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A Bayesian Framework for Noise Covariance
Estimation Using the Facet Model
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Abstract—In image processing literature, thus far, researchers
have assumed the perturbation in the data to be white (or uncorre-
lated) having a covariance matrix 2 , i.e., assumption of equal
variance for all the data samples and that no correlation exists
between the data samples. However, there have been very few at-
tempts to estimate noise characteristics under the assumption that
there is a correlation between data samples. In this work, we pro-
pose a new and a novel approach for the simultaneous Bayesian
estimation of the unknown colored or correlated noise (popula-
tion) covariance matrix and the hyperparameters of the covariance
model using the well-known facet model. We also estimate the facet
model coefficients. We use the facet model because of its simple,
yet elegant, mathematical formulation. We use the generalized in-
verted Wishart density as the prior model for the noise covariance
matrix. We place a structure on the covariance matrix using the
parameters of a correlation filter. These hyperparameters are es-
timated by a new extension of the expectation-maximization algo-
rithm called the generalized constrained expectation maximization
algorithm that we developed.

Index Terms—Colored noise, constraints, correlation filter, ex-
pectation-maximization (EM) algorithm, generalized constrained
expectation maximization (GCEM) algorithm, generalized in-
verted Wishart ( ), hypercovariance, hyperparameters,
inverted Wishart ( ), noise covariance matrix, nonlinear pro-
gramming, white noise.

I. INTRODUCTION

THE field of image processing and computer vision, in
layman’s terms, is a science of making the computers to

perceive and understand the real world scenes. Commonly, one
of the first and foremost steps involved in any computer vision
task is the preprocessing of the digital images that are created
by a sensor [for example, a camera, a medical ultrasound
(US) scanning system, and a magnetic resonance imaging
(MRI) system]. This involves noise cleaning and enhancement.
Images, so enhanced, are passed through the subsequent steps
that are to be carried out to realize a computer vision task.
A typical computer vision system is illustrated in Fig. 1. An
ellipse represents an algorithm, procedure or method acting
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Fig. 1. Typical computer vision system.

upon a data object represented by a rectangle. A digital image
formed by sensing the real world is preprocessed to clean
up the noise and enhance the image content for subsequent
processing. The enhanced image might then be processed to
extract features that are of interest to us in a particular appli-
cation. The features of interest could be gradient magnitude
and direction, edge, ridge, and/or valley pixels, or some other
information, such as histogram statistics, to name a few. This
step is usually referred to as feature extraction. These two
steps collectively are called the low-level computer vision task.
Once the these low-level features are detected, the next step
could be to group them together and label them into more
reasonable entities. This process could involve, for example,
connecting detected edge pixels to form longer edge segments,
by using some criteria. This step is referred to as grouping and
labeling or transformation to higher level entities. This step
is sometimes called mid-level computer vision task. Finally,
these features are input to the high-level computer vision task
of object recognition to detect object(s) of interest. As one can
clearly see, that output of one step forms the input to the next.
Consequently, any errors occurring in one step get propagated
to the subsequent step and the output of the high-level vision
task may not produce desired results. In recent years, increased
attention has been paid to the development of algorithms for
performing mid- and high-level vision tasks. Researchers are
concentrating less on the low-level task of noise estimation
and enhancement. For example, recent works on boundary
detection and three dimensional reconstruction of the organs
of the body using deformable models and templates [1]–[6]
concentrated on finding the object of interest without heed
to the accuracy of the results under the chosen noise model.
They perform Gaussian smoothing of images assuming white
noise with an assumed variance (covariance matrix ). That
is, an assumption of equal variance for all the data samples
with no correlation among them. They did not even estimate
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this variance from data. Others went on to estimate the noise
variance by techniques such as least squares fitting of the
observed image data. Use of white noise assumption does not
reflect the true correlation between samples that are observed in
the real world. Therefore, this modeling error carries on to the
higher level computer vision tasks such as feature extraction,
perceptual grouping, and final scene reconstruction, thereby
producing suboptimal results. We believe that, by properly
modeling the correlation of the samples, it is possible to reduce
the modeling errors, which then propagate through the various
steps of computer vision algorithms to produce optimal results.
Our belief is that a computer vision system without a proper
modeling of the noise and the estimation of parameters of
these models at each stage will not produce optimal and stable
results.

This paper concentrates on the above mentioned low-level vi-
sion tasks of noise covariance estimation and feature extraction.

A. Background and Motivation

As stated earlier, researchers have focused very little energy,
in this very important field of low-level image processing to es-
timate noise characteristics under the assumption that there is
correlation between data samples. Most of the recent works in
the covariance matrix estimation could only be found in statis-
tical literature, for example, non-Bayesian approaches by Stein
[7], [8], Lin and Perlman [9], and emperical Bayes procedure
by Haff [10], fully Bayesian approach by Dickey et al. [11], the
path models of Wright [12], the LISREL models of Jöreskog
[13] and the factor analysis models of Spearman [14], mixture
models of Hoffbeck [15], Toeplitz models of Cadre [16], ma-
trix logarithm models of Leonard and Hsu [17], and hierarchical
nonconjugate prior models of Daniels [18]. Brown et al. [19]
propose a new class of priors for the covariance matrix, called
the generalized inverted Wishart prior, which is based
on the Bartlett decomposition and apply it to the estimation of
the covariance matrix in the environmental monitoring problem.
We used this prior model as it naturally applies to the problem
that we are trying to solve. Therefore, a lack of proper (general)
framework for noise covariance matrix estimation in the field of
image processing and computer vision, motivated us to under-
take this research work.

