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on an explicit new definition of consistency in terms of variational Define the support on n labeling distributions, v( 1 ), . . . , v(n), 
inequality, and leads to a relaxation algorithm with an updating or V 2 [v(l), . . . , v(n)] from P by Cy=, C;“=, q, (i; P)u, (i). 
formula which uses a projection operator. For abbreviation, we let 

In this correspondence, based on fully exploiting the linearity of 
the variational inequality and the linear convexity of consistent la- 
beling search space, an essential characterization of a consistent 
labeling is obtained (see Section III), the structure of the consistent 
labeling set becomes clear (see Section IV) and hence an efficient 
simplex like algorithm is developed (see Section V). The conver- 
gence of the algorithm is explored in Section VI (see Theorem 
6.1-2). Theorem 6.1 carries the name “one more step theorem” 
which indicates the algorithm takes the shortest path. A compari- 
son to the Rosenfeld er al. consistent labeling definition is made in 
Section VII. In addition, an essential condition of a consistent la- 
beling in Rosenfeld er al. is derived. It is also proved that a con- 
sistent labeling in Rosenfeld et al. is implied by Hummel and 
Zucker, and hence there exists a consistent labeling in Rosenfeld 
et al. The experimental results which are given in the final section, 
Section VIII, verify the theory and algorithm developed in the cor- 
respondence. For readers’ convenience, a specific section (Section 
II) for notation and definition is included as well. 

q(i; P) 2 (q,(i; P), . . . , q,(i; P,), 

q(P) 2 [q(l; P), . . . , q(n: P,] 

and simply call each of P and I/ a labeling. Thus the support on the 
labeling V from the labeling P is represented by the inner product 
(q(P), V) in the nm-dimensional Euclidean space E,,,: 

(q(P), V) = $, (q(i; PJ3 u(i))? (8) 

where each (q( i; P), u( i ) ) represents the inner product in the 
m-dimensional Euclidean space E,. 

A set of n labeling distributions p( 1), . . . , p(n) is called un- 
ambiguous if each of n units is assigned a unique label, that is, for 
each i, 1 5 i _( n, all p, (i )‘s (j = 1, . . . , m) are zero except 
one which is 1. R. A. Hummel and S. W. Zucker first define a 
consistency concept of an unambiguous labeling, then by analogy 
they define a consistency concept of an ambiguous labeling. Ac- 
cording to their definition, n labeling distributions p( l), . . . , 
p(n) comprise a consistent labeling if for various n labeling dis- 
tributions v(l), . . . , v  (n ) there hold the following variational 
inequalities: 

II. NOTATION AND DEFINITIONS 

A consistent labeling problem has units each of which has an 
unknown true label. There are n units, denoted by U,, . . . , U,,, 
and m  labels, denoted by L,, . . . , L,. Each U, (i = 1, . * . , n) 
will be assigned a set of m numbers p, (i ), . . * , pm (i ) called a 
labeling distribution: 

p,(i) 2 0, . . . ,p,(i) 2 0, (1) 
VI 

c p,(i) = 1. (2) 
j=l 

For abbreviation, we let 

p(i) g (p,(i), . . . ,h(i)), 

i = 1,2, .*. ,n, (3) 
and simply call the ( 1 x m)-row vectorp (i ) a labeling distribution 
of u,. 

Between label assignments there are consistency constraints. Let 
a real number r (i, j; h, k) represent how the label Lk at the unit 
U, influences the label L, at the unit U,. If the unit U, having the 
label Lk lends a high support to the unit U, having the label Lj, then 
r (i, j; h, k) should be large and positive. If constraints are such 
that the unit U, having the label Lk means that the label L, at the 
unit U, is highly unlikely, then r (i, j; h, k) should be small. No 
specific restrictions are placed on the magnitude of r (i, j; h, k). 
However, we do require that 

r (i, j; i, j ) = a positive constant, for instance (Y, 

independent of i, j, (4) 
r(i, j; h, k) 5 a. (5) 

Define the support on the unit U, having the label L,, { Vi, Lj}, 
from the unit U,, having the label Lb with a labeling distribution 
componentpk(hj, { UiLk,pkCh)l, by r(i,j; h, k)&(h). 

Define the SUDDOI-~ on the unit U; having the label L; with another 
labeling distribution component t+ ii ), { Uui, Lj, uj (i ;I, from { U,,, 
-&p,(h)1 by r(i,j; k k)p,(h)u,(i). 

