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Abstract

Automated left ventricle (LV) boundary delineation from
left ventriculograms has been studied for decades. Unfor-
tunately, no methods in terms of the accuracy about vol-
ume and ejection fraction have ever been reported. A new
knowledge based multi-stage method to automatically de-
lineate the LV boundary at end diastole and end systole
is discussed in this paper. It has a mean absolute bound-
ary error of about 2mm and an associated ejection frac-
tion error of about 6%. The method makes extensive use of
knowledge about LV shape and movement. The processing
includes a multi-image pixel region classification, a shape
regression and a rejection classification. The method was
trained and tested on a database of 375 studies whose ED
and ES boundary have been manually traced as the ground
truth. The cross-validated results presented in this paper
shows that the accuracy is close to and slightly above inter-
observer variability.

1. Introduction

Left ventriculogram (LVG) is a routine imaging opera-
tion in clinics. The LVG boundaries at end diastole (ED)
and end systole (ES) are of particular interest, because they
are important to assess the left ventricle (LV) function. But
tracing the LV boundaries from LVG is a tedious job. Al-
though automated boundary delineation (ABD) in LVGs has
long been sought [3, 4, 1, 13, 7, 19, 12, 18, 17], no methods
have been reported in terms of the accuracy of volume and
ejection fraction (EF) derived from the ABD border, due to
the challenges of LVG variation. Moreover, most previous
methods were tested on only a limited number of LVG sam-
ples so that no consistent accuracy evaluation was available.

Thus, the ABD methods used in clinics performed poorly.

Most previously reported methods have difficulties in
handling the large variation in LVGs because the informa-
tion in LVGs and the human knowledge information were
not effectively utilized. First, most of the methods only
processed a single image at a time to detect the boundary
[3, 4, 13]. Such methods ignored the helpful LV movement
information through time in the cardiac cycle. Second, the
edge based methods [4, 1, 13, 19] used the gradient maxima
whose locations, however, do not correspond to the bound-
ary positions; the region based methods [3, 7, 12, 18] as-
sumed a Gaussian distribution of the gray scales in LV and
background, which is not true. Third, all previous exist-
ing algorithms processed all input LVGs indiscriminately.
They did not screen out the difficult-to-process cases. On
contrast, human experts do utilize the movement informa-
tion in time domain to resolve boundary fuzziness. They
are trained to have anatomical knowledge about the LV and
to reject cases with bad image quality. Our method imple-
ments these sources of knowledge in the ABD system.

Our method is composed of three stages. The first stage
is a non-parametric regional pixel classifier [12, 17]. It
segments the LV region from the background and obtains
a raw LV boundary. The second stage is a shape regres-
sion [18, 17] that corrects the systematic error of the region
classifier [8, 17]. The last stage is a rejection classifier that
flags unreliable results. In order to incorporate anatomi-
cal knowledge into the system, the user enters three points
at ED and ES to identify the endpoints of the aortic valve
(AoV) and the LV apex. The three points are used to nor-
malize for expected LV shape and size.

In the next section, our method is discussed in detail.
Some experimental results are presented in Section 3. The
conclusion and discussion are in Section 4.
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2. Method

Figure 1 shows the flow chart of our three-stage ABD
system. Because ES involves more variation than ED, the
ED result is usually more reliable than the ES result, thus,
can help with the ES boundary delineation. Our process-
ing of the ES boundary is, therefore, conditioned on the de-
tected ED boundary.

Figure 1. Sequential processing for ED and
ES region.

2.1. Pixel Region Classification

The Bayesian pixel classifier labels each pixel in the im-
age frame with one of 3 classes [17], the background, ED-
not-ES and ES based on the gray scale vector through sys-
tole, shown in Figure 2. The underlying concept is that
background pixels retain their intensities throughout sys-
tole, ES pixels increase their intensities throughout systole,
and ED-not-ES pixels demonstrate a characteristic pattern
of gray values over time depending on location as the LV
border passes over the pixels during contraction.

1st frame

12th frame

Normalized LVG Images

2nd frame

Figure 2. The Gray Scale Vector.

