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 470 PROPERTIES OF FUNCTIONS [June-July

 periodic continuous functions f, p times differentiable, and such that the pth de-

 rivative satisfies a Lipschitz condition of order a: |f (x) ( f(P) (x') I _ MI x-x' I .
 Then Jackson's theorem asserts that if fGA(p+a, M), then, as a reward for
 this smoothness, f has a small degree of approximation:

 (1) En(f) <!5 Const. n-(P+,").

 The theorem of Bernstein asserts that inversely, if (1) is satisfied for all n, then

 f is smooth: fEA(p +a, M).
 We shall look upon these theorems as dealing with classes of functions. For

 example, Bernstein's theorem can be explained by saying that the class

 A(p+a, M) has such a great thickness, width, massivity, that it is not possible
 to approximate all its functions too well by trigonometric polynomials of a given
 degree n. One will notice that this formulation carries with it the conjecture
 that the degree of approximation will not improve substantially if we replace
 the trigonometric polynomials by other means of approximation. And such is

 indeed the case.
 The dealing with classes of functions rather than with individual functions is

 also justified, I am sure, from the point of view of the modern computer. He
 has often to compute many functions at once, functions whose properties he

 does not know well, or has no time to investigate. He will want to base his
 approximation methods on properties which are common to all functions of his
 class, without being interested to know that for some of them a better approxi-
 mation exists.

 2. Entropy and capacity.
 2.1. Let A be a compact metric space with a metric p. The following defini-

 tions are well known. A finite set of points x1, * * *, xp of A is called an e-net in

 A if e> 0 and if for each xCA there is at least one point xi of the net at a dis-
 tance from x not exceeding e: p(x, xi) <e. A family U1, * * * , U,, of sets is an
 6-covering of A if A C U Ui and if the diameter of each set Ui does not exceed 2e.
 It is convenient to take here 2e and not e in order to simplify the relation between
 the two definitions. In fact, if xi, * * *, xp is an e-net for A, then the balls with

 centers xi and radius e form an e-covering of A. A standard theorem of topology
 guarantees that a compact metric space A has a (finite) e-net for each e>0.
 Hence A has also a finite e-covering for each e> 0.

 Of course, the number n of sets Ui in a covering family depends on its
 choice, but the minimal value of n, N.(A) =min n is an invariant of the set A
 which depends on e>0. The logarithm

 (1) HJT(A) = log NA (A)

 is the entropy of the set A.* It was Kolmogorov's idea [11, 13] to characterize
 the 'massiveness" of a set A by means of this function. We are interested, of

 * There is a relation of analogy between H6(A) and the probabilistic entropy [7]. To underline
 the distinction, we propose to call H1(A) the metric entropy of A.
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 1962] PROPERTIES OF FUNCTIONS 471

 course, in the asymptotic behavior of Hf(A) for e->0; in general, H.(A) will in-
 crease rapidly to infinity. We take logarithms in (1) partly because N"(A) is
 often unwieldily large.

 Points yi, * * *, y of A are called e-distinguishable if the distance between
 any two of them exceeds e. Again, their number m depends on the choice of the
 points, but the maximal value of m (which exists, as we shall see in a moment),
 Me(A) = max m is an invariant of A. We put

 (2) C(A) = log M(A);

 this is the capacity of A.
 The general theory of entropy and capacity is not rich; the main result is the

 following simple

 THEOREM 1. For each compact metric set A and each e >0,

 (3) CN6(A) :! He(A) <,!5 Ce(A).

 The reasons for these inequalities are easy to see. Let yi, * * , y, be a
 2e-distinguishable set of points of A, and let U1, * * *, U, be an e-covering of A.
 Then m<n, for otherwise at least one set Ui would contain two points y and
 consequently would have a diameter greater than 2e. We have therefore
 M2E(A) _ Ne(A). (It follows also that M2 (A) is finite for each 2e.) On the other
 hand, if zi, . , z,m is a maximal set of e-distinguishable points (with m'
 -M,(A)), then it is also an e-net in A, for otherwise there would exist a point
 z in A with p(z, zi) > e for all i, and this would contradict the maximality of the
 set of the zi's. As we know, there is then an e-covering of A which consists of
 m' sets. Hence NE(A) < M6(A), and taking logarithms in the established rela-
 tions, we obtain (3).

 The exact determination of the entropy and the capacity of a set A is in
 most cases very difficult. Often one is satisfied to compute them only up to a
 strong or a weak equivalence; we write f(e) -'g(e) -or f(e) g(e) for e-*0 if
 f(e)/g(c)->1 or if respectively this quotient remains between two positive con-
 stants for e-0O. In this connection Theorem 1 is used in the following way: one
 tries to find an upper bound for H,(A) (often also for the logarithm of the
 number of points of an e-net in A) and a lower bound for C2,(A); if the bounds
 are close to each other, a good estimation of both entropy and capacity will
 result.