Define the support on { U,, L,, u, (i ) } from the unit U,, having 
a label distribution p(h), {U,,, p(h)}, by Cr=, r(i, j; h, 
k)Pk(h)fJ, (i ). 

Define the support on { U,, 4, v, (i ) } from n labeling distribu- 
tions, p( l), . . . , p(n), byqj(i;P)v,(i)where 

q,(i; p) g ,,%, kt, r(4.A k k)pk(h), (6) 

P L [P(l), . . . 1 p(n)]. (7) 
Definethesupporton{U~,v(i)}fromPbyCr”=,q,(i;P)v,(i). 

(q(i; PI, u(i) -p(i)) 5 0, i = 1, ... ,n, (9) 

or the same 
(q(i; P), v(i)) 5 (q(C P),P(i)), i = 1, ... ,n. (10) 

In other words, P is a consistent labeling if and only if Vi, i = 1, 
. . . , n,p(i) maximizes (q(i; P), v(i)) when v(i) varies over 
K [see (14)], It is clear that a consistent labeling P gives the support 
in favor of itself or discriminates against any other labelings since 

(q(p), V) = ,g, (q(i; P), u(i)) 

5 ,F, (q(i; PI> P(i)) 

= (q(P), p). (11) 
Conversely, if a labeling P gives the support in favor of itself, i.e., 
for any other labeling V it holds that 

(q(P), v) 5 (q(P), p)3 (12) 
then the labeling P is consistent, i.e., for each i, 1 5 i I n, (10) 
holds, since letting each v(h) equal p (h) except v  ( i ) which could 
be arbitrary, (12) will imply (lo), as easily verified. Thus, a con- 
sistent labeling P could also be defined by the single variational 
inequality, i.eT, (12). In other words, P is-a consist&t labeling if 
and only if P maximizes (q(P), V) when V varies over K” [see 
(1611. 

Let e,. . . . , e,n be m standard basis vectors in E,. Let 

4, = {e,, .*. ,e,), (13) 
,,I 

K = c u,e,: u, 2 0, 5 u, = 1 (14) J=l j=l 

KI( = Kox, ... , xK,, (15) 
nt,mes 

K” = Kx, ..’ , xK. (16) 
ntlmes 

Then K( K”) is a linear convex set in E,, (E,,,,) and Ko(KE) the set 
of vertices of K( K”). The set K takes a specific name “simplex” 
in topology and linear programming. It is clear that q(P) (q ( i; P) ) 
defines a linear transformation: K” -+ E,,,( E,,) and q, (i; P) a lin- 
ear functional: K” + E, . The inner product (q(P), V ) defines a 
bilinear functional: K” x K” + E, and the inner product (q (i; P), 
11 (i ) ) a bilinear functional: K” x K + El. 

~ Hummel and Zucker call a labeling P ‘strictly consistent if for 
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each u(i) E K, z,(i) # p(i), it holds that 

(di; p), u(i)) < (q(i; P),p(i)), i = 1, ... ,n. (17) 
In other words, P is a strictly consistent labeling if and only if vi, 
;=I,... ,n,p(i)isauniquemaximalpointof(q(i;P), v(i)) 
when v (i ) varies over K. Similarly, it could be proved that a la- 
beling P is strictly consistent if and only if for each V E K”, V # 
P, it holds that 

(q(P), “) < (q(P), p). (18) 
In other words, P is strictly consistent if and only if P is a unique 
maximal point of (q(P), V) when V varies over K”. 

III. CHARACTERIZATION OF A CONSISTENT LABELING 

To characterize a consistent labeling it is natural and reasonable 
to exploit the linearity of variational inequalities (9) and the con- 
vexity of the labeling distribution search space K. 

The consistency condition suggests that to find a consistent la- 
belingP = [p(l), . . . ,p(n)lwithp(i) = (p,(i), . . . ,p,,(i)) 
we need first to consider 

max (q(i; P), u(i)), i = 1, ... ,n. (19) I’(I’)EK 

Each maximum will be reached at vertices of K since the inner 
product (q(i; P), v(i)) is linear w.r.t. u(i) and the search space 
K a linear convex set. Let M,,( i; P) be simply the set of vertices 
which correspond to components of q (i; P) where the component 
of q (i; P) attains the maximum value: 

Mo(i; P) G  (e,: (q(i; P), e,) = ,F;z, (q(i; PI, ek)}. (20) 

