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Abstract: The Proteus architecture is a highly parallel 
MIMD, multiple instruction multiple data, machine, opti- 
mized for large granularity tasks such as machine vision 
and image processing. The system can achieve 20 G-flops 
(80 G-flops peak). It accepts data via multiple serial links 
at a rate of up to 640 megabytes/mnd. The system em- 
ploys hierarchical reconfigurable interconnection net- 
work with the highest level being a circuit switched 
Enhanced Hypercube serial interconnection network for 
intemal data transfers. The system is designed to use 256 
to 1,024 RISC processors. The processors use 1 M byte 
external R e d w r i t e  Allocating Caches for reduced multi- 
processor contention. The system detects, locates and re- 
places faulty subsystems using redundant hardware to 
facilitatefault tolerance. The parallelism is directly con- 
trollable through an advanced software system for parti- 
tioning, scheduling and development. 

1.0 Introduction 

Proteus is a sea god who changes his shape at will. The 
Proteus Supercomputer is a reconfigurable network of 
processors that can change its configuration to perform 
optimally on a variety of large granularity tasks. It is an 
MIMD, multiple instruction multiple data, machine 
unique in many respects. Special features are e h n c e d  
hypercube circuit switched communications [3], read and 
write allocating caches [ 171, and system level fault diag- 
nosis [151. These features have not been incoqxmted into 
existing architectures. 

Proteus uses tightly-coupled clusters connected in 
groups. Communication within a group is through a 
crossbar connection. Communication between groups is 
through circuit switched enhanced hypercube connec- 
tions. A separate control network of buses within each 
group, and ethernet among groups allows a d d i t i d  con- 
trol and communication. 

Proteus is designed for large granularity pipelined, dis- 
tributed, or parallel processing applications. Tasks can be 
partitioned to a single processor, a subset of processors or 
all processors in a pipeline or distributed fashion. It is 
also possible to set up multiple processor pipelines to per- 
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form diffmnt tasks. Example applications include image 
processing, fast Fourier transforms, and low to high-level 
vision. We present unique features of Proteus system in 
Section 2, the architecture in Section 3, applications in 
Section 4, and conclude in Section 5. 

2.0 Unique Features 

The special features of Proteus can be demonstrated via a 
comparison with other recently developed Supercomput- 
ers. We focus on communication and processor cluster- 
ing. Proteus has been designed to balance the 
interconnectivity and the processor clustering so that 
maximum utilization of both processor and communica- 
tion network is achieved. We give a brief overview of the 
unique developments in Proteus below. 

2.1 Circuit Switched Enhanced Hypercube 
The binary hypercube-based computers, cosmic cube, 
Ncube, and FPS T-Series [5], use packet switching to 
communicate from node to node. Proteus uses circuit 
switching. A Proteus node consists of clusters that each 
contain 36 processors. The nodes are connected in an en- 
hanced hypercube structure. An enhanced hypercube 
(EHC) contains two links in any one dimension of a regu- 
lar hypercube, as shown in Figure 1. The primary advan- 
tage of the enhanced hypercube architecture is the 
permutation embedding capability. A centralized algo- 
rithm at the host may route any arbitrary permutation. The 
32 groups in a full scale system can thus communicate 
with each other in an arbitrary permutation for rapid ex- 
change of data. By not buffering the data at the intermedi- 
ate nodes, the transmission across the diameter of the 
hypercube are negligible. 

The EHC of Proteus is also a special case of the general- 
ized folding cube [Z]. Direct application to algorithms is 
provided by trivial embedding of meshes, rings, tori, etc. 
The g e n d  interconnections available allow many algo- 
rithms to be directly mapped into Proteus with optimal 
performance. The generalized cube has multiprocessors at 
each node. Studies have shown that efficiently coded al- 
gorithms on the hypercube underutilize the available 
bandwidth [9]. By clustering processors at each node the 
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Proteus architecture improves the link utilization. De- 
tailed descriptions of the communication network and the 
EHC are given in section 3.2. 

