
A Hierarchical Projection Pursuit Clustering Algorithm

Alexei D. Miasnikov, Jayson E. Rome, Robert M. Haralick
Pattern Recognition Lab

Department of Computer Science
The Graduate Center of The City University of New York

365 Fifth Avenue
New York, New York 10016

{ amiasnikov,jrome,haralick}@gc.cuny.edu

Abstract

We define a cluster to be characterized by regions of high
density separated by regions that are sparse. By observ-
ing the downward closure property of density, the search
for interesting structure in a high dimensional space can
be reduced to a search for structure in lower dimensional
subspaces. We present a Hierarchical Projection Pursuit
Clustering (HPPC) algorithm that repeatedly bi-partitions
the dataset based on the discovered properties of interest-
ing 1-dimensional projections. We describe a projection
search procedure and a projection pursuit index function
based on Cho, Haralick and Yi’s improvement of the Kittler
and Illingworth optimal threshold technique. The output of
the algorithm is a decision tree whose nodes store a pro-
jection and threshold and whose leaves represent the clus-
ters (classes). Experiments with various real and synthetic
datasets show the effectiveness of the approach.

1. Introduction

A cluster is a set of data points partitioned in such a way
that individual data elements within the same cluster are in
some sense more similar to elements in the cluster than to
elements outside of the cluster. Clustering is an old and well
studied problem [13], though most standard techniques as-
sume that the data is drawn from a known parametric dis-
tribution or that the data exists in a low dimensional space.
There has been a great deal of recent work toward develop-
ing efficient and effective algorithms for clustering includ-
ing [1, 7, 12, 15, 14, 17], and we refer the interested reader
to [9, 11] for extensive surveys of recent clustering research.

Given a collection of observations X = {xi}, xi ∈ Rd,
|X| = N , we would like to find clusters in data sets in
which there is no known parametric distribution and in

which clusters may take on arbitrary shapes. For these
kinds of data sets traditional techniques fail and new meth-
ods must be developed.

We assume that clusters are characterized by regions of
high density separated by regions that are sparse and ob-
serve that any low density region in a subspace of the data
corresponds to a low density region in the full space. Thus
the search for interesting structure in the high dimensional
space can be reduced to a search for structure in lower
dimensional subspaces. Based on this downward closure
property of density, we develop a Hierarchical Projection
Pursuit Clustering (HPPC) algorithm. The algorithm has no
required input parameters, other than a sensitivity parameter
and produces a compact description of the clusters found in
the form of a binary tree. This tree, once clusters have been
found, can be used to classify new observations as belong-
ing to particular clusters.

Projection Pursuit [10] or PP, is defined to be the search
for interesting (structured) projections. Mathematically, in-
terestingness is a sample estimate of a distance between the
distribution of the projected data and a distribution that is
known to be uninteresting. Uninteresting distributions are
normally taken to be uniform or normal, though some other
parametric form may be used, or they may be determined
empirically for a specific case. A PP algorithm consists
of two components: an index function I(α) that measures
the “usefulness” or “interestingness” of projection α and a
search algorithm that varies the projection direction so as to
find the optimal projections, given the index function I(α)
and the data set X .

In section 2 we present the indexing function, search pro-
cedure and stopping criteria that comprise the HPPC algo-
rithm. In section 3 we address the issue of cluster validation
and describe a method for computing the accuracy of a clus-
ter algorithm. In section 4 we describe various experiments
that where performed on a variety of real and synthetic data,
while section 5 discusses conclusions and possible future
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work.

2. The HPPC Algorithm

HPPC is a hierarchical projective clustering algorithm
that repeatedly bi-partitions a dataset by looking for separa-
tions in one dimensional subspaces of the data. Subspaces
are split using Cho, Haralick and Yi’s [4] improvement of
Kittler and Illingworth’s minimum error thresholding tech-
nique [16]. The pseudo-code in figures 1 and 2 describe the
algorithm. Each time a split is chosen a node is created in
a decision tree, the data is partitioned and the algorithm is
repeated on the data in each of the leaves of the tree, until a
stopping condition is satisfied. The output of the algorithm
is a decision tree whose nodes store the projection and opti-
mal threshold and whose leaves represent the clusters. The
tree that HPPC constructs can be used to classify new ob-
servations.

procedure [τ, θ, α] = SplitData(dataset X)
Initialize best threshold τ = 0, best index θ = −∞, best projection
α = 0;
Construct S : the set of candidate 1D projections;
FOR αi ∈ S DO

histi = histogram(αiX);

current threshold τi = FindMinErrorThreshold(histi);

if(StoppingConditionSatisfied(histi)) CONTINUE;

current evaluation θi = EvaluateThreshold(τi, histi);

if(θi > θ) θ = θi, τ = τi, α = αi;

