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The Consistent Labeling Problem: Part 11
ROBERT M. HARALICK, SENIOR MEMBER, IEEE, AND LINDA G. SHAPIRO

Abstract-In this second part of a two-part paper, we explore the
power and complexity of the 'kKP and 'KP class of look-ahead opera-
tors which can be used to speed up the tree search in the consistent
labeling problem. For a specified K and P we show that the fixed-
point power of PKP and '1KP is the same, that OKP+ 1 is at least as
powerful as 'KP, and that \K+1 p is at least as powerful at OKP-

Finally, we define a minimal compatibility relation and show how the
standard tree search procedure for finding all the consistent labelings
is quicker for a minimal relation. This leads to the concept of grading
the complexity of compatibility relations according to how much
look-ahead work it requires to reduce them to minimal relations and
suggests that the reason look-ahead operators, such as Waltz filtering,
work so well is that the compatibility relations used in practice are not
very complex and are reducible to minimal or near minimal relations
by a fKP or *KP look-ahead operator with small value for parameter P.

Index Terms-Backtracking, consistent labeling, constraint satisfac-
tion, graph coloring, homomorphism, look-ahead operators, matching,
N-ary relations, relaxation, scene analysis, subgraph isomorphisms, tree
search.

I. INTRODUCTION
IN Part I of this paper [6], we formulated a network con-

straint problem which we called the consistent labeling
problem. We showed how this problem is a generalization of
problems such as the subgraph isomorphism problem [101, the
graph homomorphism problem [7], the automata homomor-
phism problem [3], the graph coloring problem [7], the re-
lational homomorphism problem [5], the scene labeling
problem [1], and the Boolean satisfiability problem [2]. Then
we showed how a two parameter look-ahead operator qKP can
be used in some cases to help speed up the tree search required
to solve the consistent labeling problem.
In this paper we explore the mathematical properties of the

4KP look-ahead operator. We introduce another related look-
ahead operator TKP, which is a generalization of the Waltz
filtering operator. We show that the fixed-point power of qKP
is the same as that of "KP, that operators with greater look-
ahead are more powerful (OKP, I is at least as powerful as
OKp), and that OK +I p is at least as powerful as 4Kp.
The consistent labeling problem is NP-complete and, there-

fore, worst case problems can be expected to require exponen-
tial computational time. The use of the look-ahead operator
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on these worst case problems does not improve the tree search
time. Despite this discouraging situation for worst case prob-
lems, the look-ahead operators can improve the tree search
time for many specifilc consistent labeling problems.
In the last part of the paper we explore characterizing the

difficulty of any given consistent labeling problem. We define
a minimal compatibility relation and show how the standard
tree search procedure for finding all the consistent labelings is
quicker for a minimal relation. This leads to the concept of
grading the complexity of compatibility relations according to
how much work it requires to reduce them to minimal rela-
tions at each stage of the tree search. This perspective suggests
that the reason look-ahead operators tend to work so well on
practical problems is that the compatibility relations used in
practice are not very complex and are reducible to minimal or
near minimal relations by PKp or TKP with small value for
parameter P.

A. The Consistent Labeling Problem
To begin our discussion we review some basic definitions.

Let U {= , - * *, M} be a set ofM units and let L be a set of
labels. If U1, * *,UN E Uand 11, - - *, IN E L, then we call the
N-tuple (11, * , IN) a labeling of units (u1, * *, UN). The
problem of labeling is that not all of the labelings are consis-
tent because some of the units are a priori known to constrain
one another. The compatibility model tells us which units
mutually constrain one another N at a time and which label-
ings are permitted or legal for those units which do constrain
one another. One way of representing this compatibility
model is by a quadruple (U, L, T, R) where T C UN is the set
of all N-tuples of units which mutually constrain one another
and the constraint relation R C (U X L)N is the set of all
N-tuples of unit-label pairs (ul, 11, *.. , UN, IN) where
(11,, * * , IN) is a permitted or legal labeling of units (u21, - - * .
UN). We call T the unit constraint relation and R the unit-
label constraint relation.
A labeling (11, * * *, lp) is a consistent labeling of units

(ul, - -- , up) with respect to the compatibility model
(U,L, T,R) if and only if {ij, **,iN} CI{1, ,P} and
(uil, * , UiN) E T imply the 2N-tuple

(uiP,l,1,-l , UiN' llN) E R;

that is, the labeling (lil, - * -, l,N) is a permitted or legal label-
ing of units (uil, * * , ujN). When U and L are understood,
such a labeling (11, - - *, Ip) is called a (T, R)-consistent label-
ing of (u1, * * *, up). The consistent labeling problem is to find
all consistent labelings of units (1, * - - , M) with respect to the
compatibility model. We denote this set of consistent label-
ings by X(T, R).
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B. The /KP Look-Ahead Operator
Haralick et al. [4] define a look-ahead operator bp which

when applied to a constraint relation R, removes 2N-tuples
which do not contribute to a globally consistent labeling. We
can generalize this look-ahead operator qp not only to work
within the framework of the (U, L, T, R) model, but also to
have an additional parameter K to give us more control over
the use of the operator.
Let U {1, * , M} be a set of units, L be a set of labels,

TC UN, and R C (U X L)N. Let K 6N<P with K < P. The
look-ahead operator oKP is defined by OKpR = { (u 1, * * *,
UN, IN) E R I for every combination il, *,K of 1, - *-,N
and for every U *,U E U, there exists Ik+1,***,
IpEL such that (l1, - jKIk 1,l,) is a (T,R)-
consistent labeling of (u1,.*,Ui, , uI+1, * , up)}.
Thus to apply the 'KP operator to R, we individually check

each N-tuple of R. We fix any K of theN units (u11, - -, UiK)
to their labels in the N-tuple and check every set ofP - K units
to determine if there are P - K labels which make the K fixed
labels (il,l* .* I IK) plus the P- K free labels (IK+1,* * *, IP)
a consistent labeling of all P units

(isXUiKl UK'+1' l..IUP).
We repeat this process for every combination of K out of the
N units in the N-tuple. If for any combination of K fixed
units and labels, there is a set of P - K units for which P - K
labels to make a consistent labeling cannot be found, the
2N-tuple is thrown out. Mackworth [8] uses the p23 opera-
tor, the bp operator of Haralick et al. [4] is the oNP operator,
Haralick and Kartus [5] use the 01N operator, and Ullman
[10] uses the 012 operator.