2.2 Allocating Caches 
Clustering of processors together, while cost effective, 
may cause contention for shared resources. Detailed sim- 
ulation, program studies, and architectural trade-offs al- 
lowed us to optimize the use of the shared memories at 
clusters. In effect, the advantages of local memory and 
cache memory have been combined by using an innova- 
tive implementation of read and write allocation [17]. 
Read and write allocation force cache accesses to hit, 
thereby reducing shared memory accesses, and limiting 
multiprocessor contention. For initial applications read/ 
write allocation has shown shared bus accesses to be re- 
duced by 6.6 % [16]. The allocating cache is a high per- 
formance interconnect that is much more general than the 
register memories used in the Orthogonal multiprocessor 
(OMP) [lo], which requires explicit loading and unload- 
ing of register variables. Proteus caches may be set to dif- 
ferent modes by using mode bits in the address, so any 
combination of modes may be used in pages which map 
to unique positions within the cache. The caches are de- 
scribed fully in the architecture section. 

2.3 Fault Tolerance 
Initial design goals focused on the incorporation of limit- 
ed fault tolerance. By requiring general connectivity of 
clusters, and the arbitrary assignment of jobs to proces- 
sors, system level fault diagnosis [ 151 can be performed 
at the cluster level. Proteus incorporates a small amount 
of spare processing capacity which is used for roving 
tests and redundant computation, to create on line fault 
diagnosis. The fault diagnosis strategy is discussed fur- 
ther in the architecture section. 

These unique aspects of Proteus create a research com- 
puter that advances current architectural thought. The 
Proteus architecture is a test bed for hypercube communi- 
cations, allocating caches, and system level fault diagno- 
sis. Simulation shows these features give higher 
performance and reliability than other architectures. 

3.0 Architecture 

3.1 Goals 

Proteus design is medicated on the use of higher granu- 
larity. This constrains data movement to be in large 
blocks between processors. Blocks of data are typically 
images, which should be routable in varied and arbitrary 
graphs. The performance is related to the load balancing 
and the utilization of processor resources. 

The research goals are: architecture, partitioning, load 
balancing, and algorithm mapping. The system was de- 
signed to accommodate 256 to 1024 processors. We 

present an overview of the architecture followed by a dis- 
cussion of the design. 

3.2 Organization 
Proteus is a scalable EHC based computer system with a 
large number of processors at each node. Unlike the 
NCube, iPSC 860, and the FPS T Series [5] Proteus has 
36 processors at each node. The system is scalable from a 
3 cube to a 5 cube with 8 to 32 nodes, or groups. The pri- 
macy advantage of the large number of processors in each 
group is for large grain parallelism problems which may 
communicate efficiently using large blocks of data. The 
external input is received on 32 parallel channels which 
are equally distributed to the EHC nodes. The communi- 
cation m s s  the hypercube, within groups, and control 
of all p" is described in this section. 

3.2.1 Enhanced Hypercube 
The hypercube is an undirected graph of 2" vertices 
where each vertex has n links, or edges to other vertices. 
A 3 dimensional cube has Z3 = 8 vertices, and each ver- 
tex has 3 links. A permutation in the hypercube is a con- 
nectivity set used to represent the communication to 
occur. For example a 2cube permutation is [3,2,0,11 so 
that vertex 0 connects to 3.1 to 2.2 to 0, and 3 to 1. Arbi- 
trary permutations may be possible in any dimensional 
cube, but it has not been proven. 

Proteus uses the EHC static network for which it has been 
proven that arbitrary permutations can be embedded [31. 
The Enhanced Hypercube uses two links instead of one in 
any one dimension of the original binary cube for n > 3.  
This gives us complete reconfigurability. Figure 1 shows 
Proteus with n = 4, and the extra links connecting all 
nodes in the vertical dimension. 

