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Arrangements, Homomorphisms, and
Discrete Relaxation

ROBERT M. HARALICK, SENIOR MEMBER, IEEE, AND JESSE S. KARTUS

Abstract We show how homomorphisms between arrangements,
which are labeled N-ary relations, are the natural solutions to some
problems requiring the integration of low-level and high-level infor-
mation. Examples are given for problems in point matching, graph
isomorphism, image matching, scene labeling, and spectral temporal
classification of remotely sensed agricultural data. We develop
characterization and representation theorems for N-ary relation
homomorphisms, and we develop an algorithm consisting of a
discrete relaxation method combined with a depth-first search to find
such homomorphisms.

I. INTRODUCTION

T HE USUAL procedure we follow when we wish to
analyze a complex structure is to divide up the world

into simple and separate atomic units, to observe or measure
some basic properties of these units, and then to use the
measured properties to name or describe the pattern among
the units. Although this protocol is effective and powerful for
simple structures, it has inherent problems for complex
structures; namely, the measured units may not be separate
and independent, the low level measurements may be noisy
since they are made locally without the benefit ofany system
integration, the units themselves may have been chosen
more for the convenience of the measurement-taking
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process than for their importance in analyzing the structure
in which we are really interested, and finally, we might not
have an effective mathematics which facilitates the graceful
incorporation of low-level information into high-level infor-
mation. In this paper we describe how the concept of
arrangements is applicable to some of these problems. We
show how arrangements and arrangement homomorphisms
provide a natural perspective and method by which infor-
mation can be compared and by which known a priori
information can be used gracefully in integrating micro and
macro knowledge of a structure. We illustrate that a variety
of particular problems constitute the same mathematical/
combinatorial problem, and we give an algorithm to solve
the general mathematical problem.

Section II defines the arrangement concept. Section III
discusses the similarity between order-N arrangements and
defines arrangement homomorphisms. Section IV gives
some examples of problems which require the finding of
homomorphisms from one arrangement to another. Section
V gives an algorithm for finding arrangement homomor-
phisms using the winnowing relaxation process combined
with a depth-first search. The Appendix gives the formal
statements and proofs for the assertions made in Section V.

II. THE ARRANGEMENT

Let S = tsl, ,S.,S be a set of K possible descriptions of
measurements that could be given to a unit. Each unit is
given none, one, or more measurement descriptions. For
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example, in an image interpretation problem, the units could
be resolution cells, and the set S could be the possible
directions ofan edge passing through the resolution cell. The
units could also be image segments, and the set S could
consist of quantitative or qualitative measures of the shapes
of the areal segments. In an urban geographical problem, the
units might be neighborhoods, and the set S could consist of
different land use types. In an abstract mathematical situa-
tion, the units could be points in an N-dimensional
Euclidean space, and the set S could consist of the ordered
N-tuple of point coordinates.

In each one ofthese examples, as in general, the measuring
instrument or sensor provides a description, value, or label
to each unit based only on the unit itselfand not on the unit's
relationship to other units. Hence, the simplicity of the
independence of the atomic units is maintained for this first
low-level measurement-taking process.

In order to determine the pattern among the units.
descriptions of related units must be considered together.
We examine relevant combinations of related units taken N
at a time and associate a set of possible interpretations with
each combination. This constitutes a second-level naming
process which depends on a given specified relation among
the units. The language used in this process can be different
from the values or phenomenological language used in the
initial measurement-taking stage. The number N indicates
the order of complexity we are willing to examine. For
example, suppose we wish to examine units which are points
in some inner product space up to a degree of complexity
equal to three. We could use the point coordinates values for
the first-level measurement description and then use the
three angles of a triangle determined by any three points as
the second-level names.

There are some differences between the first-level measur-
ing process and the second-level describing process. In the
first level, each unit is considered by itself and measured
independently of other units around it. In the second-level
describing process, units are considered in specially related
groups of size N. Not necessarily all groups or combinations
of size N need be considered, only those considered relevant
by the investigator. In the first-level describing process, each
unit is given none, one, or more descriptions. In the second-
level describing process, any relevant group of units can be
given one or more interpretations, and the language of the
interpretations can be entirely different from the "sense-
data" language of the initial description.
The second-level interpreting process specifies an

(N + 1)-ary relation F. If S is the first-level set of descrip-
tions and D is the second-level set ofinterpretations, then we
may define the arrangement F as a subset of the Cartesian
product of S, N times, with the Cartesian product of D:

F S x S x ... x S x D.

N times

An Nth-order arrangement is really a generalization of
some familiar mathematical structures. For example, a
binary relation is a second-order arrangement with all pairs

named the same. A labeled graph is a second-order arrange-
ment with the ordered pairs having a variety of labels. An
automaton is also a second-order arrangement. An autom-
ata 1 is usually defined as a triple (S, X, 6) where
6 c S x X x S. When 6 is a function from S x Y into S, the
automaton is completely specified and deterministic. When
6 is a relation, the automaton may be incompletely specified
or nondeterministic. By interchanging the second two com-
ponents of the relation 6 we have 6 c S x S x X, and we see
that the automaton v is a second-order arrangement. The
difference between the general automaton (incompletely
specified and nondeterministic) and the second-order ar-
rangement is that a sequential interpretation is put on the
labeled order pairs of the automaton; each labeled ordered
pair is the transition of a state to another state under a
particular input. In the second-order arrangement, each
ordered pair just has a name, there is no from-to interpreta-
tion. In the third-order arrangement, there can be no
from-to interpretation, and the name is just a name for the
triple.

Barrow, Ambler, and Burstall [1] suggest using labeled
N-ary relations for organizing structural information in
image analysis. The parametrized structural representation
of Hayes-Roth [4] is easily translated to a set of arrange-
ments. The relational data base [2] consisting of relational
tables is closely related to the arrangement structure. The
MSYS system for scene analysis at Stanford Research
Institute uses a representation scheme related to the ar-
rangement structure [6]. Minsky [10] seems to hint at an
arrangement structure in discussing "frames." Hanson and
Riseman's [11] region segment endpoint relations and their
frames, objects, and surface relations can be related to
arrangements.

III. THE SIMILARITY BETWEEN Two
ORDER-N ARRANGEMENTS

Consider an order-N arrangement as a pattern. To clas-
sify order-N arrangements from the pattern recognition
point of view entails finding a decision rule which will assign
one of several category labels to an order-N arrangement
based on the similarity the order-N arrangement has with
the category prototype arrangement. In parametric pattern
recognition, it is common to begin in a metric space and base
the similarity between two patterns on the distance between
them. Then a probability that a vector is generated by a
category can be defined as a function of a generalized
distance measure between the vector and a prototype vector
such as the mean of the category. For example, the multi-
variate normal distribution is one distribution in the class of
ellipsoidally symmetric distributions all of whose point
densities are monotonically decreasing functions of the
Mahalanobis distance between the point and the distribu-
tion mean.

