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Decision Making in Context

ROBERT M. HARALICK, SENIOR MEMBER, IEEE

Abstract—From a Bayesian decision theoretic framework, we show
that the reason why the usual statistical approaches do not take context
into account is because of the assumptions made on the joint prior
probability function and because of the simplistic loss function chosen.
We illustrate how the constraints sometimes employed by artificial in-
telligence researchers constitute a different kind of assumption on the
joint prior probability function. We discuss a couple of loss functions
which do take context into account and when combined with the joint
prior probability constraint create a decision problem requiring a com-
binatorial state space search. We also give a theory for how probabilis-
tic relaxation works from a Bayesian point of view.

Index Terms-— Artificial intelligehce, context, decision theory, pattern
recognition, probabilistic relaxation, Viterbi.

I. INTRODUCTION

HE difference between the information that people use to

solve recognition problems and the information that com-
puters use to solve pattern recognition problems is clear: peo-
ple make excellent use of the global organizational structure of
the problem while the typical computer pattern recognition
paradigms tend to work almost everything possible from only
the immediate local structure. The difference is context.

It is the recognition of this difference—that more is to be
gained by discovering suboptimal ways of handling context
than by discovering optimal ways of handling local structure—
which caused the artificial intelligence researchers to break
with the paradigms enthusiastically endorsed by the pattern
recognition researchers one decade ago. The artificial intelli-
gence researchers had correctly assumed that even if they had
the optimal techniques, parametric or nonparametric, as long
as these techniques only paid attention to local structure,
there was no hope in solving the difficult problem.

This paper reviews a few ways in which context has been
handled in the literature and it introduces additional possibili-
ties. It shows how state space search can be involved in an
evaluation of an expected loss. It illustrates under what as-
sumptions the cooperative processing and probabilistic relaxa-
tion algorithms can precisely minimize an expected loss. Al-
though the paper is not comprehensive, does not bridge all the
artificial intelligence recognition algorithms, and does not dis-
cuss the place of production rule systems, it is hoped that the
essence of the description will encourage more researchers to
solve more problems using context in a decision theoretic
framework.

A. Pattern Recognition and Artificial Intelligence

There are many problems in pattern recognition and artifi-
cial intelligence which involve decision making. A pattern rec-
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ognition algorithm often makes an evaluation of a conditional
probability function and decides, typically observed sample by
observed sample, that class or label having smallest expected
loss for each observed sample. An artificial intelligence algo-
rithm often postulates some kind of relational structure, pro-
duction rule. structure, or constraint structure among the ob-
served samples and executes a search in an explosively large
state space to determine that description most consistent with
the measurements and the constraints. Thus, the emphasis in
the pattern recognition research has centered around density
functions and decision boundaries in a Euclidean space, while
the emphasis in the artificial intelligence research has centered
around understanding the constraints inherent in the reality
we are trying to make decisions about and in the use of heuris-
tics to speed up the combinatorial search required in making
use of these constraints.

There are pattern recognition researchers who have used con-
text, beginning with the dictionary methods of Bledsoe and
Browning [2] and the neighborly dependence of Chow [4].
Toussaint [27] gave a survey of context techniques. Recently,
there have been pattern recognition researchers such as Stock-
man ef al. [24] and Kanal [13] who are using and advocating
state space search in solving pattern recognition problems, and
artificial intelligence researchers such as Feldman and Yaki-
movsky [7] and Lowerre and Reddy [15] who are using and
advocating the use of decision theory in solving image under-
standing and speech understanding artificial intelligence
problems.

B. Qutline of Paper

Section II describes the general decision making problem as a
labeling problem. There are units which are measured and
these units must be assigned labels. In digital signal processing,
the units are the instances of time at which a sample is ob-
served. In image processing, the unit is the row column co-
ordinates of a pixel position. The joint assignment of labels
made by the recognition process depends upon the measure-
ments of all the units and must minimize some specified ex-
pected loss.

Section III reviews many of the pattern recognition ap-
proaches in terms of the kinds of loss functions used and the
conditional independence assumptions which make the com-
putation of the labels minimizing the expected loss easy to
compute. The salient characteristic of the usual approaches is
that the loss functions have a decomposition as a simple sum
or product of partial losses taken unit by unit, and the prior
joint probability of unit labels have a correspondingly simple
decomposition. With the simple decomposition classically em-
ployed there is nothing inherent in the form of the loss func-
tion or joint prior that makes related units have related labels.
Hence, context is not taken into account.
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Section IV reviews some of the artificial intelligance ap-
proaches from the point of view of decision theory. First, we
discuss how the legal possibilities and constraints can be ex-
pressed by the equal probability of ignorance assumption as
applied to the joint prior probability; either a joint labeling of
all the units is legal and makes sense, or it does not make sense.
All those labelings which are legal have the same nonzero prior
probability. All those which are not legal have zero prior
probability. Then expressions are given for the loss minimiz-
ing labels using this kind of joint prior and the usual loss func-
tions. Solving for the minimizing labels here is clearly a com-
binational search problem.

Second, we discuss one form for the constraint label set
specifying all the legal labelings. We give a representation for
the set of legal labelings as a set of overlapping pieces or seg-
ments, each piece being a group of related units. Then we dis-
cuss a corresponding natural decomposition of the loss func-
tion which keeps related units and labels together, penalizing
for sequences of labels that are not meaningful for sequences
of related units.

Third, we discuss a simple class of loss functions which
makes it possible to solve the difficult combinatorial problem
by dividing it into small groups of related units and then eas-
ily combining the solutions of the segments into an entire ap-
proximate or suboptimal global solution.

Finally, Section V discusses the popular probabilistic relaxa-
tion or cooperative processing model used by a variety of re-
searchers in computer vision and artificial intelligence. Here
we illustrate that under a set of general conditional indepen-
dence assumptions, not as strong as the ones usually discussed
in textbooks, probabilistic relaxation is in fact just an algo-
rithm for the assignment of labels which can use the entire
context and minimize expected loss using the total error loss
function.