II. PROPERTIES OF THE @KP OPERATOR
The lKp operator is a generalization of the Op operator in

the Haralick et al. paper [4]. Thus, we would anticipate that
the characterizations of the kp operator also apply to the PKp
operator. In this section, we will show that this is so. In addi-
tion, we will show that the power of the oKp operator depends
on both P and K, the power to remove N-tuples of unit-label
pairs from R increasing as K or P increase. We continue the
numbering of the theorems and propositions from Part I of this
paper.
Let U= {1, , M} be a set of units, L be a set of labels,

TC UN, and R C (U X L)N. First we define the smallest
order-N relation STR C (UX L)N that defines the same set
of (T, R)-consistent labelings as R does. We do so by noting
that the intersection of unit-label constraints, all of which have
the identical set of consistent labelings, is a unit-label con-
straint having the same set of consistent labelings. The rela-
tion STR is defined as the intersection over all relations R'
which have the same set of consistent labelings that R does.
Proposition 4: Let R1, R2 C (UX L)N be such that

£(T, R,) = £(T, R2). Then £(T, R1 n R2) = £(T, R1).
Proof: First, R I nR2 CR1, so by Lemma I, C(T,R1 ()

R2) C£(T, R1). Now suppose (11, *-* , IM) E £(T, R1). By
the hypothesis, (11, - , IM) E.C(T, R2). Then for every

is in R1 and R2 and therefore in R1 fn R2. Thus (11, , IM) E
£(T, R1 n R2).
Theorem 3: Let Ri C (UX L)N, i = 1, * * *, n, be such that

C(T, R) = .C(T, R), i = 1, ,n. Then

n
£ T,fnRi =JC(T,R).

i=l

Proof: The proof is by induction on n.
Theorem 3 motivates the following definition for STR.
STR is a minimal relation with respect to T and R if and

only if

STR = f {R' £(T, R') = £(T, R)}.
Clearly, STR is contained in R since R is trivially one of the R'
such that £(T, R') = £(T, R), and STR is the smallest relation
R' C R such that £(T, R') = £(T, R). The following theorem
shows that every N-tuple of unit-label pairs in STR contributes
to some (T, R)-consistent labeling.
Theorem 4: Let U, L, T, R, and STR be defined as above.

Let S= {(ul,cl, ... ,uN,cN)E(UX L)NI(U, **,uN)ET
and for some (11, - * *, IM) E .C(T, R), cn = lun, n =1, * ,N}-
Then STR = S.

Proof: Let (U1, Cl, , UN, CN) E S. By the definition of
a consistent labeling, (u1, c1, * * *, UN, CN) must be an element
of every R' C (U X L)N such that £(T, R') = £(T, R). Thus
(U1,C1,** , UN,CN)ESTR' and SC STR.
Conversely, the definition of S implies that £(T, S) =

£(T, R). Since STR is the smallest relation with this property,
we have STR C S. Thus STR = S.
An immediate consequence of Theorem 4 is that STR 0 0

if and only if there exists a (T, R)-consistent labeling of
(1, ...*,M).
Since STR contains only those 2N-tuples of R that contri-

bute to a consistent labeling, and since the job of the @KP
operator is to remove 2N-tuples from R that do not contribute
to a consistent labeling, we could expect relationships to exist
between the reduced relation STR and the partly reduced rela-
tion OKpR. The following theorems state these relationships:
repeated application of oKp cannot reduce R to something
smaller than STR and STR is a fixed point of bKP.
Theorem 5: Let TC UN and R C (UX L)N. Let STR be

the minimal relation corresponding to (T, R). Suppose K S
N 6P and K <P. Then STR C KpR for every positive
integer m.

Proof: Since £(T, R) = £(T, PKpR) by Proposition 3, a
simple induction yields C(T, R) = C(T, qK7pR) for every posi-
tive integer m. Since STR is minimal and £(T, STR) =
£(T, K&pR), we must have STR C OK&R.
Theorem 6: kKP(STR) = STR.
Proof: By definition of qKp, cKPSTR C STR- By Propo-

sition 3, £(T, STR) = C(T, oKPSTR). Since STR is minimal
and £(T, STR) = £(T, (KPSTR), STR C¢ KPSTR Hence,
STR = 4KPSTR.

If we fix K, then larger values of P represent more work for
the ObKP operator. Thus we would expect xKP to be more

N-tuple (u 1,-* -, UN) E T, the 2N-tuple (u 1, lu 1, -- UN, IUN)
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shows that kKP+i takes at least as many elements out ofR as
does kKP.
Proposition 5: Let R C (U X L)N, K 6 N, and P > K. Then

OKP+1 R C@KpR.
Now if we fix P, we might expect to obtain a related result

for K. However, it is not true that kK+lpR C¢KpR or
kKPR C kK+lPR. To see this, consider binary relation R of
Fig. 1(a) and let T= {1,2, 3}2. Then 013R =R, but the
k23R = R - {(1, b, 2, a), (2, a, 1, b)}. Thus 023R Cq013R.
Now consider the binary relation R' of Fig. l(b) and let
T={, 2, 3,4}2. Then 013R'= 0 and k23R'= {(l,a, 2,a),
(2, a, 1, a)}. Thus l13R' C 023 R'. The relationship that does
exist is that if K'K+lP cannot reduce R anymore, then ,KP
will certainly not be able to reduce R anymore. In order to
prove this kind of fixed-point result, we need one condition
on R and one condition on T. The condition on R is that R
contains no N-tuples of unit-label pairs corresponding to
N-tuples of units which do not constrain one another; that is,
N-tuples of units not in T. This just says that R has no "ex-
cess baggage." R contains the constraints and if an N-tuple of
units is not in T (do not constrain one another), then it is
illogical to put its constraints in R since it does not have any.
The condition on T is one of constraint connectivity. T must
be sufficiently connected so that if (u1, * * *, UN) E T, then
any K units from u1, * - *, UN plus any N - K additional units
from U must form an N-tuple of units in T.
The proof that kK+lpR = R implies oKpR = R also relies on

the fact that if (u1, 11, *- - , UN, 1N) ER and OK+lpR = R, then
by finding any Q-tuple of units from u 1, * * *, UN, Q < K, and
by adding to these Q units any N - Q units which make the
resulting N-tuple of units in T, we can always find labels for
the N-Q units so that the N-tuple of unit-label pairs formed
by the initial Q units and their labels plusN - Q units and the
labels we find for them are in R.
Proposition 6: Let RC (U X L)N, K <N< P, K < P,

Q.K, andP- K>N- Q. Suppose R = KpR,il, - -- ,fQ is
a combination of 1,* ,N and vl, - , VN_Q E U. Then
(U1, 11, * , UN, IN) ER implies there exists I', - * *,IN Q E L
such that (u1l, - * , UjQ, I'Q V1,I1,VI ,NQNQ) ER
when (u11, - - ujQ vl, ,VNQ)ET.

Proof: Let (u1, 11, ,UN,IN) ER. Since R =pKpR,
(U1, 11, * * *, UN) IN) E KPR. Let ill * * * ,lQ,* jK be an

arbitrary combination of 1, - - ,N and v, . . ,VN-Q**
VP-K be arbitrary units of U. Since (u1, 11,-. , UN, IN) E
kKPR, there exist labels 11, - , N-d *, PKEL such
that (ill.. 'IK'11 ... *- ,IP-K) is a (T,R)-con.
sistent labeling of units (u11, -

I U,K, V1,. ,VN-Q, *,
VP-K). Hence if (ul,*'-l UiQ,Vl ,VN_Q)E T, (ujl,
|l*** UjQlijQ v,Vll;, ** VN-QA_NQ)CR.
Taking Q = K in Proposition 6, we have the following

corollary.
Corollary 1: Let RC (U X L)N, K + I N< P. Suppose

R= OK+1pR, ill, ,IK is a combination of 1,. ,N and
V1-,* VN-K EU. Then (uI,l1,-* ,UN,IN)E R implies
there exists " * * *N-K EL such that (ujl,l , I UIIK,
K V,V1,1l, VN-K,l1vK)ER when (uj , * * * ,UjKl, '

VN-K) E T

Graph Representation of R
R

1 ,a,2,a
1 .a,3,a
1 ,b,2,a
1 ,b,2,b
1 ,b,3,b
2,a,1 ,a
2,a, 1b
2,a,3,a
2,b,1 ,b
2,b,3,b
3,a,1 ,a
3,a,2,a
3,b, 1 ,b
3,b,2,b (a)

Graph Representation of R'

,a,2,a
,a,3,a

I ,a,4,a
2,a, I a
2,a,3,a
2,a,4,a
3,a,1 ,a
3,a,2,a
4,a,t ,a
4 ,a,2 ,a

(b)
Fig. 1. Illustrates that OK+ lpR I 4KpR and fKPR -t4K+ I pR- (a)
Relation R where 023R C cp13R. (b) Relation R' where p13R'C
0-23R '.

