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Digital Step Edges from Zero Crossing
of Second Directional Derivatives
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Abstract-We use the facet model to accomplish step edge detection.
The essence of the facet model is that any analysis made on the basis of
the pixel values in some neighborhood has its final authoritative inter-
pretation relative to the underlying gray tone intensity surface of which
the neighborhood pixel values are observed noisy samples. With regard
to edge detection, we define an edge to occur in a pixel if and only if
there is some point in the pixel's area having a negatively sloped zero
crossing of the second directional derivative taken in the direction of a
nonzero gradient at the pixel's center. Thus, to determine whether or
not a pixel should be marked as a step edge pixel, its underlying gray
tone intensity surface must be estimated on the basis of the pixels in its
neighborhood. For this, we use a functional form consisting of a linear
combination of the tensor products of discrete orthogonal polynomials
of up to degree three. The appropriate directional derivatives are easily
computed from this kind of a function.
Upon comparing the performance of this zero crossing of second di-

rectional derivative operator with the Prewitt gradient operator and the
Marr-Hildreth zero crossing of the Laplacian operator, we find that it is
the best performer; next is the Prewitt gradient operator. The Marr-
Hildreth zero crossing of the Laplacian operator performs the worst.

Index Terms-Edge operator, facet model, image processing, image
segmentation, zero crossings of second directional derivative.

I. INTRODUCTION
W tHAT IS an edge in a digital image? The first intuitive

notion is that a digital edge occurs on the boundary be-
tween two pixels when the respective brightness values of the
two pixels are significantly different. Here "significantly dif-
ferent" may depend upon the distribution of brightness values
around each of the pixels.
We often point to a region on an image and say this region is

brighter than its surrounding area. Having noticed this we
would then say that an edge exists between each pair of neigh-
boring pixels where one pixel is inside the brighter region and
the other is outside the region. Such edges are referred to as
step edges.
Step edges are not the only kind of edge. If we scan through

a region in a left-right manner observing the brightness values
steadily increasing and then after a certain point observe that
the brightness values are steadily decreasing, we are likely to

say that there is an edge at the point of change from increasing
to decreasing brightness values. Such edges are called roof
edges.
Therefore, it is clear from our use of the word "edge" that

edge refers to places in the image where there appears to be a
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jump in brightness value or a local extremum in brightness
value derivative. Jumps in brightness values are the kinds of
edges originally detected by Roberts [18]. Relative extrema
of first derivative in a one-dimensional form is used by Ehrich
and Schroeder [6] and in an isotropic two-dimensional sub-
optimal form by Marr and Hildreth [131.

In some sense this summary statement about edges is quite
revealing since in a discrete array of brightness values there are
jumps, between neighboring brightness values if the brightness
values are different, even if only slightly different. Perhaps
more to the heart of the matter, there exists no calculus def-
inition of derivative for a discrete array of brightness values.
One clear way to interpret jumps in value or local extrema

of derivatives when referring to a discrete array of values is to
assume that the discrete array of values comes about by sam-
pling a real-valued function f defined on the domain of the
image which is a bounded and connected subset of the real
plane R2. The finite difference typically used in the numerical
approximation of first-order derivatives are usually based on
assuming the function f to be linear. From this point of view,
the jumps in value or extrema in derivative really must refer
to points of high first derivative of f or to points of rela-
tive extrema in the second derivatives of f. Edge detection
must then involve fitting a function to the sample values. Pre-
witt [17] was the first to suggest the fitting idea. Hueckel
[11], [12], Brooks [3], Haralick [8], Haralick and Watson
[10], Morgenthaler and Rosenfeld [15], Zucker and Hummel
[20], and Morgenthaler [14] all use the surface fit concept in
determining edges.
Edge finders should then regard the digital picture function

as a sampling of the underlying function f, where some kind of
random noise has been added to the true function values. To
do this, the edge finder must assume some parametric form
for the underlying function f, use the sampled brightness
values of the digital picture function to estimate the param-
eters, and finally make decisions regarding the locations of
discontinuities and the locations of relative extrema of partial
derivatives based on the estimated values of the parameters.
Of course, it is impossible to determine the true locations of

discontinuities in value or relative extrema in derivatives di-
rectly from a sampling of the function values. The locations
are estimated analytically after doing function approximation.
Sharp discontinuities can reveal themselves in high values for
estimates of first partial derivatives. Relative extrema in first
directional derivative can reveal themselves as zero crossings of
the second directional derivative. Thus, if it were known that
the first and second partial derivatives of any possible underly-
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ing image function had known bounds, then any estimated
first- or second-order partials which exceed these known
bounds must be due to discontinuities in value or in derivative
of the underlying function. This is the basis for the gradient
magnitude and Laplacian magnitude edge detectors which have
appeared in the literature: detect an edge if the gradient is
high enough.
However, edges can be weak but well localized. Such edges,