 We shall discuss the most important sets A for which entropies are known
 (see [13, 18]). Of course, each time not only the set A, but also its metric must
 be given.

 2.2. s-dimensional spaces. If A is a bounded closed set with interior points
 in the s-dimensional euclidean space R8, then

 1
 (4) N,(A) - c8, hence H,(A) = s log - + 0(1).

 6
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 472 PROPERTIES OF FUNCTIONS [June-.July

 If A has some regularity, for instance if it is an s-dimensional parallelopiped

 with measure j A I, then more exactly

 (5) N,(A) - v. I A I E-8, M,,(A) UJg I A I E-J
 with some constants v,, ,.t.. All this is quite elemnentary.J3ut the calculation of

 v., ti, for s>2 is a difficult (unsolved) problem of number theory; it is connected
 with the determination of the tightest packing of balls into R1?, and of the most
 economical covering of Rs by balls.

 2.3. Smooth functions. Let B be an s-dimensional parallelopiped in RJ. A
 function f(x) =f(x, * , x.) on B is smooth with the degree of smoothness
 p +a, where p = 0, 1, , 0 <a < 1, if it has on B all partial derivatives of orders
 less than or equal to p. In addition, each partial derivative of order p,
 DPf(xi, , x,) must satisfy a Lipschitz condition with exponent a:

 (6) |DPf(xi, x*,XJ)-DPf(x( X **X:) | M max ix,-x a.

 For example, if p= 0, we obtain the class Lip cz.

 The metric will be determined by the uniform norm on B: Mf a = max.CB If(x) |
 But the classes just defined are not compact in this metric, and have no entropy.
 We consider therefore the smaller sets

 A :; A(P + a, s, COy . . *, Cp, M).

 The set A consists of all functionsf on B, smooth of degree p+a, for which all

 kth derivatives Dkf, k =0, , p satisfy 1,Dkf I Ck, while all pth derivatives
 satisfy in addition (6).

 THEOREM 2 [13, 18]. With the metric given by the uniform norm, one has

 (7) He(A(p + a, s, Co, , Cp, M)) 6-I8(P+a)

 the same is true for the capacity C(A).

 Consider first the case s = 1, when B is a segment [a, b]. Let A> 0 be a small
 number. The points xl=a+A, *, xn:a+nA, where n is so chosen that
 a+nA ?b <a+(n+1)A, form not only a A net for B, but also a A-chain: any two
 consecutive points Xk, Xk+1 are at a distance ?A from each other. The only
 computational device available for functions fCA is Taylor's formula; it is
 clear therefore that we must use it. This formula gives for instance the value
 f(xk+l), if the values of the function f and of its derivatives at the preceding
 point Xk are known:

 A ~~~~AV 4 -v
 (8) f(xk+l) = f(xk) + -f'(Xk) + * * + -f(p)(Xk) + - [f(P)(t) -f(D)(Xk)I,

 1 <

 Xk < t < Xk+l,
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 1962] PROPERTIES OF FUNCTIONS 473

 Let us first try to estimate He(A) from above; for this purpose we must find a
 fairly economical covering of A by sets U of diameter <2e. The formula (8)

 gives us the idea to let each U coinsist of functions fCA for wlhich the deriva-
 tivesf () (xk), i = 0, 1, - - - , p; k = 1, * * * , n, are given with an error not exceeding

 small fixed numbers ei>0. More formally, each U will be given by the in-
 equalities

 (9) mtkfi -< f(i)(xk) < (mik + l)ei.

 Thus each set of integers mik determines a set U; but some of the U may be
 empty.

 How should we select the Ei? Surely in such a way that if we substitute
 mike, for f(M)(xk) into (8), and zero for the last term, the errors of all terms would
 be approximately equal: it does not make sense to compute some terms of a sum

 very carefully if large errors are comnmitted in others. This leads to the fornmula
 ei= CEA-i. An easy calculation shows that the diameter of each U indeed does
 not exceed 2E if one selects the constant C properly and puts A =-1/0P+).

 It remains to estinmate the number N of sets U which contain functions from
 A. For each k, for inistance for k= 1, it is easy by means of If(')(xi) I <?Ci to
 estimate the number of the possible integers mix from above; one obtains that
 the number of ndi with a given i does not exceed 2Ci/ei+2. This gives us an
 upper bound for all possible combinations of the mi1, i=0, * * *, p the number

 const. It _o E l. If donie for each k, this would give an unsatisfactorily large
 upper bound for N. Instead, we do this only for k = 1; for the following values of
 k, the smoothness of our function and Taylor's formula give a much more
 precise information about the number of possible integers m,k once the mi, k-
 are known. Thus one obtains N? C, hence H,(A) 5const. n < const. A-'
 <const. e-1/(P+a). We do not discuss the estimation of C2.(A) from below: this
 is much simpler.

