
Proteus System Architecture and Organization

Arun K. Somani, Craig Wittenbrink, Robert M. Haralick,
Linda G. Shapiro, Jenq-Neng Hwang, Chung-Ho Chen,

Robert Johnson, and Kenneth Cooper

Dept. of Electrical Engineering
University of Washington

Seattle, WA 98195
M.S. FT-10

Abstract: The Proteus architecture is a highly parallel
MIMD, multiple instruction multiple data, machine, opti-
mized for large granularity tasks such as machine vision
and image processing. The system can achieve 20 G-flops
(80 G-flops peak). It accepts data via multiple serial links
at a rate of up to 640 megabytes/mnd. The system em-
ploys hierarchical reconfigurable interconnection net-
work with the highest level being a circuit switched
Enhanced Hypercube serial interconnection network for
intemal data transfers. The system is designed to use 256
to 1,024 RISC processors. The processors use 1 M byte
external R e d w r i t e Allocating Caches for reduced multi-
processor contention. The system detects, locates and re-
places faulty subsystems using redundant hardware to
facilitatefault tolerance. The parallelism is directly con-
trollable through an advanced software system for parti-
tioning, scheduling and development.

1.0 Introduction

Proteus is a sea god who changes his shape at will. The
Proteus Supercomputer is a reconfigurable network of
processors that can change its configuration to perform
optimally on a variety of large granularity tasks. It is an
MIMD, multiple instruction multiple data, machine
unique in many respects. Special features are e h n c e d
hypercube circuit switched communications [3], read and
write allocating caches [171, and system level fault diag-
nosis [151. These features have not been incoqxmted into
existing architectures.

Proteus uses tightly-coupled clusters connected in
groups. Communication within a group is through a
crossbar connection. Communication between groups is
through circuit switched enhanced hypercube connec-
tions. A separate control network of buses within each
group, and ethernet among groups allows a d d i t i d con-
trol and communication.

Proteus is designed for large granularity pipelined, dis-
tributed, or parallel processing applications. Tasks can be
partitioned to a single processor, a subset of processors or
all processors in a pipeline or distributed fashion. It is
also possible to set up multiple processor pipelines to per-

lH0363-2/91/0000/0287$01 .OO (8 1991 IEEE

form diffmnt tasks. Example applications include image
processing, fast Fourier transforms, and low to high-level
vision. We present unique features of Proteus system in
Section 2, the architecture in Section 3, applications in
Section 4, and conclude in Section 5.

2.0 Unique Features

The special features of Proteus can be demonstrated via a
comparison with other recently developed Supercomput-
ers. We focus on communication and processor cluster-
ing. Proteus has been designed to balance the
interconnectivity and the processor clustering so that
maximum utilization of both processor and communica-
tion network is achieved. We give a brief overview of the
unique developments in Proteus below.

2.1 Circuit Switched Enhanced Hypercube
The binary hypercube-based computers, cosmic cube,
Ncube, and FPS T-Series [5], use packet switching to
communicate from node to node. Proteus uses circuit
switching. A Proteus node consists of clusters that each
contain 36 processors. The nodes are connected in an en-
hanced hypercube structure. An enhanced hypercube
(EHC) contains two links in any one dimension of a regu-
lar hypercube, as shown in Figure 1. The primary advan-
tage of the enhanced hypercube architecture is the
permutation embedding capability. A centralized algo-
rithm at the host may route any arbitrary permutation. The
32 groups in a full scale system can thus communicate
with each other in an arbitrary permutation for rapid ex-
change of data. By not buffering the data at the intermedi-
ate nodes, the transmission across the diameter of the
hypercube are negligible.

The EHC of Proteus is also a special case of the general-
ized folding cube [Z]. Direct application to algorithms is
provided by trivial embedding of meshes, rings, tori, etc.
The g e n d interconnections available allow many algo-
rithms to be directly mapped into Proteus with optimal
performance. The generalized cube has multiprocessors at
each node. Studies have shown that efficiently coded al-
gorithms on the hypercube underutilize the available
bandwidth [9]. By clustering processors at each node the

281

Proteus architecture improves the link utilization. De-
tailed descriptions of the communication network and the
EHC are given in section 3.2.