It is not as easy to define a meaningful metric space on the
set oforder-N arrangements as it is to do so in a vector space.
In this paper, we suggest approaching the idea of similarity
between two order-N arrangements algebraically, using
homomorphisms. So we need to find a way of determining
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all the homomorphisms of one arrangement to another. We
will begin with the definitions of an order-N arrangement,
order-N relation composition, and a generalized homomor-
phism between two arrangements.

Definition 1: A simple order-N arrangement is a triple
d= (F, A, D) where

A set of unit descriptions,
D set of possible interpretations of N unit

groups based on their description,
F c AN x D relation which gives interpretations to the

relevant (ordered) groups of N units.

A general or complex arrangement is a set of simple
arrangements each being defined on the same set of unit
measurement descriptions and having the same label set
with possibly different orders.

Definition 2: Let F C XN x Z. LetH c X x Y. The order
N composition ofF with H is written F o H and is defined by

F , H = {(y19 . YN, Z) E yN X ZI
for some (x1, ', XN, z) E F,

(xn, Y.) c- H, n = , N}.

Order 1 relation composition is like the usual definition of
relation composition except that the order in which the
components are taken is slightly different. The order N
composition uses the same relation H to go from each
component of the x to the corresponding component of the
y. Then the mth y component depends only on the mth x
component, and this dependence is the same for each
component.
The concept of relation composition plays a strong role in

the notion of a homomorphism from one arrangement to
another. A weak homomorphism is a relation which pairs or
translates (nondeterministically) some of the "sense data"
descriptions of the first arrangement to some of the "sense
data" descriptions in the second arrangement.

After pairing or translating, the first property of the weak
homomorphism is evident: the interpretive descriptions
which the first arrangement gives exactly match through
the homomorphism some of the interpretive descriptions
which the second arrangement gives to its initial descrip-
tions. The second property of weak homomorphisms is that
they must be maximal. There cannot be any further pairings
or translations included in the homomorphism without
destroying the composition property.

Definition 3: Let sv = (F, A, D) and -= (G, B, D) be two
order-N arrangements. A weak homomorphism from vr to .X
is any binary relation H c A x B satisfying:

F°HG (1)

H c H' c A x B and F H' c G imply H = H'. (2)

A strong homomorphism satisfies (1) and (2) above and is
also defined everywhere and single-valued; in other words, it
is a function having the required composition property.

Definition 4: Let Vc = (F, A, D) and-4 = (G, B, D) be two
order-N arrangements. A strong homomorphism from ci to

A4 is any mapping H: A -- B satisfying F H cG.
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Fig. 1. (a) Given point configuration. (b) Second point configuration.
The problem is to determine whether the configuration of Fig. l(a) is
contained in Fig. 2(a). (c) Shows how the point configuration of Fig.
l(a) is contained in the point configuration of Fig. 1(b). (d) Mapping
from the points in Fig. 1(a) to those points in Fig. 1(b) which are a copy
of the points in Fig. 1(a).

Note that a strong homomorphism has the maximality
property of the weak homomorphism, since if one mapping
contains another, then the two mappings must be identical.
A strong homomorphism from . to , can allow two or

more elements from F to map to one element of G. Homo-
morphisms which are functions and one-one are called
monomorphisms. Monomorphisms establish the existence
of a copy of the relation F in some part of the relation G.
Full isomorphisms are one-one, onto, strong homomorph-
isms, and they establish that the relation F is exactly like
the relation G.

In the next section we illustrate a number of particular
problems which are translatable to the mathematical/
combinatorial problem of finding arrangement homo-
morphisms.

IV. EXAMPLES

A. Matching Point Configurations
The problem of matching point configurations is il-

lustrated in Fig. 1. A set of points representing a pattern or
configuration is given. The problem is to determine whether
that same pattern or configuration exists in another set of
points which may be scaled, rotated, reflected, or translated
with respect to the first set of points. We can solve the
problem by determining all the triangles in the first set of
points, all the triangles in the second set of points, and then
trying to match similar triangles. In the next paragraph we
show how the set of triangles forms an arrangement so that
the matching of similar triangles is a problem of finding a

monomorphism from one arrangement to another.
Let R be an inner product space, and let D be a set of

triangles, each triangle being specified by its three interior
angles. We will assume that the order of the angles in the
specification is not important. Let F c R3 x D be a relation
which associates with some of the triples in R3 the name of
the triangle formed by the points ofthe triple. Thus ifR is the
real plane, and the triple (Pa1 P2, P3) - ((O, ), (1, 0), (1. ,'/3))
is one of the triples of R3 to which F assigns interpretationd
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then the quadruple (PI, P2, p3, d) belongs to F, where d is the
name for the (30°, 60°, 900) triangle formed by the three
points (0, 0), (1, 0), (1, /3). With these definitions it is clear
that (F, R, D) is an order-3 arrangement.

Let S be another inner product space and G c S3 x D be a
relation which associates with some of the triples in S3 the
name of the triangle formed by the points of the triple. Thus
(G, S, D) is also an order-3 arrangement. To determine
whether there are points in S which match those in R we
must determine if (G, S, D) has a copy of (F, R, D). Point
matching is a problem, then, of finding a partial isomor-
phism from (F, R, D) to (G, S, D) (Fig. 1).

B. Image Matching
By image matching we mean how we can tell two images

are of the same kind ofthing. For this to happen, all the parts
of one image must have similar parts in the other, and the
relationships between parts in one must be the same as the
relationship between the associated parts in the other.
We will illustrate how this problem can be posed as an

arrangement homomorphism problem. Suppose we have a
segmented image, and we are able to characterize each
segment in terms of certain basic attributes, for example,
shape discriminators. Using these attributes, we could
assign a shape label to each of the segments. To define an
arrangement from these labels, we can group related seg-
ments together, N at a time, and form the corresponding set
of N-tuples of their labels.
The label given to each N-tuple can be the name we might

give to a group of related segments whose shapes are the
components of the given N-tuple. Another possibility is to
use the interpretation label as a counter. We can assign the
integer label "1" to all N-tuples arising from a group of
segments the first time the N-tuple is encountered. The label
k can be assigned the kth time the same kind of N-tuple is
encountered.
One criterion by which segments can be considered

related is spatial connectivity or nearness. Two segments are
eligible to be included in the same related group when their
interaction lengths overlap. To make things simple in our
examples we will use interaction lengths of zero. Thus two
segments are related only when they are touching.
As a specific example, one might consider a missile

launching complex as described in terms of its constituent
image phonemes. These might include railroad spurs, roads,
power lines, buildings, radar antennas, support vehicles, etc.
In terms of the stylized examples which we will present for
purposes of simplicity and generality, such specific compon-
ents are represented by circles, squares, triangles, etc.;
however, it should be kept in mind that these "geometrical
objects" are generic prototypes and always represent actual
image components, shapes, attributes, subattributes, etc.
The arrangement homomorphisms can be used to estab-

lish the likeness of two images when one image is geomet-
rically distorted from the other or when one image is
essentially the same as the other, but the order or placement
of the image parts is different. In either case, simple template
matching will not work. The example shown in Fig. 2
illustrates one way ofhandling this problem using the notion