as well as the strong edges just discussed, manifest themselves
as local extrema of the directional derivative of the estimated
gray tone intensity function taken across the edge. This idea
for edges is the basis of the edge detector discussed here. In
this paper, we assume that in each neighborhood of the image
the underlying gray tone intensity function f takes the para-
metric form of a polynomial in the row and column coordi-
nates and that the sampling producing the digital picture func-
tion is a regular equal interval grid sampling of the square
plane which is the domain of f. Thus, in each neighborhood f
takes the form

f(r,c)=kl +k2r+k3c+k4r2 +k5rc+k6c2 +k7r3

+ k8r2c + k9rc2 + kloc3.

As just mentioned, we place edges not at locations of high
gradient, but at locations of spatial gradient maxima. More
precisely, a pixel is marked as an edge pixel if in the pixel's
immediate area there is a zero crossing of the second directional
derivative taken in the direction of the gradient [9] and the
slope of the zero crossing is negative. Thus, this kind of edge
detector will respond to weak but spatially peaked gradients.
The underlying functions from which the directional deriva-

tives are computed are easy to represent as linear combinations
of the polynomials in any polynomial basis set. A polynomial
basis set which permits the independent estimation of each
coefficient would be the easiest to use. Such a basis is dis-
cussed in the appendix.
Section II discusses how the discretely sampled data values

are used to estimate the coefficients of the linear combinations:
coefficient estimates for exactly fitting or estimates for least
square fitting are calculated as linear combinations of the
sampled data values.
Having used the pixel values in a neighborhood to estimate

the underlying polynomial function we can now determine the
value of the partial derivatives at any location in the neighbor-
hood and use those values in edge finding. Having to deal with
partials in both the row and column directions makes using
these derivatives a little more complicated than using the sim-
ple derivatives of one-dimensional functions. Section III dis-
cusses the directional derivative, how it is related to the row
and column partial derivatives, and how the coefficients of the
fitted polynomial get used in the edge detector. In Section IV
we discuss the statistical confidence of the estimate of edge
existence and the edge angle. In Section V we show results
comparing the directional derivative zero crossing edge operator
with the generalized Prewitt gradient operator and the related
Marr-Hildreth zero crossing of the Laplacian operator.

II. FITTING DATA WITH DISCRETE ORTHOGONAL
POLYNOMIALS

Let an index setR with the symmetry property r E R implies
-r CR be given. Let the number of elements in R be N. Using
the construction technique in the Appendix, we may construct
the set {PO(r), - - - , PN_1 (r)} of discrete orthogonal poly-
nomials over R. Using the tensor product technique also dis-
cussed in the Appendix we can construct discrete orthogonal
polynomials over a two-dimensional neighborhood. Some one-
and two-dimensional discrete orthogonal polynomials are
shown as follows:

Index Set

{-1/2, 1/2}
{-1,0, 1}
{- 3/2, - 1/2, 1/2, 3/2}
{-2, -1,0, 1,2}

{- 1,, 1}X{- 1,0, 1}

Discrete Orthogonal Polynomial
Set

{1,r}
{1, r, r2 - 2/3}
{1, r, r2 - 5/4, r3 - 41/20r}
{1, r, r2 - 2, r3 - 17/5,

r4 + 3r2 + 72/35}
{1,r,c,r2 - 2/3,rc,c2 - 2/3,
r(c2 - 2/3), c(r2 - 2/3),
(r2 - 2/3)(c2 - 2/3)}.

For each rER, let a data value d(r) be observed. The exact
fitting problem is to determine coefficients ao, * , aN -1 such
that

N-1
d(r) = E anPn(r).

n =o
(1)

The approximate fitting problem is-to determine coefficients
aoO, - , aK, K <N - I such that

K
e2 = 2r d[(r)- K

anPn(r) 2
rR n =o

is minimized. In either case the result is

(2)am = Z Pm(r)d(r)l E Pm(s).
rE3(R s R

The exact fitting coefficients and the least squares coefficients
are identical for m = 0, , K. Similar equations hold for the
two-dimensional case.
Equation (2) means that each fitting coefficient am can be

computed as linear combination of the data values. For each
index r in the index set, the data value d(r) is multiplied by
the weight

P. (r)/ E Pm' (s)
s&R

which is just an appropriate normalization of an evaluation of
the polynomial Pm at the index r. Figs. 1 and 2 show these
weights for the 3 X 3 and 4 X 4 neighborhoods.
Once the fitting coefficients ak, k = 1, * , K, have been

computed, the estimated polynomial Q(r) is given by

K
Q(r)= E a,P,(r).

n =o
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Fig. 1. Illustrates the 9 masks for the 3 X 3 window.
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Fig. 2. Illustrates the masks used to obtain the coefficients of all
polynomials up to the quadratic ones for a 4 X 4 window.