2.2 Allocating Caches
Clustering of processors together, while cost effective,
may cause contention for shared resources. Detailed sim-
ulation, program studies, and architectural trade-offs al-
lowed us to optimize the use of the shared memories at
clusters. In effect, the advantages of local memory and
cache memory have been combined by using an innova-
tive implementation of read and write allocation [17].
Read and write allocation force cache accesses to hit,
thereby reducing shared memory accesses, and limiting
multiprocessor contention. For initial applications read/
write allocation has shown shared bus accesses to be re-
duced by 6.6 % [16]. The allocating cache is a high per-
formance interconnect that is much more general than the
register memories used in the Orthogonal multiprocessor
(OMP) [lo], which requires explicit loading and unload-
ing of register variables. Proteus caches may be set to dif-
ferent modes by using mode bits in the address, so any
combination of modes may be used in pages which map
to unique positions within the cache. The caches are de-
scribed fully in the architecture section.

2.3 Fault Tolerance
Initial design goals focused on the incorporation of limit-
ed fault tolerance. By requiring general connectivity of
clusters, and the arbitrary assignment of jobs to proces-
sors, system level fault diagnosis [151 can be performed
at the cluster level. Proteus incorporates a small amount
of spare processing capacity which is used for roving
tests and redundant computation, to create on line fault
diagnosis. The fault diagnosis strategy is discussed fur-
ther in the architecture section.

These unique aspects of Proteus create a research com-
puter that advances current architectural thought. The
Proteus architecture is a test bed for hypercube communi-
cations, allocating caches, and system level fault diagno-
sis. Simulation shows these features give higher
performance and reliability than other architectures.

3.0 Architecture

3.1 Goals

Proteus design is medicated on the use of higher granu-
larity. This constrains data movement to be in large
blocks between processors. Blocks of data are typically
images, which should be routable in varied and arbitrary
graphs. The performance is related to the load balancing
and the utilization of processor resources.

The research goals are: architecture, partitioning, load
balancing, and algorithm mapping. The system was de-
signed to accommodate 256 to 1024 processors. We

present an overview of the architecture followed by a dis-
cussion of the design.

3.2 Organization
Proteus is a scalable EHC based computer system with a
large number of processors at each node. Unlike the
NCube, iPSC 860, and the FPS T Series [5] Proteus has
36 processors at each node. The system is scalable from a
3 cube to a 5 cube with 8 to 32 nodes, or groups. The pri-
macy advantage of the large number of processors in each
group is for large grain parallelism problems which may
communicate efficiently using large blocks of data. The
external input is received on 32 parallel channels which
are equally distributed to the EHC nodes. The communi-
cation m s s the hypercube, within groups, and control
of all p" is described in this section.

3.2.1 Enhanced Hypercube
The hypercube is an undirected graph of 2" vertices
where each vertex has n links, or edges to other vertices.
A 3 dimensional cube has Z3 = 8 vertices, and each ver-
tex has 3 links. A permutation in the hypercube is a con-
nectivity set used to represent the communication to
occur. For example a 2cube permutation is [3,2,0,11 so
that vertex 0 connects to 3.1 to 2.2 to 0, and 3 to 1. Arbi-
trary permutations may be possible in any dimensional
cube, but it has not been proven.

Proteus uses the EHC static network for which it has been
proven that arbitrary permutations can be embedded [31.
The Enhanced Hypercube uses two links instead of one in
any one dimension of the original binary cube for n > 3.
This gives us complete reconfigurability. Figure 1 shows
Proteus with n = 4, and the extra links connecting all
nodes in the vertical dimension.

The links marked a, b. c, and d are the high speed serial
links input and output for one group. The e link is the ad-
ditional link which allows full permutation capability.
The exploded view of the group contains the Unix board
group controller (GC), the clusters (CO to C8), and the
communication interface or crossbar (xBar). Clusters are
connected by crossbar to each other and to the enhanced
hypercube. U0 from external sources is fed through the I/
0 buffer marked as IB. An exploded view of a single
cluster is also shown, and consists of the cluster control
processor (CCP), the shared memory (SM). the U0 buffer
and memory (U0 DPM), and the RISC processors (or
pixel processors, PP). Pixel processors in a cluster share
memory and a serial U0 link. External caches and control
processors help to ease contention and multiprocessing
performance degradation.

