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Abstract

Optical flow estimation can be formulated as two re-
gression stages, derivative estimation and optical flow con-
straints (OFC) solving. Traditional approaches use Least-
Squares at both stages and are sensitive to assumption vi-
olations. To improve estimation accuracy especially near
motion boundaries, we use a Least Trimmed Squares (LTS)
estimator to solve the OFC, obtaining a confidence mea-
sure for each estimate; and at place with low confidence,
we use another LTS estimator to robustify derivative es-
timation. This adaptive two-stage robust scheme has sig-
nificantly higher accuracy than non-robust algorithms and
those only using robust methods at the OFC stage. Advan-
tages are illustrated on both synthetic and real data.

1 Introduction

Gradient-based optical flow estimation is generally com-
posed of derivative estimation and optical flow constraints
(OFC) solving two steps. Both steps involve optimization
by pooling information in a certain neighborhood and are
regression procedures in nature.

Classical approaches solve both regression problems in
a Least-Squares (LS) sense. At places where the motion is
multi-model, their results can be arbitrarily bad. To cope
with this problem, a few robust regression tools such as M-
Estimators [3] [5] and Least Median of Squares (LMedS)
estimators [6] [1] have been introduced to the OFC stage.
However, choice of these tools usually lacks solid statistical
justification and what technique is most appropriate remains
an open problem. From conclusions on modern regression
methods [10] [7] [8] [9] and characteristics of the optical
flow constraints, we find the Least Trimmed Squares (LTS)
technique to be more appropriate for the OFC step.

Meanwhile, as a very similar information pooling step,
derivative calculation has seldom received proper attention
in optical flow estimation. Crude derivative estimators are
widely used. As the consequence, robust OFC (one-stage

robust) methods still break down near motion boundaries.
We calculate derivatives from an explicit 3D facet model
[11]. This approach reveals that the derivative estimation
step is also a regression problem, which can be robustified
when the LS technique fails. We choose an LTS estimator
for robust facet model fitting. Preliminary experimental re-
sults show that the two-stage LTS scheme permits correct
flow recovery even at immediate motion boundaries.

We calculate a confidence measure for each estimate
from the LTS OFC step, and update the derivatives and
the flow vector if the measure takes a small value. By this
means the one-stage and two-stage robust methods are car-
ried out adaptively.

2 Two-Stage Linear Regression Model

The linear regression model assumes that the relation-
ship between the observation vector Y and the unknown
parameter � is

XN�M�M�1 + �N�1 = Y N�1; (1)

where X is the design matrix and � is the error vector. �
is estimated as �̂ = argmin�F (r), where r is the residual
error Y � Ŷ = Y � X�̂. The criterion function F (r)
differs among estimators depending on what error model is
assumed. The LS estimator assumes � to be additive iid
Gaussian with zero mean and variance �2 and thus F (r) =
krk2 =

PN
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2
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Optical Flow Constraint Following [4] we constrain the
optical flow vector V = (u; v)0 at (x; y; t) by AV + � = b
where
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We further assume that flow vectors in each small neighbor-
hood of Ns pixels is constant, so each vector V conforms to
Ns such sets of constraints simultaneously. This forms our
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optical flow constraint [11], a linear regression model

AsV + � = bs (2)

where As = (A0

1
; A0

2
; : : : ; A0

Ns

)0, bs = (b0
1
; b0
2
; : : : ; b0Ns

),
and Ai; bi are defined as above. This constraint uses both
first and second order derivatives. When Ns � 2, an alter-
native is to use the first order constraints only [1] [2].

Derivative Estimation Derivatives need to be estimated
before solving the OFC. Most popular derivative estimators
[2] are neighborhood masks, which essentially come from
facet models. The facet model basically characterizes each
small image data neighborhood by a signal model and a
noise model so that operations can be done on the signal
model and the error can be analyzed quantitatively. We use
a 3D cubic polynomial on a Nt �Nr � Nc image support
as the signal model and estimate the polynomial coefficient
vector a from the linear regression model

Da+ � = J (3)

where J is the observed image data vector and D is the
design matrix composed of polynomial bases. Once a is
found, the derivatives are merely scaled versions of its ele-
ments [11].

