A basic approach to pattern recognition

By J. R. Ullmann*

In looking for a plausible alternative to the representation of pattern similarity by a metric, there
are two main problems. The first is to find a ranking of patterns in order of a similarity, and

the second is to store this ranking economically,

This paper deals only with the second of these

problems, by means of a successive approximation technique which has been tested by computer

simulation.

1. Introduction

A binary pattern is an array of Os and 1s, and changing
the state of any digit makes a different pattern. We say
that variants of a character are patterns for which a
character-recognition machine is required to give the
same output; assuming, for example, that different out-
put signals are required for a given character in upper
and lower case. '

A character-recognition machine designer does not
generally have available a complete list of all the variants
of every character which his machine is to recognize.
He may therefore attempt to design a machine which,
having been shown a number of correctly labelled
examples of variants (which we call paradigms) of
characters, will predict the correct output signal for a
new input pattern.

The basic idea which has been used for such predic-
tions is to treat an input pattern as a variant of the
character to whose paradigms it is most similar. Patterns
are conveniently represented by points in a space chosen
so that effective similarity is a function of distance: the
choice of suitable metrics is discussed by Sebestyen
(1962). The hypothesis that suitable spaces and metrics
can in fact be found (cf. ““‘the compactness hypothesis”,
(Aizerman, 1963)) has been implemented in a number of
ways.

For example, certain information may be extracted
from a pattern and expressed as a smaller pattern or
code word which is compared with paradigm code words
according to some measure of similarity, derived from
the chosen metric of the code word space. The trans-
formation applied to patterns to reduce them to code
words may be fixed (Grimsdale, Sumner, Tunis and
Kilburn, 1959; Clowes and Parks, 1961) or may be
optimized automatically (Uhr and Vossler, 1961;
Kamentsky and Liu, 1963). It is, of course, also
necessary to choose paradigms, and these may be stored
explicitly, or in the form of some sort of average for
each character. Barus (1962) proposes explicit storage
so that for a given character, paradigm variants more
than a certain amount dissimilar to most of the other
paradigm variants may be rejected.

The standpoint of the present paper is not that the
idea of representing similarity by a metric has been
weighed in the balance and found wanting, but that it
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Fig. 1.—Ranking of patterns in order of similarity

is not clear whether this idea is the most practical basis
for character recognition in the case where very many
characters are to be recognized, and each has very many
variants. Whatever the difficulty, an alternative basis
should therefore be sought, in the course of open-minded
scientific procedure.

In Fig. 1 the top row comprises all possible N-bit
binary patterns, P;, P,,..., P;, ..., P,n. The columns
of Fig. 1 each contain 2~ different N-bit patterns ranked
in order of similarity to the pattern at the head of the
column (the head-pattern). In any column in Fig. 1 the
pattern in the ith row is more similar to the head-pattern
than is the pattern in the (i 4+ 1)th row, and so on.
(It is generally not true that in any column the pattern
in the (i + 1)th row is more similar to the pattern in
the ith row than is the pattern in the (i 4+ 2)th row.)
The assumption that no two patterns are equally similar
to a head-pattern is a convenient simplification. The
advantage of the explicit ranking of Fig. 1 over metrical
representation of similarity is of course generality, in
that Fig. 1 can represent rankings which can not be
represented by metrics.
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This paper is concerned with a facile example of a
character-recognition scheme employing explicit ranking.
In this example, which we call scheme A, a number of
labelled paradigm variants are stored. For any new
input pattern, scheme A, taking the input pattern as
the head-pattern, looks up in Fig. 1 the most similar
stored paradigm, and gives the output signal associated
with this paradigm. (To say instead, for example, that
scheme A should give the output signal corresponding
to the character with most paradigms with greatest
similarity to the present input pattern would be an
unwarranted complication at this stage.) As many
paradigms are stored in scheme A as are found necessary
for correct recognition of patterns.

Fortunately, for the purposes of this paper it is not
necessary to give a rigorous definition of similarity.
But to be specific we say that similarity ranking is a
Fig. 1 ranking which gives the best practical performance
of scheme A. The essential point of our approach is
that we are not bound to rankings for which a repre-
sentation metric can be found.

Scheme A presents two main problems. The foremost
of these is how to obtain the Fig. 1 information, and
the second is how to store this information economically,
having obtained it: this paper deals only with the second
of these problems.

