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Abstract-Photointerpreters employ a variety of implicit spatial models
to provide interpretations from remotely sensed aerial or satellite im-
agery. The process of making the implicit models explicit and the sub-
sequent use of the explicit models in computer processing is difficult.

In this paper one application is illustrated: how ridges and valleys can
be automatically interpreted from LANDSAT imagery of a mountain-
ous area and how a relative elevation terrain model can be constructed
from this interpretation. It is shown how an illumination model is be-
ing used to explain many of the features of a LANDSAT image. Finally,
it is shown how to examine valleys for the possible presence of streams
or rivers and it is shown how a spatial relational model can be set up
to make a final interpretation of the river drainage network.

I. INTRODUCTION
R EMOTE sensing practitioners are highly skilled in deriving

information from complicated geographical structures
represented on aerial photography despite the fact that they
may have great difficulty explaining their reasoning processes
[4]. Because humans have a great innate facility for extract-
ing information from visual shapes, forms, and textures, photo-
interpreters often do not devote much conscious thought to
their analyses of the detailed relationships between light and
dark that convey information about the content of a visual
scene. The reasoning process may be implemented through a
series of implicit steps that are not immediately obvious even
to those who conduct the interpretation. As a result, to
mechanize this process it is necessary to devote some effort
to constructing explicit definitions of many of the subtle (pos-
sibly vague) processes applied by a skilled photointerpreter as
he analyzes a scene. For a general survey, see [5] and [6] .
This paper describes initial work to formulate a relational

model for reasoning about the contents of a visual scene. This
work is being done in cooperation with a skilled photointer-
preter, and we are attempting to determine the primitives and
the relationships for one task domain-deducing the network
of streams and rivers represented by LANDSAT data. There
are two reasons for our choice" of this application area. First,
data are abundant, and they are available for familiar geo-
graphic regions. Second, despite the apparent triviality of the
problem, the reasoning required to reconstruct the drainage
network is in fact very complicated, in part because it requires
simultaneous analysis both at the detailed local level and at
very general global levels. Furthermore, reasoning about drain-
age systems requires a great deal of knowledge of geography
and physics that is not directly part of the relational mode.
This knowledge, for example, includes such facts as "water
runs downhill" and "in the morning, the sun is in the east".
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Fig. 1. Original LANDSAT scene.

Thus far, spatial relationships within a single spectral channel
have been examined, but the application of the additional in-
formation that may be conveyed in other spectral records has
not yet been attempted.
Work on the spatial reasoning problem was begun by assum-

ing that the necessary radiometric information could be derived
from edge information obtained by applying gradient-type
operators, provided the proper edge model was used. As work
progressed, it was determined that edges derived from region
boundaries were more reliable, and the work has progressed to
the point where mountain ridges and valleys are being extracted
with a reliability that is sufficient to permit concentrating ef-
forts on the formulation of a relational model.

II. STUDY AREA AND DATA
This research examines an area in southeastern West Virginia,

shown in Fig. 1. The six line striping is removed by computing
the histogram of every sixth line and then normalizing each
line in such a way that the resulting six histograms of every
sixth line are identical. This region is a portion of the Appa-
lachian Plateaus physiographic province, within the "unglaci-
ated Allegheny plateau" described by Thornbury [2]. In
general, this region is a thoroughly dissected plateau-like sur-
face. It receives 40 in of precipitation each year and, as de-
picted on topographic maps, has a moderate drainage density.
Drainage is through tributaries of the New (Kanawha) River,
which flows west into the Ohio drainage system.
The overall drainage pattern within this region is that of a

relatively large sinouous channel (the Gauley River) super-
imposed over the finer texture of a dentritic pattern formed
by first-, second-, and third-order streams. A number of the
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small first- or second-order streams flow directly into the large
channel. Thus the overall pattern is composed of a mixture of
many very small stream segments, many with very steep gradi-
ents, a prominent major channel with a relatively low gradient,
and relatively few stream segments of intermediate length and
gradient.
Throughout the area, flood plains (when present) are narrow