II. STATEMENT OF PROBLEM

Let the universe be divided up into recognizable and measur-
able pieces which we call units. Let U be such a set of units.
Each unit in U can be characterized by 1) its relationships with
other units, 2) an n-tuple of measurements determined by
some local measuring process, and 3) the appropriate category
interpretation for the unit. We call each category interpreta-
tion a label. We denote by L the set of possible category inter-
pretations for a unit.

The Bayesian framework for decision making poses the fol-
lowing problem: given the measurement n-tuple made on each
unit, and given the prior world knowledge Q which specifies
allowable category interpretations for each group of related
units, determine any functional assignment f, f: U— L which
assigns an interpretation to each unit, satisfying that f has the
least expected loss for a specified loss function.

It is important to recognize that this statement of the prob-
lem hides the reality that although it is the observed units
which are measured and each assigned a label, the meaningful
entities are objects which are collections of related units of the
same type. Furthermore, these collections of related units are
not easily specified ahead of time. In image processing the
problem of determining who these groups of related units are
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is called segmentation. The point of view taken in this paper is
that the collections of related units are discovered as a byprod-
uct of the labeling process. After labeling, we just need to
group together those connected units with the same label.

The decision making problem we have just described involves
context because the assignment of each unit depends, in gen-
eral, on the measurements of all the units. Usual approaches
typically make complete independence assumptions or Markov
assumptions which considerably reduce or simplify the general
dependence of expected loss on all unit measurements. The
typical loss functions also do not emphasize dependencies
among related units. We will discuss such approaches in Sec-
tion IIT and then suggest in Section IV one way to model more
complex basic unit dependencies. We begin our discussion by
describing the general Bayesian model in greater detail.

A. The Bayesian Model

Corresponding to a unit 7, there is its assigned interpretation
z;, and its measurement n-tuple x;. Given the n-tuple for each
unit and the world model Q, describing the unit dependencies
we would like to assign labels z,, - - ,zp, to units 1, -+ , M,
respectively, which minimize the expected loss

2

(t1. 0, tag)
.P(tl,...’tM,xl,...,xM’Q)

L(zla.“ ,ZM’t],”' ’tM)

Q)

where P(¢,,- - ,tM{xl, <+, X, Q) is the probability that
the assigned labels are the true labels given 1) the information
(*1, "=+, xp) we have measured about the units and 2) the
prior information Q we have about unit dependencies and where
L(zy, " ,2zm, t1," ", ty) is the loss incurred for the assign-
ment of interpretations z;,- -+, zp; to units 1, -, M when
the true interpretations are #,,- -, #y. Such an optimal dis-
cision rule is called a Bayes rule.

III. PATTERN RECOGNITION

In pattern recognition [9], [17], we often make the follow-
ing assumptions about the world and unit measurement pro-
cess. The first assumption states that the description process is
local. When the unit 7 is being examined, no characteristics
from any other unit but unit i affect the description obtained
from unit i. Hence,

M
P(X],"',XM tl,“.:tM’Q): l_l P(xiltls.“,tM’Q)'
i=1

@

The second assumption states that the n-tuple measurement of
unit ¢ depends only upon the true interpretation associated
with unit 7 and does not depend upon any relationships unit
may have with other units or upon the interpretation associ-
ated with any other unit. Hence,

l’ = 1’ e

P(xi|ty,  tar, Q) = P(xi|22), M. 3)

Under these assumptions, the optimal decision rule deter-
mines interpretations z;,- -,z for units 1,- -, M which
minimize
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e t)

L(Zl,"' s ZMsE1, 3tM)

. ﬁ] P(xmltm)P(tla."stM)/P(xl’.'.’xM)' (4)

The assumption often made in pattern recognition without
context is that the units themselves are independent. There
are no unit dependencies.

M
P(ty, -, ty]Q) = [] P(2). €))
i=1
Here, the true interpretation of any one unit does not con-
strain the true interpretation of any other unit.

A. The Loss Function

For each possible M-tuple of true interpretations and for
each possible M-tuple of assigned interpretations, the loss func-
tion evaluates the consequences, summarizing them in simple
terms of economic loss. There are a variety of reasonable def-
initions for the loss function. Perhaps the most common one
is to have no loss for a correct joint assignment and unit loss
for any incorrect joint assignment. Here, correct assignment
means that each of the M assigned interpretations are correct.
Thus, there is no distinction in loss between an incorrect as-
signment in which only one unit is incorrectly assigned or an
incorrect assignment in which all units are incorrectly assigned.
Such a loss function is defined by

L(zl"”’zM’tla“"tM)
.10, when z,=t,,m=1,--- M
={ . . (6
1, otherwise.

Under assumption (5) and in the case that the loss function
is defined by (6), the Bayes decision procedure is to give in-
terpretation z; to unit i where label z; maximizes p(x; Iz,-) ()
as stated in the following equation:

P(x;|2;) P(z;) > P(x;|2) P(z)
To see this, first suppose
M
L(zls Y47 P S TN ’tM)= 1- n G(vatm)

m=1
Then,

forall z€L.

(M

L)

min Z

21,7 5 EM ty, Lty

M
. n P(xmltm)P(tm)
m=1

M
max  [] [Z GEmytm)

21" " ZM m=1 Lty

'P(xmltm)P(tm)]

L(zl;' o aZM,tl7' o

=PCcy, ,xp) -

=P(xy, Xy - ﬁ max[z G(Zpmstm)

m=1 Zm {t;,

'P(xmltm)P([m)]-
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The product and maximization can be interchanged because
the quantity in square brackets is only a function of z,,,.

Now note that the loss function of (6) can be expressed by
(7) by defining

0 if z,,#¢t,

G(zm:tm)={ . (®)
1  otherwise.