This equation permits us to interpret Q(r) as a well-behaved
real-valued function defined on the real line. To determine

dQ(rO )
dr

we need only to evaluate

N an dP (
a P (To).n

dr
(3)

In this manner, the estimate for any derivative at any point
may be obtained. Similarly for any definite integrals. Section
IV gives a statistical analysis of the errors of the estimate.
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g(r,c)=a 00+alor+a01c
1-i 1-i 1-i

1/6 0 0 O

g(r,c)-= a00+a10 +a olC +----+---+--+

2 2 o1011101
* a(r _2/3)+a11rc +a (c 2-/3)-------

20 ( r ) 11 rc 02 1/2 0 0 0
+ a21 (r2-2/3)c + a2 (c2 2/3)r +---+----+--+

Fig. 3. Illustrates that the kernel mask used to estimate a quantity
such as row derivative can depend on the order of the assumed
model.

Beaudet [2] uses this technique for estimating derivatives em-
ployed in rotationally invariant image operators.

It should be noted that the kernel used to estimate a deriva-
tive depends on the neighborhood size, the order of the fit,
and the basis functions used for the fit. These parameters con-
stitute the assumed model. The importance of the model is
illustrated by the example of Fig. 3. This difference means
that the model used must be justified, the justification being
that it is a good fit to the data. From this we learn that the
use of first-order models to estimate first-order partials as is of-
ten done may not produce correct results if the first-order fit
is not good enough. In particular, it may require a third-order
model to get good estimates of first-order partial derivatives.

III. THE DIRECTIONAL DERIVATIVE EDGE FINDER

We stated in the introduction that a digital step edge occurs at
pixels having a negatively sloped zero crossing of the second di-
rectional derivative taken in the direction of the gradient. In
this section we discuss the relationship between the directional
derivatives and the coefficients from the polynomial fit.
We denote the directional derivative of f at the point (r, c)

in the direction a by /ol(r, c). It is defined as

/~(r,c)= lim /(r+h sinao,c+h cosa)-f(r,c)
fc, (r, c) = lim . (4)

h - h

f(r,c)=k, +k2r+k3c

+ k4r2 +k5rc+k6c2

+ k7r3 + k8r2c + k9rc2 + kloc3.
We obtain the angle by a by

sin a = k2/ (k2 + k)

cos o = k3/ V(k2 + k2) .

(7)

(8)
At any point (r, c), the second directional derivative in the

direction a is given by

f/,'(r, c) = (6k7 sin2a + 4k8 sin a cos a + 2kg cos2 a)r

+ (6k1O cos2a + 4kg sin a cos a + 2k8 sin2a)c

+ (2k4 sin2a + 2k5 sin a cos a + 2k6 cos2a). (9)

We wish to only consider points (r, c) on the line in direction
a. Hence, r = p sin a and c = p cos a. Then

/j(p)= 6 [k7 sin3a + k8 sin2 a cos a

+kg sin a cos2a+ klo cos3a] p

+ 2 [k4 sin2a + k5 sin a cos a +k6 cos2oa]

=Ap +B. (10)
If for some p, IP < po, where po is slightly smaller than the

length of the side of a pixel, fU'(p) < 0, f (p) = 0 and f (p) /
0 we have discovered a negatively sloped zero crossing of the
estimated second directional derivative taken in the estimated
direction of the gradient and we mark the center pixel of the
neighborhood as an edge pixel.

IV. STATISTICAL ANALYSIS
Noise induces a randomness in the least squares coefficients

which then induces a randomness in the estimated gradient
value, the estimated angle of the gradient, and the estimated
location of the zero crossing. In this section we show how to
handle this randomness by appropriate hypothesis tests or
confidence interval estimation.