B. Organization of the Paper

This paper is organized as follows. In Section II, we intro-
duce the facet model and the additive Gaussian noise model that
we will be using in the formulation of the problem of simulta-
neous estimation of the noise covariance matrix and the facet
model coefficients in a Bayesian framework. We make use of
the density as the prior probability function for the un-
known noise covariance matrix. We derive an objective func-
tion for the maximum a posteriori (MAP) estimation of the facet
model coefficients and the noise covariance matrix. This section
formally states the problem that needs to be solved. Section III
discusses the correlation structure that we place on the hyperco-
variance matrix describing the distribution. We design a
generalized constrained expectation maximization (GCEM) al-
gorithm for the estimation of the hyperparameters used to de-
fine this structure. In Section IV, we implement the constrained

maximization (M-step) of the GCEM algorithm using sequen-
tial unconstrained minimization technique (SUMT). We convert
the constrained problem into a sequence of unconstrained prob-
lems using barrier functions. Section V discusses the evaluation
protocol used to assess the performance of the algorithm and
validate the results produced. We do this via the statistical hy-
pothesis testing. Section VI discusses briefly an application that
we developed to take advantage of the noise covariance matrix
estimation procedure. In Section VII, we summarize the results
reported in this paper.

II. PROBLEM FORMULATION

A. Introduction

In general, the solution to an image processing problem starts
by specifying a model for the underlying true noise-free image,
a noise or perturbation model that describes how the under-
lying true noise-free data might have been contaminated, and
designing an algorithm to use these models to solve the problem
at hand more accurately. By having such a statistical model, one
can produce error estimates for the results produced so that the
performance of the algorithm can be evaluated. In this section,
we formulate the problem of noise covariance matrix estima-
tion by using the facet model to describe the underlying noise
free image and use an additive Gaussian noise model. The facet
model was first introduced by Haralick [20]–[22]. This has been
extensively used to extract features, such as edges, ridges, and
corners of objects in images. See [23]–[30] for examples.

B. Facet Model

The principle of the facet model states that the image can
be thought of as an underlying continuum or piecewise contin-
uous gray level intensity surface. The observed digital image is
a noisy, discretized sampling of a distorted version of this sur-
face.

For the th image neighborhood, we can write the facet model
[22] representing the ideal noise free signal energy as

(1)

where represents the -dimensional noiseless
vectors from the signal space and is a matrix whose columns
represent the discrete orthonormal polynomial (DOP) basis of
the space which is modeled to contain the signal energy and

are -dimensional vectors of coefficients of
the facet model, and where is
the half-width of the discrete support of the neighborhood. is
obtained as discussed in [22], [31], and [32].

C. Noise Model

Let ; be the -dimensional independent
samples of the noisy observed signal. Then, the facet model rep-
resents this noisy signal as

(2)

where are the independent identically dis-
tributed Gaussian random variates. Arranging these samples
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together into columns of a matrix and using the notation given
in [33] for matrix variate normal distribution, we can write

(3)

where

(4)

In this notation, we write the matrix normal distribution as
, where is the Kronecker product of matrices.

Hence, . This distribution denotes that
the columns of are independent and that the covariance ma-
trix within each column is . For some details on
matrix normal distribution, see Appendix I [32]. Our goal is to
estimate the polynomial coefficients and the common co-
variance matrix .

D. Estimation Problem

Given , we wish to estimate and the common covariance
matrix . We formulate the problem solution in a Bayesian
framework to estimate of and of to maximize the
posterior probability function

(5)

The values of and that maximize will also
maximize the joint probability

(6)

We model , as being independent a priori and
we take the prior probability for each to be uniform and we
denote the prior probability for as (see Section II-H
for a discussion of the prior probability function used). For de-
tailed derivations of all the expressions in this section, consult
[32].

Under these assumptions, we have

(7)

We assume the probability function for the likelihood function
as

(8)
Using the stated assumptions and likelihood function and ne-
glecting the constant terms, we write the maximization problem
as a minimization of the negative logarithm of the joint proba-
bility function as

(9)

1) Estimation of the Facet Model Coefficients: This section
describes the minimization of with respect to . Taking par-
tial derivatives of with respect to , equating it to zero and
solving the resulting equation, we get the estimate of as

(10)

2) Estimation of the Common Noise Covariance Matrix: In
this section, we carry out the minimization of with respect to

. Eliminating using from the objective function , we
get

(11)

Notice that the operator is
one whose columns and rows are orthogonal to the columns of

. That is, and

.
This means that the only part of that makes a difference

in the quadratic term is that part that is in the complement space
to the column space of . This part can be written as

, since is the orthogonal projection operator to the
space spanned by the columns of . Let ,

and removing terms independent of
the summation index, out of the summation, we get

(12)

E. When is This Approach an Improvement Over the White
Noise Assumption?

Theorem 1 (Case of Uncorrelated Signal and Noise
Spaces): When the noise covariance matrix, expressed in
the coordinates of the signal space and its complement space is
block diagonal with no coupling (i.e., no correlation) between
the two spaces, then the same result is obtained for as in the
white noise case.