2.1.1. Online Processing

Before classification, the systole images from ED to ES go
through pixel size calibration [12], noise filtering [12] and
are normalized to 12 frames to adjust for variability in frame
rate and heart rate [12]. The pixel size calibration makes
the pixel square in millimeter (mm) unit. This normalizes
the image size and benefits the performance evaluation in
mm unit. Noise filtering is implemented by the gray scale
morphological opening and closing [9]. This preserves the
location of gray scale boundary transition at the same time
filtering out the noise. The heart rate normalization is es-
sential to the classification in that it makes the raw feature
vector dimension a constant 12.

The gray scale values over the 12 image frames are then
normalized by the cumulative distribution function (CDF)
within the region of interest (ROI) in the sequence, where
the ROI is the area outside which no part of the LV would
occur. Hence,

yi(u; v) =

gi(u;v)X
j=0

nj

N
(1)

where i 2 1; : : : ; 12 is the image frame index, (u; v) is the
pixel location in the image frame, nj is the number of pix-
els whose gray scale is j in the ROI on the 12 image frames,
N is the total number of pixels in the ROI of the 12 image
frames, gi(u; v) is the original pixel gray scale at (u; v) of
the ith image frame, yi(u; v) is the pixel value at (u; v) of
the i

th image frame after normalization. The normaliza-
tion is with respect to the entire systole sequence because
this keeps the gray scale value pattern unchanged through
systole. The CDF normalization expands the gray scale dy-
namic range and increases the separability among classes.

The 12 CDF normalized pixel values at each pixel loca-
tion form a vector, Y = (y1; : : : ; y12). The vector is pro-
jected onto the eigenvectors of the second moment matrix
of the sample gray scale vectors, Y =

PM

j=1 Yj
0
Yj , where

M is the total number of training vectors. In our data set of
375 cases, M = 40; 056; 750. The eigenvectors are ordered
so that their eigenvalues are descending. The first four prin-
cipal components of Y , X = (x1; : : : ; x4), are used as the
feature vector for the classifier.

The pixel classification is based on a Bayesian rule max-
imizing the expect gain. Given the gain matrix G =
fg(c; c0)jc; c0 2 f1; 2; 3gg, where 1 means the background
class, 2 means the ED-not-ES class, 3 means the ES class,
and g(c; c0) is the gain of assigning to class c while the true
class is c0, the expected gain of classifying X at (u; v) to
class c is

E(g(cjX)) =

3X
c0=1

g(c; c0)p(c0jX; (u; v))

The Bayesian rule classifies X at (u; v) to class c if the
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assignment to class c yields the maximal gain.

E(g(cjX)) = max
c0

E(g(c0jX)) (2)

where c0 2 f1; 2; 3g.
p(cjX; (u; v)) is the posterior probability of class c given

the feature vector X at location (u; v). For the ED pixel
classification,

p(cjX; (u; v)) / p(X jc)p(cj(u; v)) (3)

where p(cj(u; v)) is the prior probability of class c 2

f1; 2; 3g at (u; v), p(X jc) is the class conditional probabil-
ity of X given class c which is assumed to be independent
of (u; v).

For the ES pixel classification, the posterior probabil-
ity p(cjX; (u; v)) depends on the previously delineated ED
boundary and is written as.

p(cjX; d; (u; v)) / p(X jc)p(cj(u; v))p(djc; (u; v)) (4)

where p(djc; (u; v)) is the probability of the shortest dis-
tance d between (u; v) and the delineated ED boundary
given class c. This is the way that the information from the
delineated ED boundary is introduced to the ES boundary
detector.

After the classification, the pixels of the same class are
grouped together. The largest area consisting of Class 2 and
3 pixels is selected as the ED region and the ES region is
the largest area composed of Class 3 pixels. The binary
morphological opening and closing are used to smooth the
region boundary. After that, the raw ED or ES boundary
is traced from the ED or ES region and represented by 100
evenly spaced points.

2.1.2. Classifier Training

The classifier training includes estimating the class condi-
tional probability p(X jc), the prior probability p(cj(u; v))
and the class conditional distance probability p(djc; (u; v)).

Reducing the feature vector dimension from 12 to 4
makes it possible to estimate the class conditional proba-
bilities p(X jc) non-parametrically from a 4D look-up table
(LUT). The LUT divides the 4D space into non-uniformly
sized hyperrectangular bins and estimating the probability
in each hyperrectangle by simply counting. To determine
the class conditional probability of a feature vector, the fea-
ture vector is quantized to make an address to access the
LUT. The probability is looked up from the addressed entry
in the table.