The direction angle a is the clockwise angle from the column
axis. It follows directly from this definition that

fo(r,c) = af(r, c) sin a +-a (r, c) cos a. (5)ar 3c

We denote the second directional derivative of/at the point
(r, c) in the direction a by .fg'(r, c) and it quickly follows by
substituting .ft for f in (5) that

/= art 2 + 232/ aa2 2f= sin2a inaotcosaot+ Oar2 a3rc 3C2 " (6)

Taking f to be a cubic polynomial in r and c which can be
estimated by the discrete orthogonal polynomial fitting proce-
dure, we can compute the gradient off and the gradient direc-
tion angle a at the center of the neighborhood used to estimate
f. In order for our notation to be invariant to the different
discrete orthogonal polynomials which result from different
neighborhood sizes, we rewrite this cubic in canonical form as

A. GeneralModel
We let Pn, n = 1, , N, denote the discrete orthonormal

basis functions, 71 denote the independent and identically dis-
tributed noise, and g denote the gray tone intensity function.
Under this model, each neighborhood of the observed image
can be written as

N
g(r, c) = Z a,,P(r, c) + q (r, c)

n=1
(11)

where

Z Pn(r, c) Pm (r, c) =
r, c

0,

1

n * m

n = m

and the least squares estimates al, * , aN for the unknown
coefficients a1,, * - , an are given by

n= E3 g(r, c) Pn(r, c). (12)
r, c
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Substituting the formula for g(r, c) into the equation for a,n
and simplifying results in

a,; = an + L Pn(r, c) 71(r, c)
r, c

(13)

clearly showing that a, has a deterministic part and a random
part, the randomness due to the noise. We assume that the
noise is independent normal having mean 0 and variance a2.
Therefore, the estimated coefficient a, has mean an, variance
a2 and is uncorrelated with every other coefficient:

E[a,j] =an

E[a,;a,;] aman,mEn

E[a,;2 =a2+a2
V[n n

V[a,; a72.

The residual error e is defined as the difference between the
observed values and fitted values. It too is a random variable:

N
e(r, c) =g(r, c) - a'Fnn (r, c)

n =1

N
- L3 (a 'na)Pn(r,c)+r1(r,c). (14)

n = 1

It is not difficult to see that at each (r, c), the residual error
has mean zero and is uncorrelated with each estimated coef-
ficient a, since

E[a' e(r, c)] = 0.

After some algebraic substitutions and manipulation, the total
residual error S2 can be written as

S2= e2(r,c)= Ej; r2(r, C)
r,c r,c

N

L (a - a,;)2.

n=1

Thus, if the noise is assumed normal and there are K pixels in
a window

L3 r 2(r, C)/u2 has Xk,
r, c

a chi-squared variate with K degree of freedom,

N
(a - a' )2/(2 has XN

n =1

which makes

e 2(r, C)/u2 have XN.
r, c

B. Estimating the First Partials

If the discrete orthogonal basis functions are polynomials
then each first partial derivative at (0, 0) in the row and

column directions is given as some linear combination of the
estimated coefficients. Furthermore, the linear combination
for the row partial will be orthogonal to the linear combina-
tion in the column partial. It is not difficult to derive the ex-

Z-j

<- I

z

:D

0

ROW PARTIAL P-R

Fig. 4. Illustrates the geometry of the confidence interval estimation
for the edge angle.

pected value and variance of the first row partial ,u and the
first column partial 4'. They are

E[M4] =Pr

V[p'] =ok
V[p4] = uak

E[p1i ] = 1.r Pc
Hence, the estimates for the row and column partial derivatives
are uncorrelated.

C. Hypothesis Testing for Zero Gradient

To see the effect of the randomness on the estimate of the
gradient magnitude, consider testing the hypothesis that
1r = Pc = 0. This hypothesis must be rejected if there is to be
a zero crossing of second directional derivative. Under this
hypothesis,

Air2 +PAc2
ku2

has a X2 distribution.
The total residual error normalized by the noise variance,

52/a2, has a XK-N distribution. Hence

(Pr + P12 )/2
kS2/(K_ N)

has an F2, K-N distribution and the hypothesis of14e =p = 0
would be rejected for suitably large values.

D. Confidence Interval for Gradient Direction

To see the effect of the randomness on the estimate of the
direction of the gradient, consider the relationships portrayed
in Fig. 4. The axes are the row and column partials 14 and 14.
The direction angle e of the gradient is given by

COS (i) = ir/(i2 + P2 )1/2
CSinE = ,-rl~4 + (16
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The center of the circle is at the estimate (4U, 14). Upon sub-
stituting the estimates y4 and .U for Pr and puc, we obtain the
estimated direction angle e' by

Cos =At/F2 + 1M'2)1/2
sin 'O =14/(P2 + 142)1/2 (17)

From a Bayesian point of view, the area of the circle repre-
sents the conditional probability that the unknown (Pr, ,Ut)
lies within a distance R from the observed (Ml, 14) given that
the variance of 14 and 14 is known and equal to ka2. Assum-
ing a normal distribution for the noise, this conditional proba-
bility is q = 1 - e R2/2a2. Hence, if probability q is given, the
corresponding radius R is