Proof: Under the white noise assumption, we have
. Therefore, . Now, the DOP basis coeffi-

cients become

(13)

Let be a matrix whose columns form an orthonormal basis for
the space complement to that spanned by the columns of . In
this case, the matrix is an orthonormal basis with inverse

. Now

(14)

The matrix is the noise covariance matrix ex-
pressed in the coordinate system of the basis formed by the
columns of .
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Let us examine the case when this matrix is block diagonal,
i.e.,

(15)

Using computed using the above equation, becomes

(16)

We understand the above result in the following manner: Be-
cause of the relationship , when the least squares
estimate of is produced, all the energy of the noise in the
space spanned by the columns of goes into the computed .
The noise in the space (spanned by the columns of ) comple-
ment to the space spanned by the columns of will only influ-
ence the estimate of to the extent that there is coupling be-
tween the signal space and the signal complement space (noise
space). It is also clear that we only observe the signal from the
space spanned by the columns of . We have no direct obser-
vations from the space spanned by the columns of , but only
through the observations from the space spanned by the columns
of .

F. General Case

In this section, we discuss the general case when there may
be correlation between the space spanned by the columns of
and that spanned by the columns of .

Theorem 2 (Case of Correlated Signal and Noise
Spaces): Let be the component of the noise covari-
ance matrix in the space spanned by the columns of ,
be the component of the noise covariance matrix in the space
spanned by the columns of , and and be the
cross-covariance matrices of the spaces spanned by and ,
such that . Then

(17)

Proof: Consider the equation

(18)

where the noise covariance matrix is represented in the basis
of . Let represented in the basis of be parti-
tioned as

(19)

Using computed using the above partitioned structure, we
get the estimate of as

(20)

Let

(21)

Using these results, the objective function in (9) becomes

(22)
From the above equations, we can write as

(23)
where . We can replace by
since , the determinant of the Jacobian of the
transformation is unity. Therefore, the objective function can be
written as

(24)

In Section II-H, we discuss the probability density function used
to describe our a priori knowledge about .

G. Noise Model Revisited

The random vectors in the space can be written as

(25)

In matrix form, data in the space be represented by
and given by

(26)

Under this updated noise model, the estimate of is

(27)

H. Choice of Prior Probability Function for the Noise
Covariance Matrix

Brown et al. [19] proposed what they call the distri-
bution, which is based on the partitioned structure of the co-
variance matrix, and derived using the 1-1 Bartlett [34] matrix
decomposition. For some details on the inverted Wishart ( )
and distributions, see Appendices II and III.

Let . Then, . If
, then this exactly corresponds to the distribu-

tion with parameter and partitioned as given below.
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The data matrix in (26) represents the partitioning of data
conformable with that of . Also, let the matrix be parti-
tioned, conformably with , as

(28)

The distribution for our problem is then described as

(29)

implies that

1) , is distributed indepen-
dently of and ;

2) ;
3) ;

where ;
; ; ;
.

I. Updated Objective Function

In the following, we make the dependence of on and
explicit in notation. From the preceding analysis, we write

as

(30)

Using the appropriate density functions for matrix normal and
distributions (given in Appendices I and II), we have the

objective function to be minimized as

(31)

where represents the hyperparameters to be elaborated later.
Therefore, our goal is to estimate , and , by minimizing
the objective function given in (31) given the hyperparameters,

. Once , and are estimated, we can then construct
and by performing an inverse of the Bartlett decomposition.

1) Estimating : To estimate , minimize the fol-
lowing function:

(32)

Using Theorem 6, we get the estimate as

(33)

2) Estimating : By minimizing the following function:

(34)

the estimate of is obtained as

(35)

3) Estimating : An estimate of is obtained by minimizing
the following function:

(36)

Using Theorem 6, and , we get

(37)

The above expressions are derived assuming that the hyperpa-
rameters are known. However, we do not know these in ad-
vance, and, hence, we need to employ an estimation procedure.
Also, the optimization becomes tricky if we do not know how
the space (signal space) spanned by the columns of is re-
lated to the space (noise space) spanned by the columns of .
This is because there exist several choices for the matrices ,

and , so that one can obtain a covariance ma-
trix that satisfies the positive-definiteness constraint. However,
this may not be the optimal solution. Therefore, it is best to have
a model for the correlation between the spaces spanned by the
columns of and . This problem is best solved if we assume
that the observations were obtained by passing white noise
though a filter defined by a functional form with free param-
eters. Then, the entries in the covariance matrix become a func-
tion of these free parameters. It is better to place this structure
on the hypercovariance matrix, rather than on . This is
because if a structure is placed at the primary level, then any
deviation from the assumed structure during the estimation pro-
cedure will result in serious errors [11], while placing the struc-
ture on a secondary level induces more flexibility and reduces
the total number of parameters that need to be estimated. This
is discussed in the next section along with the hyperparameter
estimation.

