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Organization of Relational Models for Scene Analysis
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Abstract-Relational models are commonly used in scene analysis
systems. Most such systems are experimental and deal with only a
small number of models. Unknown objects to be analyzed are usually
sequentially compared to each model. In this paper, we present some
ideas for organizing a large database of relational models. We define a
simple relational distance measure, prove it is a metric, and using this
measure, describe two organizational/access methods: clustering and
binary search trees. We illustrate these methods with a set of randomly
generated graphs.

Index Terms-Database organization, graphs, relational distance, rela-
tional matching, relational models, structural pattern recognition.

I. INIROI)UCTION
A NALYSIS of scenes containing complex objects requires
I knowledge about the structures of the objects being
recognized. Relational models, which describe an object in
terms of its parts and their interrelationships, have proved to
be very useful in the recognition process. In this paper, we
discuss the problem of organizing a database of relational
models for use in a scene analysis system.
A relatiotnal model or relational description of an entity is a

set of relations describing the entity. Relations can perform
such functions as listing the global attributes of an entity,
listing the parts, and describing relationships among the parts
such as connection or parallelness. Relational models have
been used in scene analysis for a number of years. The gram-
mars used in syntactic pattern recognition (see Fu [5]) were
among the first of the relational models used in picture process-
ing. Graph models and matching procedures were described
by Barrow, Ambler, and Burstall [3]. The generalized cylinder
models of Agin and Binford [ I], Nevatia and Binford [7], and
Marr and Nishihara [6] are all relational models. Some other
recent examples include the two-dimensional shape models
of Shapiro [1 1 ], the attributed relational graphs of Tsai and
Fu [16], the spatial data structures of Shapiro and Haralick
[12], and the relational structures of Cheng and Huang [4].
One important use of relational models in scene analysis is

to help identify an unknown object that has been extracted
from a scene. A structural description of the unknown object
can be constructed and compared to a relational model to
determine how similar they are. The matching process is
related to the process of finding graph isomorphisms, and its
complexity is exponential in the number of model parts. In a
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real-life application such as robot vision, there is a large num-
ber of models in the database. Thus, an unordered linear
organization of the database where the unknown object is
compared to each model one at a time is highly undesirable.
One solution is to compare in parallel, with a processor for
each model. A second possibility is to organize the models for
fast access based on the unknown object being considered.
The purpose of this paper is to investigate this second
approach.
Most of the experimental systems that have employed rela-

tional models have had so few models that organization was
not necessary. However, a few researchers have recognized
that the problem exists. Nevatia [71 used an indexing schemiie
to access models likely to match an unknown object. Each
model had a three bit code describing each of its distinguislhed
pieces. Encoded are: 1) connectively (one end or both), 2)
type (long or wide), and 3) conical (true or false). Objects
with the same code are grouped together, and the correct
group is found before full relational matching is attemiipted.
Marr and Nishihara [6] also advocated the use of indexing.
They distinguished between indexing clues that can be used
before there is a guess at the three-dimensional configuration
of the model (for example, connectivity and some length
comparisons) and those that cannot. Schneier [10] utilizes
a structure called the "graph of models" where common primi-
tives and relations are shared across models and within inodels.
In his matching process, primitives and relation schenmata
index all models in which they occur, and models index all
primitives and relation schemata within them. Thus, there is
never any need to match against every one of a library of
stored models. Our approach differs from Schneier's in that
we are trying to group together entire models that are simiilar
rather than common relationships.
Much of computer science has dealt with the organization of

data. Some of the most common organizations and cor-
responding access functions include: 1) unordered lists withl
linear search, 2) ordered lists with binary search, 3) tree
structures with binary or multiway search, 4) hash tables with
hashing functions, 5) hierarchic indexing schemnes, 6) rela-
tional structures, and 7) clustering. We have already indicated
that approach 1) is unacceptable. Approach 2) requires an
ordering function which, at present, seems incompatible with
the concept of a relational model. Similarly, approaches 4)
and 5) require unique keys for each object, and also seem un-
promising at present. Approach 6) (the idea of relations that
define the relationships of models to each other) is interesting
and will be saved for future work. In this paper, we will
investigate 3) and 7): search trees and clustering. In Section
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II, we discuss some relational distance measures to be used to
determine object similarity. Section III describes the cluster-
ing approach, and Section IV describes a binary tree approach
to grouping.