3 3 Communication
The communication structure is hierarchical to share re-
sources and distribute control overhead. Currently, com-

288

Enhance&
Hypercu

Figure 1. Exploded View of Proteus System
munication through hypercube links is arranged by the
host. Communication within groups is set up by the
group controller, and communication within a cluster is
set up by the cluster controller. All links to cross-bar are
optical serial links which transmit/receive data at 250
Mbits/mnd. When a path has been set for cube commu-
nication, data passes directly from the source cluster to
the destination cluster in another group. No store and for-
warding is done with the circuit switch connection.

Within the group, a crossbar connects serial links to and
from sources and destinations. In parallel with cube com-
munication, additional clusters within the group may be
transmitting and receiving data. At any time, k clusters in
a group may be using cube connections, so that 9 - k
clusters may communicate amongst themselves. The
cluster’s four processors share a serial I/O link which is
accessible bough a dual port memory buffer. The shared
memory provides intra cluster communication, and the
dual port buffer provides highest 1/0 performance. The
control of communication, and the control network are
described in the following section.

When a PP il in a cluster jl in group kl wants to send a
block of data to another PP i2 in cluster j2 in group k2, the
path is set up under the control of cluster controller j 1 , j2,
group controller k1, k2 and host in a tree fashion depend-
ing on the location of PP(il,jlJrl) and PP(i2j&. This is
depicted in Figure 2. If jl=j2 (then kl=k2) and cluster jl
arranges for data transfer through the shared memory. If

jl # j2 but kl=k2 then cluster controller j l request
group controller k1 (4 2) to set up the path through the
crossbar. Group controller also informs the receiving
clusterj2 to be ready to receive data. If jl=j2 and kl=k2,
then the group controller k1 requests to host to set up a
path through the EHC. When the path is available, the
host informs all GCs which include GC kl, GC k2 and in-
termediate GCs. All G C s set up their X-Bars. GC kl and
GC k2 inform their respective clusters which in turn sets
up their respective transmission and receive DMAs.

)(Figure 2. Communication hierarchy
PI2

3.4 Control

Both the Enhanced hypercube and the crossbar connec-
tions within a group are managed by the generalized
communication interface, GCI. The link connections to
the cube and clusters are provided in a crossbar within
each group. The GCI consist of a 16 x 16 cross point
switch. Each input can transmit up to a loo0 Mbits/sec fi-
ber link but the actual speed to be used in the current sys-
tem is 250 Mbits/sec. The 16 links on the input side are
used by the nine clusters in the group, 32/N input chan-
nels and the enhanced hypercube links. A block diagram
showing the crossbar connection is depicted in Figure 3.

v
1 6 x 1 6 f clusters I I From9 :

Clusters 0

Figure 3. Crossbar Connections

The group controller is a single processor Unix board
equipped with the VMEbus and ethemet interfaces. It op-
erates under a real time UNIX operating system environ-
ment Each group has a single VMEbus accessible to all

289

of its clusters. The group controllex ccudhws all activi-
ties within the group. It assigns tasks to cach cluster and
sets up communication paths. possible paths are frcnn in-
put to cluster within the group, intra cluster within the
group, and intergroup. Paths are set by writing to the
GCI.

The Proteus host sets initial configurations and manages
cube links between gtoups. It is a general purpost Unix
work station. It is mponsibie for system opetation, user
interaction, and output collection. Algarithms are devel-
opedat the host and mapped on to the system. Under the
host, N = 8 to 32 groups are connected to the Proteus
host through ethemet

Within the group 8 clusters (with 1 extra for fault toler-
ance) are controlled via VMEbus. The group controller
reads sending requests and activates destination clusters
through VMEbus control registers. The movement of
data is synchronized and each image frame transmission
is completed within a k e d time. The set-up for all GCIs
is synchronized. If the communication is to be resaicted
within a group, then the GCI allows asynchronous com-
munication under the control of the group controller.

The lowest level in the hierarchy is the cluster. The clus-
ter has a dedicated control processor, the Intel i960. The
cluster controller schedules tasks on the pixel processors,
manages shared memory, arranges for receiving and dis-
patching data by serial YO, and monitors performance by
using a hardware timer. The 4 RISC processors, i860s.
share memory and have their own cache. The Intel i860 is
a high performance 64 bit microprocessor. It supports
parallel and pipelined execution with a RISC paradigm,
using independent cdinteger unit and a floating point/
graphics unit. These units may operate in parallel, aad
may access onchip caches in a single cycle at 40MHz.