III. CORRELATION STRUCTURE AND

HYPERPARAMETER ESTIMATION

A. Introduction

In this section, we discuss an approach to estimating the hy-
percovariance matrix and other hyperparameters by specifying
a correlation structure on the hypercovariance matrix (this
is the hypercovariance matrix expressed in space).
By looking at the noise model in (25), it is clear that the obser-
vations provide only samples from the signal space plus the
noise proportional to the correlation between the spaces spanned
by the columns of the matrices and . In other words, we do
not have direct observations of , but only through . There-
fore, we need to, somehow, estimate the covariance matrix
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in the space spanned by the columns of the matrix (noise
space), from the observations . This estimation procedure be-
comes tricky if we do not have a model for the correlation be-
tween the space spanned by the columns of and that spanned
by the columns of , as there exist several choices for the ma-
trices , , and so that one can satisfy the
positive definiteness constraint on the covariance matrix, .
This may not be an optimal choice.

B. Correlation Structure

Our problem is best solved if we assume that the observa-
tions were obtained by passing white noise through a filter

defined by a functional form with free parameters. Associ-
ated with any covariance matrix is a filter . If white noise
is put through the filter , the resulting colored noise signal will
have covariance matrix directly computable in closed form de-
pending on the values of the components of . Now, suppose
that we consider a class of parametric filters, where the number
of parameters of the filter is substantially less than the dimen-
sion of . In this case, is a matrix each of whose entries is a
function of the parameters of the filter . As discussed earlier,
any requisite structure is placed on the hypercovariance matrix

, instead of on the matrix , as it offers flexibility in esti-
mating , by allowing us to waver from the assumed structure
secondary level when estimating the primary level variables.

To model the correlation, we assume our observations to be
coming from a th order moving average process (MA), in-
dexed by , and defined by

(38)

where is the white noise process with and
.

In the current problem at hand, and set
so that we make all the samples correlated with one

another. We use to denote the correlation term and to denote
the covariance term.

The condition on the covariances implies that the co-
variance (and, hence, the correlation) matrix of the vector

has the form

...
...

...
. . .

...

(39)

wherein the generic element in the th position is
, the covariance of and .

We have

(40)

where and .
The correlation coefficient is computed as

(41)

and is elaborated into

, and

(42)
In general, a process like this is normalized by setting either

or . We make the choice of and estimate
the remaining parameters. We call
as our set of hyperparameters that are to be estimated. Now, the
problem is to estimate the hyperparameters given the data
under the constraints that

for
(43)

The first two equations give the element level constraints on the
hypercovariance matrix and the rest of the equations provide the
higher or matrix-level constraints.

In the following sections, we derive an expectation maxi-
mization algorithm for estimating the hyperparameters . In
this process, we derive the much needed joint density of data

, and , , , and the joint posterior density of
, , given data . This also serves to illustrate

that the objective function derived in earlier sections by starting
with data and then transforming the objective function to the
space spanned by the columns of is exactly the same
as if we derived the objective function by first transforming the
data to the space spanned by the columns of as and
then worked directly in this space. Directly working in the space
spanned by the columns of leads to the result in a more
straight forward manner.

C. Posterior Density of , and

In this section, we derive an expression for the joint posterior
density of , , and given the data and . In this treat-
ment, we approximate by its estimate given by [rewritten
from (27)]

(44)

Theorem 3 (Joint Posterior Density of , and ): Given

see Theorem 7 (45)

(46)

(47)

(48)

(49)

is assumed to be uniform and

it is independent of (50)

Then, the joint posterior density of is given by

(51)
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where

(52)

(53)

(54)

Proof: For the proof, see Appendix VI

D. Hyperparameter Estimation via the Expectation
Maximization Algorithm

In the previous section, we carried out the analysis under the
assumption that the hyperparameters of the distribu-
tion were known. This works well if we know the values of

a priori. However, in reality, we do not know these values.
One must resort to some form of estimation procedure. One
of the estimation procedures called the EM algorithm was pro-
posed by Dempster [35] for this purpose. The EM algorithm
works well when the probability density function for the in-
complete data (the covariance matrix, in our case) cannot be
computed easily. In that case, the conditional expectation of
the logarithm of the probability density function of the incom-
plete data given the observables and the current point estimate
of the parameters, is maximized to obtain the estimate of the
parameters for the next iteration. Recall that we placed a struc-
ture on in Section III-B based on the filter coefficients ;

. This translates into , , and being
functions of these parameters. In this section, we design an al-
gorithm using EM theory for estimating the hyperparameters,

simultaneously, from the observed
data, under the constraints imposed in (43). Additional exam-
ples of the usage of EM theory can be found in [36]–[38].

1) Background of EM Theory: Let be the vector of hidden
parameters. The vector is called the incomplete data. The

is called the complete data. Then, the joint density
function or the complete data density function is

(55)

This defines the complete data likelihood. This function is a
random variable since the missing information is unknown,
random and presumably governed by an underlying distribution.
Therefore, this function can be thought of as a function of
given that and are constants.

