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Abstract. Texture has been one of the most popular representations in image retrieval.
Our image database retrieval system uses two sets of textural features, first one being the
line-angle-ratio statistics which is a texture histogram computed from the properties of the
surroundings and the spatial relationships of intersecting lines, second one being the variances
of gray level spatial dependencies computed from co-occurrence matrices. This paper also
discusses a line selection algorithm to eliminate insignificant lines and statistical feature
selection methods to select the best performing subset of features. Average precision is used
to evaluate the retrieval performance in comparative tests with three other texture analysis
algorithms. Results show that our method is fast and effective with an average precision of
0.73 when 12 images are retrieved.

1 Introduction
Image databases are becoming increasingly popular due to large amount of images that

are generated by various applications and the advances in computer technology. Initial work
on content-based retrieval focused on using low-level approaches like color and texture [7, 12].
More recent approaches use region-based methods [4, 9] to infer higher-level information
from images but the region segmentation algorithms are still too slow to be used in an image
retrieval application.

In this paper we attempt to improve retrieval efficiency using easy-to-compute low-level
features that combine macro and micro aspects of the texture in the image. The first
feature extraction method is the line-angle-ratio statistics, which is a texture histogram
method and a macro texture measure that uses spatial relationships between lines as well
as the properties of their surroundings. A statistical line selection algorithm to eliminate
insignificant lines is presented. The second feature extraction algorithm, variances of gray
level spatial dependencies, which in turn is a micro texture measure that uses second-order
(co-occurrence) statistics of gray levels of pixels at particular spatial relationships. Both sets
of features are integrated for a multi-scale texture analysis which is crucial for a compact
representation, especially for large databases containing different types of complex images.

We use a two-class pattern classification approach to find statistical measures of how
well some of the features perform better than others to avoid having less significant or even
redundant features that increase computation but contribute very little in the decision pro-
cess. Retrieval performance is evaluated using average precision computed for a groundtruth
data set.

The rest of the paper is organized as follows. First, textural features are presented in
Sections 2, 3 and 4. Then, feature selection methods are described in Section 5. Experiments
and results are discussed in Section 6. Finally, conclusions are given in Section 7.



2 Line-Angle-Ratio Statistics
Experiments on various types of images showed us that one of the strongest spatial

features of an image is its line segments. Edge and line information have been extensively
used in both very early and recent approaches to texture. Our algorithm is composed of two
stages; pre-processing and texture histogram generation.

2.1 Pre-processing

Each image is processed by an edge detector, an edge linker, a line selection operator and
a line grouping operator to detect line pairs to associate with it a set of feature records. Edge
detection followed by line detection often results in many false alarms. It is especially hard
to select proper parameters for these operators if one does not have groundtruth information
as training data. The algorithm we developed to eliminate lines that do not have significant
difference between the gray level distributions in the regions on their right and left is given
below.
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Given a threshold for the F -value, if the null hypothesis H0 is true, the line is rejected, if
the alternative hypothesis H1 is true, the line is accepted as a significant one.

After obtaining relatively significant lines, we use a line grouping operator to find inter-
secting and/or near-intersecting line pairs. Examples for the pre-processing steps are given
in Figure 1.

2.2 Texture Histogram

The features for each pair of intersecting line segments consist of the angle between two
lines and the ratio of mean gray level inside the region spanned by that angle to the mean
gray level outside that region. Angle values are in the range [0◦, 180◦]. Since the possible
range of ratio values is infinite, we restrict them to the range [0, 1) by taking the reciprocal
if the inner region is brighter than the outer region.



(a) Grayscale im-
age.

(b) Extracted lines
after line detection
operator.

(c) Accepted lines
after line selection
operator.

(d) Resulting lines
after line grouping
operator.

Figure 1: Line selection and grouping pre-processing steps.

The final features form a two-dimensional space of angles and the corresponding ratios,
which is then partitioned into a fixed set of Q cells. The feature vector for each image is
then the Q-dimensional vector which has for its q’th component the number of angle-ratio
pairs that fall into that q’th cell. These features do not have a uniform distribution so we
use vector quantization to form the Q-cell partition. Please refer to [1] for details.

