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Abstract: Non-homogeneous mixing of the dye with the blood in the left ventricle chamber of the heart causes poor contrast in the
ventriculograms. The pixel-based classifiers [1] operating on these ventriculograms yield boundaries which are not close to ground truth
boundaries as delineated by the cardiologist. They have a mean boundary error of 6.4 mm and an error of 12.5 mm in the apex zone.
These errors have a systematic positional and orientational bias, the boundary being under-estimated in the apex zone. This paper discusses
two calibration methods: the identical coefficient and the independent coefficient to remove these systematic biases. From these methods, we
constitute a fused algorithm which reduces the boundary error compared to either of the calibration methods. The algorithm, in a greedy
way, computes which and how many vertices of the left ventricle boundary can be taken from the computed boundary of each method
in order to best improve the performance. The corrected boundaries have a mean error of less than 3.5 mm with a standard deviation of
3.4 mm over the approximately 6 × 104 vertices in the data set of 291 studies. Our method reduces the mean boundary error by 2.9 mm
over the boundary produced by the classifier. We also show that the calibration algorithm performs better in the apex zone where the
dye is unable to propagate. For end diastole, the algorithm reduces the error in the apex zone by 8.5 mm over the pixel-based
classifier boundaries.
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1. INTRODUCTION

Boundary estimation of the Left Ventricle (LV) is needed
for quantification of the left ventricle motion. This helps
cardiologists in studying different kinds of cardiomyopathies.
The quantification can be done using manual ways, but it
is very tedious to trace these boundaries for each time frame
of the cardiac cycle and for large voluminous data sets. As
a result, cardiologists are very interested in its automatis-
ation. This research solves this problem.

One of the popular methods for studying cardiac disorders
is by catheterisation. In this procedure, the contrast medium
or dye (radio opaque material) is injected into the left
ventricle where it mixes with the blood during the heart
cycle. Because this mixing takes place in a non-homogeneous
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manner, therefore very little dye reaches the apex zone (see
Figs 1-(left), 2 and 3). Consequently, the grey scale contrast
of the apex zone is poor. In addition, the ventriculograms
(LVgrams) have a high level of noise due to the scattering
by tissue volumes which are not related to the left ventricle.
Due to the above problems, accurate and automatic bound-
ary estimation process of the left ventricle becomes a diffi-
cult process.

Left ventricle extraction is not new to pattern recognition
researchers. In fact segmentation of left ventricles for medi-
cal diagnosis began when the imaging systems became avail-
able for imaging left ventricle (see Moore et al [2], Moodi
et al [3] and Mancini et al [4]). In heart imaging, the shape
of the left ventricle varies considerably between patient
studies and through time. The foundation of most of the
boundary segmentation techniques have been histogram-
based or traditional edge detection based (see Chow et al
[5], Griffith et al [6], Tananka et al [7], Jong et al [8],
Reiber et al [9], Han et al [10] and Wollschlaeger et al
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Fig. 1. Left: Labeling of the left ventricle. Right: object process diagram for the IdCM and InCM calibrations for any frame of the heart
cycle. We sample and interpolate the input normalised data, followed by partitioning the data into K subsets, L used for training and K − L
used for the testing set. Magnification conversion factors are used to convert pixels to millimeters where 1 pixel = 0.39 mm.

Fig. 2. Left: end-systole (ES) frame showing very little dye in the apex zone of the LV. ES frame is that frame of the heart cycle when the
LV has fully contracted. It is named so because it is the last frame of the systole (contradiction) cycle. Right: end-systole frame showing
with little dye and interference by ribs with the LV. Thick lines represent the border drawn by the cardiologist. Thin lines are the border
computed by the pixel-based classifier or boundaries produced by image processing algorithms. Background consists of grey scale ventriculograms
(LVgrams) of size 384 × 512.

[11]). All these methods are either semi-automatic or are
not robust enough to automatically produce reliable bound-
aries. They lack model-based processing. We will concentrate
here on model-based left ventricle estimation techniques
geared towards learning.

The goals of this research are to introduce two model-
based left ventricle calibration algorithms to correct biases
in raw left ventricle boundaries, and to introduce a fusion
algorithm to fuse two sets of boundaries using a greedy
technique. Besides the above goals, this research introduces

the following new items: (1) a methodology by which the
global shape information is extracted from the ground truth
in the form of coefficients which is then utilised to remove
the bias error in raw boundaries. This knowledge of the left
ventricle global shape is the human-traced left ventricle
boundaries taken from a given population. This calibration
involves an off-line training system which can train two sets
of boundaries: the boundaries produced by an image pro-
cessing algorithm (classifier boundaries) and the boundaries
traced by the physicians. The trained system can then be
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Fig. 3. Left: end-diastole (ED) frame showing very little dye in the apex zone of the LV. ES frame is that frame of the heart cycle when
the LV has fully expanded or dilated. It is named so because it is the last frame of the diastole (expansion) cycle. Right: end-diastol frame
showing the pixel-based classifier boundaries are under-estimated in anterior, inferior walls and apex zone. Thick lines represent the border
drawn by the cardiologist. Background consists of grey scale LVgrams of size 384 × 512.

applied on-line to new patient boundaries generated by an
image processing algorithm; (2) introduce the ball-basket
model to reduce the error in the fused boundary; (3) a
polyline measurement tool to measure the error between
two left ventricle boundaries; (4) finally, develop an image
processing based validation scheme to spot the boundaries
which are not clinically useful. The remaining part of this
section concentrates on some directly relevant model-based
semi-automatic and automatic boundary estimation tech-
niques.

Semi-automatic model based techniques: Van Bree et al [12]
attempted to find the left ventricle borders using a combi-
nation of probability surfaces and dynamic programming.
Van Bree’s algorithm consisted of three major steps. The
first step was building the probability surfaces from a database
of hand-drawn boundaries after the left ventricle boundaries
had been corrected for translation and rotation. The second
step consisted of the generation of extraction lines (also
called search lines) for the design of the search matrix.
These search lines are the lines which originated from the
interior of the left ventricle and extend radically outward
to the outer region (background) of the left ventricle. The
third step consisted of smoothing the search matrix, followed
by dynamic programming to search for the optimal path of
the left ventricle border.

Active shape modelling has been in existence in medical
imaging, since Kass et al [13] developed the Snake model.
This paper does not compare snakes and our model. The
main drawback of the snakes model is the requirement of
the user-interaction and being unable to place the initial
contour on the LVgrams. The application of active shape
modelling has been applied by several groups. Cootes et al
[14] attempted using an active shape model based on Least
Squares to infer the position of boundary parts where there
was missing data (top of the ventricle). There are a lot
of similarities between Cootes method and our technique,
discussed in Section 3.

In learning algorithms, Hwang et al [15] addressed the

issue of contour finding using a combination of neural
networks, active contour and Gibbs sampler, called NNS-
SNAKE, named after a neural net stochastic-snake. Chiou
et al used a neural network classifier for building the interior
contour, inside which the initial snake is placed. The active
contour model is used to alter this snake towards the target
contour. A Gibbs sampler basically helps to avoid trapping
of the intermediate contours during the slithering operation
of the snake. Chiou’s algorithm for boundary estimation
consists of three major steps. First, interior contour gener-
ation using the neural network classifier. In this step, Chiou
et al first train the neural net using contour pixels and non-
contour pixels. Now the neural net is fed by the test data
set which outputs the energy profile image. This image is
first binarised and then ANDed with the edge map of the
original image. The ANDed image is then smoothed using
a Gaussian kernel, and inverted, which yields the interior
contour. The second step is generation of the starting con-
tour which is inside the interior contour, and then running
the active contour model to inflate towards the target con-
tour. In step three, Gibbs sampling is used to avoid trapping
of the intermediate contour which could happen by the
local minimum of the energy function. This is done using
the Bayes approach by taking the prior probability of the
shape and likelihood function of the output of the neural
network. Chiou et al used MRI brain images for training and
testing of the neural network to obtain the final contours of
the brain inside the brain cavity slice-by-slice.