If instead of having 2¥ rows in Fig. 1, all but the top
k rows are discarded, the result is that for input patterns
more than a certain amount dissimilar to any paradigm,
scheme A will find no output signal. This seems realistic,
and so we are left only with the non-trivial problem of
effectively reducing the number of columns of Fig. 1,
without knowing any paradigms of the characters to be
recognized. (If the paradigms were known, and the
lower rows of Fig. 1 had been discarded, then of course
some of the columns of Fig. 1 could simply be discarded.)
A successive approximation technique for Fig. 1 column
economy is employed in a scheme which we call scheme B,
which is introduced in the following pages. Apart from
the use of this economy technique, scheme B is the same
as scheme A. A comparison of results of computer
simulations of schemes A and B with arbitrary (but not
purely random) rankings provides a quantitative indica-
tion of the amount of error which the economy technique
introduces. As far as possible pseudo-random patterns
were used in the simulation, and this, though far removed
from the practical problem of character recognition, has
the advantage of reproducibility.

pattern 11[O]1]|O]|O[|110O}1]|0O
A tick in this
row indicates
bit belongs to v v vIv
example n-tuple

n-tuple state | O] ol

Fig. 2(a).——Example of an n-tuple state

2. Economy by consistency technique
(a) n-tuples

We say that a pattern digit is the state of a bit. Thus
in the three digit pattern 101, the three bits are in states
1, 0, 1, respectively. An n-tuple is a set of n bits, and
the state of these n bits is the n-tuple state. Fig. 2(a)
shows an example of this for a ten-bit pattern.

Scheme B employs n-tuples which are chosen, for
simplicity, so that

(i) the value of n is the same for all n-tuples;

(ii) the number of n-tuples to which a bit belongs is
the same for every bit. In fact we choose to set
this number equal to n, so that altogether N
n-tuples are chosen.

Apart from these arbitrary constraints the choice of
n-tuples is random. In the following pages states of
these chosen n-tuples will be referred to simply as
n-tuple states, and states of other n-tuples will not be
mentioned.

(b) Ranking in scheme B

Let us consider only the top row (the head-patterns)
and, say, the ith row of Fig. 1. We say that patterns
in these two rows which are also in the same column of
Fig. 1 are corresponding patterns. States of the same
n-tuple in corresponding patterns are corresponding
n-tuple states. Where a given n-tuple state occurs in
different head-patterns, the corresponding n-tuple state
in the ith row of Fig. 1 is generally different. Fig. 2(b)
illustrates this for the head-pattern 3-tuple state —1-00,
where “~” stands for digits not belonging to the n-tuple,
and N = 5.

We say that the state of bits not belonging to an
n-tuple is the context of that n-tuple. For each head-
pattern n-tuple state, scheme B stores all the correspond-

top row O0000| 10000 | OIO00 | HOOO | O0IOO | I0I00 |OIIOO | HIOO | - - - -
it row Ol 100|OI000| 10010 | 11100 [0I00I | 11100 |000I0 | OHOI | -« - - -
"row n-tuple state -0-10| -1-00 -o-10| -1ro1 |+---
corresponding to
head pattern n-
tuple state-1-OO

Fig. 2(b).—Examples of corresponding n-tuple states
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ing ith row n-tuple states, irrespective of context. For
example, for the example of Fig. 2(b) the stored informa-
tion specifies that the ith row n-tuple states -0-10,
-1-00, -0-10, —-1-01 correspond to the head-pattern
n-tuple state -1-00, but information specifying the
context in which these n-tuple states occurred is not
stored.

In scheme B the ith row of Fig. 1 is replaced by
N x 27 lists of ith row n-tuple states which correspond
to the N X 27 head-pattern n-tuple states. Let 4 be the
average number of entries in each of these lists, i.e. the
average number of ith row n-tuple states corresponding
to a head-pattern n-tuple state. Then the number of
n-tuple states stored in scheme B to replace the ith row
patterns of scheme A is

Nx2"X h

while the number of patterns in the ith row of Fig. 1
is 2¥. To obtain a rough indication of the economy
achieved in scheme B we compare these two numbers
and see that there is economy when

h < 20-m|N.

(The ith row information stored in scheme B is that
which would be stored in a consistency pattern associa-
tion network (Ullmann, 1962) after all the corresponding
head-patterns and ith row patterns had been presented
to it in turn.) '

(¢) Paradigm storage in scheme B

Having said how the Fig. 1 information is stored, we
describe the storage of paradigms in scheme B, but it
is helpful first to consider paradigm storage in scheme A.
When a paradigm is presented for storage, scheme A
stores this paradigm pattern and associated output, and
also makes a mark in Fig. 1 wherever this particular
paradigm pattern occurs. The stored paradigm most
similar to a presented input pattern is in Fig. 1 the
marked pattern nearest the head-pattern in the column
for which the head-pattern is the input pattern. In
scheme B when a paradigm is presented for storage, if
all its n-tuple states belong to patterns in the ith row
of Fig. 1, then we mark all these n-tuple states by entering
them in the set R; which is defined in the following
paragraph. This storage procedure is used for all values
of i. The output associated with each paradigm is also
stored.