The links marked a, b. c, and d are the high speed serial 
links input and output for one group. The e link is the ad- 
ditional link which allows full permutation capability. 
The exploded view of the group contains the Unix board 
group controller (GC), the clusters (CO to C8), and the 
communication interface or crossbar (xBar). Clusters are 
connected by crossbar to each other and to the enhanced 
hypercube. U0 from external sources is fed through the I/ 
0 buffer marked as IB. An exploded view of a single 
cluster is also shown, and consists of the cluster control 
processor (CCP), the shared memory (SM). the U0 buffer 
and memory (U0 DPM), and the RISC processors (or 
pixel processors, PP). Pixel processors in a cluster share 
memory and a serial U0 link. External caches and control 
processors help to ease contention and multiprocessing 
performance degradation. 

3 3  Communication 
The communication structure is hierarchical to share re- 
sources and distribute control overhead. Currently, com- 
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Figure 1. Exploded View of Proteus System 
munication through hypercube links is arranged by the 
host. Communication within groups is set up by the 
group controller, and communication within a cluster is 
set up by the cluster controller. All links to cross-bar are 
optical serial links which transmit/receive data at 250 
Mbits/mnd. When a path has been set for cube commu- 
nication, data passes directly from the source cluster to 
the destination cluster in another group. No store and for- 
warding is done with the circuit switch connection. 

Within the group, a crossbar connects serial links to and 
from sources and destinations. In parallel with cube com- 
munication, additional clusters within the group may be 
transmitting and receiving data. At any time, k clusters in 
a group may be using cube connections, so that 9 - k 
clusters may communicate amongst themselves. The 
cluster’s four processors share a serial I/O link which is 
accessible bough a dual port memory buffer. The shared 
memory provides intra cluster communication, and the 
dual port buffer provides highest 1/0 performance. The 
control of communication, and the control network are 
described in the following section. 

When a PP il in a cluster jl in group kl wants to send a 
block of data to another PP i2 in cluster j2 in group k2, the 
path is set up under the control of cluster controller j 1 ,  j2, 
group controller k1, k2 and host in a tree fashion depend- 
ing on the location of PP(il,jlJrl) and PP(i2j&. This is 
depicted in Figure 2. If jl=j2 (then kl=k2) and cluster jl 
arranges for data transfer through the shared memory. If 

jl # j2 but kl=k2 then cluster controller j l  request 
group controller k1 ( 4 2 )  to set up the path through the 
crossbar. Group controller also informs the receiving 
clusterj2 to be ready to receive data. If jl=j2 and kl=k2, 
then the group controller k1 requests to host to set up a 
path through the EHC. When the path is available, the 
host informs all GCs which include GC kl, GC k2 and in- 
termediate GCs. All G C s  set up their X-Bars. GC kl and 
GC k2 inform their respective clusters which in turn sets 
up their respective transmission and receive DMAs. 

)(Figure 2. Communication hierarchy 
PI2 

3.4 Control 

Both the Enhanced hypercube and the crossbar connec- 
tions within a group are managed by the generalized 
communication interface, GCI. The link connections to 
the cube and clusters are provided in a crossbar within 
each group. The GCI consist of a 16 x 16 cross point 
switch. Each input can transmit up to a loo0 Mbits/sec fi- 
ber link but the actual speed to be used in the current sys- 
tem is 250 Mbits/sec. The 16 links on the input side are 
used by the nine clusters in the group, 32/N input chan- 
nels and the enhanced hypercube links. A block diagram 
showing the crossbar connection is depicted in Figure 3. 

v 
1 6 x 1 6  f clusters I I From9 : 

Clusters 0 

Figure 3. Crossbar Connections 

The group controller is a single processor Unix board 
equipped with the VMEbus and ethemet interfaces. It op- 
erates under a real time UNIX operating system environ- 
ment Each group has a single VMEbus accessible to all 
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of its clusters. The group controllex ccudhws all activi- 
ties within the group. It assigns tasks to cach cluster and 
sets up communication paths. possible paths are frcnn in- 
put to cluster within the group, intra cluster within the 
group, and intergroup. Paths are set by writing to the 
GCI. 

