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1) E : := z
2) : := a'
3) T : := T y
4) T : := y

Fig. 1. Grammar G.

Symbol
State I Y z ± P

1 1 '4 ' 1 2 3
2 1 a
3 t '3 -2

Legend: 'p = read/apply prod'n p
-p = apply prod'n p
p = go tc state p
a = accept

Fig. 2. SLR(1) parser table for G.
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State I y z S! T

1 '4 '1
2 1 '3

2 2

Fig. 3. Modified tables for G.

fied algorithm is applicable to parser tables produced by SLR,
LALR, or LR generating techniques, whereas Aho and Ull-
man's algorithm may be applied only to SLR and LR tech-
niques. Thus the algorithm presented here may be retrofitted
into practical parser generators such as Lalonde's LALR gen-
erator [9], and DeRemer's SLR generator [7]. Its implementa-
tion in an in-house LALR(1) system [11] was straightforward,
and through its use, the algorithm has been shown to be effec-
tive. For example, in the XPL grammar, there is a sequence of
unit productions

(expression):: =(logical factor) .... =(primary)
where (primary):: = (constant)

l (variable)
(constant):: = (string)

(number).
The maximum depth of the derivation tree is 9, and involves
11 productions. The algorithm applied to this sequence elimi-
nated 7 of the productions and reduced the depth of the deri-
vation tree to 4. The eliminated productions accounted for 34
percent of the total number of productions applied in the
parse of the XPL compiler [12] and included those for (pri-
mary) and (constant) above. The simplified algorithm would
thus make possible a significant savings in the total parse time
of the XPL compiler.

IV. CONCLUSION
A simple algorithm has been described for the partial elimi-

nation of unit productions. The algorithm may be used to ad-
vantage in currently available practical LR(1) parser genera-
tors with a minimum of installation effort.
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Fig. 4. Parser for G with two productions eliminated.
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A Storage Efficient Way to Implement the Discrete
Cosine Transform

ROBERT M. HARALICK

Abstract-Ahmed has shown that a discrete cosine transform can
be implemented by doing one double length fast Fourier transform
(FFT). In this correspondence, we show that the amount of work
can be cut to doing two single length FFT's.

Index Terms-Data compression, fast Fourier transform (FFT),
fast transform.

Ahmed et al. [1] introduced the discrete cosine transform as
one whose basis vectors approximate the eigenvectors of a cor-
relation matrix of a first-order Markov process. [This actually
is well known (Gray [2] and Shanmugam, [4]).] If to first-order
approximations, images are realizations of first-order Markov
properties; then this implies that the discrete cosine transform
is a better choice of transforms to use than the discrete Fourier
transform (DFT) in image transform coding compression work.
He also suggested a fast implementation of the discrete cosine
transform using the fast Fourier transform (FFT) on a data vector
whose length had been doubled by adding zeros. Schaming [3]
defines a related transform using the FFT on a data vector which
is doubled by appending its mirror image. In this correspondence
we illustrate how to implement the discrete cosine transform by
using the FFT on 2 data vectors, each of the original data se-
quence length. This is not only more economical storagewise, but

Manuscript received July 25, 1975; revised January 7, 1976. This work
was supportedbythe NationalScienceFoundation underGrantENG74-
18981.
The author is with the Remote Sensing Laboratory, University of

Kansas, Lawrence, KS 66045.

764



CORRESPONDENCE

it is also slightly more efficient computationally. Proofs of the
stated lemmas are direct and are, therefore, not illustrated.

Equations (1) and (2) give the discrete cosine transform pair
in a slightly different form than given by Ahmed.

sequence can be used to compute the inverse discrete cosine
transform of a given data sequence.
Lemma 3: Let CO,=-,CK-1 be real. Let

K-1 c7rn(2k + 1))
Cn = E Ck COS t 2 9}
2 K-1 /irn(2k + 1) co

Ck = K-E cn cos V 2 J K'K n=O LIK K

n = O,*...,K-1 (1)

k = O, * * ,K -1. (2)

In the first lemma, we illustrate how the FFT of an even data
sequence relates to the discrete cosine transform. The lemma says
that for the discrete cosine transform of the first half, the even
data sequence can be obtained by taking the FFT of the full data
sequence, all-pass filtering by eiwn/2K, and scaling by Y2. This
suggests an implementation of the discrete cosine transform by
doubling the K-length data sequence (appending its mirror
image) and using the FFT on the 2K-length data sequence to
obtain the discrete cosine transform.
Lemma 1: Let Xo0,,X2K-l be real and satisfy Xk = X2K-k-1.
Let

2K-1
Xn= E xke2jxnk12K

k=0

Then
£nejirn/2K K-1 c rn(2k + 1)

_= E Xk COS2 k=O 2K

Lemma 2 indicates that the FFT of a real even data sequence
of length 2K can be obtained by taking 2 FFT's of data sequences
of length K. Since two FFT's of order k require 2KlogK opera-
tions and one FFT of order 2K requires (2K)log(2K) operations,
there is a computational savings of 2K operations and a storage
saving of K memory locations using the two shorter FFT's in
place of the one longer FFT.
Lemma 2: Let Xo,-,-x2K-l be real and satisfy xk = X2K-1-k.
Let

Ck = Xk, k = 0, 1, - - K-1
dkD= XkefknKe k = O, K-1.

Define

2K-i
A

= Z xae2jirnk/2K
k=O
K-i

A= 2jrn/
k=0
K-i

in/dn= Y, dke2i'
k=0

Then

X2n = + e-2j7rn/K cn
X2n+1 = Yn + e jn(2n±i)/K9*

Putting Lemmas 1 and 2 together we summarize as follows:

7n/K =EK-i c r(2n)(2k + 1)
Re Ic6neJw/I = ZCk COS5

k=0 2K
K-i ir(2n + 1) (2k + 1)

Re tSneir(2n±1)I2KI = , k coEs
k=0 2K

A similar set of properties hold for the inverse discrete cosine
transform. Lemma 3 illustrates how an FFT on a double length

= e-j7rn/2K n = 0,* ,K- 1

= C2K-nej'xn/2K, n =K+ 1,--*, 2K- 1

= O, n=K.

Define
1 2K-i nk2Xk =- EL Xne-2irnk/2K
2K n=O

Then
2 K-1 irn(2k + 1) Co

2Xk =- Cn C-0
K n=O 2K K

It also turns out that the doubled data sequence required to FFT
has a property which makes it amenable to the FFT by using two
FFT's on original length sequences as stated in Lemma 4. This
allows a savings of 2K operations and a storage savings of K
memory locations.
Lemma 4: Let XO,---,X2K-1 satisfy x = X2K-n, n = 1,-,2K-

1 and XK = 0. Let

Cn = Xn, n = O, *-K- 1
a= Xne-jwn/K n ,* ,K-1.

Define
1 K-1-2jirnk/KCk =- Z, Cne2in/K n=O
1 K-i 2wnIdk =- E dke2jrnk/K
K n=O
12K-iK1 2jwnk/2KXk - x: ne2in/K

2K n=O

Then
A*

X2k = Re |Ck I-2C2K

X2k+ =Re id -I c2K
Putting Lemmas 3 and 4 together for a real data sequence, we

obtain

Ao 2 AK r2n(2k + 1)2ReICk 1--= Xn~COSK Kno= n 2K
c 2 A-ix ir(2n + 1)(2k + 1)2Reldk1--=- Xn,COS 2
K Kn=O

In summary, we have shown how to compute the discrete co-
sine transform or its inverse by using two FFT's on the original
length data sequence.
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