 In this way we obtain (7) for s_ 1. For larger values of s, the computation
 remains the same; the only difference is that now a A-chain in B consists of

 A points.

 2.4. Functions of bounded variation. The set V of all functions f of bounded
 variation on [a, b], restricted by If(x)I <1, Varf 1 is not compact in the unli-
 form norm. But if the distance p(fi, f2) is defined as the Hausdorff distance [8,
 p. 1661 between the curves y=fl(x), y=f2(x), G. F. Clements (Syracuse Uni-
 versity) obtains H,(V) e-l. If V,, is the intersection of TV with Lip, a, 0 <a < 1,
 then in the uniform norm, H,(Va) -e- log 1/e.

 2.5. Analytic functions. Classes of analytic functions have smaller entropy
 than the classes A. We begin with Ar(C), r> 1, this consists of all functions f(z)

 analytic in IzI <r and continuous in I zj I r, with the absolute value in I zI :r
 bounded by C, the metric being given by the uniform norm on I zj I 1.
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 THEOREM [13, 18]. Both the entropy He(Ar) and the capacity Ce(A,) are given by

 1
 log2 -

 (10) + o(log log log!-.
 log r \ e Ie/

 To obtain this result, we use the Taylor series representations

 00

 (11) f(z) = E ckIzI Izi < r
 kc=O

 of functions fCA,. and the following facts about their Taylor coefficients ck:

 00 00

 (12) ff11 _E Z ck ; (12a) max If(z) I < E I cki rk;
 o Il;Ir 0

 (13) I ck | < ; (13a) I Ck I < Cr-k.
 The first two relations are obvious, while the last two follow from the Cauchy

 estimates of Taylor coefficients applied to circles zI < 1 and Iz < r, respec-
 tively.

 The entropy HE(A,) can be estimated as follows. For an fCA,. given by (11),
 we put r,(z) = cz=n+l ckz, and begin by finding by means of (13a) an n for which
 ||rn_l < -e for allfCAr. One gets n -log 1/e. Now consider the Taylor coefficients
 ck = ak+iO3k of functions f for k = 0, 1, , n. Let a', X denote the closest
 approximations from below to a7, i7 by means of integral multiples of e/2 (n + 1):

 (14) 4 k) = elk/2(n + 1), p3k = emk/2(n + 1), k = 0, * * *, n.

 Let U be the set of allfCA, for which a k, X t' have some given set of values. It is
 obvious from (14) that the diameter of U does not exceed 2e, and it is clear that

 the U cover A,. The number N of the sets can be estimated from above if we
 note that by (13a), each of the integers 1k, mk in (14) takes _const. r-kne-
 values. This allows us to show that log N does not exceed (10).

 In an equally simple way we can estimate the capacity C26(A,) from below.
 One has merely to find constants ak such that

 (15) |a k ak, j |ak, k = 0, 1, *
 will implyf(z) =(aek+iI3k)zkCAr. For instance ak = C/(4krk) will do. Then we
 allow ak, /k to take all integral multiples of 3e for some e> 0 which satisfy (15).
 The number of all possible selections is easily estimated, and (13) insures that
 the corresponding functions are 2e-distinguishable. In this way (10) proves to

 be a lower bound for C2,(A,).
 More general sets A of analytic functions are the following. Let K be a

 bounded continuum in the plane, and G a bounded open set containing K. Let
 A consist of all functions analytic in G continuous, and bounded by a constant
 on G, with the distance given by the uniform norm on K. Then [5, 13]
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 1
 (16) IL(A),--, rT(K, G) log2 -

 e

 The constant r(K, G) can be determined in many cases (for instance by means

 of the "conformal radius" of the. pair K, G). The main difference with the proof
 sketched above is that one uses other representations instead of the Taylor

 series: expansions in series of Tchebyshev polynomials (if K is a segment and
 G an ellipse), of Faber polynomials, etc. In the general case, expansions sug-
 gested by Erohin [41 can be used. If A consists of functionsf(z), z = x +iy analytic
 in a strip -I < y _ 1, periodic with period 27r, then Fourier series expansions will
 be used. Very similar computations are possible for analytic functions of several

 variables. Let for example A= A7,..., 7(C) consist of functions f(zi, * * * , z,)
 analytic in the region Izil <r, r , z.jI <r8, ri>1, i=l, , s, and continu-
 ous and bounded in absolute value by C on its closure; then for the uniform

 norm on Izi| zl * I * 1 onehas [18]:

 2 1
 H. (A) -,log8+1 -

 (s + 1)!logri. * . logr. e

 Also the entropies of sets of entire functions with some restrictions on their
 growth at infinity have been determined [13, 18].