From this (7) follows directly.
Another kind of the loss function can be given by
M
L(zla.”:zM3tl:”'atm)=Z L(Zm,tm). (9)
m=1

In this case

M M
min X5 Lo tm) [ Plnltn) Pen)

Z1 L EZM ty, e, tyy m=1

min g: > LGm» tm) PGim|tm)

217" H2ZM m=1 ¢,

M
“Pltw) [] Plxx)
k=1

k#*m

% [minz L(Zmatm)P(xmltm)P(tm)]
m=1|%2m t,,

M
. n P (xk).
k=1
k#m
The interchange of minimization and summation is allowed
because the terms in the summation depend only upon m and
Zp,. In this form it is clear that the minimization can occur
term by term independently where the square brackets desig-
nate the term.
When L(z,,, t,,) is given by

0 if z, =1,

L(zm,tm)={ (10)

the loss function defined by (9) is called the total error loss
function. It has loss equal to the number of incorrect assign-

ments. In this case also, the decision rule given by (7) results.
When

L@m,tm)=(Cm - tm)z
the individual unit loss being equal to the square of the differ-
ence between the true and assigned interpretations, the loss
function defined by (9) is called the least-squares loss func-
tion. The Bayes decision rule can be found by taking deriva-
tives, setting them to zero, and solving. The Bayes decision
rule gives interpretation z,,, to unit m, where

Zm = 2 tPQm|O) P() D Plxm| D) P(2).
t t

1 otherwise

(11)

Of course, when the set of possible labels which are assigned to
units has no natural arithmetic properties, the least-squares
loss function makes no sense and cannot be used.

Unfortunately, the joint prior independence assumption of
(5) is clearly inappropriate in pattern recognition problems
which have a rich context. The next section discusses the next
more complex assumption, the Markov dependence assump-
tion, an assumption often used in signal processing.
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B. The Markov Dependence Assumption

A weaker assumption than unit independence is the Markov
assumption which is used when the units are linearly ordered
and the true interpretation of any unit given the true interpre-
tations of all the previous units depends only upon the inter-
pretation of the immediately preceeding unit in the order.
That is,

Pty o1, @ =Pt ti-1). (12)
Then using the identity
Pty ty|Q)
=P(tu|ts, " s tyr-1, Q)
Pltyr-a|t, " ty-2,Q), Pt | 1) P(er)  (13)
we obtain
2o, )= [ P 1), (14)

Hence, minimizing the expected loss (4) is equivalent to
minimizing

2

12PN 774

L(Zl:“.7zMatl3“'stM)

M
11 PCim|tm) Pltm]tm-1)-
m=1

With the loss function defined by (6), the best decision pro-
cedure chooses interpretations z4, -« -, zy which satisfy the
maximality condition

M M
[1 PGilzd) P@ilzi-1) = [ Plxi|2i) Pi| ziey)
i=1 i=1

forall (zy,- - ,zy)ELM. (15

The choice of z,, - - - , 23 satisfying this maximality condition
cannot be independently done unit by unit. It is a dynamic
programming problem [3], [8] and requires on the order of
|L|2M operations where !L|, the size of the set L, is the num-
ber of possible values for each interpretation. In the signal
processing contexts, the optimizing algorithm is called the
Viterbi algorithm and it is described in Section III-B-1.

When the loss function L(zy, "+, 2, t1,° * *, tpr) has the
form of a sum of partial losses as in (9), the minimal ex-
pected loss is, with the proportionality constant 1/P(xy,- - -,
Xp), equal to

M
min Z

Z1,° " H2ZM m=1

[ S LG tm)

'P(xl’.”axM$tla'."tMIQ)]' (16)

Because the term in square brackets is a function only of z,,
once the measurements X, - - -, Xy are known, the order of
minimization and summation may be interchanged. Expres-
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sion (16) is equivalent to

L(zm ’ tm)

ﬁmin >

m=1 Zm ty,-:,ty
* tm]Q). (17)

From this expression (17) it is clear that the interpretation for
each unit m can be chosen independently as that value m
which minimizes
Z L(Zm’tm)P(xb“',sttb“
ety

With the Markov assumption of (12) and when L(z,,, t,,) is
given by (10), thereby making L(z,, ", 2zps, ¢y, ", tyr) count
the total number of incorrect assignments, minimizing (18) re-
duces to determining the interpretation z,, which maximizes
P(Zm’xla o ,XMIQ)-

With the Markov assumption (12) and when L(z,,, t,,) is the
squared difference between z,, and ¢,,, thereby making L(z,,
©c e ,Zyp, by, 0, ty) be the total squared error, the minimiz-
ing z,,, to (18)is obtained by

Z th(tmyxla. o aleQ)
'm

'P(xl,”.,xMatla'.

Zm =

(19)

In either the case of the total incorrect assignment loss func-
tion or the total squared error loss function the probabilities

P(tm’xla. te ’xMIQ);

must be determined. Under the Markov assumption (12) and
the conditional independence assumptions (2) and (3)

P(tls.. . ,tMsxla. o ’leQ)

m:l,...’M

S

=11 Pt |tm) Pt |t -1)- (20)

m

_ Hence, the required probabilities can be obtained by taking the

appropriate sums of products. In Section III-B-2, we describe
the BAMPS algorithm for computing all the M lL! probabilities
P(zpm,x1," ", xy|Q) in the order of M|L|* operations.

1) The Viterbi Algorithm: The Viterbi algorithm [8] deter-
mines the Bayes labeling z,, - - -, z3; under loss function (6)
and Markov assumption (12) by determining the maximizing
Zy1,°,zp of

[log P(x;|z;) + log P(z;|2;-1)].

Mk

i=1

The algorithm is most easily understood by drawing a graph
having M columns of nodes, each column having [L] nodes.
The jth node in column i corresponds to the assignment of the
jth interpretation value v; to unit 7 (i.e., z; =v;). The weight
in this node is log P(x; [vj). There are arcs between the nodes
in each pair of adjacent columns and the graph looks like a
trellis, as illustrated in Fig. 1. The weight of the arc connect-
ing the jth node in column i with the kth node in column i + 1
is log P(vk|v,-). The best joint interpretation z, - -, zpr is
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tog Pix;iv))

é'log P(vylvy 7

log Pix)iv)) log Pixaivi)

log Pxiv)

Fig. 1. Illustrated the trellis data structure that the Viterbi algorithm
works on.

found by selecting one node in each column, the path from
column one to column M determined by these selections being
those giving the highest weight path.

