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Abstract

We discuss a probabilistic graphical model for recog-
nizing patterns in texts. It is derived from the probabil-
ity function for a sequence of categories given a sequence
of symbols under two reasonable conditional independence
assumptions and represented by a product of combinations
of conditional and marginal probability functions. The nov-
elty of our model is that it has a mathematical representa-
tion which is completely different from existing graphical
models such as CRFs, HMMs, and MEMMs. Moreover, it
can be used for identifying various patterns in texts. Up to
now, we have used this model for recognizing NP chunks
and senses of a polysemous word in sentences. This model
has achieved very promising results on standard data sets.
In the future, we will use this model for extracting semantic
roles in a sentence.

1 Introduction

NLP researchers put their efforts on developing meth-

ods for extracting patterns in texts. These patterns can be

viewed as syntactic patterns or semantic patterns. For ex-

ample, NP chunks (noun phrases) are syntactic patterns be-

cause they are defined by grammatical rules while senses

of a polysemous word are semantic patterns because they

can be identified by the contexts of the word. Here,

we discuss a probabilistic graphical model for recogniz-

ing these patterns. The mathematical representation of our

model is: p(c1, ..., cN |s1, ..., sN ) =
∏N

n=1 p(sn−1|sn, cn)
p(sn+1|sn, cn) p(sn|cn) p(cn). It is derived from the prob-

ability function of a sequence of categories (c1, .., cN ) given

a sequence of symbols (s1, .., sN ) where the symbols carry

the information in the lexicon and POS tags in a sentence.

It has a different perspective compared with the existing

graphical models such as CRFs [9], HMMs [16], MEMMs

[13].

For identifying these patterns in texts, a sentence is par-

titioned into several phrases. In the case of the NP chunking

problem, these phrases can be NP chunks and OTHERs. In

the case of the word sense disambiguation (WSD) problem,

each phrase is represented by its last word, called the head

word. The context of a polysemous word is represented by

a sequence of words. These words may be the last words of

phrases or words within ±N words around the polysemous

words. By the model, we automatically assign the category

to each word of the sequence having highest probability. We

determine NP chunks by grouping consecutive words with

the same particular category. We determine the category of

the ambiguous word by selecting the most frequent category

assigned to that word in the sequence. We may determine

a semantic role by first, grouping consecutive words with

the same particular category, then categorizing these roles

into different classes by designing a set of rules based on

the Levin’s verb classes.

We test our model for identifying NP chunks with two

data sets: the WSJ data set from the Penn Treebank and the

CoNLL-2000 shared task data set. Our method achieves an

average precision 97.7% and an average recall 98.7% on the

first data set and an average precision 95.15% and an aver-

age recall 96.05% on the second data set. Moreover, we

test our model for WSD by the line serve hard interest
data sets. Our model achieves an average of precision

91.38% and an average of recall 91.08% for identifying

the project sense of the word line; an average of precision

91.36% and an average of recall 90.07% for identifying the

supply with food sense of the word serve; an average of

precision 86.50% and an average of recall 91.43% for dis-

tinguishing the difficult sense of the word hard; an aver-

age of precision 89.50% and an average of recall 91.78%
for identifying the money paid for the use of money
sense of the word interest. We are going to test our

model for semantic role labeling (SRL) on the CoNLL-2005

shared task data set.

The rest of our discussion is structured in the following

way. The second section presents the method. The third

section demonstrates the empirical results. The fourth sec-
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tion reviews related researches and discussions. The fifth

section gives a conclusion.

2 The Proposed Method

2.1 An Example

Table 1 shows the input sentence ”He had deposited
his paycheck to the local PNC bank last Saturday
morning.” with its POS tags. By the method, each word of

the sentence is assigned to one of three different categories

C1, C2,andC3. C1 represents a word inside a block (a block

can be a NP chunk or a semantic role), C2 represents a word

outside a block, C3 represents a word starting a new block.

NP chunks or semantic roles are formed by grouping suc-

cessive words with the same category C1 or starting with

the category C3 and followed by zero, one, or more con-

secutive C1s. The context of the polysemous word bank is

found by grouping the words corresponding to the last C1

of consecutive C1s or last C2 of consecutive C2s. More-

over, different semantic roles A0, A1, A2, A3 are needed to

be separated from the semantic roles obtained from the pre-

vious step.