II. RELATIONAL DISTANCE MEASURES

To simplify our discussion of relational distance, we will
work with the simplest relational models-graphs. Each model
will consist of a single directed graph, and all graphs will have
the same number of nodes. For a generalization to arbitrary
N-ary relations with arbitrary domains and for experiments
with a more general distance measure, see Shapiro et al. [14].
The distance measure of [14] is briefly defined in Section
II-B.of this paper. Because we wish to state and prove the
properties of our distance measure, we will make use of some
mathematical notation to make things precise.

A. A Simple Distance Measure

Let G be a graph having IS| nodes. We will represent such a
graph by a vector of lS12 components representing an ordering
of the lS12 possible arcs of G. A component of the vector
will have value 1 when the corresponding arc is present in G
and 0 otherwise. Henceforth, we will refer to both the graph
G and the vector representing it as G. We will also use the
characteristic function XG defined by

1 if (s, s') E G

X0 otherwise
when convenient.

For any permutation f of S, we define f(G) by

f(G ) = {(f(s), f(s'))I (s, s') E G}.

Gi and G1 are isomorphic if there exists a permutation f of S
such that f(Gi) = G1. We can now define a distance measure

D(Gi, Gj) for a pair of graphs (Gi, Gj) by

D(Gi, Gj) = min lf(Gi) - Gill
f

where I| represents any norm andfis a permutation of S.
For distance threshold d, we say that Gi and G1 are related if
D(Gi, Gj) < d. The fact that D is a metric is proved in Lemma 1.
Lemma 1: The distance measure D is a metric.
Proof
a) We first show that D(Gi, Gj) = 0 if and only if Gi is

isomorphic to G1.
If Gi is isomorphic to G1 and f is the isomorphism, then

f(Gi) = G1 and lf(Gi) - G1 II = 0. Conversely, D(Gi, G1) = 0

implies that for somef, llf(Gi) - Gill = 0, which is only true if
f(Gi) = G,, makingf an isomorphism.

b) Next, we show that D(Gi, Gj) = D(Gj, Gi) for every pair
of graphs (Gi, Gj).

min |lf(Gi)- Gill
f

=min lf-'(f(Gi) - Gj)lI sincef' is a permutation
f

min lIf'(Gi) - Gill
f

c) Finally, we show that D(Gi, Gj) .D(Gi, Gk) +D(Gk, Gj)
for any three graphs Gi, GC, and Gk.

D(Gi, Gj) = min lf(Gi) - Gj1|
f

= min llf(Gi) - G1 +g(Gk) - g(Gk)jI
f

for arbitrary permutation g and, in particular, for that g that
minimizes IIg(Gk) - Gj1I. Thus,

D(Gi, Gj) < min If(Gi) - g(Gk) + IIg(Gk) - Gjll
f

= min llf(Gi) - g(Gk)j + min Ih(Gk) - Gj||
f h

= minI Ig-'f(G1) - Gkll +min IlIh(Gk) (G1)ll
g- f h

= D(Gi, Gk) + D(Gk, Gj). Q.E.D.

B. Other Relational Distance Measures
In [14], we defined a more robust distance measure that was

a generalization of the measure of Section II-A. The more
general measure is defined as follows.

Let D1 = {R, -,RK} and D2 = {S1, ,SK} be two re-
lational models. For any N-ary relation R C AN and associa-
tion fC A X B, we define the composition R o f by

R o f ={(b I, - * *, bN)C BNl there exists (a,, -,AN )E R

with (aIn, bn) Cf, n = 1, * - *,) N}-
The structural error of an association f C A X B with respect

to N-ary relations R C AN and S C BN is given by

Es(f)= R f-Sl + ISopfl RI.
The structural error is a measure of tuples found in R, but not
in S or in S, but not in R.
The completeness error of an association fC A X B with

respect to N-ary relations R C AN and S C BN is given by

Ec(f)= IS- R ofl IJR - Sof-'
The completeness error is a measure of tuples in S that no
tuples in R map to and vice versa. When IA *I B the com-
pleteness error reflects relationships among elements of A
that have no corresponding elements in B, and the reverse
situation.
The combined error is then given by