The Viterbi algorithm making this highest weight path selec-
tion proceeds by recognizing that whatever the optimal path
is, it must pass through one node in each column. Thus, if a
calculation could be made in which every node in column i
had the weight of the best path from some node in column
one to it, then the calculation of the weight w(i + 1, v) of the
best path from some node in column one to node v in column
i+1issimple. It is given by

w(i + 1,v) = log P(x;41|v) + max [w(i, v') + log P(v|v")]
21

where w(i,v') is the weight of the best path up to column i
node v, log P(v|v") is the weight of the arc from node v’ col-
umn 7 to node v column i + 1, and log P(x;, llv) is the weight
of node v column i + 1.

To determine the best path, we need only look through the
path weights w(M, v) in the last column M. One of these has a
maximal value. To have reached this maximal value, the path
had to pass through some node in column M - 1. If we save
the node which maximizes each computation (21), zpy_; is
easily determined by a table lookup. In a like manner the best
Zpr-2 is determined and so on.

There have been two suggestions in the literature for a modi-
fied Viterbi algorithm which reduces the computational com-
plexity with little effect on optimality. Shinghal et al. [23]
suggest that instead of considering all possible labels at each
column in the trellis, only consider those K labels for which
P(xlz) P(z) is highest. Erman et al. [6] indicate that in the
HARPY speech understanding system instead of considering
all possible labels at each column in the trellis, only those few
labels which are part of the best paths through the given column
need be considered. The modified search technique is called
beam searching and is described by Rubin and Reddy [22].

2) The BAMPS Algorithm: The BAMPS algorithm deter-
mines the Bayes labeling z, - -+, z3y under the loss function
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(9) where the partial losses are given by (10) and under the
Markov assumption for P(xy, - -« ,xp, 84, " * tM]Q) given by
(20). It does this by computing the probabilities P(z,,, x4,
s, xMIQ) which can be expressed as a sum of products due
to the Markov assumption.

Define
a(n-1,z,)= Y {nl:ll P(xilti)

11, ,tn-1 i=1

-P(r,-|ri-I)P(xnlzn)P(znltn-l)] @)

and
b(n,z,) = Z P(xn+1ltn+1)P(tn+1!zn)
th+l ' " IM
M
__l_[ , P(x;|£) P(t; |- 1). (23)

It is clear from (20) and the definition of a(n - 1, z,) and
b(n,z,) that

a(n - lszn)b(n’zn)=P(zmxl,' o ’xM|Q)' (24)

The BAMPS algorithm, named by Lehan [14], stands for
Bayes and Markov processing system. It is an order M [L|2
algorithm for the computation of the M IL] probabilities P(z,,,
Xy, ,xMIQ) by computing a(n- 1,z,) and b(n, z,) as
stated in (25) and (26) and then multiplying them together as
in (24)

a(n-1,z,)= 2 a(n-2,ty_1) P(xp|2s) P@n|tn-1)

n-1
(25)
where a(0, z) = P(x1]z1) P(z1) for each value 2, and
b(n,2,)= 3 PGns1|tns1) Pltns1|zn) B(n+1,2041)

thsel
(26)

where b(M, zp7) = 1 for each value z,,.

Equation (25) is similar to the iterative procedure of Raviv
[19] who shows how to make a decision on the nth unit using
all the past measurements x;, - **, X, - and the current mea-
surement x,. Equation (26) is basically (25) with indexing
starting from the end rather than the beginning. Equation
(24) shows that a label can be assigned to the nth unit on the
basis of all measurements: the past units x4, -+, x,_;, the
current one x,,, and the future ones x,,, 1, " -, xp. The tech-
nique given by (24) is, therefore, more powerful then the tech-
nique described by Raviv. An approach related to the BAMPS
algorithm can be found in Askar and Derin [1].

IV. ARTIFICIAL INTELLIGENCE

For most problems with context, the Markov assumption
(12) is too weak and the squared error loss functions are usu-
ally meaningless. Problems with context require a more sensi-
tive way of handling the prior probability P(zy, - - ,zM]Q).
To this end, artificial intelligence researchers such as Duda and
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Hart [5] have implicitly assumed that the global interpretation
(z1,** ,zp) for units (1,---, M) is either allowable or not
allowable and all allowable global interpretations have equal
probability. This is an equal probability of ignorance assump-
tion. But it is one that applies to the entire context and not to
each unit individually. Artificial intelligence researchers call
this kind of constraint the constraint which embodies the
problem semantics. Thus, if the problem semantics are given
by A, where A C LM is the set of allowable global interpreta-
tions, we have

1

P(zl,"‘,ZMlQ)= #A4
0 if (zy, - ,zpm)€¢A4.

Under our context equal probability of ignorance assump-
tion of (27), the Bayes decision rule for loss function (6) de-
termines interpretations z 4, - -, zps for units 1, - - - , M which
maximize

if (z4,""',zy)€EA
(1 M) @7

P(Zl,' L ZML X1, ,xMIQ)

M
=Py, 2m]0) [] Plxilz)
i=1

1 M
— P(x;|z; if (z4,°"',z2)€A4
Yy i]:ll (x:|2:) (21 M) 8)

0 otherwise.

The brute force algorithm to solve this optimization problem
must then go sequentially through all consistent interpretation
M-tuples (z, - -, zpr) in the constraint set A and for each one
evaluate

M
[[l P(x;|z)

to find that consistent labeling which maximizes the product.
This approach, used in Duda and Hart [5], is sometimes called
a dictionary-based method.

Maximizing a product is equivalent to maximizing the sum
of the logorithms of the terms in a product. Maximizing a sum
over possibilities from some constraint set can be accom-
plished by a branch and bound state space search.