R =kk[-2 log (I - q)]1/2 (18)

To determine a confidence interval for E) of the form 0'-
A S E) <0' + A, we have from Fig. 4 that

2 kA 0

LO kBJ
where kA and kB are known constants. For a window of K
pixels and a cubic fit, S2/a2 has a XK1
From this it follows that

[(A PA)/kAI + [(B- uB/kB)]/2
Z(A,A MB)= S2/(K - 10)

has an F2K- 1o distribution.
We define R={(x, y)I for some p, 0.p.d, xp+y= 0}

Then the null hypothesis is rejected at the p significance level
if

min Z(PA, PB)
(HA, MB) ER

is larger than F2K-10 1 -P
An edge strength probability can be defined by q where q

satisfies

min
(19) (pA,AB)ERSin2A = ka2 (- 2log (I - q))

12 +142

Note that the 2A confidence interval length depends on the
probability q of the circle confidence region for (Pr, p,) and
the unknown noise variance a2. Although a2 is not known,
we do know S2 which has a K2XKN distribution. We can
handle the problem of the unknown a2 by determining a joint
confidence region for (pr, p,) and a2 [71. Taking p to be the
probability that a chi-squared random variable with K - N de-
grees of freedom has an observed value greater than XK_N P
we have the confidence interval [0, S2/XK-N P] for u2 hav-

ing at least probability p. Replacing a2 in (19)by S2/XNK, P
we obtain

sirn2A = kS(2( 2log (1 -q)) (0
XK-N,P (1r + P)

A confidence interval for 0 having at least probability pq is
then (E' - A, 0' + A).

E. Edge Hypothesis Testing
In this section we first take the edge direction a to be a

fixed constant. We let PIA and PB be the expected values of
the random variables A and B appearing in (10):

f,'(p) = Ap + B.

The null hypothesis is that an edge exists and it is satisfied if
for some p, 0 < p po, where po is just smaller than the
length of a side of a pixel, we have PA p + PUB = 0 and PA < 0.

The observed random variables are A, B, and the residual
fitting error S2 . The bivariate random variable

(VA
is normal having mean

(PA\

and covariance

Z(PA,PB) =F2k-10 q

Of course, the edge direction a is not fixed. But as derived
at the end of Section IV-C, we do have a confidence interval
for it. And for each value of a in the confidence interval, the
random variable A(a) and B(a) can be computed and the null
hypothesis tested. If for all a in the confidence interval the
null hypothesis is rejected, then the existence of an edge is also
rejected.

In practice, we can perform a nonexact hypothesis test se-
lecting only the left end, middle, and right end values of a
from its confidence interval. If for each of these three values
of a the null hypothesis is rejected, then the existence of an
edge is also rejected.

V. EXPERIMENTAL RESULTS
To understand the performance of the second directional

derivative zero crossing digital step edge operator we examine
its behavior on a well structured simulated data set and on a
real aerial image. For the simulated data set, we use a 100 X
100 pixel image of a checkerboard, the checks being 20 X 20
pixels. The dark checks have gray tone intensity 75 and the
light checks have gray tone intensity 175. To this perfect
checkerboard we add independent Gaussian noise having mean
zero and standard deviation 50. Defining the signal to noise
ratio as 10 times the logarithm of the range of signal divided
by rms of the noise, the simulated image has a 3 dB signal to
noise ratio. The perfect and noisy checkerboards are shown in
Fig. 5.
Section V-A illustrates the performance of the classic 3 X 3

edge operators with and without preaveraging compared against
the generalized Prewitt operator. Section V-B illustrates the
performance of the 11 X 11 Marr-Hildreth zero crossing of the
Laplacian operator, the 11 X 11 Prewitt operator, and the
11 X 11 zero crossing of second directional derivative operator.
The zero crossing of second directional derivative surpasses the
performance of the other two on the twofold basis of proba-
bility of correct assignment and error distance which is defined
as the average distance to closest true edge pixel of pixels
which are assigned nonedge but which are true edge pixels.
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Fig. 5. Illustrates thc controlled perfect and noisy checkerboard images.

Fig. 6. Illustrates the 3 X 3 Roberts, Sobel, Prewitt, and Kirsch edge
operators with a box filter preaveraging of 1 X 1, 3 X 3, 5 X 5, and
7 X 7.

