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ABSTRACT 
Receiver operating characteristic curve is a standard 
method for reporting performance of a system. In this 
paper we show how to choose the optimal operating 
point when we are given a receiver operating curve, the 
prior probabilities, and the economic gain matrix. Un- 
like earlier methods, we make no assumptions regarding 
underlying distributions. 

1. THEORY 

Let us assume that the signal can either have only 
noise, N, or else it can have target plus noise, S. Let 
fN(z) be the density function of the noise strength, 
and let fs(a) be the d ensity function of the noise with 
target. If a particular value, say t, is chosen as the deci- 
sion threshold, then for any signal strength above t the 
classifier labels the input as S, whereas, if the signal 
strength is lower than t, the classifier labels the input 
as N. 

The classifier is given a large number of signals with 
either N or S. Denote the known prior probability of 
S and N by P(S) and P(N), respectively. For a given 
threshold t, let P(SIN, t) represent the probability of 
the classifier wrongly labeling the input as S when there 
is N in the input. P(SIN, t) is referred to as the proba- 
bility of false alarm, and is denoted by PF(t). Similarly, 
let P(NjS,t) p re resent the probability of the classifier 
wrongly labeling the input as N when there is S in the 
input, for a particular threshold t. P(SIN, t) is referred 
to as the probability of mis-detection, and is denoted by 
PM(t). The terms P(SIS, t) and P(NIN, t) are defined 
similarly. 

We will need the following equations in the subse- 
quent discussion. 

P(SIN,t) = PF(t) = 
s 

t m fN(z& (1) 

WAN, t> = 
at -fN (t) (2) 

J 
t 

P(NIS,t) = PM(t) = --M fs(z)dz (3) 

WW, t) at = fs(4 (4) 

The receiver operating characteristic curve, or ROC 
curve for short, is 2D parametric curve that is a plot of 
the points (PF(t), PM(~)) as threshold t is varied. 

Let C(SlS) be th e economic gain associated with la- 
belingthe input as S when the input is S. C(SIN), C(NIN) 
and C(NIS) are defined similarly. Now, we can write 
the equation for the gain, G(t), as a function oft : 

G(t) = P(N)P(SJN,t)C(SIN) 

+P(N)P(NIN, W(NIN) 
+P(V’(NIS, W(W) 
+P(s)P(qs, t)c(sp). 

Substituting for conditional probabilities we get, 

G(t) = P(N)P(SIN, t)C(SIN) 

+P(Wl - P(SIN, t)lC(NlN) 

+P(W(WS, WNIS) 
+P(S)P - P(W, W(W) 

= P(N)P(SIN, W(W) - C(NIN)I 
+P(WC(NIN) 
+P(W(W, W(V) - C(SlS>l 
+P(s)c(sp). (5) 

To achieve the maximum gain, we should operate the 
classifier at the threshold t for which the derivative of 
the gain equals zero: G’(t) = 0. Thus, 

=(t) 
at = P(N)[C(SIN) - C(Njnr)laP(;~ “2. 

+P(S)[C(NIS) - C(SlS)] ap(;js’ t, 

= 0. 
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Rearranging we get, Receiver Operating Curve 

P(W[C(W) - C(NIWI aP(NlS, t)/& 
P(S)[C(NIS) - C(S(S)] = -aP(SlN,t)/at ’ 

Canceling the at, we get, 

WNWIN) - WN)l = _ W W , 4 
J-‘(S)P3W> - C(NlS)l aP(SlN, t) ~ (6) 

Alternatively, the above equation can be written in 
terms of the density functions by using results from 
equations (2) and (4) 

P(N)[‘TNIN) - C(W)1 fs(t> 
P(S)[C(SlS> - W lS>l =fivo* (7) 

Equation (6) implies that t should be chosen such 
that the derivative of the ROC curve at t should equal 
the quantity on the left hand side of the equation. 
For example, if the P(N) = P(S) = 0.5, C(NIN) = 
C(SlS), and C(NIS) = C(SIN), we see from equa- 
tion (6) that the slope of the tangent at the point cor- 
responding to t on the ROC curve should be equal to -1. 
That is, the tangent should be at 135 degrees counter- 
clockwise with respect to the positive x-axis. In gen- 
eral, the operating point on the ROC curve should be 
where the slope of the tangent is equal to the ratio on 
the left hand side of equation (6). 

Receiver Operating Curve 

0.0 
Probability of Misdetection 

1.0 

Figure 1: Point A is an optimal operating points when 
the slope of the tangent at A is equal to the ra- 
tio P(W(C(Wf) - C(SlW)I P(S>(C(SlS> - C(NW- 
Similarly, the point B is an optimal point for a different 
due of the ratio. 