ER,s(f) = cIEs(f) + c2Ec(f).
The total error off with respect to descriptions DI and D2 is

given by

E f ) =£1 ER k, Sk (f)
k=i,K

The relational distance between DI and D2 is given by

GD(D 1, D2 ) = min E(f)
f

In our earlier experiments with the distance measure GD on
relational models of three-dimensional objects, we set cl, the



SHAPIRO AND HARALICK: RELATIONAL MODELS FOR SCENE ANALYSIS

weight of the structural error, to 4, and c2, the weight of the
completeness error, to 1. The resulting measure was not a
metric since it failed to satisfy the triangle inequality. The
reason for its failure was the unequal weights.
Sanfeliu [9] has developed a distance measure between rela-

tional attributed graphs to be used in the classification of
muscle tissue patterns. The measure, which he uses to com-
pare an input graph to a reference graph, is based on the cost
of node recognition plus the cost of the operations necessary
to transform the input graph to the reference graph. The
measure is defined by

min {WnrCnr + WniCni + WndCnd + WbiCbi + WbdCbd}

all configurations

where w,,,, wni, wnd, Wbi, and Wbd are weights summing to 1
and cnr' cni, cnd, Cbi, and Cbd are the costs of node recogni-
tion, node insertion, node deletion, branch insertion, and
branch deletion, respectively. In comparison, the general
distance measure GD is a bidirectional measure which takes
into account the last four of these costs, but makes no allow-
ance for node recognition. Sanfeliu's distance measure is not
a metric.
All the relational distance measures must find that mapping

from the nodes of one graph to the nodes of a second that
minimizes some error function. This is, unfortunately, an NP-
complete problem. We have proposed look-ahead operators to
help speed up the search [15], and are currently studying
several hardware solutions.

III. CLUSTERING AS A METHOD OF GROUPING

In the related area of document storage and retrieval, Salton
[8] suggested a clustered file organization in which documents
with somewhat similar content descriptions are grouped into
clusters. Each cluster is identified by a representative cluster
profile which is a weighted vector of terms derived from the
term vectors representing the documents in the cluster. A user
wishing to locate documents of a certain type submits a query
vector of terms that these documents should contain. The
query vector is compared to the representative vectors for
each cluster and to the individual document vectors in those
clusters deemed similar enough. Thus, only a small percentage
of the documents in the system need be examined for a given
query.
Translating this idea to the domain of relational models,

similar models would be grouped into clusters and a cluster
representative would be chosen. As unknown object would be
compared to the cluster representatives and then to the models
in those clusters deemed similar enough.
There are several requirements for carrying out such a pro-

cedure. First, a distance measure or similarity measure is
needed. Second, a suitable clustering algorithm must be
selected. Third, a method of constructing cluster representa-
tives and a way of comparing such a representative to an ob-
ject model must be defined. Finally, a method of choosing
the parameters that decide if an object is close enough to a
cluster or to a model must be determined. We have already
discussed several distance measures. Using the simple distance
measure of Section 1I-A, we will discuss the other related
problems.

A. Defining Cluster Representatives
Suppose we have a set of graphs {G1, * , GK }. We can

form a graph relation Rd by

Rd = {(G , Gj)I D(G1, Gj) < d}.

Clusters of the relation Rd give us a way of grouping the
original graphs. Suppose we construct a set of such clusters
{C1,... , Cj} using some arbitrary clustering algorithm. We
wish to define a representative for each cluster.
For given graph Gi and cluster C, define the total distance

of Ci with respect to C by

T(Gi, C) = E, D(Gi, G).
G E C

In each cluster C, there is at least one "best graph" Gb E C
where T(Gb, C) = min T(G, C). If there is more than one
such graph, the best graph Gb can be arbitrarily selected from
among them. Gb is certainly one representative of cluster C.
Another method of constructing the representative is to

count the frequencies of each possible arc and make these
frequencies part of the representative. In particular, for each
G E C, there is a best permutation mappingfG :S -+ S that was
used to calculate D(Gb, G). We can use these fG's to translate
each graph in cluster C so that they can all be considered from
the same frame of reference. Let C' be the transformed cluster

C' = {fG(G)l G E C}.