A. The Classic Edge Operators
The classic 3 X 3 gradient operators all perform badly as

shown in Fig. 6. Note that the usual definition of the Roberts
operator has been modified in the natural way so that it uses a

3 X 3 mask.
Averaging before the application of the gradient operator is

considered [19] to be one cure for such bad performance on

noisy images. Fig. 6 also shows the sante operators applied
after a box filtering with a 3 X 3, 5 X 5, and 7 X 7 neighbor-
hood sizes.
An alternative to the preaveraging is to define the gradient

operator with a larger window. This is easily done with the
Prewitt operator [171 which fits a quadratic surface in every

window and uses the square root of the sum of the squares of
the linear terni coefficients to the estimate the gradient. (A
linear fit would actually yield the sanme result. A cubic lit is
the first higher order fit which would yield a different tesult.)
This is illustrated in Fig. 7. A 3 X 3 preaverage followed by a

3 X 3 gradient opcator yields a resulting neigliboi iood size of
5 X 5. Thus in F-ig. 8 we also show the 3 X 3 preaverage tol-
lowed by a 3 X 3 gradienlt under the 5 X 5 Prewitt and we

show the 5 X 5 preaverage followed by the 3 X 3 gradient un-

Fig. 7. Illustrates the Prewitt operator done by using a least squares
quadratic fit in the neighborhood versus doing preaveraging and
using a smaller fitting neighborhood size. The no preaveraging results
show slightly higher contrast.

Fig. 8. Conmpares the Nevatia and Babu coiuipass operator with the
Prewitt operator in a 5 X 5 neighborhood.

der the 7 X 7 Prewitt. The noise is higher in the preaverage
edge-detector. For comparison purposes the 5 X 5 [161 com-
pass operator is shown alongside the 5 X 5 Prewitt in Fig. 8.
They give virtually the same result. The Prewitt operator has
the advantage of requiring half the comiputation.

It is obvious from these results that good gradient operators
must have larger neighborhood sizes than 3 X 3. Unfortunately,
the larger neighborhood sizes also yield thicker edges.
To detect edges, the gradient value must be thresholded. In

each case, we chose a threshold value which makes the condi-
tional probability of assigning an edge given that there is an
edge equal to the conditional probability of there being a true
edge given that an edge is assigned. True edges are defined to
be the two pixel wide region in which each pixel neighbors
sonie pixel having a value different from it on the perfect
checkerboard. Fig. 9 shows the thresholded Prewitt operator
(quadratic fit) for a variety of neighborhood sizes. Notice that
because the gradient is zero at the saddle points (the corner
where four checks iieet) any operator depending on the gra-
dient to detect an edge will have trouble there.

B. 7he Second Deripative Zero Crossitg Edge Operators

Marr and Hildreth [13] suggest an edge operator based on
the zero crossmiig of a generalized Laplacian. In etfect, this is
a nondirectionial or isotropic second derivative zero crossing
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Fig. 9. Illustrates the edges obtained by thresholding the results of the
Prewitt operator.

operator. The mask for this generalized Laplacian operator is
given by sampling the kernel

A (1 - k 2 e 1/2 r )

at the integer row column coordinates (r, c) designating the
center of each pixel position in the neighborhood and then
setting the value k so that the sum of the resulting weights is
zero. Fig. 10 shows the resulting kernels for a = 1.4, 5, and 10.
The value a = 1.4 is near the value usually used.
Edges are detected at all pixels whose generalized Laplacian

value is of one sign and one of whose neighbor's generalized
Laplacian value is of the opposite sign. A zero crossing thresh-
old strength can be introduced here by insisting that the dif-
ference between the positive value and the negative value must
exceed the threshold value before the pixel is declared to be an
edge pixel. Fig. 11 illustrates the edge images produced by
this technique for a variety of threshold values and a variety of
values for a for an 11 X 11 window. It is apparent that if all
edge pixels are to be detected, there will be many pixels de-
clared to be edge pixels which are really not edge pixels. And
if there are to be no pixels which are to be declared edge pixels
which are not edge pixels, then there will be many edge pixels
which are not detected. Its performance appears to be poorer
than the Prewitt operator.
The directional second derivative zero crossing edge operator

introduced in this paper is shown in Fig. 12 for a variety of
gradient threshold values. If the gradient exceeds the threshold
value and a zero crossing occurs in a direction of ± 14.90 of
the gradient direction within a circle of one pixel length cen-
tered in the pixel, then the pixel is declared to be an edge pixel.
This technique performs worst at the saddle points, the corners
where four checks meet, because the gradient in zero there.
The second derivative zero crossing edge operator compares
favorably with the more computationally expensive maximum
likelihood boundary estimation technique of Cooper et al. [51
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kernels used for Mexican hat or gener-
ied by sampling

A ( -k-r2 2 e-1/2 r2 +c2 )

at integer coordinates (r, c) r, c = -5, ., +5. The constant k is
chosen to make the sum of the values in the kernel to be zero, within
the quantization error. The constant A just scales the values so that
integer arithmetic can bc used.