So far most optical flow estimators solve both regression
problems using LS estimators. However as it is well-known,
an LS estimator might fail at the presence of a single gross
error either in Y (y-outlier) and or in X (leverage point)
(Eq.(1)), i.e., it has a breakdown point of 0% [7]. Since in
optical flow estimation gross errors happen frequently due
to brightness variation, motion boundaries and so on, we
need to relax LS’s error model and use more robust estima-
tors.

3 LTS Optical Flow Constraint

We observe that (i) both y-outliers and leverage points
might happen in Eq.(2) because both As and bs are com-
posed of derivative estimates; (ii) leverage points are
roughly twice as much as y-outliers; (iii) a significant por-
tion of the constraints might be gross errors, when, for
example, multiple motion models happen in a neighbor-
hood; and (iv) the number of constraints are relatively small.
Therefore the desired estimator to solve the OFC should be
resistant to both types of gross errors, have a high break-
down point and good statistical efficiency on a small sample
size.

M-estimators [3][5] and LMedS estimators [6][1] were
previously used at the OFC-stage. M-estimators are re-
sistant to y-outliers and have relatively high statistical ef-
ficiency, but they have a low breakpoint of about 1=M
(Eq.(1)) and are vulnerable to leverage points [7]. The

LMedS estimator [7] is resistant to both types of gross er-
rors and has a high breakdown point of 50%, but it has ex-
tremely low statistical efficiency, which means it tends to
perform poorly when there is no gross errors.

The Least Trimmed Squares estimator [7] was intro-
duced to repair the low efficiency of LMedS. It is defined
as

�̂ = argmin
�

hX
i=1

(r2)i:n (4)

where (r2)1:n � : : : � (r2)n:n are the ordered squared
residuals. By excluding the largest squared residuals from
the LS criterion function, LTS produces a fit insensitive
to the gross errors. Owning almost all merits of LMedS
and better statistical efficiency, LTS is usually preferred to
LMedS [10] [8] [9].

4 LS or LTS: Adaptive Derivative Estimation

By default we solve the 3D cubic facet model in an LS
sense to find the derivatives. When the estimation quality
is poor, we update the derivatives from robust facet model
fitting. To reduce sensitivity to noise and computation we
use a 3D quadratic facet model for this purpose. As the
facet parameter a size is large (10), and the breakdown point
has to be high, the LTS estimator is a better choice than
M- and LMedS estimtors. Note that it is not appropriate
to apply LTS facet model fitting uniformly, because LTS
tends to have lower statistical efficiency than LS when there
is no gross error, and it involves much more computation.
Therefore the LTS facet model should be used when and
only when the estimation fails due to the LS facet quality.
We take the coefficient of determination (R2) [7] from the
LTS OFC step as the confidence measure of the flow esti-
mate, and detect LS facet failures by examining if R2 < T .
R2 2 [0; 1] measures the proportaion of observation vari-
ability explained by the regression model.

It is worth mentioning that our and Bab-Hadiashar’s
OFC stages use a similar local optimization formulation,
with the difference that he uses LMedS while we use LTS
as the regression tool. Both of us detect estimates with low
R2 values but we treat them very differently. He merely
declares them as unreliable, whereas we apply a two-stage
LTS to improve their accuracy.

5 LTS Implementation Based on FAST-LTS

To solve a constraint of n equations and p parameters, the
brute force LTS implementation, for each of the Cp

n equa-
tion subsets, computes p̂ and the fitting error vector r2, sorts
r2 and finds the LTS error, and finally takes the p̂ with the
smallest error as the solution. This is computationally pro-
hibitive. In practice LTS is usually approximated by using
a part of the equation subsets [7]. Different subset selection
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(a) Central frame
(64� 64)

(b) Correct flow (c) Black (d) Bab-Hadiashar

(e) LS-LS (f) LS-LTS (g) LTS-LTS (h) Confidence mea-

sure R2 , T=0.99
Figure 1. Experiments on the synthetic data

schemes have different converging rates. Our implementa-
tion is based on FAST-LTS [9], one of the most efficient
algorithms available.