We can now give sufficient conditions on R and T which
guarantee that OK+lPR = R implies OKipR = R.
Theorem 7: LetR C(UX L)N,TC UN,andK+l N<P.

Suppose (u ,1,11, UN,IN)ER implies (u1,*-- , UN)E T
and suppose (u1, , uN) E T, j1, -*jK a combination of
1,--- ,N, and i4+l, * * ,UXEU imply (U ,-,* UK,
UK+li ..* *, U) E T. Then qK+1pR = R implies oKPR = R.

Proof: Let OK+1pR =R. Since oKpR CR, by definition
of oKP, we need only prove R C OKpR.
Let (u1I,11**.,UN,1N)ER. Since R=4K+lpR, (ul,ll,

*. ,UN, IN) EfK+lpR.
Let il,- iK be an arbitrary combination of 1,-- , N.

Let u'1, * *, Up be arbitrary units of U. By supposition on
R, (U1I1... ,UN IN) ER implies (U1,- -UN) E T. By
supposition on T, (u I, ,UN) E T,il, jK a combination
of 1, - ,N and u;+1,, ,UN EU imply (U11,---*,UK,
UK+1,***, UN) E T. Since R = OK+,pR, jl, - - *, jK a com-
bination of 1,-- ,N, ul+1, UPCEU, and (ul,11,
UN, iN) ER imply by the corollary to Proposition 6 that there
exists labels IK+1, * * , INr E L such that (U,I, .. U/,

I UK+1, '*,N,'I)ER when (U-l *- UKU'K+1,
UN) E T.
Because R=4OK+lpR, (uj1,1jl,*.. UIK,K UK+l,IK+I,
**,UXIN)ER, 1,--- K + 1 is a combination of 1, N,

and uK ,U P E U, by the definition of tK+IP, there exists
labels IK+2, e , lP such that ((n, - IjK, 1K+19 1K+2, *,)
is a (T, R)-consistent labeling of (u1,K.* , UuKpUK+, * * ).
Now since (U1,11, ,UN,IN)ER and -l, jK is an
arbitrary combination of 1, , N and uK+, U E U,
and we have shown the existence of labels IK+I, 1K+2,
Ip E L which make (ill ... I, JKIK+I, K+2, * - , IP) a (T, R)-
consistent labeling of (U1, - * *, U/K, U 1,-*I , UP), we must
have by the definition of bKP, (U1, 11, ,UN, IN) E PKPR.
Hence R C @KpR.
Corollary 2: If T = UN, then ObK+lpR = R implies (KpR = R.
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Theorem 7 implies that successive application of 4K+,P to
any unit-label constraint relation will produce a relation cer-
tainly no larger than the successive application of oKP to the
same relation. Hence, the fixed-point behavior of OK+,P is
better than the fixed-point behavior of qKP. To show this
fact, we will need a precise way of talking about the successive
application of qKp to the point where OK';'R = OK&R.
To help us do this, we adopt the following notational

convention:

00

ZpR = n OK&R.
m =1

It is directly verifiable from the definition of )KP that

OKp(R n S) = (OKpR) n (QKpS).
A simple induction on this relationship yields bKP(nl,l Ri) =
nr1 oKpRi. From this it is easy to see that ObpR is a fixed-
point of qKp:

00 00

~P(kPKm=n(< R )=n qKmpqR
m=l m=2

00

= fl KmpR = pR.
m=1

Because all sets we consider are finite and ¢bKpR C R, q;pR =
0,pR for any positive integer m satisfying s7KmpR = Km 1R
Therefore, we are justified in thinking that 4;pR is the result
of successively applying q5KP to R until a fiLxed point is reached.
Corollary 3 to Theorem 8 states that 0,W+ pR _C qpR; the

fixed-point behavior of qK5IP is at least as good as the fixed-
point behavior of IKP. Fig. 2 shows an example where the
fixed-point behavior of 023 is strictly better than the fixed-
point behavior of 0b13, thereby demonstrating that the con-
tainment relation in q;+1pR _C O;pR cannot be made into
the stronger equality relation. One practical consequence of
Corollary 3 is that for N> 2, use should be made of the
ON-1N operator rather than the (1N operator used by Ullman
[10] and Haralick and Kartus [5], since I1N and ON-1N re-
quire the same amount of work.
Theorem 8: Suppose OA and kB are operators which satisfy

the following:

1) OAS = S implies kB S=S;

2) ObASCS;
3) S1 CS2 implies 4gBS1 C'BS2-

Let R be given. Then q5R C O;R.
Proof: Let R be given. Certainly OA (C.;R) = (1R).

Hence, by property 1), 'kB(o,R) = (AR). By a simple induc-
tion, for every n > 1, OB'(qR) = (qA R). Hence 0;B(04R) =
(.R). By successive application of property 2), OZR C R.
Now by property 3), OB(41AR) C kBR. By successive applica-
tion of property 3), ¢b(q5R) C OBR. But q5AR = (OIR).
Therefore, ObR C OBR.
Corollary 3: For any R, ' IpR C O;pR.

(c)
Fig. 2. Shows that P23 is more powerful than 013. Let U= {1, 2, 3, 4}
and L = {a, b, c, d}. Take T = U x U. (a) The relation R is at a fixed
point under l13. (b) The relation is the result after one iteration by
123. (c) The relation is the fixed point reached after two iterations
by 023.

III. THE "KP LOOK-AHEAD OPERATOR
AND ITS PROPERTIES

The task of the kKP operator is to reduce the relation R by
removing N-tuples of unit-label pairs that do not contribute to
any consistent labeling. We can also define a look-ahead
operator which removes K-tuples of unit-label pairs that do
not contribute to any consistent labeling from projections of
R. Such an operator is the generalization to the Tp operator
of Haralick et aL [4] which removes from a set of unit-label
pairs those pairs which do not contribute to a consistent label-
ing. In this section we will show the fixed-point equivalence
of bKP and 'KP.
In order to define the operator "'KP, we first define a gen-

eralized projection operator 1TK. Let Q C AN be an N-ary
relation and K <N. We define the generalized projection
operator 7rK by

IrKQ= {(al,a aK) EAK for some (q1, qN)EQ
and some combination /l, * IK of 1, * , N,

ai = qi,, i = 1, * * *, K}.