(a)

(c)

(b)

(d)

Fig. 2. Four drawings, each of which has two triangles, one square, one
circle, and one arrow. Using the order-3 arrangements concept, there
are two pairs of drawings whose arrangements are isomorphic.
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Fig. 3. Quadruples in order-3 arrangements for drawings of Fig. 2. The
two drawings on the left in Fig. 2 are isomorphic to Arrangement A and
the two drawings on the right in Fig. 2 are isomorphic to Arrangement
B. The quadruple (EO, A, T, 2) means that the drawing has a piece that
consists of a square, triangle, and arrow pairwise touching each other,
and the label two designates that this is the second such piece in the
drawing.

ofconnectedness and simple order-3 arrangements. Suppose
the image has four basic kinds of figures: squares, triangles,
circles, and arrows. A quadruple whose first three compo-
nents are these shapes taken in the order square, triangle,
circle, and arrow will be considered to belong to the
arrangements of the image if all three shapes touch each
other in a pairwise manner. In general, we may use the
criterion: consider any N-tuple if enough of its components
interact in a pairwise or K-wise manner. For our example,
a label of 1 or 2 will also be associated with each triple
of shapes to make the quadruple; such a label will just
count the number of times that the triplet with which it is
associated occurs.

In Fig. 2, there are four drawings. Each drawing has two
triangles, one circle, one square, and one arrow. Using the
order-3 arrangement concept, there are two pairs of draw-
ings whose arrangements are isomorphic by the identity
function. The drawings themselves, however, have their
parts placed differently in absolute position and orientation.
This isomorphism becomes clear upon examination of Fig.
3, which shows the possible arrangements for the drawings.
The drawings on the left are isomorphic to the arrangement
labeled A. The drawings on the right are isomorphic to the
arrangement labeled B.
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C

Fig. 4. Four drawings each of which has two squares, one circle, one
hexagon, and one triangle. Using the order-3 arrangements concept,
there are two pairs of drawings whose arrangements are isomorphic.
The arrangement for each drawing is isomorphic to the arrangement for
one of the drawings in Fig. 2.

Fig. 5. Using the arrangement concept, labels of 1 or 2 can be assigned to
each triplet to make one of the drawings in Fig. 2 a homomorphic image
of one of these drawings.

The situation becomes slightly more complicated when
the function that establishes the isomorphism is not the
identity function. This is illustrated in Fig. 4 which also has
four drawings. Each drawing has two squares, one circle, one
hexagon, and one triangle. Taking the order as square.
hexagon, triangle, and circle, and using the order-3 arrange-
ment concept, there are two pairs ofdrawings in Fig. 4 whose
arrangements are isomorphic. Also the arrangement for
each drawing in Fig. 4 is isomorphic to the arrangement for
one of the drawings in Fig. 2. The isomorphism, however, is

not the identity function: a square stays square, a hexagon
becomes a triangle, a triangle becomes an arrow, and a circle
remains a circle.
More complicated still is the case where the correspon-

dence between one drawing and another is by an arrange-
ment homomorphism that does not establish a one-one

correspondence. Such a case is illustrated in Fig. 5, which
depicts two drawings. Taking the order as hexagon, circle,
triangle, arrow, and square, and using the name or label 1 for
all triplets except the triplet (arrow, triangle, square) which
gets the label 2, we may use the arrangement concept to
establish the correspondence between one of the drawings
(the one on the right) in Fig. 5 and two of the drawings in Fig.
2 (the ones on the left). The correspondence is a homomor-
phism, and finding it, although easy, should begin to give the
reader some idea of the combinatorial problems involved.
The drawing on the left of Fig. 5 is homomorphic to neither
of the drawings in Fig. 2.
The problem of finding homomorphisms is truly one of

establishing the correspondence using relationships. Fig. 6
shows the quadruples in the arrangement for the right-hand
drawing of Fig. 5 and the arrangement for a left-hand
drawing of Fig. 2. The homomorphism which establishes the

1 ) (Li

(
Irn 2

Arrangement for Right-Hand
Drawing of Figure 5

V

VQ,
77,

(

1)

1)

2)
Arrangrement for Left-Hand

Drawing of FiqLure 2

VI
O OLi
Homomorph sm

Fig. 6. Arrangement for one of drawings in Fig. 5 and arrangement for
one of drawings in Fig. 2. Below the arrangements is the
homomorphism.

relationship between the arrangements appears in the cen-
tral bottom part of Fig. 6.

C. Scene Labeling
Suppose a scene has been divided into segments

S = {S1, * -, SO. A low-level feature extractor with decision
rule using gray tone, color, shape, and texture of each
segment assigns some possible description from a set D of
descriptions to each segment. This operation defines a
segment-description relation F c S x D. The problem with
this low-level assignment is that each segment may be
associated with multiple descriptions. The desired labeling
of the scene would have each segment described
unambiguously.
A similar situation arises in the line labeling problem of

[7]. Here, S is the set of line segments found in a scene, and D
is a set containing labels that can be associated with any line.
The labels in D could be, for example, convex, concave,
occluding left, occluding right. The segment-description
relation F, determined from low-level processes, associates
withi each line in S one or more labels from D. The desired
line labeling would be some subset of F that associates each
line with only one label.
One way of reducing the possibly ambiguous description

a line or segment initially has is to use constraints from a

higher level world model. Such a model can specify labeling
constraints for each group of related segments or lines. To
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employ such a model, related (ordered) sets ofN segments or
lines must be determined. Segments can be related on the
basis of their relative spatial positions. Lines can be related
on the basis of thejunctions they form. Then for each kind of
relationship the model can specify a constraint which the
labels of each kind of related segments or lines must satisfy.
For instance, pairs ofsegments in S could be related ifthey

mutually touch each other. There could be different kinds of
touching such as to the left, to the right, above, below, in
front of, in back of, supported by, and contained in. Suppose
L is the set of such relationship labels. Then the set of
spatially related segments or lines could be specified by the
relation A c S x S x L where (s, t, i) E A ifand only if label
i describes the way segment s relates to segment t. In the
general case, the relationships in L can describe the way N
segments or lines are related so that the relation A is a
labeled N-ary relation: A c SN x L
The world model contains constraining information. For

example, pairs of segments whose relationship label is i can
be constrained by the world model to have associated with
them only certain allowable description pairs. In this case
the world model is specified as a relation C ' D x D x L
where (d1, d2, i) E C if and only if it is legal for a pair of
segments s1 and s2 having relation i to have respective
descriptions d1 and d2. In general, the relation C is a labeled
N-ary relation, C c DN x L which includes in it all labeled
N-tuples of compatible descriptions for an ordered set ofN
related segments.
To summarize the information we have available:

1) F c S x D, the assignments of descriptions given by a
low-level operation;

2) A c SN x L, the labeled sets of related N-tuples of
segments;

3) C c DN x L the N-ary relational labeling constraints
specified by the world model.