and tend to closely follow the course of the stream channel.
Valleys are narrow, with steep sides; the Gauley River, for ex-
ample, follows a valley that is typically 150 m deep but only
100 m wide. Uplands often consist only of ridge crests. Al-
though plateau-like upland regions are present, they are not
continuous or extensive. The area is forested with a dense
cover of deciduous trees (Kuchler's "mixed mesophytic for-
est"). Cleared areas for agriculture (chiefly pasture) tend to
follow the valleys of intermediate-sized streams. Settlements
are small and dispersed, usually positioned in valleys.
This region appears on the Charleston, West Virginia/Ohio

USGS 1:250 000 quadrangle (NJ 17-5). Our investigations in-
clude areas in Nicholas County, W. VA and neighboring coun-
ties; many of our examples are within the Gauley Bridge 7.5-m
USGS topographic quadrangle. This area was imaged by the
LANDSAT-I MSS on April 13, 1976 (scene id: 5360-14502;
path 18, row 34). This date reflects important qualities of the
scene. First, at this date the atmosphere was unusually clear-
there is no evidence of atmospheric scattering or degradation
of the data. Also, at this date in the spring most of the for-
ested areas are without leaves, especially at higher elevations.
Lower elevations have a cover of newly-emerged leaves and
grasses. Within a few weeks leaves will have emerged in vege-
tation throughout the entire region, but at this time in April,
there is a sharp spectral constrast between the vegetation cover
of the higher elevations and that of some of the valleys.
For the most part, it is not possible to directly observe the

drainage network of the LANDSAT data-instead the image
must be examined to interpret indirect manifestations of the
drainage system. Interpretation of this indirect evidence per-
mits the approximation of the major features of the drainage
pattern.
The data in band 7 provides a singularly good example. En-

ergy in this spectral region (0.8-1.1 gim) is largely free of at-
mospheric scattering, and shadows tend to be dark and clearly
defined. Water bodies absorb infrared radiation, so they ap-
pear as clearly delineated dark bodies on the band 7 image.
Living vegetation reflects strongly in this portion of the infra-
red, so areas of living, green vegetation will appear as bright
regions on band 7.
In this scene the solar beam illuminates the landscape from

the southeast (azimuth = 119 degrees) at an elevation of 45
degrees above the horizon. Four separate cases can be defined:

1) Slopes that face the illumination are highlighted, and are
recorded as bright areas on the image. Those that face the
northwest are in shadow and appear as dark or black regions.
Thus the overall pattern, greatly simplified, is one of alter-
nating bright and dark strips in regions where the topography
is oriented in a general perpendicular direction to the solar
beam. Contacts ("edges") between these light and dark strips
on the image correspond to ridges and valleys on the ground.

2) In this region the topography is very complex, so there
are numerous valleys and ridges that are oriented parallel to

the solar illumination. In these instances shadows are mini-
mized so the drainage course is visible on the image only if
the channel is wide enough to fill one or more MSS pixels.
Thus the course of a sinuous stream is visible on the image as
the edge between a light and dark area that is broken into
segments at irregular intervals. The breaks correspond to
changes in direction that bring the stream course parallel to
the solar beam.
3) Only the widest streams are wide enough to be directly

imaged. The Gauley River channel-some 100 m wide-is the
only instance in our area. On band 7 this river is represented
as a continuous chain of dark pixels of varying width. Where
the river flows at right angles to the solar beam, the river (and
its valley) is clearly depicted as a wide dark strip, often several
pixels wide, caused by the combined effects of shadow and
open channel. The brightly illuminated slope facing the sun
is also visible. However, where the channel is parallel to the
illumination, shadows are absent and the river is visible only
because the channel is wide enough to appear in its own right.
If the channel is not at least one pixel wide, there is a gap at
this point in the image representation of the channel.
4) A few streams on the image are portrayed as bright areas

on band 7. In these areas there is no shadowing due to the
width or orientation of the valley. The newly emerged leaves
of shrubs and grasses in pastures and meadows cause a bright
response in the infrared radiation of band 7. The strong re-
flection contrasts with the darker response of the upland for-
ests where leaves have not yet emerged.
This examination of the landscape and its image representa-

tion allows us to define some of the key characteristics of the
patterns we intend to interpret:

1) Some streams can be defined by the edge between bright
and dark patches on the image. However, some edges are also
ridges, so not all such edges correspond to streams. It will be
necessary, therefore, to be able to decide which edges corre-
spond to ridges and those that represent valleys.

2) Some of the larger rivers appear as continuous chains of
dark pixels.
3) Some of the smaller streams appear simply as short dark

strips of pixels.
4) Some of the valleys will be defined not by shadow, or

by the open water of a river channel, but by the bright infra-
red response of leaves on shrubs and grasses in nonforested
valleys.

5) For cases 1, 2, and 3 above, one must expect to encounter
gaps in the linear features. One must be prepared to extrapo-
late between the ends of segements to fill in these gaps.

III. A RELATIONAL MODEL

Before giving the algorithms by means of which information
from the LANDSAT test scene has been extracted, it is ap-
propriate to present the details of the relational model and to
show how it is applied to this particular problem.
There are numerous ways in which a relational model might

be formulated. One that we have considered involves parti-
tioning each connected valley and ridge system into a set of
line segments that contain no junctions or termination points
except at their ends. Each such segment is called a unit, and
associated with each one is a list of measured properties. The
goal of the reasoning process is to assign to each unit one of
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the following labels in such a way that no logical conflicts oc-
cur with the spatial knowledge database. The labels are:

1) Valley containing a stream;
2) Valley not containing a stream; and
3) Ridge.

The spatial knowledge database would consist of a set of re-
lations R of the form

((sI, P1 11 )5 *, (sn, Pn, In,)) r, N).
Each relation is a generic configuration r among n units with
particular properties and labels which are given the name, N.
More specifically, si, * ,sn are generic segments with prop-
erty lists P ,*, Pn and labels 1,* , n-. To see how these
relations are used, consider a small example of three units u1,
u2, and u3 on the image with respective property lists q1, q2,
and q3 that actually correspond to three segments that form a
stream junction. The reasoning system scans the relations R
until it finds one that satisfies the information that has been
observed. A relation is satisfied if there exists a correspondence
of units in the scene with segments in the relation such that
the corresponding units have the properties specified in the re-
lation and such that the units are in the spatial relationship, r.

In the case of the example, suppose that

((Si'i,1,p )(S25P2S1A S(3~P3l3) r,N)ER
is found that the image unit ul, corresponds with the generic
segment S2, u2 corresponds with sI, U3 corresponds with S3,
the properties in P2 are among the properties in list q1 of s1,
and likewise, the properties of P, are contained in q2, and p3
is contained in q3. Then if ul1, u2, and u3 have spatial rela-
tionship r, label 12 is a possible label of u I, 11 is a possible
label of u2, and 13 is a possible label of U3. Also, the name
N = junction is given to that particular configuration of u1, U2,
and U3. The variable r may simply be considered the name of
the procedure that determines whether or not ul, u2, and U3
are indeed in the N = junction relationship.
The goal of the reasoning process is to assign labels to units

in such a way that there is global consistency. Suppose, for
example, that a unit u enters into one relationship that sup-
ports the assignment of label 1 to u. If there are other valid
relationships involving u, all of them must support 1 as a label.
Otherwise 1 is removed as a candidate label for u. One of the
features of this process is the way which names are assigned
to relationships. Units in such relationships may themselves
be regarded as units that participate in higher level relation-
ships [3].
There are numerous properties that may be measured and

associated with each segment. These include:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Local texture;
Global texture;
Global curvature;
Length;
Number of segments incident at each end;
Endpoint separation;
Global orientation;
Local orientation at ends;
Contrast (or confidence);

10) Ridge or valley;
11) Width; and
12) Location of endpoints.
We are experimenting with the above properties but do not

know yet whether we have determined a suitable menu.