The Proteus host sets initial configurations and manages 
cube links between gtoups. It is a general purpost Unix 
work station. It is mponsibie for system opetation, user 
interaction, and output collection. Algarithms are devel- 
opedat the host and mapped on to the system. Under the 
host, N = 8 to 32 groups are connected to the Proteus 
host through ethemet 

Within the group 8 clusters (with 1 extra for fault toler- 
ance) are controlled via VMEbus. The group controller 
reads sending requests and activates destination clusters 
through VMEbus control registers. The movement of 
data is synchronized and each image frame transmission 
is completed within a k e d  time. The set-up for all GCIs 
is synchronized. If the communication is to be resaicted 
within a group, then the GCI allows asynchronous com- 
munication under the control of the group controller. 

The lowest level in the hierarchy is the cluster. The clus- 
ter has a dedicated control processor, the Intel i960. The 
cluster controller schedules tasks on the pixel processors, 
manages shared memory, arranges for receiving and dis- 
patching data by serial YO, and monitors performance by 
using a hardware timer. The 4 RISC processors, i860s. 
share memory and have their own cache. The Intel i860 is 
a high performance 64 bit microprocessor. It supports 
parallel and pipelined execution with a RISC paradigm, 
using independent cdinteger unit and a floating point/ 
graphics unit. These units may operate in parallel, aad 
may access onchip caches in a single cycle at 40MHz. 

Custom external caches tie directly to a shared 64 bit 
data, 32 bit address bus which services the 8 - 32 Mbyte 
shared memory and the lMbyte I D  buffer. The shared 
bus allows locked accesses for semaphore, test and set, 
and compare and swap operations, and burst fetches, of 
four 64 bit words. 

The extemal cache memory holds both data and instruc- 
tions. The external cache is organized as a 1 megabyte di- 
rect mapped cache with a line size of 32 bytes. This 
matches with the internal line size of the Intel i860. The 
cache is designed for efficient multiprocessing with 
adaptable modes &pendent upon the data: cached locally, 
cached shared, or uncacheable. Normal caching modes 
include write through and write back. New modes allow 
for validation of tags without reading that line from the 
shared memory [17]. Cache write allocation forces a hit 
upon a write. This reduces the ShaFed bus cycles and im- 
proves the overall performancx of the system. In addition 
to the novel use of the above modes, line flushing, flush 
and invalidate, invalidation, and labelling are used to 

control individual lines in the cache. The cache modes 
are established by using multiple virtual addresses for the 
same physical memory. Software is responsible for cache 
managememt. 

35 Design 
The design pocess started with initial discussions on ap- 
proach, peafoimance, and applications. The design was to 
be resttlcted to one circuit board, if possible, to reduce 
layout and debugging time. 

Processor &kction. A processor survey was done to de- 
te r”  the most applicable microprocessor. A represen- 
tative algorithm, morphological dilation, was used to 
“paper” code programs to compare their performance and 
features. Important features used for comparison were 
arithmetic speed, number of registers. on chip memory 
(or cache) size, external bus bandwidth, and floating 
point capability. Processors as investigated include the 
Intel i860, the MIPS 3OOO. the Motorola DSP %002, the 
Texas Instnunents TMS 32OC30, the AT&T DSP 32C, 
the Motorola 88000, the Motorola 68040, the Intel 
80486, and the Inmos T800. The i860 proved to be the 
clear choice for design, because of a combination of 64 
bit data bus and 12K bytes of on-chip cache memory. 
Analysis by Levy [ 113 showed the i860 to be poor for op- 
emting system work, so extra care was taken in design to 
minimize interruption of the i860’s processing. Specifi- 
cally, another control processor was chosen to take care 
of scheduling and interrupt handling, i960. 

Interconnection and YO. Investigation into intemnnec- 
tion schemes and 40 to handle the high input rate re- 
vealed a variety of options. The basic requirement was to 
allow data to be sent directly to any of the 256-1024 pro- 
cessors. To support processor pipelines and distributed 
processing data were also to be moved from processor to 
processor. 