The operator irK will be used to transform N-tuples of units
from T to K-tuples of units and N-tuples of unit-label pairs
from R to K-tuples of unit-label pairs. Notice that it follows
directly from the definition of the ITK operator that S C R
implies iTKS C irKR.
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We now define the generalized look-ahead operator TKP.
Let U= {l, , M} be a set of units, L be a set of labels,

TC UN, R C (UXL)N, K .N.P, K<P, and DC (UX L)K.
The look-ahead operator 'KP is defined by

KKPD = {(U1,11,**,UK, IK) E DI for every

* **, up C U there exist labels

IK+1, -,- lp L such that

1) (11, ,IK,I'K+1, ,lp) isa(T,R)-

consistent labeling of

(U,- ,UK,UK+l, Up),

2) for every combination ij, jIN of

1,- * ,P satisfying (u1, * *, UIN) E T,

then rK(Ui1, Ij1, --- , UIN, lIjN) E D}.

As with the kKP operator, the 1KP operator is stronger for
larger values of P.
Proposition 7: Let R C (UX L)N, TC UN, K.N.P and

P>K, and DC (UX L)K Then 'Kp+I (D) CZKp(D).
The example in Fig. 2 helps compare the power between the

f and operators. It shows a case where r.23 is strictly
stronger than 413 or I13 indicating that 0 operators with
larger K's can be more powerful than operators with the
same fiLxed P. It is also possible to construct examples where
operators like *23 are more powerful than 013- In the latter
part of this section, we will show the equivalence between
ckKP and TKP. But before we do this, we characterize some

more properties of 4KP. As we defined a minimal relation
STR which was related to the fixed point of oKP, we can

define a minimal set of K-tuples ATR and relate it to the fixed
point of 4Kp. Let R C (UX L)N, TC UN, K.N.P, and
P>K. We define the set ATR C (UX L)K by

ATR = {(Ul, Cl, *..*, UK, CK)

E (U X L)KJ (ui, - *-UK) C7KT

and for some labeling

(il,--l>)M)eJr(T,R),c=luj, i= 1, ,K}
The following relations exist between TKP and A TR: repeated
application of "KP cannot reduce -TKR to something smaller
than ATR and ATR is a fixed point of TKP.
Theorem 9: Let R C (U X L)N and T C UN. Let K <N<P

and K <P. Let ATR be as above. Then ATR C 'kp(7rKR)
for every nonnegative integer m.

Proof: The proof is by induction on m. For m = 0, we

must show that ATR C7rK(R). Let (Ul,cl,C * *,UK,CK) E

ATR. Then (U1, * * ,UK) ElrK(T) and there exists a (T, R)-
consistent labeling (I11 * * IM) of (1, * M*,AI) such that
ci1=l,ui, i=l, * * *, K. Since (11, * * * IM) is a consistent label-
ing, for every (vl, *, vN) E T, (vl, lvl, , vN, 1VN) is in R.
Since (Ul, * , UK) is in 7rK(T), there exists (vl, * , VN) E T
and a combination j, *, jK of 1, ,N such that ui = vj,
i = 1, ,K. But since (vl,* , VN) ET,_and (I-, ,- IM) is
a consistent labeling, (vl, lvl, * * , VN, 1UN) E R, and (u1, lu 1,

,UKIUK)EXTKR. Since cZ =lu,, i = 1, ,K, we have

(U1, Cl, * * *, UK, CK) E1TKR.

Suppose ATR C- 'K7P(rTKR), for some m >0 and let
(U1,C1, * ,UK,CK) EATR. Then (ul, c1,* ,UK,CK)E
*KIp(1rKR). Let UK+l, * ,up EU. Since (ul, cl,**
UK, CK) E ATR, there exists a (Y, R)-consistent labeling
(li,--,1M) of (1,--,M) such that ci=lu,, i=1,---,K.
This implies that (Iu1-- ,9 UK UK+I- - I'UP) is a (T,R)-
consistent labeling of (ul, * * *, UK, UK+l, * * , Up). Now sup-
pose that il, *, jN is a combination of 1, - -- , P satisfying
(Uj1, * *,U,K)eET. By definition of ATR, we have (uj,, 'hl

U.K IK) ATR. But ATR C 'KP(1rKR) so that (u
'1' u, UiKX, IjK) E 'J!7(7KR). By definition of "VKp,

(Ul, C1,**UK, CK) E KP(PKMP(ITKR)) = TmKP (7KR).
Hence, ATR C 'Kp+ 1 (TKR) and by induction

ATR C mKP(ITKR)

for every nonnegative m.
Theorem J0: IKP(A TR) =A TR.
Proof: Let (u1,c1, -. ,UK,CK)EATR. Then (u1, ,

UK) E 1rKT and there exists a (T, R)-consistent labeling
(11X *.* , IM) of 1, * * *,M such that ci = lui, i = 1, * * *, K. Let
UK+1, ,Up E U and let jl, .--, jK be a combination of
1,***,P. Then (l u j,-- IIUK+ I lup) is a (T,R)-
consistent labeling of (uj1, ... , U,K, UK+1, *, up). Now let
(U/l, * * * ,UjK)ET. By definition of ATR, (Uj1,lU *,
UiK IuK)EA TR.
Now by definition of 'KP, (u1l, lu1j... , U 1KIUjK

IKP(ATR). Since 1, K is a combination of 1, - ,

(UX1 lul, , UK,iUK) EI KP(ATR). But lu, = ci so that
(U1, c1, ***, UK, CK) E4 KP(ATR).

If it were the case that 1TK0qpR = J4p(7rKR) and if it were,
therefore, possible to construct 4'p(R) from ' p(rTKR), we
might choose to do so since it might be more storage efficient
to save the projections and work with the 'KP operator rather
than with the PKP operator.
There is a direct relationship between 'KP and 4KP which

can easily be proven with the help of the definition of a gen-
eralized restriction. If R C (UX L)N and H C (U X L)K, we
define the restriction ofR by H as

RIH = {(U1, 11- * , UN, IN)

ERIrK(U111*l,, .,. UNV, IN) E H}.

R |H is that part of R whose projection is in H. The following
properties are immediately derivable from the definition of
RIH:

1) R = RIH implies 7TKR C H,
2) R = RtKR,

3) SCR implies SCR I KS, and

4) frKR IH C H

Theorem 11 states that qKpR can be recovered from IKPITKR
via the restriction: qKpR = RI| Kp(,fKR)- Corollary 4 uses this
fact together with the properties of the generalized restriction
to prove that q5Kp cannot remove any N-tuples from R if and
only if TKP cannot remove anything from R: R = ,KpR if
and only if 'Kp(PrKR) = ffKR. Thus R is a fixed point of qKp
if and only if its projection IrKR is a flxed point of "KP.
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Theorem 11: kKPR = R *KP(QKR)
Proof: First we show qKpR C RIIKp(,rKR) Suppose

(U1, 11, * * *, UN, IN) G oKpR. Then (u1, 11, * * *, UN, IN) ER.
Let ill, * * *, jK be a combination of 1, * - *, N. Since (u1, 11,

,UN,IN) ER, (Ujl,.1..1,** Uj, IjK) EK) KR. To complete
the first demonstration, we must show that (u11, i'l, * * UjKh
jK) E *K(frKR). Let uK+ ,' UP CU. Since il, -,jK is
a combination of 1, ,N, uK+1, up E U, and (u1, 11,
* * ,UN, iN) E OKpR, by definition of qKP, there exist labels
IK+1,l*,ECL such that (ill...I'-K'+1 . ,IlP) is a

(T, R)-consistent labeling of (u11, * , KU+1, ,).
To simplify the notation, let

[ujp I1 p<K
Vp =

I

up K<p.P

l* I I,lp<K
1,Ip K<p.P.