 3. Widths.

 3.1. We shall now discuss another function associated with a set A, which
 characterizes its "massivity" in a different way, the n-dimensional width dn(A)
 of A. Also this notion is due to Kolmogorov [10], who computed for the first
 time the exact widths of some sets. Let us first agree on some notations. Let A

 be a bounded subset of a Banach space X, G-{ gn, } a sequence of elements of X.
 Then

 (1) ~~~~~Enf = i'nf fI- _ ii|
 ai i=1

 where the infimum is taken for all selections of real scalars ai, is the degree of
 approximation of f by G;

 (2) En (A) = sup En (f)
 fEA

 is the degree of approximation of the set A by G; finally

 (3) dn(A) = inf En(A))

 is the optimal degree of approximation, the n-th width of A. The infimum in (3)
 is taken for all possible selections of sequences G in X. (Actually, only the first n
 elements gtEG play a role.) The name width is justified geometrically, because
 in order to obtain dn(A), we take the maximal distance of A to an n-dimensional
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 plane in X passinig through the origin, and then vary the plane, and take the
 minimum of the distances, for all possible planes.

 The width dn(A) depends not only on the set A, but also on the norm
 selected, or more exactly upon the space X; one writes dx(A) ill order to empha-
 size this dependence.

 Examples: if A is the closed unit ball in X, then one shows that dn(A) = 1
 for all n, which are smaller than the dimension of X; and if A is compact, then
 dn(A)-*O for n-> oo .

 It is the case of a compact set A which shall occupy us in the following. For
 a few sets A of functions, the widths are exactly known; in most ca.ses one has
 only their estimates. It is the asymptotic behavior of dn(A) for n-*c that shall
 be of primary interest to us. The inequality d,,(A) :E5(A) is often useful as an
 estimate from above; in fact, the degree of approximation E6(A) is known in
 cases when the linear combinations 7n aigi are all polynomials, or all trigono-
 metric polynomials, etc. And it is to be expected that this selection of G will
 make E'(A) its minimum, or at least close to it.

 3.2. Estimation of dn(A) from below. In many simple cases, the followinig

 lemnma, giveni by Kolmogorov anid the author [14, 16] is useful. Let A be a
 compact subset of the space C(B) of cointinuous functions which are defined on
 a compact infinite metric set B. Consider all numbers 8>0 with the following
 property. There exist n+1 points of B, xo, xi, * * *, xn such that for each dis-
 tribution of signs, ek 1, k=0, 1, * * , n, one can find a function fCA with

 (4) sign f(xk) -Ek, f(Xk) | >, k = O, I , n.

 Then one has:

 LEMMA 1. For each A C C(B) and each 8 of the described kintd,

 (5) dn(A) 2 8.

 Thus the main problem in application of this lemma is to find the best dis-
 tribution of points x, in B.

 The proof is simple. Let G= gn } be arbitrary. The n linear equations

 >3_oCkgi(Xk) =0, i= 1, * * , n, with n+1 unknownis ck have a nonzero solution,
 which we may assume to be normed by Zk _ 0 Ckf = 1. Select a function of fzA
 satisfying (4) with Ek=sign Ck. Then.

 f - aigi ZCk f(Xk) E aigi(g(xk)J
 i-1 k-0 Ls=

 := E ckf(xk) ?> Ick|638,
 kh 0

 hence EG(f) 2 b, and (5) follows.
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 Also for other metrics similar lemmas exist. If A is a subset of the space
 L'(B) of integrable functions oIn B with respect to a measure ,u, then one has:

 LEMMA 2 [14]. Assume that n, p are positive integers, a ?0 and that B = U"'j Bk
 is a partition of B into disjoint measurable sets with the property that for each dis-

 tribution of signs k= ? 1, k = 1, , n ?p, and for each selection of p sets
 Bki, i = 1, , p, there is a function f GA with

 sign fd= . ek k = 1, , n + p; f fd,26, =P1,*,p.

 Then d4(A) _ p6.

 These and similar tools for the estimation of d4(A) from below, and classical
 results about approximation of functions by polynomials for the estimation of
 d4(A) from above, lead for example to the following estimates [14]:

 THEOREM 4.

 (6) d,(A(p + a, s, Co, , Cp,, M)) ; n-(P+a)/

 (7) dn(A) p -n P > 1.

 Here A is the set of all functions which are analytic inside the ellipse E,
 with foci ? 1 and the sum of half-axes equal to p, and bounded by 1 and con-
 tinuous in the closed region; the metric in (6) or (7) is the C- or the LI-metric
 (or any intermediate metric).

 Thus (6) and (7) mean roughly that the known degrees of approximation

 by polynomials of the functions of classes A, A cannot be essentially improved
 if polynomials are replaced by other linear means of approximation.

 3.3. Cases where the widths can be exactly determined. Several such cases have
 been found by Tihomirov [16]. To explain his method, let us start with the
 following remarks. From the definition of the width of a set A in a Banach

 space X, dx(A) it follows immediately that

 (8) d4(A) 9 d4(A) if X' is a subspace of X.

