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Abstract

A number of the constraints with which remote sensing must contend
in crop studies are outlined. They include sensor, identification ac-
curacy, and congruencing constraints; the nature of the answers
demanded of the sensor system; and the complex temporal variances
of crops in large areas. Attention is then focused on several methods
which may be used in the statistical analysis of multidimensional
remote sensing data.

Crop discrimination for radar K-band imagery is investigated by
three methods. The first one uses a Bayes decision rule, the second a
nearest-neighbor spatial conditional probability approach, and the
third the standard statistical techniques of cluster analysis and
principal axes representation.

Results indicate that crop type and percent of cover significantly
affect the strength of the radar return signal. Sugar beets, corn, and
very bare ground are easily distinguishable, sorghum, alfalfa, and
voung wheat are harder to distinguish. Distinguishability will be im-
proved if the imagery is examined in time sequence so that changes
between times of planning, maturation, and harvest provide additional
discriminant tools. A comparison between radar and photography
indicates that radar performed surprisingly well in crop discrimination
in western Kansas and warrants further study.

Introduction

Agriculturists, geographers, and others are constrained in the
study of crops with remote sensors by the kinds of agricultural
characteristics that the sensors can in fact detect. The sensors
used in the various portions of the electromagnetic spectrum are
sensitive to dissimilar energy-matter interactions. They detect
different characteristics and therefore convey different kinds
of information. In the visible region molecular absorptions pro-
duce the color effects which convey information about crop
condition ; in the infrared region, the cycle of thermal response
under an insolation load may give information about moisture
stresses within crops; in the radar region, the backscattered
return is primarily related to surface roughness and dielectric,
which may be related to crop type, percent of cover, moisture
content, and similar variables.

Although, at first sight, radar cannot sense “color’ for its in-
formation on crop condition, it may detect related changes in
crop geometry and moisture and thus convey information about
crop type and state which is not immediately obvious. Investi-
gators may wish radar and other remote sensors to perform the
following jobs.

1. Detect the presence of different crops: Ts the region en-

tirely homogeneous or are there different crops ?

. Determine the crops actually present.

. Determine the boundaries and acreages of different crops.
. Determine the vigor (state) of crops.

. Determine the agent responsible for any loss of ¢crop vigor.
. Predict vields.

This paper is concerned with the second item: determining
the crops actually present, Studies of crop discrimination are
now underway at Purdue University, the universities of Michi-
gan, California, and Kansas, the U.S. Department of Agricul-
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ture Experiment Station at Weslaco, Texas, and elsewhere with
a view to the ultimate use of remote sensor systems in automated
or partially automated data collection and analysis of crop type,
condition, and yields. Such data would be valuable in the
United States, especially in underdeveloped regions where
adequate data on crop type and similar information are not
available,

Because radar exhibits the combined advantages of fine
resolution, virtual all-weather capability, and independence of
the sun for illumination and, moreover, is without serious
degradation by the atmosphere, its abilities and shortcomings
as a sensor of crops, pastures, and natural vegetation are mat-
ters of no small moment to the agricultural community. A great
deal of research will be needed to define clearly these abilities
and shortcomings, since little work has been carried out on
radar as a sensor for agricultural purposes. The study reported
here is one of a handful which explores these topics {Meyer,
1967; Schwarz and Caspall, 1967; and Simonett et af., 1967).
All are concerned with a single frequency and one (less fre-
quently two or four) polarization(s) only, and thus fall well
short of an ultimate capability for multifrequency, polypolariza-
tion radars that are feasible for agricultural surveillance, The
underlying concept of synchronous data acquisition with
multifrequency polarization radars is that it represents the
microwave equivalent of multiband spectral reconnaissance in
the photographic and thermal IR region, which, as Hoffer
(1967) has shown, has produced some encouraging results in
tests at Purdue University.

The Need To Use Both Spatial and Temporal Data to Effect
Crop Discrimination

In order ideally to separate crop types with a single sensor, we
hope that there will be a narrow spread in the probability distri-
bution of the energy recorded by the sensor for each crop; we
also hope that the probability distributions of each crop will not
overlap. This is of course not the case with radar or any sensor
because, in the discrimination between crops, the attribute we
are seeking—genetic difference between crops—must be ap-
proached through the surrogate of crop reflectance and/or
emission as modulated by variations in the source, the inter-
vening atmosphere, and so on. The surrogate may be quite
imperfectly correlated in a discriminatory sense, with the de-
fining genetic attributes. Furthermore, there is considerable
natural variability in the time of planting, varieties planted, and
conditions of crops as a function of time of planting, soil type,
and so on. Consequently no single sensor is able to effect clear-
cut discrimination, at a single time, of all crops in all fields. It
becomes necessary therefore to increase the probability of cor-
rect discrimination of crops through the use of a number of
wavelength bands (and polarizations) in concert, at the same and
at different times.
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Only through empirical testing of numerous sites in the
United States (and elsewhere) at repeated intervals throughout
a number of growing seasons (probably at least five) will we be
able to define adequately the time-sequential probability distri-
butions of radar and other sensor returns for different Crops.
The development of “ground truth” sample data on training
sets for each flight mission in regions which are homogeneous
as to crop assemblages and geography needs to be experimented
with to determine, for different areas and conditions, the
“appropriate” sampling techniques and rates. It is also ap-
parent, because crops have high spatial and temporal variance
from the simple circumstances of crop geography, that the
distribution of the recorded energies within a single growing
season and between growing seasons will be such that both
multiple looks in time and a number of information channels
will be required to ensure identification. However, the various
trade-offs between number and kind of sensors and number and
timing of data collection by the sensors has vet to be examined
systematically in relation to regional crop time tables but will be
an essential ingredient of continuing studies in the United
States.

Consider, for example, the condition of crops and their
times of planting and harvesting in the United States. There are
many differences in kinds of crops, growing season, and growth
patferns between west, center, and east; between humid, sub-
humid, and irrigated; and between south, center, and north—
to name only the more obvious factors involved in crop
geography. This means that remote sensors can be usefully em-
ployed from March through QOctober because critical changes
in the status of crops are occurring somewhere in the United
States. In summary, multiple looks through time coupled with
judicious ground truth samples for development of training sets
for pattern recognition may turn out to be very important in
agricultural remote sensing.