Let M( i; P) be the linear convex set having MO( i; P) as its vertex 
set. Then it is clear that M( i; P) is a face of K and represents the 
maximal point set. That is 

M(i; P) = {u(i): (q(i; P), u(i)) = ,n$ (4;; PI, L’(i))}~ 

(21) 
From definition (20), it is easy to derive that 

M,(i; P) = {e,: qj(i; P) = max qL(i; P)}. (22) I_ch~,” 

and hence 
m 

M(i; P) = 
r 

C ye,: u, 2 0, 5 
,=I ,=I 

uj  = 1, 

uJ=O if e,$b&(i;P) 
1 

(23) 

Since P is a consistent labeling if and only if Vi, i = 1, . . , 
n,p(i) is a maximal point of (q(i; P), v(i)), when u(i) varies 
over K. we can now characterize a consistent labeling P by: 

P(i) E M(i; P)> i = 1, ... ,n. (24) 
Since P is a strictly consistent labeling if and only if Vi, i = 1, 

. . . n,p(i)isauniquemaximalpointof(q(i;P), v(i))when 
ZJ (i )‘varies over K, we can characterize a strictly consistent label- 
ing P by: 

M(i; P) = M,(i; P) = {p(i)}, 

i = 1, ... ,n. 05) 
In this case each p (i ) must be a vertex of K and hence a strictly 
consistent labeling is unambiguous. 

Let 

M,(P) = M,(l; P)X, . . . , Xk&(n; P), (261 
M(P) = M(1; P)X, . . * , XM(n; P). (27) 

Then we can also characterize a consistent labeling P by: 

PEM(P), (28) 

and a strictly consistent labeling P, which must be a vertex of K”, 
by: 

M(P) = M,(P) = {P}. (29) 
It is understandable from a practical point of view that strictly 

consistent labelings are preferable because they are unambiguous 
and isolated, the latter will be explained in the next section. 

IV. STRUCTURE OF THE CONSISTENT LABELING SET 

From Kinderlehrer and Stampacchia [2] we know that the con- 
sistent labeling set denoted by Z is nonempty. Obviously, Z is a 
compact set in K”. In this section we will explore the structure of 
Z. When is a consistent labeling isolated? Does the consistent la- 
beling set have “linearity” and “convexity”? Or, when can two 
consistent labelings be connected by “a line segment” on which 
each point is a consistent labeling? Here P E Z is called isolated if 
VV # P, 11 V - PII << ( << means “small enough”), it holds 
that 

v$! z. (30) 
We need the following important properties of M( i; P): 
For any fixed labeling PO, it always holds that 

M(i; P) c M(i: PO), i = 1, ... ,n, (31) 
or briefly 

M(P) c  WPO), (31)’ 
whenever 11 P - Pa 11 is small. 

For any two labelings P’ and P”, it holds that 

M(i; P’) fl M(i; P”) C M(i; tP’ + (1 - t)P”), 

or briefly 

i = 1, ... ,n, (32) 

M(P’) n M(P”) c M(tP’ + (1 - t)P”), (32)’ 
where 0 I t 5 1. 

To prove (31)-(32) we need only to prove that 

M,(i; P) c M,(i; PO), i = 1. ... ,n, (33) 
whenever I(P - PalI is small, and 

M,(i: P’) n M,(i; P”) c M,(i; tP’ + (1 - t)P”), 

i = 1, ... ,n, (34) 
where 0 s  t 5 1. 

Suppose ek $ M O  (i; PO). We are to verify that ek does not belong 
to Mo( i; P) either whenever I/ P - Pa II is small. As a matter of 
fact, ek 6 Mo( i; PO) means that ve, E Mo( i; PO) we have qk( i; PO) 
< q, (i; PO). Because of continuity, however, qk(i; P) < q, (i; 
P) immediately follows whenever )I P - Pa II is small. Thus, el 
will not belong to Mo( i; P). That validates (33). 

Suppose e, E Mo( i; P’) fl Mo( i; P”). Then vk we have 

q,(i; P’) 2 qa(i; P’), 

q,(i; P”) 2 qk(i; P”), 

andhencevr,O 5 t 5 1, 

q,(i; tP’ + (1 - f)P”) 2_ qk(i; tP’ + (1 - r)P”), 

since q, (i; P) is a linear functional w.r.t. P. The last inequality 
implies e, E M,(i; tP’ + ( 1 - t)P”). This validates (34). 