Fig. 11. Illustrates the edges obtained by the 11 X 11 Marr-Hildreth
zero crossing of Laplacian operator set for three different zero cross-
ing thresholds and three different standard deviations for the asso-
ciated Mexican hat filter.

who show results using a higher signal to noise ratio (5.05 dB)
synthetic image.
Table I shows the comparison among the Prewitt operator

and the directional and the Marr-Hildreth nondirectional sec-
ond derivative zero crossing edge operators. As before, the
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Fig. 12. Illustrates the directional derivative edge operator for a win-
dow size of 11 X 11 and deciding that the true gradient is nonzero
when the estimated gradient is higher than the thresholds of 12, 14,
16, or 18.

TABLE I
COMPARES TIIE PERFORMANCE OF THIREE EDGE OPERATORS USING AN
I I X I I WINDOW ON TIIE Noisy CIIECKERBOARD IMAGE. THRESIIHI.DS ARE

CHOSEN ro EQUALIIZE, AS BES-I AS POSSIBLE, P(A El TE), THF CONDI1IONAI.
PROBABILITY OF ASSIGNED EDGE GIVEN TRUE EDGE AND THE CONDITIONAI.

PROBABIILITY, P(TE/AE) OF TRUE EDGE GIVEN ASSIGNED EDGE. THE
ERROR DISTANCE IS TIlE AVERAGE DISTANCE TO Cl.OSEST TRITE EDGE PIXELs
OF PIXELS WIHICIH ARE ASSIGNED NONEDGE BUT WIIICII ARE TRIE EDGE. A
VISUAI. EVAILCATION ALSO I.EAVES TIIE IMPRESSION TIIAT TIIE DIRECTIONAL
DERIVATIVE OPERA1 (OR PRODI)UciS BETTER EDGE. CONTINITITY AND IIAS LESS

NoISE TIIAN TIIE OTIIER Two.

Directional
Prewitt Marr-Hildreth Derivative

Zero Crossing Gradient
Gradient Strength = 4.0 Threshold = 14.0

Parameters Threshold = 18.5 a = 5.0 p = 0.5

P(AEITE) 0.6738 0.3977 0.7207
P(TEIAE) 0.6872 0.4159 0.7197
Error Distance 1.79 1.76 1.16

threshold used is the one equalizing the conditional probability
of assigned edge given true edge and the conditional proba-
bility of true edge given assigned edge. It appears that the per-

formance of the directional derivative operator is better than
the Prewitt operator and the Marr-Hildreth operator, both on

the basis of the correct assignment probability and the error

distance which is the average distance to closest true edge
pixels of pixels which are assigned nonedge labels but which
are true edge pixels.

Fig. 13 shows the corresponding edge images of the 11 X 11
Prewitt operator using a cubic fit rather than a quadratic fit,
the 11 X 11 Marr-Hildreth operator, and the 11 X 11 direc-
tional derivative zero crossing operator. The thresholds used
are the ones to equalize the conditional probabilities as given
in Table 1.
For the case of constant variance additive noise, thresholding

on the basis of the hypothesis test of Section IV-C yields

Fig. 13. Compares thc directional derivative edge operator with the
Marr-Hildreth edge operator and the Prewitt edge operator. The
thresholds chosen were the best possible ones.

essentially the same results as simply thresholding the gradient
value.

Fig. 14 illustrates the second directional derivative zero
crossing operator on an aerial image which has been median
filtered and then enhanced by replacing each pixel with the
closer of its 3 X 3 neighborhood minimum or maximun. The
technique is so good that it is possible to determine region
boundaries essentially by doing a connected components on
nonedge pixels. Fig. 14(b) shows the cleaned edge image
which is obtained by doing a connected components on the
non edge pixels, then removing all pixels whose region has
fewer than 20 pixels. The resulting boundaries are given as
pixels which have a neighbor with a different label than its own.

Initial raw edges which leave gaps in a region boundary will
in effect make the regions merge in the connected components
step. Thus the small number of missing boundaries is surpris-
ing. To be sure, we are not advocating connected components
as an image segmentation technique. The fact that it works as
well as it does is an indication of the strength of the edge
detector.