Then we have (1, * *, I) is a (T, R)-consistent labeling of
(vl, * **, vp). To complete the proof that (u Ij, I * , U/K
IjK) E 'Kp(frKR), we must show that for every combination
ill **,iN of 1,- ,P satisfying (vi, ,viN)ET, 7rK(Vil,
1g1' , 'iN' LVN) EG KR.
Let il,l ,iN be a combination of 1, ,P satisfying

(ui1,* * , vN) E T. Since (1,* *'- ,l,p) is a (T, R)-consistent
labeling of (v1, * , up) and (vi,* V,iNv) E T, (vil11,
viN,l) ER. Thus lK (vi , 10, ' viN,l1s )E7TKR. There-
fore, (u11,I,... ,uKiK) !PrKR),(u!1'-,Nil,jl, I UiK I14) E *KP(1K) (Ul, Ill * * , UNl
1N) ER | KP(fKR), and oKpR C R *KP(rKR).
Suppose (u, 11, * ,UN, IN) ERI|IKP(KR). Let j,l ,IK

be a combination of 1, ,N and let UK+1, zUP4E U.
Since (u , 11, ''* , UN, IN) E R *Kp(wKR), (U 1l,1 . jK'
1jK)E Kp(7rKR). By definition of 'KP, there exist labels
K+1,-***,IEL such that (1jl'... I'K' I K+1 I

. ,9I) is a
(T, R)-consistent labeling of (u11,** ujK, u1,. U,
Thus (ul, 11, - ,UN, IN) E4KpR and RI *Kp(frKR) C OKpR.
Corollary 4: 4KpR = R if and only if TIKP(TKR) = 7rKR.
Proof: Suppose oKpR = R. By the theorem, bKpR =

RI *KP(7rKR). Hence, R =RI4,Kp(,KR). But by property 1)
R =RI IKp(TKR) implies frKR C KKP(7rKR). Since by defi-
nition of "KP, *IKp(rKR) C rKR, we obtain that 1rKR =

IKP(irKR).
Suppose KKP(7rKR) = rKR. Then RI|IKP(WKR)= Rj 7rKR'

But by the theorem, kKpR = R 'Kp(tKR). Since by property
2)RI rKR = R, we obtain oKpR = R.

In order to derive the relationship between ObpR and
'Ip(Z'PKR), we will first have to have some characterization of
O;pR and *Jp(7rKR). The first one we prove (Theorem 12)
says that R restricted to JZP(ITKR) cannot achieve any
further reductions than I'p itself can. The mild condition
between R and T required is one that we have used before:
R has no "excess baggage"; (uI ,,l, -. - , UN, IN) E R implies
(U1, , UN) E T. It will follow immediately from this above-
mentioned result 7rKR1,O( R) = 1pP(1rKR) that

1) 7TKR I p(0KR) isafixedpointunder 'KP

(Corollary 5),

2) R|I ,p(KR) is a fixed point under 4KP

(Corollary 6),

and

3) RIIp(KR) C p R. (Corollary 7).

Theorem 12: Let R C (UX L)N and T C UN satisfy (u1, 11,
**,UN, IN) E R implies (ul, *,UN) C T. Let K <N< P
and K <P. ThenffKR j'TP(nKR) =pP(rTKR).

Proof: By property 4), 77KR I 'Iv'P((KR) C'J!P(7TKR).
Suppose (U 1, *1, *, UK, IK) E T!pP(7rKR). Then (u1, 11, - . *,
UK, IK) E7rKR. Since (u1, 11, '' , UK, IK)E 7KR, there
exists UK+1, *' UNCUN U and IK+1, * - *, IN CL such that
(u 11,'- ', UN, IN)E R. Now let UN+I1', up C U. Be-
cause (ul,1, '* *, UK, IK) E4 KP(7KR) and UK+l, *UP E U,
there exist IK+1, --- , IP EL such that (1, *,K ,K+I
***,1p) is a (T,R)-consistent labeling of (ul, - - UK, UK+l,

u, up) and il, * - *, iN a combination of 1, ,P satisfy-
ing (ui1, - - , uIN) ET implies 7TK(uil, lil, - u'N, liN) E
T'P(IrKR). But by hypothesis (u1, 11, -' - ,UN, IN) ER im-
plies (u1, * * , UN) E T. Hence, TK(U1,l1,'' ,UN, iN) C
4'p(rrKR). Now, by definition, (ul, 4, * **,UN IN) CR and
K(U 1,~11 * *,UN, IN) C KP(rKR) imply (u1,I,'', UN,

IN) ER IKp(,KR) so that

(u1,!1, - ,UK, IK) E rKRI00 (KR).
Therefore, *Jp(@rKR) C nKR I I,Wp(7KR)-
Corollary 5: 'IKp(rKR IKP(7rKR)) = iKR *Z
Proof:. %pQrKR),
*KP(7KIKR p(,rKR)) = IKp(TKP(KR)) = *J!p(prKR)

= 7TKR K'='pWfKR)'
Corollary 6: =R)Kp(R 4*rR))= R KpQKR)

Proof: By Corollary 4,

TKP(KR (,NKR)) =KR I WP(rKR)

By Corollary 3, IKP(IrKS) = 7rKS if and only if PKpS = S.
Hence PKP(RI| Zp(ffKR)) R= Rp(X7KR)
Corollary 7: Let R C (U X L)N, TC UN, K <N< P, and

K <P. If (U1, 11, '' - , UN, IN) ER implies (ul, , UN)E T,
then RrIpWQrKR)-CKp

Proof: Certainly R I|Zp(7KR) C R. From this a simple
induction will show that OZp(R rp(rKR)) C O;pR. But by
Corollary 6, OKp(R R-(iR)=R From this a

simple induction will yield R I 1Ep(ffKR) = ;p(R | .P(ffKR)).
Hence, we obtain RI|Pw KR) C ;pR.
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In Theorem 13 we prove that the projection of the fixed
point under repeated application of 4KP must be contained in
the fixed point under repeated application of "KP on the pro-
jection. That is, ?rKKpRRC 'J'p(TrKR). Combining this
result with the fact that RI|zp(wKR) C O;pR from Corollary
7 yields irKOZPR = 4IZp(prKR) (Corollary 8). Using the fact
that RI1fK;pR is a fixed point under bKP (Corollary 6) and

7rKOKPR = %PIp(1rKR) yields that R|I7 R is a fixed point
under 4KP (Corollary 9). Finally, in Corollary 10, we prove
the equivalence of the fixed-point power of 4KP and 'Kp:
qZPR = RI|'p(QrKR)- This means that we may choose to

repeatedly apply qKP to a fixed point or "KP to a fixed point
and from one, we can obtain the other via the relations