Lee [1] was the first to actually automatically estimate
the left ventricle boundaries in LVgrams. Lee used a pixel-
based Bayesian approach for the left ventricle boundary
extraction, looking at the grey scale value of the location
throughout the cardiac cycle as a vector. Lee assumed
that the distribution was bi-variate normal. For each vector
observed, one class is assigned according to the ground
truth, which is available by filling the left ventricle region
surrounded by the ground truth left ventricle boundary. The
ground truth of a pixel through F frames generates 2F
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possible classes, but far less than 2F classes are actually
required to represent all existing classes. Due to the different
heart rates (i.e. variable number of frames in the cardiac
cycle for different studies), Lee did interpolation to normalise
the number of frames to 12, which corresponded to a systole
cycle. Lee simultaneously segmented all the frames from the
end diastole through to the end systole to the next end
diastole, instead of segmenting frame-by-frame separately,
assuming that each pixel was statistically independent in
the same frame. Lee later modified his assumption by con-
sidering the nearest neighbor. For performance and error
computation of the detected left ventricle boundary, Lee
compared the classifier boundary with the manually traced
boundary using the Hausdorf distance measure. These classi-
fication algorithms, however, did not yield boundaries close
to the hand-drawn boundaries as delineated by the cardiolo-
gist. Of the many reasons for the failure of pixel-based
image processing algorithms, foremost is the poor contrast
in the apex zone that causes the image processing boundaries
to fall short of ground truth boundaries or to be under-
estimated (see Figs 2 and 3). Furthermore, irregularities of
the inferior walls, variations in the left ventricle shape, size,
orientation and heart rate cause the boundaries from the
pixel-based classifier output to push outwards or to be over-
estimated (see Fig. 2). Due to all of the above complications,
a reliable left ventricle boundary detection algorithm must
make use of as much knowledge of the left ventricle shape,
size, position and orientation as possible.

In this paper we show that the aforementioned training
procedure is a very promising technique for measuring the
accuracy of left ventricle borders of the left ventricle, parti-
cularly in the apex zone and walls where the dye has not
mixed well with the blood. We show that when the trained
system is applied to new left ventricle test patient boundaries
generated from the pixel-based classifier, the system reduces
the systematic boundary biases and provides automatic left
ventricle boundary delineation that are within 3.5 mm of
the physician traced boundaries. Our procedure can be
thought of as a calibration procedure: calibrating the initial
pixel-based boundaries closer to the ground truth boundaries
by removing any systematic bias in shape, position and
orientation.

The layout of the paper is as follows. In Section 2, we
formally state the two calibration algorithms. The fusion
algorithm using the greedy approach is presented in Section
3. Section 4 states the mathematical derivation for the
polyline method, a tool used for the measurement of bound-
ary errors. The results of the three calibration algorithms
are presented in Section 5, along with data analysis. Section
6 presents the reliability algorithm and validation scheme
for spotting the weak points of the system for its feedback.
Finally, we conclude the paper with discussions and con-
clusion sections.

2. TWO COEFFICIENT METHODS:
IdCM AND InCM

This section presents the mathematical statements of the
two calibration methods for bias correction of the classifier

boundaries produced by Bayesian classifier [1]. We will not
discuss the classification scheme here, but interested readers
can look at the dissertation by Lee [1].

In the identical coefficient method, each vertex is associated
with a set of coefficients. The calibrated x-coordinate for
that vertex is computed as the linear combination of raw x-
coordinates of the left ventricle boundary using the training
coefficients associated with that vertex. The calibrated y-
coordinate of that vertex is similarly computed as the same
linear combination of raw y-coordinates of the left ventricle
boundary. In the independent coefficient method, the cali-
brated x-coordinate is computed as the linear combination
of raw x- and raw y-coordinates of the left ventricle bound-
ary, using the training coefficients associated with that ver-
tex. The calibrated y-coordinate of that vertex is computed
with a different linear combination of raw x- and y-coordi-
nates. The problem of calibration then reduces to a problem
of determining the coefficients of the linear combination
which can be accomplished by solving a regression problem.
The initial (x,y) coordinates of the left ventricle are con-
verted from pixels to millimeters using a magnification cor-
rection factor. This factor is computed by keeping a grid of
lead wires of a known millimeter size or a kugel of a known
diameter (in mm) over the ventriculograms. The kugel is
approximately the same size as the left ventricle
(approximately 70 millimeters). These input raw and ground
truth boundaries are initially in an irregularly spaced vertex
polygon format with 100 vertices and unit dimensions in
millimeters. Thus there is a need for changing the polygons
dfvxfcto equally spaced vertices, as discussed in the next sec-
tion.

2.1. Data Correspondence: Interpolation &
Resampling

Due to the variation in left ventricle sizes, we therefore
resample and interpolate each of these polygons into poly-
gons with equally spaced vertices. Note that here, since we
have no prior information about the motion such as uniform
expansion or contraction, we thus take the simplest case by
using equal-sampling-normalisation, similar to approach by
Duncan et al [16,17]. The interpolation is done with respect
to the arc length. The arc length for a vertex ‘v’ is defined
as the distance traveled along the left ventricle contour to
that vertex ‘v’, starting from the anterior aspect of the aortic
valve (i.e. clockwise direction). Thus, the arc length for the
last vertex is the perimeter of the left ventricle contour.
Since the original contour is sampled into P2 vertices, the
interval length between the vertices of the sampled contour
is given as: 3/(P2 − 1), where 3 is the perimeter of the left
ventricular contour, given as

3 = OP1

i=2

Î(xi − xi−1)2 + (yi − yi−1)2

As a result of this resampling and interpolation process,
every vertex number of ground truth boundary corresponds
to the same vertex of the classifier boundary. This resampling
and linear interpolation is done in an automatic way, where
the user needs only to specify the total number of boundary
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vertices to be sampled, and a list of frames of the cardiac
cycle which needs to be sampled. In our case, we choose
two frames for sampling: the end diastole (first frame) and
the end systole (last frame), and the number of sampled
boundaries vertices are P2. Note that the aortic valve (AoV)
plane is known. This means the (x,y)-coordinates for the
anterior aspect of the aortic valve and the inferior aspect
of the aortic valve are known; this is called two feature cor-
respondence.

Note that the above data correspondence scheme takes
the prior information of the AoV plane (similar to Van
Bree et al [12]) between the classifier and the ground
truth boundary, while the remaining vertices are equally arc
sampled and interpolated. This correspondence uses two
features: the first and last points of the left ventricle contour
(see Fig. 1, left). There are other features on the left ven-
tricle contour which can also be used for data correspon-
dence, e.g. the apex point (furthest point from the mid
AoV plane to the bottom one-third of the left ventricle).
There are two ways to incorporate the apex information in
the data correspondence. We must either find the apex from
the grey scale images, or use the ground truth apex as
delineated by the cardiologist. Estimating the apex from the
grey scale images is a very difficult process, since the apex
zone is the most uncertain zone in the LVgrams (as we
know, that there is no grey scale information present). The
ES grey scale apex is even harder to estimate than the ED
grey scale apex. This is because, during the ES frame, the
dye is emptying the left ventricle chamber and the contrast
level further decreases in the apex zone. In contrast to
estimating the apex using pattern recognition techniques,
Suri et al [18] developed schemes to estimate an ES apex
using the dependence approach (not part of this paper).
Using prior information of the ground truth, the ES apex
as delineated by the cardiologist, and the observed ED apex,
Suri et al estimated the ES apex using a traning-based
system. This estimated ES apex now can be used for the
data correspondence for ES frame boundaries. Suri et al [19]
also developed a robust apex estimation scheme where they
estimated the apex using a weighted iterative least squares
algorithm. This apex can be used as the third feature in
data correspondence. Suri et al [21] recently developed a
forced calibration algorithm, where the left ventricle contour
is forced to pass through the apex point. This can be
thought of as putting a penalty on the apex point and
forcing the left ventricle contour to pass through the apex.
Thus, this method is very similar to using three feature
points (or three point correspondence): two points from the
AoV plane, and the third point as the apex. Using this
concept, the two wall curves can be independently equally
arc sampled on both the sides of the apex point. We are
currently developing a robust three feature data correspon-
dence. The three point correspondence is an alternative
method, and can be considered as an option if the apex
information is available. In this paper, we take the data
correspondence by taking only the two feature points, which
is a reasonable assumption, given that there is no prior
information about the apex position or the source of the

classifier boundaries. Thus, we can consider the above corre-
spondence to be a simple case of a non-rigid correspondence.
Using this relaxed assumption, we will see that we loose
hardly any information around the left ventricle contour,
except little near the apex. Using the two feature correspon-
dence, we learn the global left ventricle shapes based on
the first layer of the neural networks, yielding results up to
the expectations of the cardiologists. This involves the IdCM
and InCM calibrations, which are mathematically stated in
the next section.

2.2. Identical Coefficient Method (IdCM) for any
Frame

Let g′n = [x1,x2,. . .,xP]n and h′n = [y1,y2,. . .,yP]n be the row
vectors of x-coordinates and y-coordinates, respectively, for
the ground truth boundaries for patient n. Let
r′n = [x1,x2,. . .,xP]n and s′n = [y1,y2,. . .,yP]n be the row vectors
of x-coordinates and y-coordinates, respectively, for the clas-
sifier boundary for any patient n, where n = 1,. . .,N. For the
calibrated boundary estimation in left ventriculograms using
the identical coefficient method, we are:

I Given: corresponding pairs of ground truth boundaries
R[2N × P], and the classifier boundaries Q
[2N × (P + 3)], respectively:

R = 1
g′1
h1

. . .

. . .

g′N
h′N

2 Q = 1
r′1 1u11 u21

s′1 1v11 v21

. . .