 It is more striking to know [16, p. 119] that inequality can occur here even if X
 and X' are finite dimensional. Tihomirov bases his method on the following

 THEOREM 5 [6, p. 47]. Let A be the closed unit ball of an (n+1)-dimensional
 subspace X' of a Banach space X. Then

 d4(A) = 1.

 Since dx'(A) = 1, this means, that the nth width of A does not change when
 A is imbedded into a larger space X.

 This theorem can be applied as follows. Let Wp, p >1 be the set of all
 27r-periodic functions f with the property that f(P) (x) exists almost everywhere
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 478 PROPERTIES OF FUNCTIONS [June-July

 and satisfies If(1) (x) I < 1, with f(P-1) being an indefinite integral of f (v). We con-
 sider W, in the uniform norm, as a subspace of the space C of periodic continu-
 ous functions.

 A classical result of Favard, and Akhiezer and Krein (see [1]), gives exactly
 the degree of approximation of Wp by trigonometrical polynomials of degree
 n-1:

 (9) E12n-l(lV) = Kpn = p, Kp 4 Ec (l)(p+I)
 7r k=0 (2k + 1)P+l

 moreover, a function f pnE Wp is known for which the polynomial of best ap-
 proximation is zero, and I If,nI =p. This fn is the pth periodic indefinite integral
 of sign sin nx (if p is odd) or of sign cos nx (if p is even). Tihomirov considers
 the 2n-dimensional subspace X' of C which consists of all pth periodic integrals
 of the functions of the form g(x) = Ck, XCLAk, k =0, 1, , 2n -1, where the Ck
 are constants, and Ak are the intervals of constancy of sign sin nx (or of sign
 cos nx). Let U be the subset of X' corresponding to the values <Ck|_1,
 k-O, * * *, 2n-1. It is clear that UCWp, on the other hand one can prove,

 using Rolle's theorem and the special form of f, that if fEX' and I//fI < IfnI I =p
 then fE U.

 Consider the ball U, of X' with the center in the origin and the radius p.
 What has been just said implies that U, C WV; on the other hand, by Theorem 5,
 d2n_l(U,) =p. Hence d2n1_(Wp) ?>p, and in view of (9) we obtain

 (10) d2nl(lVp) = Kpn7".

 Tihomirov obtains further similar results, for example

 (1 1) d2nl (Wp) = Kon-P + 0(n-(P+1))

 in the uniform norm; W, consists of functions on [0, 2wr] with the same restric-
 tions as for W,p, except that the condition of periodicity is dropped.

 3.4. A result of Kolmogorov. We consider the subspace Yp, p > 1 of L2 [0, 1],
 which consists of all functions f such that f (P) (x) exists almost everywhere and
 belongs to L2, and thatf(Pv1) is an indefinite integral of f (P). Let Vp be the subset
 of Y. with Ilf WII <l1, in the L2-norm.

 THEOREM 6 [Io]. Let Xn, n = 1, 2, denote all nonzero eigenvalues of the
 differential equation

 (12) 1 y(2v)- (-1)PXy
 Y ( )(=) =(Y)(I) = * * * y (2p-1)(0) = y(2p-1)(1) = 0.

 All Xn are positive; if they are arranged in increasing order one has

 (13) dnV(Vp) =+ X forn = 0, 1, f - =1;

 (14) dn(Vp) n-1/2 for n = p, p + 1
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 1962] PROPERTIES OF FUNCTIONS 479

 To explain the proof, consider the equation

 (15) Z (2p) = (-1)Px
 lz(O) = z(1) = = z(P-1)(0) = Z(P-l)(1) = o.

 It is easy to see that for X5;0 there is a one-to-one correspondence between the
 solutions of (12) and (15) given'by y(P) = z. For X = 0, (15) has no solutions, while
 (12) has as solutions all polynomials of degree p-1.

 Two sources of information are available for the study of equations (12) and
 (15). One is the general theory of eigenvalues of differential equations, the other
 the elementary formula, obtained by partial integration:

 r1_r
 (16) zfz(P)dx = X yfdx; z = y ().

 Here y is a solution of (12) corresponding to an eigenvalue X, and fG Y,.
 From the first source we obtain that the solutions qn = 1, 2, * of (15),

 corresponding to the eigenvalues Xn, form an orthogonal system, which is com-
 plete in L2. Then it follows from (16) very easily: all eigenvalues of (12) except

 X 0 are greater than zero; if 4An is the solution of (12) corresponding to X. and
 given by 4(p) = q,, then also the 41,, form an orthogonal system; each 7t'n is orthog-

 onal to each polynomial PP,1 of degree p -1. We shall assume II41,11 = 1 and ob-
 tain then

 (17) n41 =
 It follows also that for each fC Yp one has the expansions, convergent in the
 L2-norm,

 00 00

 (18) f = Pj1 + En aiJ, fpv) = E an(nx
 n=1 n-I

 where Pp-, is properly chosen. This, together with (17), implies that fe V, if
 and only if E a2n<_1.