1) *ZP(7rKR) = 7rKO;pR and

2) q;pR R I KPr(p7KR).
Therefore, since oKP and 'KP take the same amount of

work to apply, the power of oKP and "KP is the same. The
only difference is an implementation one concerning space and
speed of convergence to the fixed point.
Theorem 13: Let RC(UX L)N and TC UN. Let KS

NS P and K < P. Then 7rqKKpR CirprrKR.
Proof: The proof is by induction. Let (u1, -i,.* * , UK,

IK) E7rIKKPR. Since O;pR C R, then 7TKckKPR C rKR.
Hence, (u1, l, ...* UK, 1K)E7 KR = IKp(nKR).
Suppose (uI,11,I* *,UK,lK)EirKO;PR implies (u1,11,
,UK,IK)E'IIKP7rKR for some m>O. Then if (v1,1I,
vN, IN) E KPR, 7TK(V1, 11, * , UIN,) E *K'Pp7KR. Let

(u1,, * UK),UK,lK)EirKe;pR. Then there exists (v1,lj,
* V,vN,lN)E OKPR satisfying (u1,11,* * *,UK,lK)EffK(V1,
1,, , U IN), Let UK+1, u* ,up E U. By definition of
,OKp, (Vl, 11,* *v*,VNI) Ei O;pR, (ul, 11 ,- U K
irK(V1, II, *. VN,UIN) and UK+1,' -* ,Up EU imply there
exist labels IK+I, - -- , Ip such that (l1, * *, Ip) is a (T, O;pR)-
consistent labeling of (uI, * - *, up).
Now let il, **-, IN be a combination of 1, , P satisfying

(ul, * * *, U%l) E T. Since (li, - - *, Ip) is a (T, OZpR)-consis-
tent labeling of (ul, * * *, up) and (ul1, * * *, u%N) E T, then by
definition of (T, OZpR)-consistency, (u11, l , * * *, U-, I N) E
45pR. But by supposition, (U,l,I,,*,UjN IN)E pR
implies irK((jJ,X -X, UN,liN) E *mP17KR.
By definition of 'KP, (u1, 11X -* *, UK, IK) E IKmp' lirKR.

Hence, by induction 7rKO;pR C IKp 7rKR for every m > 0.
Then by definition of *Ilp, 7rKbKpR C J!P7fKR.
Corollary 8: Suppose (u1, l, - , UN, IN) ER implies (u1,

, UN) E T. Then I'p(irKR) = rKoKpR.
Proof: By Corollary 7, RI *,'P(mKR) C OApR. Hence,

irKRIP C(KR)C7K pR. But by Theorem 12,
KIKP(nKR) KPK)

ffKR P(fKR = J!p(irKR).

Hence, 'PIp(rKR) C 7rKOZpR. Now by this theorem

Therefore, Jkp(irKR) = 7rKZKpR.

Corollary 9: Suppose (U1, 11, * , UN, IN) ER implies (u1
UN) E T. Then 4KP(R I )=KKPR) WftKpR

Proof: By Corollary 6, qKp(RIKp(trKR)) =RKp(ffKR;
By Corollary 8, T!p(7rKR) = 7TfKopR. Simple substitution
of this into the above relation yields kKP(RI )I
RI frqpRK4KpR

Corollary 10: Suppose (u 1l, , UN, 1N) ER implies
(a,1 UN) E T. Then ObpR RI (R)

Proof. Certainly, RI rK,0KpR C R. Using induction upon

repeated application of 4KP yields 45p(R R) C O;pR.
But by property 3), O;pR C R KI pR Now using induction
upon repeated application of 'KP yields

O;pR C ;p (RjI 0K0.pR)
Therefore, OZpR = O;p(R )rK0.ZpR) By Corollary 9,

1 1rK¢KPRfK4KPR WKrpR
is a fixed point under q, hence OZp(R ffKOPRR RI I7KpR
By Corollary 8, I'p(irKR) = iKoZpR. Therefore, KpR =
RI *rP(.KKR)
We close this section by noting that the original Waltz filter-

ing algorithm [11] is a sequential version of '12. The Rosen-
feld scene labeling algorithm [9] is a parallel version exactly
like I12. The lp operator described by Haralick et al. [4] is
the 'lp operator of this paper and the refinement procedure
of Ullman [101 used to find subgraph isomorphisms is the 12
operator of this paper.

IV. COMPLEXITY

In this section we show the computational importance of
removing from R all those N-tuples of unit-label pairs which
do not contribute to any (T, R)-consistent labelings. We show
that a standard tree search for finding all (T, R)-consistent
labelings of a unit-label relation R having only N-tuples of
unit-label pairs which contribute to (T, R)-consistent labelings
can be done quicker for smaller relations than larger ones.
This motivates the empirically good results that Waltz [11]
obtained: evidently for scene edge labeling problems, the '12
look-ahead operator is powerful enough to reduce the unit-
label constraint relation to a minimal or near minimal one at
each node in the tree so that the tree search becomes easy to
do.
Our first task will be to define the concept of minimal rela-

tion. Let TC UN and R C(UX L)N. R is minimal with
respect to T if and only if Q C R and £(T, Q) = £(T, R) imply
Q =R. It is immediate from the definition of STR (the
minimal relation with respect to T and R) in Section IV that
STR is a minimal relation with respect to T and that R mini-
mal with respect to T implies R minimal with respect to T
and R. Hence, by Theorem 4 of Section II:

1) all N-tuples of unit-label pairs in a minimal R participate
in a (T, R)-consistent labeling and

2) unit-labeling constraint relations in which all N-tuples of
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unit-label pairs participate in a (T, R)-consistent labeling and
in which (u , 11, - ' *, UN, IN) CR implies (u1, ,UN) E T
must be minimal relations with respect to T.
Therefore, we may take Theorem 4 as a characterization of

minimal relations: if (ul, 11, - * , UN, IN) ER implies (ul, * -* ,

UN) C T, then R is minimal with respect to T if and only if
all N-tuples of unit-label pairs in R contribute to a (T, R)-
consistent labeling.
Now consider the tree search required to find consistent

labelings. At each node in the tree search we must restrict
some unit to a particular label. This restriction is actually
applied to R by throwing out any N-tuples of unit-label pairs
in which the specified unit does not have the designated label.
Such a restriction in R, of course, restricts in a similar manner
the set of consistent labelings that can be found below this
node in the tree search.
In order to be able to discuss these kinds of restrictions, we

need to adopt a convenient notation. Let (11, * * *, Ip) be a
labeling of (u1, u* *, up). We define the restriction of R to
this labeling by

£(T, R)|"l, UI u {(11, 1,4I) E C(T, R)| U P

p= I, *P}-

We should then expect that

£(T, R)I u1l1, **, uplp =£C(T, RI u11,... , uplp).

This is not true unconditionally. Proposition 8 proves that
C(T,R)| u,1, *., upip C X(T,TR|u11, ... , upip). However, be-
cause the only N-tuples of unit-label pairs that have to be
checked for consistency are those whose N-tuples of units are
in T, it is not necessarily true that £(T, RI ull, , upip) c
£(T,R)Iu1i1,... ,upP- In order for this to be true, T must
include at least one N-tuple of units involving each unit in U.
We say that T covers U if and only if for every u C U, there
exists an N-tuple (U1,* * , UN) C T satisfying u = u,, for some
n E { 1, , N}. When T covers U, Proposition 9 proves that
£(T, RI ul 11, - *, upp) Ci(T, R) u11j,...,upgp- In summary,
therefore, we have Theorem 13 which states that if T covers U,
then C(T, R)|uj1, * *,upip = C(T,RIu1j1,* ,uplp)
Proposition 8: Let T C UN R (UXL)N and P>O.