Then a representative A of C can be defined by

A= E G/|C'|.

Thus, A is an "average" graph, and the components of A are
real numbers between 0 and 1. Since A can be represented by
a vector, our simple definition of the distance between two
graphs also applies to a graph and a cluster representative.
That is, if C is a graph and A a cluster representative, then
the distance between A and G is given by

D(G, A) = min I f(G) - A 11.
f

We can similarly calculate the distance between two cluster
representatives defined in this manner. We can also define a
"median" graphM by

xm ds, S')= 1 if E XG(S, S))< IC
GEC'

Again, the median graph can be represented by a vector, and
so the distance from a graph G to the median D(G, M) and
the distance between two such medians D(M, M') are both
well defined.
Now we have defined a best graph Gb, an average graph A,

and a median graph M as possible cluster representatives. We
need some ways of evaluating the suitability of these repre-
sentatives. The strongest condition we can ask for is that the
system never make any mistakes when identifying unknown
objects. In particular, if G is an unknown graph, but is known
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to be (isomorphic to) some graph(s) in the database, then the
following should hold.
(+) For each cluster C and its representative Rc, there

exists a threshold Tc satisfying
1) if G E C, thenD(G,Rc) S Tc, and
2) if GE C, then D(G,Rc) > Tc.
Condition (+) is dependent on both the choice of clustering

algorithm and the choice of representative. We are not aware
of any standard clustering algorithm that operates on a dis-
tance matrix and produces clusters and representatives that
satisfy (+). In Section III-B, we will discuss some results
obtained using a hybrid method that first constructs pre-
liminary clusters, then constructs representatives, and finally
tries to satisfy (+). In the remainder of this section, we will
look at some weaker conditions and show how they can be
satisfied by our average and median graphs.
Let C = {G1, G2, - - *, GN} be a cluster of graphs. Let Gb E

C be the best graph, let A be the average graph, and let M be
the median graph. One measure of the utility of representative
R is the distance sum

(++) E D(Gn,, R)P = min |fn(Gn) R||p
n=i,N n fn

for some positive integer P. Unfortunately (++) does not
suggest a construction for R, and there is an exponentially
explosive number of possibilities to be searched. However,
we can find a reasonable upper bound for (++) and determine
the best R with respect to the upper bound.
Lemma 2: When II II is the two-norm, En D(Gn, R)2 is

bounded by an expression that is minimal when R = A.
Proof: We know that Gb was selected to be that member

of C which, along with its corresponding fG 1, fG2, G,N
minimizes

I3 IfGn(Gn) - Gb I I
n

IfR is the best representative of C, then clearly

E3 min Ifn(Gn) - RJj2 <> IfGn(Gn) R 112.
n fn n

Consider the two-norm. Then

N11

IE ||fGn(Gn) - R |2
n=1

= L (1E (-Gn(Gn,k) Rk)2)
n =i k=l

where Gn k is the kth component of vector Gn.

= 1i (f(fGN (Gn, k) - Rk)2
k=l n=l

Let Yn =fGn(Gn k)- We know that ,n=1 (Yn - Rk)2 is mini-
mized when Rk = 1/N I2n=l Yn. But, if Rk = 1/N INT
fG-(Gn, k), then R = A by definition of the average graph!

Q.E.D.
Lemma 3: When II || is the one-norm, InD(Gn, R) is

bounded by an expression that is minimal when R = M.

Proof: Again we note that for best representative R,

I min |ffn(G)- R || <E f(Gn)G R 1.
n fn n

For the one-norm,

N
, | |fGn(Gn)-~RI|
n=i

N IS12
=E f|fGn(Gn,k) RkI
n=1 k=l

=E (E |fGn(Gn,k*)-~Rk |k=l n=i

Again, letYn =fG(Gn,k)- Then >;=i | - RkI is minimized
when Rk = median {Yn}. But, if Rk = median UGn(Gn,k)},
then R =M by definition of the median graph!