. . .

r′N 1u1N u2N

s′N 1v1N v2N

2
where, (u11, v11), (u1N, v1N) and (u21, v21), (u2N, v2N) are
the coordinates for the anterior aspect and inferior aspect
of the AoV plane of the left ventricle (see Fig. 1, left)
from the ground truth boundary, the known information
of the starting and ending points of the contour. The
last three columns constitute the translation offset effect
(unity padding), and the pair u1n, u2n are the x-coordinates
for the starting and ending vertex. Similarly, the pair v1n,
v2n are the y-coordinates for the starting and ending ver-
tex.

I Let A [(P + 3) × P] be the unknown regression coef-
ficients matrix.

I The problem is to estimate the coefficient matrix A, to
minimise iR − QAi2. Then for any classifier boundary
matrix Q, the calibrated vertices of the boundary are
given by QÂ, where Â is the estimated coefficient matrix.

Note the coefficients that multiply g′n also multiply h′n,
hence the name identical coefficient method. Also, note that
the new x-coordinates for the nth boundary depend only
upon the old x-coordinates from the nth boundary, and the
new y-coordinates from the nth boundary depend only upon
the old y-coordinates from the nth boundary.
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2.3. Independent Coefficient Method (InCM) for
any Frame

As before, let g′n and h′n be the row vectors of the x- and
y-coordinates for any patient n. Let r′n and s′n be the row
vectors of the x- and y-coordinates of the classifier boundary.
For the calibrated boundary estimation in ventriculograms
using the independent coefficient method, we are:

I Given: corresponding ground truth boundaries R [N × 2P],
classifier boundaries Q [N × (2P + 5)], respectively:

R = 1
g′1 h′1

. . .

g′N h′N
2 Q = 1

r′1 s′1 1 u11 v11 u21 v21

. . .

r′N s′N 1 u u1N v1N u2N v2N

2
where (u11,v11), (u1N,v1N) and (u21,v21), (u2N,v2N) are the
coordinates of the anterior aspect and inferior aspect of
the AoV plane of the left ventricle (see Fig. 1) from the
ground truth boundary. The padding explanation is the
same as in the previous section, except that the pair (x,y)
for the starting and ending points are on the same row;
this makes the total number of padding columns five.

I *Let A [(2P + 5) × 2P] be unknown regression coef-
ficient matrix.

I The problem is to estimate the coefficient matrix A, to
minimise iR − QAi2. Then for any classifier boundary
matrix Q, the calibrated vertices of the boundary are
given by QÂ, where Â is the estimated coefficient matrix.

Note that the new (x,y)-coordinates of the vertices of
each boundary is a different linear combination of the old
(x,y)-coordinates for the polygon, hence the name inde-
pendent coefficient method. The above two methods are differ-
ent in the way in which the calibration model is set up.
The classifier boundary matrix Q in IdCM is of the size
2N × (P + 3), while in InCM it is of the size N × (2P + 5).
For IdCM, the number of coefficients estimated in the Â
matrix is (P + 3) × P. For InCM, the number of coefficients
estimated is (2P + 5) × 2P. Thus, the independent coefficient

method requires around four times the number of coefficients
of the identical coefficient method to be estimated, and this
difference could represent a significant factor for our data
size in the ability of the technique to generalise rather than
memorise. For this reason, we first optimise both calibration
techniques before they undergo the greedy fusion.

2.4. Identical and Independent Optimisation
Calibrations: Training & Estimation

Once the data has been interpolated and equally arc
sampled, we apply the regression model [20] to find the off-
line training coefficient matrix A(t) to minimise

e2
ifr = iR(t) − Q(t) Â(t)i2 (1)

Generalising for any frame t of the systolic cycle, minimising
Â is given by the normal equation

Âtr = (QT Q)−1 QTR (2)

The above equation is solved using the Singular Value
Decomposition (SVD) (see Press et al [25] and Haralick et
al [26]). Given the test set (Qte) or training set (Qtr), we
can estimate the calibrated boundary as

R̂te = Qte Âtr and R̂tr = Qtr Âtr (3)

Thus, the estimated matrices for the IdCM and InCM test
sets are

R̂id = Qte Âid and R̂in = Qte Âin (4)

Note that, if P2 are the sampled vertices, then R̂id is of
dimension 2N × P2 and R̂in is of dimension N × 2P2.

Figure 1 (right) shows the overall boundary calibration
system, where the heart of the system is the IdCM or InCM
calibrator. The input to the calibrator is the left ventricle
boundary data which is represented by polygons of N studies,
F frames and P1 = 100 vertices. We used a cross-validation
procedure for estimating the error of the calibration system.
The procedure took a database of N patient studies and
partitioned this database into K equal sized subsets. For all
the K choose L combinations, we trained the system using
L subsets, and applied the estimated transformation on the
remaining (K − L) subsets. The mean error of the transfor-
med boundary was then computed from these (K − L) subsets
coming from all K choose L combinations. Our experiments
consisted of varying the calibration parameters: N, K, L, P.
We chose six different sets of K values (corresponding to
each protocol) for training the system. Because of the small
number of available patient studies in our database
(N = 291), and the large number of parameters (about 200
times N) in the transformation, there was a danger of
memorisation rather than generalisation in the estimation
of the transformation parameters. Therefore, it was essential
that the number of vertices (P in the left ventricle polygon)
be carefully chosen. As P decreased, the generalisation
improved, but the representation of the true left ventricle
shape became worse, thereby causing higher error with
respect to the ground truth. As P increased, generalisation
was lost but representation of the true left ventricle shape
improved. With the other parameters K, L and N fixed,
there was an optimal number of boundary vertices P* balanc-
ing the representation error with the memorisation error.
Our protocol finds the optimal number. The estimated bound-
ary using the two calibration algorithms undergo performance
measure using the polyline metric method, as discussed in
Section 4.

3. GREEDY ALGORITHM: LV
CALIBRATION BY VERTEX

This section first discusses what the greedy algorithm is, its
need, followed by a ball-basket method to illustrate its idea.
We also discuss the approaches of Cootes et al and ours.
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3.1. What is Greedy Algorithm and What is its
need?

The greedy algorithm is an iterative algorithm for fusing
two given boundaries in such a way that the fused boundary
is closer to the ideal boundary compared to the two given
boundaries. The idea is to obtain a fused boundary whose
error with respect to the ideal boundary is lower than the
errors of the two fusing boundaries when compared to the
ideal boundary. This fused boundary in each iteration is
compared to the ideal boundary, and the process is repeated
until no further improvement can be done. The need for
the gready algorithm was felt when we observed in Section
1 that there is not enough information in the apical zone
and LV wall zones in the grey scale ventriculograms. The
above two calibrations help in stretching the initial classifier
boundaries closer to the ground truth boundaries [20],
thereby removing the bias errors in shape, position and
orientation. These two calibration algorithms are sensitive
to the number of data vectors (N) and dimensions of the
data vectors (P). As a result, one calibration technique
performs better than the other for the same frame of the
cardiac cycle. This is particularly seen in the apical zone
and the papillary muscle zone, where dye is unable to
propagate and mix well with the blood. Since we used the
left ventricle ground truth boundaries for training, the same
database of the left ventricle contours can be used in greedy
technique. The two boundary calibration estimates (vertex-
by-vertex) from the above calibration algorithms can be
fused to produce a boundary closer to the boundary traced
by the cardiologist. We select a fixed subset of estimated
vertex positions from the IdCM and InCM techniques
which, when fused together, minimise the resulting error
between the final estimated polygon boundary and the phys-
ician-traced left ventricle boundary. We illustrate this idea
using a ball-basket method.

3.2. Ball-Basket Method

Consider two baskets (say b1 and b2) each containing the
same number of balls P2. Let the colour of the balls of b1

basket be white, and that of the b2 basket be black. These
balls can be imagined to represent the vertices of the left
ventricle boundary. The goal is to fuse these two baskets in
such a way that the fused basket (representing the fused
boundary) has the greatest resemblance to the ideal basket
(ideal boundary). In the first cycle, the algorithm consists
of searching for that white ball from basket b1 which, when
combined with the remaining P2 − 1 black balls in basket
b2, will yield a lower error when no ball was transferred.
One such greedy cycle is shown in Fig. 4 (left). Finally, one
such ball is transferred from basket b1 to basket b2 (see
Fig. 4, left). Now the greedy cycle is repeated until no more
balls are found, which improves the performance of the
system (see Fig. 4, right, row #3 (cycle 2), row #4 (cycle
3)). The implementation of the greedy algorithm can be
seen in the appendix.