3 Variances of Gray Level Spatial Dependencies
Gray level spatial dependencies combine structural texture analysis algorithms which

use the idea that texture is composed of primitives with different properties appearing in
particular spatial arrangements and statistical approaches which try to model texture using
statistical distributions either in the spatial domain or in a transform domain. This infor-
mation can be summarized in two-dimensional co-occurrence matrices that are matrices of
relative frequencies P (i, j; d, θ) with which two pixels separated by distance d at orientation
θ occur in the image, one with gray level i and the other with gray level j. The initial work
on co-occurrence matrices [8] and some comparative studies [6, 11] showed that gray level
spatial dependency matrices were very successful in discriminating images with relatively
homogeneous textures.

3.1 Pre-processing

Before computing co-occurrence matrices we use equal probability quantization to make
the features invariant to distortions resulting in monotonic gray level transformations. We
use 64 quantization levels (Ng) which performed the best among 16, 32 and 64 levels in terms
of “total cost” that will be defined in Section 5.

3.2 Co-occurrence Variance

In order to use the information contained in the gray level co-occurrence matrices, Har-
alick et al. [8] defined 14 statistical measures. Since many distances and orientations result
in a large amount of computation, we decided to use only the variance [2]

v(d, θ) =
Ng−1
∑

i=0

Ng−1
∑

j=0

(i− j)2P (i, j; d, θ) (4)

which is a difference moment of P and measures the contrast in the image. It will have a
large value for images which have a large amount of local spatial variation in gray levels and
a smaller value for images with spatially uniform gray level distributions.



4 Multi-Scale Texture Analysis
Line-angle-ratio features capture the global spatial organization in an image by using

relative orientations of lines extracted from it; therefore, they can be regarded as a macro-
texture measure but are not effective if the image does not have any line content. On the
other hand, co-occurrence variances capture local spatial variations of gray levels in the
image; therefore, they are effective if the image is dominated by a fine, coarse, directional,
or repetitive texture and can be regarded as a micro-texture measure.

In order to take advantage of both methods, we normalize each component of these
feature vectors to the [0, 1] range by an equal probability quantization and append them to
form the final vector. In the rest of the paper size of a feature vector will be denoted by Q.

5 Feature Selection
In many complex feature extraction algorithms there are many parameters that, when

varied, result in a large number of possible feature measurements. These high dimensional
feature spaces may cause a problem of having less significant or even redundant features that
increase computation but contribute very little in the decision process. Most of the times
this feature selection process is done heuristically. Only a few researchers presented some
form of feature selection in their papers on database retrieval [10, 4].

We use a two-class pattern classification approach to find statistical measures of how
well some of the features perform better than others. In doing so, we define two classes, the
relevance class A and the irrelevance class B, in order to classify image pairs as similar or
dissimilar. Assume that we are given two sets of image pairs for the relevance and irrelevance
classes respectively [3, 1]. Differences of feature vectors for each image pair are assumed to
have a normal distribution 1 and sample means µA and µB and sample covariance matrices
ΣA and ΣB are estimated using the training data.

5.1 Classification Tests

Given a groundtruth image pair (n,m) with Q-dimensional feature vectors x(n) and y(m)

respectively, first the difference d = x(n)−y(m) is computed. From Bayes’ law, the probability
that these images are relevant is P (A|d) = P (d|A)P (A)/P (d) and that they are irrelevant is
P (B|d) = P (d|B)P (B)/P (d). The image pair is assigned to the relevance class if P (A|d) >
P (B|d), and to the irrelevance class otherwise. Assuming that two classes are equally likely,
taking the natural logarithm of the decision rule and eliminating some constants give

(d− µA)
′Σ−1

A (d− µA)/2 < (d− µB)
′Σ−1

B (d− µB)/2 + ln
|ΣB|

1/2

|ΣA|1/2
. (5)

Therefore, if the difference d of the feature vectors of two images satisfy the inequality in (5),
this image pair is assigned to the relevance class, otherwise it is assigned to the irrelevance
class.

1According to our observations, the line-angle-ratio feature differences follow double-exponential distribu-
tions and the co-occurrence feature differences follow normal distributions. Modeling the joint feature differ-
ences using a multivariate normal density worked better than using independently fitted double-exponentials
or normals because of the covariance matrix that captures the correlation between features.



5.2 Experimental Set-up

Suitable measures for the classification results are misdetection and false alarm. In
content-based retrieval we are more concerned with misdetection because we want to re-
trieve all the images similar to the query image. False alarm rate is also important because
the purpose of querying a database is to retrieve similar images only, not all of them. We de-
fine total cost as 3 misdetection and 2 false alarm and use it as the criterion for “goodness”,
i.e. if a subset of features has a small total cost compared to others, it is called “good”.