END FOR LOOP

Figure 1. The splitting procedure

procedure HPPC(dataset X , tree Dtree)

[τ, θ, α] = SplitData(X);

If(τ = 0 or θ = −∞ or α = 0)

no such projection exists, RETURN;

Else split the data

XL = {xi ∈ X|αxi < τ};

XR = {xi ∈ X|αxi ≥ τ};

Add new node (α, τ) to Dtree;

HPPC(XL, Dtree);

HPPC(XR, Dtree);

Figure 2. The clustering procedure

2.1. The Index Function

Diaconis and Freedman [6] showed that, as a conse-
quence to the central limit theorem, most projections of

high dimensional datasets to low dimension will be approx-
imately normally distributed. Based on this observation,
Dasgupta [5] suggested that clusters in subspaces could be
used to estimate the distribution of the data in the full space.

We consider interesting projections to be those for which
there exists a natural partition of the dataset into two compo-
nents, the projections of which will each be approximately
normally distributed, according to the results of Diaconis
and Freedman.

Assuming that each component represents separate
classes, we use Kittler and Illingworth’s [16] method for
splitting a mixture of two 1D Gaussian components whose
goal is to minimize the miss-classification error.

Let h(g) be the normalized frequency histogram of the
various levels of g = αxi, i = 1, ..., N . The histogram
is viewed as an estimate of the probability density func-
tion of a mixture of two clusters. Let p(g|i), i = 1, 2,
be the estimated distribution of the ith component’s pro-
jection, having mean µi, standard deviation σi and a pri-
ori probability Pi, so that p(g) =

∑2
i=1 Pip(g|i), where

p(g|i) = 1√
2πσi

e−(g−µi)
2/2σ2

i . Given the (µi, σi, Pi), there

exists a threshold τ such that P1p(g|1) > P2p(g|2) if g ≤ τ
and P1p(g|1) < P2p(g|2) if g > τ .

Threshold τ is the Bayes minimum error threshold. For
a given threshold T we can model the two resulting pop-
ulations by a normal density h(g|i, T ) with parameters
(µi(T ), σi(T ), Pi(T )) given by: Pi(T ) =

∑b
g=a h(g),

µi(T ) =
∑b

g=a g ∗ h(g)/Pi(T ) and

σ2
i (T ) =

∑b
g=a(g − µi(T ))2 ∗ h(g)

Pi(T )

where a = 0 if i = 1, a = T + 1 if i = 2, b = T if i = 1
and b = n if i = 2. The Kittler and Illingworth criterion
function for threshold T is given by

J(T ) = 1 + 2 (P1(T ) log σ1(T ) + P2(T ) log σ2(T ))

−2 (P1(T ) log P1(T ) + P2(T ) log P2(T )) .

Note that the tails of the distributions have been truncated
by the thresholding operation and therefore the models
h(g|i, T ), i = 1, 2 will be biased estimates of the true mix-
ture components. Cho, Haralick and Yi [4] proposed an
improvement of Kittler and Illingworth’s criterion function
that corrects the biased variance estimates.

The index function that evaluates the interestingness of a
projection α is given by I(α) = sep ∗ depth, where

sep(τ) =
(µ1(τ) − µ2(τ))2

σ2
1(τ) + σ2

2(τ)
.

and depth = J(Tmax) − J(τ), with J(Tmax) being the
closest local maxima.
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2.2. Searching for Projections

As the dimensionality of the data increases an efficient
projection selection becomes crucial. We use a stochastic
search method which combines a genetic approach with Si-
multaneous Perturbation Stochastic Approximation (SPSA)
[18] to optimize the search procedure. The objective of the
stochastic search procedure is to find a projection α which
maximizes the index function I . Due to page limitations,
we have to omit the details of the procedure in this report.

2.3. Stopping Conditions

Due the recursive nature of HPPC, defining a robust stop-
ping condition is crucial. Given Apriori knowledge of the
characteristics of uninteresting clusters, one can construct a
distribution fI of the values of the criterion function. These
clusters may be determined empirically or may be chosen
from some parametric form.

For a given set of observations C we use fI to test the
Null Hypothesis H0, that C is a cluster, against the alterna-
tive hypothesis H1, that C can be partitioned into at least
two clusters. Let Iφ be the value of the index function such
that ∫ Iφ

−∞
fIdI = 1 − φ.

Where φ is the level of significance of the test. We reject
H0 if I > I(φ) and do not reject otherwise.

The value of φ, which is the probability that a truly co-
hesive cluster will be split by the algorithm, can be viewed
as a sensitivity parameter and can be tuned for a particular
application.

Lacking prior knowledge of what constitutes a cohesive
cluster, datasets used to train the Null distribution should be
those which are difficult to evaluate. For example, a very
sparse sample of a cohesive cluster is easy to split mistak-
enly.