Custom external caches tie directly to a shared 64 bit
data, 32 bit address bus which services the 8 - 32 Mbyte
shared memory and the lMbyte I D buffer. The shared
bus allows locked accesses for semaphore, test and set,
and compare and swap operations, and burst fetches, of
four 64 bit words.

The extemal cache memory holds both data and instruc-
tions. The external cache is organized as a 1 megabyte di-
rect mapped cache with a line size of 32 bytes. This
matches with the internal line size of the Intel i860. The
cache is designed for efficient multiprocessing with
adaptable modes &pendent upon the data: cached locally,
cached shared, or uncacheable. Normal caching modes
include write through and write back. New modes allow
for validation of tags without reading that line from the
shared memory [17]. Cache write allocation forces a hit
upon a write. This reduces the ShaFed bus cycles and im-
proves the overall performancx of the system. In addition
to the novel use of the above modes, line flushing, flush
and invalidate, invalidation, and labelling are used to

control individual lines in the cache. The cache modes
are established by using multiple virtual addresses for the
same physical memory. Software is responsible for cache
managememt.

35 Design
The design pocess started with initial discussions on ap-
proach, peafoimance, and applications. The design was to
be resttlcted to one circuit board, if possible, to reduce
layout and debugging time.

Processor &kction. A processor survey was done to de-
te r” the most applicable microprocessor. A represen-
tative algorithm, morphological dilation, was used to
“paper” code programs to compare their performance and
features. Important features used for comparison were
arithmetic speed, number of registers. on chip memory
(or cache) size, external bus bandwidth, and floating
point capability. Processors as investigated include the
Intel i860, the MIPS 3OOO. the Motorola DSP %002, the
Texas Instnunents TMS 32OC30, the AT&T DSP 32C,
the Motorola 88000, the Motorola 68040, the Intel
80486, and the Inmos T800. The i860 proved to be the
clear choice for design, because of a combination of 64
bit data bus and 12K bytes of on-chip cache memory.
Analysis by Levy [113 showed the i860 to be poor for op-
emting system work, so extra care was taken in design to
minimize interruption of the i860’s processing. Specifi-
cally, another control processor was chosen to take care
of scheduling and interrupt handling, i960.

Interconnection and YO. Investigation into intemnnec-
tion schemes and 40 to handle the high input rate re-
vealed a variety of options. The basic requirement was to
allow data to be sent directly to any of the 256-1024 pro-
cessors. To support processor pipelines and distributed
processing data were also to be moved from processor to
processor.

The only feasible option to support the high-input data
rate was to divide input data over multiple 40 channels.
Parallel data transfer would imply large numbers of ca-
bles, not a desirable feature. So fast serial VO channels
were considered. Serial to parallel data conversion took
place at the I/o interfzce. Input data was stored in shared
memory using DMA. A separate 64/256 bits wide fast
parallel bus for data exchange within a group was consid-
ered. A 64 bit wide bus with available technology could
handle the average data load. but performance would suf-
fer if a peak load was experienced. A 256 bit width bus
was would have forced us into a tight design space as it
would have required larger board area and wide memory
word size. Another option was to use switched fast serial
lines between clusters. High speed parallel-to-serial and
serial-to-parallel chips from Gazelle [6] and a fast cross
bar chip from Gigabit logic [7] were available from off
the shelf. This was an attractive design option and these
chips form the backbone of the communication network

290

within each group. In addition enhanced hypercube con-
nection could be realized using the same crossbar chip.
With 32 YO channels and 8 clusters per group (plus one
for fault tolerance), there were 7 ports left for managing
input/output channels and enhanced hypercube connec-
tions. An enhanced n-cube (n dimensional) requires
n + 1 links at each node for n > 3 and n links for n < 3.
At the same time 32 Yo channels were to be equally dis-
tributed among the groups. The distribution of channels
is as follows.

TABLE 1. Channels

U0 channels/node EHC link
1 6
2 5
4 3

This suited us very well, and we used a 16x16 crossbar at
each node as shown in Figure 3.