The scene labeling problem is to use F, A, and C to
determine a new labeling relation G which contains fewer
ambiguous descriptions than F and which is consistent with
the constraints specified by the world model. In essence we
want

1) G F, and
2) A G c C.

Notice that (A, S, L) is a simple arrangement, (C, D, L) is a
simple arrangement, and G is a binary relation which
successfully translates the structure of arrangement (A, S, L)
into the structure of arrangement (C, D, L). The binary
relation G is contained in F and is a homomorphism from
arrangement (A, S, L) into arrangement (C, D, L).
Note that our discussion of scene labeling is more general

than that of [5], which considers only binary relational
constraints. We consider N-ary relational labeling con-
straints; any ordered set of N segments can have a label. If
we define a unique label set for each segment, then for the
binary case the treatment given here exactly corresponds to
that in [5].

D. Subgraph Isomorphism
Let G = (P, E) and H = (Q, F) be digraphs. The subgraph

isomorphism problem is to determine whether there exists a
subgraph of H which is isomorphic to G.

IfS c Q, a one-one onto function h: P -* S establishes the
subgraph isomorphism of G to H if h satisfies E o h c F.
The refinement procedure in [9] suggested to solve this

problem is a special case of the arrangement homomor-
phism algorithm given in the next section.

E. Spectral-Temporal Classification Using
Vegetation Phenology
The usual model for classification ofremotely sensed data

implicitly assumes that the phenological growth stage for
each vegetation category is the same for all observations
made at a single time. See [3], Michigan Symposia on
Remote Sensing of Environment, and Purdue Symposia on
Machine Processing of Recently Sensed Data. It is well
known, however, that even in a geomorphologically homo-
geneous area, the phenological growth stages for each
vegetation type is not the same, due to differences in planting
times, soil types, and weather conditions. This slop in
phenological growth stage is then reflected in probability
distributions of crop reflectances having larger variance
than they should. The larger variance causes a lower
classification accuracy for an optimal decision rule. One
solution to the problem is to work from the spectral
reflectance for each category to the possible phenological
growth stages the category can have which are consistent
with the observed spectral reflectance.
One classification algorithm which makes use of vegeta-

tion phenology has a direct and simple description. For
example, if a 2-band spectral observation (al, a2) is made
using wavelengths (A1, A2) at time t1, classification can be
done by determining for each category c all those phenolog-
ical growth stages ofvegetation ofcategory cwhich can yield
spectral return al at wavelength A 1 and spectral returns a2 at
wavelength )22. If there is not a phenological growth stage of
category c which yields spectral returns ox and a2 at
wavelengths A, and A2, then category c is not a possible
choice. At a later time t2, if there is not a later phenological
growth stage of category c which is consistent with the
observed spectral reflectance, then category c is not a
possible choice. Hence, classification is done by eliminating
inappropriate category choices. Spectral observations taken
at a later calendar time are naturally constrained to be
associated with later phenological growth stages in order to
keep an earlier accepted possibility ofcategory c remaining a
viable option when using observations taken at a later time.

These concepts relate to relation homomorphisms in the
following way. Let B be the set ofspectral bands, A be the set
of measured reflectance values, G be the set of vegetation
growth states, and T be a set of possible observation times.
The signature for any category can be represented by a
ternary relation S c G x (A x B) which contains in it all
triples (g, a, b) of (growth state, spectral reflectance value,
spectral band) of high enough probability for the given
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category c of vegetation. The observed temporal spectral
measurements for a small area ground patch which needs to
be classified can also be represented as a ternary relation
W c T x (A x B) containing all triples (t. a, b) of the
multitemporal observation (time, spectral reflectance value,
spectral band). If there exists a monotonic function H, a
homomorphism H: T-* G such that W - H c S, then
category c is not eliminated from consideration as the
possible true vegetation category of the observed small-area
ground patch. If no such homomorphism exists, the
category c is not a possibility.

V. HOMOMORPHISMS

It is clear from the examples that homomorphisms for
arrangements play a central role in tying together or com-
paring complex structures. In this section we give an algo-
rithm for finding arrangement homomorphisms. First we
will reduce the homomorphism problem for the labeled rela-
tions to a set ofhomomorphism problems for the unlabeled
relations. Then we will analytically work on the unlabeled
relation homomorphism problems showing how it can be
solved by a combination of discrete relaxation and a tree
search.

Suppose F c AN x D and G c BN x D and H c A x B
satisfies F , H c G. Define Fd ' AN by

Fd={(al, ,aN) E AN (al, **aN, d) F

and Gd 'i BN by

Gd ={(bl, ,bN) ECBN (bl, ,bN, d)E G}.

Then clearly,

F H c G, if and only if Fd oH Gd for every d E D.

Hence the homomorphisms for the labeled relation can be
determined from homomorphisms for each of the unlabeled
relations.

In the remainder of this section we describe an algorithm
for determining homomorphisms for unlabeled relations.
The original insight into a related form of the general
relaxation filtering or winnowing procedure we use is from
[7] and [8]. Discussed in [5] is a more general form of the
relaxation procedure in the context of the scene labeling
problem with binary relational constraints. The contribu-
tion here is the development of the representation and
characterization theorems for the N-ary relation
homomorphisms. (See also [12].)

Let R c AN and H c A x B. Recall that the composition
R H of the N-ary relation R with binary relation H is
defined by R - H = t(b1, bN) E BNIfor some (a1, ,
aN) E R, (an, bn) e H, n = 1, , N}. Thus if each N-tuple
(a1, ..., aN) in R had each of its components mapped by H
into the N-tuple (b1, ..., bN), then the set of all N-tuples
(b1, .., bN) would be the set R - H.

Let R c AN and S c BN be given. We seek to solve the
equation R o H C S for any binary relation H which is
defined everywhere and single valued. Any such solution H
is called a strong homomorphism ofR into S. The winnow-
ing or relaxing process plays a strong role in finding such

homomorphisms, and to begin our discussion we first define
our notational conventions.

Let
.N

T X At.

We define the following sets related to T:

T(a,, a2, -- am)
j ~~~~~N

- }(aM+1, * aN) 6 X A. (a, aN) E T

An T a e- AIfor some (a,, Na)

e X Ai, (al, a,V) E- T
i --- I

Tn(a)=Jal, S aN) E Tl =an-a

A. The Winnowing Process
The equation R D H c S, where H is defined everywhere,

says that to each N-tuple (a1, , a) of R, there exists at
least one N-tuple (bl, * *, bN) Of S which is the image of the
N-tuple (a1, ..., aN) under the mapping H. Furthermore, the
image of any N-tuple of R under H must lie in S. Thus any
mapping H which satisfies the equation R - H c S must
have the following consistency property: if the element
a E A is mapped to the element b E B by H, then every
N-tuple of R having some component of value a can be
associated, by the mapping H, with an N-tuple ofS having a
value of b in the corresponding component. In other words,
if a mapping H purporting to satisfy R H ci S contains the
pair (a, b), and if there would exist an N-tuple of R having
some component with value a, and if there were no H image
of this N-tuple which is contained in S having a value b in the
corresponding element, then the equation R H c S could
not be satisfied.
Now if we begin with a given binary relation T1 c A x B

and T1 does not satisfy R c T1 c S, then it must be that T1 is
not consistent and has included in it too many pairs. The
winnowing process is a procedure which begins with the
binary relation T1, determines which N-tuples of R can be
mapped by T, to which N-tuples of S, and then eliminates
from T1 some of the pairs in T1 which make T1 inconsistent.
Thus if the pair (a, b) is in T1, and if there exists an N-tuple of
R having some component with value a, and ifthere were no
T1-image of this N-tuple which is contained in S having a

value b in the corresponding component, then the pair (a, b)
is eliminated from T1. The new relation T2 defined by the
winnowing process is, of course, contained in T1 (Proposi-
tion 1).

