, since the recognition rates might 
be increased and the complex identification computation is conducted only once at training stage. But, it is not 
always guaranteed that considering the higher-order dependency leads to high performance. 

In summary, the performances of the BKS method were unchanged even though the highly dependent 
classifier was added to the Base system. The recognition rates obtained by the higher-order dependency based 
combination method were higher than those by the lower-order dependency based one, in most cases. The low 
recognition rates by the second-order dependency based combination method on lowercases and uppercases data 
were caused by the lack of a large enough and well representative training data set. Incorporating the kh-order 
dependency into a Bayesian formalism contributed to improvement on the performance of combining multiple 
classifiers, especially when the highly dependent classifier was included. The difference of recognition rates 

Table 4 
Recognition rates (%) of multiple classifier systems on uppercases data 

Comb. Method Base El faked E2 faked E3 faked 

BKS 

I St 

89.14 

rej. 

6.24 

1st rej. 

89.14 6.24 

1st rej. 1st rej. 

89.14 6.24 89.14 6.24 
Cond. Indep. 90.59 0.43 90.59 0.43 91.10 0.43 89.22 0.43 
1 St-order Dep. 88.79 0.43 88.79 0.43 88.79 0.43 88.79 0.43 
Cond. I St-order Dep. 91.27 0.43 91.10 0.43 91.45 0.43 89.3 1 0.43 
2nd-order Dep. 91.27 0.43 90.16 0.43 90.16 0.43 91.27 0.43 
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between the conditional independence assumption based combination method and the best &h-order depen- 
dency based combination method was usually statistically significant by t-test at significance level 0.01. 

5. Summary 

The first task of this paper is to present a new method which approximates optimally a high-order probability 
distribution by the higher-order dependency including a first-order one for probabilistically combining multiple 
decisions. This is regarded as the extended works of Chow and Liu. And, the second task is to provide a 
probabilistic combination of multiple decisions based on the H-order dependency, using a Bayesian formalism 
without an independence assumption. The experimental results show that the higher-order dependency should be 
also considered in combining multiple decisions, and the M-order dependency based combination method 
works very well if an optimal product set is constructed by a representative training data set. 

References 

[l] C.K. Chow and C.N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inform. Theory 14 (3) 

(1968) 462-467. 

[2] R.G. Gallager, Informdon Theory and Reliable Communication (John Wiley and Sons, New York, 1968). 

[3] Y.S. Huang and C.Y. Suen, An optimal method of combining multiple classifiers for unconstrained handwritten numeral recognition, 

in: Proc. 3rd Internat. Workshop on Frontiers in Handwriting Recognition (1993) 1 l-20. 

[4] Y.S. Huang and C.Y. Suen, A method of combining multiple experts for the recognition of unconstrained handwritten numerals, IEEE 

Trans. Pattern Analysis Muchine Intelligence 17 ( 1) ( 1995) 90-94. 

[5] J.J. Hull, A. Commike and T.-K. Ho, Multiple algorithm for handwritten character recognition, in: Proc. 1st Internat. Workshop on 

Frontiers in Handwriting Recognition (1990) 117- 129. 

[6] H.-J. Kang and J.H. Kim, Dependency relationship based decision combination in multiple classifier systems, in: Proc. 14fh Internar. 

Joint Conf on Artificial Intelligence, Vol. 2 (1995) 1130- 1136. 
[7] H.H. Ku and S. Kullback, Approximating discrete probability distributions, IEEE Trans. Inform. Theory 15 (4) (1969) 444-447. 

[8] D.-S. Lee and S.N. Srihari, Handprinted digit recognition: A comparison of algorithms, in: Proc. 3rd Internat. Workshop on Frontiers 

in Handwriting Recognition (1993) 153- 162. 

[9] P.M. Lewis, Approximating probability distributions to reduce storage requirement, Inform. and Conrrol 2 (1959) 214-225. 

[IO] C.Y. Suen, C. Nadal, T.A. Mai, R. Legault and L. Lam, Recognition of totally unconstrained handwritten numerals based on the 

concept of multiple experts, in: Proc. 1st Internat. Workshop on Frontiers in Handwriting Recognition (1990) 13 1- 143. 

[l I] R.S. Valiveti and B.J. Oommen, On using the chi-squared metric for determining stochastic dependence, Parrern Recognition 25 (11) 

(1992) 1389-1400. 

[12] L. Xu, A. Krzyzak and C.Y. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE 

Truns. Systems, Mun, Cybernet. 22 (3) (1992) 418-435. 