3.3. Comparision Between Cootes and Our
Technique

As we have discussed, steps one (two calibration algorithms)
and two (iterative fusion algorithm) of our system, we now
compare our methodology with Cootes et al’s [14] technique,
which is as follows: (1) Cootes et al used knowledge of the
expected shape combined with information from the areas
of the image where good wall evidence could be found to
infer missing parts of the left ventricle. In our approach,
we also use the Least Squares (independent of each frame)
technique to infer the position of the parts of the boundary
where there is less contrast or left ventricle information
(apex zone of the left ventricle or bottom third region of
the left ventricle) by using the knowledge of the top two-
thirds region of the left ventricle, where there is good
evidence of the left ventricle data points; (2) for the final
shape estimation, Cootes et al used a weighted iterative
algorithm where weights were proportional to the standard
deviation of the shape parameter over the training set. This
is more like Weighted Least Squares, where the initial guess
was the first stage: the least squares. The termination process
of the iteration depended upon the Mahalanobis distance
Dm when compared to the constant, say Dmax. The idea
behind the iterative algorithm was to improve the accuracy
of the border detection. In our method, the second stage is
the greedy algorithm, which fused the two sets of boundaries
to yield boundaries closer to the ideal boundary (as traced
by the cardiologist). First, we optimised for that P number
of vertices which yields the best left ventricle shapes from
the identical and independent coefficient methods. These
methods are based on the least squares models. Thereafter,
the greedy algorithm can be considered as an iterative
process, where we select that vertex of the left ventricle
boundary from one estimation technique which, when fused
with the other boundary (other estimation technique), will
yield an error lower than the error of either of the two
methods. The greedy algorithm does not give up unless it
has checked all the vertices on the boundary. (3) In our
approach, the initial error is not a guess, but the error
which is the best of the two existing errors, unlike in
Cootes’ method, where the initial guess is taken as the
mean shape with the addition of a weighted principal axis
of the ellipsoid. Cootes et al first find the mean shape, then
the eigenvectors of the covariance matrix of the deviation.
Thus, any shape is approximated as

x = x̄ + Pb (5)

where x̄ is the mean shape, P is the matrix of the eigenvec-
tors and b is the vector of the weight matrix. In the greedy
method, if the fusing boundary vertices have a large error
compared to the the ideal boundary (traced by the
cardiologist), then the greedy algorithm rapidly picks the
vertices. The nice thing about the greedy algorithm is that
we do not have to repeat the identical coefficient method
and the independent coefficient method calibrations again.
Once these runs are over, we then just choose the vertices
(switching columns between two boundary data matrices)
in such a way that in each greedy cycle, we are heading
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Fig. 4. Left: one greedy cycle where best vertex (ball) is selected out of basket b1. E’s denote the errors when compared with ideal basket.
Right: the figure shows basket number b2 filling up after each greedy cycle.

closer to the ground truth boundaries until all the vertices
are checked. (4) Another similarity between Cootes’ and
our method is that both methods use the point model,
which means that the starting analysis of the boundaries
are the vertices or points. The only difference is in the
dimension of the matrices. Finally, Cootes et al use the
Mahalanobis distance for performance, while we use the
polyline distance metric, as discussed in the next section.

4. POLYLINE DISTANCE MEASURE
AND PERFORMANCE TERMS

Several methods have been developed for measuring the left
ventricle wall motion (see details in Klausner et al [22]).
Sheehan et al [24] developed a centreline method for quanti-
tative assessment of the ventricular boundary. Sheehan meas-
ured the motion along 100 chords constructed perpendicular
to a centre line drawn midway between the end diastole
and end systole left ventricle contours. The centre line
method was developed to find the extent of local left
ventricle wall motion. The algorithm consists of the follow-
ing principle. If the two left ventricle polygons are end
diastole and end systole boundaries, the end diastole having
a larger number of points on it, then first linearly interpolate
the larger contour to get 200 points, and then for each
tuple of three points on this contour, draw a perpendicular
to the tangent of the circle passing through these three

points. The centres of this perpendicular constitutes the
centre line. This distance is a function of the area swiped
between two left ventricle boundaries. The performance of
the training algorithm is measured by the error of closeness
between the estimated boundary and the ideal boundary, as
traced the cardiologist. The error of closeness is measured
using a stable method based on vector calculus called the
polyline metric, as derived below.

The polyline metric is actually based on the ratio of the
average area between two polygons to the average perimeter
of the two polygons. Our assumption prior to the polyline
distance error computation is that the polygons have equal
perimeters, and the vertices are equally spaced along the
perimeter, i.e. the two arc intervals on the two contours
are the same. Using this assumption, we mathematically
show that the ratio of the average area between polygons
to their perimeters is actually the average polyline distance
error between the two polygons.

Let the two polygons be B1 and B2, consisting of total
points P1 and P2 having interval lengths of l1 and l2,
respectively. This is shown in Fig. 5. Let the perpendicular
distances from each of the vertices (of polygon B1) to the
opposite interval sides of polygon B2 be dn, where,
1 # n # P1. Similarly, let d′m be the perpendicular distances
from each of the vertices (of polygon B2) to the opposite
interval sides of polygon B1, where, 1 # m # P2. Thus, the
area of the triangle with height dn and base l2 is .l2dn.
Similarly, the area of the triangle with height d′m and base
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Fig. 5. Left: figure showing the area of triangles between the two polygons. Right: geometry of the polyline distance computation.

l1 is .l1d′m. The total area Ā between two polygons is derived
by computing the sum of the area of all the triangles whose
base lies on the polygon B1 and the sum of the area of all
the triangles whose bases lies on the polygon B2, and is
given as

Ā = OP1

n=1

. l2dn + OP2

m=1

. l1d′m (6)

Similarly, we can compute the average perimeter of the two
polygons as

P̄ =
l2P1 + l1P2

2
(7)

Taking the ratio of Eq. (6) to Eq. (7), we have

Ā
P̄

=
SP1n=1 .l2dn + SP2m=1 .l1d′m

l2P1 + l1P2

2

(8)

Using the above assumption, l1 < l2 Eq. (8) reduces to

Ā
P̄

=
SP1n=1 dn + SP2m=1 d′m

P1 + P2
(9)

We show that this is what the polyline distance method
computes, which will be shown to be Ds(B1:B2). The polyline
distance Ds(B1:B2) between two polygons representing
boundary B1 and B2 is symmetrically defined as the average
distance between a vertex of one polygon and the boundary
of the other polygon. To define this measure precisely, we
first need to define a distance d(v,s) between a point v and
a line segment s. The distance d(v,s) between a point v
having coordinates (xo,yo), and a line segment having end
points (x1,y1) and (x2,y2) is

d(v,s) = Hmin{d1,d2}, if l , 0, l . 1

ud'u; if 0 # l # 1
(10)

where

d1 = Î(x0 − x1)2 + (y0 − y1)2

d2 = Î(x0 − x2)2 + (y0 − y2)2

l =
(y2 − y1)(y0 − y1) + (x2 − x1) (x0 − x1)

(x2 − x1)2 + (y2 − y1)2

d' =
(y2 − y1)(x1 − x0) + (x2 − x1)(y0 − y1)

Î(x2 − x1)2 + (y2 − y1)2
(11)

Note that d1 and d2 are the distances from vertex v to the
end points of the segment s. l is the distance along the
vector of the segment s, while d' is the perpendicular
distance along the vector orthogonal to the segment s. The
polyline distance db(v,B2) from vertex v to the boundary B2

is defined by

db(v,B2) = min
sPsides B2

d(v,s) (12)

This step is a confirmation that we are choosing the closest
segment on B2 from the vertex v. The distance dvb(B1,B2)
between the vertices of polygon B1 and the sides of polygon
B2 is defined as the sum of the distances from the vertices
of the polygon B1 to the closest side of B2:

dvb(B1,B2) = O
vPvertices B1

d(v,B2) (13)

Reversing the computation from B2 to B1, we can similarly
compute dvb(B2,B1). Using Eq. (13), the polyline distance
between polygons, Ds(B1:B2) is defined by
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Ds(B1:B2) =
dvb(B1,B2) + dvb(B2,B1)

(#vertices P B1 + #vertices P B2)
(14)

This equation is basically the same as Eq. (9), where the
numerator is the sum of all the perpendicular distances for
both the polygons, while the denominator is the sum of
the total number of vertices on the two polygons. This
mathematical expression Ds(B1:B2) signifies how much one
left ventricle wall is away from the other, and is very
helpful in wall motion estimation, for example, wall motion
measurement between the end diastole and end systole left
ventricle boundaries. We use this expression in computing
how much the estimated left ventricle boundaries are away
from the ideal boundaries, and it represents an average
error measure.

The IdCM and InCM optimisation algorithms are based
on the vertex-to-vertex distance error, while the performance
measure of the estimated boundaries is based on the slightly
closer polyline distance measure. The polyline distance meas-
ure basically finds the average distance between the vertex
to a polygon. Computationally, they are similar measures,
but from the cardiologist’s point of view (as tested in our
Cardiovascular research laboratory), the polyline measure-
ment tool does not consider the algorithm or technique
from which the estimated boundaries have come, e.g. the
estimated boundaries could come from either the pixel clas-
sifier scheme, the regression scheme or a neural network
scheme, or from any segmentation technique. Since the
earlier method developed by Sheehan [24] computed the
minimum distance as the perpendicular distance between the
two contours (left ventricle polygon), we use similar grounds
to estimate the short distance from a vertex to the opposite
polygon. We saw that the polyline distances were superior
to current methods. These advantages are:

1. The method is very stable and computes the error based
on the geometry of the triangles and vector calculus,
which is the ratio of the average area to the average
perimeter, as shown in the mathematical derivation.