Table 1. An example of recognizing text pat-
terns

Lexi−
con POS

tag NP
Class
WSD SRL

NP
chunks

WSD
bank SRL

He NNP C1 C1 C1 |11 |A0
A0

had VBD C2 C2 C2

deposited VBN C2 C2 C2 Verb

his PRP$ C1 C1 C1 |2 |A1

paycheck NNS C1 C1 C1 |2 |A2

the DT C1 C1 C1 |3 |
local JJ C1 C1 C1 | |
PNC NN C1 C1 C1 | |
bank NNS C1 C1 C1 |3 Finan

cial

|A2

last JJ C3 C3 C3 |4 |A3

Saturday NNP C1 C1 C1 | |
morning NN C1 C1 C1 |4 |A3

In the case of NP chunking, C1 represents a symbol inside a NP

chunk, C2 represents a symbol outside of a NP chunks,and C3

represents a symbol starting a new NP chunks. In the case of word

sense disambiguation, C1, C2, and C3 are followed the conven-

tions of NP chunking. In the case of semantic role labeling, C1

represents a symbol inside a semantic role, V represents the main

verb, C2 represents a symbol outside of a semantic role, and C3

starts a new semantic role.

2.2 Describing the Task

Let L be a language, V be a vocabulary of L, and T be

POS tags of V . Let S be a sequence of symbols associated

with a sentence, S = (s1, ..., sN ), where sn =< wn, tn >,

wn ∈ V, tn ∈ T . Let C be a set of categories, C =
{C1, C2, C3}. Let B be a block. The definition of B can be

found in the section 2.5. C1 indicates the current symbol is

in B, C2 indicates the current symbol is not in B, and C3

starts a new B. The tasks can be stated as, given S, we need

to find:

1. a sequence of categories, (c1, ..., cN ), ci ∈ C, with the

best description of S;

2. all the Bs based on (c1, ...cN ), s.t. B = {B1, . . . , BM},
s.t. Bi ∩Bj = φ and Bi ⊂ S

2.3 Building Graphical Models

Given S = (s1, s2, ..., sN ), C = {C1, C2, C3}, for

si ∈ S, we want to find ci ∈ C, s.t.

(c1, c2, ..., cN ) = argmax
c1,c2,...,cN

p(c1, c2, ..., cN |S)

(1)

Suppose ci is independent of cj �=i given (s1, s2, ..., sN ).
This means that the symbol sequence contains all the in-

formation with respect to the category chain associated

with any word. Moreover, assume ci is independent of

(s1, .., si−2, si+2, .., sN ) given (si−1, si, si+1). This means

that all the information pertaining to the category class of

the word i is in entities contained by the symbol associated

with the word i, its predecessor word i − 1, and its succes-

sor word i+1. The probability graphical model using these

assumptions is shown in Fig 1. From this model, a set of

Figure 1. The probabilistic graphical model
of p(ci|s1, ...sN ) under assumptions ci is in-
dependent of cj �=i given (s1, s2, ..., sN ) and ci
is independent of (s1, .., si−2, si+2, .., sN ) given
(si−1, si, si+1)
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2N − 2 cliques1 is obtained:

CIL = {{s1, s2, c1}, {s1, s2, c2}, {s2, s3, c2}, . . . ,
{sN−1, sN , cN−1}, {sN−1, sN , cN}}

Moreover, there is a corresponding set of 2N − 3 separa-

tors 2:

SEP = {{s1, s2}, ..., {sN−1, sN}, {s2, c2}, ...,
{sN−1, cN−1}}

The junction tree3 is formed as shown in Fig 2. The

cliques are represented as nodes and separators are rep-

resented as edges. From this model, according to [2],

Figure 2. A junction tree for p(c1, ..cN |s1, .., sN )

p(c1, .., cN |s1, .., sN ) can be computed by the product of

the probability of the cliques divided by the product of the

probabilities of the separators. Hence:

p(c1, ..cN |s1, .., sN )

= MS
N∏

n=1

p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

(2)

In (2), we define p(s0|s1, c1) = p(sN+1|sN , cN ) = 1 and

Ms1,...,sM
is a constant depending only on s1, .., sn and not

depending on any cn. It can be obtained by the equation (3).