2.4. Extensions to Non-Linearly Separable Data
and Large Datasets

It is important to note that while the HPPC algorithm is
only able to locate separations in linearly separable data, the
methodology can be extended to the case of non-linearly
separable data by appropriate pre-processing of the data
with various non-linear mappings.

The problem of evaluating datasets with a large number
of observations can be ameliorated by subset sampling. The
full dataset can then be clustered using the tree constructed
from the sample. We apply these techniques in section 4.1.

3. Cluster Validation and Evaluation

We use datasets with known ground truth labeling to
evaluate the algorithm. Given the ground-truth labels and
the labels determined by HPPC we form a contingency ta-
ble by counting the number of times the algorithm assigns
a label j to a cluster point when the actual label is i. We
form all possible mappings from the smaller of the actual
and assigned label sets onto the larger of these two sets and
build a confusion matrix for each mapping. Since the diag-
onal elements of the confusion matrix represent the number
of times that an instance of class i was correctly identified
as belonging to class i, we can therefore derive a criterion
function that returns a value for each mapping based on the
number of correct classifications. The optimal mapping is
the one associated with the confusion matrix whose sum
along the diagonal (the trace) is maximal.

4. Experiments

To verify the effectiveness of our method we ran experi-
ments on various real and synthetic datasets. The algorithm
was implemented in the C++ programming language. First
we utilize common and well known 2D datasets for which
clusters can be visually verified. Then we evaluate the al-
gorithm on synthetic and real data and compare the results
against standard k-means and the EM algorithm with un-
constrained Gaussian mixture models. The true number of
clusters was specified as a parameter for both k-means and
EM algorithms. Initial centers for k-means were chosen
randomly and initial parameters of EM algorithm were es-
timated from the runs of k-means procedure.

4.1. Results For 2D Data Sets

We considered two examples that are considered difficult
to cluster: D1, first used in CURE [12] and a set of concen-
tric circles D2, both shown in figure 3. For D1 we used a
uniform sampling procedure to reduce the dataset size from
100,000 points to 2,000 points. HPPC successfully finds
correct clusters defined in [12].

Concentric circles are considered to be the degenerate
case for projection based methods. For this dataset we map
the data from 2 to 5 dimensions by introducing the quadratic
terms: (x, y) → (x, y, x2, xy, y2).

As can be seen in figure 3, the quadratic mapping allows
HPPC to easily find the clusters, which is impossible using
regular linear projections.

4.2. Experiments with Real and Synthetic Data Sets

We used a synthetic data generation procedure proposed
in [2] to construct mixtures of multivariate normal distri-
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Figure 3. Clustering of 2D datasets.

HPPC EM k-means
Set d k N avg max avg max avg max
D2 8 2 600 1.0 1.0 1.0 1.0 .99 .99
D4 8 4 1200 .99 1.0 .80 .81 .51 .61
D8 8 8 2400 .99 .99 .64 .87 .35 .47
Di 4 3 150 .94 .99 .87 .96 .70 .94
Dc 5 4 200 .90 .93 .52 .64 .35 .40
Dr 19 7 2310 .69 .76 .59 .68 .46 .59

Table 1. Data description and accuracy.

butions D2, D4, D8 for use in our experiments. In addition,
we ran HPPC on the following real datasets chosen from the
public domain: Fisher’s iris data Di [3, 8] a commonly uti-
lized benchmark for Pattern Recognition tasks; Australian
crab data Dc used in [2]; an image recognition set Dr from
UCI Repository of Machine Learning Databases [3].

Since all of the examined algorithms have stochastic
components, experiments were performed multiple times.
The descriptions of the datasets and summary results from
50 trials of HPPC, EM and k-means algorithms are pre-
sented in Table 1, where d is the dimensionality of the data,
k is the number of true classes and N is the number of
points.

We can see that HPPC performs very well for the syn-
thetic datasets. The average accuracy for sets Di and Dc

is 94% and 90% respectively. There were not more than
9 misclassified observations for the Iris dataset on average
with some trials having only 1 misclassification. Accuracy
for the set Dr, which has significantly higher dimension-
ality, is about 70%. The error is due to the overspliting of
the sparse clusters during the tree construction. In fact, if
we stop the tree expansion when the number of leaves in
the tree reaches the true number of clusters, the accuracy
increases up to 98%.

5. Conclusions

We have shown that our algorithm can perform very well
with a variety of real and synthetic data. The algorithm re-
quires no external input parameters other than the intuitively
understandable sensitivity and produces a compact descrip-
tion of the clusters in the form of a binary decision tree

which can be efficiently used for classification purposes.
For large datasets, sampling can be used to reduce the size
of the dataset. Datasets that are not linearly separable can
be mapped to higher dimensional spaces in which they are
linearly separable. Experimental results show the effective-
ness of the technique, particularly in the case of linearly
separable data.
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