Crop Discrimination Accuracy: Identification and Congruencing
Problems

IDENTIFICATION ACCURACY

We may want various degrees of crop identification accuracy
from remote sensing systems. For example, we may wish (a) to
identify without error the crops in every field in an area and to
determine the acreages of each field with an error of 1 % or less;
or, less difficult, (b) to identify, with some acceptable error, say
{p=0.05), the kind of crops in each field of a region, and to
estimate total acreages of each crop in the region accurately to
+3%,; or, least difficult, (c) to identify a singie crop with, say,
5% error at a time of the year when it is most sharply differen-
tiated from other crops.

Il we want to determine the exact acreages of a crop being
grown in an area, cither for statistical reporting purposes or for
checking on wheat and feed grain program compliance, we have
a situation described by (a) above. In such a circumstance, if
ironclad identification cannot be made in a single pass, then
multiple passes must be made, with the attendant problems of
congruencing: storing spatial-reference coordinates for all
points on the ground; and rendering time-separated, different-
flight-path data in congruent planimetric geometry. This is no
mean task! At present it is a very severe burden to place on a
remote sensor system.

Alternatively, as in (b), we may be able to avoid the necessity
for many passes by allowing modest errors in identification and
by accepting regional average dominant crop acreages with as
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much as a 5% error. If we select this alternative, a less stringent
requirement for data storage and spatial accuracy needs to be
met.

Case {(c) is notably less demanding than the two preceding
ones. A single pass with a few channels may be adequate,
depending on the crop to be discriminated and those against
which it is to be viewed.

CONGRUENCING

As we have already mentioned, one of the major problems in
obtaining high identification accuracy with any automated
multisensor system is that of bringing the images into mutually
congruent geometry. Each resolution cell of each image cor-
responds to a small area on the ground. The system must be
able to determine the correspondence, in planimetric co-
ordinates, between each resolution cell of each image and each
resolution cell of every other image, and between each resolu-
tion cell and each small area on the ground. This correspon-
dence must be established automatically if the system is to work
quickly and effectively.

The problem of image congruence has been attacked by
researchers investigating the visible and infrared region of the
spectrum. Multiple wavelength systems using mechanical rota-
ting mirror-scanners have been developed in which the signal
received is split into different wavelength bands, each with its
own detector. The signals are then recorded similtaneously on
different channels of a magnetic tape. A similar technique is
feasible with radar systems operating with multiple polariza-
tions and wavelengths, although direct recording of the signal
requires a fairly wide-bandwidth recorder. The use of some form
of intermediate storage so that only the actual significant band-
width of the signal need be recorded can reduce this problem
(sometimes hundreds of pulses are averaged to make one
resolution cell).

A more severe problem of image congruence comes from
multiple flights. If an aircraft or spacecraft carrying the radar
could fly exactly the same path within a wavelength or so each
time, the problem would not be difficult. Unfortunately, aircraft
cannot repeat either horizontal or vertical location of the path
to anything like wavelength precision; furthermore, opera-
tienal conditions may require significant differences in altitude
which result in distortions between images. Even the best-
programmed flight lines sometimes deviate, and then there are
horizontal as well as vertical differences.

If we did not need to know exactly where each crop occurred
in a region, a relatively crude job of congruencing could be per-
formed. Such unsophisticated congruencing would retain just
enough statistical structure to teil us the acreage of each crop,
independent of its spatial position, or the percentage of occur-
rence for each crop in the region, Little, if any, work has been
done in this area, and we believe it warrants further thought.

The need for automatic congruencing equipment is clearly
urgent. Multiple recording during a single pass solves only the
problem for that pass. No system known produces images on
successive flights that are initially congruent. Digital correla-
tion and subsequent linear or non-linear correction of scale
would be feasible if time were not a factor. However, with large
masses of information collected in an extensive flight program,
digital techniques for congruencing would be ineffectively slow.
Some faster means must be found to automate solutions for the
urgent problems in agriculture.

There is another approach to the image-congruencing prob-
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lem which relies on the fact that there are geographic boundaries
which are relatively permanent. Homogeneous regions (deter-
mined by “natural” statistical classes), independent of other
images, may be found on each image. Boundaries must exist
between homogeneous regions. Congruencing may be achicved
by distorting the geometry of the images so that there is maxi-
mum correlation between the boundaries on each image with
those on every other image. The distorted (*‘congruenced”)
images may now be used for classification purposes. The end
product of the classification may be brought to planimetric
correspondence with the ground by examining the boundaries
around the catcgories and distorting the geometry of the cate-
gorized image so that it matches the naturai boundaries of the
area.

Data Analysis

THE THREEFOLD APPROACH OF DATA REPRESENTATION,
CLASSIFICATION, AND CLUSTERING

Sensor systems are designed to obtain information about an
interesting statistical structure of an environment, where ‘‘in-
teresting” is defined by the investigator. The sensor system must
reflect or transmit this interesting environmental structure onto
the data structure if anything is to be gained by using the sensor
system. Thus, once a sensor system has been conceived and de-
signed, the question that must be answered when it is tested is:
“What statistical structure of the environment is actually pre-
served through the sensor’s ‘eyes’—in particular, is the interest-
ing structure preserved 7’

In order to answer this question, some way of examining the
data, some way of determining the structure within the data,
must be devised. Then the structurc of the data may be com-
pared with the known structure of the environment, and the
question can be answered.

The most usual type of environmental structure which is
defined as ““interesting” is that of a classificatory nature. The
investigator arranges the environment into a set of mutually
exclusive categories. It is his hope that the sensor system will
preserve enough of the environment’s structure that data
obtained from the sensor system may also be categorized into a
set of mutually exclusive classes, where each class corresponds
to a unique category in the environment.

The following techmiques of data representation, data
classification, and data clustering are valuable in determining
the structure of the data.