Proposition 1 (Winnowing Process): Let R c AN, S c BN
and T1 c A x B. Assume that if for some a E A, Rn(a) 0,
n = 1, N, then{a} x B T,. Define G c R x S by

SI(an )eTl7n-1,.5N}.
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Define T2 ' A x B by

T2= (a,b) eA x B|

N

b E- n n AnG(ajq .., aN).
n1 (ai, ,aN) E R,(a)

Then T2 ' T1.
If we let the winnowing process iterate, the successive

relations it defines get smaller and smaller. Since we assume
all the sets are finite, eventually the procedure converges,
and we have determined a limiting relation. We should
expect this limiting relation H, a "fixed point" of the
winnowing process, to satisfy the equation R , H c S. And
indeed, Proposition 2 states that any single-valued relation
H which is a fixed point under the winnowing process must
satisfy the equation R C H c S.

Proposition 2: Let R C AN and S c BN. Suppose
G c R x S and H A x B satisfy

G = {(al, , aN, bl, , bN) E R x S

(anH bn) ) H, n 1, ,N

H= (a, b)eA xB

N

b n n
n= 1 (al, aN) E Rn(a)

Then H single-valued implies R - H c S.
Thus all single-valued invariant relations under the win-

nowing process satisfy the equation R o H c S. But is any
mapping H satisfying the equation R , H c S a fixed point
under the winnowing process? Proposition 3 states, in fact,
that the winnowing process never loses a homomorphism.
Actually, it proves the slightly more general result that ifH is
defined everywhere and satisfies R , H c S, and if H c Tl,
then it is also true that H c T2 ' T1, where T2 is the result of
one iteration of winnowing on T1. Hence the winnowing
process will reduce a relation to one which is large enough to
contain all the homomorphisms it contained originally.

Proposition 3: Let R c AN S c BN H c Tc A x B.
Define G c R x S by

G-=l(al, ,aN, b1, ..., bN) E R x S

(an, bn) C_ T, n = 1, ,NJ.
If H is defined everywhere and R - H c S, then

H c ((a, b) E A x B

N

be n n AnG(al ...aN).
n-i (al, ,aN) R,(a)

This leads to the relation homomorphism characterization
theorem (Theorem 1) which states that mappings are homo-
morphisms if and only if they are invariant under the
winnowing process.

Theorem 1. Relation Homomorphism Characterization
Theorem: Let R c ANand S c BNbe given. Let H c A x B

be defined everywhere and single-valued. Define G c A x B
by
G {(al, , aN, bl, , bN) e R x S

(anT, bn) e H, n = 1, , N

Then R , H c S if and only if

H= (a, b) E A x I
N

b E n n
n = 1 (al, *--, aN) e Rn(a)

B. Finding N-ary Relation Homomorphisms
It is clear from the characterization theorem that if the

winnowing process produces a mapping for its limiting
relation, then the mapping must be a homomorphism.
However, the characterization theorem does not say that the
winnowing process will produce relations which are either
single-valued or defined everywhere. In this section we
describe a representation for any homomorphism in terms
of the intersections ofvarious limiting relations produced by
the winnowing process.

Suppose P' is the limiting relation determined by the
winnowing process which begins with a relation whose only
restriction is that the element a E A is associated with only
the element b E B. Then if H is a homomorphism and (a,
b) E H, then certainly H C 7b- Hence, H = n(a,b) Hr-
Now H defined everywhere implies that 2(a,b) EH rP'b is
single valued, and n(a,b) E H Tb single-valued and H defined
everywhere imply H = n(a,b)eHTHb.
So all homomorphisms have the representation

2(a,b) e HHTa. Is it also the case that all mappings ofthe form
2(a,b) -HHTb for some defined everywhere relation H are
homomorphisms? The answer is yes on the condition that
the mapping n(a,b) e H Tab takes each N-tuple ofR into some
N-tuple of S. It is possible that this is not the case as
illustrated in the following example. Suppose R = {(1, 2, 3)}
and S = {(a, b, d), (a, e, c), (f, b, c)}. Then the limiting
relations T1a, T2b, T3c are

Tla= {(1, a), (2, b), (2, e), (3, c), (3, d)}

T2b = {(1, a), (1, f), (2, b), (3, c), (3, d)}
T3C= {(1, a), (1,f), (2, b), (2, e), (3, c)}.

Letting H = {(1, a), (2, b), (3, c)}, we find that
H = n(a,b) E H pb, but H is not a homomorphism ofR into S
since it takes (1, 2, 3) to (a, b, c), which is not a triple of S.
The relation homomorphism representation theorem

gives the characterization that any mapping of the form
H= f(a,b) H Tab is a homomorphism if it takes each
N-tuple of R into some N-tuple of S, and conversely, any
homomorphismH has the representation H = 2(a,b) e H T

Theorem 2. Relation Homomorphism Representation
Theorem: Let R AN and S c BN. For each (a, b) E A x B,
iteratively define the sequence of relations T", Tb, ..,

= {(a, b)} u (A - {a}) x B;
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if T7k has been defined, define Takb 1 by

k = /(O,,B) e A x B
N

/k n n AiGa(al, aN)
i 1 (al, , aN) e Ri(a)

where

Gab = {(al , aN, b1, , bN) ER x S

(ang bn) k< , n = 1, ,NJ.
Suppose for some integer K, pb = T? for all k > K and for
all (a, b) E A x B. Then H c A x B defined everywhere and
single valued and R - H c S holds if and only if

1) H= n(a,b) H Tab is defined everywhere and single
valued, and

2) G = (al, * ,aN, bl, -9* bN) c- R x S (a, bn) c- H,
n = 1, , N} is defined everywhere in R.