By means of (31) or (3 1)’ we can prove that a strictly consistent 
labeling is isolated. Suppose Pa is a strictly consistent labeling. 
Then M(P’) = {PO} by (29) and furthermore M(P) = {P”} 
whenever I( P - Pa 11 << by (31)‘. Thus VP, P # Pa and II P - 
Pa (/ << , we obtain P $ M(P), which implies P $ Z. It verifies 
that Pa is isolated. c  

By means of (32) or (32)’ we can prove that if P’, P” E Z and 
M(P’) fl M(P”) # 9, then Vt, 0 < t < 1, tP’ + (1 - t)P” E 
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Zifandonlyifforsometa,O < lo < l,r,P’+ (1 -t,)P”eZ 
if and only if (q(P’ - P”), P’ - P”) = 0. Suppose P E M(P’) 
fl M(P”). ThenP EM(tP’ + (1 - t)P”) (0 < t < 1) by (32)‘. 
This means that P is a maximal point of (q (tP’ + ( 1 - r) P”), 
V) as V varies over K”. Now requiring tP’ + (1 - t)P” E Z is 
equivalent to requiring rP’ + (1 - t)P” E M(tP’ + (1 - r)P”). 
In other words, tP’ + ( 1 - r)P” should be a maximal point of 
(q(tP’ + (1 - t)P”), V). Thus the necessary and sufficient con- 
dition for rP’ + ( 1 - t) P” E Z will be: 

(q(tP’ + (1 - t)P”), P) 

= (q(tP’ + (1 - r)P”), fP’ + (1 - t)P”), 

or after manipulations 

0 = ?(q(P’), P - P’) + (1 - t)2(q(P”), P - PU) 

+ t(1 - t) [(q(P’), P - PU) + (q(P”), P - P’)] 

= r(1 - t)(q(P’ - P”), P’ - P”), (35) 
where both (q(P’), P - P’) and (q(P”), P - P”) are equal to 
zero and canceled because of P’ E M(P’), P” E M(P”) and P E 
M(P’) tl M(P”). From (35) it is clear that Vt, 0 < r < 1, tP’ + 
(1 - r)P” E Z if and only if (q(P’ - P”), P’ - P”) = 0. It is 
also clear that the condition, (q(P’ - P”), P’ - P”) = 0, is 
implied by t,P’ + (1 - t,)P” E Z for some 0 < ta < 1. That 
completes the proof. 

In summary, two consistent labelings can be connected by “a 
line segment” on which each point is a consistent labeling if there 
exists a third point on the line segment which is a consistent label- 
ing 

V. A SIMPLEX ALGORITHM 

Similar to linear programming, the previous reasoning first leads 
to the maximal vertex set, M,(P) C Kg, and then the maximal 
point set, M(P) C K”, formed by M,(P), where each M(i; P) 
comprises a face of the simplex K. If P E M(P), then P is a con- 
sistent labeling. If not, what is the next candidate consistent label- 
ing to choose? Suppose W(P) h [w( 1; P), . . . , w(n; P)] is the 
orthogonal projection of P onto M(P). That is, 

w(p) E M(p), I( VP) - f’(( = v;mi& (1 V - PII. (36) 

It is apparent that W(P) is uniquely determined by P and each w (i; 
P) is the orthogonal projection of p (i ) onto M( i; P), i.e., 

w(i; P) E M(i; P), )Iw(i; P) - p(i)\1 
= *,($& llu(i) - p(i)ll. (36)’ 

A consistent labeling P could be characterized as: 

P = W(P) or p(i) = w(i; P), i = 1, ... ,n. (37) 
When P $ Z, it seems reasonable to choose W(P) as the next can- 
didate consistent labeling. 

Let 

P,(i) + 

w,(i; P) = 

(! 

k:,k~~o~i~p, pk(i )l#Mdi; ph 

if ej E M,(i; P), (38) 

0, otherwise, 

w(i; P) = (w,(i; P), . . , w,(i; P)), 

W(P) = [w(l; P), . . . ) w(n; P)]. 