IV. SEGMENTATION
In this section the segmentation algorithm is described by

means of which valleys and ridges are extracted from the origi-
nal scene for inclusion in a database. This database stores line
segments, and for each line segment a list of properties is stored
by means of which the spatial reasoning algorithm marks
those valleys that are candidates for "streamhood" according
to the stored relations.
The picture elements of the test image in Fig. 1 have been

classified into the three classes shown in Fig. 2 by grey-level
thresholding. The dark regions in Fig. 2 are those pixels whose
grey values fall between the thresholds. Using global grey-level
thresholding to separate objects from background is a standard
image segmentation technique. Watanabe [7] used gradient
information to select the thresholds by analyzing the grey
levels of pixels on edges.
In our application, Watanabe's method is used iteratively.

First, a threshold is selected to split the original image into
subimages of dark regions and bright regions. Next, the same
method is applied to the image restricted to the previously
determined bright regions to produce subimages of bright re-
gions and very bright regions; this iterative segmentation tech-
nique is similar to that used by Ohlander [8]. The dark regions
are shadows or large bodies of water; the very bright regions
are vegetated areas as mentioned in Section II. The bright
regions are the bright sides of mountains if they come from
areas that do not have green vegetation.
Thresholding to separate bright from very bright pixels is

relatively successful because of the distribution of gray levels
in the test image. However, the distinction between bright and
dark picture elements is not clear and the regions that result
after thresholding require further processing (see p. 274 [9] ).
First the dark regions are obtained by setting a relatively low
threshold. Then, each 8-connected component (i.e., pixels
that are transitively connected through 8-neighbor adjacencies)
is assigned a unique region number. Next, each connected
component is enlarged slightly by analyzing each pixel directly
adjacent to the region boundary. Each such pixel is added
to the region if its intensity is slightly higher than the rela-
tively low threshold, and this is done in such a way that the
regions do not overlap. Even though regions may touch one
another after the growing process, they still have different re-
gion numbers and are, therefore, distinct regions. However,
since they do touch each other, the distinct regions are hard
to display in a black and white photo. Fig. 3 is an attempt to
show the different regions by encoding them with different
intensities.
The boundaries of each of the closed regions just determined

are easy to extract by using a boundary tracker that follows
the perimeter of a labeled region. Since most of the trees in
this image are unfoliated, the strongest region boundaries are
shadow boundaries rather than tonal, and the strongest bound-
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(a)

(b)

(c))
Fig. 2. Threshold image showing (a) dark, (b) bright, and (c) very

bright regions in black.

Fig. 3. Intensity coded regions.

aries are those at the extremes of steep slopes oriented normal
to the sun direction. Since the sun illumination is predomi-
nantly east-west, a boundary that is dark on the left and bright
on the right will correspond to a ridge, and the reverse will
correspond to a valley. For east-west region boundaries, the

Fig. 4. Ridge and valley maps.

illumination model fails. Resultant gaps must be filled in by
the spatial reasoning system or by using additional informa-
tion such as reflectance from wide streams. Where east-west
boundaries exist, some are ridges and some are valleys. We
have labeled all such segments as valleys unless they are adja-
cent to ridges on both ends. The valleys, of course, are of
interest because the streams and rivers will flow through some
of them. Fig. 4 shows the ridge and valley maps for the test
image, and Fig. 5 shows the stream map obtained by analysis
of corresponding topographic maps.
We do not regard the initial interpretations in Fig. 4 as satis-

factory representations of valleys and ridges. They were ob-
tained by a simplified process and contain some misinterpreta-
tions. In the first pass (complete scan through all the pixels
in the image) of the labeling process, we label all the north-
south boundaries between two pixels which belong to dif-
ferent regions. In the second pass, we label the east-west
boundaries. The processing in the first pass is extremely local,
and the result is noisy. Currently, we are establishing the data-
base of line segments as indicated at the begining of this sec-
tion. From this database, we will create a better version of
the ridge-valley map using the relational model.
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Fig. 5. Stream map.
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Fig. 6. Digital Laplacian mask.