The representation theorem allows any homomorphism
to be determined by a depth-first search in the following
manner. Suppose we are looking for homomorphisms which
map the element 1 E A to the element a E B. We can
determine by the winnowing process the limiting relation
Tla which must contain any such homomorphisms.
Now, T1a may have other elements of A which are

uniquely mapped to elements of B. If so, we can determine
the limiting relations for these pairs and take the intersection
of all of them with T1la. The resulting intersection must
contain any homomorphism which maps 1 to a. If the
intersection has additional elements which are uniquely
mapped, more intersections can be taken. When the inter-
section has no more additional elements which are uniquely
mapped, then one of four cases exists: 1) either the intersec-
tion is not defined everywhere, in which case no homomor-
phism mapping 1 to a exists; 2) or the intersection is defined
everywhere, is single valued, and maps each N-tuple of R
into some N-tuple of S, in which case it is a homomorphism;
3) or the intersection is defined everywhere and is single
valued, but cannot map some N-tuple of R into an N-tuple
of S, in which case it is not a homomorphism; 4) or the
intersection is defined everywhere and not single valued, in
which case a choice must be made in the depth first search to
map to a unique element of B one of those elements of A
having possible multiple associations with elements of B. In
this last case, once such a choice is made, the corresponding
limiting relation must be determined and intersected with
the previously intersected relations. This brings us back to
the point of looking for additional uniquely mapped pairs.
From here the search iterates until each branch of the tree
terminates in one of the first three cases.
The actual implementation can proceed as described

above or can alternatively proceed by not taking intersec-
tions but simply restricting the relation Tla so that, for
example, 2 is uniquely mapped to b and continuing the
winnowing procedure on the restricted relation after each
choice is made. In either case, it may be efficient to keep a

A ={1,2,3,4} R'A3; R= {l23,214,312,421,432,341}

B = {a,b,c,d} Sc B3; S= {abc,bad,cob,dba,dcb,cda,aaa,bbb,ccc,ddd}

Tla Tlb Tlc Tld

2
3
4

2
3
4

a
ab
ac
ad

T2a

ab
a
da
ca

b
ab
db
cb

c
c

d
d
d
d

T2b T2c T2d

ab
b
cb
cd

c

c

cC T i is the Limiting Relation
Obtained by the Winnowing
Process in which i (i E A)
is Mapped only to j (j E B)

d
d
d
d

T3a T3b T3C T3d

2
3
4

b
b
b
b

T4a T4b T4C

bd
ad
d
cd

T4d

1 a b bc ad
2 a b ac bd
3 a b dc cd
4 a b c d

Fig. 7. Pair of ternary relations R and S and resulting limiting relations
determined by winnowing process. It is these relations which character-
ize the homomorphism from R into S.

la

./
la la
2a 2b

la la
2a 2b
3a 3c

la Ia
2a 2b
3a 3c
4a 4d

lb

lb lb
2a 2t

lb lb
2a 2t
3d 3t

lb
2a
3d
4c

lb
2b
3b
4b

lc

lc
2c
3c

Ilc
2c
3c
4c

Id
2d

id
22d
3d

ld
2d
3d
4d

Fig. 8. Full-depth paths obtained by depth-first search which succes-

sively intersected limiting relations shown in Fig. 7. Each full-depth
path is a candidate for a homomorphism from R into S.

copy of the resulting relation at each node of the tree in order
to ease the computational load of the backtracking.

C. Example
Fig. 7 illustrates a pair of ternary relations R and S and the

resulting limiting relations determined by the winnowing
process. Fig. 8 illustrates the full-depth paths obtained by
the depth-first search which successively intersects the limit-
ing relations shown in Fig. 7. Fig. 9 shows the complete
search for the subtree of Fig. 8 generated by the node lb.
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2b 2c

1 12 1 1

lb lb lb
2b 2b 2b
3a 3b 3c

X\\

lb

2b
3b
4a

lb
2b
3b
4b

lb
2b
3b
4c

lb
2b
3d

lb
2b
3b
4d

Fig. 9. Complete search of subtree generated by node lb. Numbers on
the branches indicate the order of the search. Paths which reach an
underscore lead to inconsistencies, e.g., path 1-5-7 (lb, 2a, 3d, 4b) yields

T"b n T2a n T3d n TT4b= Inconsistent
1 b ab bd b b
2 ab a ad b 0
3 db da d b 0
4 cd ca cd b 0

Full depth (consistent) paths are candidates for homomorphisms, e.g.,
path 1-2-8 (lb, 2a, 3d, 4c) yields

1

2
3
4

T lb n T2a n
b ab
ab a
ab da
cd ca

T3d T4c= Consistent
db bc b
ad ac a
d ed d
cd c c

VI. COMPLEXITY ANALYSIS

Unfortunately, the arrangement homomorphism prob-
lem falls into the class of NP-complete problems. The
complexity lies in the depth-first tree search, which if done
by simple enumeration, can require in a worst case
(# B)# A. # R log2 # S operations, assuming S is stored in
some ordered form and an operation consists of a compar-
ison and branch. The tree search with the winnowing pro-
cess added cannot guarantee any better behavior in the
worst case. Fortunately, the pathological worst cases are not
the ones typically encountered. For example, linear pro-
gramming optimization problems are also NP-complete
problems, yet the Simplex algorithm performs quite well for
problems encountered in practice, hardly exhibiting the
exponential behavior of the worst case. The Waltz filtering
algorithm employed in scene labeling is usually able to
reduce the tree search to just one or at most a few branches.
Thus there seems to be some justification for the use of
general winnowing procedures and for expecting that the
resulting tree search complexity will, in the practical case, be
proportional to the number of homomorphisms that exist.
In the remainder of this section, we will do the complexity
analysis using this kind of assumption.
Each iteration of the winnowing process takes two steps.

In the first step, all N-tuples in R c AN are examined. Then
for each of the N components ofthe N-tuple each N-tuple in

S c B' must be checked to see if the value of the specified
component in the S N-tuple is in the list T(a), where a is the
value of the specified component of the R N-tuple and
T c A x B. Assuming the list T(a) is ordered, the number of
operations this step takes is # R N # S log2 # B.

In the second step, all values in the set A and all N
component positions must be examined. Then all N-tuples
in the relation R c AN must be located having the given
value in the specified component position. Finally, intersec-
tions over a list less than # S in length must be made to
determine that subset of B consistent with the original
choice of the value from A. Assuming these lists are ordered,
the number of operations this step takes is
# A N #R # S 2 # B. Therefore, each iteration of the win-
nowing process takes N # R # S(log2 # B + 2# A # B).
As mentioned at the end of Section V, there are two ways

ofdoing the tree search. In the first way, all the limiting basis
relations are calculated, and at each node in the tree the
intersection of one basis relation with another binary rela-
tion needs to be done. We assume that the tree search visits
no more than xK #A nodes, where K is the number of
homomorphisms, # A is the number of nodes in a complete
branch, and a > 1 is a constant indicating how much more
work than the minimal amount we will have to do in the tree
search. Hence, the number of operations in the tree search is
aK # A(2 # A # B). Since there are # A # B basis relations
and the number of iterations each basis relation must
participate in is no more than #A #B, the number of
operations required to do the winnowing is (#A # B)2N
#R #S(log2 #B + 2#A #B). Since

lg2 #B«< 2 #A #B,
the upper bound on the number of operations can be
approximated by

2 #A2 #B[xK+N #A #B2 #R #S].
In the second way of doing the tree search we do not

compute any basis relations and do not take intersections at
nodes. Rather, at each node we restrict the relation by
whatever unique value from B is going to be associated with
a value from A; and then we employ the winnowing process.
In this case, at least one winnowing operation must be done
at each node and a maximum of # A # B could be done at a
node. Taking the worst case for every node yields a maxi-
mum number of operations cKN # A2 #B #R
#S(2 #A #B+log2 #B). Since log2 #B< 2 #A #B,
the upper bound on the number of operations can be
approximated by 2 aLKN #A3 # B2 # R # S. For large a,
this bound will be larger than the original bound. Hence, the
decision on which way to do the tree search must depend on
how complex the researcher thinks the tree search will be.
Hard tree searches can be done the first way. Easy tree
searches can be done in the second manner.