1. The data set may be represented in some geometric way
such as a scattergram, in which the data structure is immediately
apparent. This representation must be perceivable directly as a
“picture.”

2. A statistically optimum classification of the data may be
made; the optimality criterion is given by the investigator.

3. The natural classes of the data structure may be found and
compared with the categories in the environment.

The information received in a *picture’ of the data structure
gives the investigator an immediate “‘feel” for what is actually
happening. It gives him an intuitive base which he can expect to
guide him to more sophisticated techniques. It may also tell him
quickly whether there have been faults in the sensor system while
the system was gathering the present set of data. If so, then the
data would not have to be processed further and the experiment
could be rerun. The information gained by the statisticaily
optimum classification of a data set is, of course, most funda-
mental in the sensor system test. From it the investigator finds
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out how good the system really is in preserving the classificatory
structure of the environment. Finally, by finding out the natural
classes in the data structure, the investigator can learn ““what
language the sensor system speaks.” If a natural class in the data
structure actually corresponds to two environmental categories,
then we would expect that, regardless of the optimality of any
statistical classifying rule, these two environmental categories
would be confused, and the investigator can do nothing but
search for a new sensor system. This confounding of categories
must then be taken into account in any interpretation of data
from the sensor system.

When the sensors take data in a sequential way and it is
known that observations which are close to each other in the
sequence are likely to be in the same category, some effort
should be made to preserve the similarity of neighboring data
points in their classification. For imaging sensors in particular,
this means that two neighboring resolution cells should not be
classified independently. An exception to this occurs when the
image data are like those of Fig. 1, which has the kind of ideal
structure illustrated in the scattergram in Fig, 2. Here there is
complete isolation between the categories: bare ground occu-
pies the lower third of densities, grain sorghum occupies the

.11 .15 .09 .80
BA BA BA CR
.08 .10 .71 .75
BA BA CR CR
.41 .47 .17 .74
GS GS CR CR
.51 .50 .53 .45
GS GS GS GS

Key:

BA Bare ground
GS Grain sorghum
CR Corn

Fig. 1. Simple image, where the density for each resolution cell is
indicated by the number appearing in the top of each box and the
category of surface cover which corresponds to the cell is indicated
by the two-letter code appearing at the botiom of each box.

lL.0

I O — i il . + " n +

e density

bare ground grain sorghum <orn

Fig. 2. Scattergrams of simple image data: The categories are all
isolated.
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middle third of densities, and corn occupies the upper third of
densities.

PRINCIPAL COMPONENTS REPRESENTATION

Representing the data structure in a two- or three-dimensional
scattergram is a problem when the measurements the sensor
system takes are n-dimensional (n being more than 3). Some
criterion for choosing the representation must be determined. 1f
we decide that the representation is to be attained by a linear
transform, because linear transforms are easy to find and
quick to work with, then in effect we are projecting the data on
the two-dimensional subspace which optimally retains the basic
data structure, losing only the fine features. If we translate the
data by its mean, this linear transform is defined by the two
cigenvectors of the covariance matrix with largest eigenvalues
(see Kendall and Stuart, 1966). We call this representation the
principal axes representation.

It can be shown that this representation corresponds to
finding a plane in #-dimensional space where the data projected
onto this plane have maximum variance. Mathematicaily the
situation can be represented as finding the projection operator
P which has rank 2 and a translation vector r such that the mean
squared error defined by e*=E[((x—t})—P(x—1))
{{x—1)—P(x—1)}], is minimized. The minimization is achieved
when r=£[x] and P projects onto the plane spanned by the
two eigenvectors, v1, vs, with largest eigenvalues of E[(x—E[x])
{x-—E[x])’], the covariance matrix. The coordinates of any
data vector relative to the principal axes’ plane can be found
easily as (x—E[x])"w for the first component and (x— E[x]) vz
for the second component.

2
€7,

Bayes CLASSIFICATION

Although there are many ways of classifying data, such as:
linear decision theory, which constructs hyperplanes boundaries
or nearest-neighbor search procedures, they are statistically
admissible only under severely restrictive conditions. In addition
to allowing the use of a loss function which can weigh a correct
classification more heavily on the more important categorics,
a Bayes decision rule is almost always statistically admissible
and optimal. Therefore, to get information regarding the best
possible classification which can be made, a Bayes decision rule
may be employed.

We used a Bayes decision rule (see Middleton, 1960) to
classify each resolution cell of the radar imagery data indepen-
dently of its neighboring cell. This was done because, at the
time of this study, we did not have a Bayes decision program
taking into account the similarity of neighboring resolution cells.
In order for the Bayes decision rule to indicate the classificatory
structure of the data rather than merely to *“memorize” the data,
the data set can be randomiy divided in half: the first half can be
usedto generate the statistics for the Bayesrule, and the second half
can be classified on the basis of this rule. A “goodness criterion”
may be adopted, such as the total percentage of correct classi-
fication or the average percentage of overall categories of
correct classification in which the percentages are properly
weighed by the loss function adopted.

CLUSTERING

To find the natural classes in the data structure as seen through
the sensor’s eyes is perhaps the hardest of the three operations
suggested, because the problem is harder to define. Certainly
some information about the natural classes will be obtained from
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the principal axes representation and the Bayes classification.
Categories which are confused will definitely appear. However,
it may be that purts of the environment which are categorized
by the investigator as the same will occur in different natural
classes, indicating that further distinctions may be made.

We will approach the natural-class problem of image data by
two clustering methods. One sequentially forms clusters from
data measurements, called centers, which have the highest
probability in any small spatiai region in the image (a spatial
conditional probability approach), and includes in each cluster
the points which are sufficiently close to the center in measure-
ment space and whose probabilities do not differ too much
from the probability of the center point. The other method
forms clusters taxonomicaily on the basis of Euclidean distance
in measurement space, using the multiple-linkage model.

CLUSTERING BY SPATIAL CONDITIONAL PROBARILITY

The conditional probability approach first quantizes the data in
the following way. Let the density in the ifth resolution cell be
X¥=(x], xi, . . ., x7) where xy is the output from the kth
sensor when the kth sensor is observing the area represented by
the jjth resolution cell, Let R, be the range for the kth coordinate,
The quantizing function Q is defined as QX)Y=(i1, iz, ... i),
where (i-1/10) R=x, <i;R,[10.