MS =
1

p(s1, s2)p(s2, s3)...p(sN−1, sN )
(3)

2.4 Making Decisions

Because each cn is independent of each other in (2), its

value can be determined individually. We can find cn by

1a clique is a maximal complete set of nodes.
2Γ = {Γ1, . . . ,ΓM} is a set of separators, where Γk = Λk ∩ (Λ1 ∪

...,∪Λk−1)
3A junction tree is a maximum spanning tree w.r.t separator size. A

maximum spanning tree is a tree over V whose sum of edge weights has a

maximum value. Here the edge weights are the sizes of the separators.

cn = argmaxcn p(sn−1|sn, cn) p(sn+1|sn, cn) p(sn|cn)
p(cn). Then, (1) can be rewritten as:

(c1, c2, ..., cN )
= (argmax

c1

(p(s2|s1, c1)p(s1|c1)p(c1)),
argmax

c2

(p(s1|s2, c2)p(s3|s2, c2)p(s2|c2)p(c2)),
...,

argmax
cN−1

(p(sN−2|sN−1, cN−1)p(sN |sN−1, cN−1)

p(sN−1|cN−1)p(cN−1)),
argmax

cN

(p(sN−1|sN , cN )p(sN |cN )p(cN ))) (4)

2.5 Determining NP Chunks or Semantic
Roles

Given (< s1, c1 >, . . . , < sN , cN >), si ∈ S, ci ∈ C,

S,C are defined in the section 2.2 . Let B be a block if and

only if:

1. for some i < j, B = (< si, ci >,< si+1, ci+1 >
, . . . , < sj , cj >)

2. ci ∈ {C1, C3}
3. cn = C1, n = i+ 1, . . . , j

4. B′ ⊆ B and B′ satisfies (1), (2), and (3)⇒ B′ = B

2.6 Determining the Sense of a Polyse-
mous Word

Given (< s1, c1 >, . . . , < sN , cN >), si ∈ S, ci ∈ C,

S,C are defined in the section 2.2 . We assign the class Ck

for the polysemous word wt if and only if:

#{n ∈ {1, . . . , N}|cn = Ck}
> #{m ∈ {1, . . . , N}|cm = Cj}, i �= k

(5)

2.7 Estimating Probabilities of the Model

We use a training set to estimate the probabilities for the

equation (2). In our model, the probability of a current sym-

bol being assigned to the class c in a sequence associated

with a sentence is partially dependent on the probability of

the previous symbol given the current symbol and the class

c, and the probability of the success symbol given the cur-

rent symbol and the class c. In this way, the adjacency be-

tween two neighboring symbols of an incoming sentence

are preserved by the overlapping of our model. Therefore,

we can consider a group of k sentences for estimating the
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probabilities. Our training set has K sentences. Each sen-

tence k consists of Nk words, < xk,1, .., xk,Nk
>, and

the corresponding class labels < yk,1, .., yk,Nk
>. Hence

the training set is Ψ = {ψ1, ψ2, ..., ψK}, where ψk = (<
xk,1, yk,1 >, ...., < xk,Nk

, yk,Nk
>). Let t, w, z, c be ran-

dom variables, where w designates a word, t designates a

word before w, z designates a word after w, and c des-

ignates a class. Let pw|c(α|γ) designate the conditional

probability of a word being α given that its class is γ. Let

pt|w,c(α|β, γ) designate the conditional probability of the

word previous to the current word being α given that the

current word is β and its class is γ. Let pz|w,c(α|β, γ) des-

ignate the conditional probability of the word after the cur-

rent word being α given that the current word is β and its

class is γ.

Let:

I = {(k, n)|k = 1, . . . ,K, n = 1, . . . , Nk}
pw|c(α|γ) can be estimated by:

p̂w|c(α|γ) =
#{(k, n) ∈ I|α = xk,n, γ = yk,n}

#{(k, n) ∈ I|γ = yk,n} (6)

pt|w,c(α|β, γ) can be estimated by:

p̂t|w,c(α|β, γ)

=
#{(k, n) ∈ I|α = xk,n−1, β = xk,n, γ = yk,n}

#{(k, n) ∈ I|β = xk,n, γ = yk,n}
(7)

pz|w,c(α|β, γ) can be estimated by:

p̂z|w,c(α|β, γ)

=
#{(k, n) ∈ I|α = xk,n+1, β = xk,n, γ = yk,n}

#{(k, n) ∈ I|β = xk,n, γ = yk,n}
(8)

3 Empirical Results

We define features based on the equation (2 )as follows:

f(si, ci) = p(ci)q(si|ci)r(si−1|si, ci)t(si+1|si, ci) (9)

We form the training set by including 90% instances and

the testing set by including 10% instances of the whole data

set. In this way, we do it iteratively 10 times to select the dif-

ferent training sets and testing sets. The evaluation metric

we have used are precision pre, recall Rec, and f-measure

fme = 2∗pre∗Rec

Pre+Rec
.

