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This article presents an automatic left ventricle bound- 
ary validation technique using the gray scale cardioan- 
giograms, the observed boundary errors, and the left 
ventricle boundaries from any source that needs to be 
validated. This validation technique is based on the 
gray scale information near the boundary of the left 
ventricle in the cardioangiograms. Using a mutually 
exclusive window of fixed size, which is centered on 
the left ventricle boundary vertex and along the left 
ventricle contour, we compute a difference in contrast 
value for areas of the window both inside and outside 
the left ventricle region. These contrast values then 
are regressed against the observed boundary errors. 
The observed boundary errors are computed using the 
polyline distance measure [3], [4] by comparing two 
sets of boundaries: boundaries estimated from any 
boundary estimation algorithm, and the origina| 
ground truth boundaries as traced by the cardiologist. 
We performed our experiments on a database of 245 
patient studies, each having two frames: end-diastole 
(ED) and end-systole (ES). The mean boundary error 
before running the validation system was 4.4 mm. 
Using our boundary validation system, by rejecting 
5% to 10% of the patient studies, the validation 
system results in ah error of 4.0 mm for the cross- 
validation case and 3.85 mm for the ideal case. We 
show the reliability curves of our validation system by 
computing the probability of false alarm, probability 
of mis-detection, and mean predicted errors when a 
total of n patients ate rejected from the database of 
245 studies. 
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A VALIDAT1ON SYSTEM for left ventricle 
(LV) cardioangiogram analysis becomes nec- 

essary as there are large variabilities in heart rates, 
sizes, shapes, and contrast values. 1 Researchers 
have tried to build a computer-based LV boundary 
estimation system, 2-5 and also have evaluated the 
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performance of the estimated boundaries, but little 
attention has been given to its validation, For the 
LV boundary estimation system, the boundary 
validation is a crucial step because it determines 
those LV boundaries from the database (which 
could be coming fi'om any source) whose boundary 
error is above a given threshold. 

In this articte we develop a general and auto- 
matic validation technique to detect the LV bound- 
aries whose mean end frame (end-diastole [ED] 
and end-systole [ES]) boundary errors ((ED + ES)/ 
2) are above a given threshold, R,h. This validation 
scheme has several features and advantages. It 
determines those LV boundaries from the database 
whose ((ED + ES)/2) error is above a given thresh- 
old error. The scheme provides feedback to the 
boundary estimation system so that the system 
knows which LV boundaries can be rejected. The 
validation technique estimates the overall perfor- 
mance of the boundary estimation system without 
taking the rejected boundaries into consideration. 
The validation technique provides a check for 
consistency and retiability of the output boundary 
estimation algorithms (eg, pixel classification, cali- 
bration, active contour, and statistica] segmentation 
algorithms). For this test, we need three types of 
inputs: the boundary coordinates (x, y) of the LV 
boundaries that need to be validated, the gray scale 
cardioangiograms, and the binary indicator for the 
LV region (1 for inside the LV region and 0 for 
outside the LV region). This boundary rejection 
scheme is based on the gray scale information near 
the boundary of the LV. Using a mutually exclusive 
window of a fixed size centered on the LV bound- 
ary vertex and along the left ventricle contour 
(LVC), we compute the mean gray level value for 
the atea of the window that is inside the LV region 
and the area of the window that is outside the LV 
region (Fig 1, left). We then associate this differ- 
ence in the mean gray scale intensities (also 
referred to as contrast values) to the corresponding 
vertex of the LV boª to be validated. Because 
we know the observed boundary error ((ED + ES)/ 
2) for a patient study estimated using polyline 