VI. CONCLUSIONS

We have argued that numeric digital image operations should
be explained in terms of their actions on the underlying gray
tone intensity surface of which the digital image is an observed
noisey sample. We called this model the local facet model for
digital image processing and showed how the facet model can
be used to estimate in each neighborhood the underlying gray
tone intensity surface.
We described a digital step edge operator which detects

edges at all pixels whose estimated second directional deriva-
tive taken in the direction of the gradient has a zero crossing
within the pixel's area. We discussed the statistical analysis of
this technique, illustrating how to determine confidence inter-
vals for the direction of the gradient and how this interval de-
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(a)

(b)
Fig. 14. (a) Illustrates an aerial photograph. (b) Illustrates the direc-

tional derivative edges obtained from the aerial photograph by first 3 X
3 median filtering, then replacing each pixel by the closer of its 3 X 3
neighborhood minimum or maximum, then taking the directional
derivative edges using a 7 X 7 window, then doing a connected com-
ponents on the nonedge pixels, and removing all regions having fewer
than 20 pixels, and then displaying any pixel neighboring an pixel
different than it as an edge pixel.

termines a confidence interval for the placement of the zero

crossing.
We have compared the performance of the directional deriva-

tive zero crossing edge operator with that of some classic edge
operators, the generalized Prewitt gradient operator, and the
Marr-Hildreth zero crossing edge operator. We found that in
both the simulated and real image data sets the directional de-
rivative zero crossing edge operator had superior performance.
We have illustrated that for good performance it is important

to use larger neighborhood sizes than 3 X 3 and have shown
that better results are achieved by defining the edge operator

naturally in the large neighborhood rather than preaveraging
and then using a smaller neighborhood edge operator on the
averaged image.
There is much work yet to be done. A comparison should

be done between the image segmentation discussed in Chen
and Pavlidis [4] and the segmentation achievable by the edge
technique presented in this paper. We need to explore the re-
lationship of basis function kind (polynomial, trigonometric
polynomial, etc.), order of fit, and neighborhood size to the
goodness of fit. Evaluation must be made of the confidence
intervals produced by the technique. The technique needs to
be generalized so that it works on saddle points created by
two edges crossing. A suitable edge linking method needs to
be developed which uses these confidence intervals. Ways of
incorporating semantic information and ways of using variable
resolution need to be developed. An analogous technique for
roof edges needs to be developed. We hope to explore these
issues in future papers.

APPENDIX

THE DISCRETE ORTHOGONAL POLYNOMIALS
The discretely orthogonal polynomial basis set of size N

which we use has polynomials from degree zero through
degree N - 1. These polynomials are unique and some-
times called the discrete Chebyshev polynomials [1]. In this
Appendix we show how to construct them for one or two
variables.

A. Discrete Orthogonal Polynomial Construction Technique
Let the discrete integer index set R be symmetric in the

sense that reR implies -rER. Let Pn(r) be the nth order
polynomial. We define the construction technique for discrete
orthogonal polynomials iteratively.
Define PO (r) = 1. Suppose PO (r), * * , P,n-I(r) have been de-

fined. In general, Pn(r)=rn+an_rn' +*-*+ajr+aO.
Pn(r) must be orthogonal to each polynomial PO(r), ,
Pn_-(r). Hence, we must have the n equations

E Pk(r)(rn +anl,r I + ..+a1r+ao)=O,
reR

(Al)

These equations are linear equations in the unknown ao, * - -

an,, and are easily solved by standard techniques.
The first five polynomial functions formulas are

Po(r) = 1

PI (r) = r

P2 (r) = r2 - j12/puo
P3(r) = r3- (941/p2)r

r4 + (42U4 - ju6)r2 + (ju2 -6 .)
PJ44 (r =2

where

Ak = sk.
sER
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B. Two-Dimensional Discrete Orthogonal Polynomials
Two-dimensional discrete orthogonal polynomials can be

created from two sets of one-dimensional discrete orthogonal
polynomials by taking tensor products. Let R and C be index
sets satisfying the symmetry condition r ER implies - r ER
and cE C implies - c E C. Let {Po(r),-* - , PN(r)} be a set of
discrete polynomials on R. Let {Qo(c), -* - , QM(c)} be a set
of discrete polynomials on C. Then the set {PO(r) Qo (c), - -

Pn(r)Qm (c), .-- , PN(r) QM (c)} is a set of discrete polyno-
mials on R X C.
The proof of this fact is easy. Consider whether Pi(r) Q,(c)

is orthogonal to Pn(r)Qm (c). When n * i or m 0 j. Then

£, E Pi(r)Q*()Pn(r)Q.(c)
rEfR cEC

= £ P(r)Pn(r) £ Qj(C)Qm(C).
rERCeRC

Since by assumption n * i or m * i the first sum or second sum
must be zero, thereby proving the orthogonality.
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