B. A Hybrid Clustering Scheme and Some Examples
We considered several classical clustering algorithms for use

in this study. Algorithms that require the objects being clus-
tered to be points in n-space were omitted from consideration
since in this problem, our objects are, at best, graphs, and we
know only their pairwise distances, not their locations in
n-space. Clique finding algorithms were discarded because for
any distance threshold d and corresponding graph relation Rd,
there would be many small cliques, and the access process
would not be fast enough. Single-link methods, where the
clusters are the connected components of Rd, were avoided
because the resultant clusters could have very few interconnec-
tions among their members. Hierarchic methods seemed
reasonable, but tended not to include the notion of a repre-
sentative. The isodata method, which iteratively moves ob-
jects around in order to minimize the sums of the squared
distances between objects and their cluster centroids, comes
closest in spirit, but is not guaranteed to satisfy (+).
In [13], we presented a graph-theoretic clustering algorithm

for clustering the points of a shape into near-convex pieces.
The graph-theoretic algorithm allows the specification of
parameters that determine: 1) how compact or close knit a
cluster must be, 2) how much two clusters must intersect
before they can be merged, and 3) the minimum cluster size.
These are all properties that we would like to specify for our
clusters of models. Since the clusters produced by the graph-
theoretic method do not satisfy (+) we developed the follow-
ing hybrid method.

1) Select a distance threshold d.
2) Apply the graph-theoretic clustering algorithm to Rd.
3) For each cluster C

a) compute the representative Rc
b) compute

maxdistin = max D(G, Rc)
GEC

and

mindistout = min D(G, Rc).
G§C

c) if maxdistin < mindistout, leave C alone
d) otherwise construct
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Cluster 1

GI G2 G7* G8 Gi3 G17 G24 G29

01111 01111 01111 01111 01111 01010 001 11 01111
00111 10101 00101 00101 00101 00001 00101 00101
00000 00000 00010 10011 00000 00011 00000 00011
10100 00101 00100 00100 00100 00000 00000 00100
01110 00110 00110 01000 00100 10110 10110 00110

Cluster 2

G3 G5 G6 G8 G9 G16 G20 G21 G22 G25* G28

01011 00011 00001 01111 01011 01010 01001 01111
00101 00000 00000 00101 00000 10001 00001 00001
00010 11000 10010 01000 11010 10011 01000 11000
01001 00000 00001 00001 10001 00001 00001 00000
10110 10110 10110 10110 10110 00100 10010 10010

01001 01011 01010
00100 00001 00011
01010 11010 01010
00001 00001 01001
10110 10110 11110

Cluster 3

G4 G12 G14* G15 G19 G23

00110 00110 00111
10001 10001 10001
00010 00001 00011
10001 10100 10101
11010 10000 10010

00101 00111 01111
10000 10011 10001
00011 10011 11011
01101 10100 10101
10010 11000 11010

Cluster 1

Cluster 2

0
.13
.13
.13
.25

0
.09
.64
.09
.91

0
1

.17

.83
1

Cluster 3

.88
0
0
0
.25

.82
0

.73

.18

.09

.17
0
.17
.17
.5

Average

.88

.88
0
.75
.88

.18

.27
0
0
.82

1
0
0

.83
0

1
.13
.5
0
.75

.73

.09

.64
0

.91

.83

.17

.83
0

.67

.88
1

.38

.13
0

.82

.64

.09

.82
0

.67

.83

.83

.67
0

Med ian

01111
00101
00010
00100
00110

01011
00001
11010
00001
10110

00111
10001
00011
10101
11010

0 .2 0 . 2 .8 00001
0 0 0 0 .2 00000

Cluster 4 0 1 0 .6 0 01010
0 0 .6 0 .2 00100
1 1 1 0 0 11100

Fig. 2. Average graph and median graph for each cluster of Fig. 1.

Cluster 4

Gll* G17 G18 G22 G30

00001 01001 00001
00000 00000 00000
01000 01010 01000
00100 00001 00100
11100 11100 11100

00011 00000
00001 00000
01010 01010
00100 00000
11100 11100

Representative = Best Graph

Size
Change

0 (2 out, 2 in)
3 (1 out, 4 in)
1 (0 out, 1 in)
2 (1 out, 3 in)

Cluster

1) 1, 2, 7, 13, 24, 27, 28, 29
2) 3, 5, 6, 8, 9, 10, 17, 20, 21, 22, 25, 26, 28, 29
3) 4, 12, 14, 15, 19, 23, 24
4) 6, 11, 16, 18, 21, 22, 30

Fig. 1. A set of initial clusters of 30 graphs using a graph-theoretic
clustering algorithm. The best graph in each cluster is indicated
with an asterisk (*), and each graph in a given cluster has been trans-
lated according to its mapping with the best graph. The graphs are
shown in adjacency matrix form rather than pictorially to allow the
reader to easily compare the arcs present in one graph to the arcs
present in another.