If the dimension of the feature space is large, it is computationally too expensive to do
classification tests using all possible subsets of the features. In our work, first, we do tests
using only one of the features at a time. The second test, which shrinks down feature sets,
is done by first computing the total cost using all Q features. The feature with the worst
total cost is discarded and the total cost using the remaining Q-1 features is computed. This
procedure continues until one feature is left. A third test, which builds up feature sets, is
done by starting with the total cost for each individual feature and selecting the best one.
Given this best one, pairs of features are formed using one of the remaining features and
this best feature. Total cost is computed for each pair and the one having the smallest cost
is selected. Given the best two features, next, triplets of features are formed using one of
the remaining features and these two best features. This procedure continues until all or a
preselected number of features are used. These tests do not guarantee the optimal subset of
features but allow us to select a suboptimal subset without doing an exhaustive search.

6 Experiments and Results
6.1 Feature Selection

The images in our database are obtained from the Fort Hood Data of the RADIUS Project
and also from the LANDSAT and Defense Meteorological Satellite Program (DMSP) Satel-
lites. The test database for feature selection contains 10,410 256 × 256 images with a total
of 38,240 groundtruth image pairs. Therefore, experiments for each parameter combination
tested consist of classifying approximately 38,000 image pairs.

6.1.1 Line-Angle-Ratio Statistics

The goal of these feature selection tests is to select the quantizer that performs the best.
The quantizers with 15, 20 and 25 cells resulted in 30.20%, 30.05% and 30.22% total costs
respectively. As a result, we decided to use the quantizer with 20 cells.

6.1.2 Co-occurrence Variances

The goal of our feature selection tests is to select the set of distances, among distances of 1
to 20 pixels, that perform the best according to the classification criteria. In the experiments,
building up feature sets decreased the total cost faster than shrinking down the set of all
features. Another observation was that after using approximately 2 or 3 distances, total cost
did not decrease much. As a result, using the distances 1 and 20 together had the minimum
total cost of 29.36% among all the possible combinations of 2 distances. Although these
feature selection tests do not guarantee an optimal solution, they resulted in a suboptimal
one in 1,560 classification tests without using exhaustive search which would then require
220 − 1 classification tests. Details of these experiments can be found in [1].



6.2 Retrieval Performance

For these tests, we randomly selected 340 images from the total of 10,410 and formed
a groundtruth of 7 categories; parking lots, roads, residential areas, landscapes, LANDSAT
USA, DMSP North Pole and LANDSAT Chernobyl. Likelihood values [1] which were derived
from equation (5) were used to rank the database images. For comparison, IBM’s QBIC
texture features [7], UCSB’s Gabor texture features [10] and TUT’s moments texture features
[5] were also tested with Euclidean distance as the distance measure. Our features performed
similarly to the Gabor features and both of them performed significantly better than others.
Precision averaged over all 340 images was 0.73 when 12 images were retrieved. Figure 2
shows the average precision for some of the groundtruth groups. The feature extraction time
for our features were approximately 30 times faster than that of the Gabor features.

Some example queries are shown in Figure 3. More examples and our groundtruth data
set can be found at http://isl.ee.washington.edu/∼aksoy/research/database.shtml.
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(a) Parking lots
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(b) Residential
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(c) Landscape
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Figure 2: Average precision for some groundtruth groups.

(a) Example query for parking
lots

(b) Example query for residen-
tial

(c) Example query for land-
scape

Figure 3: Retrieval examples with the upper left image as the query. Among the retrieved
images, first three rows show the 12 most relevant images in descending order of similarity
and the last row shows the 4 most irrelevant images in descending order of dissimilarity.

7 Conclusions
We described easy-to-compute but effective low-level textural features. The first set

of features captures the global spatial organization in the image using the edge and line



information. The second set of features is effective if the image is dominated by a fine,
coarse, directional, or repetitive texture. Some key aspects of this work include a statistical
line selection algorithm and feature selection tests to determine the parameters of the feature
extraction algorithms.

Retrieval tests showed that our features performed better than the QBIC and moments
features and had similar performance as the Gabor features. They can be combined with
other features to further improve the performance and make better inferences about the
high-level descriptions of the images.
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