For the least-squares loss function which is less common in
usual artificial intelligence problems, but which may be more
useful in complex signal processing applications, minimizing
(4) is equivalent to minimizing

M
> (tn-za) 29

M
[T PGm|tm).
(t1," ", tM)EA n=1 m=1

Notice that the context equal probability of ignorance assump-
tion has eliminated the prior probability P(z,,- - -, zM|Q).
Expression (29) is minimized by

M
t l_[ P(xm[tm)

m=1

- .
[T PCem|tm)

(t1," ", tm)EA m=1

— (tl’."’tM)eA

z i (3 0)
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A difficulty with the solution (30) is that the labeling z,,
-+, zp determined by (30) may not be a member of the con-
straint set A. A natural variation, therefore, is to restrict the
assigned interpretations to come from the constraint set A.
This is easily put in the loss framework by having an infinitely
high loss for any assignment not in the constraint set.

To accomplish finding (z,," - -,z ) €A minimizing (29)
we can define the.constraint set 4 parametrically by

A={(21,'”,ZM)€LM|

- forsome a,;, - ,ax,zZ;, =

. v
> akfk(m)} €29

k=1
where the basis functions satisfy the orthogonality conditions
0 i#j
2 film) f;(m) = {
m 1 i

Minimizing (29) under the constraint that (z,, -+ ,zy)EA is
then equivalent to finding @,, * - + , ax which minimizes

) 2
S 52 awhtn) ] Penltm)

(t1, -, tM)EA n=1 \k=1
(32)
The minimizing values are given by
M M
> fim 2 ta T[] PGm|tm)
n=1 (1, ", tM)EA  m=1
o o (33)
Z 3 POm|tm)
(t1, . tM)EA m=1

The solution is then given by

K
= > arfu(m).

k=1

Zm

Modeling the constraints among the units by a general subset
A S LM which specifies the allowable interpretation M-tuples
is a powerful concept. By itself, however, it may not lead to
any practical implementations. The problem is one of size.
For the loss function we have considered, we need to have a
way to access each of the M-tuples in 4, a set too large to store
in memory directly, without having to generate all the M-tuples
in LM and test each one to see if it satisfies the conditions de-
fining A. Artificial intelligence researchers sometimes accom-
plish this by specifying 4 through a small set of production
rules or constraint rules. Accessing each of the M-tuples in A
is then accomplished as a constrained search which searches a
space slightly larger than A4 but much smaller than LY. In the
next section we discuss a way of specifying 4 by relational
constraints.

A. Specifying the Constraint Set

One possibility is to specify 4 by specifying possibly over-
lapping pieces of the M-tuples in A. If this decomposition of
A matches a corresponding decomposition in the loss function,
the two decompositions can then lead to algorithms of the
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form: solve a classic optimization problem of the form (3) for
each of the small pieces and then determine a total solution
from the solution on each of the pieces.

In this framework, there is a natural layering. The layering
occurs because there is a unit change from the lowest level ob-
servational unit to the higher level piece which consists of a
group of related observational units. Relatively little is known
about the varieties of possible unit change or the naturally
associated loss functions.

We now describe one way to specify A by specifying possi-
bly overlapping pieces of the M-tuples in A. Each piece is a
tuple of related units. Each piece is a higher level unit. Let T’
be a set containing all tuples of indexes of related units. Thus,
if (iy,++-,ix) €T, then units iy, -, i are all related and
(i1, - ,ig) is the higher level unit. Corresponding to each
(1,--",ig)ET is a set R({,," " -, ix), the projection of 4
onto the (iy, " ,ix) subspace, which contains all tuples of
legal or allowable interpretations for units iy, - - ,ig. The set
A is then represented by the set of all interpretation tuples (¢,
", ty) such that (iy,- - ,ig) €T implies (¢;,, ", ;) €
R(iy,*,ix). Such an A4 is equal to the intersection of its
inverse projections taken over all (i;, - - ,ix) € T.

This formulation is the one used by Waltz [28] in line label-
ing problems and by Tenenbaum and Barrow [25] in their in-
terpretation guided segmentation experiments. Riseman and
Ehrich [20] in a character recognition situation used a related
approach. There, each R(i;, "', i) corresponds to a set of
allowable K-gram of characters in the iy, - - -, i positions of a
word. They set K =2 and used the bigrams to eliminate non-
sense alternatives from possible labels produced by a context
independent classifier. Finding all the M-tuples in A is a con-
sistent labeling problem (Haralick and Shapiro [31]).
cause the consistent labeling problem is an NPcomplete prob-
lem, it is a powerful way to specify constraints.

B. Corresponding Loss Functions

Corresponding to this decomposition of the constraint set A
is a corresponding representation of the loss functions as a sum
of partial losses.

L(zl".. sZMsty, ’tM)

= Z L(Z,'l,"

(i1, iK)ET

'aziK’tily'..5tiK)' (34)

The loss function of (34) leads to the problem of determin-
ing interpretations z ¢, - - -, z; which minimize

(t1, -, tM)EA (i, ,IK)ET
Mo
.L(zily‘"’ziKstily.."tiK) n P(tmlxm) (35)
m=1

With a couple of notational definitions, (35) can be rewrit-
ten. For each (i, - - ,ix) € T, denote its extension by ig , i,
-+ ,ip. The extension makes iy, -,y a permutation of
1,:--,M. Foreach (l‘,o1 R t,-K)GR(iI, -+, ig), we define
theset Sy ... s (%), ", i) of its extension in 4 by

Sil,"',iK(til’..' stiK)
={(tiK+1)' o 7tiM)!(tl" o atM)eA}'

Be- -
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Using the extension concept (35) becomes
»iK)

(il’... ,iK)eT (til’...’ tiK)eR(il’-..

K
) L(zila T aziK’tila T tiK) I-[ P(tiklxik)
k=1

[ >
Cig po o 2 tip) €8y, o i iy, tig)

M

e v, )] _ (36)
m=K +1

Determining the minimizing z,, - - -, z3s is computationally
difficult because of the last bracketed term in (36).