In scheme B we say that ith row n-tuple states which
correspond to at least one head-pattern n-tuple state
belong to the set Q;. If all the n-tuple states included
in a presented paradigm belong to Q;, then we say that
these n-tuple states belong to the set R,. If this condition
is fulfilled, and a record of the members of R; is stored
in the scheme, we say that the paradigm is stored in the
ith row. Thus if any n-tuple states in a presented
paradigm do not belong to Q;, this paradigm is not
stored in the ith row. R; is the union of the sets of
n-tuple states in stored paradigms: thus if one paradigm
has already been stored in the ith row, and another
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paradigm is presented, such that all its n-tuple states
belong to Q;, then these states are entered in the set R;.

If, after presentation, a paradigm is not stored in the
ith row in scheme B, this indicates that this paradigm
does not occur in the ith row of Fig. 1 in any column.
If a paradigm is stored in scheme B but not included in
the ith row of Fig. 1, this causes errors which are reflected
in the quantitative results of computer simulation of
scheme B.

Suppose that A, the average number of ith row r-tuple
states corresponding to any head-pattern n-tuple state
has the value 2”. In this case, many patterns which do
not occur in the ith row of Fig. 1 can be stored as
paradigms in the ith row of scheme B. This difficulty
imposes a restriction on the maximum tolerable value
of A, and for this reason a number of different values
of h were tried out in computer simulation.

(d) Operation of scheme B

When a number of paradigms have been stored in the
ith row and a new input pattern is presented to scheme B,
scheme B finds the stored paradigm most similar to the
present input pattern as follows. It is again convenient
to consider the ith row. We define S,y as the set of
n-tuple states which correspond to the n-tuple states in
the presented pattern and which also belong to R;. In
scheme B an N-digit pattern F;, is now constructed
according to the following rule. If a given bit, d, is
in state 1 in at least one n-tuple state, belonging to S;,
of each of the n chosen n-tuples to which d belongs,
then d is in state 1 in F;;. Similarly, if 4 is in state 0
in at least one n-tuple state, belonging to S;,, of each
of the n chosen n-tuples to which d belongs, then d is
in state 0 in F;. Thus in F;y d could be in state 1,
state 0, state “‘neither 0 nor 1,” or state “both 1 and 0.”
This rule for determining the state of d in Fj, applies
similarly for the states of all the other digits in Fj,.

We define S;, as the set of n-tuple states which belong
to S;; and which occur in F;,. Scheme B now constructs
a pattern F;; from S;; according to the same rule that
was used in constructing F;o from S;. S;, is the set of
n-tuple states which belong to §;; and which occur in
F;. Si, Sus, etc., and F;,, F;3, Fyy, etc., are similarly
defined. Scheme B constructs in turn Fyy, F;,, F;,, etc.,
and eventually a terminal pattern F;, which is defined
as the first pattern in the series Fjg, F;;, . . . such that

F;, =

i(w+1)-

(This iterative process is bound to terminate because in
Si0s Sit> Sizs . - ., any set S includes the set S;(;_ ), and
the number of members of S;, is finite.)

For N =5, n= 2, for the input pattern 10011 the
set S;p might, for example, be that shown in Fig. 3(a).
In the pattern Fjy, which has been computed from S;,
according to the above rule, bits in state “both 1 and 0”
are represented by (}). Figs. 3(b), (c), (d) show S,
and F;;, S;; and F;,, S;; and F;;, respectively.

Scheme B finds the terminal patterns F;,, for all i from
1 to k, and takes as the paradigm most similar to the
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Fig. 3.—Example of computation of F;,

present input pattern the pattern F;, for the least value
of i such that F;, does not consist entirely of bits in
state “neither 0 nor 1. The results of computer simula-
tion scheme B show that the pattern thus selected is in
fact, at least in a number of cases, the paradigm most
similar to the presented pattern.

(One may say that a terminal pattern is arrived at by
successive approximation because in the successive
patterns Fyq, F;y, . . . , F;,, the number of bits in state
“both 0 and 1 generally decreases. If a bit is in this
state in F}; it may either be in state 0 or state 1 in F;(;, q)
and it is this lack of specificity which leads us to think
loosely of F;; as an approximation for F(;, y.)

(e) Computer simulation of scheme B

The simulation compared the performance of scheme
A with that of scheme B when dealing with the same
patterns. The values N =10, n =4 were chosen,
being the maximum practicable on the ACE computer.

The first step was to choose the n-tuples, as specified
in section (b) above. The pseudo-random number
generator used in this and throughout the simulation was

Xk + 1= (213 — 3)xx — 1, in mod 31.