212 Journal ofDigita! Irnaging, Voi 10, No 3, Suppl 1 [August), 1997: pp 2t2-217 



AUTOMATIC LV BOUNDARY VALIDATION TECHNIQUE 213 

CONTRAST DATA G E N E R A l ' I O N  S C H E M E  
2 SCI-IEMES 

P1 Lef t  Ventr i c l e  
]Binary R q i o n  

P 132 ]Backa, r ound  h, 
~ ~ "  lpr,ay ~ e  

Mo~ ~ ~ ~ P ~  

S C H E M E -  1 S C H E M E - 2  

Fig 1. Left: Contrast boundary data generation process showing two schemes: (1) non-separate contrast data and (2} separate 
contrast data. Right: Overall system for reliability and validation test. It has two  parts. The first part is the generation of the training 
rejection coefficients from the contrast data set. The second part consists of applying the training coefficients on the test contrast 
data to generate the predicted errors. These predicted errors undergo the performance evaluation of the system. WS is the window 
size, which moves along the LVC. Three statistical techniques are used for the generation of the contrast data matrix (C). 

distance technique, 3,4 we can regress these contrast 
values against the observed boundary errors to 
compute the rejection training coefficients. These 
training coefficients then are used to compute the 
predicted boundary errors on the test contrast 
boundary data (CBD), 

Our validation approach is based on a cross- 
validation procedure for estimating the predicted 
errors. This procedure takes a database of  N patient 
studies and partitions this database into K equal- 
sized subsets. Then for all the K choose L combina- 
tions, we train the system using L subsets, and 
apply the estimated transformation on the remain- 
ing (K - L) subsets. The mean predicted error of  
the contrast boundary data then is computed from 
these (K - L) subsets coming from all K choose L 
combinations. The predicted errors that are above 
the threshold correspond to boundary delineations 
that are to be rejected. This rejection system is a 
reliability test because this system helps in determin- 
ing the procedure as to how reliable the estimated 
boundaries are. In the following section, we g i re  
the mathematical statement for computing the 
predicted errors. We then discuss the reliabili ty 
algorithm and the training system; followed by the 
mathematical formulae for computing the probabil-  
ity of  false alarm, probabili ty of  mis-detection, and 
mean predicted errors when a total of n patients are 
rejected from the database N. We then discuss the 

resultant reliabili ty curves from our experiments,  
and summarize our validation system. 

PROBLEM STATEMENT: RELIABILITY 
EQUATION 

We present here the mathematical  statement for 
the estimation of  the prediced errors for the LV 
boundaries given the contrast data matrix C and 
observed end frame error ((ED + ES)/2) vector e. 
The predicted errors are used for spotting the LV 
boundaries that are above the given threshold. 

Boundary contrast data refers to the gray scale 
data generated along the LV boundary by superim- 
posing the LV boundary over the gray scale cardio- 
angiograms. At each chosen vertex of  the LVC, 
there is a corresponding contrast value. The con- 
trast value for a given window is the difference 
between the mean gray scale intensities inside and 
outside the window. This superimposed boundary 
can be from any given boundary estimation algo- 
rithm whose output needs to be validated. 

Observed boundary error is the mean end frame 
boundary error ((ED + ES)/2) for each patient 
study n. Let c',, = [Cl . . . . .  ce] be the row vector of  
contrast values of  dimension P for patient study n, 
where, n = 1 . . . . .  N. Let e = [el . . . . .  eN] be the 
vector  of  the observed  end frame errors,  
((ED + ES)/2) for N patient studies. For  the pre- 
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dicted errors of the patient study n, we are 
�9 Given:  Corresponding pairs ofcontrast  bound- 

ary data matrix C [ N •  and the 
observed error e [N • 1], respectively as: 

Cl co l 

c N •  +3) . . . .  !eN• = �9 

where %, ron is the standard deviation and the 
mean of  the P contrast values for the patient 
study n along the LVC. 

Let a [N X 1] be the vector of  unknown regres- 
sion coefficients. The problem is to estimate the 
coefficient vector a, to minimize q - Cal/e. Then 
for any boundary contrast data matrix C, the 
predicted error for the boundary is given as: Ca, 
where a is the estimated coefficients. 