The only feasible option to support the high-input data 
rate was to divide input data over multiple 40 channels. 
Parallel data transfer would imply large numbers of ca- 
bles, not a desirable feature. So fast serial VO channels 
were considered. Serial to parallel data conversion took 
place at the I/o interfzce. Input data was stored in shared 
memory using DMA. A separate 64/256 bits wide fast 
parallel bus for data exchange within a group was consid- 
ered. A 64 bit wide bus with available technology could 
handle the average data load. but performance would suf- 
fer if a peak load was experienced. A 256 bit width bus 
was would have forced us into a tight design space as it 
would have required larger board area and wide memory 
word size. Another option was to use switched fast serial 
lines between clusters. High speed parallel-to-serial and 
serial-to-parallel chips from Gazelle [6] and a fast cross 
bar chip from Gigabit logic [7] were available from off 
the shelf. This was an attractive design option and these 
chips form the backbone of the communication network 
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within each group. In addition enhanced hypercube con- 
nection could be realized using the same crossbar chip. 
With 32 YO channels and 8 clusters per group (plus one 
for fault tolerance), there were 7 ports left for managing 
input/output channels and enhanced hypercube connec- 
tions. An enhanced n-cube (n dimensional) requires 
n +  1 links at each node for n >  3 and n links for n <  3. 
At the same time 32 Yo channels were to be equally dis- 
tributed among the groups. The distribution of channels 
is as follows. 

TABLE 1. Channels 

U0 channels/node EHC link 
1 6 
2 5 
4 3 

This suited us very well, and we used a 16x16 crossbar at 
each node as shown in Figure 3. 

Cluster Design. The most detailed analysis for design 
was performed on the cluster board. With the available 
technology, it was reasonable to fit four processors on one 
board. To support embedding of more general program 
graphs, we searched for a more general design. One pos- 
sibility was to split the memory into several banks and 
provide a crossbar interconnection among processors and 
memory banks. This could do well with processor pipe- 
lines, but embedding arbitrary program graphs would 
cause blocking. Thus other options were considered. 
These included 1) a shared memory with a 256 bit wide 
bus with 4 x 256 bit data buffers (memory interface unit, 
MIU); 2) shared memory and a local memory with each 
processor; and 3) a shared memory with processor cach- 
es. In each case, it was possible to share the memory for 
I/O through DMA, direct memory access, or provide sep- 
arate buffering for YO. The bus could be 64 or 256 bits 
wide. These alternatives were compared using Network 
11.5 simulations and then low-level HDL, Hardware De- 
scription Language, simulations. 

Several things were learned from the simulation. A high 
amount of conflict resulted whenever the input data was 
being transferred into shared memory. Because of this, 
closer attention was paid to the VO design on the board. 
With the use of an 1/0 buffer the input and output data 
could be removed from the shared bus. Therefore, a dual 
port memory was added to manage the YO. The MIU 
model suffered because the processor could not cache all 
of its data in its on chip cache and higher contention re- 
sulted. In addition a 256 bit bus was thought to be an im- 
plementation risk. The local memory model suffered 
because no processing occurred while the data were 
transferred and the local memory is a fixed size. Howev- 
er, local memory was advantageous when processing cre- 
ated large results which were to be used again by the 
same processor. The cache solution computed while read- 

ing initial data, did not fix the size of programs and data, 
and allowed a 64 bit bus to achieve acceptable perfor- 
mance. However, depending on the algorithm, the bus 
could still be saturated. 

Additional optimization of caching was investigated. 
When blocks of data are to be generated as a result of 
computation, reads do not have to be done for caching. 
The processing of blocks of data lead to the idea of allow- 
ing pages of the cache to be controlled in a local memory 
mode, so local data could be forced to stay off the shared 
memory bus. Through allocation a section of the cache 
was to allow allocated writes. These writes would hit ir- 
respective of the address tag present in the cache. If valid 
data was previously in the cache that needed to be 
flushed, this would be done, and then the write would be 