In forming clusters, priority is given to the quantized
measurement vectors for which the conditional probability of
occurrence in an image spatial region is higher than the joint
probability of its occurrence over the whole image. For example,
a multispectral image may be partitioned into a number of con-
nected spatial regions, as in Fig. 3. The conditional probability
distribution for each region is computed and compared with the
joint probability distribution for the entire image. All the
measurement vectors which have the highest conditionat proba-
bility in the multispectral images are given priority in forming
clusters, Each cluster is formed around a center, that is, a

Connected spatial region
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Fig. 3. Multispectral image.
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quantized measurement vector which is not vet in a cluster and
which has the highest conditional probability for some spatiai
region. At any iteration, for a point X to be included in the
cluster just being formed, there must exist a point ¥ already in
the cluster such that:

1. | x;—3i=]1, foreachi.

2. P(X)=eaP(C), where Cis the centerandeiisa
prechosen parameter.

3. PN )=eP(7), where Z has the highest probability

of any point already in the cluster
and e: is a prechosen parameter.

4, P(X)ééP(W), where W has the lowest probability

of any point already in the cluster.

If there are any points which do not meet these criteria, they are
put into the nearest cluster. A fuller account of the conditional
probability approach is given in Haralick and Kelly (1969).

CLUSTERING BY MULTIPLE-LINKAGE TECHNIQUES
Multiple-linkage cluster analysis has been widely used as a
numerical taxonomic technique in the biological sciences
(see Sokal and Sneath, 1963). However, many of the assump-
tions made in classifying biota cannot be made in analyzing
radar images, because there is no evolutionary relationship
between the objects being categorized. Nevertheless, since the
measurement vectors which can be clustered together are in
some sense similar, the technigue is worthwhile in finding the
natural classes of a data set.

The clustering procedure takes the following form.

I. A matrix of the similarity coefficients between each pair of
measurement vectors is constructed. (For the multispectral
images, thesc are the measurement vectors in each resolution
cell)

2. The matrix is scanned and all pairs of measurement vectors
which are mutually close are linked together.

3. A new matrix is computed on the basis of the paired

Categories

r 75 Gs
135 GS .
132 GS _‘r——J .
167 SUD — \
119 GS
198 ALF
124 GS
L133 Gs

Grain Sorghum
Sudan

Alfalfa

Corn

Sugar Beets

(137 GS

171 CRN
172 CRN
173 CRN
202 £

174 CRN
L175 CRN

7203 BE
205 BE
204 BE
ZL0 BE
213 BE

L204 BE

s M IR |
.4 .5
Distance Scale

Fig. 4. Section of a dendogram showing graphically the results of
cluster analysis. This is a section of the actual dendogram used in
categorizing the August and September data. The section of 21 data
points was selected from the original 231 because it shows portions
of three of the four major categories clustered. The dashed line shows
the break point.
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vectors and single vectors. This new matrix is scanned, and all
single vectors or paired vectors which are mutually close are
linked together. This step is continued iteratively until all
clusters are linked together.

Figure 4 iltustrates the dendrogram obtained fromthe multiple-
linkage clustering.

The investigator may determine the natural-class structure of
the data by truncating the dendrogram at some distance, as
illustrated by the vertical dashed line in Fig. 4. Here a distance
coefficient of 0.4 gives a reasonable picture and the natural
classes are (b), (c), and (d), as indicated in the left margin. The
dendrogram may also be used as a guide for further analysis.
For example, the sugar beet field (202 BE) which linked with the
comn field shouid be investigated in greater detail to determine
why it is so different from the rest of the sugar beet fields.

There are some important differences between the condi-
tional probability clustering technique and the multiple-
linkage cluster analysis. The multiple-linkage cluster technique
analyzes the data microscopically, linking each observed
measurement vector with similar observed measurement
vectors and simultaneously forming a set of clusters. In order to
do this, an & x N matrix must be stored if there are N observed
measurement vectors. The conditional probability clustering, a
macroscopic technique, starts with the most important cluster,
forms the clusters sequentially, and needs a storage of 2N
places. These differences reflect themselves in the amount of
data the techniques can handle. The conditional probability
clustering technique is quick and is easily used with data sets
containing thousands of measurement vectors; the muitiple-
linkage clustering is slower, the data sets containing even
hondreds of measurement vectors are at the limit of the pro-
cedure. However, the multiple-linkage clustering compensates
for these disadvantages by giving a more detailed analysis of the
data set.

Statistical Crop Discrimination

The region where the crop information is collected lies a few
miles west of Garden City, in western Kansas (Fig. 5). In this
area there are over 400 ficlds for which data were collected at
the time of radar overflights. The area was chosen because
fields are generally large, slopes are extremely gentle, soils are
uniform, both dry-land and irrigated cropping is practiced, and
there is some diversity of crop types, agricultural techniques, and
moisture conditions. In this test area we can hold constant in an
analysis such factors as topography, soil, and field size, and can
obtain the maximum variations in soil and crop states, moisture
Ievels, and so on, in order to explore quantitatively both crop
discrimination and the contribution of different parameters to
the radar backscatter.

We shall illustrate the threefold approach of data representa-
tion, data classification, and data clustering to two sets of data
obtained from K-band radar imagery taken over the Garden
City area. At the time the analysis was done, image digitization
equipment was not available at the University of Kansas, and
we had to satisfy ourselves with only the average radar return in
each farming field. This field average was obtained by taking a
few random scans over each field in the images with a micro-
densitometer and using the average of the scan lines as an
estimate of the average radar return for the field. It should be
noted that, since we are working with averages and the variance
of averages about their true values are less than the variances of
the gray tones from the resolution cells which make up the
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Fig. 5. Radar Imagery.

averages, the results obtained are better than those which would
be obtained on the basis of the gray tones of the individual
resolution cells,

The first set of images was obtained in a time-sequential
fashion during the months of August and September in 1965.
The August image had only one polarization, being horizon-
tally transmitted and received, while the September images had
two polarizations, being horizontally transmitted and both
horizontally and vertically received. All three images were taken
over the same test site near Garden City, Kansas. The second set
of images, also taken over this area, was obtained during the
month of July in 1966 and had all four polarization combina-
tions. We wanted to find out:

1. the environmental structures related to crop type which the
radar imagery system preserves,

2. while recognizing the paucity of our data, whether more
environmental structure was preserved

(a) if the data were taken in time sequence with few polariza-

tion combinations, or

(b) if the data were taken at the same time with ail the

polarization combinations.