V. FROM RIDGES AND VALLEYS TO A TERRAIN MODEL

Once the ridges and valleys have been identified, it is pos-
sible to construct a digital terrain model by solving a two-
dimensional boundary value problem. To do this we associate
boundary values with each valley and ridge pixel. The valley
pixels get a relative elevation of 0 and the ridge pixels get a

relative elevation of 100. We then seek a surface having the
given boundary values and whose Laplacian is eveywhere 0.
That is, we want a surface having ridges and valleys at the
places specified by our ridge-valley map, but with constant
slopes between adjacent ridges and valleys. A digital Laplacian
mask is shown in Fig. 6.
The terrain model we wish to determine has elevation values

which satisfy that the application of the digital Laplacian mask
to each 3 X 3 neighborhood of the image yields 0.
An iterative procedure accomplishes the required solution

to the boundary value problem. For the initial step, those
pixels which have not been marked ridge or valley are given
the intermediate value 50. In each iteration, all the pixels
of the current terrain model are scanned in a left to right, top
to bottom manner. If the pixel is a ridge or valley pixel nothing
is done. If the pixel is not a ridge and not a valley, then its
value is replaced with the average of its north, south, east, and
west neighbors. The replacement is done recursively using the
most recent neighbor values.

Fig. 7. Relative terrain model.

Fig. 7 illustrates the relative terrain model constructed from
the ridge and valley images of Fig. 4. Each gray tone value
represents the relative elevation value of the center of that
pixel. The realism is surprisingly good. The fact that the ter-
rain model is only relative because true elevations of the ridges
and valleys were not used limits the application of the terrain
model. However, the fact that the terrain model is precisely
registered to the LANDSAT scene is an important advantage.

VI. AN ILLUMINATION MODEL

Illumination is a most important factor in a LANDSAT im-
age of complex terrain. In order to determine how much of
the LANDSAT scene is due to the position of the sun, a sim-
ple illumination scheme was applied to the terrain model im-
age shown in Fig. 7. This simulation illuminates the terrain
with parallel beams of some imaginary point radiation source
from a specified angle and direction. A two-step procedure
was used to implement this illumination model.
In the first step, calculations are done for each pixel in the

image to determine if the straight line from that pixel to the
radiation source is blocked, thus putting the pixel in shadow.
In this manner each pixel is marked either "lit" or "shaded."
This step considers only the relative elevation and location of
each pixel and the position of the point source.
The second step in implementing the illumination model

uses the information from the first step and additionally con-
siders the 3-D orientation of each pixel and the strength of
the radiation source. The gray tone value of each pixel is
computed as the product of the strength of the incoming radi-
ation, the cosine of the angle between the vector normal to
the pixel and the direction vector of the point source, and
the surface reflection coefficient of the pixel. Diffuse radia-
tion (sky light), which is light energy that falls on surface ele-
ments after being reflected one or more times by the atmo-
sphere, is represented by adding a constant illumination value
to each pixel. For the simplest case the reflection coefficient
is assumed to be the same for all pixels. Fig. 8 shows a hemi-
sphere sitting on a flat plane illuminated by this model.
The terrain image of Fig. 7 was illuminated using this model

from the same direction as the sun at the time the LANDSAT
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Fig. 8. Illuminated hemisphere.