The EM algorithm then finds the expected value of the com-
plete data log-likelihood with respect to the un-
known data given the observed data and the current param-
eter estimate . Therefore, let us define

(56)

where is the current parameter estimate that is used to eval-
uate the expectation and are the parameters that we find to

maximize . The function is the marginal distribu-
tion of the unobserved data and is dependent on both the ob-
servations and the current parameter estimates. Convergence
properties of EM algorithm are well understood [35], [39]. Al-
gorithm III.1 describes the steps of the basic EM algorithm.

Algorithm III.1: Basic EM Algorithm

Once is defined the EM algo-
rithm has two steps, the evaluation of
expectation step or the E-step and the
maximization of expection step or the
M-step. These two steps of the algorithm
are described below.

E-step Given the data and the pa-
rameter estimates at iteration
, evaluate the expectation

(57)

Go to M-step.
M-step Given the expectation com-
puted in E-step, optimize
to find as

(58)

Set and go to E-step.

The E-step and M-step are carried out to
convergence.

There is another variation of the algorithm called the gener-
alized EM algorithm (GEM) in which, instead of maximizing

, we just find some such that

(59)

in the M-step. This because the EM algorithm in its original
form is guaranteed to increase the likelihood. We will use the
GEM algorithm in the hyperparameter estimation to be dis-
cussed in the next section. Recall that the estimates of the hyper-
parameters must satisfy the constraints given in (43). Therefore,
in the next section, we modify the GEM algorithm to incorpo-
rate these constraints during the M-step and we christen this ap-
proach GCEM algorithm.

2) Hyperparameter Estimation Using the GCEM Algo-
rithm: In this section, we derive for estimating the
hyperparameters defined by . Since

are the hyperparameters defining partitioned as , ,
and , we conveniently choose these as the hidden variables.
We remove the facet model coefficients by conditioning as

. This is valid as we are assuming to be a priori
uniform, and, therefore, there are no hyperparameters of to
be estimated. The data matrix is .

Note that , and are functions of
. The objective function ,
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the terms and are
independent of ; therefore, we can write it as

(60)

The above equation shows that we take expectations of the log-
arithms of the prior probability density functions of
with respect to the posterior density of (computed
using Theorem 3), respectively. The expectations are computed
using the properties of matrix normal, Wishart and distri-
butions given in Appendices I and II. The objective function to
be maximized is

(61)

where

(62)

(63)

(64)

(65)

(66)

(67)

Note that = .
In the GCEM algorithm, the M-step involves the constraints

that are to be satisfied by the hyperparameters. Therefore, we
implement generalized M-step by converting the problem to an
unconstrained one using SUMT to compute some which
satisfies the condition (59) with replaced by . This opti-
mization procedure is discussed in the next section.

IV. NONLINEAR PROGRAMMING

A. Introduction

In this section, we discuss the nonlinear programming
method incorporated in solving the maximization (minimiza-
tion) problem for estimating the hyperparameters. Further
details can be obtained from the excellent reference text [40].

B. Implementation of Generalized Constrained M-Step Using
SUMT

We use the interior point or barrier function methods pio-
neered by Fiacco and McCormick [41] in solving the problem at
hand. Since these methods involve minimization of a sequence
of unconstrained problems, they are referred to as SUMTs. In
the following sections, we develop the theory necessary for im-
plementing the nonlinear programming algorithm using barrier
functions to estimate the hyperparameters in the gener-
alized constrained M-step.

1) BFGS Method: Once the constrained optimization
problem is transformed into a sequence of unconstrained prob-
lems using barrier functions, we can use any unconstrained
optimization algorithm to solve this sequence of problems.
We use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm [42] for multidimensional minimization by replacing
the standard backtracking line search algorithm by that sug-
gested by Moré and Thuente [43], [44] which uses the gradient
information and guarantees sufficient function decrease at any
chosen step size.
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2) Barrier Function: Barrier function used to implement the
constraints given in (43) is a logarithmic barrier function defined
as

if Condition

otherwise
(68)

where Condition-1 is

(69)

Since the maximization of is the same as the min-
imization of (negative of the original objective
function), we can write the GCEM algorithm as given in Algo-
rithm IV.1.

Algorithm IV.1: GCEM Algorithm for the
Estimation of With M-Step Using SUMT

Let be a termination scalar, and
choose a point with .
Let , , let , and go to
E-step.

E-step Given the data and
the parameter estimates at it-
eration , evaluate the expectation

(70)

Go to M-step.
M-step Given the expectation com-
puted in E-step, minimize using
SUMT, the auxiliary function

(71)

to find some such that

(72)

If , stop, achieved
convergence. Otherwise, set

, and go to E-step.

C. Final Algorithm for Hyperparameter Estimation

In this section, we summarize the algorithmic steps required
to carry out the estimation of the hyperparameters, . Since the

GCEM algorithm converges to a local maximum (and global
maximum if only one maximum is present) when the objective
function is extremely nonlinear. One way to solve this problem
is to perform the optimization by restarting several times from
randomly selected initial values for the parameters being esti-
mated and finding the (possibly, local) maximum in each case.
Then, the parameter set that gives the maximum among the
many estimated local maxima is said to be the global maximum.
This is detailed in Algorithm IV.2. The next section discusses the
performance evaluation of the hyperparameter estimation and
the covariance matrix estimation algorithms and discuss the re-
sults.