Then w (i; P) ( W(P)) defined by (38) is the orthogonal projection 
ofp(i) (P) onto M(i; P) (M(P)). It is easy to see that 

w, (i; P) 2 0, = 0 if e, $ M,(i; P), 

5 w,(i; P) = C 
,=I 1 eIEMo(i:P) 

p,(i) + k  e&.Pi Pk(i) = l. 

and for any u(i) E M(i; P) 

(v(i), w(i; P) -p(i)) 
I I  C z:(i)[w,(i;P) -Pj(i)] 

j.q,EMn(i:P) 

= ( c , e,EMo(r:P) u,(i) )i I;:rk$ocill,Pj Pk(i) 
11 

#M0(i; p) 

zz k:,,e~oct.p, Pk(i )l#M0(i; p), 

which is independent of v  (i ). Therefore, w( i; P) belongs to M( i; 
P) and comprises the unique orthogonal projection of p (i ) onto 
M(i; P). 

Now we are able to summarize the algorithm: 

Step 1. Set P ’ 
Step 2. Set k  = 1. 
Step 3. Compute M  (P’). 
Step 4. Compute P’+’ = W(P”;) 
Step 5. If (Pk+’ = Pk) stop. 
Step 6. Setk=k+ 1. 
Step 7. Go To Step 3. 

The algorithm has a geometric explanation-something like 
1) Start at P. 
2) Compute q(i; P), i = 1, . . . , n. 
3) For each i, change p (i ) to lie on the face (or vertex) deter- 

mined by q(i; P). 
Repeat 2.3 until no change. 
The next section is devoted to a convergence discussion. 

VI. CONVERGENCE DISCUSSION 

As seen, the proposed algorithm is simple and easily imple- 
mentable. It has also nice convergence properties since the linearity 
of variational inequalities and linear convexity of the consistent 
labeling search space are exploited. The following Theorem 6.1 is 
something similar to the local convergence theorem by Hummel 
and Zucker, but it is a little bit nicer. It confirms that the algorithm 
finds the shortest path: when it starts with a point close to a strictly 
consistent labeling, only one more iteration is needed to reach the 
goal. Theorem 6.2 relates that any sequence produced by the al- 
gorithm, if it converges, must converge to a consistent labeling. 

Theorem 6. I. (One More Step Theorem): Assume P” is a strictly 
consistent labeling. Then, when Pk is close to PO, only one more 
iteration is needed to reach the goal PO. That is, 

P k+l = ~0, (39) 
Proof: Since P” is a strictly consistent labeling. M(P) will 

consist of a single point PO, whenever (1 P - P” (1 is small, as ar- 
gued before. Thus, when Pk is close to PO, it holds that 

M(Pk) = {PO}, 

which implies that 
pk+’ = I = p”, 

since the orthogonal projection of Pk onto {PO} equals PO. 
Q.E.D. 

Theorem 6.2: If the sequence { PA } , produced by the algorithm, 
approaches PO, then P” is a consistent labeling. 

Proof: Since Pk approaches PO, there is a k. such that 

M(P”) c  M(P’), k  2 k,,, 

which is implied by (31). 
According to the algorithm, Pk + ’ , being the orthogonal projec- 

tion of Pk onto M(Pk), should belong to M(Pk) and hence M(P”) 
as k  L ko. Since W(P”) represents the orthogonal projection of P” 
onto M(P’), for any P E M(P”) it holds that 

IIP - PO\1 B I\W(P”) - POJI 
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Case Initial Distributions 
Algorithm 1 Algorithm 2 

after 25 Iterations after 1 Iteration 

A 0.25 0.25 0.25 0.25 0.27 0.27 0.23 0.23 
0.25 0.25 0.25 0.25 0.27 0.27 0.23 0.23 
0.25 0.25 0.25 0.25 0.27 0.27 0.23 0.23 