The next step was to choose for each head-pattern in
turn a corresponding ith row pattern. The algorithm
which made these choices ensured that each choice
introduced on average only a small and (loosely) con-
trolled number of new members to the set @;. This
algorithm thus determined the final value of 4. Actually
only one row, say the ith, was simulated, since nothing
would have been gained by simulating more rows.

Pseudo-random patterns were then generated and
examined until one was found such that all the 10 n-tuple
states in the pattern belonged to ;. The successful
pattern was stored as a paradigm—i.e. its n-tuple states
were listed as members of R;—and also the pattern was
entered in a list of stored paradigms.

Next scheme B was presented in turn with sixty-four
randomly chosen input patterns (head-patterns), and
for these ith row patterns (i.e. F;, patterns) were found
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by iterative operation as described above. If for a given
head-pattern the corresponding scheme A and scheme B
ith row patterns were not identical, even if only one bit
in the scheme B pattern was in state “both 0 and 17,
this was counted as an error. If the ith row patterns
were identical, their membership of the list of stored
paradigms was checked (in the experiment they were
always found present in this list) and this event was
counted as a correct paradigm output. For the sixty-four
trial head-patterns the total number of errors and correct
paradigm outputs were found. Altogether four para-
digms were stored, the scheme being tested with sixty-
four trial head-patterns after the storage of each para-
digm. The sample size sixty-four was the largest
practicable on the ACE computer.

The whole of this routine was performed forty times,
using each time a different choice of n-tuples, ith row
patterns, paradigms, trial head-patterns, and h value.
In Fig. 4(a) the numbers of errors per sixty-four trial
head-pattern sample after storing one paradigm is
plotted against 4 for the forty runs. Figs. 4(b), (¢) and
(d) similarly are plots of numbers of errors for the
sample of sixty-four trial head-patterns after storing
two, three and four paradigms respectively.

Figs. 5(a), (b), (), (d) are plots against h of the
numbers of correct paradigm outputs per sixty-four trial
head-pattern sample after storing one, two, three and
four paradigms, respectively. These plots show how
often the outputs from schemes A and B are the same
when there is in fact an ith row stored paradigm cor-
responding to a trial head-pattern. For many trial
head-patterns there is no ith row stored paradigm: this,
together with occurrences of errors, accounts for the
large number of zeros in Figs. 5(a)—(d).

(It is not surprising that the numbers of correct
paradigm outputs for lower &4 tend to be the greater
because

(i) as & decreases the number of patterns which occur
more than once in the ith row increases,
(ii) as k increases, the chance of storing a paradigm
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which is not an ith row pattern increases. Such a
pattern can, of course, never be a correct paradigm
output.)

In Fig. 6, the standard error of the estimated value
of h is plotted against the estimated value of k for the
forty runs. The performance of scheme B was not
explored for h > 9, because substituting N = 10, n = 4
in the condition

' h < 2(N—n)/N
we obtain h << 6-4.

3. Concluding remarks
(@) Modification of scheme B

We suggest that the number of errors made by scheme
B could be reduced by two developments which it was
impracticable to try out on the ACE computer, since the
program already took a very long time to run. Without
simulation we cannot say how much improvement these
two developments would yield.

() In constructing, for example, F;, from S;,, we
could insist not only that for a bit 4 to be in state
1 in F;,, the n n-tuples to which d belongs must
each have at least one state in S}, in which 4 is
in state 1, but now also insist that these n-tuple
states must have occurred jointly in a stored
paradigm.

(i) In scheme B an ith row n-tuple state, #, generally
corresponds to a number of head-pattern n-tuple
states, and for each of these there is a different
token of t stored in scheme B. If ¢ occurred in
a stored paradigm, all tokens of ¢t would become
members of Q;. We now propose the following

modification. Let T, be the set of head-pattern
n-tuple states for which a corresponding ith row
n-tuple state is included in a given paradigm which
is presented to scheme B for storage. A pattern
G, is constructed from T using exactly the same
rule as was used in constructing F;, from S;,, and
the terminal pattern G, is found similarly. It is
now stipulated that only tokens of paradigm
pattern n-tuple states for which the corresponding
n-tuple state is in G,, become members of Q;.

(b) Finding the similarity ranking

Of course the outstanding problem is how, in practice,
the correct similarity ranking for patterns could be
discovered. One might ask whether it is logically possible
for a machine, regardless of size and cost, to discover
the ranking; and if so, whether a plausibly economical
design could possibly be found for the machine.

By trying out scheme A for all possible rankings, the
ranking giving the best performance in character recog-
nition could be found, but this would require a pro-
hibitive number of trials. So we ask whether, having
made relatively few trials, a machine could possibly
infer the entire ranking. This is such a formidable
problem that we think it best to tackle first a series of
simpler and clearer problems of this type formulated
elsewhere (Ullmann, 1964).
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