Cluster Design. The most detailed analysis for design
was performed on the cluster board. With the available
technology, it was reasonable to fit four processors on one
board. To support embedding of more general program
graphs, we searched for a more general design. One pos-
sibility was to split the memory into several banks and
provide a crossbar interconnection among processors and
memory banks. This could do well with processor pipe-
lines, but embedding arbitrary program graphs would
cause blocking. Thus other options were considered.
These included 1) a shared memory with a 256 bit wide
bus with 4 x 256 bit data buffers (memory interface unit,
MIU); 2) shared memory and a local memory with each
processor; and 3) a shared memory with processor cach-
es. In each case, it was possible to share the memory for
I/O through DMA, direct memory access, or provide sep-
arate buffering for YO. The bus could be 64 or 256 bits
wide. These alternatives were compared using Network
11.5 simulations and then low-level HDL, Hardware De-
scription Language, simulations.

Several things were learned from the simulation. A high
amount of conflict resulted whenever the input data was
being transferred into shared memory. Because of this,
closer attention was paid to the VO design on the board.
With the use of an 1/0 buffer the input and output data
could be removed from the shared bus. Therefore, a dual
port memory was added to manage the YO. The MIU
model suffered because the processor could not cache all
of its data in its on chip cache and higher contention re-
sulted. In addition a 256 bit bus was thought to be an im-
plementation risk. The local memory model suffered
because no processing occurred while the data were
transferred and the local memory is a fixed size. Howev-
er, local memory was advantageous when processing cre-
ated large results which were to be used again by the
same processor. The cache solution computed while read-

ing initial data, did not fix the size of programs and data,
and allowed a 64 bit bus to achieve acceptable perfor-
mance. However, depending on the algorithm, the bus
could still be saturated.

Additional optimization of caching was investigated.
When blocks of data are to be generated as a result of
computation, reads do not have to be done for caching.
The processing of blocks of data lead to the idea of allow-
ing pages of the cache to be controlled in a local memory
mode, so local data could be forced to stay off the shared
memory bus. Through allocation a section of the cache
was to allow allocated writes. These writes would hit ir-
respective of the address tag present in the cache. If valid
data was previously in the cache that needed to be
flushed, this would be done, and then the write would be

Further investigation showed that clever coding on the
processor allowed results to be cached which dramatical-
ly reduced traffic on the bus. Since the i860 allowed 64
bit transfers, using the bus for less than 64 bit transfers
results in under-utilization. In particular, if the transfer
happens to be a byte, which was the case for our 6rst vi-
sion application, the performance loss is severe. There-
fore a scheme in which write data are cached and
transferred to main memory in chunks of 64 bits yields
much improved performance. TABLE 2. shows the re-
sults of this study. Three models were studied which are:
A) a statistical read/write model, B) a deterministic read/
write model, and C) a statistical reaawrite model that
caches the writes. The same program was running on all
four processors, and processes a 64 K byte image and
creates a 64 K byte image in an optimistic 45 millisec-
onds. In the first two models, A and B, the byte pixel
writes go directly to the shared memory, so that all four
processors writes may cause conflicts. Model C reduces
write traffic by writing words of 8 pixels which would be
flushed from the on chip cache. The Delay of getting the
bus (nanoseconds), the number of processors queued up
waiting for the bus (processors), and the percentage of
time that the bus is busy are shown (averagdmaximum).

performed.

TABLE 2. Byte writes vs. reads and flushes

Yodel Delay Queue % Busy

A 151465 ns 0.1113 proc. 41.6 %

B 71701 ns 0.043 proc. 30.8 %

C 10/378 ns 0.01112 proc. 12.2 %

One way to force a hit on writes was to modify cache
tags, a feature available in the i860. However, that re-
quired extensive modification in program development.
An altemative was to read result locations before writing.
This happens naturally in many applications where the
computation is of the form A t A 63 B where Q is any

291

operationandAandBaretwooperands.Othecwlse - ,&
compiler (or programmer) could do so for opeduns like
A t B 8 C. In the secondcase it does not matter what
data is read for A as they are overwrittea. If pod& then
read allocation [lq, or forcinga hit on reads in cxteraal
cache, was found tobe useful whcnpnparhrg thep0ces-
SOT to cache results on chip. Tbeprootseorreads bebuff-
er from the cache without going to shad memory. This
read is done to validate the onchip cache tag, so subae-
quent result writes hit in the cache. The addition of op-
tional read and write allocation further improved the
cache solution, and provided a unique solution to the
memory bandwidth matching without changing the mi-
croprocessor itself.

The final shared memory design prevents byte, 16 bit,
and 32 bit writes. This is done so that inefficient use of
the shared memory bus is not allowed. Programmers
must use the extemal cache and explicitly flush their re-
sults from the external cache, or use rt8d allocation and
flush the on-chip cache to write-through to the shared
memory.