VII. CONCLUSIONS
We have discussed the mathematical construct of labeled

N-ary relations which we have named order-N arrange-
ments. We have illustrated that there are many matching

lb
2a
3a

2a 2o 2a
3b 3c 3d

6789

lb lb lb lb
2a 2a 2a 2a
3d 3d 3d 3d
4a 4b 4c 4d

609
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problems whose abstract mathematical form is one of
finding a homomorphism from one arrangement into
another. We have systematically explored the structure of
such homomorphisms, given a characterization and rep-
resentation theorem for N-ary relation homomorphisms,
and developed an algorithm for determining the homomor-
phisms. The algorithm consists of combining a relaxation
process to find the limiting relations with a depth first tree
search.

It is our hope that by illustrating 1) the underlying
mathematical unity of a diverse set of problems which
involves finding homomorphisms and 2) the applicability of
a generalized discrete relaxation procedure to the deter-
mination of such relation homomorphisms, other more
refractory problems will be able to be translated into an
arrangement problem whose solution is given in this paper.

APPENDIX

Proposition 1. Winnowing Process: Let R c AN S c BN
and T1 c A x B. Assume that if for some a e A, R,(a) = 0,
n=1, ,N,then{a} x Bc T1. DefineGcR x Sby

G={(al, .aN,hl ,bN)cR xS

(anD bn) e TAx n = 1, NB.

Define T2 cA x B by

T2= (a, b) e A x B
N

be n n
n =1 (al, , aN)eRn(a)

Then T2c T1.
Proof: Let (a, b) c T2. Either Rn(a) = 0,n1,n= N

or not. If Rn(a)= 0, then by assumption on T1,
{a} x B c T1 so that (a, b) e T1. If it is not the case that
Rn(a) 0, n = 1, , N, then there exists an n e {l, N}
such that (a1, ., aN) e Rn(a). Hence, b e AnG(a1, .. .aN) so

that for some (b 1, , bN) GS, (a1,,aNUbl,bi ,bN) c G By
definition of G, (a1, , aN, b1, , bN) e G implies (Ur,
bin) e T1, m = 1, , N. Now (a1, , aN) e Rj(a) implies
= a and be AnG(a1, , aN) implies (an, b) e T1. Thus (a,

b)= (a., b) c- TI.
Lemma 1: Let R cAN SB HkcA x B, k= ,

K. Define Gk R x S by

Gk = {(a1,, UaN, bl, , bN) e R x S

(aU bn )eHk,n= 1, , N}.

If n, Hk is single valued, then n(= Gk is single valued
on R.

Proof: Let (a1,", aN, b1, , bN) e nk=1 Gk and

(a,, ,aN,b, ,b) e k Gk.Thenforeveryk 1,
N, we must have (an, bn) c Hk and (anf,b') e H,,n = 1,
Hence, for every n = 1, , N, (an, bn) e nk 1 Hk and (an,
bn) e nk Hk. But nk 1 Hk single valued implies that
b = bn p = 1, N. Therefore, nr 1 Gk is single valued.

Proposition 2: Let R c Ai' and S 7 B'. Suppose
G R x S and H .A x B satisfy

H = (a, b)cA X I3
iN.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~be (A AnG(a,.

n- 1 (Oz..0sj RnF(a)

Then H single valued implies R o H c S.
Proof: Let (b 1, , bN) e R H. Then for some (a 1,

aN) e R, (an, hb) e H, i1 = 1 ... N. By definition of H.

k- 1, N.
n1(a , r)e AkG(a(, a'),
n- I (al .... a,v ) e Rn(ak,)

But (a1, ... aN) e Rk(ak) so that bk C AkG(al, . a)
k = 1, , N. Now, by Lemma 1, H single valued implies G is
single valued. And bk c Ak G(al, , aN,) certainly implies
G(a1, , aN) 00. Hence, there exists a unique (hb'1
hN)}= G(al, ..., aN). Then, bk e Ak G(a1, N)a k). = 1,
N, and {(b'1, b,')= G(a1 -N) imply hk -
k = 1, * N so that (b1, h eG(ab a.. ) c S.
Lemma 2: Let R c A,S C BN, H C- T c A x B. Define

G cR x S by

G {(al , a,,, blb, bN) T- R x S

(a.' hj) c T, n1 = 1, N',i
Then R H S, (a1,, a) e R, and (am, hm) c H
m = 1, ,N imply bk c Ak G(al, ,a,v), k- 1N,

ProofJ Let (a1, ,a) e Rand (am,lbm) H,m 1.
N. Since R H c S, we must have (b1, bhv) e S. Since
Hc- T, (am, bm) H implies (am, bm)& T, m= 1,. N.
Now, (a1, , aN) e R, (b1,I bN) e S, and (an, bn) & 71.
n = 1, , N imply (a1, , aN, b1, , bN) c G. Hence,
(b1, , bN) e G(a1, , aN) so that bk e AkG(a1, ... aN)
k= 1,,N.

Proposition 3: Let Rc A, S c B-, Hc TcA x B.
Define G c R x S by

If H is defined everywhere and R H '2 S, then

H (a, b) e A x B

be n AnG(a ', a,,)
n = 1 (ai .aN) e R,(a)

ProoJ'. Let (a, b) e H. We need to show that

be n n AnG(al,-.,aN)
n 1 (al,. aN) e Rnf(a)

If Rn(a) 0, n-1, ? N, the required result is immediate.
If Rn(a): 0 for some n, then let n e {1, , N} and (a1,
aN) & Rn(a) be given. Since (a1 ..., aN) e Rn(a), an = a For

convenience we set bn= b. Since H is defined everywhere,
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there exists b1, , bn-1, bn+1, , bN e B such that (ak,
bk)e H, k * n. Now by Lemma 2, R o H c S, (a,,
aN) e R, (am bm)G H, m = 1, , N imply bi c AiG(a1,
aN), i = 1, , N. In particular then, bn e AnG(a, N,a).
Therefore,

N

be- n n AnG(al, " , aN).
n = I (a, -. aN) E Rn(a)

Theorem 1. Relation Homomorphism Characterization
Theorem: Let R c AN and S c BN be givei. Let H c A x B
be defined everywhere and single valued. Define G c A x B
by

G {(a1, "*, aN, bl, "*, bN) e R x S

(an, bn) H, n = 1, ,N}.
Then R o H c S if and only if
I ~~~~N

H= (a,b)e-A>xBIbc n n
n= (al, -- aN) ERn(a)

AnG(aj, , aN).