Figures 6 and 7 illustrate scattergrams with the principal axes
representation for these data. It may be noticed from the general
pattern that, as the agriculture becomes more intense (surface-
cover or land-usage categories going from bare ground to sugar
beets), the radar return becomes greater. This correlates most
directly with the crop percent of cover. For both sets of data we
immediately see the overlapping of categories. In the July data
the bare ground and wheat stubble overlap. Then the other part
of wheat stubble overlaps with alfalfa, while the alfalfa overlaps
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with the corn, and grain sorghum overlaps and covers both
alfalfa and corn. Sugar bects stand aimost isolated by them-
selves. In the time-sequential data, bare ground stands out by
itself, while wheat stubble overlaps with alfalfa and both over-
lap with the grain sorghum. The corn and sugar beets stand by
themselves. This indicates that, for the July data, we would
expect the Bayes decision rule to confuse wheat stubble, alfalfa,
corn, and grain sorghum with each other, and to confuse bare
ground and wheat stubble with each other while classifying
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Fig. 6. Scattergram of August-September 1965 radar imagery field
averages projected onto first two principle axes. .

R. M. Haralick, F, Caspall and D. S. Simonett



X, ]
¢ |
A A
A
‘ ‘ o a [
.
‘. e L] s . . A
* oA . 8 A
r 3 * n . A
A A A g e O n - A
°a wli® JAA . .l'-ﬁd' A AA a4
ooy Pl AA o AT Ta B -
© oaea Ant Ao "a L o, e
o® &’.{ VYT Y L
o 2° -0'.? AL » lo 2 = s
A A B % 4 m = X,
¢ A A‘.D . ® BARE GROUND
A I GRAIN SORGHUM
A .
oA * = Qeeers
A - . 0 WEEDS
& % AAWHEAT STUBBLE &
WHEAT STUBBLE (MULCH) 4
WHEAT STUBBLE (WEEDS)
B
CRES-133

Fig. 7. Scattergram of July 1966 radar imagery field averages projected onto first two principle axes.

sugar beets fairly well. For the time-sequential data we would
expect the Bayes decision rule to confuse wheat stubble, alfalfa,
and grain sorghum with each other, while ciassifying bare
ground, corn, and sugar beets fairly well. This is indeed true if
we examine Tables I and II, which indicate the results of the
Bayes classification. For this problem the loss function was
chosen to be an equal loss function; the same finite negative
amount was lost for each correct classification, and nothing
was lost for an incorrect classification. Notice that 90 of the
data grouped as shown were correctly classified for August-
September, while only 78%;, of the July data were correctly
classified. We would expect a natural-class approach to show
that the categories confused in the Bayes classifying technique
all belonged to the same natural class or cluster.

The spatial conditional probability approach could not be
fully utilized because of the lack of image-digitization equip-
ment. However, a suitable approximation was tried. All field
averages which were measurements of the same land usage
category were lined up together. In this way the spatial closeness
of similar types of fields in the data sequence could be utilized
exactly as it would have been if the data sequence represented
resolution cells of an image. Each spatial region consisted of a
set of 10 sequential vectors in the sequence. The error from this
approximation results mainly from the fact that clustering
procedures of this type require large amounts of data to work
well, and using field averages for resolution cells reduces the
data size by two or three orders of magnitude. Despite this
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handicap, the conditional probability clustering procedure in-
dicates that the categories of vegetation which were confused
in the Bayes classification do form fairly isolated clusters or
similarity sets, as shown in Tables IIT and IV. Although the
Bayes procedure categorized the August-September data better
than the July data, the clusters found in the July data cor-
respond better to the surface cover categories than those clusters
found in the August-September data. The reason was that there
was no physical separation between the confused surface cover
categories, 45 may be seen from the scattergrams. We should
note that these clusters were formed without any information
regarding “ground truth,” i.e., knowledge concerning the vege-
tation category which each measurement vector actually rep-
resents.

The Euclidean distance-similarity coefficient from the
multiple-linkage clustering technique was found to discriminate
crop types nearly as well as the other methods of categorization
(see Tables V and VI). However, little discriminatory potential
was indicated for the correlation coefficient. This suggests that
depolarization of the radar signal from crop to crop is suffi-
ciently variable and perhaps modest enough in degree that
good clusters cannot be formed with the data. The correlation
similarity coefficient was not used in later analyses.

The question of the operation of reciprocity may also be
raised in this connection, as indeed it should also be when both
HV and VH images are used for measures with Euclidean
distance-similarity coefficients. The principle of reciprocity
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states that, when the full polarization matrix (HH, YV, HV,
YH) is obtained at the same instant of time, the two cross-
polarization terms (HV, VH) will be identical, Thus they should
not be used in clustering with either Euclidean distance or cor-
relation coefficient measures, for adding an extra channel unduly
emphasizes the cross-polarized return and, to the extent that it
does not contribute crop discriminatory information, it will add

Table I
Identification Accuracy for August-September 1963 Radar Imagery=

MNumber of Measurements Identified as

(b) Grain
sorghum,
bare
ground-
wheat,
alfalfa
(a) Bare  wheat
Surface Actually ground stubble- (d) Sugar
Covered pasture weeds (c)Corn  beets
{a) Bare ground 22 2 0 0
pasture (91 %cor.id.)
(b) Grain sorghum, 5 73 2 0
wheat stubble- (91 %cor.id.)*
weeds, alfalfa, bare
ground-wheat
(c) Corn 0 0 2 1
(67 Ycor.id.)
(d) Sugar beets 0 0 1 5
(83 %cor.id.)