3.6 Software
Software design proceeded with the hardware design.-
Hardware and sofhvare groups worked closely to opti-
mize performance. The application software includes an
interpreter, translator, and debugger. System software
was developed to load programs, and control communi-
cation. Figure 4 shows interaction among the modules.

-

..

Figure 4.software View

INSIGHT is a dataflow language in the LUCID family of
languages developed by Shapiro and Haralick [13][141.
INSIGHT operates on sequences of values. In the origi-
nal INSIGHT, the values were expected to be pixels of
images or cells of data structures. In the version of IN-
SIGHT running on the Proteus system, the values are
whole images or whole data structures. The INSIGHT
program descrii the flow of a sequence of images and
resultant structures through the Proteus network. Each
node of the network performs one a more operations on

its input image(s) andlor s~ucture(s) to produce output

Tbc most important aspect of the INSIGHT language is
that it expresses relabships, not commands. The order
in which therelationshipsare stared in the program has
noeffect on tht redts. Instead the re-ps dictate a
graph s t ” that defines the flow of data through the
system. pisurt 5 illustrates the Braph structure fora pro-
gram. ’ h i s graph must be mapped ontotheproteus hard-
Ware.

The INSIGHT translator maps the algorithm onto the
hardware. The INSIGHT translator has two main parts:
the sc8nm-r module and the linkermtioner mod-
ule. The scanner/parser module uses standard translation
techniquea. It employs a iinite machine for lexical analy-
sis and a recursive descent parsing mechanism with look
ahead by one, augmented by a precedence parser for ex-
pnxsion. The output ofthe scanner/pamx module goes to
the linker which replaces single nodes of the graph r e p -
senting INSIGHT library routines by prestored subgraphs
that came from previous “slationS. Also, nodes repre-
senting morphological operations which use possibly
complex structuring elements are decomposed into se-
quences of nodes that use smaller structuring elements
[HI. ‘Ihis decomposition is beyond the scope of this pa-
per. The partitioner is the only nonstandard part of the
translator. Its job is to map the operations in the final
dataflow graph onto the reconfigurable network. The goal
is to produce the mapping with the highest throughput, so
that as much data as possible can be handled by the

The problem of the partitioner can be stated as follows.
Given a dataflow graph with K nodes with an estimation
of the amount of processing time each takes, and a multi-
processor shared memory system with N processing ele-
ments, with a specified interconnection network and
interprocessor communication costs, how can the opera-
tions be partitioned among the processors to gain maxi-
mum throughput. Initially we chose a greedy technique
which is similar to as in 111.

To control the load balancing, each processor has all of
the nodes it will process assigned to it. The algorithm
keeps a list of all nodes that have had all of their ances-
tors allocated. This is calIed the nady list. A heuristic is
generated for each of the nodes in the ready list at each
step estimating the cost of assigning that node to the cur-
rent processor. ‘Ihe heuristic is based on the computation
time of the node, the load so far on the procesSing block,
and the communication required by assigning this node to
this processing block. The lowest heuristic cost is as-
signed to the processor, and a new ready list is deter-
mined and the process repeated until no node has a
heuristic below a threshold value. At this point, nodes are
assigned to the next procesSing block.

Wa - W s) .

reconfigulable network.

292

After allocating the nodes in this fashion, a relaxation
procedure is used to determine if one or more nodes can
be shifted between processors to lower the maximum
load. The first step of this procedure is to determine
which processing element has the largest load of compu-
tation + communication determined by

NF N.

L(max) = max C (t j , R + C i , n) (EQ1)

where NPm is the number of processors, N,, is the num-
ber of nodes assigned to the nth processor, ti," is the
computation time of the i* node assigned to the nh pro-
cessor, and ci, ,, is the communication time required by
the nh processor due to the i* node.