S = {G mindistout < D(G, Rc) < maxdistin} and

T= {D(G,RC)IG ES}

e) for each threshold t E T, define Ct by

Ct = {G|D(G, Rc)< t}

f ) let T7 be the smallest t (E T that minimizes

I#C - #Ctl
g) output the new cluster

C' = {GID(G, Rc) < Tc}.

Essentially, the hybrid method uses the graph-theoretic
clustering algorithm to obtain initial clusters. If a cluster
satisfies (+), it is left alone; otherwise, objects are moved in
and out depending on their distance to the representative
where the distance threshold is chosen to minimize change in
cluster size. Although the clusters may change, the representa-
tives are not recomputed, since recomputing them can cause

(+) to not be satisfied.
Example: We generated 30 random graphs on five nodes to

experiment with. The distance threshold d was selected so

that between 1 and of the possible edges in the graph rela-
tion Rd were present. With the minimum compactness
threshold set to 0.9 and the minimum overlap required for
merging set at 0.6, four clusters were obtained. The clusters
are shown in Fig. 1, with the best graph indicated by an

Representative = Average Graph

Size
Change

1 (2 out, 3 in)
0 (2 out, 2 in)
0 (1 out, 1 in)
0 (0 out, 0 in)
1
1
1
1

Cluster

1)
2)
3)
4)
5)
6)
7)
8)

1, 2, 5, 7, 13, 24, 28, 29, 30
3, 5, 6, 8, 9, 10, 17, 20, 21, 22, 25
4, 12, 14, 19, 23, 25
11, 17, 18, 22, 30
15
16
26
27

Representative = Median Graph

Size
Change

0 (2 out, 2 in)
3 (1 out, 4 in)
3 (2 out, 5 in)
0 (1 out, 1 in)
1
1

Cluster

1) 1, 2, 7, 13, 24, 27, 28, 29
2) 3, 5, 6, 8, 9, 10, 17, 20, 21, 22, 25, 26, 28, 29
3) 3, 4, 8, 9, 10, 14, 19, 23, 25
4) 11, 16, 18, 22, 30
5) 12
6) 15

Fig. 3. Final clusters and change in cluster sizes for each type of
representative.

asterisk (*), and each graph represented by an adjacency
matrix and translated according to its mapping with the best
graph. Fig. 2 gives the average graph and median graph for
each cluster. Fig. 3 shows the final clusters and change in
cluster sizes for each of the three types of representatives.

It is interesting to note that in this experiment, although the
clusters have changed some in composition, those graphs that
were the best graphs of the original four clusters are still the
best graphs in the new clusters obtained: 1) when the repre-
sentative was the best graph, 2) when the representative was
the average graph, and 3) in three out of four cases when the
representative was the median graph. Although the average
graph and median graph are almost always going to change
as the clusters change, the best graph is much more stable. In
our experiments where the representative graph was the best
graph, the representative remained the best graph in 72 per-
cent of the cases.
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IV. BINARY SEARCH TREES AS A METHOD OF GROUPING

Tree structured tables are commonly used in both internal
and external storage to organize data objects that have numeric
or alphabetic keys. The simplest version, a binary search tree,
consists of a binary tree with the following properties.