If we neglect this term (by assuming they are all equal for
each tis' ">ty ) we can solve a suboptimal problem of
choosing zy, * - -, zpy which minimizes

(i1, ,ig)ET (til, ree, t,'K)(il,' <+ L,IK)ER

K
! L(zil, e aziK, tl'l’ T, ttK) ” P(tl'klxik)' (37)
k=1

This suboptimal problem can be solved as a dynamic program-
ming problem or a branch and bound search. For each Ziys
**, Zjy the function

f,-l,...,iK(Zil,"'aziK)

(til’ e, tiK)ER(il’ s, iK)

K
‘L(Zil,' o >ZiK9tila e :tiK) n P(tik,xik)
k=1

is evaluated. Expression (30) just becomes

fil,"' ,iK(zil:' o ,ziK)s

(i1, IK)ET
the form of a standard multidimensional dynamic program-
ming problem.

If we are not interested in any interpretation which uncondi-
tionally minimizes (37), but only an interpretation (z," - -,
Zp) €A which suboptimally minimizes (37), the state space
branch and bound search can be done even more efficiently
(Shapiro and Haralick [32]). Note that this formulation is
closer to an optimal formulation than that in Riseman and
Ehrich [20] or Hanson et al. [10], and to our knowledge it
has not previously appeared in the literature.

C. Loss Function Using Context and Leading to
More Efficient Computation

In this section we discuss two alternative kinds of loss func-
tions which permit the combining of the alternative solutions
for the small pieces to occur in linear time rather than the ex-
ponential time of the combinational search required in Section
IV-B. The formulations arising out of these loss functions
have not previously appeared in the literature.

These loss function decompositions are different than the
simple sum of (34). Letting T, be that subset of T containing
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tuples one of whose components has value m
T, ={G, " ,ix)E T| for some k, iy =m},
we first consider the loss function given by

Ly, zm,ty, s ty)

m=1 (iy, - ,ig)ETH
* ’tiK)" (38)

In this loss function, the loss for the assignment of interpre-
tations z{, - - -,z given that the true interpretations are ¢,
-+t is calculated as a sum of partial losses, one partial loss
term for each unit to be assigned. The partial loss associated
with assigning interpretation z,, to unit m is obtained by sum-
ming the loss of each problem piece containing unit 72. These
problem pieces are those associated with the higher level units
(i1, ,ix) ET,. Each problem piece (iy,- - - ,ix) associ-
ated with unit m has a loss

Ly, -, i) @ms tiy,

Lm(z‘l, ey iK)(Zml’ T, tiK)9

the loss of assigning the interpretation z,, to unit u,, where
the true interpretation for the higher level unit (i;, - - - ,ix)is

(til, T tiK)'
Letting e* be the minimal loss, we have

*=  min

21, ZM (ty,- L ty)EA m=1 (i1, - ,IK)ETy

e

M
'Lm(il,”',iK)(zmatil,'" atiK) l—[ P(tnlxn)- (39)
n=1

The order of the summation on (¢, -, tar), m, and ({y," -,
ix ) can be interchanged.

* —

e*=  min

21, 2M m=1 [(ilv"' SIK)ETm (tl""th)EA
- . M

'Lm(il,“-,iK)(zm:tils" ',t,'K) n P(t,,|x,,) .
n=1

(40)

The term in square brackets is a function of z,, alone.
Hence, thé minimum of the sum is the sum of the minimums.

M
e*= > min >

m=1 Zm (iy, - ,ig)ETm, (t1," ", tM)EA
M
'Lm(il,--- ,iK)(Zma til, B th) ]_I P(tnlxn)~ (41)
i n=1

Using the same notational convention for the extension as
before, we can rewrite (41) as

M
e*= min

m=12m (i, ,igK)ETy (til,"',tiK)eR(il,"‘,iK)
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K
: Lrﬁ(il,- cey, iK)(zm’ tip T, th) n P(tiklxik)
k=1

[(ti oo t)ESiy, e ig (it s By
K +1 M 1 Kk (Fiq K

M
n P(t,-m']x,'m)] .

m=K+1

(42)

Assuming that the last term in square brackets takes the
same value for each #;,,* - ,#; we obtain an approximate
minimizing z,,**,2p. Take each interpretation z,, to be
that z,,, minimizing

(i]! Tt 'K)ETm [(ti19' Tt tiK)ER(ils Y tK)
K
“L(iq, -, i)@ms iy 5 i) T1 P(fiklxik)] .
k=1

(43)

This approximate formulation is computationally advanta-
geous. The term in square brackets is the expected loss ob-
tained by assigning unit 7 to interpretation z,, for problem
piece (i, - - ,ix). Thus, each problem piece (iy," " - ,ix) can
be computed independently for each possible value of z,,.
The global minimizing z,, is then just that z,, which mini-
mizes the sum of the expected losses of interpretation z,,, , the
sum being taken over all the problem pieces.

Another alternative loss function to (38) is given by

L(Zl’. o 9ZM3t13. o ,tm)

M -
= min
m=1 (1" iK)ETY

i), (*4)

In this loss function the loss for the assignment of interpreta-
tions zq," -, 2y, given that the true interpretations are f4,
-+, ty, is calculated as a sum of partial losses, one partial loss
term for each unit to be assigned. The partial loss associated
with assigning interpretation z,, to unit m is obtained by going
through each problem piece containing unit m. These problem
pieces are then represented by the higher level units (i, - -,
ix) € T),. Each problem piece (i;,- - - ,ix) associated with
unit 7 has a loss

'Lm(i Ly ,iK)(zm’tila o
1

t atiK)

the loss of assigning the interpretation z,, to unit m when the
true interpretation of the higher level unit (i1, - - -, ix) is (¢,
“+*, tiy)- Of all the problem pieces unit m participates in, one
of them will have the smallest loss. This smallest loss is the
partial loss associated with unit m.