Algorithm IV.2: Overall Algorithm for
Hyperparameter Estimation
1: for to in incre-
ments of 1 do

2: Random Initialization that is
strictly feasible.

3: Initialize .
4: Given , apply Algorithm IV.1 to
estimate the result via GCEM.

5: Save the function value ,
and the parameters .

6: Go to step 1.
7: end for
8: is the global

maximum of .

V. PERFORMANCE EVALUATION OF

HYPERPARAMETER ESTIMATION

In this section, we discuss the protocol used for performing
experiments and validating the estimates computed by the
GCEM algorithm discussed in the previous sections. We do this
indirectly by performing hypothesis testing of the estimated
facet model coefficients which are the functions of the esti-
mated population covariance matrix which is in turn a function
of the estimated hyperparameters. To do this, we first need a
way of computing the covariance matrix of the facet model
coefficients. This is described in the next section.

A. Uncertainty in the Estimated Facet Model Coefficients

In this section, we express the uncertainty in the estimated
facet model coefficients in terms of the input perturbation de-
scribed in terms of the noise covariance matrix . From (20),
it is clear that is distributed a posteriori, with mean (the
true unperturbed value) and the covariance matrix . This is
illustrated in this section.

Theorem 4 (Mean and Covariance of the Estimate of
): Given that an estimate of is given by the (20), the

mean and covariance matrix of the estimate , respectively, are

(73)

Proof: For the proof, see Appendix VII.
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B. Verification Through Hypothesis Testing

The approach we take in testing that the software algorithm
is producing the right answers is to test the statistical prop-
erties of the answers. In other words, we can statistically test
whether the statistical properties of the answers obtained are
similar the statistical properties we expect. These expectations
involve whether the mean of the computed estimates is suffi-
ciently close to the population mean and whether the estimated
covariance matrix of the estimates is sufficiently close to the
population covariance matrix or both. In our tests, we test to
see if the mean of the estimates of the facet model coefficients
is close to the assumed mean of the population from which the
facet model coefficients arose. We assume that we know the co-
variance matrix of the facet model coefficients. Using the closed
form expression, given by (73), we can compute the expected
covariance matrix of the facet model coefficients using the as-
sumed true noise covariance matrix of the data. In doing this,
we perform several monte carlo type experiments and test our
hypothesis about the outcome. For more details on hypothesis
testing one may consult [45] and [46].

1) Hypothesis Testing: We want to test the hypothesis that
called the null hypothesis against the alterna-

tive hypothesis, with the covariance matrix
is assumed known and fixed at . To test this hypothesis a
general method is as follows: a significance level, is selected.
When the test is run, a test statistic, say , is computed. This test
statistic is typically chosen so that in the case that the hypothesis
is true, the test statistic will tend to have its values, distributed
around zero, in accordance with a known distribution. If the test
statistic has a value, say, higher than a given , we reject the
hypothesis that the computed estimated has statistically behaved
as we expected. If we do not reject this hypothesis, it is, in ef-
fect, accepting the null hypothesis. The value is chosen so
that the probability that we reject the hypothesis, given that the
hypothesis is true is less than the significance level .

We set up an experiment in which we know what the correct
answer for the no noise ideal case would be. We generate the
perturbed data by adding a normally distributed vector from a
population having a zero mean and a given covariance matrix

, according to our noise model . By using
(73), we derive the covariance matrix of the estimates of

from . Using the perturbed data, we run our noise covari-
ance matrix estimation procedure and compute the estimates of

. If we repeat this experiment many times by just changing
the perturbed realizations and leaving everything else the same,
the experiment produces estimates that will come
from a normal population having mean , the correct answer
for the ideal no noise case, and the covariance matrix . Now,
we want to test the hypothesis that the observations
come from a normal distribution with mean with known co-
variance matrix .

Define the test statistic, where
. Distribution under null hypothesis is

Chi-squared [45] given by where is the dimension
of the vector . The distribution under the alternative hypoth-
esis is a noncentral Chi-squared and is given by where

is the noncentrality parameter.

2) Experiments: We performed the experiment several
times for different known values of , and different values
of noise covariance matrices . We chose the significance
level . We choose an and a , and we generated

perturbed realizations for each run of the al-
gorithm. We performed 250 such runs with this combination
of and . We then repeated the experiments for different
combinations of and and at each run of the algorithm
we performed the hypothesis testing. For noise estimation we
chose a neighborhood size of 5 5, resulting in an observation
vector size . The covariance matrix is of size 25