Suppose (1I,..*, Ip) is a labeling of (u1,-- - , up). Then
.C(T'R)|uIjI, .,uplp C _r(TxR|uIj1,.._upjp)-

Proof. Let (I1 ,1I) ECC(T,R)Iu11... upip. Then

IUP =P, p= 1, - - - ,P. Suppose (vl, - - -, vN)CT. Then by
definition of £, (,vl-,- - -N, lIN)CR. If for some m
and p, v =up, then lP = I' = i . Thus, by definition of

RIu1 (Vj11,ujUpv1r1. N NowV , VN,lVN)GCRIuIj,_,upj_ o

by definition of £, (l., *..1,IM) EC(T,RIU| l, . ,upip).
Proposition 9: Let TC UN cover U, R C (U X L)N and

P>O. Suppose (11,---,lp) is a labeling of (u1,--- ,up).
Then £(T, RI uil ., upip) C C(T, R)I u1Ij,*... upip.

Proof: Let (1 * *,- IM E (TR|ulll, * ,uplp). Since

Rul l,* , upjPC R £(T,RIul,** upip) C X(T,R). Hence,

(11, . , IM) C £(T, R). Now we only have to show that
UP p, p = 1-, P.
Since T covers U, for every u C U, there exists some

(v1, - - *, VN) E T satisfying vr = u for some m = 1, - - *, N.
So let pE {1, - - - ,P} be given. Then there exists (v1,- - -*
VN) E T satisfying vm = up for some m E {1, - -* , N}. Now
(V, * ,UN) E T and (11, --* *,1) CE.(T, RIU lll .. Upip) im-
plies (vl, i1v' * 1N,lUN)CRIU1ll,-..-UPP. But Ur =Up so

that I' =I Thus I' l=' = IP. Therefore (1' .. .

* 1M) E
X(T, R) u11,-*-**,UPIP-
Theorem 14: Let TC UN cover U, RC (UX L)N, and

P>0. Suppose (11, ...
I ip)is a labeling of (u, , up).

Then £(T, RI u1li, * * , upip) = t(T,R) I ul,1...U,up.p
Proof: Propositions 8 and 9.

Now suppose that we start a tree search with a nonempty
minimal R. Then every N-tuple of unit-label pairs in R is
extendable to a (T, R)-consistent labeling and the set Lu =

{ I E LL (U, 1) C Tr1R} is nonempty for every unit u. In branch-
ing to lower nodes by restricting unit u to each of the labels in
Lu, we are guaranteed that below every node to which we
branch, we will be able to find at least one (T, R)-consistent
labeling. Thus, there will not have to be any backtracking
from these nodes due to a failure to find consistent labelings.
Unfortunately, as Fig. 3 shows, it is the case that the restricted
relations at each of the resulting nodes to which we branch
are not necessarily minimal. Furthermore, as Fig. 4 shows,
even application of ONN+1 to a fixed point of a minimal
relation that has been restricted does not necessarily produce
minimal relations. Hence, this property of not having to
backtrack cannot be guaranteed to propagate.
Although the properties of minimal relations are not as good

as we might hope for, we can show that the closer a unit-label
constraint relation is to being minimal, the less work the tree
search will have. The analysis proceeds as follows.
The work at level n + 1 of a basic tree search consists of

selecting for the next unit u,+ 1 all the labels that can be
assigned to that unit which extend the (T, R)-consistent label-
ing (11, - - *, In) of units (ul, - - - , u,,) above that level to a
(T, R)-consistent labeling of units (u1, - -- , Un+ ) One not
very efficient procedure is to try out each label In+1 in L and
check whether (11,- - - , ln+ ) is a (T, R)-consistent labeling of
(UI, -* *, Un+1). Since we assume that (11, * * *, In) is already
a (T, R)-consistent labeling of (u1, --* , un), we first need to
find those N-tuples (uIl, * * , U1N) C T for which il, - -- , iN is
a combination of 1,-**- n + 1 and for some k, ik =fn + 1.
For each of these N-tuples the test of checking whether
(Uil I lil I ..., UiN, IN) CR must be performed. The number
of such tests cannot be greater than #T. Hence at each node
there can be at most #L #T tests.
This procedure can be easily improved since we can deter-

mine with very little computation that certain labels cannot
possibly contribute to a consistent labeling. For example,
the only labels that could contribute to a consistent label-
ing are those labels which are associated with unit un +1 in
some N-tuple of RI U111 , Unln- Let us call this set of labels
Q(Un + uli1, * * *, unl,). The set is defined by
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Fig. 3. Illustrates a minimal order 2 unit-label constraint relation R.
Notice that RI la is not minimal since (2b, 3c), (2b, 4a), and (3c, 4a)
are in RIia but are not involved in any consistent labeling of RIla.

Q(Un+ I Ulll * * * Unln)

= { CLJ forsome (VI,cl,- VN. CN)

CRIulll, ,unln, Vk =Un+I for some

k=l,1 ,N and l=Ck}.

The number of nodes in the tree search at level n can be
written as

Pn = E E

11 (=Q(ul) 12(EQ(u2lulll)
E

In Qn(unlUill,- un-i In-l)

Hence, the total number of nodes visited in the tree is
EM=I P_ and this times the upper bound #T of the number
of tests which must be performed at each node yields #T
IM=I Pm as an upper bound for the number of tests required
in the tree search. It is clear from the definition of Q that if
S C R, then the Q associated with S at every step of the tree
search will be smaller than the Q associated with R and the
number of N-tuples from T that have to be tested will also be
smaller. Therefore, the total number of tests for the smaller
relation S will be fewer than for R. Since any S satisfying
£(T, R) = £(T, S) will yield the same consistent labelings, the
smallest number of tests will be done for that relation STR
which is minimal with respect to T and R. This result also
holds if the look-ahead operators bKP or TKP are used at each
node in the tree search since S C R implies OKP(S) C OKP(R)
and 'KP(7TKS) C *KKP(7TKR).

Fig. 4. Shows a minimal relation R having the property that RI 5 a is
not minimal and PNN+(RN sa) is not minimal. The unit-label pair
(1,a, 3,a) is in 'NN+1(RN sa) but it does not participate in any
(T, R IIa)-consistent labeling, where T = U X U.