2. The polyline distance error has an added advantage if
there are cups or cusps in the polyline, as the algorithm
can spot them easily. Since the algorithm looks for those
perpendiculars whose l lies between 0 and 1 to satisfy
the condition of closeness, there is no possibility of
any error.

3. Since, prior to polyline error computation, the curves
(left ventricle polygons) undergo equal arc sampling and
interpolation, there exists one-to-one correspondence
between the estimated and ground truth vertices of
the curves.

4. This is a non-iterative computation and thus saves time,
unlike Bolson and Sheehan’s method [23,24], where one
has to do the computations again to smooth the curves
and improve the accuracy.

5. In Bolson and Sheehan’s [24] method, one has to com-
pute the tangents by fitting the circle through three
points. The circle fitting algorithm is very sensitive to
the number of points taken on either side of the vertex
(see Haralick et al [26]). In the polyline method there

is no fitting involved. Also, Suri et al [18] showed that
the polyline method is more accurate than the center
line method to the third decimal accuracy.

6. Another advantage of the polyline algorithm is that it
can easily find out whether the distance computed for
every vertex is positive or negative, positive when going
from one vertex to the opposite polygon, and vice versa.
This is very useful in finding out if part of the curve is
inside or outside.

7. The polyline algorithm is in conjunction with the swap-
ping mechanism, which make the process symmetric. So
the average statistics gives a better estimate of the mean
error when computed from one polygon to another, and
vice versa.

8. The method has an advantage in that the correct bias
errors at every vertex are computable. Since not only is
the closest perpendicular computed, but also the coordi-
nate position and its bias relative to the vertex on the
opposite polygon, we can thus use this distance to correct
the bias errors in calibration algorithms by making the
optimisation algorithm a weighted least squares algorithm,
where the weights are inversely proportional to the poly-
line bias errors. We are developing a technique by which
we can use these errors and build a constrained optimis-
ation problem.

9. One of the main advantages of the polyline distance
measure is the coherence with the ejection fraction com-
putation. For example, if the ES left ventricle shape is
totally convex and inside the ED left ventricle shape,
then the ejection fraction number truly reflects the poly-
line distance error. As 95% of the ES left ventricle lies
inside the ED left ventricle, the polyline distance error
will reflect very good approximations for sweeping the
area between left ventricle shapes for volume compu-
tations. Thus, the primary advantage of contour extrac-
tion and quantification can be better studied, and the
cardiologist can establish better clinical relevance. The
polyline disance measure and optimisation algorithms are
computing a measure which is computationally similar,
and any difference in terms of error can be accepted by
cardiologists, bearing in mind the fact that the polyline
distance method not only computes a similar mean error
measure to the center line [18] technique to the third
decimal, but also has the advantages of superiority and
stability compared to the other methods.

4.1. Mean Error (epoly
NFP) or Measure of

Agreement

The performance of the calibration algorithms is evaluated
by computing the boundary error on the test data set (Qte).
Using the definition of the polyline distance between two
polygons, we can now compute the mean error of the overall
calibration system. It is denoted by epoly

NFP, and defined by

epoly
NFP =

SF
t=1 SN

n=1 Ds(Gnt,Cnt)
F × N

(15)



49Greedy Algorithm for Error Correction

where Ds(Gnt,Cnt) is the polyline distance between the
ground truth Gnt and calibrated polygons Cnt for patient
study n and frame number t. This term is very significant,
as it represents how far the estimated boundary and the
ideal boundary are to each other on average over the entire
population of patient studies, frames and vertices. We will
use this term to analyse the estimated data and the training
performance of the cross-validation procedure. Equation (15)
is very relevant in the optimisation technique. For each set
of P = P2 number of points, epoly

NFP is computed and the
operating point is estimated, which corresponds to the best
fitted shape. Using the definition of the polyline distance
between two polygons, the standard deviation can be com-
puted as

spoly
NFP =

!SF
t=1 SN

n=1 {SvP vertices Gnt
(db(v,Cnt) − epoly

NFP)2 + SvP vertices Cnt
(db(v,Gnt) − epoly

NFP)2}

N × F × (#verticesPB1 + #verticesPB2)
(16)

4.2. Error per Vertex and Error per Arc Length

Using the polyline distance formulae, we can compute the
Error Per Vertex (EPV) from one polygon (ground truth)
to another polygon (calibrated). This is defined as the mean
error for a vertex v over all the patients and all the frames.
The error per vertex for a fixed vertex v when computed
between ground truth and calibrated boundary is defined by

eGC
v =

SF
t=1 SN

n=1 db(v,Gnt)
F × N

(17)

Similarly, we can compute the error per vertex between
calibrated and ground truth using Eq. (12). Error Per Arc
Length (EPAL) is computed in the following way: for the
values eGC

v where v = 1, 2, 3,. . .P1, we construct a curve fGC

defined on the interval [0,1] which takes the value eGC
v at

point x, which is the normalised arc length to vertex v, and
whose in-between values are defined by linear interpolation.
We compute the curve fCG between calibrated boundary
and ground truth boundary in a similar way. We then add
these two curves algebraically to yield the final error per arc
length, given as f = fGC + fCG

2
. Note that the EPV is a very useful

term, as it gives the error between the estimated vertex and
the ideal vertex over the entire population. This is parti-
cularly useful in the apical zone of the left ventricle. EPAL
is a better representation of EPV, since it is normalised over
the entire contour. The EPAL is equally significant in the
apical zone of the left ventricle, as it tells us how much of
an improvement the training algorithms gave when remov-
ing the bias errors of the classifier boundaries around the
entire contour.

5. DATA ANALYSIS USING IdCM, InCM
AND GREEDY METHOD

Our database population consisted of 291 patient studies,
out of which 135 studies had acute myocardial infarction,
with the top 50% in quality on a scale of 0 to 10, where

0 is rejected and 10 is considered excellent. The number
of subjects with acute infarction who then underwent follow-
up studies over the course of one year was 35. The number
of subjects from Japan who were normal and had a diagnostic
cardiac catheterisation was 27. The Japanese patient’s left
ventricle images represented the top 50% in quality; the
remainder of the 94 studies were from the Catheterisation
Laboratory at the University of Washington Medical Center,
Seattle, Washington. These studies represented a top 30%
in quality. We use this knowledge to build our training
system. The performance of the system can be judged by
evaluating the error measures on the test data Qte set. This
section discusses the performance of IdCM, InCM and the
greedy methods. All our performance is with respect to the
original ground truth boundaries having P1 = 100 vertices.

5.1. Data Analysis 1: Vertex Optimisation for
Cross-Validation

We find the mean error as a function of the number of
polygon boundary vertices on the left ventricle contour.
The optimisation curve and operating point is shown in
Fig. 6. The database consists of N = 291 patient studies and
the selected number of partitions K = 145. We now vary
the number of vertices P2 on the left ventricle polygon,
varying it from 10 vertices to 90 vertices with five vertex
increments. If L = 144 are the training sets, then for each
combination there are K − L test set boundaries on which
the error is computed. We choose the number of vertices
P2 to minimise the error on the test set. Since there
are KCL = 145 trials, each trial has (K − L) subsets, each
subset consists of N/K patients (in a protocol, if N/K is not
a perfect division, then for the last trial in KCL combi-
nations, we have (K − L +rp) patients as the testing set,
where rp is a remainder number of N/K), and each patient
consists of P2 vertices and F = 2 frames. We thus get the
total number of points as: F × KCL × (K − L) × N/K × P2,
resulting in: N × F × P2 × (K − 1)!/((K − L − 1)!L!), points for
each (N,K,L,P2) tuple. Since we are computing the polyline

Fig. 6. Vertex optimisation using the polyline distance metric. Left:
IdCM (identical coefficient method), cross validation vs. training
equals testing (TT). Right: InCM (Independent Coefficient method).
Note the IdCM operating point is 30 vertices and InCM operating
point is 15 vertices.
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distances, the number of operations is
N × F × P2

1 × P2 × (K − 1)!/((K − L − 1)! L!). We see from the
plot Fig. 6 that the optimal number of vertices in InCM is
about half the optimal number of vertices in IdCM, the
reason being that the number of coefficients that have to
be estimated in InCM is about four times the number of
coefficients that have to be estimated in IdCM.