25. The DOP basis in this neighborhood has a total of 25
coefficients. We use a fourth order DOP to represent the signal
space. That is, the first 15 coefficients are used to represent
the signal space. These 15 coefficients constitute the vector .
The remaining ten coefficients are used to represent the noise
space. We do not write down the true noise covariance matrix

here, due to space constraints. Known noise covariance
matrix is obtained as follows: first, a hyperparameter vector
is generated at random, so that each component is uniformly
distributed. For the test described here, we generated to be
uniformly distributed in [0,1000] and let it be denoted by .
The remaining 25 parameters (correlation filter coefficients)
are generated so that each component is uniformly distributed
in [ 10,10]. Given the hyperparameter vector, we create the
hypercovariance matrix which is premultiplied by
and post-multiplied by its transpose to get . We derive
a random sample from an distribution with number of
degrees of freedom parameter and scale matrix . This
random sample constitutes our true covariance matrix . This
is valid because the distribution in the form that we
used exactly corresponds to distribution. The known mean
vector is chosen at random so that each of its components is
sampled uniformly from the interval [ 100 100]. We generate
noise sample vectors from a Gaussian distribution with zero
mean and covariance matrix and add it to to generate
perturbed input vectors . Results from the first 50 sample
experiments are discussed here for brevity. Fig. 2(a) shows the
p-values plotted against the experiment number. The horizontal
line shows the significance level chosen for the
experiment. All the points that fell below this line indicate a
failure of the test. Fig. 2(b) shows the test statistic plotted
against the experiment number.

VI. APPLICATIONS

As an application of the noise covariance estimation proce-
dure, we designed a new ridge operator that is based on the facet
model. The ridge operator uses the integral of the second direc-
tional derivative of the facet model in estimating the optimal
ridge direction. Once the ridge direction is found it is easy to
label a pixel to be a ridge or not, using the first and second direc-
tional derivatives. The ridge operator is abbreviated as ISDDRO.
The ISDDRO operator is designed to work both under addi-
tive colored noise as well as white noise assumptions. Under
colored noise assumption, we used the noise covariance ma-
trix estimation procedure discussed in this paper to estimate the
facet model coefficients which are then used in ridge detection.
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Fig. 2. Hypothesis testing. (a) Plot of p-value. (b) Plot of test statistic, �.

The results of this application are reported in other papers [32],
[47]. We evaluated the ridge detectors based on the ridge orien-
tation estimate. The mean orientation bias which is the differ-
ence between the sample mean of the estimates and true orien-
tation, and the orientation standard deviation which is the devi-
ation of the estimates from their sample mean are chosen as the
objective measures of performance. To summarize the results
from the said references, using the chosen performance mea-
sures, ISDDRO operator that uses the colored noise assumption
(ISDDRO-CN) displays superior noise sensitivity characteris-
tics as compared to the same operator under white noise as-
sumption (ISDDRO-WN) and both versions out performed the
most competing operator MLSEC [48]. In fact, ISDDRO under
colored noise assumption performs very well under high noise
conditions where the other two operators failed.

VII. CONCLUSION

In this paper, we derived the theory and formulated the
problem of noise covariance estimation as problem of min-
imizing an objective or criterion function in a Bayesian
framework. The problem formulation was such that we de-
composed the noise covariance matrix into its components in
the space spanned by the columns of the signal space basis
matrix and its complement space spanned by the columns
of the matrix orthonormal to . This facilitated theorizing
and proving that the same result for as in the case of white
noise is obtained when the signal space and its complement
space have no correlation between them, which implied that all
energy of the noise in the space spanned by the columns of
goes into the computed , but the noise in the space spanned
by the columns of will only influence the estimate of
to the extent that there is coupling between the signal space
and its complement space. We also derived an expression for

for the general case of correlation between the two spaces.
To reduce the dimensionality and to ease the optimization we
introduced a correlation model for the two spaces that was nec-
essary for the estimation of the population covariance matrix

and derived the constraints which the hyperparameters must
obey. We also derived a GCEM algorithm for the estimation
of the hyperparameters. We put forward a new way of imple-
menting the constrained M-step of the GCEM algorithm using
SUMT. We evaluated the performance of our noise covariance
matrix estimation algorithm using statistical hypothesis testing
and concluded that the algorithm performs as expected. We
also demonstrated, by designing a new ridge detector, that
we can design feature extractors with better noise sensitivity
characteristics if we assume additive colored noise perturbation
as compared to the additive white noise assumption.

APPENDIX I
MATRIX NORMAL DISTRIBUTION

In this section, we give only the major results about matrix
normal distribution. Further details can be found in [33], [45].

Proposition 1 (Matrix Normal Distribution): A
random matrix is said to have the matrix normal distribution

, if it has the joint density

(74)

is the covariance matrix within each column, is the covari-
ance matrix between columns and is the mean matrix.

Proposition 2 (Matrix Normal Distrib., With i.i.d.
Columns): Let the normal random matrix be given in
its component form as, , where is
a column vector. Let be an element of and

be an element of . If are independent, then
, where is an identity matrix. Therefore,

and the density function is given by

(75)
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which is equivalent to

(76)

where are the column vectors of the mean matrix .
Proposition 3 (Properties): The proposition states some

properties of matrix normal distribution.

• iff .
• , , and

.
• , and .
• For any matrices and ,

.
where is the variance of , and is the vector
resulting by stacking up one column of the matrix on top of
another.

APPENDIX II
WISHART AND INVERTED WISHART DISTRIBUTIONS

In this section, we present a summary of results on Wishart
and IW distributions. Details can be found in [33], [36], [45],
and the classic paper by J. Wishart [49]–[51].