3.1 Identifying NP Chunks Using CoNLL-
2000 Shared Task Data Set

We have conducted three different tests on the CoNLL-

2000 shared task data set by choosing different values of

features. From these selections, we examine the probabili-

ties in order to find the one which contributes the best per-

formance. In the first test, we include all lexicon and POS

tags from the data set. We have tested our model according

to descriptions in the section 3. We averaged the results that

we received. The average precision is 95.15%, the average

recall is 96.05%, and the average f-measure is 95.59%. In

the second test, the lexicon is excluded. We only include

the POS tags. In the third test, all POS tags are excluded

and only the lexicon is included. The results are shown in

the table 2. By comparing the three results on the CoNLL-

2000 shared task data, we have noticed that if the model is

built only on the lexical information, it has the lowest per-

formance of f-measure 89.75%. The model’s performance

improved 3% in f-measure if it is constructed by POS tags.

The model achieves the best performance of 95.59% in f-

measure if we are considering both lexicons and POS tags.

Table 2. The results on the CoNLL-2000 data

Measurement Lexicon + POS tags Lexicon

POS tags

% % %
Pre 95.15 92.27 86.42

Rec 96.05 93.76 93.35

Fme 95.59 92.76 89.75

The best performances have achieved on the feature values con-

taining lexicon + POS tags. In this case, the average f-measure is

95.59%.

3.2 Identifying NP Chunks Using WSJ
Data Set from Penn Treebank

The second data set on which we have experimented is

the WSJ data of Penn Treebank. The main reason for us

to use this data set is that we want to see whether the per-

formance of our model can be improved when it is built on

more data. We build our model on a training set which is

seven times larger than the CoNLL-2000 shared task train-

ing data set (Section 3.3). The performance of our method

for the data is listed in the table 3. The average precision

is increased 2.7% from 95.15% to 97.73%. The average re-

call is increased 2.8% from 96.05% to 98.65%. The average

f-measure is increased 2.7% from 95.59% to 98.2%.

3.3 Identifying Sense of Polysemous
Words Using line interest hard serve
Data Sets

We test our model for WSD on the data sets line, hard,

serve, and interest. The senses’ descriptions and in-
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Table 3. The test results on the WSJ data from
the Penn Treebank

Training Testing Pre Rec Fme

800 files 100 files

200-999 1100-1199 0.9806 0.9838 0.9822

1200-1299 0.9759 0.9868 0.9814

1300-1399 0.9794 0.9863 0.9828

1400-1499 0.9771 0.9868 0.9817

1500-1599 0.9768 0.9858 0.9814

1600-1699 0.9782 0.9877 0.9829

1700-1799 0.9770 0.9877 0.9824

1800-1899 0.9771 0.9848 0.9809

1900-1999 0.9774 0.9863 0.9819

2000-2099 0.9735 0.9886 0.9806

μ 0.9773 0.9865 0.9818

σ 0.0019 0.0014 0.0008

The recall, precision, and f-measure obtained for each test of 100
files. The average recall, precision, and f-measure and their stan-

dard deviations are obtained from 1000 testing files.

stances’ distributions can be found in [11] and [3]. Because

of the limitations of number of instances ( a sentence having

the polysemous word in it ) for each sense in the corpora,

we select the first three senses for each polysemous word in

our test. Again, the values of features are made by lexicon

+ POS tags. We test our model based the descriptions of

the section 3. The test results are shown in the table 4. We

have noticed that, with the same instances for a polysemous

noun, adjective, or verb, our model achieves the best f mea-

sure for polysemous nouns and the worst result for polyse-

mous adjectives. For example, the average fme > 91% if

the number of instances > 1270 for the polysemous nouns

line and interest. However, in order to keep the same f-

measure value, the polysemous word serve needs to have

more instance: 1841 instances. The polysemous adjective

needs to have about 3350 instances to reach the average

fme = 88.76%. Moreover, in any case, our model achieves

an average fma = 80% if the number of instances is re-

duced to about 400. We conclude that the performance of

our model on WSD is dependent on the number of instances

in the training set: the larger the better.