Proof: Suppose R - H c S. Since H is defined every-
where, by Proposition 3,

Hc(a,b)eAxB
N

b c- n n
n=i (aj, ,aN)ERn(a)

Now suppose (a, b) e F. Then
N

b c- n n A. G(al,.., aN).
n =1 (al. ,aN) E Rn(a)

Let n e {1, 9 N} and (a1, , aN) e Rj(a). Then a = a and
b e An G(a1, ..., aN). By definition of G, b e AnG(a1, *., aN)
implies (an, b) e H. But (a, b) = (an, b) e H. Hence F c H.
F z H and F c H imply F = H. Suppose

H=-(a,b)eA xB
N

beKn n
n =I (ai, , aN)E Rm(a)

Since H is single valued, by Proposition 2, R o H c S.
Lemma 3: Let F c A x B and G c A x B. Suppose Fis

defined everywhere and G is single valued. The F c G
implies F = G.

Proof: Suppose F c G. Let (a, b) e G. Since F is defined
everywhere, there exists a b' e B such that (a, b') e F. But
F c G and (a, b') F imply (a, b') e G. But because G is
single valued, (a, b) e G and (a, b') e G imply b = b'. Hence
(a, b) = (a, b') e F so that G c F. Finally, F c G and G c F
imply F = G.

Theorem 2. Relation Homomorphism Representation
Theorem: Let R c AN and S c BN. For each (a, b) e A x B,
iteratively define the sequence of relations , 72b,
7bb{ a- by

Plb= {(a, b)} u (A-{la}) x B;

if 7k has been defined, define rk, 1 by

7 1= (, ) e A x B

N

i (arn n
i=l1 (al, -, aN) c Rj(a)

AiGab(al, - - aN):

where

Gab = {(al, ..., a, b, , bN)ceR xS

(a., bn knb n = 1, ,, NJ.
Suppose for some integer K, pb = T ", for all k . K and for
all (a, b) e A x B. Then H c A x B defined everywhere and
single valued and R o H c S holds if and only if

1) H= n(a,b) HTHI is defined everywhere and single
valued, and

2) G = (al, - , aN, bl, .. bN)R x S (an, bn)c- H,
n = 1, , N} is defined everywhere in R.

Proof: Suppose R o H c S andH is defined everywhere
and single valued. By Proposition 3, H cT7T for each (a,
b) e H. Hence H nQ(a,b) , H Ta. Since {b} = Tab(a) for each
(a, b) e H, and H is defined everywhere, n(a,b) tH is
single valued. Now by Lemma 3, H C n(a,b) e H 7ab with H
defined everywhere and n (a,b) iH T'a single valued, imply
H n)(a,b)EH 7Ta. Let G = {(a1, , aN, bs, , bN) E R x
S (an, bf) e H, n 1, "-, N} and suppose (a1, , aN) e R.
Since H is defined everywhere, there exists (b 1, , bN) e BN
such that (an, bn) e H, n = 1, , N. Since R o H c S,
(a1, , a')e R and (an,bn) e H,n = 1, *,Nimply (b1, * ,
bN) e S. Hence, (a1, , aN, b , , bN) e G so that G is
defined everywhere in R. Suppose H== (a,b) eH Tab. Sup-
posethatG = {(al, ,aN,bl, .,bN)e R x SI(an,bn) e H,
n = 1, ..., NJ is defined everywhere in R. If (b1, . .
bN)eR o Hwewanttoshow (bl, ,bN)eS.Let(bl, ,
bN) e R o H. Then there exists (a1, , aN) E R such that (an,
bn) e H, n = 1, ..., N. Since G is defined everywhere in R,
there exists some (b'1, , b'N) e S such that (a1, aN,

..., b ) e G. But (a1,, Na, b'1, , b ) e G implies (a6,
b') e H, n = 1, , N. Now (a,bnn) H and (an, b') eH
imply bn = b' since H is single valued. Hence (b1, ,
bN) = (bf,, bl ) c- G(al,, aN) c: S-
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Embedded Game Analysis of a Problem
in International Relations

JOHN V. GILLESPIE, DINA A. ZINNES, AND GURCHARAN S. TAHIM

Abstract The behavior oftwo groups of nations, superpowers and
regional powers, engaged in an arms race represented as a differen-
tial game are studied. The various nations are assumed to arm
themselves according to a balance of power, the policemen, or the
second attack rationale. The regional nations are assumed to control
the disposition of strategic resources desired by the superpowers. To
obtain these, the superpowers provide assistance to the regional
nations. The optimal trajectory corresponding to the above three
rationales is computed, and the stability of the trajectory is studied.
After a change in the international situation, the regional nations
may alter the distribution of the material to the various nations. The
effect of this on the stability of the resulting optimal trajectory is
investigated.

I. INTRODUCTION
THE MAJOR AIM of this analysis is to study, in the

spirit of Richardson's pioneering work [26], the beha-
vior of two groups of nations in an arms race. More recently
the notions of differential games have been applied suc-
cessfully to the study of the behavior of nations involved in
arms races [8], [16], [17], [29]. An important part of the
above studies is that they relate to the investigation of
armament behavior from the perspective of a single nation.
Of course, the dynamics of the arms race imply that the
behavior of the single nation is influenced by the other
nations in the race. However, these studies do not examine
simultaneously the performance of other nations engaged in
the race.
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The authors are with the Center for International Policy Studies, De-

partment of Political Science, Indiana University, Bloomington, IN 47401.

This paper can be viewed as the next step in modeling
arms races.' In this study there are two groups of nations
involved in a dynamic interaction represented by a differen-
tial game. Each group consists oftwo nations: the first group
represents stronger nations or coalitions of nations that are
labeled as superpowers (e.g., United States and Soviet
Union), while the second group represents less powerful
nations or coalitions labeled as regional powers (e.g., Israel
and the Arab States). The four nations or coalitions are
involved in a differential game. We will give the performance
indices representing rationales commonly offered in the
descriptive international relations literature.

A. The Simple Embedded Game

The superpowers are engaged in a Nash game [9]; the
regional powers are also engaged in a Nash game among
themselves. Each superpower provides assistance to a corre-
spQnding regional power. The two strategies for providing
assistance from the superpowers to the regional actors
constitute a Nash equilibrium pair. The superpowers game,
the regional powers game, and the assistance game, will all
be referred to as an embedded game [16]. To study the
optimal behavior of the nations in the embedded game, the
various performance indices we will consider are balance of
power, second attack, and policemen. These three perfor-
mance indices are drawn from the rationales for defense
policy commonly suggested by scholars of international
affairs.

Our analysis should be viewed as an application of known systems
techniques to a problem in international relations. Our purpose is not to
contribute basic ideas about systems theory but to indicate a new and
viable area of its application.
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