B 0.5 0 0.5 0 0.99 0 
0.5 0 0.5 0 0.99 0 
0.5 0 0.5 0 0.99 0 

C 0.5 0 0.5 0 0.99 0 
0.4 0 0.6 0 0.91 0 
0.5 0 0.5 0 0.99 0 

D 0.5 0 0.5 0 1 0 
0.3 0 0.7 0 0.19 0 
0.5 0 0.5 0 1 0 

E 0.3 0 0.7 0 0.9 0 
0.3 0 0.7 0 0.9 0 
0.5 0 0.5 0 1 0 

F 0.2 0 0.8 0 0.07 0 
0.3 0 0.7 0 1 0 
0.5 0 0.5 0 1 0 

G 0.3 0.2 0.3 0.2 0.98 0 
0.3 0.2 0.3 0.2 0.98 0 
0.3 0.2 0.3 0.2 0.98 0 

H 0.3 0.2 0.3 0.2 1 0 
0.25 0.25 0.25 0.25 1 0 
0.2 0.2 0.4 0.2 0.11 0 

I 0.5 0 0.5 0 1 0 
0.02 0 0.98 0 0 0 
0.5 0 0.5 0 1 0 

0.01 0 
0.01 0 
0.01 0 

0.01 0 
0.09 0 
0.01 0 

0 0 
0.81 0 
0 0 

0.1 0 
0.1 0 
0 0 

0.93 0 
0 0 
0 0 

0.02 0 
0.02 0 
0.02 0 

0 0 
0 0 
0.89 0 

0 0 
1 0 
0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 

1 0 0 0 
1 0 0 0 
1 0 0 0 

1 0 0 0 
1 0 0 0 
0 0 1 0 

1 0 0 0 
0 0 1 0 
1 0 0 0 

Fig. 1. Experimental result of the line labeling. 

Especially when k 2 ko, Pk + ’ belongs to M(P’), it holds that 

lip A+’ - PO\1 2 )I W(P”) - POI(. (40) 
which concludes W(P”) = P” or P” E Z because of 11 Pkt ’ - P” II 
* 0. 

Q.E.D. 
VII. COMPARISON TO THE ROSENFELD et al. [3] CONSISTENT 

LABELING DEFINITION 

Using the same notation as in Section II, the Rosenfeld et al. 
relaxation labeling update scheme is as follows: 

p,(i)11 
p,(i): = m  

+ s,(i; VI 

kz, Pkti) [l + qktii p)]’ 

j = 1, ... ,m; i = 1, ... ,n. (41) 

When 1 r (i, j; h, k) I << , their assumption, ) qj (i; P) / < 1, will 
be satisfied. A labeling P is consistent in Rosenfeld er al.‘s sense 
if P is a fixed point of (41). An essential condition of a consistent 
labeling in the Rosenfeld et al. sense is that for each p, (i ) > 0, 
q, (i; P) keeps constant, independent of j. We leave the easy proof 
with readers. Using the characterization, we could prove that Hum- 
me1 and Zucker’s consistent labeling is Rosenfeld er al.‘s consis- 
tent labeling. Suppose P is a Hummel and Zucker consistent la- 
beling. Then for each i, i = 1, . . . , n, p(i ) belongs to M(i; P), 
whichmeansthatforeachpj(i) > O,q,(i;P) =maxl.,!,,,,ql(i; 
P), a constant independent of j. It completes the proof. 

Since Hummel and Zucker’s consistent labeling set is nonempty, 
Rosenfeld ef ~1,‘s consistent labeling set is nonempty as well. 

VIII. EXPERIMENTAL RESULTS AND SUMMARY 

The simple example of scene labeling considered by Rosenfeld 
er al. (see [3]) is used to verify the new relaxation algorithm de- 
veloped in this paper. The problem is to label either the line or the 
junctions of a triangle shown in [3, Fig. 11. 

The compatibility of label X on unit ai with label X’ on unit a,, 
r,, ( h, X’), is related to the function r (i, h; j, X’) in this paper as: 

r (i, X; j, 1’) = d, . ri, ( X, h’) 

where the d’s are constant coefficients. Then, the function 
qj”( X) which is the change in pjk)( h) in the kth iteration, where 
q jk’ ( X) are the notation used in [3], is same as the support function 
qh( i; Pk) in the new algorithm. Using the same values for r;, ( X, 
X’) and d, as Rosenfeld et al. used in their example, two experi- 
ments have been performed as follows. 

A. Labeling Lines of a Triangle 

The problem is to label three units U, (i = 1, 2, 3), three sides 
of a triangle, with four labels L, (i = 1, . . . , 4), the set of four 
line labels { +, -, +, + } used by Waltz (see [4]). The behavior 
of the label distributions for the algorithm proposed by Rosenfeld 
ef al. (Algorithm 1) and the one proposed in this paper (Algorithm 
2) is illustrated in Fig. 1 for various initial labeling distributions. 
The row vector of each matrix in the figure represents the labeling 
distribution for each unit. 

B. Labeling Junctions of a Triangle 

In this example, the three junctions of a triangle are considered 
as units. There are six allowable L-junction types (labels). The six 
labels can be described by the line label pairs as: { (+, + ), (+, 
-),(-, +),(+, G),(+, +),(+, +)}.Thebehaviorofthe 
label distributions for Algorithm 1 and Algorithm 2 is illustrated 
in Fig, 2 for various initial labeling distributions. 