Given a number of samples of X and the number m of
bins of the LUT, the number of bins b i for the ith dimen-
sion is allocated according to the marginal entropy, h i, on
that dimension so that m =

Q4
i=1 bi and the marginal infor-

mation loss is minimal. The total bits available for an m bin

LUT to describe the marginal information is log2m. The
number of bits assigned to axis i is proportional to the i th

marginal entropy, hi.

�i =
hiP4
j=1 hj

log2m (5)

where i = 1; : : : ; 4. The number of bins on axis i is

bi = [2�i ] (6)

where [�] denotes the closest integer. Each marginal distri-
bution of xi is quantized into bi bins with equal probabil-
ity quantization which minimizes the marginal information
loss. The class mixture samples are smoothed by a k�NN

kernel. As a result, each bin contains 3 class conditional
probabilities estimated by frequency counting of how many
samples of each class are in the bin.

The LUT size m and smoothing parameter k determine
the generalization capability of the LUT. The optimalm and
k are obtained by searching the flat minima of the cross
validated bidirectional Kullback-Liebler distance between
the observed LUT and smoothed LUT.

L(p(X); p̂(X))jk;m =

mX
i=1

(pi(X)� p̂i(X)) log
pi(X)

p̂i(X)

(7)
where pi(X) is the observed class mixture probability at
bin i and p̂i(X) is the class mixture probability estimated
by k � NN by leaving out the samples at bin i. The flat
minima of L(p(X); p̂(X))jk;m suggests a good generaliza-
tion parameter region [10].

The class prior probabilities at each pixel location are
the knowledge about the LV shape, size and position. A set
of ground truth class region images generated from the hand
traced boundaries are aligned to a common LV region by fit-
ting their AoV angles and long axes with the least squares.
The LV AoV angle and long axis are defined by the AoV
end points and apex, shown in Figure 3. This alignment effi-
ciently keeps the LV region information [17]. Those aligned
ground truth class region images are stacked one on the top
of the other. The probability of each class at each pixel lo-
cation is estimated by frequency counting from the aligned
ground truth class region images and smoothing with a 7�7
square template. By this way, we formulate the high level
LV anatomical knowledge in terms of LV region.

Given the delineated ED boundary, the shortest distance
between a pixel location and the boundary can be computed.
The distance is signed, shown in Figure 4. The pixel inside
the ED boundary has a minus sign, outside has a plus sign
and on the boundary is zero. The ED boundary is divided
into several segments since the wall movement along the
ED boundary is not even. The class conditional distance
histograms are then setup for each segment, given the pixel
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class and the correspondent segment on the ED boundary.
The class conditional distance probabilities are estimated
from the histograms.

Figure 3. 3 user input points determines the
aortic valve angle, aortic valve middle point
and apex which define the alignment trans-
form.

Figure 4. The distance between the pixel and
the delineated ED boundary.

2.2. Shape Regression

It is observed that the classifiers have some systematic
errors which makes the raw classifier boundaries out of the
LV like shape. In order to calibrate those errors, a shape
regression is designed. An LV boundary is taken as a 200
dimensional vector by concatenating its vertex coordinates
into a vector. The boundary vector has its coordinates in the
LV shape space defined by the eigenvectors of the second
moment matrix of the sample ground truth boundary vec-
tors. The regression is to transform the the coordinates of
the raw classifier boundary vector to a place in the LV shape
space where the coordinates are more like an LV boundary.

2.2.1. Online Processing

The regression vector is composed of the projected coordi-
nates of the raw boundary vector on the eigenvectors of the
second moment matrix of the sample ground truth boundary
vectors and augmented by the user entered AoV endpoints
and apex which put more constraints on the regression re-
sults with the size and shape indicated by the 3 points. As
a result, the regressed boundary coordinates are the linear
combinations of the coordinates in the shape space and the
quadratic terms of the user entered points.