 From this fact the theorem follows easily. On one hand, Vp contains the
 linear subspace Xp of the Pp-, of dimension p (hence (13)) and for each m con-
 tains allf in (18) with E a=X;1. Thus for n>p, Vp contains an n+1 dimen-
 sional ball with the center in the origin and the radius )-/ By means of Theo-
 rem 5 we obtain the relation

 dn(Vp) _> Xn-p+ly P .

 On the other hand, the distance from an fE Vp given by (18) to the n-dimen-
 sional subspace of L2 spanned by Xp and the first n - p vectors ilk is equal to

 00 2 112 -1/2 f O 2 112 -1/2
 {ZE ak} -<! Xn-p+1 {E Xkakj < Xn-1/2

 k-n-p+l I

This content downloaded from 146.96.128.36 on Mon, 09 Mar 2020 22:15:24 UTC
All use subject to https://about.jstor.org/terms



 480 PROPERTIES OF FUNCTIONS [June-July

 hence the theorem.

 The reader will be interested to learn that all eigenvalues X. are simple and
 that

 Xn= (irn)2P + 0(nP21).

 If he would ask how one could arrive at the equation (12) before knowing
 the solution of our problem, the following answer could be offered. In finding the

 widths of Vp, we try to find more and more functions yi, * * *, Yn in Vp, orthog-
 onal to each other. This means that y = Yn is the solution of the variational prob-

 lem f,y2dx =max. with the restraint fy()2dx= 1. The Euler equation of this
 problem is exactly (12).

 3.5. Relations between widths and entropy. Nonlinear approximation. Both

 the entropy He(A) and the widths dn(A) of a compact set A measure its "size."
 The widths measure the amount of deviation of A from linear subspaces, while

 the entropy depends much less upon the shape of A. Thus it is not astonishing
 that inequalities connecting these two functions exist, but are not very conclu-

 sive. Mitiagin ([15]; see also [13]) proves the following:

 (19) f/ gdt ? HE(A) < [m (-) + 1] log (+

 Here A is a compact convex subset of a Banach space, symmetric with respect

 to the origin, do=do(A)=sup,GA l|xii, and the functions m(t), I(t) for t>O are
 defined as the largest integers m or I satisfying dm ? t- or respectively h-'d1-
 >t-1. The left hand side of (19) can be obtained in the following way. From the
 definition of widths and by induction one can find in A points x. such that the
 distance from xn to the linear space spanned by xo, * *, xn-1 is not less than
 dn(A) =dn. This implies that A contains for each n the octahedron on formed

 by the points En tIxI with E ?k _ 1. If we consider the points of the form
 Y = ?0 ?k with yk = Exk/dk and integral 7k belonging to On, then it is easy to
 see that different y's are at a distance _ e from each other and to estimate their
 number in Qn. This leads to an estimate from below of M2e(A) and hence of
 H1(A) (see 2.1 and Theorem 1).

 We must make at least a passing mention of the nonlinear approximation.
 The notion of width is based upon the approximation of a function f(x) by ex-

 pressions P(x) = al41(x) + * * * +anon(x), linear in the parameters al, , an.
 In the book [18], Vituskin presents a theory which gives estimates from below
 of the degree of approximation of f by much more general algorithms P. For

 example, P may be the quotient of two polynomials in a,, - - *, an with coeffi-
 cients which are functions of x; also the operations max and min are allowed.
 This theory uses essentially new means (multidimensional variations of sets,

 topological properties of level surfaces of polynomials in Euclidean spaces) and
 cannot be reviewed here.
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 4. Representation of functions by sums and superpositions of functions of

 fewer variables.
 4.1. Superpositions are functions of functions. For example,

 (1) F(x, y, z) = f(g(x, y), h(x, k(y, z)))

 is a superposition of functions of two variables. Also the sum

 Xl + X2 + - * * + X. = XI + (X2 + * * * + (X.-1 + Xn)***)

 is a superposition of functions of two variables. Studying the roots of equations
 of the seventh degree, Hilbert conjectured that not all continuous functions of
 three variables are superpositions of continuous functions of two variables. This
 is the 13th problem of Hilbert of his famous address at the International Con-

 gress of Mathematicians in Paris 1900. Recently Kolmogorov [12] and Arnol'd

 [2] disproved Hilbert's conjecture. The remarkable result of Kolmogorov is
 that each continuous function of s variables can be represented by sums and

 superpositions of functions of one variable! For example, if s=2, Kolmogorov's
 result can be formulated as follows:

 THEOREM 7. There exist ten continuous monotone increasing functions cq5(x),

 iP/q(X), 0?x-1, q=1, * * - , 5 with values in the interval [0, 1] which have the
 property that each continuous function f(x, y) on the two-dimensional unit square
 B Is representable in the form

 (2) f(x, y) - g(4O(x) + 4Pq(y)),
 q-1

 where g(u) is some continuous function defined for 0 _u ? 2.