data was gathered (azimuth = 119 degrees from north, eleva-
tion = 45 degrees above the horizon). By comparing the model
results with the image of Fig. 1 it was concluded that the il-
lumination model was still too simple. Because of the geom-
etry and physical properties of surfaces, back lighting is also
an important consideration. Back lighting is light that falls
on one surface after being reflected from another surface,
and to create these back lighting effects, a secondary point
source of less intensity with a direction opposite that of the
primary source (azimuth = 299 degrees from north, elevation =
45 degrees above the horizon) was added.
Because the source intensity parameter value for this illumi-

nation model was chosen arbitrarily, the pixel values of the
image that is produced are not in the same range as the pixel
values in the original LANDSAT image. This makes direct
comparison of the two images difficult. To facilitate this com-
parison, the gray tone values of the two images are similarly
quantized. For each pixel location, a value pair (pixel value
in illumination image, pixel value in LANDSAT image) exists.
Using each of these value pairs as points in two-space, a line
of best fit is computed so that the sum of the squares of the
distance of each of these points from the line is minimized.
The value of each pixel in the illumination model image is
now changed by replacing the old value by the function value
of this line of best fit evaluated at the old value. This method
maps the values of the illumination model image into the same
range of values as the LANDSAT image. The resulting image
is shown in Fig. 9.

It can be seen that the illumination model accounts for
many of the features found in the LANDSAT scene with the
exception of areas of very high or very low reflectance proper-
ties (the vegetation areas and streams are noted in Section II).
Subtracting the illuminated image from the LANDSAT image
produces an image which can be thresholded to extract pixels
where large differences occur between the model and the real
world. By assigning appropriate reflection coefficients for
these pixels and applying the illumination model again, the
differences between the LANDSAT image and the model have
been reduced (Fig. 10).
After eliminating the areas with exceptional reflectance

Fig. 9. Illumination model image.

Fig. 10. Differences between LANDSAT image and illumination model
image: Bright pixels mark large differences.

properties, other discrepancies between the LANDSAT scene
and the illumination model image may be due to the assump-
tion of uniform elevation of all ridges and uniform depth of all
valleys of the terrain model mentioned in Section V. Work is
continuing to determine more precisely what weight these
factors may have.

VII. SEMANTICS OF STREAM NETWORKS

In this section we attempt to enumerate the properties of
well-formed stream networks by means of which we can de-
duce whether a valley segment in the valley database is a valid
stream segment and whether a gap b)etween several valley seg-
ments ought to be filled on the basis of contextual informa-
tion and labeled stream segments. The following list enumer-
ates what we regard as the most important criteria for forming
valid stream networks:
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a) completed pattern is dendritic in form
b) completed network has no enclosed areas (i.e., stream

segments are connected only at the downstream ends)
c) completed network is without gaps (i.e., all segments are

connected; no isolated segments)
d) unconnected ends of the smallest tributaries point to-

wards ridgelines
e) tributaries form acute angles with main streams, right

angles possible; obtuse angles unlikely
f) streams and valleys cannot cross ridgelines
g) ridgelines cannot cross streams
h) junctions of 2, 3, or 4 segments possible
i) small tributaries to large streams typically occur parallel

or nearly parallel to each other, and often join the larger
stream at a right angle

j) "larger" streams may be recognized by a larger radius of
curvature

k) "smaller streams may be recognizable by a smaller radius
of curvature

1) each stream segment can be labeled with a flow direction
such that each stream junction has exactly one outward
flowing system

Gaps in the stream data may not be filled if
a) the new link will cross a ridge
b) the new link will create a network with a closed loop
c) the new link will create a sharp angle in a large stream
d) the new link connects the unconnected ends of first

order streams (see above)
e) the new link forms a tributary entering a larger stream

at an obtuse angle
The translation of these stream semantics into relational

form may require a substantial amount of work since R may
be quite large. It is important to ensure that no relations de-
scribing permissible configurations are omitted. It is also
possible that the relational form may turn out to be unnatural
for people to use. One reason for this may be that each rela-
tion in R admits possibilities rather than excludes them. The
specification of exclusion relations may considerably simplify
the task of specifying problem knowledge, since depending
upon the relations, fewer specifications may be required.
Work is continuing to implement the reasoning system. Next
the results obtained by the front-end ridge-valley extraction
system are described.