When the processor with the largest load has been deter-
mined, then each node assigned to that processor is
checked to see if it can be moved to the previous or the
next processor. A node can be moved to the previous pro-
cessor if none of its input arcs are generated by nodes that
are on the processor that this node is currently assigned
to. Similarly, a node can be moved to the next processor
if none of its output arcs are consumed by nodes that are
on the processor that this node is currently assigned to. If
a node can be moved, then the maximum load that this
new assignment would create is generated. If any of these
loads are less than the current maximum load, then one of
the movements that reduces the maximum load is com-
pleted and the process is repeated. If none are found that
reduce the maximum load, then the relaxation is com-
plete. Two methods of selecting the modification have
been used: 1)Maximum Optimization Rule: The node
that lowers the maximum load the most is selected, and
2) Minimum Disturbance Rule: The node that lowers the
maximum load the least is selected.

n = l i = l

An additional software module, the loader, is necessary to
set up Proteus for execution. The loader runs on the host,
accepts the user's requests, downloads the pre-stored
linked object codes, the scheduling of jobs, and the net-
work configuration control codes to the pipeline hard-
ware units, and finds the mapping from symbolic
processor names to physical processors.

For program and hardware debugging a parallel debugger
is, PBUG was developed. PBUG is a window-based ap-
plication that runs on the host. It allows the user to con-
trol the executions of both the simulator and the subject
INSIGHT program (on the Proteus system), and to visu-
alize and verify the results produced by the Proteus sys-
tem. It is being implemented in Ada, using VADS on a
Sparcstation under Unix. PBUG is implemented as two
communicating processes, one on the host and the other
one on the Proteus system and interacts with the user
through the host's window system.

The low-level software support for the high-level pro-
gramming environment is the processing library. As an
example, the image processing library contains the Intel
i860 code for the operations in the INSIGHT application
program. The initial set of functions in the library include
arithmetic and logical operations on images, geometric
spatial transforms, morphological operations, neighbor-
hood operations, connected components, and masking.

4.0 Applications

Computer vision and image processing have task graphs
that may be pipelined, and parallelized. Such problems
can be partitioned into large chunks of data, which is
what Proteus is targeted for. To translate the system vi-
sion application task to the associated task graph, the pro-
teus programmer encodes his algorithm in INSIGHT, a
relational dataflow language. The INSIGHT program is
translated to a graph structure which is mapped to the
Proteus architecture. The symbolic mapping produced by
the translator specifies the symbolic processors to which
image processing operations are assigned. The code for
the operations is stored in a library on the host. A loader
program performs the mapping from symbolic processors
to physical processors in the Proteus network and down-
loads the code for each processor and the appropriate
control codes for configuration of the network to execute
the algorithm.

Software controller programs running on the cluster con-
trollers synchronize the flow of data between processors
and control the execution of the processors in that cluster.
Software controller programs running on the group con-
trollers handle transfer of data from the input, between
clusters, and between groups.

Figure 5 illustrates an INSIGHT program for the Proteus
system. The input to the program is 512x512 gray tone
image GO, and the output is a 512x512 binary image B4.
Intermediate graytone images G 1, G2. and G3 and inter-
mediate binary images B 1, B2, and B3 are also produced
during execution of the program. The first relation says
that graytone image GO is to be thresholded using thresh-
old T1 (a constant), and the result is to become binary im-
age B1. The second relation says that GO is also to be the
input to a morphological closing operation [8] with a
structuring element that is a box (rectangle) of dimension
5 x 5, with the result becoming gray tone image G1. The
third relation specifies the production of another binary
image B2 that is the result of performing an opening in
G1, subtracting the opening from G 1 itself and threshold-
ing the result of the subtraction. The other relations can
be analyzed in a similar fashion,

In the Proteus system, users are allowed to choose the
number of processors they wish to partition the algorithm
between. This partition is then replicated with successive
inputs images going to successive processor blocks until
all processors have been used. If the number of proces-

293

G O A B1 i - w

I A

Figure 5. Insight Program
sors that the algorithm is divided among is not a multiple
of four, them the replicated mapping may not be exactly
the same.

The processing and computation in Proteus uses a variety
of software and hardware control mechanisms. Each pix-
el processor and the cluster controller have shared-mem-
ory mail boxes. They also communicate with each other
via interrupts. At run time, the cluster controller dispatch-
es a job to each idle pixel processor by interrupting the
pixel processor to indicate the task control block is ready
to be read. When a pixel processor finishes its assigned
job, it creates a completion record and interrupts the clus-
ter to report the results. After receiving the interrupt sig-
nal from the pixel processor, the cluster controller reads
the completion record to get the information the pixel
processor, updates the status of data regions due to the
task just completed, and continues to activate sleeping
processors.