 Thus, the functions 4,,, VI, are independent of f, while g depends upon it. A
 similar statement holds for function of s variables, which are representable in
 the form

 2s+1 J 8

 (3) f(xl, ... , XX) = g E 0,V(xp)

 We restrict ourselves to s 2, because the general case is treated in exactly the
 same way.

 The idea of the proof, roughly speaking, is to construct a pair of functions
 +(x), +I(y) which have the property that on disjoint subsets B', B" of B, the sum
 +5(x) ++,(y) takes values belonging to two disjoint subsets of the real line. Of
 course, this cannot be achieved for all pairs B', B" of subsets of B, but we want
 it to be true for "sufficiently many" pairs.

 Kolmogorov begins by constructing two increasing continuous functions
 4i(x), {i(x) defined on [0, 1] and with values in this interval with the following

 * Actually, Kolmogorov [12] writes 2s+1 functions gq instead of g in (3), five functions gq in
 (2). Only apparently weaker, this is in fact equivalent to our formulation.
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 property. For each k =1, 2, there are finitely many closed subsets Bk,,

 i-1, 2, . . ., mk of B and corresponding closed disjoint intervals 4T, of the real
 line such that if a point (x, y) belongs to B1,, then 41(x) +41(y) belongs to
 I4l. The diameter of B' tends to zero for k-> o (uniformly in i; the sets Bk are
 actually squares). For the proof this is not enough: the sets B' are disjoilnt for
 each fixed k, and therefore cannot cover B completely.

 Therefore Kolmogorov repeats this construction five times and obtains ten
 increasing continuous functions (q(x), itq(X), q= 1, - - , 5 and corresponding
 closed subsets B' CB and intervals C [O, 2 ] with k = 1, 2, . . . ; q=1, * , 5;
 i=1, * * ; mk such that 4q(x)+4/'q(y) c4 if (x, y) GBk. All intervals 4ks are
 disjoint for a fixed k; therefore the Bk are disjoint for each fixed q and k. It is
 very essential that the Bk, cover B very well; precisely, for each k, each point
 (x, y) in B is covered at least three times by the Bk (there are at least "three

 hits out of five shots"). The following lemma concerning the functions 0Q, At is
 useful:

 LEMMA 3. Let C be the space of continuous functions on B, and let C' consist of
 all functions of the form

 5

 (4) h(x, y) 3 9E g(q(X) + {2(y))
 Q=1

 with an arbitrary continuous function g. Assume that there is a constant 0 < X < 1

 such that for each f E C there is an hE C' given by (4) with Iif-hit IXif I; I I g I<_ |IIfI .
 Then C' = C.

 The proof is easy: one first selects an h1 with the corresponding gi so that

 Itf-h1lI ?Xljlfj, I |giI|I IfII, then an h2 with g2 sO that II(f-h1)-h21 ?XI If-h1lI
 - l21fl1, lIIg2II WX fAl, and so on. Then the series g = E 1 converges uniformly,
 and with h connected with this g by (4) one has f= h= E' hn.

 To complete the proof of the theorem, we take 2 <X <1. We can fix k so

 large that the oscillation of the given function f is not more than ElIf II on each
 Bk , and that c>0 is so small that 2 +e <X. Let z4 denote some point of Bks.
 We determine g(u), 0 < u ? 2 in the following way. On each I, we let g be a con-
 stant: g(u) = !3f(z). Onto the rest of [0, 2] we extend g in an arbitrary fashion,
 but so that g(u) remains continuous and that I g(u) I <ilIf II Now consider the
 sum (4) for some (x, y) EB. Three of its terms g(4q(x) +i/'(y)) have the property
 that (x, y) GBk for some i; each of these terms is equal to 3f(x, y) with an error
 not exceeding 1elHfII. The remaining two terms are each <_If II1. Hence

 If(x, y) -h(x, y) 2 < IlIfIl + 3 * .telf < X|fffI

 and the proof is completed by applying Lemma 3.
 The functions q4, 74.q in Kolmogorov's construction seem not to be as wild

 as one could expect a priori. For example, they prove to belong to the class
 Lip a for a = 5. Theorem 7 is very important in principle. Will it have useful
 applications? Theoretically, one could hope to derive by means of it results
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 concerning functions of several variables from corresponding results about
 functions of one variable. For example, from the Weierstrass theorem about the
 approximation of functions of one variable by polynomials at once follows the
 corresponding theorem for functions of s variables. This is not very astonishing,
 since most proofs of the theorem of Weierstrass generalize immediately to higher
 dimensions. One wonders whether Kolmogorov's theorem can be used to obtain
 positive results of greater depth.