Further investigation showed that clever coding on the 
processor allowed results to be cached which dramatical- 
ly reduced traffic on the bus. Since the i860 allowed 64 
bit transfers, using the bus for less than 64 bit transfers 
results in under-utilization. In particular, if the transfer 
happens to be a byte, which was the case for our 6rst vi- 
sion application, the performance loss is severe. There- 
fore a scheme in which write data are cached and 
transferred to main memory in chunks of 64 bits yields 
much improved performance. TABLE 2. shows the re- 
sults of this study. Three models were studied which are: 
A) a statistical read/write model, B) a deterministic read/ 
write model, and C) a statistical reaawrite model that 
caches the writes. The same program was running on all 
four processors, and processes a 64 K byte image and 
creates a 64 K byte image in an optimistic 45 millisec- 
onds. In the first two models, A and B, the byte pixel 
writes go directly to the shared memory, so that all four 
processors writes may cause conflicts. Model C reduces 
write traffic by writing words of 8 pixels which would be 
flushed from the on chip cache. The Delay of getting the 
bus (nanoseconds), the number of processors queued up 
waiting for the bus (processors), and the percentage of 
time that the bus is busy are shown (averagdmaximum). 

performed. 

TABLE 2. Byte writes vs. reads and flushes 

Yodel Delay Queue % Busy 

A 151465 ns 0.1113 proc. 41.6 % 

B 71701 ns 0.043 proc. 30.8 % 

C 10/378 ns 0.01112 proc. 12.2 % 

One way to force a hit on writes was to modify cache 
tags, a feature available in the i860. However, that re- 
quired extensive modification in program development. 
An altemative was to read result locations before writing. 
This happens naturally in many applications where the 
computation is of the form A t A 63 B where Q is any 
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operationandAandBaretwooperands.Othecwlse - ,& 
compiler (or programmer) could do so for opeduns like 
A t B  8 C. In the secondcase it does not matter what 
data is read for A as they are overwrittea. If pod& then 
read allocation [lq, or forcinga hit on reads in cxteraal 
cache, was found tobe useful whcnpnparhrg thep0ces- 
SOT to cache results on chip. Tbeprootseorreads bebuff- 
er from the cache without going to shad memory. This 
read is done to validate the onchip cache tag, so subae- 
quent result writes hit in the cache. The addition of op- 
tional read and write allocation further improved the 
cache solution, and provided a unique solution to the 
memory bandwidth matching without changing the mi- 
croprocessor itself. 

The final shared memory design prevents byte, 16 bit, 
and 32 bit writes. This is done so that inefficient use of 
the shared memory bus is not allowed. Programmers 
must use the extemal cache and explicitly flush their re- 
sults from the external cache, or use rt8d allocation and 
flush the on-chip cache to write-through to the shared 
memory. 

3.6 Software 
Software design proceeded with the hardware design.- 
Hardware and sofhvare groups worked closely to opti- 
mize performance. The application software includes an 
interpreter, translator, and debugger. System software 
was developed to load programs, and control communi- 
cation. Figure 4 shows interaction among the modules. 

- 

.. 

Figure 4.software View 

INSIGHT is a dataflow language in the LUCID family of 
languages developed by Shapiro and Haralick [13][ 141. 
INSIGHT operates on sequences of values. In the origi- 
nal INSIGHT, the values were expected to be pixels of 
images or cells of data structures. In the version of IN- 
SIGHT running on the Proteus system, the values are 
whole images or whole data structures. The INSIGHT 
program descrii the flow of a sequence of images and 
resultant structures through the Proteus network. Each 
node of the network performs one a more operations on 

its input image(s) andlor s~ucture(s) to produce output 

Tbc most important aspect of the INSIGHT language is 
that it expresses relabships, not commands. The order 
in which therelationshipsare stared in the program has 
noeffect on tht redts. Instead the re-ps dictate a 
graph s t ”  that defines the flow of data through the 
system. pisurt 5 illustrates the Braph structure fora pro- 
gram. ’ h i s  graph must be mapped ontotheproteus hard- 
Ware. 