Proposition 4 (Wishart Distribution): A random ma-
trix has a Wishart distribution , if its joint den-
sity has the form

(77)
where is the number of degrees of freedom, is
a multidimensional Gamma function given by,

.
Proposition 5 ( Distribution): A matrix has an

distribution , if it has the density function
of the following form:

(78)

where is the parameter of the distribution which is chosen
because it is invariant under change of dimension [11], [33], and

and is a multidimensional gamma function
as defined in Proposition 4.

Proposition 6 (Properties): Some properties of the Wishart
and distributions are given below.

• iff .
• If , then , and

provided .
• If , then , and

.

• If , then,
, where

is the digamma function.
The following proposition states that the distribution is
closed under linear transformations.

Proposition 7 (Linear Transformation of ): Let
. Let be a given transformation matrix.

Then, .
Theorem 5 (Orthonormal Transformation of ): Let

denote a matrix variate distribution. Let be an or-
thonormal transformation matrix. Then, .

Proof: The proof of this theorem is self evident as the de-
terminant of the Jacobian matrix , since

is an orthonormal matrix with unity determinant.

APPENDIX III
GENERALIZED INVERTED WISHART DISTRIBUTION

In this section, we discuss the distribution introduced
by Brown et al. [19].

Let be a data matrix containing , -dimen-
sional independent observation vectors arranged in columns.
Then, according to Section I, .

Let the matrix be distributed as where is as
defined in Section II, and is the scale matrix.

Let be partitioned naturally as

(79)

Conformably, let the data matrix be partitioned as .
Let be partitioned conformably as

(80)

Using Bartlett [34] decomposition, we have

(81)

where and . Hence

(82)

where , and and
; ; ;

; .
Proposition 8 ( Distribution): Let . If
and have the conformable partitioning given in (79) and

(80), respectively, then in terms of its block partitions has a
model [19] given as

1) , is distributed independently of and
;

2) ;
3) .
It is clear that is the slope of the best linear predictor of

the observables based on the observables and is the
residual covariance matrix of the resulting prediction errors.
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Under the above assumptions is said to have the distri-
bution with parameter and the scale matrix . This is denoted
as . Under this notation, it is assumed that
and have the aforementioned partitioned structure. The
in the above form exactly corresponds to the standard
on the unpartitioned . We still use the term to refer to
this special case of just to differentiate this hierarchical
structure from the standard .

APPENDIX IV
OPTIMIZATION OF SCALAR FUNCTIONS OF MATRICES

In this section, we state and prove [45], the following the-
orem, which we use in this paper.

Theorem 6 (Maximum of a Scalar Function of a Matrix): If
is positive definite and is a constant, then the

maximum of

(83)

with respect to positive definite matrices exists, and occurs at

(84)

and has the value of
.
Proof: Let and . Then,

, and
, and

. Then, the function to be
maximized (with respect to the positive definite ) is

(85)

Let , where is lower triangular. Then, the maximum
of

(86)

occurs at , , , that is, at . Then,
.

APPENDIX V
CONDITIONAL DENSITY OF GIVEN

In this section, we derive the conditional density of given
. This is necessary for computing the joint posterior density

of and , , and given the data .
Theorem 7 (Conditional Density of Given ): If

(87)

and

(88)

(89)

then

(90)

where and .
Proof: Let us define the following linear transformations

of the observations:

(91)

(92)

We need to choose the transformation matrix such that
and are uncorrelated. This condition means that the

cross-correlation must be zero, i.e.,
, where and .

Substituting for and from (92) and (91), and their ex-
pectations just computed, we get
and . Now, using the fact
that and ,
we get and .
Now, (92) and (91) can be written in matrix form as

. Taking

expectations of this result, we get

(93)

Covariance matrix of is given by

(94)

We used the fact that and are uncorrelated. Consider the
term

(95)

Therefore

(96)
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where . Since uncorrelated normally
distributed random variables are also independent, the condi-
tional density of given (note that ) is same
as the marginal density of . Therefore, .
Given , we have

(97)

Note that is a constant in the conditional density of .
We have from (97) that

(98)

The covariance matrix of the conditional density is

(99)
Substituting for and from (97) and (98), respec-
tively, and using (93), (96), and (95) and simplifying, we get,

. Therefore, we can write

(100)

where .

APPENDIX VI
PROOF OF THEOREM 3

Proof: Joint density of and the data
is given by

(101)

Now, substituting the first exponential in above equation
becomes unity. Now, multiplying and dividing the (101) by

(102)

and rearranging, we get

(103)

where

(104)

(105)

Integrating the above equation, in turn, over , , and , the
first three terms yield unity as they are proper density functions
leaving only the last term as the result, given by

(106)

Dividing the joint density in (103) by the term in (106), we get
the result for the posterior density.

APPENDIX VII
PROOF OF THEOREM 4

Proof: Mean of the is given by

(107)

since , and . Therefore, is an
unbiased estimator of . Now, consider

(108)
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The covariance matrix of is

(109)

Substituting for from (108), using the fact that
, and simplifying, we get

(110)
We can express in space, by using the fact that

, we have

(111)

After substituting for from (111) into (110) and simplifying,
we get the covariance matrix of the estimated as

(112)

Note that, in the white noise case [52], due to the independence
of the spaces spanned by the columns of , and the columns of

, we have

(113)
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