RELIABILITY ALGORITHM: C-e RELATION 

Fol lowing ate algorithmic steps for estimating 
the predicted errors that forro the basis for the 
reliabili ty of  the boundaries estimated from any 
boundary estimation algorithm. 

1. Contrast boundary data generation (C): The 
contrast matrix can be generated by first 
superimposing the LV boundaries over the 
gray scale cardioangiograms.  We use two 
methods for generating the contrast data. The 
mathematical  statements for expressing the 
contrast value at a vertex i are given as 
follows: Let gp be the gray scale value for 
p ixe lp .  Let I and O be the sets that contain the 
pixels inside and outside the mutually exclu- 
sive moving window. Let G1 and Go be the 
sum of  all the gray scale intensities for pixels 
that are inside and outside the window given 
by 

G , = E g p & G o = E g p  (1) 
I)CI p~O 

Let f~ and j�91 be the cardinali ty of the sets I 
and O. Using the above notations, we give the 
expression for the contrast value at vertex i 
using the two methods. 

ci ! J) + )Co Ii (method - l), 

(2) 

= -7- (method - 
Ci ~l i \,lO •i 

2. 

3. 

4. 

Note, the difference between the methods lies 
in the way the sums of the gray scale intensi- 
ties G/and  Go are subtracted in the two cases. 
In method-I, we compute the gray scale 
difference between the total gray scale values 
inside and outside the window and then 
divide the difference by the total number of 
pixe|s  in the window. In method-II,  we find 
the mean gray values for inside and outside 
the window separately and then subtract it. 
The first one is named non-separate  contrast 
data whereas the later is called separate 
contrast data. This is shown in Fig I (left). 
We also compute the mean and standard 
deviation of  the contrast values for each 
patient study n. Now, using equations 1 and 2, 
we find the contrast values for P vertices on 
LVC, which yields the contrast vector c',, for 
patient study n. Repeating this process for all 
the studies N, we generate the contrast data 
matrix C IN • (P + 3)]. 
Estimation of  the training coefficients (a): We 
compute the training coefficients using the 
standard least squares to minimize the error 
function ef, given as: 

~7,- = IIC,,.a ell 2 & a = v , w 9 _ ( C t r  C t r  ) C t r e  (3) 

Note, Ctr has a dimension ofNt~ • (P + 3), a 
has a dimension ( P + 3 )  x 1, a n d e  has a 
dimension of  Ntr X 1. Ntr are the number of 
trairling studies. Equation 3 is solved using 
singular value decomposition. £ 
Estimating the predicted errors ~ on test 
contrast boundary data (Cte) with Nte studies 
is ~ = Ctefi, where Cte has dimension Nt~ X 
(P + 3). 
Statistical techniques and window sizes: Here 
we repeat the rejection regression coefficient 
estimation process for three different sets of 
statistical techniques. They are (1) plain, (2) 
ordered, and (3) normalized and ordered. 
Plain, because we arrange the contrast values 
as per the vertex number of the LVC. Or- 
dered, because we arrange the contrast values 
in increasing order and then use it for the 
validation system. Normalized, because we 
normalize the contrast values by their stan- 
dard deviations, arrange them in ascending 
order, and then append them back to the 
sorted original contrast data vector. This 
makes the contrast rec tor  of  length (2P + 3). 
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For each of these techniques, we also change 
the window size for generation of  the contrast 
data. Two sets of  window sizes (WS) were 
taken into consideration namely, 11 • 11 
square pixels and 22 • 22 square pixels. 

PERFORMANCE EVALUATION 
Probabil ity of False Alarm and 
Mis-Detection 

Let (S(i), e(i)) be the pair of  name and the error for 
a patient study from the list of ideal (observed) 
errors and the COiTesponding names. This list is the 
output of the boundary eslimation algorithm. Simi- 
larly let (q(j), p(j)) be the pair of  name and the error 
for a patient study from the list of  the predicted 
errors and the corresponding names. This list of  
errors results from the output of  boundary rejection 
scheme. Note that the errors in both lists are sorted 
in increasing order and hence the names s~i~ and q(j) 
of the patient boundaries ate not in the same order 
in both the lists. These two lists will be used for 
¡ the probabilit ies of mis-detection versus the 
probabilities of false alarm, mean errors for re- 
jected and non-rejected patient boundaries. 