4 Related Research and Discussion

Currently existing graphical models for NLP are

HMMs[13] [16], MEMMs[13], and CRFs[9] [18].

These models are built under different conditional in-

dependence assumptions for obtaining the sequence

< c1, . . . , cN > that maximizes p(c1, . . . , cN , s1, . . . , sN )

Table 4. The results on line, hard, serve, interest
data

Word Sense # of fme

Description Instance %
line project 2218 92.24
noun phone 429 85.22

text 404 81.95
hard difficult 3345 88.76
adj not soft 502 83.75

physical not soft 376 80.05
serve supply with food 1841 91.04
verb hold an office 1272 87.48

function as something 853 82.52
interst money paid for

the use of money 1272 91.45
a share in

noun a company 500 88.85
readiness to
give attention 361 79.95

or p(c1, . . . , cN |s1, . . . , sN ). Among these models, HMMs

and MEMMs are directed graphic models while CRFs and

our model are undirected graphical models. Comparing

with these two undirected graphic models, each ci links

to ci−1 and si in CRFs. Therefore, ci is dependent on

ci−1 and si. In contract, in our model, each ci links to si,

si−1, and si+1, not the previous category ci−1. Therefore,

ci is not dependent on ci−1. This makes it possible for

the sequence < c1, .., cN > with the maximum value of

p(c1, . . . , cN |s1, . . . , sN ) be determined by finding each

ci that satisfies the equation (4). In this way, the time

complexity for recognizing a new incoming sequence with

N symbols at the worst case is M ∗ N , where M is the

number of categories. For example, if C = {C1, C2, C3},
then M = 3. Therefore, the time complexity is O(N).
The memory space also will be reduced compared the

other graphic models because we donet need to store all

the previous category chains into the memory. Moreover,

our model is more reliable and stable due to the global

maximum probability being obtained by the local maximal

probabilities. There is no a chance to change the previous

category chain because of an accidently higher probability

at the current state.

A number of NP chunking and WSD methods have been

developed over the years. The methods for NP chunking

are [4] [17] [16] [18] [20] while the methods for WSD are

[6] [5] [11] [10] [21]. Our method adopt Ramshaw’s idea

[17] of assigning different categories to words in a sentence

based on whether these words are inside a NP chunk, out-

side a NP chunk, or start a new NP chunk. For WSD , in
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contrast with other methods, the polysemous word is repre-

sented by a sequences of ordered words with POS tags. Our

model assigns a category for a word of the input sentence

based on the information of the word, the previous word,

and the next word we have met before, which a human of-

ten does this in the same way. The experiments in the sec-

tion 3.1 show our model achieves better performance than

HMMs and CRFs [18]. For WSD, our method can achieve

precision and recall > 90 if number of instances of a sense

≥ 1000.

5 Conclusions

Recognizing patterns in a sentence is the first step to-

ward understanding the meaning of the sentence. This paper

presents a new probabilistic graphical model for doing such

tasks. Experiments show that our model is effective. We

have achieved an average of precision 97.7% and an average

of recall 98.7% on WSJ data from the Penn Treebank and

an average precision 95.15% and an average recall 96.05%
on CoNLL-2000 shared task data set for recognizing NP

chunks in a sentence. Moreover, we have achieved an av-

erage precision 90.57% and an average of recall 92.35% on

recognizing a particular sense of polysemous nouns, an av-

erage precision 90.86% and an average recall 91.22% on

recognizing a particular sense of a polysemous verb, and an

average precision 86.50% and an average recall 91.01% on

recognizing a particular sense of a polysemous adjective.

From the empirical results, in order to improve the perfor-

mance of WSD, we need to increase the size of the training

set. In the future, we will expend number of instances for

line interest hard serve data sets and test our model for

other senses of these polysemous words. Moreover, we will

test our model on recognizing the semantic roles in a sen-

tence by using CoNLL-2005 shared task data set.
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