1) If the key of an unknown object matches the key of the
root, the object is in the root of the tree.
2) If the key of the unknown object is less than the key of

the root, the object is in the left subtree (if it is in the tree at
all).
3) If the key of the unknown object is greater than the key

of the root, the object is in the right subtree (if it is in the
tree at all).
4) The left and right subtrees are both binary search trees.
If a binary search tree is balanced (the left and right sub-

trees differ in depth by no more than one level and both are
balanced trees themselves), then a tree containing n objects
will take O(log2 n) comparisons to search. There are known
algorithms for balancing binary search trees [2].
Organizing relational models into binary search trees must be

handled differently since there are no associated keys. Instead,
given a database of models, we can define a method for
splitting them into two groups at each node of the tree. The
idea is, given a set of graphs, to choose two graphs A and B
so that some of the other graphs are closer to A and the rest
are closer to B. Of course, we want to choose A and B in an
intelligent manner.
Let S be a set of graphs, A E S, and B E S. Let

PA ={GES D(G,A)< D(G,B)}
and

PB = {G SjD(G, B)<D(G,A)}.
To choose A and B intelligently, we would like to minimize
the sum of the distances of graphs in PA to A plus the sum of
the distances of graphs in PB to B. We have

min { E D(G,A)+ E D(G,B)}
A,B G E=-PA G EPBI

= min
A,B G |D(G,A ) SD(G,B) D(G, A)

+ £ D(G,B)
GID(G,B) < D(G,A)

= min min {D(G, A), D(G, B)}l.
A,B G&ES J

This last quantity is easily computable and gives rise to the
following tree creation algorithm.
Step 0) Construct a root node.
Step 1) Given set S, choose graphs A and B, graph-number

(A) < graph-number (B), to minimize

min {D(G, A), D(G, B)}.
GCS

Make A the left subtree of the root and B the right subtree.

[1, . . ., 30]

11

[2,4,6,13,16,18,21,22,24,30]

2 18

[13] [4,6,16,21,22,24,30]

13 4 21

I ] [30]

30

[6,16,22,24]

22 24

[ ] [6,16] [ ]

6 16

[ ] [ ]

25

[1,3,5,7,8,9,10,12,14,
15,17,19,20,23,26,27,
28,29] 1

10 12

1,3,7,8,9,15,19, [5,14,17,20,26,29]
23,27,28] /

27 28 5 14

[3,8,15,19] [1,7,9,23] [17,20,26]

3 15 1 9 17 20

[29]

29

[8] [19] [7] [23] [26] [ ] [ ]

8 19 7 23 26

[]1 []I [ I []I I]

Fig. 4. Binary search tree obtained for 30 random graphs.

Step 2) Construct PA and PB-
Step 3) If PA is large enough to split, recursively execute

Steps 1), 2), and 3) for root A and set S =PA. If PB is large
enough to split, recursively execute Steps 1), 2), and 3) for
root B and set S = PB-

Fig. 4 shows the tree obtained for the 30 random graphs
used in the experiments of Section III. The tree is not entirely
balanced, but does have 5 = [log2 30] levels of comparison.
To identify an unknown graph as either isomorphic to a graph
in the tree or not in the- tree, the unknown graph is compared
to the graphs at the left child of the root and the right child
of the root. If it is isomorphic to either, the procedure termi-
nates. Otherwise, it is called recursively for the left and right
subtrees. Thus, if the tree is balanced, there are 2 log2 n

comparisons for n graphs. We have not investigated any
possible balancing algorithms, but we do note that for rela-
tional models that are expected to fall into natural clusters,
the trees should be balanced or close to balanced.
What if we wish to determine that graph in the tree that is

(or the top K graphs in the tree that are) most similar to an
unknown graph? Consider, for example, a database consist-
ing of the first ten random graphs. The tree creation algorithm
chooses graphs 2 and 9 as A and B with the left subtree con-
taining 1, 2, 4, 7, and 8 and the right subtree containing 3, 5,
6, 9, and 10. Now suppose that graph 11 is the unknown
graph. Of the first ten graphs, graph 11 is closest to graph 6.
But if compared only to graphs 2 and 9, graph 11 is closer to
graph 2. Thus, the procedure would choose the left branch of
the tree and never encounter graph 6. It is clear from this ex-
ample that the binary tree search may not perform perfectly
for inexact matches. In these cases, we must accept approxi-
mate answers. In situations where an isomorphism or exact
match can be expected, the search gives the exact correct
solution.