 4.2. Let us return to Hilbert's conjecture. Despite its disproof, it originated
 from a sound idea: that "bad" functions in general cannot be represented by
 superpositions of "good" functions. From this point of view, Theorem 7 makes
 it clear, that the characteristic of badness X = s of f(xi, * * *, x8), equal to the
 number of variables of f, has failed. The reason is that general continuous func-
 tions are so bad, that the number of variables is not particularly important.
 Are there other characteristics of this kind which will work? That this is the
 case has been found by Vituskin [17] and Kolmogorov [13, p. 80]. Let a func-
 tion of s variables f(xi, * . . , x8) on the s-dimensional unit square have all partial
 derivatives of orders not exceeding p, with the derivatives of order p satisfying
 a Lipschitz condition with exponent oa(p=0,1, *I * , 0 <a _ 1). We shall then
 say that f belongs to the characteristic x = s/ (p +a).

 THEOREM 8. Not all continuous functions with a given characteristic Xo can be
 represented by superpositions of functions of characteristics X = s/(p +ae) <Xo and
 with p+a>1.

 In order to sketch the proof, we first introduce the notion of a type T of
 superpositions. A type T is a set of functions F given by a formula such as (1)

 and by an indication of classes of type A(p +a, s, CO, * * * , Cp, M) (see 2.3) to
 which the functions f, g, * * - contained in the formula are allowed to belong.
 We shall assume that all C0, *-* *, Cp, M are positive integers and that the
 classes have characteristics x = s/(p +ca) <Xo. Then T consists of all functions
 F which can be obtained by varying the functions f, g, - - *, but leaving the
 structure of the formula and the given classes fixed. One sees immediately that
 there are only countably many different types T.

 The entropy (in the uniform norm) of a class A(p +a, s, Co, * * *, Cp, M) is
 of the order e-x, X=s/(p+a). What is the entropy of a type T? Consider the
 superpositions

 (5) F(xi, * * *, x8) = f(gi(xi, * * *, x8), * * *, gr(xi, . ,)),

 where the f satisfy the Lipschitz condition

 If(yi,** yr) - f(yl yr ) s|yi-yf '|,

 and let f, gi, * * g, run through sets A, B1, * *, Br with known entropies
 (with respect to the uniform norm). We shall show that the entropy of the set T
 of the F's satisfies
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 t

 (6) H(M+),e(T) 5 HE(A) + H H,(Bj).

 Let the functions f, gi run through e-nets in A, Bi respectively, and let
 N(, NFbe the numbers of elements 'in these sets. Consider the functions

 (7) F = A(gl(xi, * * *, x.), * * ,) gr(xl) . . *, x)X),

 N. fl. Ni in number. For each function (5) there exist 7, g with

 Ilf - 11 < e l|gi -gill <e(, i=1 ,r
 and then

 |F-F ? < jf(gil, *,gr) -f(g*, gr) I + I f(g, . . g)-g(gi - *g
 ?e+Me= (M+1)e.

 Hence the F form an (M+ 1)e-net in T, so that N(M+1),(T) XeN H..1 N.. Rela-
 tion (6) follows from this by taking logarithms. In particular, if A, Bi are classes
 A with characteristics X = s/(p +a) > m, then

 (8) H,f(T) < const. 6-m.

 The formula defining a type T may have a more complicated structure than (5),
 but it reduces to this case by finite iteration, and by induction we obtain: the

 entropy of each type T satisfies (8), where m = max X <Xo.
 The proof of the Theorem 8 is completed by a category argument. Let

 Xo so/(po+axo); we consider the set X of all functions f on the so-dimensional
 unit square with the smoothness po+ao(2.3). A norm can be defined for fEX in
 a natural way: Ilfl x is the maximum of the absolute values of all partial deriva-
 tives of f of orders <p and of the smallest constants with which the derivatives
 of order p satisfy the Lipschitz a0-condition. In a standard way one proves that
 X is a Banach space; its completeness in particular is essential. A ball U7(O) in

 X of center 0 and radius r is a class A(po+aot, s, r, * * *, r, r) and has (2.3) the
 entropy e-xo. Any other ball in X is a translation of a ball U7(0) and has the
 same entropy. From this and (8) it is clear: a type T cannot contain any ball of
 X.

 On the other hand, the functions f, g, . . in a formula (1) determining a
 class T, as well as their derivatives are equicontinuous. This allows us to apply
 Arzela's theorem and prove that T is closed under uniform convergence, and
 hence under convergence in the norm of the space X. Thus, sets TnX are no-
 where dense in X. Since there are countably many types T, the union UT(TflX)
 is a set of the first category in X. By Baire's theorem, its complement in X is
 a nonempty set. It consists of functions not representable by superpositions of
 functions with characteristics X <Xo.

 We have proved the theorem by establishing not only that there are func-
 tions in X not representable by superpositions of our type, but even that "al-
 most all" functions (in the category sense) in X are not so representable. A fine
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 point of the proof will be noted: it uses two norms; the uniform norm to com-

 pute the entropies, and the norm Ilfil x, in which the space X is complete.
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