Given

� A raw boundary vector, Y = (r1; c1; : : : ; r100; c100),
from the classifier

� Two AoV points and apex coordinates entered by the
user

� A matrix A, whose columns are the full set of the
eigenvectors of the second moment matrix of the sam-
ple ground truth boundary vectors

� A regression coefficient matrix C(P2+t)�P3
deter-

mined offline by training

The regressed boundary is

B̂ = ([YAP2 ] : T )CA
0

P3
(8)

where B̂ is the calibrated boundary, T is the augmentation
terms coming from the 3 user input points, AP2 and AP3

are the matrices of the first P2 and P3 eigenvectors in A,
the prime denotes the transpose. For the ED boundary, the
regression vector is augmented with the full quadratic terms
of the three user entered ED points which form 28 terms.
For the ES boundary, the regression vector is augmented
with the full quadratic terms of the three user entered ES
points and some partial quadratic terms of the three ED
points.

2.2.2. Regression Training

Let Z = (Z1; Z2; � � � ; Zn)
0 be a matrix of n ground

truth boundaries, in which Zi is the i
th boundary; Y =

(Y1; Y2; � � � ; Yn)
0 be a matrix of n classifier output bound-

aries in which Yi corresponds to Zi,AP2 ,AP3 be two sub-
sets ofA, which are composed of the first P2 and P3 eigen-
vectors in A respectively. The coefficient matrix C is esti-
mated offline to minimize:

kW�VCk (9)

where V = ([Y AP2 ] : T), W = ZAP3 , and T is the
augmentation matrix. The standard least squares solution
for Equation 9 estimates a (P2 + t)� P3 matrixC:

C = (V0V)�1V0W (10)
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where t is the number of the augmentation terms. P2 and
P3 are to be optimized to avoid the potential generalization
problem.

Motivated by the knowledge that the ED boundary con-
tains information about the ES boundary, some of the
quadratic terms of the 3 ED points are used in the ES
boundary regression. To determine the partial quadratic
augmentation from the ED points for the ES regression, let
R = (R1; : : : ; Ri; : : : ; Rn)

0 where Ri is the ith 1� 27 row
vector whose elements are the row and column coordinates
of the ith 3 ED points and their quadratic combinations. Let
Z = (Z1; : : : ; Zn) be the ES ground truth boundary vector
matrix. Ri corresponds toZi. A 27�200 coefficient matrix
Q is estimated by minimizing

jjZ�RQjj (11)

Each row of Q is the coefficients of the corresponding ED
augmentation term for the ES boundary points. The terms
whose row in Q has a large mean of the 200 coefficients,
say among top 5%, are selected as the augmentation terms
in the ES boundary regression.

2.3. Rejection Classifier

From the raw and calibrated boundaries, two sets of pa-
rameters including the ED and ES volumes, EF, ED and
ES areas can be computed. Also the ED boundary differ-
ence and ES boundary difference between the classifier and
regression results can be obtained. The rejection classifier
takes those parameters as the rejection vector vector. The
difference between the two sets of the parameters indicates,
more or less, the unreliability of the border detection. Given
the classification weights Y7�1 on the rejection feature vec-
tor U1�7 and a decision threshold t2, a study is rejected if
the difference is greater than the threshold,

Suppose n training cases are available. LetE be an n�1
objective vector whose elements are 1 or 0. 1 indicates that
the corresponding training case has an ED volume, ES vol-
ume or EF error greater than an acceptable threshold t 1 and
0 indicates that its error is acceptable. t1 is determined in
such a way that the rejection ratio is roughly 5% of the train-
ing cases. t1 is different for the ED volume, ES volume and
EF error. Let V be an n � 7 matrix, each of whose rows
is a rejection classifier vector for each study. The classifier
coefficients Y , an 7 � 1 vector, can be estimated by mini-
mizing

jjE �VY jj (12)

The standard least squares solution for Equation 12 is

Y = (V0V)�1V0
E (13)

A rejection decision is made on the study whose feature vec-
tor is V , when V Y > t2. t2 is the decision threshold which

is obtained by minimizing a cost function. The cost function
is defined as:

cost =

n�n0X
i=1

ei +

n0X
j=1

w (14)

where n is the total number of the training cases, n 0 is the
number of the rejected cases, ei is the true error of the ith

accepted case and w is the predefined cost for a rejected
case. The second term of Equation 14 punishes the rejection
of studies with smaller errors than w.