5.2. Data Analysis 2, 3: Cumulative Distribution of

SED+ES
2 D Errors and Error Per Arc Length along Left

Ventricle Contour

We show here the cumulative distribution of end frame
errors (ED+ES/2) from both the calibration methods using
IdCM and InCM, as shown in Fig. 7. Figure 8 demonstrates
the mean EPAL along the LVC. The abscissa shows the
length of the arc starting from AAV. The ordinate shows
the error at each vertex in millimeters. As seen in the plot,
the mean EPV is largest near the middle of the normalised
arc length, which is close to the apex of the left ventricle.
Thus the error is maximum in the apex region.

We see that the greedy algorithm does best in the apex
zone compared to the IdCM and InCM methods. The EPV
in Fig. 8 shows that in the end diastole frame, the apex
zone error is reduced by 8.5 mm (from 12.5 mm to about
4 mm), while in the end systol frame, the apex zone error
is reduced by 3 mm (from 9 mm to 6 mm ). The correspond-
ing mean error over the ED and ES frames of the pixel-
based boundaries was 6.4 mm, which is reduced to 3.8 mm
in IdCM and 3.5 mm in the greedy scheme. As per our
assumption, the error is least at the end points of the LVC,
since the AoV plane is known, thus the EPV curve drops
at both ends. Our results show that 81% of the patient
boundaries had a mean (ED+ES/2) less than 4.0 mm using
the greedy calibration technique.

Fig. 7. Cumulative distribution vs. mean error of (ED + ES/2) errors. Left: identical coefficient method. Middle: independent coefficient
method. Right: greedy vs. IdCM. The curves show that 80% of patient estimated boundaries have an error #4 mm in IdCM, while 72% of
the patients have an error #4 mm in InCM, and 81% of patients have an error #4 mm in the greedy method. Partition protocol parameters:
N = 291, F = 2, K = 145, L = 144, P1 = 100, P2 = 30.

5.3. Data Analysis 4: ED and ES Errors vs. InCM
Pool Vertices

Here we show the effect of the greedy calibration scheme.
Figure 9 shows the drop in end diastole and end systole
frame errors when the IdCM pool vertices are transferred
to the InCM pool. This is implemented using the greedy
do-while loop, where some columns (or vertices) of the
IdCM matrix R̂id are replaced by corresponding columns (or
vertices) of the InCM matrix, R̂in. Figure 9 (right) shows
that the greedy algorithm reduces the error by 0.3 mm over
IdCM. We also observe that the best number of vertices
for IdCM is 30, while for InCM it is 15. The best perform-
ance over all the three techniques is by the greedy algorithm
with the number of vertices being 30. In the greedy cali-
bration technique, the error does not rise very sharply after
30 vertices, but rises gradually by 100th of a millimeter
from 30 vertices to 40 vertices. The input and output of
the boundary estimation system for the IdCM, InCM and
greedy techniques are shown Figs 10–12.

6. RELIABILITY ALGORITHM AND
VALIDATION: REJECTION FOR LARGE
BOUNDARY DEVIATIONS

In this section we develop a general and automatic vali-
dation technique that can detect the left ventricle bound-
aries whose mean end frame boundary errors (ED+ES/2) are
above a given threshold, Rth. This validation scheme has
the following features and advantages:

1. It determines those left ventricle boundaries from the
database (which could be coming from any source)
whose (ED+ES/2) error is above a given threshold error.

2. The scheme provides feedback to the boundary cali-
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Fig. 8. Mean Error Per Arc Length (EPAL) using the polyline distance method, where we superimpose four curves, the initial raw (perturbed),
identical coefficient method, independent coefficient method and greedy calibration method. Left: ED frame. Right: ES frame. The greedy
method does the best out of the three calibration techniques in both the ED and ES frames. The greedy method also does better in the
apex zone (where the dye was unable to reach) compared to all the other vertices. In the ED frame, the apex error reduces by 8.5 mm and
in the ES frame, the apex error reduces by 3 mm.

Fig. 9. Greedy performance. Left: plot showing the reduction in the error for ED and ES frames when some vertices are calibrated using
IdCM and others using InCM. With the increase InCM pool, the error drops. Right: comparison of three calibration techniques, the greedy
method does the best. Partition protocol parameters: N = 291, F = 2, K = 145, L = 144, P1 = 100, P2 = 30. Mean error for IdCM = 3.8 mm,
InCM = 3.9 mm and Greedy = 3.5 mm. So the greedy method improves by 0.3 mm over the IdCM method.

bration system so that the system knows which left
ventricle boundaries can be rejected.

3. It estimates the overall performance of the boundary
calibration system without taking the rejected boundaries
into consideration.

4. It provides a check for consistency and reliability of the

output estimation algorithms (for example: Classification
algorithm, IdCM, InCM or Greedy).

For this test we need three inputs: the left ventricle bound-
ary coordinates (x,y); the grey scale left ventriculograms;
and the binary indicator for the left ventricle region: 1 for
inside the left ventricle region and 0 for outside the left
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Fig. 10. Classifier vs. estimated boundaries with grey scale in the background using the Identical Calibration Method (IdCM). Quartile 1,
Thick LV contour – Ground Truth, Thin LV contour-Classifier, and Estimated, Upper: (a1) Uncalibrated ED frame boundary with ground
truth. (a2) Calibrated ED frame boundary with ground truth. Bottom: (b1) Uncalibrated ES frame boundary with ground truth. (b2) Calibrated
ES frame boundary with ground truth. Calibration Parameters: N = 291, K = 145, L = 144, F = 2, P1 = 100, P2 = 30, Mean end frame error
(ED + ES

2
) = 1.30 mm, Mean error (epoly

NFP) = 3.7 mm.

ventricle region. This boundary rejection scheme is based
on the grey scale information near the boundary of the left
ventricle. Using a mutually exclusive window of a fixed size
centred on the left ventricle boundary vertex and along the
left ventricle contour, we compute the mean grey level
value for part of the window which is inside the left
ventricle region and partof the window which is outside the
left ventricle region (see Fig. 13, left). We then associate
this difference in the mean grey scale intensities (also called
contrast values) to the corresponding vertex of the observed
left ventricle boundary. Since we know the observed bound-
ary errors (ED+ES/2) for patient study n estimated from any
technique, we can regress these contrast values against the
observed errors to compute the rejection training coef-
ficients. These training coefficients can then be used to find
the predicted errors on the test Contrast Boundary Data
(CBD). The predicted errors which are above the threshold

correspond to boundary delineation, which are to be
rejected. This rejection scheme is a reliability test, because
it helps to determine how reliable the estimated boundaries
are. In Section 6.1, we give the mathematical statement for
computing the predicted errors. Section 6.2 discusses the
reliability test algorithm and training system, and Section
6.3 gives the mathematical formulae for computing the
probability of a false alarm, a mis-detection, and the mean
predicted errors when n patients are rejected from the
database. Finally, we discuss the resulting reliability curves
from our experiments.

6.1. Problem Statement: Reliability Equation

Boundary contrast data refers to the grey scale data generated
along the left ventricle boundary by superimposing the left
ventricle boundary over the grey scale left ventriculograms.
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Fig. 11. Classifier vs. estimated boundaries with grey scale in the background using the Independent Coefficient Method (InCM). Quartile
1, Thick VL contour – Ground Truth, Thin LV contour-Classifier, and Estimated, Upper: (a1) Uncalibrated ED frame boundary with ground
truth. (a2) Calibrated ED frame boundary with ground truth. Bottom: (b1) Uncalibrated ES frame boundary with ground truth. (b2) Calibrated
ES frame boundary with ground truth. Calibation Parameters: N = 291, K = 145, L = 144, F = 2, P = 100, P*2 = 15, Mean end frame error
(ED + ES

2
) = 1.57 mm, Mean error (epoly

NFP) = 3.65 mm.

At each chosen vertex of the LVC, there is a corresponding
contrast value. The contrast value for a given window is
the difference between the mean grey scale intensities inside
and outside the window. This superimposed boundary can
be from any given boundary estimation algorithm. Observed
errors are the mean end frame boundary errors (ED + ES/2)
for each patient study n.

We now present the mathematical statement for the
estimation of predicted errors for the left ventricle bound-
aries, given the boundary contrast data matrix C and
observed end frame error (ED + ES/2) vector e. The pre-
dicted errors are used for spotting the left ventricle bound-
aries that are above the given error threshold.

Let c′n = [c1,. . .,cP] be the row vector of contrast values
of dimension P for patient study n, where, n = 1,. . .,N. Let
e = [e1,. . .,eN] be the vector of the observed end frame errors,

(ED + ES/2) for N patient studies. For the predicted errors
of the patient study n, we are:

I Given: corresponding pairs of contrast data matrix
C[N × (P + 3)], and the observed errors e[N × 1], respect-
ively, as:

CN×(P+3) = 1
c′1 1 s1 m1

. . .

c′N 1 sN mN

2 eN×1 = 1
e1

. . .

eN

2
where sn, mn is the standard deviation and mean of the
P contrast values for the patient study n along the LVC.