6 Experiments and Analysis

We demonstrate on both synthetic and real data how
optical flow accuracy significantly improves as the LS-
based method (LS-LS), the one-stage robust method (LS-
LTS) and the two-stage robust method (LTS-LTS) are used.
We also compare our results with those from Black and
Anandan’s dense regularization approach [3] and Bab-
Hadiashar’s LMedS based approach [1]. The results were
computed using their own C code, all parameters being de-
fault.

6.1 Synthetic Sequence

Fig. 1(a),1(b) are the central frame and the correct flow
field of the synthetic sequence (velocity magnitude: 1
pixel/frame, image size: 64 � 64). Both facet and OFC
neighborhood sizes are set to 5 pixels for Bab-Hadiashar’s
and our algorithms. LS-LTS uses the first order OFC only.

We calculate the error percentage as the quantitative ac-
curacy measure. It is the error vector magnitude normal-
ized by the true velocity magnitude and multiplied by 100.
The average error percentages on the entire flow field (AEP)
and the motion boundary of width 9 pixels (AEPB) are
summarized in Tab.1. LTS-LTS is applied at places with
R2 < 0:99. The flow fields estimated from five algorithms

are given in Fig.1. We shade estimates with error percent-
ages larger than 0:1%. All flow fields are subsampled by 2.

Technique AEP(%) AEPB(%)
LS-LS 18.83 50.61
Black 11.88 29.02
Bab-Hadiashar 8.03 26.24
LS-LTS 7.53 24.59
LTS-LTS 4.75 15.51

Table 1. Average error percentage compari-
son on the synthetic data

Following observations can be obtained from this exper-
iment. All robust methods out-perform the pure LS method.
Possibly due to poor derivative quality, and M-estimators’
inherent problems of low breakdown point and leverage
point sensitivity, Black’s result looks more noisy. LTS is
better than LMedS in the OFC stage. LTS derivative esti-
mation significantly reduces boundary errors.

6.2 The Pepsi Sequence

This is a real image sequence in which a Pepsi can and
background move approximately 0.8 and 0.35 pixels to the
left respectively (Fig.2(a)). Black [3] used this sequence to
demonstrate the motion boundary preserving capability of
their algorithm. We show subsampled flow fields of four
techniques in Fig.3 and the (linearly scaled) horizontal flow
values in Fig.2.
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(a) Central frame,
64� 64

(b) Black (c) Bab-
Hadiashar

(d) LS-LTS (e) LTS-LTS

Figure 2. Pepsi: central frame and horizontal flow (darker pixels mean larger speeds to the left)

Black’s result (Fig. 3(a),2(b)) looks bumpy and smeared
and does not have proper contrast of the foreground and
background. Bab-Hadiashar’s result (Fig. 3(b),2(c) has
significant vertical speed components in the upper-left
and the lower parts, and the flow is still over-smoothed.
Fig. 3(c),2(d) is the result of LS-LTS (1st and 2nd order
constraint). Motion contrast and discontinuities are much
clearer. LTS-LTS (Fig. 3(d),2(e)) updated LS-LTS estimates
with R2 < 0:75 and significantly improved the boundary
accuracy.

(a) Black (b) Bab-Hadiashar

(c) LS-LTS (d) LTS-LTS

Figure 3. Pepsi: estimated flow fields

7 Conclusion and Discussion

The primary contribution of this work that it formu-
lates optical flow estimation as two regression problems and
adaptively solves them using one-stage or two-stage LTS
methods. It carefully analyzes the characteristics of the two
regression stages and chooses robust tools correspondingly.
Preliminary experimental results on both synthetic and real
image sequences verified the effectiveness.

The two-stage robust method involves heavy computa-

tion. A less expensive robust facet fitting method is being
sought. The efficiency of R2 as the one/two stage crite-
rion needs validation. We are trying to develop a more
reliable criterion with other measures such as outlier per-
centage combined. Although LTS is generally preferred
to LMedS, their relative merits in this particular problem
needs fuller investigation. The constant local motion model
may readily extends to the affine model for higher accuracy.
As this technique exhibits excellent boundary performance,
we expect to find its application in motion segmentation.

Since derivative estimation is a fundamental step of
many computer vision problems, and most optimization
problems can be fit into the regression framework, conclu-
sions of this paper may extend to other fields.
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