“A random sample of 113 measurements of field averages from a
total set of 226 were used to train a Bayes decision classifier, and the
other 113 measurements of field averages were classified on the basis
of the Baves decision rule. Ninety percent of the types of surface
cover, grouped as shown, were correctly identified. Each field had the
indicated type of surface cover for the months of both August and
September, the exception being bare ground-wheat, which was bare
ground in August and wheat in September,

®The 1% correct identification in groups (a) and (b) means that
91% of the measurements in each of these groups were actually
identified as being in that group. In general the individual types of
surface cover within each group were completely confused with one
another.

Table I1
Identification Accuracy for July 1966 Radar Imagery®

Number of Measurements ldentified as

(b) Corn,
alfalfa, grain
sorghum,

Surface Cover (a) Bare weeds, pasture, (c)Sugar

Actually Measured ground wheat stubble  beets

(a) Bare ground 14 13 0

(52%, cor. id.)

(b) Corn, alfalfa, grain 11 75 2
sorghum, weeds, {85% cor. id.)?
pasture, wheat stub.

(c) Sugar beets 0 1 6

(869 cor. id.)

“A random sample of 129 measurements of field averages from a
total set of 251 were used to train a Bayes decision classifier, and the
other 122 measurements of field averages were classified on the basis
of the Bayes decision rule. OFf the types of surface cover shown, 78 %
were correctly identified in the above groupings.

®The 85Y%; correct identification means that 85% of the measure-
ments in group (b) were actually identified as being in group (b). In
general, the individual types of surface cover in group (b) were com-
pletely confused with one another.
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Table III
Conditional Probability Clustering for August-September 1965
Radar Imagery*

Number of measurements
Identified as
Surface Cover Actually Measured I I I
(a) Bare ground, sudan, grain 205 4 0
sorghum, aifalfa, bare ground-
wheat, wheat stubble-weeds
(b} Corn 2 3 0
{€) Sugar beets 0 1 n

“Six clusters were asked for, of which four were collapsed together
since they had the most similar category distributions. =027,
e2=0.36.

Table IV

Conditional Probability Clustering for July 1966 Radar Imagery®
Number of Measurements
Identified as

Surface Cover Actually Measured I I 11

(a) Bare ground, wheat stubble 99 17 0

(b} Alfalfa, grain sorghum, corn, 10 115 0

weeds, pasture
(c) Sugar beets 0 3 11

*Four clusters were asked for, two of which were collapsed together
since they had the most similar category distributions. e1=0.14,
€2=0,36

Table ¥

Identification Accuracy for August-September Radar Imagery
Using Complete Linkage Cluster Analysis as the Grouping Tech-
nique®

MNumber of Measuremerits Identified as

(b} Grain
sorghum,
bare ground-
wheat,
Surface Cover  (a) Bare alfalfa wheat
Actually ground, stubble- (d) Sugar
Measured pasture weeds (cyCorn beets
(a) Bareground, 47 1 0 0
pasture (989% cor-
rect identi-
fication)
{b) Grain 14 151 1 0
sorghum, (90 cor-
wheat rect identi-
stubble- fication)®
weeds,
alfalfa, bare
ground-wheat
(c) Corn 0 0 5 0
(100% cor-
rect identi-
fication)
(d) Sugarbeets O 0 1 11
(92% cor-
rect identi-
fication)

“The data used were average image densities for monopolarization
{(HH} August 1965 imagery and for multiple polarization (HH, HV)
September 1965 imagery. Multiple-linkage clustering was applied
using Euclidean distance as the similarity coefficient (see Sokal and
Sneath, 1963, for details of the clustering procedure).

&The majority of these fields were young wheat fields very short and
lacking complete cover.
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Table VI
Identification Accuracy for July 1966 Radar Imagery Using Complete
Linkage Cluster Analysis as the Grouping Technique?

MNumber of Measurements Identified as

{b} Corn, (c) Sugar
alfalfa, grain  beets
Surface Cover sorghum,
Actually (a) Bare weeds, pasture,
Measured ground wheat stubble
(a) Bareground 53 3 0
(94 % correct
identification)
(b} Corn, alfalfa, 25 159 5
grain sorghum, (84 % correct
weeds, pasture, identification)?
wheat stubble
(c) Sugar beets 0 1 13
(93 % correct
identification)

*The data used were 259 measurement vectors each consisting of
four muitipolarization (HH, HV, VV, VH) image densities. Multiple-
linkage cluster analysis was used as the categorizing technique;
Euclidean distance was employed as the similarity coefficient (see
Sokal and Sneath, 1963, for details of the clustering procedure).

*Mostly dry stubble.

noisc to the analysis. We included both HV and VH images in
this analysis because they were obtained on scparate aircraft
passes on the same day, and the strict operation of reciprocity
will not hold. However, because visual comparison of the
images shows in fact that they are much more closely similar
than the like images (HH, VV), in practice it is almost as if
reciprocity were observed.

Int an attempt to glean more information from the analysis of
of August-September data, category (b) (see Table V) was sub-
divided into three separate categories (Table VII). Note that
category (ba) contains mostly grain sorghum, category (bz)
contains mostly grain sorghum and aifalfa, and category (bi)
contains mostly grain sorghum and fall wheat, indicating that
there is some discrimination even in the very complex portion of
the data set. Comparing this grouping with Fig. 6 shows that it
is hard to discriminate such categories in the scattergram.
Partial discrimination of this nature leads to the belief that, if
data were available in other wavelengths or through time,
better discrimination could be achieved.

Temporal Radar Data during the Growing Season

Obtaining data through time leads to the question of the best
time to collect the data if better discrimination is desired. Look-
ing again at Table VII, we see that the problem lies in the by, bs,
and bz categories. To arrive at a solution to the problem of
finding the optimum time to gather data from crop-type
discrimination, the curves in Fig. 8 were constructed. The solid
lines on the curves are based on actual averages of the total data
available at the University of Kansas (July, August, September,
October, and Movember), We have based the dotted lines on
crop growth patterns and maturity dates.