I Let a[N × 1] be the vector of unknown regression coef-
ficients.
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Fig. 12. Classifier vs. estimated boundaries with grey scale in the background using the Greedy Calibration Method. Quartile 1, Thick LV
contour – Ground Truth, Thin LV contour-Classifier, and Estimated, Upper: (a1) Uncalibrated ED frame boundary with ground truth. (a2)
Calibrated ED frame boundary with ground truth. Bottom: (b1) Uncalibrated ES frame boundary with ground truth. (b2) Calibrated ES frame
boundary with ground truth. Calibation Parameters: N = 291, K = 145, L = 144, F = 2, P1 = 100, P2 = 35, Mean end frame error (ED + ES

2
) =

1.16 mm, Mean error (epoly
NFP) = 3.5 mm.

I The problem is to estimate the coefficient vector a, to
minimise ie − Cai2. Then for any boundary contrast data
matrix C, the predicted error for the boundary is given
as: Câ, where â is the estimated coefficients.

6.2. Reliability Algorithm: C-e Relation

The following are algorithm steps for estimating the predicted
errors which form the basis for the reliability of the boundaries
estimated from any boundary estimation algorithm:

1. Boundary contrast matrix generation (C): the contrast
matrix can be generated by first superimposing the left
ventricle boundaries over the grey scale images (LVG).
We use two methods for generating the contrast data.
The mathematical statements for expressing the contrast
value at a vertex i are given as follows: let gp be the

grey scale value for pixel p. Let I and O be the sets
which contain the pixels inside and outside the mutually
exclusive moving window. Let GI and GO be the sum of
all the grey scale intensities for pixels which are inside
and outside the window, given by:

GI = O
pPI

gp and GO = O
pPO

gp (18)

Let fI and fO be the cardinality of the sets I and O.
Using the above notation, we give the expression for the
contrast value at vertex i using the two methods:

ci =
(GI − GO)i

(fI + fO)
and ci = SGI

fI
D

i
− SGO

fO
D

i
(19)

Note that the difference between the above equations lies
in the way in which the sums of the grey scale intensities
GI and GO are subtracted in the two cases. In method I,
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Fig. 13. Right: Overall system for reliability and validation test. It has two parts: the first is the generation of the training rejection coefficients
from the contrast data set; the second consists of applying the training coefficients on the test contrast data to generate the predicted errors.
These predicted errors show the performance evaluation of the system. WS is the window size which moves along the LVC. We use three
statistical techniques for estimating the rejection regression coefficients (RRC), depending upon the layout of the contrast data matrix (C).
Left: Contrast data generation process showing two schemes. (i) Non-separate contrast data; and (ii) separate contrast data.

we compute the grey scale difference between the total
grey scale values inside and outside the window, and then
divide the difference by the total number of pixels in the
window. In the second case, we find the mean values for
inside and outside separately, and then subtract it. The
former is called point-wise contrast data, as the contrast
value for a vertex i is computed by taking all of the pixels
for that point into account, while the latter is called
region-wise contrast data, as the contrast value at a vertex
i is computed by subtracting two different regions of the
window (see Fig. 13, left).

We also compute the mean and standard deviation of
the contrast values for each patient study n. Now, using
Eqs (18) and (19), we find the contrast values for P
vertices on LVC, which yields the contrast vector c′n for
patient study n. Repeating this process for all the studies
N, we get the contrast data matrix C [N × (P + 3)].

2. Estimation of the training coefficients (â): we compute
the training coefficients using the standard Least Squares
to minimise the error function e2

rr, given as:

e2
rr = iCtra − ei2 and â = (CT

trCtr)−1 CT
tr e (20)

Note that Ctr has a dimension of Ntr × (P + 3), â has a

dimension of (P + 3) × 1, and e has a dimension of

Ntr × 1. Ntr is the number of training studies. Note here

that the residue of the regression tells us about the place-

ment of a vertex with respect to the contrast value (grey
scale) at the edges in a ventriculogram. If the residue is
high, then that vertex is definitely far away from the ideal
boundary, which means that it can be far outside (over-
estimated) or far inside (under-estimated) the left ventricle
boundary. On the contrary, if the residual error is small,
the vertex is definitely close to the ideal boundary. The
residual error of the validation model largely depends upon
the training data size (L-partitions out of N, as discussed in
step 5).
3. Estimating the predicted errors ê on test boundaries (Nte):

ê = Cte â where, Cte has dimension Nte × (P + 3).

4. Statistical techniques and window sizes: here we repeat
the rejection regression coefficient estimation process for
three different sets of statistical techniques: Plain;
Ordered; and Normalised and Ordered. Plain, because we
arrange the boundary contrast values as per the vertex
number of the LVC; Ordered, because we arrange the
contrast values in increasing order, and then use it for
calibration; Normalised, because we normalise the con-
trast values by its standard deviation. For each of the
above techniques, we also change the window size for
generation of the contrast data. Two sets of window sizes
were taken into consideration, namely, 11 × 11 and
22 × 22.

5. Our validation approach is based on a cross-validation
procedure for estimating the predicted errors. This pro-
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cedure takes a database of N patient studies and partitions
this database into K equal-sized subsets. Then for all the
$K choose L combinations, we train the system using L
subsets, and apply the estimated transformation on the
remaining (K − L) subsets. The mean predicted error of
the contrast boundary data is then computed from these
(K − L) subsets coming from all K choose L combinations.
The predicted errors which are above the threshold corre-
spond to boundary delineation, which are rejected.

6.3. Performance: Mathematical Formulae for
Probability of Misdetection, False Alarm and Mean
Predicted Errors

Let (s(i),e(i)) be the name and the error for a patient from
the list of observed (ideal) errors and corresponding names.
This list is the sorted list of errors, and its corresponding
names from the output of the boundary estimation algorithm.
Similarly, let (q(j),p(j)) be the name and the error for a
patient from the list of the predicted errors and correspond-
ing names. This list of errors results from the output of the
boundary rejection scheme. Note that the errors in both
lists are sorted in increasing order, and hence the names of
the patient boundaries are not in same order in both lists.
These two lists will be used for finding the probabilities of
misdetection vs. probabilities of false alarm, and mean errors
for rejected and non-rejected patient boundaries. This is a
very efficient scheme, because we can easily compute the
elements of the contingency table and spot the patient
boundaries given a threshold, Rth.

Let us define mathematically the terms of the contingency
table shown in Table 1. mrr is the number of patient studies
truly rejected, and which was assigned to be rejected. mrs is
the number of patient studies truly rejected, but which was
assigned to be non-rejected (selected). msr are the number
of patient studies truly non-rejected (selected), but assigned
to be rejected. mss is the number of patient studies truly
non-rejected (selected) and which were assigned to be non-
rejected (selected). These four terms can be mathematically
expressed using our two input lists as:

mrr(n) = #{i u ∃ j, (s(i) = q(j)), j . (N − n), i . (N − n) (21)

mrs(n) = #{i u ∃ j, (s(i) = q(j)), j # (N − n), i . (N − n) (22)

msr(n) = #{i u ∃ j, (s(i) = q(j)), j . (N − n), i # (N − n) (23)

mss(n) = #{i u ∃ j, (s(i) = q(j)), j # (N − n), i # (N − n) (24)

Note that the elements of the contingency table are a
function of each set of patient studies rejected n. Using
these definitions, we can express the probability of misdetec-

Table 1. Contingency table

Assigned

True mrr mrs

True msr mss

tion Pmd(n) and the probability of false alarm Pfa(n) as a
function of the total number of studies rejected n:

Pmd(n) =
mrr(n)

mrr(n) + mrs(n)
(25)

and Pfa(n) =
msr(n)

msr(n) + mss(n)

6.3.1. Mean Errors for Rejected p̄r(n) and Non-Rejected
Studies p̄non(n). Given the above lists, we can express the
mean error of the rejected and non-rejected patient bound-
aries for the ideal (observed) and cross-validation cases as
follows: let ēr(n) and ēnon(n) be the errors for rejected and
non-rejected (selected) patient boundaries for the ideal case.
Let p̄r(n) and p̄non(n) be the errors for rejected and non-
rejected (selected) patient boundaries for the cross-vali-
dation case.

For the ideal case:

ēr(n) =
1
n ON

i=N−n+1

e(i) and ēnon(n) =
1

N − n ON−n

i=1

e(i)

(26)

For the cross-validation (CV) case:

p̄r(n) =
1
n ON

i=N−n+1

p(j) and p̄non(n) =
1

N − n ON−n

i=1

p(j)

(27)

The rejection threshold for n patient studies is computed
using the list of predicted errors, and is given as:
Rth(n) = pN−n.