The INSIGHT translator maps the algorithm onto the 
hardware. The INSIGHT translator has two main parts: 
the sc8nm-r module and the linkermtioner mod- 
ule. The scanner/parser module uses standard translation 
techniquea. It employs a iinite machine for lexical analy- 
sis and a recursive descent parsing mechanism with look 
ahead by one, augmented by a precedence parser for ex- 
pnxsion. The output ofthe scanner/pamx module goes to 
the linker which replaces single nodes of the graph r e p -  
senting INSIGHT library routines by prestored subgraphs 
that came from previous “slationS. Also, nodes repre- 
senting morphological operations which use possibly 
complex structuring elements are decomposed into se- 
quences of nodes that use smaller structuring elements 
[HI. ‘Ihis decomposition is beyond the scope of this pa- 
per. The partitioner is the only nonstandard part of the 
translator. Its job is to map the operations in the final 
dataflow graph onto the reconfigurable network. The goal 
is to produce the mapping with the highest throughput, so 
that as much data as possible can be handled by the 

The problem of the partitioner can be stated as follows. 
Given a dataflow graph with K nodes with an estimation 
of the amount of processing time each takes, and a multi- 
processor shared memory system with N processing ele- 
ments, with a specified interconnection network and 
interprocessor communication costs, how can the opera- 
tions be partitioned among the processors to gain maxi- 
mum throughput. Initially we chose a greedy technique 
which is similar to as in 111. 

To control the load balancing, each processor has all of 
the nodes it will process assigned to it. The algorithm 
keeps a list of all nodes that have had all of their ances- 
tors allocated. This is calIed the nady list. A heuristic is 
generated for each of the nodes in the ready list at each 
step estimating the cost of assigning that node to the cur- 
rent processor. ‘Ihe heuristic is based on the computation 
time of the node, the load so far on the procesSing block, 
and the communication required by assigning this node to 
this processing block. The lowest heuristic cost is as- 
signed to the processor, and a new ready list is deter- 
mined and the process repeated until no node has a 
heuristic below a threshold value. At this point, nodes are 
assigned to the next procesSing block. 

Wa - W s ) .  

reconfigulable network. 
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After allocating the nodes in this fashion, a relaxation 
procedure is used to determine if one or more nodes can 
be shifted between processors to lower the maximum 
load. The first step of this procedure is to determine 
which processing element has the largest load of compu- 
tation + communication determined by 

NF N. 

L(max) = max C ( t j , R + C i , n )  (EQ1) 

where NPm is the number of processors, N,, is the num- 
ber of nodes assigned to the nth processor, ti," is the 
computation time of the i* node assigned to the nh pro- 
cessor, and ci, ,, is the communication time required by 
the nh processor due to the i* node. 

When the processor with the largest load has been deter- 
mined, then each node assigned to that processor is 
checked to see if it can be moved to the previous or the 
next processor. A node can be moved to the previous pro- 
cessor if none of its input arcs are generated by nodes that 
are on the processor that this node is currently assigned 
to. Similarly, a node can be moved to the next processor 
if none of its output arcs are consumed by nodes that are 
on the processor that this node is currently assigned to. If 
a node can be moved, then the maximum load that this 
new assignment would create is generated. If any of these 
loads are less than the current maximum load, then one of 
the movements that reduces the maximum load is com- 
pleted and the process is repeated. If none are found that 
reduce the maximum load, then the relaxation is com- 
plete. Two methods of selecting the modification have 
been used: 1)Maximum Optimization Rule: The node 
that lowers the maximum load the most is selected, and 
2) Minimum Disturbance Rule: The node that lowers the 
maximum load the least is selected. 

n = l  i = l  

An additional software module, the loader, is necessary to 
set up Proteus for execution. The loader runs on the host, 
accepts the user's requests, downloads the pre-stored 
linked object codes, the scheduling of jobs, and the net- 
work configuration control codes to the pipeline hard- 
ware units, and finds the mapping from symbolic 
processor names to physical processors. 

For program and hardware debugging a parallel debugger 
is, PBUG was developed. PBUG is a window-based ap- 
plication that runs on the host. It allows the user to con- 
trol the executions of both the simulator and the subject 
INSIGHT program (on the Proteus system), and to visu- 
alize and verify the results produced by the Proteus sys- 
tem. It is being implemented in Ada, using VADS on a 
Sparcstation under Unix. PBUG is implemented as two 
communicating processes, one on the host and the other 
one on the Proteus system and interacts with the user 
through the host's window system. 