Using the curves to determine when to collect data which
would allow better discrimination of grain sorghum and winter
wheat (category bi), we see that data taken in April or May
would allow us to achieve much better discrimination. During
these spring months the grain sorghum fields are being pre-
pared for the planting of the crop. On the other hand, winter
wheat is in the process of rapid growth, and therefore would
give a much higher radar return. Likewise, the same time period
would allow much better discrimination between grain sorghum
and alfalfa (category bs). Alfalfa, like winter wheat, is in the
early rapid growth stage during the early spring months., The
discrimination of alfalfa from winter wheat appears difficult at
first glance. However, the curve for winter wheat in Fig. 8 is for
the entire winter wheat growing season, which starts in August.
Many times, winter wheat will not be immediately replanted in
the crop rotation system ; that is, winter wheat will be planted on
a fallow field or will be followed by a fallow field. Even when a
field of winter wheat is replanted after harvest, discrimination
may be achieved by concentrated sensing in July and early
August, during the bare-ground phase of the cycle. In addition,
repetitive sensing during the summer will reveal the cycle of
growth and cutting of alfalfa.

In the various tables showing the discriminations between
crops achieved with radar it was apparent that the categories in
each group were generally indistinguishable; thus the identi-
fication of individual crops is notably poorer than for the
lumped categories. As we have just discussed, the use of radar
at different times will greatly improve crop discrimination
(indeed panchromatic black and white photography, say six
times, through a growing season is demonstrably capable of dis-
crimination (Schepis, 1968) ). It is appropriate also to caution
that it would be unwise to infer from the modest results above
that radar is of low discriminatory power in distinguishing

Table YII

Six Category Breakdown Using Multipie-Linkage Cluster Analysis Based on the Euclidean Distance Coefficient
(a) Bare (b1) Grain (b2) Grain {bs) Grain {c) Corn {d) Sugar beets
Ground and Sorghum and Sorghum and Sorghum

Category Wheat Wheat Alfalfa

Bare ground 45 1

Grain sorghum 1 28 24 37 1

Weeds and wheat stubble 2 6 8

Fall wheat 9 18 4

Alfalfa 1 6 16 2

Sudan 1 2

Corn 5

Pasture 2

Sugar beets 1 [1

No. Correct/Total 54761 46/59 40/52 37/41 5/7 11/11

Percent Correct 89% 78% 77% 90 % 1% 100%;
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Fig. 8. Relative radar return curves: The relative densities are based
on HH polarization K-Band radar image denstties. The solid lines are
averages of the return for each crop type based upon the temporal
data available, The images were obtained over a three year time period
and therefore do not represent the average return for a given set of
fields. The dashed lines were interpolated using known crop growth
cycles, maturity dates, the average return from categories such as bare
ground and wheat stubble, and the condition of the crop, (e.g.,
wheat is bent over and dried somewhat during the winter months.
hence the lower return during that time. The upper curve for alfaifa
represents growth to a stage suitablefor cutting in summer until the
final cutting late in September or early October. The lower curve for
alfalfa represents the value of the radar return from freshly cut alfalfa.
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crops. Would any single channel {with polarizations) or severa]
channels do much better in the visible or thermal regions ?

A Comparison of Radar and Photography

A preliminary test of the last observation by Mr. W. G. Brooner
of CRES using color photography and HH and HV radar at
Garden City showed to our surprise that, with data for Septem-
ber, radar was notably superior 1o color photography for dis-
criminating crop types. Although there is no guarantee that
comparable results would be obtained elsewhere or at other
times, the data do demonstrate that additional research is both
needed and justified with imaging radar, in comparison with
other sensors in crop discrimination.

Figures 9 and 10 were prepared to compare radar and photo-
graphic crop discriminations. Figure 9 is derived from K-band
radar (AN/APQ-97) imagery September 1965 at Garden City.
The average density values for each field are plotted for the HH
and HYV polarized images. Figure 10 is based on' Ektachrome
aerial photography (Kodak 8442) at Gatden City, September
27, 1968. The average film densities for each field are plotted for
the green-sensitive emulsion jayer (490-590 nm) and the red-
sensitive emulsion layer (590-690 nm) of the photography. No
photography and radar were available for the same dates; these
were the closest match in our files.

On both figures the boundaries between crop groups were
located by eye and positioned in order to achieve maximum
separation of individual crops and crop groups.

In Fig. 9 the y-axis is the like density HH polarization: the
Xx-axis the cross density, HY polarization. Notice that the hyper-
planes erected lie at about 45°, implying that both polarizations
are contributing information.

In the upper group bounded by the upper hyperplane, there
are 30 sugar beets and 1 corn, suggesting that, if this relation-
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30 Sugar Beets 30 fields.
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The primary crop in the various categories are: I, Sugar Beets, I,
Corn; HI, Grain Sorghum, Wheat, and Alfalfa; IV, Bare. -

R. M. Haralick, F. Caspall and D. S. Simonett



170
1680+ =
o
1504
o
-]
140- - 0 °
e
- ra \\\ o :
, -
1304 8% .o s Tl 0 ? * AU LA
WE C.8WSW.AC.AUSE 4 Ny SB.GS 11
' rd &
"y A g o a e
A S ~e.. . _NTIu.
120 30.23.20.14.8.4.1 . e @ S s ot S
c » Fa s 2 s * T e
8 1 s / a ~
A -~
ur 4 . L] LY - -~
'o 111G - 2 ® &y
2 2 .« " /’ 58 18
[ 3 A _—
‘; III » F .u s :- . ALLC.GS 852.2
om /
'a‘ 1604 . ‘°= o / o .
a
: e
O e "A 2 A/ -
[}
Z 907 . P e B woa s SUGAR BEETS/SB
u ﬁ.:ﬂ L / : s CORN/C
® Lo ; s & hud 2 GRAIN SORGHUM/GS
BC+ . Y et + WHEAT (EMERGENT)
oL e PR e . s ° ALFALFA (UNCUT)AU
o w 4 & ALFALFA (CUT)M/AC
70- atha “ ’ & WHEAT STUBBLE & WEEDS/ WSW
N &
afe *+ BARE/B
a ™ TBa g
. N
oy
B0 ;- N
s adeTa 4 MY Garden City, Kansas
o) +£+L2 * \\
50 -
r .
M . N Color Aerial Photography
wy
e
40+ fHoa wSw 38 NASA/MSC Mission BD. September 27, 1968
’ . B.WE.GS.AC 34.27.53
»
£
30 T T T T T T T T T T T T T T T 1
.30 FTo) 50 60 .70 80 90 100 10 120 130 140 150 160 170 180 190