6.4. Relationships Developed: Reliability Curves

1. ēnon(n) and p̄non(n) vs. n: this is the relation between the
mean error for the non-rejected patients for both the
ideal and cross-validation cases, and the total number of
patients rejected n. ēnon(n) and p̄non(n) can be computed
using the Eqs (26) and (27). We took the ED and ES
frames from the same data set of 245 studies using IdCM
errors for these experiments. In the first case, n is made
to increase from 1 to 50. These two plots are shown in
Fig. (14). We see that, as we reject 20% of the patient
boundaries, the mean error for ēnon(n) and p̄non(n) drops
from 4.4 mm to 4 mm (for the CV case) and 3.85 mm
(for the Ideal case), respectively.

2. ēnon(n) and p̄non(n) vs. Rth: the is the relation between
the mean error for the non-rejected patients for both the
ideal and cross-validation cases, and the rejection thres-
hold Rth. ēnon(n) and p̄non(n) can be computed using Eqs
(26) and (27). This is shown in Fig. 11 (right). With
the reduction in the rejection threshold Rth, the mean
error drops down gradually.

3. Pmd(n) vs. Pfa(n): this is the relation for the probability
of misdetection versus the probability of false alarms for
the set of n studies rejected. The curve is shown in
Fig. 15. With an increase in Pmd(n), Pfa(n) decreases.
Note that both scales are from 0 to 1 (see Eq. (25)).
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Fig. 14. Left: plot of mean of non-rejected patient studies vs. number of patients rejected (n). Right: plot of mean of non-rejected patient
vs. rejection threshold.

Fig. 15. Left: with the increase in probability of misdetection Pmd(n) the probability of false-alarm Pfa(n) decreases. Note that each point on
the curve corresponds to the total number of patients rejected (n). There are two cases shown in this plot. First, when the window size
(WS) is 11 × 11, and second, when the WS is 22 × 22. Middle: plot of Pmd(n) vs. n. Right: plot of Pfa(n) vs. n.

4. Pmd(n) vs. n: this is the relation for the probability of
misdetection versus the number of patients rejected n
(see Eq. (25)). This plot demonstrates that when more
patients are rejected, then the probability of misdetection
falls (see Fig. 12).

5. Pfa(n) vs. n: this is the relation between the probability
of false alarms and the number of patients rejected n,
computed using the relations expressed in Eq. (25). We
see from the plot, with an increase in n, the probability
of false alarm (Pmd(n)) increases. We have shown two
cases: first, when the window size is 11 × 11; and second,
when the WS is 22 × 22. When n is small, that is when
a small number of patient boundaries are rejected, the
Pfa(n) is more or less the same for both window sizes,
but when a large number of patients is rejected, then
the Pfa(n) is higher for a window size of 22 × 22.

The following are the advantages of our validation system.
The general technique: (1) requires only grey scale cardioan-

giograms, observed errors and boundaries which needs to be
validated; (2) detects automatically the patient boundaries
which need to be rejected or that have large errors with
respect to the ground truth boundaries, thus providing feed-
back to the boundary estimation system; (3) can be applied
for observed errors (taken as ideal) coming from any source,
say (segmentation algorithm, calibration algorithm, active
contour fitting algorithm, dynamic programming-based algor-
ithm, etc.). Finally, the validation system is easily
implementable and portable on any any Unix-based system.

6.5. Discussion

The greedy algorithm for error correction fuses two sets of
estimated boundaries: boundaries produced by the identical
coefficient method, and boundaries produced by the inde-
pendent coefficient method. If these two estimated boundaries
have large errors with respect to the ground truth (ideal or
hand-drawn boundary), then the greedy algorithm rapidly
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identifies those vertices which are too far from the ideal
vertices, significantly reducing the boundary error. Neverthe-
less, the true shape of the left ventricle depends upon the
number of optimised boundary vertices selected on the left
ventricle contour. If the number of vertices is less than the
optimum number of vertices, the true left ventricle shape
may not be represented. On the other hand, if the number
of vertices is larger than the optimised boundary vertices,
the shape becomes more accurate, but generalisation is lost.
Therefore, we first optimise the IdCM and InCM techniques,
and then fuse the best results. Consequently, the error will
always improve, but the drop in error will depend upon the
following factors:

1. The number of vertices on LVC.
2. The initial errors of the IdCM and InCM boundary data

before the fusion starts, which in turn depends upon the
number of data vectors N for training the calibration
model.

3. The starting error value (e) before the greedy loop starts.
(In our case, the starting value is the best error for the
IdCM boundary data.)

These preliminary results indicate that the three sets of
calibration algorithms significantly reduce the boundary error
over the image processing algorithms. In other words, given
any method for finding a digitised contour (computer-based
estimates) in the plane for a certain class of images and
the corresponding set of expert (or ground truth) contours,
these three calibration algorithms will refine the computer-
based estimates to be in better agreement with the expert
(here the cardiologist). However, we can make the left
ventricle boundary calibration system more robust by pad-
ding information or features like the apex information to
the Q matrix (classifier data) to improve the accuracy [18].
Our algorithm requires no operator assistance; further, the
algorithm is relatively simple and can be implemented on
any commercial imaging system. One could say that the
training algorithm alone used in this research is not a
sophisticated method compared to neural networks. If you
look at the entire system of boundary estimation, it fits very
well: a Bayesian classifier as a raw boundary estimator fol-
lowed by a calibrator for bias correction. Such a complex
system is justified for left ventriculograms, because the Baye-
sian classifier uses temporal information and the calibration
uses spatial information. We are also working on developing
a constrained calibration system along with an automatic
apex estimation technique for robust design of the left
ventricle boundary estimation.

6.6. Conclusions

We presented three sets of calibration algorithms, the ident-
ical coefficient method, the independent coefficient method and
the greedy calibration method. The greedy calibration algor-
ithm for calibrating the initial pixel-based classifier bound-
aries takes the best of the other two calibration methods:
the identical coefficient method and the independent coefficient
method. The mean error over ED and ES frames using a

cross-validation protocol and polyline distance metric is
3.5 mm over the database of 291 patient studies. The greedy
algorithm is a considerable improvement over the identical
coefficient method by 0.3 mm, which is significant for accu-
racy of the overall calibration system. The greedy algorithm
performs best in the apex zone of the left ventricle, where
the dye is unable to propagate, reducing the error by approxi-
mately 8.5 mm. Thus, we see that the calibration constitutes
a significant last step for boundary estimation.
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APPENDIX: GREEDY ALGORITHM
IMPLEMENTATION

The greedy algorithm consists of three basic steps. First,
fusion of IdCM and InCM boundary data; secondly, polyline
performance to compute the errors; and thirdly, the vertex
selection. The input to the fusion process are two sets of
boundaries R̂id and R̂in, which need to be fused. The fusion
is done by selection of that vertex (or column) of the InCM
boundary which contributes to a reduction in error. The
Polyperformance() function takes two sets of boundaries: the
fused boundary R̂com and the original ground truth Rgt

consisting of P1 = 100 vertices, and computes the mean error
(as discussed in Section 4). The third function is the
argmin() function or vertex selection function which takes
the error associated with P2 vertices and finds that vertex
number from the InCM LV boundary that yielded the least
error in each greedy cycle.
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Greedy Algorithm

Let S, Sid and Sin be three sets consisting of all vertices,
IdCM pool vertices and InCM pool vertices, respectively.
Let R̂id (2N × P2) and R̂in (N × 2P2) be the estimated bound-
ary matrices from the IdCM and InCM techniques with P2

samples vertices. Let Rgt (N × 2P1) and R (N × 2P2) be the
matrices consisting of (x,y)-coordinates from the original
ground truth with P1 = 100 and sampled P2 vertices, respect-
ively. Initially, all the vertices are considered in the IdCM
pool and the error is computed. Denote its error by eid.
Now we select that vertex from the IdCM pool which,
when fused with the InCM pool vertices, yields an estimated
boundary error lower than eid. This procedure is repeated
until there is no further improvement. If e is the error at
any time in the greedy do-while loop, and ^ is the set
consisting of all the frames, then the greedy do-while loop
for any frame t in the set ^, consists of the following steps:
Greedy Boundary Calibration()
For each t P ^

Sid = S; Sin = f, e = 0 greedyCounter = 0
While (e # eid) do

greedyCounter++
For each i P Sid, /* total vertices are Pid */

Sid = Sid − {i} ; Sin = Sin < {i}
Combine IdCM (R̂id) and InCM (R̂in) Using Sid

and Sin

R̂com = Combine(Rid,Rin,N,P2,Sid,Sin, greedyCounter)
Performance Evaluation using Original GT: Error
for index i
ei = PolyPerformance(R̂com,Rgt,N,P1,P2)

End /* end of the for loop */
ArgMin Computation: Minimum error and best vertex
j selection
(emin,j) = ArgMin(e[i], Pid − greedyCounter)
if(emin , e) then Sid = Sid − {j} ; Sin = Sin < {j} else break;
End

END /* end of the while loop */
End /* end of all the frames of systolic heart cycle */

The advantage of the above algorithm is that our initial
error is decided from either of the above coefficient methods.
Note that this is implemented independently for each frame
of the cardiac cycle.