2.4. Performance Evaluation and System Optimiza-
tion

Given a LV boundary, the LV volume can be com-
puted [6]. The ejection fraction (EF) can be computed if
the ED and ES volume are available. The mean absolute
ED volume deviation, ES volume deviation and EF devia-
tion between the ABD results and hand traced results and
their standard error estimations (SEE) are used for the ABD
system performance evaluations. Beside those, the bound-
ary error between two boundaries is defined as

eb =
h(A1; A2)

�1+�2
2

(15)

where h(A1; A2) is the Hamming distance between the two
boundaries, �1 and �2 are the perimeter of the two bound-
aries respectively.

The whole system is optimized to minimize the cost after
the rejection (Equation 14). The tuned training parameters
include the LUT size, the LUT smoothing parameter k-NN,
the prior probability smoothing parameter, the distance his-
togram sectors, the gain matrices (EGMs), the regression
dimensions P2, P3, and the rejection threshold t2.

3. Experiment and Results

The system was trained and tested with cross validation
on 375 LVGs. Each study of the 375 cases had its ED and
ES boundary traced by a human expert. Those hand traced
boundaries were used as the ground truth for the ABD per-
formance evaluation. From the hand traced boundary, the
ground truth class region image was generated by filling the
area enclosed by the boundaries. It gave each pixel in the
image a ground truth class. Figure 5 shows an example of
the ground truth class region image.

The 375 studies were divided into 5 groups. The exper-
iments were trained on 4 groups and tested on the remain-
ing. They were repeated for 5 times until every study was
involved in the testing.
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(a) ED Frame: GT and Regressed (b) ES Frame: GT and Regression

Figure 6. An example of the ABD results (thin) compared with their ground truth (GT) boundaries
(thick)
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Figure 7. Left: The ED volume scatter plot after rejection. Middle: The ES volume scatter plot after
rejection. Right: The EF scatter plot after rejection.
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Figure 5. An Example of the Ground Truth
Class Image. Bright: ES Class ( Class 3
), Gray: ED-not-ES Class ( Class 2 ), Dark:
Background Class ( Class 1).

Figure 6 shows an example of the ED and ES ABD re-
sults. Figure 7 shows the scatter plots of the ED volume, ES
volume and EF after the rejection.

Those scatter plots were fit with y = ax. The SEE is
computed as

SEE =

rPn

i=1(yi � ŷi)2

n

where yi is the ith true y sample, ŷi is the ith estimated y

with y = ax, n is the number of samples, �y = 1
n

Pn

i=1 yi.
Table 1 shows that the deviations between the ABD re-

sults and the ground truth. The average of the mean abso-
lute boundary error of ED and ES was about 1.85mm. It
outperformed Lee [12] and Suri’s [18] results where they
were about 3:4mm and 2:7mm respectively. It also shows
the volume related deviations. Compared with Table 2, the
results after the rejection were slightly above human inter-
observer variability. Since the ABD was tested on a large
database, the performance is expected to be extendible.

Table 1. Table of the ABD system performance

Mean Absolute Error SEE
ED Volume 10.48ml 12.57ml
ES Volume 8.17ml 10.1ml

EF 5.96% 7.5%
ED Border 1.55mm NA
ES Border 2.15mm NA

4. Conclusion

The results of this report indicate that the ABD process
presented is able to delineate the endocardial contour of the
left ventricle from contrast ventriculograms with an accu-
racy comparable to the magnitude of human interobserver
variability. The success of this process is due to the integra-
tion of knowledge concerning human cardiac anatomy and
physiology.

The classifier embodies knowledge concerning the ex-
pected regional movement of the ventricular wall during
systole. With it we sought to emulate the human observer’s
practice of reviewing wall motion through the cardiac cycle
to help define the endocardial contour.

The regression embodies knowledge concerning the ex-
pected shape of the LV endocardium. Just as human ob-
servers require training to recognize heart contours, we
sought to provide this to the ABD process. The shape anal-
ysis was not only performed on each image’s candidate bor-
der, but also between image frames. The latter captures the
expectation that the ES border will bear some resemblance
to the ED border.

The third component is our code for rejecting studies
whose images produced suspicious borders. Just as clini-
cal ventriculograms are rejected for manual tracing if there
is poor contrast quality, we sought a method to warn the
user of these problems with the ABD process.

The large number of training studies and the normaliza-
tion before pixel region classification help in large part to
ensure that the component processes are generalizable.
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