The loss function of (44) does not permit a computationally
efficient solution for the exact minimizing z{,- - -, zy;. How-
ever, it does provide for a computationally efficient solution
for interpretations zq,---,z3 whose expected loss bounds
the minimizing ones. Letting e* be the minimal expected total

Liniy, -+, ig)@ms tiys
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loss, we have

M
e*=  min min
21 EM (8,0, tp)EA m=1 (1L IK)ETm
M .
Lm(Zm’ til’ T tiK) n P(tnlxn)' (45)
n=1

Performing interchanges similar to before, there results

e*= min

VIKYETm

min

m=12Zm (t1,---,t30)€4 (1"

(46)

Lm(zms tila e

o .
i) T] Pltn|xn)-
n=1

In general, the sum of the minimums is less than the mini-
mum of the sums. This lets us bound e* by

min

* %
e* < min
LIK)ET, (L, 0,

m=1 zm (i1,"" tEA

M
' Lm(il, Ty, I'K)(Zm5 tila T, tiK) nl P(tn|xn)- (47)
n=

Using the same notational conventions as before we can re-
write (40) as

e*< Z min min

m=1 Zm (i1," " ,iK)ETm (tig s tig)ER>Y, -+ - iK)
(t,‘K FETRARE tiM)ESil, e ,-K(tl'l, cee, tiK)
M
: Lm(il, e ,iK)(Zn‘H tila T th) nl P(tnlxn) (48)
n=

which results in

M

e*< min min
m=12zZm (1" IK)ETm (tip, " tig) ER(iy, ", iK)
K
'Lm(il,"' ,iK)(sttils ' atl'K) knl P(tl'k!xik)
[(tiK+ly ) tiM)ESil, ceey, iK(tiI’ Tt tiK)
M
1 PG, lxi,)|- (49)
m=K +1

Assuming that the last term in square brackets takes the
same values for each ¢; ,- -, ;. we obtain an approximate
minimizing z,- - ,zp. Take each interpretation z,, to be
that z,,, minimizing

min
(i1, IK)ET, (i tig)ERGY, <+, iK)
K
LGy, ix)Cmotip s ti) T] Ples|*xi,). (50)
k=1
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This formulation is computationally advantageous because it
allows each interpretation z,, to be obtained independently.
The expected loss for each value of interpretation z,, is com-
puted for each problem piece (i, :-,ix). There will be
some (i;, - ,ix) and interpretation value z,, having the
smallest expected loss. Assign this interpretation value z,, to
unit m. This formulation is related to the facet iterations of
Haralick and Watson [12] which are generalizations of the
smoothing technique introduced by Tomlta and Tsuji [26]
and Nagao and Matsuyama [16] '

V. PROBABILISTIC RELAXATION

In image analysis there have been numerous papers on the
effective use of cooperative processing through the mechanism
of probabilistic relaxation. The idea was first 1ntroduced by
Rosenfeld et al. [21]. There have been a variety of papers
analyzing some aspects of the underlying theory in Haralick
et al. [11], Peleg [18], Zucker et al. [29], and Zucker e al.
[30].

In cooperative processing, neighboring information posi-
tively or negatively reinforces the weights for each local unit
of information depending on the compatibility of the neigh-
boring information with the local information. After each re-
laxation iteration, the resulting values are more consistent with
the prior knowledge of information dependencies and global
context.

Probabilistic relaxation has been a mechanism whose theory
has not been well understood. In this section we state some
general conditional independence conditions which give prob-
abilistic relaxation the interpretation that each iteration com-
putes the conditional probability of each units category in-
terpretation given a new context which is the context of the
previous iteration enlarged by one neighborhood width. This
interpretation implies that relaxation iterations must only con-
tinue until either the conditional independence assumptions
no longer hold or until the entire context is taken into account,
whichever comes first. When the entire context is taken into
account, the computed probabilities are the conditional prob-
abilities of a unit having a category interpretation given the
measurements made of all the units. Thus, assigning that cate-
gory label having highest computed probability is a Bayes de-
cision rule under the total error loss function.

Section V-A makes precise this interpretation of probabilis-
tic relaxation and Section V-B states the conditional probabil-
ity assumption and shows that these conditional probability
assumptions lead to the interpretation given in Section IV-A.

A. Interpretation of Probabilistic Relaxation
In this section we develop an interpretation for the relaxa-
tion equation

P, Il 3 P05 a)

P(g;, t+1)= TEND 4
i . ZP(S,,!) n ZP(QJ»t)th(suql)
s JEN(@) gj
(51
where
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P(qi’ q])
P(q;) P(qj)

and N(7) is the set of neighbors for unit 7.

Our interpretation states that P(q;, ¢) is the conditional prob-
ability that unit i takes label g; given the tth level context.
Furthermore, the context at each iteration grows by an entire
neighborhood width surrounding the previous level context.

To make these remarks precise, we will have to make a
change in notation in which the context is explicitly written.
Context means the units and their corresponding measure-

Ji@i,q7) =

ments where the units come from some general neighborhood.

Initially, a measurement is made of each unit. We denote by
d; the measurement made of unit i. This is its immediate con-
text. The neighborhood context for unit i is the measurement
d; plus all the measurements of units in the neighborhood of
unit i. The next larger context for unit i is measurement d;,
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B. Basis for the Interpretation
In this section, we state the two conditional probability as-
sumptions which make the relaxation equation (52) a valid
equation. The assumptions are
[1 Pai.ap
JENG)

Plg)V I~ Y

P(q;, qx: k ENG)) =

and
P(dy: k €Zi(t + 1)|qi, g k ENG))

=Pk €Z0)a) Il Pdr:k€Z0lap. (4)
JEN()
To see how this leads to the relaxation equation (52), consider
the conditional probability that unit i takes label g; given its
level £ + 1 context. By definition of conditional probability,

> P(qi, qx: k EN(), di: k EZi(t + 1))

Plaild k€2 + D)= g e 7+ 1))

P(q;, di: kEZi(t+1)) JENG) qj

P(dkkEZ,(t + 1))

> X Pk E€Zi(t + 1)|q;, qx: k €NG)) P;, qic: k EN(D))

_JEN() g

plus all the measurements of units in the neighborhood of unit
i, plus all the measurements of units in the neighborhood of
the neighbors of unit i. The global context consists of all the
units 1, -+, M.