The low-level software support for the high-level pro- 
gramming environment is the processing library. As an 
example, the image processing library contains the Intel 
i860 code for the operations in the INSIGHT application 
program. The initial set of functions in the library include 
arithmetic and logical operations on images, geometric 
spatial transforms, morphological operations, neighbor- 
hood operations, connected components, and masking. 

4.0 Applications 

Computer vision and image processing have task graphs 
that may be pipelined, and parallelized. Such problems 
can be partitioned into large chunks of data, which is 
what Proteus is targeted for. To translate the system vi- 
sion application task to the associated task graph, the pro- 
teus programmer encodes his algorithm in INSIGHT, a 
relational dataflow language. The INSIGHT program is 
translated to a graph structure which is mapped to the 
Proteus architecture. The symbolic mapping produced by 
the translator specifies the symbolic processors to which 
image processing operations are assigned. The code for 
the operations is stored in a library on the host. A loader 
program performs the mapping from symbolic processors 
to physical processors in the Proteus network and down- 
loads the code for each processor and the appropriate 
control codes for configuration of the network to execute 
the algorithm. 

Software controller programs running on the cluster con- 
trollers synchronize the flow of data between processors 
and control the execution of the processors in that cluster. 
Software controller programs running on the group con- 
trollers handle transfer of data from the input, between 
clusters, and between groups. 

Figure 5 illustrates an INSIGHT program for the Proteus 
system. The input to the program is 512x512 gray tone 
image GO, and the output is a 512x512 binary image B4. 
Intermediate graytone images G 1, G2. and G3 and inter- 
mediate binary images B 1, B2, and B3 are also produced 
during execution of the program. The first relation says 
that graytone image GO is to be thresholded using thresh- 
old T1 (a constant), and the result is to become binary im- 
age B1. The second relation says that GO is also to be the 
input to a morphological closing operation [8] with a 
structuring element that is a box (rectangle) of dimension 
5 x 5, with the result becoming gray tone image G1. The 
third relation specifies the production of another binary 
image B2 that is the result of performing an opening in 
G1, subtracting the opening from G 1 itself and threshold- 
ing the result of the subtraction. The other relations can 
be analyzed in a similar fashion, 

In the Proteus system, users are allowed to choose the 
number of processors they wish to partition the algorithm 
between. This partition is then replicated with successive 
inputs images going to successive processor blocks until 
all processors have been used. If the number of proces- 
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Figure 5. Insight Program 
sors that the algorithm is divided among is not a multiple 
of four, them the replicated mapping may not be exactly 
the same. 

The processing and computation in Proteus uses a variety 
of software and hardware control mechanisms. Each pix- 
el processor and the cluster controller have shared-mem- 
ory mail boxes. They also communicate with each other 
via interrupts. At run time, the cluster controller dispatch- 
es a job to each idle pixel processor by interrupting the 
pixel processor to indicate the task control block is ready 
to be read. When a pixel processor finishes its assigned 
job, it creates a completion record and interrupts the clus- 
ter to report the results. After receiving the interrupt sig- 
nal from the pixel processor, the cluster controller reads 
the completion record to get the information the pixel 
processor, updates the status of data regions due to the 
task just completed, and continues to activate sleeping 
processors. 

5.0 Summary 

We have presented an innovative architecture designed 
for processing applications where large granularity may 
be used. The separate communication and control allows 
for high communication and U0 rates. By utilizing 
Choi’s recent theoretical developments in hypercube the- 
ory 121 [3] 141, Proteus creates complete permutation capa- 
bility. This allows embedding of arbitrary graphs, and the 
circuit switched links provide guaranteed rates of com- 
munication. Shared memory multiprocessors contention 
problem is addressed by clustering processors, and by us- 
ing innovative cache designs to allow for the ideal cache 
and local memory behavior. With the general intercon- 
nections and reassignment of clusters, System Level 
Fault Diagnosis is achieved for all applications running 
on Proteus 
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