Equation (7) implies that t should be chosen such 
that the ratio of the density function values fN(t) and 

\ 
0.0 

Probability of Misdetection 
1.0 

Figure 2: In this operating curve, the slopes at points A, 
B  and C ar the same. The point at which the tangent 
line nearest to the origin (perpendicular distance), is the 
optimal operating point. 

fs(t) should equal the quantity on the left hand side of 
the equation. For example, if the P(N) = P(S) = 0.5, 
C(NlN) = C(W>, and C(NJS) q = C(S]N), we see 
from equation (7) that the ratio fS(t)/fN(t) should 
equal 1. That is, The density functions should be equal: 
fdt) = fN(t)* 

Note that it is possible to have multiple solutions 
to equations (6) and (7). This is bec’ause the operating 
curve might happen to be tangential to 135 degree lines 
at multiple places in the case of equation (6) and the 
density functions might happen to intersect at multiple 
points in the case of equation (7). The operating point 
at which the gain G(t) is maximum can be found out 
by substituting the t values into the gain equations (5). 
There still is a possibility of existence of multiple oper- 
ating points having the same gain. If that is the case, 
then any of the solutions where the gain function at- 
tains its maximum can be used as an operating point. 

Furthermore, it can so turn out that the solution 
is actually a minimum instead of a maximum. This 
happens when the mean of the noi.se signal is higher 
than the mean of the signal with noise. In this case the 
operating point will be above the cross diagonal of the 
unit square. 

In the case that the prior probabilities are deliber- 
ately chosen to make the performan.ce as bad as possi- 
ble, the optimal operating point is given by the Max- 
imin decision rule, and the above analysis does not ap- 
ply. In brief, if C(SlS) = C(NIN:) = 0, the optimal 
operating point is the intersection of ROC and the line 
defined by the equation P,.C(NlS) = (PF).C(SIN), 
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where PM and PF are variables and PF = 1 - PM (see 
Van Trees [l] and Haralick and Shapiro [2] for details). 

Receiver Operating Curve 

1.0 

n 
E  I\ 

0.0 
Probability of Misdetection 

1.0 

Figure 3: In this operating curve, the maximin operating 
point is at the point A, which is the intersection point of 
the ROC curve with a line passing through the origin. The 
slope of the line is computed from the economic gain matrix 
(see text). 

Radiology community (see [3], and literature cited 
therein) and automatic target recognition (ATR) com- 
munity make use of ROC methodology. For a discus- 
sion of quantitative performance evaluation for line de- 
tection algorithms where optimal operating points can 
be used see [4, 51. 

2. PRACTICAL ISSUES 

Although the theory described in the previous section 
has existed in the statistical signal detection literature 
for decades [l], and has been used by the radiology and 
ATR community quite extensively, there is a practical 
problem that still remains: 

Since the ROC data is discrete and noisy, the deriva- 
tives computed directly from the data are noisy, Thus 
researchers using ROC methods assume that the den- 
sity functions are Gaussian and then estimate param- 
eters for the ROC curve. Unfortunately, Gaussian as- 
sumptions need not be valid in many cases. However, 
due to lack of better tools for computing reliable deriva- 
tives along the ROC curves, researchers still make the 
Gaussian assumptions. 

Our approach does not make any Gaussian assump- 
tions regarding the density functions. The crucial point 
for finding the optimal operating point is that the ROC 
should be represented in a way such that reliable deriva- 

tives can be computed anywhere along the curve. We 
accomplish this by computing a spline representation of 
the ROC data that satisfies the monotonicity and end- 
point constraints. The derivatives are then computed 
from this spline representation. Finally, the derivatives 
computed from the spline representation are used in the 
computation of the optimal operating point (according 
to equation 6). In the case one is looking for the Max- 
imin operating point, the intersection point of any line 
through the origin and the spline representation of the 
ROC can be computed easily (derivatives are not re- 
quired). Details of our monotone spline regression al- 
gorithm can be found in our papers [6, 71. In figure 4 
we show a spline fit using our algorithm to ROC data. 
Maximin operating points and operating points when 
priors are known are computed easily from the fitted 
spline. 

Figure 4: ROC curve fitting with splines. The number of 
data points was 88. The point A  is an operating point 
when the priors are known and the point B  is a maximin 
operating point. 

3. DISCUSSION 

In the previous sections we outlined the theory of find- 
ing optimal Bayesian operating points in binary hy- 
pothesis testing problems. Unlike other methods in the 
literature, our method does not make any assumptions 
regarding density functions. We fit the ROC curve with 
differentiable, monotonically decreasing spline functions 
that have the end-points at (0,l) and (0,l). Deriva- 
tives of splines, which are required for finding optimal 
operating points, are easily computed. For maximin 
operating points, intersections with straight lines with 
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splines are required, which can again be computed eas- 
ily. 

There are few points that still need to be addressed. 
First, we have not provided a means of computing con- 
fidence intervals associated with the operating points. 
This can be approached via bootstrap methods. Sec- 
ond, currently the user has to provide the knot loca- 
tions and order of splines to be fit to the ROC data; this 
eventually needs to be done automatically. The model 
selection problem can be solved using cross-validation 
techniques. 

Another approach to the problem of fitting para- 
metric curves to ROC data is through fitting func- 
tions to the density functions. That is, one can fit 
splines (that are non-negative and integrate to 1) to 
histograms and then compute the ROC fit using the 
smooth density functions. This is possible only when 
histograms are available (this need not always be the 
case, e.g., in psychophysics one does not usually have 
access to the underlying histograms). In our papers 
[6, 71 we have also provided a way of computing spline 
fits to histograms while satisfying non-negativity and 
integral constraints. 
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