We denote by Z;(¢), the units in the #th level context for
unit i and by N(7) the set of neighbors for unit i. Z;(1) = {i}.
The units in the successive level contexts can be defined itera-
tively by Z;(¢ + 1) = { | for some k € Z;(t),j € N(k)}.

The purpose of the probabilistic relaxation is to compute for
each unit 7 and label g; the conditional probability P(q,-]d 1
-+« dy), where it is understood that a subscript # on a label
or measurement designates that the label or measurement is
for unit #n. Thus, P(q,) designates a generally different prob-
ability value than P(g3) even if g5 =¢q3. A more complete no-
tation would write P,(g,) for P(g,). We use the shorter nota-
tion to keep from writing unnecessarily complex expressions.

We will need to write conditional probabilities like P(g;]d 1,
-+, dy) but where the condition is on measurements for
some arbitrary subset S of units whose names are not explic-
itly known. We denote this kind of conditional probability by
P(q;|dy:k €S). Thus,if §={1,3,6,7},wewrite P(q;|dy: k€
S) for P(q;|dy, d3, dg, d7). Likewise,if T= {2, 3,4} we will
write P(qn:n € T|dy: k €S) for P(q2, 43, q4|d 1, d3, dg, d7).

In this notation, the relaxation begins with P[q,-ldk:ke
Z;(1)] and terminates with the probabilities P(q,-|dk: ke,
-+, I}). Therefore, we have the following interpretation for
the relaxation equation (51):

P(dy: k€ Z(t + 1)) . (5%)

Upon using assumptions (53) and (54) by substituting into
(55), there results
P(q;|di:k €EZi(t + 1))
_ o P(dy: k €Z,(1)|qy)
P(d: k €Z;(t + 1)) P(g;) NI~
X ¥ X Il @ax:k€Z,(1)]9n) Pl an).

JENG) 4 nENG)

(56)

Again using the definition of conditional probability, we
may rewrite (8).

P(q;|di: k €Zi(t + 1))

< P(dy: k €Z;(t)) lj'v[( ) P(dy:k EZ,(1)
neN(

Py kEZi(t + 1))
*P(q;|dy: k € Zi(F))

X > 3 I P@n|dc:k€Z,0t))

JEN(i) qj nEN()

. P(qb qn)
P@) P@an)’ 7)
Pg;|di:k€Zi®)) Tl X P@jlde:k €Z;() Jyai a7)
JENG) qj (52)

P(q,-|dk:kEZ,~(t+ 1)) =

Y P(ti, |di: K €Zi(2))

1 > Pajlde:d€Z(0) Jy(as ;)
JEN() qj
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The sums of products in (57) can be simplified. The product
contains terms each of which depends simply upon n. All
other variables involved are constant with respect to sums and
product. Hence,

P(qi,9n)
P(g,|dx: k € Zu(t)) ————
JENG) qZ, nEI-IIV(i) | @) P(q;) P(qr)
= ne[}(i) qzn; P(gn|di:k €EZu(t) Pa)Pa,) (58)
Finally, noticing that
> P(gi|di: kKEZi(t + 1)) =1 (59)

qi

we can divide both sides of (57) by the sum in (59). The first
term in square brackets on the right-hand side of (57) is a con-
stant with respect to the summation and, therefore, cancels in
the division. Thus, upon making the substitution of (58) and
the division of (59) there results the relaxation equation
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cisions are complicated state space searches. Often, subop-
timal more easily computed solutions are sought.

In summary, we have seen that the way to handle context is
to make more realistic assumptions on the joint prior probabil-
ity function. Using the more complex prior, decisions are
made by computing the conditional probability of the interpre-
tation label for a unit given all the measurements from all the
units. Depending upon the prior probability assumption there
may be a corresponding natural form for the loss function
which permits some kind of partial problem decomposition.
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Application of the Conditional Population-Mixture
Model to Image Segmentation
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Abstract—The problem of image segmentation is considered in the
context of a mixture of probability distributions. The segments fall
into classes. A probability distribution is associated with each class of
segment. Parametric families of distributions are considered, a set of
parameter values being associated with each class. With each observa-
tion is associated an unobservable label, indicating from which class the
observation arose. Segmentation algorithms are obtained by applying
a method of iterated maximum likelihood to the resulting likelihood
function. A numerical example is given. Choice of the number of
classes, using Akaike’s information criterion (AIC) for model identifi-
cation, is illustrated.

Index Terms—Cluster analysis, image processing, image segmenta-
tion, isodata procedure, k-means procedure, Mahalanobis distance,
mixtures of distributions, multivariate statistical analysis, pattern
recognition, pixel classification, relaxation methods.
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I. INTRODUCTION

A digital (i.e., numerical) image may be considered as a
rectangular array of picture elements (pixels), indexed by
(i,j). At each pixel the same p features are observed. We
denote the features by

Xy, X2, 0, Xp.

The vector of features is
X=(X, X, ", Xp).

The observed digital image is
{2y i=1,2,°+ ,Lj=1,2,"""

where

b J}’

xi = (xl,-,-, X2if, """ Xpij)

is the vector of numerical values of the p features at pixel
@ 7).
Examples

1) In color television, p = 3 colors, the pixels are the dots
on the screen, and for pixel (7, j), xy; = red level, x,;; = green
level, and x3;; = blue level.

(2) In Landsat data, p = 4 spectral channels, one in the green/
yellow visible range, the second in the red visible range, and
the other two in the near infrared range.

An object is a set of contiguous pixels which may be as-
sumed to be members of a common class. One task of image
processing is segmentation, grouping of pixels with a view
toward identifying objects.

In this context the conceptual model is that the image is a
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