VIII. PERFORMANCE
Errors can be categorized as errors of omission (streams of

ridges present on the ground but not identified on the inter-
pretation) or errors of commission (identification of a stream
or a ridge where in fact none are present on the ground). For
this interpretation we detect no instances of identification of
streams or ridges or vice versa, though the possibility of that
happening must always be considered.
The most noticeable errors of commission are small seg-

menqts, often spatially isolated, that apparently do not corre-
spond to real streams or ridges. Some of these segments may
in fact be "real," but they cannot be recognized as such from
the topographic maps. These segments tend to occur as short

Fig. 11. Valley map with overlay stream map sketch.

segments of stream or ridge not connected to the larger more
continuous networks. Those segments identified as streams
often are located in the far upstream region of the drainage
basin, and may possibly be the result of the fine-textured,
complex topography and shadowing present in this part of the
area. To the human interpreter the lengths, positions, and
orientations of these segments permit a fairly clear separation
of these segments from the major drainage features, although
some of these errors could easily be interpreted as real features.
Another error that occurs less frequently but is more serious

are the errors of commission that bridge the gaps between the
unconnected tips of the smallest tributaries in separate drain-
age basins. This kind of error is small in extent but is very
important as it can completely confuse the interpretation of
the drainage network. Errors 1-3 in Fig. 11 demonstrate these
kinds of errors.

If this kind of error is present, streams join at both upstream
and downstream ends. If only a small local area is considered,
it may be very difficult to detect such errors using only the
information present in the interpretation. If a much larger
area is examined, it may be possible to detect and resolve these
errors if they are few in number and the remainder of the net-
work has been interpreted correctly.
The most important errors of omission are missing segments

in the stream, often caused by changes in the orientation of a
stream or valley that brings its course parallel to the solar
beam, (5-7 in Fig. 11) thereby eliminating or diminishing the
shadows used for the interpretations. In other instances these
gaps have no immediately obvious cause (4 in Fig. 11). Usu-
ally these errors are readily recognizable (upon manual inspec-
tion of the product of the machine interpretation) because the
segments on both sides of the gap are often fairly long and
continuous, and it seems clear from examination of the global
pattern that these gaps should be filled in to form a continu-
ous network.
When the ground truth stream map is superimposed on the

valley map as shown in Fig. 11, the results look very encourag-
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ing. Indeed, it would be a considerable effort for a skilled
photointerpreter to do this well. However, there are a number
of problems. One of the most serious is that there are a large
number of dense clusters of marked picture elements that
make the valley connections ambiguous. Since there are also
numerous short gaps, the number of hypothesized valley seg-
ments will tend to be large.
The lack of reliability of the data is another serious problem.

Not only may the valley-ridge labels be wrong, but any of the
properties may be incorrect. For example, it is very difficult
to measure the incidence angle of a tributary with a main
stream, and the reasoning process will have to be modified to
be tolerant of measurements that are totally wrong. There is
also a possibility that it may not be possible to determine ex-
actly where an error has been made. Error I in Fig. 11 results
because an east-west ridge that is completely invisible in the
imagery blocks an apparently continuous valley. While this
error is easy to detect, its cause may be elusive because of the
missing data.
Because of the subtlety of some of the deductions that are

being made, image imperfections may also cause problems.
In several instances the ridge-valley maps have been influenced
by false intensity shifts between adjacent scan lines. Neverthe-
less, we feel that it will be possible to achieve a significant de-
gree of automation of the spatial reasoning task in this appli-
cation area, and we are continuing our work to refine the
relational reasoning model.
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