The use of the ¢bKP or 'JfKP operator at each node of the tree
search has a chance to be effective only because it is a compu-
tationally cheap way of determining a smaller set of labels
which are guaranteed to contain all the labels that might con-
tribute to a consistent labeling. In other words, a small
computational expense early has the opportunity to save us
from a large computational expense later. However, the NP
completeness of the labeling problem suggests that there are
always pathologic cases which will force as complete a tree
search as possible with failure to find consistent labelings
regardless of the use of oKP or 4KP. Therefore, a worst case
complexity analysis will not really show any better results
with the use of the look-ahead operators than without the
use of the look-ahead operators.
This worst case complexity analysis is discouraging. The

only positive fact that can be brought out is the extent to
which a compatibility relation must be pathologically packed
in order to render qKp or '1KP ineffective. Fig. 5 shows the
smallest order two unit-label constraint for which no consis-
tent labelings exist and for which 123 is ineffective. However,
as soon as this relation is restricted in any way by the removal
of even one pair from R, the 023 operator reduces the re-
stricted relation to nothing.
In order to understand what kind of situations kKP and 1KP

will not be effective in, we must examine properties of rela-
tions which can be fixed points of PKP or TKP. We proceed
from the definition of oKP or 4KP. Thus, R = OKpR if and
only if (U1,11, UN, IN) CR implies that for every com-

bination il,- - iK of 1, ,N and for every UK+I,
up C U, there exists labels IK+I,..*, IP C L such that for every
combination il, * *jN of 1, , P satisfying (U1,
U;N) CT, we must have (u;1, l1 UiN ,1N)E R, where
Uk =Uik, k= 1,--- ,K. Hence, if N=2, K=2, P=3, and
T= UX U, then (u1, 'I, U2,12) CR and R = 023R implies
that for every U3 C U there exists a 13 CL such that (u1, 1 ,
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Fig. 5. Illustrates the smallest unit-label constraint relation R for Which
there are no (T, R)-consistent labelings and for which 023R = R. For
this situation U = {1, 2, 3, 4}, L = {a, b, c4, and T = U x U.

U3, 13) ER and (u2, 12, U3, 13) CR. Pictorially, if two given
nodes are connected by an edge in the graph of R, then for
each specified unit n, there must exist a node (u, 1) which
has edges that will form a triangle with the edge connecting
the given two nodes. In practice, testing for this condition
turns out to be a strong enough test that most graphs that do
not contain consistent labelings are rapidly reduced to the
empty set. Therefore, we will finish the complexity analysis
not by a worst case analysis but by what we expect is a repre-

sentative case analysis.

A. Representative Complexity Analysis
In our discussion the term "branch" will mean a sequence of

edges in the search tree from the root to a terminal node. We
assume that in a representative case analysis the number b of
branches traversed by a tree search which uses the oNP opera-

tor is a parameter a times one plus the number of consistent
labelings, [b = a(1 + #J2(T, R))]. The parameter a indicates
the difficulty of finding the consistent labelings for the given
T and R relations.
Each iteration of the oNP operator requires the generation

of at most #R(PMN) #LP-N labelings which must be tested
for consistency. To test a labeling for consistency requires
checking at most #T N-tuples of unit-label pairs. Thus,
if an operation is to check if an N-tuple of unit-label pairs
is in R, then each iteration of kNP cannot take more than
#R(pMk ) #LP N#T operations.
In any branch of the tree search, there can be at most

(M+ 1) iterations of applying oNP to a fixed point since there
are at most M nodes in a branch and we can apply qNp to the
initial constraint relation. In addition, there cannot be a com-

bined total of any more than #R more iterations in the
branch, since each iteration of 4vNp not reaching a fixed point
takes at least one N-tuple of unit-label pairs out of R. Hence,
the number of operations in any branch is at most (#R +

M + 1) #R(pM%) #LP-N#T Since we have assumed that the
number of branches is o[1 + #.C(T, R)], we obtain that the
number of operations required to find all (T, R)-consistent
labelings is a[1 + #JC(T, R)] (#R +M+ 1) #R(pM%) #LP-N#T.
This polynomial expression is multiplied by the parameter oa

which, in worst cases, could be exponential in M. However,
practical problems seem to have parameter values for a which
must be low order polynomials in M. This behavior in practice
is similar to the behavior of other algorithms that solve prob-
lems of exponential complexity. For example, the simplex
algorithm for linear programming hardly ever exhibits the
worst case behavior in practice [12]. Therefore, in the next
section we discuss a way of grading constraint relations so that
although the computational complexity changes by grade, a
is essentially for each grade.

B. Grading Unit-Label Constraint Relations

The fact that minimal constraint relations are well behaved
for the first level of the tree search suggests the idea that we
ought to give a name to those relations which are well behaved
at every level of the tree search. Therefore, we will say that
the relation pair (T, R) has complexity P if and only ifP is the
smallest integer such that for every labeling (11, -* *, I,) of
units (u1, - * *, Un) ;P{t 0;P[1P(R)1U1i1]1u212. } iS
minimal. We should expect that a tree search using PNP for a
pair of relations having complexity P can be done in poly-
nomial time since there will be no backtracking. To prove this
we only need to recall that a relation which is minimal and
nonempty can be restricted by any unit-label pair appearing
in one of its N-tuples and the resulting restricted relation has
a nonempty set of consistent labelings. Now suppose we
begin the tree search with an arbitrary (T, R) of complexity P.
Hence, Obp(R) is minimal. There are then two cases: either
OVp(R) = 0 or 0,p(R)>A . If q5p(R) = 0, then £(T,R) = q
and the tree search has terminated. If 0,p(R) =A , then
O;p(R) minimal implies that no matter how we wish to re-
strict q5p(R) so long as we choose a unit-label pair (u, 1) that
appears in one of the N-tuples in q5p(R) the set

£(T, q;p (R)) ul . q.

Since (T, R) has complexity P and ;p(Op (R) ul) is minimal,
then by Theorem 13 and Proposition 3, £(T, O;p(R)) Iul
£(T, Pp(R)ul) =£(T, $bNp(q;p(R)|ul)). Hence,

.r (T, ¢ONp (R)) uXl =A 0

implies 0p(07bp(R) | u) #*. Thus, after restricting and iterat-
ing bNP to a fixed point, the resulting relation is minimal and
nonempty, thereby allowing the tree search to proceed in the
same well behaved manner it started.
By the analysis of the previous section, the number of opera-

tions required to do the tree search for a relation pair of com-
plexity P will be #C(T, R) (#R +M+ 1) #R(pM ) #LP-N#T
which is a polynomial inM of order (P - N + 1).
Our conjecture as to the reason why look-ahead operators

have been computationally efficient when incorporated into
the tree search is that the relation pairs (T, R) which investi-
gators have been handling in conjunction with artificial in-
telligence or computer vision tasks have been of low com-
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plexity. Furthermore, we conjecture that if we could deter-
mine the proportion of relation pairs having complexity equal
to P for relation pairs where the label and unit set size is held
constant, we would find many more relation pairs having small
complexity than large complexity. In other words, the hard
problems and the pathologic problems are rarities. But since
we do not know how to do the required counting, we cannot
verify the conjecture at this time. Hence, we leave it as an
open problem.

V. CONCLUSIONS
We have described the consistent labeling problem and the

use of look-ahead operators in solving the consistent labeling
problem. The look-ahead operators (KP and TKP are general-
izations of the operators used by various researchers to help
eliminate backtracking in tree searching. We have shown that
the fixed-point power of 'bKP and TKP is the same and that
the standard tree search for finding consistent labeling can be
quickest for what we defined to be minimal unit-label con-
straint relations. Finally, we have suggested a way to grade
compatibility unit-label constraint relations and have shown
that for relations of complexity P, all consistent labelings can
be found in polynomial time where the order of the poly-
nomial is (P - N + 1).
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