Let us define mathematically the terms of  the 
contingency table shown in the Table 1: mrr is the 
number of patient studies truly rejected and was 
assigned to be rejected; m,., is the number of  patient 
studies truly rejected but was assigned to be 
non-rejected (selected); m~,. is the number of patient 
studies truly non-rejected (selected) but was as- 
signed to be rejected; and m,., is the number of  
patient studies truly non-rejected (selected) and 
assigned to be non-rejected (selected). These four 
terms can be expressed mathematically using our 
two input lists as 

mr,.(n ) = #{i[3j, (s(i , = q(j,), j > (N - n), 

i > ( N -  n) 

m,.~(n) - #{i]3j, (s(i I = q(j~), j --> (N - n), 

i > (N - n) 
(4) 

m..(n) = #{il3j, (S(i) = q(j)), j > (N - n), 

i --< (N - n) 

m~,(n) = #{i]3j, (s(i) = q0~)' J -< (N - n), 

i <-- ( N  - n) 

Table 1. Contingency Table 

Assigned 

True mrr mrs 

True msr mss 

Note that the elements of the contingency table ate 
a function of  each set of patient studies rejected, n. 
Using these definitions, we can express the probabil- 
ity of  mis-detection Pmd(n) and the probabil i ty of 
false alarm Pf~,(n) a s a  function of  the total number 
of  patient studies rejected n." 

m,.,(n) 
P,,,,j(n) = 

m,.,.(n) + mr~(n ) ' 
(5) 

m,,.(n) 
PŸ = 

m.~r(n ) + m,.,(n) 

Predicted Errors for Rejected and 
Non-Rejected Studies 

Given the previous lists, we can express the 
mean error of  the rejected and non-rejected patient 
boundaries for the ideal (observed) and cross- 
validation cases as follows: Let ~r(n) and -d,,on(n) be 
the errors for rejected and non-rejected (selected) 
patient boundaries for the ideal (observed) case. 
Let ~,.(n) and ~,,o,,(n) be the errors for rejected and 
non-rejected (selected) patient boundaries for the 
cross-validation case. They ate given as 

1 N 

~ , . ( n ) = -  ~ % 
f l  i - - N  n +  1 

] N-n 

-eno,,(n)-- E e(il, 
N - n i =  l 

(6) 
1 N 

F,.(n) = - 
n i N - n + l  

l N n 

P~ jl & fi,,o,,(n) N - n ~ P~ jl 
i=1  

The rejection threshold for n patient studies is 
computed using the list of predicted errors and is 
given as Rth(n) = PN-n. 

RELATIONSHIPS AND RESULTS: 
RELIABILITY CURVES 

The resultant reliabili ty curves are shown in Fig 
2 and are as follows: 

1. ~,,o,,(n) and fi,,o,,(n) versus n: This is the 
relation between the mean error for the non- 
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Fig 2. Left to right: (1) Plot  o f  e ,o ,  (n) and P,o ,  (n) ve rsus  n; (2) p l o t  o f  e ,o .  (n} and P,o.  (n) versus  Rth; (3) plot of Pmd (ti) versus Pta {n); 
(4) p lo t  o f  P~d (n) ve rsus  n; (5) p lo t  o f  Pt~ (¡ ve rsus  n. Note that  each point on the curve corresponds to the total number of patients 
rejected (n). There are t w o  cases shown in these plots .  First,  when the window size is 11 • 11 square pixels, and second, when the 
w indow size is 22 x 22 square pixels. Calibration parameters: N = 245, K = 245, L = 244, K - L = 1, P = 33, n = 5% t o  10% of  245. 