RED DENSITY (590-6%0nm)

Fig. 10. Crop discrimination with color aetial photography, Garden City, Kansas, September 27, 1968. Each point represents the average
density value for a single field.
AU 10 Uncut Alfaifa 10 fields

SB, GS - m represents Sugar Beets, Grain Sorghum = 1 field of each
The primary crop in the various categories are: VIu, Uncut Alfalfa; I, Sugar Beets; III, Grain Sorghum, Wheat, and Alfalfa; V, Wheat Stubble
and Weeds, Bare, Wheat.

Explanation:

ship held in adjacent areas, it would form a useful basis for group aiso looks reasonably encouraging for projection by
extrapolation and discrimination. The next lowest region has extrapolation to adjacent areas.

23 cases of corn, | of sugar beets, and 1 of grain sorghum. If The next to lowest category is a grab bag of emergent wheat,
the same relationship also holds in adjoining areas, it seems to wheat stubble and weeds, alfalfa, corn, bare ground, and grain
be promising for projection. The lowermost group has 120 sorghum, though it is predominantly grain sorghum, It is
cases of bare ground; 17 of emergent wheat, in which the wheat obvious that the two polarization single-frequency radar
occupies less than 5% of the total area (for all intents and achieves inadequate discrimination in this region. However, the
purposes it is really bare ground); 10 of wheat stubble and uppermost portion of the region is dominated by grain sorghum,
weeds in which the wheat stubble was dry and made little con- and a subset may be discriminated which could be used as a
tribution to the return; 6 of alfalfa; and 4 of grain sorghum. It basis for prediction for grain sorghum in the lower portion of
will be seen that, with the exception of a few cases of alfalfa and the mixture. Radar imagery at a different time optimized for the
grain sorghum, the lowermost category represents bare ground detection and discrimination of wheat (say, April) would aid in
or, practically speaking, bare ground in the form of barely improving predictions in this area.

emergent wheat. Notice that in the next category above there is The scatter diagram of density measurements from color
only one example of bare ground. Consequently, the lowermost aerial photography (Fig. 10) is designed to simulate Fig. 9 as

Statistical Crop Discrimination Using Radar Images Remote Sensing of Environmen: 1 (1869-1970), 131742
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closely as possible. Since the photography took place a week
later in September than the radar imagery, there wiil have been
some cutting of corn, grain sorghum, and alfalfz and some
emergence of wheat in what would earlier have been bare
ground. A new category is added: cut alfalfa as distinguished
from uncut alfalfa.

The linearity of the photography scatter diagram indicates
that there is a high correlation between the two photographic
layers (red- and green-sensitive). A comparable linearity exists
between the blue and red layers (not reproduced here), and no
greater discrimination was found between crops.

Table VIII
Radar versus Photographic Discrimination of Similar Categories

Percent of Indicated
Crop Type within

Percent of Category
of Indicated Crop

Type Category
Category
Indicated crop type  Radar Photo Radar Photo
Sugar beets 97 67 97 90
Grain sorghum 54 42 95 30
fallow and bare 83 67 83 67

Table VI, prepared by W. G. Brooner, summarizes the
comparison between radar and photographic system <crop
discrimination. Crop regions are more clearly delimited on the
radar plot than on the photo plot, both in terms of within-
category crop homogeneity and between-category crop dif-
ferences.

In finishing this comparison, it should be noted that no test
has yet been run of multispectrai, multipolarization radar
systems outside K-band, although we currently have under
study X-band multiple polarization radar data at Garden City.
For crops with a large physical structure such as corn, wave-
lengths greater than 3 cm (X-band) may also be useful, even out
to wavelengths of 10 to 20 cm. Even longer wave-lengths
may prove valuable in discrimination of soil moisture states
or between tree densities in forest land. Clearly, much work
remains to determine both the spread and number of frequencies
which may effectively be used.

Concluding Remarks
The following conclusions emerge from the preceding discus-
sion.

1. In any remote sensing systermn concerned with the detection
of and discrimination between crops, there is a severe fall-off in
the ability of the system to provide the answers requested of it,
when constraints of increasing severity are placed on the sensor,
the timeliness of data coilection, the congruencing of data sets
through time, or the spatial or data discrimination require-
ments of the system. Thus, rather than asking too much of a
sensor system and suffering disappointment because it cannot
provide the required information, it is appropriate to define for
each remote sensing problem various alternative constraints,
strategies, and loss functions so that rational choices may be
made.

2. Though only a small amount of data were available, we
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have clearly shown that identification accuracies in the nine-
tieth percentile can be attained by using the methods illustrated.
Further work needs to be done on clustering techniques which
can analyze data in as detailed a fashion as the multiple-
linkage clustering procedure, yet with the ability of the con-
ditional probability clustering method to handle large amounts
of data quickly. No atternpt has been made here to associate
crop type with the spatial texture distribution it produces on
the image, yet this might well allow for identification accuracies
approaching 999,

3. Sequential radar flights throughout a number of growing
seasons are required to find the nature of the time dependencies
and internal consistencies in the data for different Crops, regions,
and years. It may be that year-to-year variations wiil be greater
in the visible and infrared regions than with radar; hence the
latter may prove more valuable in crop discrimination studies
than we would expect at first sight. We believe that this hunch
should be carefully evaluated in future experiments.

4. A great deal of work will be required to define the radar
frequencies, polarizations, and bandwidths most suitable for
crop discrimination studies.
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