(I
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V. CONCLUSIONS
We have discussed two methods of organization for rela-

tional models, both based on a relational distance measure,
which we have shown is a metric. The clustering method
groups models into clusters of similar ones, and represents
each cluster by a cluster representative. An unknown object
is compared to the cluster representatives and then to the
models in those clusters deemed similar enough. We defined
three possible cluster representatives: the best graph, the
average graph, and the median graph. Although we have not
shown any of the three to be superior, our theoretical results
show that the sum of the distances of the graphs in a cluster
to the representative is bounded by a quantity that is mini-
mized by the average graph using the two-norm and the
median graph using the one-norm. Our experimental results,
using a hybrid clustering method, showed that the best graph
is a more stable representative than the other two; as the
composition of the clusters change, the best graph remains
constant longer.
Our hybrid scheme satisfies the criteria that for each cluster

C, there is a threshold Tc satisfying
1) if G EC, then D(G,Rc) < Tc, and
2) if G f C, thenD(G,Rc)> Tc.
Thus, for exact matching, an unknown object that is actually

in a particular cluster will always "match" the representative
of that cluster, and will not match the representatives of any
clusters that it is not in. For inexact matching, if an unknown
object U is not identical to any model in the database, but is
closest to some model M in some cluster C with representa-
tive Rc, then since D is a metric, we have

D(U, Rc) < D(U, M) + D(M, RC).
Since D(M, Rc) . Tc, if D(U, M) < for some small real
number G, then D(U, RC) . Tc + C. In practice, we can
choose such an C and increase each threshold by E so that
any object that is within distance C of a stored model will
match the representative of its cluster.
As far as savings on matching time, the results depend on the

number of final clusters and degree of similarity of clusters.
If m models are grouped into n clusters of m/n models each,
then finding the closest model to an unknown object would
require n + cm/n matches if the unknown object is judged
similar enough to c cluster representatives. When c = 1, then
the number of matches is minimized for n = min/2 clusters. In
this case, exactly 2m1/2 matches take place. For example,
if there are 400 models grouped into 20 clusters of 20 objects
each, and if an unknown object is judged similar to only one
cluster representative, then 40 matches would take place
instead of the 400 required with no grouping. If, however,
the unknown object is judged similar to 10 cluster representa-
tives, then 220 matches would be required. Thus, it is impor-
tant to be able to cluster the models into approximately as
many groups as the square root of the number of models,
with approximately the same number of models in each group,
and for the clusters (and therefore the representatives) to be
suff1ciently different in order for the scheme to work
optimally.

The second organization is a binary search tree whose nodes
are relational models. For exact matching, an unknown object
is compared to the left and right children of the root. If it
is identical to either, the process stops. If not, it continues
recursively down the subtree to whose root model it is most
similar. If the tree is balanced and contains m objects, then at
most 2 * log2 m matches are required. Thus, for 400 models,
a maximum of 18 comparisons would be made. For inexact
matching, the procedure is not guaranteed to find that model
that is closest to an unknown object, and therefore, a clustered
organization might be preferred.
Many of the results of this paper are based on the distance

measure being a metric. In the simple distance measure used
for our grouping experiments, the mapping was single valued,
one-one, and onto. Our definition of the general distance
measure GD allowed the mapping to be an arbitrary relation,
and assigned possibly different weights to the structural and
completeness portions of the error function. When these
weights are different, the distance measure may not be a
metric. When the mapping is not one-one and single valued,
the distance measure may not be a metric. We have seen
counterexamples in both cases. This brings up the question
of how useful are those restricted distance measures that are
metrics.
One useful measure that is a metric is the one obtained by

setting c1, the weight on the structural error, to 1; settingc2,
the weight on the completeness error, to 0; and requiring the
mapping to be single values and one-one. This gives us

El(f) = Z Rk of- Ski + Sk of1 - Rkl-
k=l

The distance measure based on this error function El is use-
ful in making preliminary selections of relational models at
a rough top level of image analysis. Other techniques using
weights on parts and more precise information can be invoked
after the ruling-out process. A version of this error function

E2(f) = E Rk of- Ski
k=l

was used successfully in many of our experiments on two-
dimensional shape matching [11] . Note also that the Euclidean
distance measure, used commonly in pattern recognition, is
also an unweighted measure.
This paper represents our preliminary work in this area.

Neither method presented here has been shown to be superior
to all others. We expect our future research to further study
these and other organizations and access methods which will
be needed for any practical computer vision system, and to
refine the concept of the cluster representative.
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