For the line labeling case, using Algorithm 2, the first iteration 
in Case A gives 

0.5 0.5 0 0 

0.5 0.5 0 0 

0.5 0.5 0 0 
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Case Initial Distributions 
Algorithm 2 Algorithm 2 

after 25 Iterations after 1 Iteration 

A 0.33 
0.33 
0.33 

0.33 
0.33 
0.33 

0.33 
0.33 
0.33 

0.94 
0.94 
0.94 

0.03 
0.03 
0.03 

0.03 
0.03 
0.03 

B 0.4 
0.33 
0.33 

0.3 
0.33 
0.33 

0.3 
0.33 
0.33 

1 
0 
0 

0 
1 
0 

0 
0 
1 

C 0.5 0.25 0.25 1 0 0 
0.4 0.3 0.3 0.06 0.94 0 
0.4 0.3 0.3 0.06 0 0.94 

D 0.6 0.2 0.2 1 0 0 
0.5 0.25 0.25 0.99 0.01 0 
0.5 0.25 0.25 0.99 0 0.01 

E 0.33 
0.3 
0.33 

0.33 
0.3 
0.33 

0.33 
0.4 
0.33 

0 
0 
1 

1 
0 
0 

0 
1 
0 

F 0.3 0.3 0.4 0.75 0 0.25 
0.3 0.4 0.3 0.75 0.25 0 
0.33 0.33 0.33 0.06 0.47 0.47 

G 0.3 0.3 0.4 
0.25 0.5 0.25 
0.33 0.33 0.33 

H 0.58 
0.33 
0.33 

0.21 
0.33 
0.33 

0.21 
0.33 
0.33 

I 0.74 
0.4 
0.4 

0.12 
0.3 
0.3 

0.12 
0.3 
0.3 

J 0.33 0.33 0.33 
0.29 0.29 0.42 
0.33 0.33 0.33 

1 
0 
0 

1 
0 
0 

1 
0 
0 

0 
0 
1 

0 
1 
0 

0 
1 
0 

0 
1 
0 

I 
0 
0 

0 
0 
1 

0 
0 
1 

0 
0 
1 

0 
1 
0 

1 
I 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

I 
1 
1 

1 
1 
1 

1” 
0 
0 

1 
0 
0 

1 
0 
0 

o* 
0 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
1 
0 

0 
1 
0 

0 
1 
0 

1 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
1 

0 
0 
1 

0 
0 
1 

0 
1 
0 

“Takes 2 iterations to reach the final state. 

Fig. 2. Experimental result of the junction labeling 

and the second Iteration in the same case gives 

0 0 0.5 0.5 

0 0 0.5 0.5 

0 0 0.5 0.5 

Afterward, the results are oscilative. However, Algorithm 1 after 
25 iterations gives 

0.27 0.27 0.23 0.23 

0.27 0.27 0.23 0.23 

0.27 0.27 0.23 0.23 

It seems both algorithm do not give a meaningful interpretation in 
Case A. In cases B, C, E, and G  both algorithms give the most 
probable interpretation. In case H both algorithms give a less prob- 
able interpretation. In case I both algorithms give the desired inter- 
pretation. In cases D and F two algorithms give different interpre- 
tations. However Algorithm 2 gives the most probable 
interpretation. In all cases except case A Algorithm 2 takes only 
one iteration to reach the goal in comparison to more than 25 it- 
erations required by Algorithm 1. 

For the junction labeling case, both algorithms give the same 
most probable interpretation in cases A and D. In cases B and C, 
Algorithm 1 gives an appropriate interpretation and Algorithm 2 
gives the most probable interpretation. In case E algorithm 1 gives 

an another appropriate interpretation and Algorithm 2 gives the 
most probable interpretation. In case F Algorithm 1 gives an am- 
biguous result and Algorithm 2 gives the most probable interpre- 
tation. In cases G, H, and I both algorithms give the same appro- 
priate interpretation. In case I both algorithms give the same another 
appropriate interpretation. In all cases, Algorithm 2 takes one or 
two iterations to reach the goal instead of taking more than 25 it- 
erations required by Algorithm 1. 

Based on fully exploiting the linearity of the variational ine- 
quality and linear convexity of consistent labeling search space, a 
simplex-like algorithm is developed for the relaxation labeling pro- 
cess. Its effectiveness is thus far substantiated by both theory and 
experiments. 
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