5.0 Summary

We have presented an innovative architecture designed
for processing applications where large granularity may
be used. The separate communication and control allows
for high communication and U0 rates. By utilizing
Choi’s recent theoretical developments in hypercube the-
ory 121 [3] 141, Proteus creates complete permutation capa-
bility. This allows embedding of arbitrary graphs, and the
circuit switched links provide guaranteed rates of com-
munication. Shared memory multiprocessors contention
problem is addressed by clustering processors, and by us-
ing innovative cache designs to allow for the ideal cache
and local memory behavior. With the general intercon-
nections and reassignment of clusters, System Level
Fault Diagnosis is achieved for all applications running
on Proteus

6.0 References

[13 M. L. Campbell, “Static Allocation for a Data Flow Multi-
processor,” Praceediigs of the 1985 International Confer-
ence on Parallel Processing. 1985. pp. 511-517.

[2] S. B. Choi and A. K. Somani, ‘The Generalized Folding-
Cube Network,” NETWORKS, An International Joumal,
in press.

[3] S. B. Choi and A. K. Somani, “Rearrangeable Hypercube
Architecture for Routing Permutations,” Accepted for
publication in JPDC. December 1990.

[4] S. B. Choi and A. K. Somani. ‘The Generalized Hyper-
Cube,” in Proceedings of ICPP-90, August 1990. pp. 372-
375.

[SI Jack J. Dongarra and Iain S. Duff, “Advanced Architecture
Computers,’’ Technical Mem. No. 57. Argonne National
Laboratory, Sept. 1989.

[6] Gazelle “Preliminary HOT ROD High Speed Serial Link
Gallium Arsenide“ CA 9011, and GA 9012, Gazelle Mi-
crocircuits, Inc.. Owen Street, Santa Clara, CA 95054.

[7] Gigabit Logic “16x16 Crosspoint Switch 2.6 GbWs Data
Rawl.8 ns Reconfiguration Tie’’, lOGO5l Gigabit Log-
ic.

[8] R. M. Haralick. S. R. Sternberg. Y. Zhuang. “Image Analy-
sis Using Mathematical Morphology,” IEEE Transactions
On Pattem Analysis .nd Machine Intelligence, Vol.
PAMl-9. No. 4. July 1987.

[9] J. M. Hsu and P. Banerjee, “Performance Measurement and
Trace Driven Simulation of Parallel CAD and Numeric
Applications on a Hypercube Multicomputer,” 17 Annual
Int. Symp. on Comp. Arch. May 28-31.1990. Vol. 18. No

[lo] K. Hwang, et. al. “OMP A RISC-based Multiprocessor
using Orthogonal-Access Memories and Multiple Span-
ning Buses,” Int. Conference on Supercomputing. Vol.
18, No. 3. June 1990. pp. 7-22.

2. p ~ . 260-269.

[113 H. Levy, Personal Communication.
[12] C. F. Olson. “Load Balancing in Dataflow Multiproces-

sors, A Reject for EE 595,” Technical Report, University

[13] L. G. Shapiro. R. M. Haralick and M. Goulish. “IN-
SIGW. A Dataflow Language for Programming Vision
Algorithms m a R d g u r a b l e Computational Net-
work,” International Joumal of Artificial Intelligence and
P a m Recognition, Vol. 1. No. 3/4.1987. pp. 335-350.

[141 L G. Shapiro. “Programming Parallel Vision Algorithms:
A Dataflow Language A p c h , ” The International Jour-
nal for Supercomputer Applications. Vol. 2, No. 4.1989,
pp. 294.

[15] A.K. Somani and V.K. Agarwal, “Distributed Syndrome-
Decoding for Regular Interconnected Structures,” in
h. of RCS-19 held at Chicago. pp. 70-77, June 1989.

[16] C. Wittenbrink and A. K. Somani “Algorithm Based
Cache Design for High Performance Morphological Im-
age Processing,” submitted to ACS Transactions on Com-
puter Systems, Nov. 1990.

[17] C. Wiaenbrink “Directed Data Cache for High Perfor-
mance Morphological Image Processing,” Masters The-
sis, University of Washington Dept. of Eleceical
Engineering, Oct. 8,1990.

[181 X. 2hang and R. M. Haralick, “Morphological Structur-
ing Element Decomposition.” Computer vision, Graph-
ics, end Image Processing. 1986, Vol. 35 pp. 370-382.

of Washington, 1990.

294