rejected patients for both ideal and cross- 
validation (CV) cases versus the total number 
of patients rejected n. e,,o,,(n) and ~,,,,,(n) can 
be computed using equation 6. Our validation 
system inputs two quantities: Classifier bound- 
aries, 2 which need to be validated, and the 
observed errors computed using polyline dis- 
tance method, 3 which was the output of the 
left ventricle boundary calibration system 3. 
Our database had 245 studies for experi- 
ments. In the first case, n is made to increase 
from 1 to 50 and, in the second case, we 
increased n from 1 to all the patients in the 
data base (N). We see as we rejected 10% of 
the patient boundaries that the mean error for 
e,,o,,(n) and fi,,o,,(n) drops down from 4.4 mm 
to 4 mm (for CV case) and 3.85 mm (for Ideal 
case), respectively. For the plot when all the 
patients (N) are taken into account, there is a 
steep drop of  the mean error to 1.98 mm. This 
experiment was done when the ideal errors 
were estimated from our boundary calibration 
system 3 (see plot 1, Fig 2). 

2. ~,,,,,,(n) and -fi,,o,,(n) verus R,h: This is the 
relation between the mean error for the non- 
rejected patients for both ideal and cross- 
validation cases versus the rejection threshold 
R,h. e,,o,,(n) and p,,o,,(n) can be computed using 
equation 6 (see plot 2, Fig 2). With the 
reduction in the rejection threshold Rth, the 
mean error drops down gradually. 

3. P,,,j(n) versus Pt” This is the relation for 
the probability of  mis-detection versus the 
probability of false alarm for the set of n 
studies rejected (see plot 3, Fig 2). With 

4. 

5. 

increase in P,,j(n), Pl~,(n) decreases. Note 
both scales ate from 0 to 1 (see equation 5). 
P,,,d(n) versus n: This is the relation for the 
probability of mis-detection versus the num- 
ber of patients rejected n (see equation 5). As 
n increases, P,,,,l(n) drops (see plot 4, Fig 2). 
Pl~,(n) versus n: This is the relation between 
the probability of false alarm versus the 
number of  patients rejected n, using the 
relations expressed in equation 5 (see plot 5, 
Fig 2). With increase in 12, the probability of 
false alarm P~,(n) increases. We have shown 
two cases, first when the window size is 11 x 
11 square pixels and second when the win- 
dow size is 22 • 22 square pixels. When n is 
small, that is when a small number of patient 
boundaries ate rejected, the Pia(n) is more or 
less the same for both window size, but when 
large number of patients ate rejected, then the 
Pta(n) is higher for larger window size. 

DISCUSSION AND CONCLUSlONS 

We have discussed a rejection analysis approach 
for detecting the given boundaries that have large 
perturbation compared with the ground truth bound- 
aries. We also have seen performance of the 
validation system when a certain set of boundaries 
are rejected. We discussed three statistical ap- 
proaches for using the contrast value data from the 
gray scale cardioangiograms and we also saw that 
the best approach is one in which the contrast data 
are normalized with their standard deviation, sorted, 
and then appended to the original data. We also 
discussed the effect of window size variation on the 
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p e r f o r m a n c e  of  the  de tec t ion  scheme ,  in w h i c h  w e  

saw that  22 • 22 pe r fo rms  be t t e r  than  11 X 11. We 

obse rved  that  by  re jec t ing  10% of  the  pa t ien t  
bounda r i e s  f rom the  da tabase ,  we can  r educe  the 

error  by 0.4 mm.  Fu r the rmore ,  we va l ida ted  our  

s y s t e m  by f ind ing  the  p robab i l i t y  o f  m i s -de t ec t i on  

versus  p robab i l i t y  o f  fa lse  a larm,  p robab i l i t y  of  
m i s -de t ec t i on  versus  the  total  n u m b e r  of  pa t i en t s  

re jec ted  n, and  p robab i l i t y  of  fa lse  a l a rm versus  the  
total  n u m b e r  o f  pa t i en t s  re jec ted  n. 
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